
Rewrite Systems with Abstraction and β-rule:
Types, Approximants and Normalization

(ESOP’96, LNCS 1058, pages 387-403, 1996)

Steffen van Bakel 1 Franco Barbanera 2 Maribel Fernández 3

1 Department of Computing,
Imperial College, 180 Queens
Gate, London SW7 2BZ,
svb@doc.ic.ac.uk

2 Dipartimento di Informatica,
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Introduction

Lambda Calculus (LC) and Term Rewriting Systems (TRS) are two computational paradigms
that have been thoroughly investigated because of their adaptness to modeling fundamental
aspects of computing. In the past, these fields were often studied separately. This enabled a
better understanding of particular features of the actual practice of computing, by isolating
and abstracting those from the wider context in which they are usually found.

Recently, a greater interest has developed for the study of a combination of these two for-
malisms. This combination is interesting not only from the point of view of programming
languages, but also from a more theoretical side. Indeed, such a combination allows to in-
vestigate the interactions of the different aspects of computing, and enables either to develop
new computational methods and paradigms, or to better understand and improve the actual
computing practice.

Various combinations of these two formalisms have been studied extensively in recent years,
both in typed and untyped contexts. In the absence of types, the two systems do not interact
in a very smooth manner. For instance, in [21] Klop showed that confluence, a highly desirable
property in practice, is lost if a surjective pairing operation is added to the untyped LC. In
[16], Dougherty provided some restrictions on terms, thus ensuring that properties that LC
and TRS both possess can be preserved when these systems are combined.

Instead, in the presence of types the combination proved to be much safer. Type disciplines
provide an environment in which rewrite rules and β-reduction can be combined without loss
of their useful properties (for example, strong normalization and confluence are preserved
under the combination of typed LC and first-order TRS). This is supported by a number of
results for a broad range of type systems and calculi [12, 13, 14, 20, 23, 9], but still lacks
evidence in order to be completely accepted in its full generality. More specifically, all the
systems studied in the papers mentioned above have explicit type disciplines (also called à la
Church), i.e. type disciplines where terms come together with types and, hence, each term has
exactly one type. When types are considered to be functional properties of terms, this way of
using types forces to prove a property of a term at the same time that term is constructed.

Type disciplines à la Church, however, are not the only ones used within the setting of
programming languages. In some languages it is possible to write type-free programs and
construct their functional characterizations at a later stage, i.e. to assign types to them. This sort
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of type discipline (also called à la Curry) is fruitfully exploited in several functional program-
ming languages, like ML [18] and Miranda1 [26]. So, before stating in full generality that type
disciplines provide a good environment for a smooth interaction of computing modeled by
LC and TRS, also disciplines of type assignment have to considered.

Type assignment disciplines were widely investigated in contexts of LC, but very little was
done in this direction for TRS. The system presented in [8], for example, combines a type
assignment system for LC with TRS that are typed à la Church. This means that [8] did not
present really a type assignment environment for LC and TRS, but rather a way to embed
explicitly typed TRS in a type assignment discipline for LC.

Recently, however, new ideas and results have come in aid to the search for a type assign-
ment environment for both LC and TRS. For example, in [3] a notion of type assignment for
TRS has been developed. In particular, that paper considered systems in which it is possi-
ble to make hypotheses about the functional characterization of the function symbols in the
signature of the TRS. The soundness of these hypotheses should then be checked against the
structure of the rewrite rules, and, using these hypotheses, types can be derived for terms.
This type assignment system enjoys interesting normalization properties [5, 6].

Having now a good notion of type assignment at hand for TRS as well, in the present
paper we are going to define a type assignment environment for the combination of TRS and
LC. To our knowledge, this is the first presentation of a type assignment system where both
formalisms are treated in the same way. We hope that the design of such system will provide
evidence for the claim stated above, i.e. that type disciplines are a good setting for sound
interaction of computational paradigms. In fact, we already have positive results concerning
the normalization properties of the combined system.

More precisely, in this paper we present an intersection type assignment system with ω and
sorts (i.e. constant types) for TRS extended with application, λ-abstraction and β-reduction.
This system is an extension of the type assignment systems for TRS presented in [3]. It exploits
the power and generality of intersection types with ω (see, e.g., [11, 2, 4]), managing to type
broad and meaningful sets of terms and rewrite rules. We will show that the normalization
properties of LC and TRS are preserved in our system.

It is well-known that intersection type systems for LC are useful not only in the study of
normalization properties, but also in the study of the semantics of the LC (see, e.g., [11, 2]).
The notion of intersection type assignment for TRS developed in [3, 5, 6] enables the study of
the relation between semantics of reduction and type assignment in the framework of TRS.
In [7] the notion of approximant and the related approximation model defined by Thatte [25] are
used to show that every type that can be assigned to a term, can also be assigned to one of its
approximants (provided the TRS satisfies certain conditions). In this sense, the type assigned
to the term gives finitary information about the reduction process. This paper presents that
result for the combination of LC and TRS, but because of the presence of abstraction, the
applied technique differs significantly.

On the other hand, the use of intersection types models in a very elegant way the distribu-
tion of the actual argument of a function during the computation. That more than one type
can be assigned to a term corresponds, in this setting, to the fact that an operand is used more
than once during reduction, even at a later point than just during the contraction of the redex
at hand.

In the present paper we define approximants for the combination of TRS and LC. This notion
of approximant is a combination of similar definitions given by Thatte [25] and Wadsworth [27]
for TRS and LC, respectively. We show that also in the combination of TRS and LC every ty-

1 Miranda is a trade mark of Research Software LTD.
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peable term has an approximant of the same type. This Approximation Theorem will be proved
for systems that use recursion in a restricted way: we will consider rewrite rules that satisfy
a variant of the general schemes defined in [6, 7]. We will then use this result to prove a head-
normalization and a normalization theorem for different classes of typeable terms. Worth
noting is that, applying the technique used in [8, 5] it is also possible to prove that if the type
constant ω is not in the type system, then typeable terms are strongly normalizable; we will
not discuss that result for the calculus presented here, because of the great similarities with
those two papers.

This paper is organized as follows: In Section 1 we define TRS with application, λ-abstraction
and β-reduction (TRS+β), and in Section 2 the type assignment system for TRS+β. In Sec-
tion 3 we define approximants and prove the approximation theorem, and in Section 4 we
prove the normalization theorems. Section 5 contains the conclusions.

1 Term Rewriting Systems with β-reduction rule

In this section we present a combination of untyped Lambda Calculus with untyped Algebraic
Rewriting, obtained by extending first-order TRS with notions of application and abstraction,
and a β-reduction rule. We can look at such calculi also as extensions of the Curryfied Term
Rewriting Systems (CuTRS) considered in [3, 5, 6], by adding λ-abstraction and a β-reduction
rule. We assume the reader to be familiar with LC [10] and refer to [22, 15] for rewrite systems.

Definition 1.1 An alphabet or signature Σ consists of:
i) A countable infinite set X of variables x1, x2, x3, . . . (or x, y, z, x′, y′, . . . ).

ii) A non-empty set F of function symbols F, G, . . . , each equipped with an ‘arity’.
iii) A special binary operator, called application (Ap).

Definition 1.2 i) The set T(F,X ) of terms is defined inductively:
a) X ⊆ T(F,X ).
b) If F ∈ F ∪{Ap} is an n-ary symbol (n ≥ 0), and t1, . . . , tn ∈ T(F,X ), then F(t1, . . . , tn) ∈

T(F,X ).
c) If t ∈ T(F,X ), and x ∈ X , then λx.t ∈ T(F,X ).

We will consider terms modulo α-conversion.
A context is a term with a hole, and it is denoted as usual by C[ ].

ii) a) A neutral term is a term not of the form λx.t.
b) A lambda term is a term not containing function symbols.

The set of free variables of a term t is defined as usual, and denoted by FV (t).

To denote a term-substitution, we use capital characters like ‘R’, instead of Greek characters
like ‘σ’, which will be used to denote types. Sometimes we use the notation {x1 �→ t1, . . . , xn �→
tn}. We write tR for the result of applying the term-substitution R to t.

In the next definition, we present a notion of rewriting on T(F,X ) that is defined through
rewrite rules together with a β-reduction rule.

Definition 1.3 (Reduction) i) A rewrite rule is a pair (l,r) of terms. Often, a rewrite rule will
get a name, e.g. r, and we write l →r r. Three conditions are imposed: l is not a variable
or an abstraction λx.t, FV (r) ⊆ FV (l), and Ap does not occur in l.

The patterns of a rewrite rule F (t1, . . . , tn)→r r are the terms ti, 1≤ i≤n, such that either
ti is not a variable, or ti is variable and there is a 1≤ i 	= j≤n such that ti = tj.
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ii) On terms we define the usual notion of β-reduction: Ap (λx.t,u) →β t{x �→u}.
iii) A rewrite rule l →r r determines a set of rewrites lR → rR for all term-substitutions R. The

left hand side lR is called a redex, the right hand side rR its contractum. Likewise, for any t
and u, Ap (λx.t,u) →β t{x �→u} is also a rewrite; Ap (λx.t,u) is called a redex, and t{x �→u}

its contractum.
iv) A redex t may be substituted by its contractum t′ inside a context C[ ]; this gives rise to

rewrite steps C[ t ] → C[ t′ ]. Concatenating rewrite steps we have rewrite sequences t0 →
t1 → t2 → ·· ·. If t0 → ·· · → tn (n ≥ 0) we also write t0 →∗ tn, and t0 →+ tn if t0 →∗ tn in
one step or more.

Definition 1.4 A Term Rewriting System with β-reduction rule (TRS+β) is defined by a pair
(Σ,R) of an alphabet Σ and a set R of rewrite rules.

Note that in contrast with CuTRS, the rewrite rules considered in this paper can contain
λ-abstractions.

We take the view that in a rewrite rule a certain symbol is defined.

Definition 1.5 In a rewrite rule F(t1, . . . , tn)→r r, F is called the defined symbol of r, and r is
said to define F. F is a defined symbol, if there is a rewrite rule that defines F, and Q ∈ F is
called a constructor if Q is not a defined symbol. (Notice that Ap is never a defined symbol.)

Example 1.6 The following is a set of rewrite rules that defines the functions append and map
on lists and establishes the associativity of append. The function symbols nil and cons are
constructors.

append(nil, l) → l
append(cons (x, l), l′) → cons(x,append (l, l′))
append(append (l, l′), l′′) → append(l, (append (l′, l′′))
map (λx.t,nil) → nil
map (λx.t,cons (y, l)) → cons(Ap (λx.t,y),map (λx.t, l))

Since variables in TRS+β can be substituted by λ-expressions, we obtain the usual func-
tional programming paradigm, extended with definitions of operators and data structures.

Definition 1.7 Let (Σ,R) be a TRS+β.
i) A term is in normal form if it contains no redex.

ii) A term t is in head normal form if for all t′ such that t →∗ t′:
a) t′ is not itself a redex, and
b) if t′ = Ap (v,u), then v is in head normal form,
c) if t′ = λx.u, then u is in head normal form.
Note that t itself cannot be a redex.

iii) A term is (head) normalizable if it can be reduced to a term in (head) normal form; a term
is strongly normalizable if all the rewrite sequences starting with t are finite.

iv) (Σ,R) is strongly normalizing (normalizing, head-normalizing) if every term is.
v) (Σ,R) is confluent if for all t such that t →∗ u and t →∗ v, there exists s such that u →∗ s

and v →∗ s.

Example 1.8 Take the TRS+β
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F (G, x) → A (H)
B (C) → G
H → H

then the term F (B (C),λy.Ap (G,y)) is not a redex. It is not a head-normal form either, since
it reduces to F (G,λy.Ap (G,y)) which is a redex. This term reduces to A (H) that is a head-
normal form (it rewrites only to itself, so it will never become a redex). Another term in
head-normal form is, for instance, λy.Ap (y, B (C)).

Our definition of head normal form is an extension to rewrite systems with Ap of the notion
of root stable form defined in [1]. Note that the head of a term of the form Ap (v,u) is in v,
since we think of Ap as an invisible symbol.

2 Type assignment in TRS+β

Type assignment systems are formal systems defined by specifying a set of terms, a set of
types, and a set of type assignment rules. In this section we define a type assignment sys-
tem for TRS+β, that can be seen as an extension of the intersection type assignment system
presented in [3]. The LC-fragment of our type assignment system corresponds directly to the
system presented in [4].

We assume the reader to be familiar with intersection type assignment systems; we refer to
[11, 2, 3] for details.

2.1 Types

As in [6], we will use strict intersection types over type-variables and sorts (constant types).
We assume that ω is the same as an intersection over zero elements: if n = 0, then σ1∩· · ·∩σn
= ω; so in an intersection σ1∩· · ·∩σn, no σi can be ω. Moreover, intersection types (so also ω)
occur in strict types only in the left-hand side of an arrow type.

Definition 2.1 (Types) i) Ts, the set of strict types, and TS, the set of strict intersection types, are
defined by mutual induction:
a) all type-variables ϕ0, ϕ1, . . . ∈ Ts, and all sorts s0, s1, . . . ∈ Ts,
b) if τ ∈ Ts and σ ∈ TS, then σ→τ ∈ Ts.
c) If σ1, . . . ,σn ∈ Ts (n ≥ 0), then σ1∩· · ·∩σn ∈ TS.

ii) On TS, the relation ≤ is defined by:
a) ∀ 1≤ i≤n (n ≥ 1) [σ1∩· · ·∩σn ≤ σi].
b) ∀ 1≤ i≤n (n ≥ 0) [σ ≤ σi] ⇒ σ ≤ σ1∩· · ·∩σn.
c) σ ≤ τ ≤ ρ ⇒ σ ≤ ρ.
d) ρ ≤ σ & τ ≤ µ ⇒ σ→τ ≤ ρ→µ.

iii) On TS, the relation ∼ is defined by: σ ∼ τ ⇐⇒ σ ≤ τ ≤ σ.

Notice that Ts is a proper subset of TS, and that σ→(τ∩ρ) is not a type in TS, and neither is
σ→ω.



ESOP’96, LNCS 1058, pages 387-403, 1996 6

2.2 Type assignment

Before coming to the definition of type assignment, we first introduce the notions of basis and
operations on types.

Definition 2.2 (Statements and Bases) i) A statement is an expression of the form t:σ, where
t ∈ T(F,X ) and σ ∈ TS. t is the subject and σ the predicate of t:σ.

ii) A basis is a set of statements with only distinct variables as subjects. If σ1∩· · ·∩σn is a
predicate in a basis, then n ≥ 1.

iii) If B1, . . . , Bn are bases, then Π{B1, . . . , Bn} is the basis defined as follows: x:σ1∩· · ·∩σm ∈
Π{B1, . . . , Bn} if and only if {x:σ1, . . . , x:σm} is the (non-empty) set of all statements about
x that occur in B1 ∪ · · · ∪ Bn.

iv) We extend ≤ and ∼ to bases by: B ≤ B′ if and only if for every x:σ′ ∈ B′ there is an
x:σ ∈ B such that σ ≤ σ′, and B ∼ B′ ⇐⇒ B ≤ B′ ≤ B.

Notice that if n= 0, then Π{B1, . . . , Bn} = ∅. We will often write B, x:σ for the basis Π{B,{x:σ}},
when x does not occur in B.

The notion of type assignment of this paper uses three operations on types. The first is
called substitution and is the operation that instantiates a type (i.e. that replaces type variables
by types). It is defined as a mapping from strict types to strict types. The operation of
expansion replaces types by the intersection of a number of copies of that type. Substitutions
and expansions can be extended to bases in the natural way. The last operation is that of
lifting, that replaces a type by a larger type, and a basis by a smaller basis, in the sense
of ≤. (Although sound type assignment could be defined with less – or less complicated
– operations, more terms are typeable with these three, and more expressive types can be
assigned.)

The operations of substitution, expansion and lifting can be composed to form chains of
operations. In other words, the set of chains is the smallest set containing expansions, substi-
tutions and liftings, and closed under composition. See [3] for the formal definition of chain
and of the above operations on types. We will use the notation C (σ) for the application of a
chain C of operations to the type σ. Given a basis-type pair 〈B,σ〉 and a chain C of operation
on types, we define C (〈B,σ〉) = 〈{x:C (τ) | x:τ ∈ B},C (σ)〉.

In the definition of the type assignment system for TRS+β, we assume that there is an
environment that assigns types to function symbols.

Definition 2.3 (Environments) A mapping E : F ∪ {Ap} → Ts is called an environment if
E (Ap) = (ϕ1→ϕ2)→ϕ1→ϕ2.

The use of an environment introduces a notion of polymorphism into our type assignment
system. The environment returns the ‘principal type’ for a function symbol; this symbol will
be used with types that are ‘instances’ of its principal type, obtained by applying operations
of substitution, expansion, and lifting.

We specify how to type terms and rewrite rules through the presentation of type assignment
rules.

Definition 2.4 i) Type assignment on terms (with respect to E ) is defined by the following nat-
ural deduction system (where all types displayed are in Ts, except for σ1, . . . ,σn in rule
(→E)). Note the use of a chain of operations in rule (→E).
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[x:σ]
:

t:τ
(→I): (a)

λx.t:σ→τ

t1:σ1 . . . tn:σn(→E): (b)
F(t1, . . . , tn):σ

x:σ σ ≤ τ
(≤):

x:τ
t:σ1 . . . t:σn(∩I): (n ≥ 0)

t:σ1∩· · ·∩σn

(a)) If x:σ is the only statement about x on which t:τ depends.
(b)) If F ∈ F ∪{Ap}, and there exists a chain C such that σ1→·· ·→σn→σ = C (E (F)).

ii) We write B �E t:σ if and only if t:σ is derivable from the basis B using the above rules.

Notice that, by rule (∩I), B �E t:ω for all terms t and bases B. We will call those terms typeable
that can be assigned a type different from ω.

To ensure the subject reduction property, as in [3], type assignment on rewrite rules will be
defined using the notion of principal pair for a typeable term.

Definition 2.5 A pair 〈P,π〉 is called a principal pair for t with respect to E , if P �E t:π and for
every B, σ such that B �E t:σ there is a chain C such that C (〈P,π〉) = 〈B,σ〉.

We define now type assignment on rewrite rules. The typeability of rules ensures consis-
tence with respect to the environment used in the type assignment for terms.

Definition 2.6 i) We say that l → r ∈ R with defined symbol F is typeable with respect to E , if
there are P, and π ∈ TS such that:
a) 〈P,π〉 is a principal pair for l with respect to E , and P �E r:π.
b) In P �E l:π and P �E r:π, all occurrences of F are typed with E (F).

ii) We say that (Σ,R) is typeable with respect to E , if all r ∈ R are.

From now on, we will only consider TRS+β that are typeable with respect to a given envi-
ronment E .

Using a combination of the techniques used in [3, 4], it is possible to show that the three
operations (substitution, expansion, and lifting) are sound on typed terms. . That is, we have:

Theorem 2.7 If B �E t:σ then, for every C such that C (〈B,σ〉) = 〈B′,σ′〉, B′ �E t:σ′.

Then it is possible to prove that type assignment is closed under reduction.

Theorem 2.8 (Subject Reduction) If B �E t:σ, and t → t′, then B �E t′:σ.

Proof: The case of a β-reduction follows from the fact that it is possible to prove that, for every
t,u, B �E (λx.t)u:σ ⇐⇒ B �E t{x �→u}:σ. The case of a rewriting can be proved using the same
technique as in [3].

3 Approximation results

In this section we define approximants of the terms of our calculus, and prove the approxi-
mation theorem (any typeable term has an approximant with the same type). Our definition
of approximants is inspired by the one given by Wadsworth [27] for the LC, and the notion of
approximants for Term Rewriting Systems given by Thatte [25], which in turn is based on the
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definition of Ω-normal forms of Huet and Lévy [19]. As in those papers, in the sequel we will
only consider confluent systems.

We start by adding a special symbol ⊥ (bottom) to the language.

Definition 3.1 The set T(F,X,⊥) of partial terms is defined in the same way as the set T(F,X ),
by adding to Definition 1.1 the case
iv) A special symbol ⊥.
and to Definition 1.2-(i) the case
i) d) ⊥ ∈ T(F,X,⊥).

Notice that ⊥ 	∈ F and ⊥ 	∈ X .

To define type assignment on T(F,X,⊥), the type assignment rules (Definition 2.4) need
not be changed, it suffices that terms are allowed to be in T(F,X,⊥). Since ⊥ 	∈ F ∪ {Ap},
⊥ can only be typed with ω or appear in subterms that are typed with ω (i.e. for which the
derivation rule (∩I) is used with n = 0).

We define the following relation on partial terms.

Definition 3.2i) t � u is inductively defined by:
a) For every u ∈ T(F,X,⊥), ⊥� u.
b) For every t ∈ T(F,X,⊥), t � t.
c) t � u ⇒ λx.t � λx.u.
d) ∀ 1≤ i≤n [ti � ui] ⇒ F(t1, . . . , tn)� F(u1, . . . ,un), for F ∈ F ∪ {Ap}.

ii) We write t↑u (and say that t and u are compatible) if there is a s ∈ T(F,X,⊥) such that t � s
and u � s. We write t↑T if there is a s ∈ T such that t↑ s.

For the type assignment system of Section 2, extended to T(F,X,⊥), the following property
holds:

Lemma 3.3 B �E t:σ & t � u ⇒ B �E u:σ.

We will now develop the notion of approximant of a term with respect to a given TRS+β
(Σ,R). As mentioned above, this definition is a combination of the notion of approximant for
terms in LC [27] and that for terms in TRS [25]. A particular difference with those definitions
is that our definition is ‘static’, whereas both other notions were defined as normal forms
with respect to an extended notion of reduction, adding, for example, for LC the reduction
rule ⊥M →⊥. This approach would not be appropriate for our paper, because, to name just
one problem, we would not be able to prove a subject reduction result for such a notion of
reduction. Instead, we will recursively replace redexes by ⊥. While doing this, it can be that
a term is created that itself is not a redex, but looks like one, in the sense that is compatible
to a left-hand side of a rewrite rule (where variables are replaced by ⊥). Also such ‘possible
redexes’ will be replaced by ⊥.

We will use the symbol ⊥ also for the term-substitution that replaces variables by ⊥: ⊥ =
{x �→⊥ | x ∈ X}. Also, Lhs⊥ = {l⊥ | ∃r [l → r ∈ R]}. First we will define direct approximants
of terms by replacing by ⊥ potential redexes. The set of approximants of a term will then be
defined by taking the downward closure of the direct approximants of all its reducts.

Definition 3.4 DA (t), the direct approximant of t is defined by cases:
i) t = x. DA (x) = x.

ii) t = F(t1, . . . , tn), F ∈ F ; let, for 1≤ i≤n, ai = DA (ti).



ESOP’96, LNCS 1058, pages 387-403, 1996 9

DA (t) = ⊥, if F (a1, . . . , an)↑Lhs⊥; otherwise, DA (t) = F (a1, . . . , an).
iii) t = Ap (t1, t2); let a1 = DA (t1), and a2 = DA (t2).

DA (t) = ⊥, if a1 = ⊥, or a1 = λx.a′; otherwise, DA (t) = Ap (a1, a2).
iv) t = λx.t′; let a = DA (t′). DA (t) = ⊥, if a = ⊥; otherwise, DA (t) = λx.a.

Example 3.5 Take the TRS+β of Example 1.8

F (G, x) → A (H)
B (C) → G
H → H

and consider again the term F (B (C),λy.Ap (G,y)). Since B (C) is a redex, in particular
it is compatible with a left-hand side (begin that term itself), so DA (B (C)) = ⊥. Since
F (⊥,λy.Ap (G,y)) is compatible to F (G,⊥), we get that DA (F (B (C),λy.Ap (G,y))) = ⊥.

Also, DA (λy.Ap (y, B (C))) = λy.Ap (y,⊥), and DA (λy.Ap (B (C),y)) = ⊥.

Definition 3.6i) DA, the set of approximate normal forms is defined as
{a ∈ T(F,X,⊥) | DA (a) = a}.

ii) A (t), the set of approximants of t, is defined by:
A (t) = {a ∈ DA | ∃ u [t →∗ u & a �DA (u)]}.

Example 3.7 Take again the TRS+β of Example 1.8. Then

F (B (C),λy.Ap (G,y)) → F (G,λy.Ap (G,y)) → A (H) → A (H) → ·· ·.

Then DA (F (B (C),λy.Ap (G,y))) = DA (F (G,λy.Ap (G,y))) = ⊥, DA (A (H)) = A (⊥), so A (F (B (C),λy.Ap (G,y)
= {⊥, A (⊥)}.

Instead, A (F (H,λy.Ap (G,y))) = {⊥}.

Lemma 3.8i) If t is irreducible, then t ∈DA.
ii) t is in head-normal form if and only if there exists a ∈DA such that a 	=⊥, and a � t.

The approximation theorem does not hold for arbitrary typeable TRS+β: let t be a term
typeable by ϕ, then the rewrite rule t → t is typeable, but the only approximant of t is ⊥,
which has only type ω. Therefore, as in [5, 8, 6], we will control the use of recursion in the
rewrite rules by imposing syntactical restrictions inspired by the general scheme of Jouannaud
and Okada [20].

The recursive schemes defined in [5, 8] ensure strong normalization of typeable terms when
the constant ω is not included in the type assignment system. But in a type system with ω
there are two kinds of typeable recursion: the one explicitly present in the syntax, and the
one obtained by the so-called fixed-point combinators. Hence, further restrictions have to be
imposed. Take for instance the rewrite system:

F (C (x)) → F (x),
A (x,y) → Ap (y, Ap (Ap (x, x),y)),

that satisfies the scheme of [5], and is typeable with respect to
E(F) = ω→σ,
E(C) = ω→σ,
E(A) = ((α→µ→β)∩α)→((β→ρ)∩µ)→ρ.

Let A0 = λxy.A (x,y), then B �E F (A (A0,λx.C (x))):σ, but
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F (A (A0,λx.C (x)))→∗ F (C (A (A0,λx.C (x)))) → F (A (A0,λx.C (x))).
The underlying problem is that Ap (A0, A0) is acting as a fixed-point combinator: for every G
that has type ω→σ, the term A (A0, G0) has type σ, and A (A0, G0)→∗

R G (A (A0, G0)) (taking
for G0 of course the term λx.G (x)). The solution for this particular problem will be to demand
patterns that cannot be typed using the type constant ω.

The recursive scheme that we will use in this paper was introduced in [7], to prove the Ap-
proximation Theorem for CuTRS. It is a generalization of the scheme defined in [6] to prove that
all typeable terms in typeable CuTRS are head-normalizable. In fact, the head-normalization
property of typeable terms in typeable TRS+β follows directly from the Approximation The-
orem for TRS+β, as we will see below.

Definition 3.9 (Safe systems) A typeable TRS+β over a signature with a set of function sym-
bols Fn = C ∪ {Ap} ∪ {F1, . . . , Fn}, where F1, . . . , Fn are the defined symbols and C is the set
of constructors, is called safe if it fulfills the following conditions:
i) F1, . . . , Fn are defined in an incremental way (i.e. there is no mutual recursion) by rules

that satisfy the general scheme:
Fi (C

→
[x→],y→) → C′[Fi (C1

→
[x→],y→), . . . , Fi (Cm

→
[x→],y→),y→],

where x→, y→ are sequences of variables and x→ ⊆ y→; C
→

[ ], C′[ ], C1
→

[ ], and Cm
→

[ ] are sequences
of contexts in T(Fi−1,X ); and, for 1≤ j≤m, C

→
[x→] >mul Cj

→
[x→], where < is the strict subterm

ordering (so > denotes superterm) and mul denotes multiset extension,
and moreover, in every rewrite rule
ii) a) patterns cannot be typed with ω (i.e. no variable typed with ω occurs twice in Fi (C

→
[x→],y→),

and no subterm of C
→
[x→] can be typed with ω), and

b) the type derivations for Cj
→
[x→] (1≤ j≤m) in the right-hand side are subderivations of

those of C
→
[x→].

Note that the rewrite system of the example above is not safe: the pattern C (x) in the first
rule must be typed with ω in a type derivation of F (C (x)):σ. However, the system containing
only the second rule is safe.

The rewrite system of Example 1.6 is not safe because the rule stating the associativity of
append does not satisfy the general scheme. If we do not consider that rule, then it is possible
to define an environment where the system is safe. For example, assuming we are working
with lists of natural numbers we can use the following environment:

E (nil) = natlist,
E (cons) = nat→natlist→natlist,
E (append) = natlist→natlist→natlist,
E (map) = (nat→nat)→natlist→natlist.

Note that the definition of safe system given in [6] is a particular case of the one given above,
so all the systems that are safe in that sense, are also safe according to the previous definition.

The rest of this section will be devoted to the proof of the theorem stating that B �E t:σ
implies Approx (B, t,σ) (which stands for ∃ a ∈ A (t) [B �E a:σ]), for all typeable TRS+β that
are safe. To prove this, we will use the well-known method of Computability Predicates [24]
(see also [17]). The proof will have two parts; in the first one we give the definition of a
predicate Comp on bases, terms, and types, and prove some properties of Comp. The most
important one states that if for a term t there are a basis B and type σ such that Comp (B, t,σ)
holds, then Approx (B, t,σ). In the second part Comp is shown to hold for each typeable term.

Definition 3.10i) Let B be a basis, t ∈ T(F,X ), and σ a type such that B �E t:σ. We define the
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Computability Predicate Comp (B, t,σ) recursively on σ by:
a) σ = ϕ, or σ = s. Comp (B, t,σ) ⇐⇒ Approx (B, t,σ).
b) σ = ρ→τ. Comp (B, t,ρ→τ) ⇐⇒

∀ u ∈ T(F,X ) [ Comp (B′,u,ρ) ⇒ Comp (Π{B, B′}, Ap (t,u),τ) ].
c) σ = σ1∩· · ·∩σn. Comp (B, t,σ1∩· · ·∩σn) (n ≥ 0) ⇐⇒ ∀ 1≤ i≤n [Comp (B, t,σi)].

ii) We say that a term-substitution R is computable in a basis B if there is a basis B′ such that
for every x:σ ∈ B, Comp (B′, xR,σ) holds.

Notice that Comp (B, t,ω) holds as special case of part (i.c).

Lemma 3.11 Let σ ≤ τ. Then Comp (B, t,σ) implies Comp (B, t,τ).

Comp satisfies the standard properties C1 and C3 of computability predicates (see [17]).
C1 states that computable terms have the desired property (approximation in this case). C3
concerns neutral terms, and will be divided in two parts to gain readability. In general,
computability predicates are closed under reduction (property C2). With the notion of com-
putability we are using, C2 is not needed.

Property 3.12 C1. Comp (B, t,σ) implies Approx (B, t,σ).
C3. Let t be neutral. If B �E t:σ and there exists v such that t →∗ v and Comp (B,v,σ), then

Comp (B, t,σ).
C3’. Let t be neutral. If B �E t:σ and there exists a such that a ∈ A (t), a � t, and B �E a:σ, then

Comp (B, t,σ).

In order to prove the Approximation Theorem it would be enough to prove that for every
term t, basis B and type σ, if B �E t:σ, then Comp (B, t,σ). As usual in proofs by computability,
we need to prove a stronger property: if t has type σ in a basis B and R is computable in
B, then there exists a B′ such that Comp (B′, tR,σ). We will prove this property by noetherian
induction, for which we will need the following:

Definition 3.13i) Let t be a term such that B �E t:σ. We write t →a
Bσ u if

a) t →+ u,
b) there is no a ∈ A (t) such that a � t and B �E a:σ,
c) there exists a ∈ A (u) such that a � u and B �E a:σ.

ii) Let t,u be terms such that B �E t:σ and B �E u:σ. We write t>a
Bσu if t>u, and there exist

a1 ∈ A (t) and a2 ∈ A (u) such that a1 � t, a2 � u, B �E a1:σ,B �E a2:σ, and a1>a2.

Intuitively, t →a
Bσ u if u is a reduct of t for which there is an approximant with the same form

and the same type. The relation >a
Bσ is a strict subterm ordering that preserves the previous

property.

Definition 3.14 Let >· stand for the well-founded encompassment ordering, i.e. u >· v if
u 	= v modulo renaming of variables, and u|p = vR for some position p ∈ u and substitution
R. Let >IIN denote the standard ordering on natural numbers, and lex, mul denote respectively
the lexicographic (from left to right) and multiset extension of an ordering.

Let (Σ,R) be a TRS+β. We define the ordering � on triples – a natural number, a
term, and a multiset of terms that are typeable in a basis B′ with types {ρi} – as the object
(>IIN,>· , ( → a

B′ρi
∪>a

B′ρi
)mul)lex.

Property 3.15 Let t be such that B �E t:σ, and R be computable in B (i.e. for every x:ρi in B,
Comp (B′, xR,ρi) holds). Then Comp (B′, tR,σ) holds.
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Proof: We will interpret a term uR by the triple 〈i,u,{R}〉, where i is the maximal super-index
of the function symbols (see Definition 3.9) belonging to u, and {R} is the multiset of typeable
terms {xR | x ∈ FV (u)}. These triples are compared in the ordering �.

Since R is computable in B, → a
B′ρi

is well-founded on the image of R. The union of >a
B′ρi

and → a
B′ρi

is also well-founded. Hence, � is a well-founded ordering. The proof of the
property goes by noetherian induction on � and case analysis.

With this result we are able to prove the main theorem of this section.

Theorem 3.16 (Approximation Theorem) If (Σ,R) is typeable in E and safe, then for every term
t such that B �E t:σ, there is an a ∈A (t) such that B �E a:σ.

Proof: The theorem follows from Properties 3.15 and C1, taking R such that xR = x.

4 Normalization results

In this section we will use the Approximation Theorem to prove theorems of head-normalization
and normalization. We will also state a strong-normalization theorem for a restricted system.

Theorem 4.1 Let (Σ,R) be typeable in E and safe. If B �E t:σ, and σ 	= ω, then t has a head-normal
form.

Proof: If B �E t:σ, then by Theorem 3.16, there is an a ∈ A (t) such that B �E a:σ. Since σ 	= ω,
a 	=⊥, and, since a ∈ A (t), there is a v such that t →∗ v and a � DA (v). Then, by Lemma
3.8-(ii), v is in head-normal form, so, in particular, t has a head-normal form.

In the intersection type assignment system for LC, terms that are typeable with a type σ
from a basis B such that ω does not occur in B and σ, are normalizable [11]. In the framework
of CuTRS this property holds for non-Curryfied terms (i.e. terms without Ap and Curryfied
functions), provided the rewrite rules satisfy certain conditions: the function definitions have
to be sufficiently complete (see [6] for more details). In the case of TRS+β, Curryfied versions
of the function symbols of the signature are obtained through the use of λ-abstraction (we
do not need rules to define them since we have β-reduction). The only terms that we have
to exclude are those containing subterms of the form Ap (F (t1, . . . , tn),u), where F ∈ F with
arity n and t1, . . . , tn,u are arbitrary terms. This is because a term of this form can have a type
without ω even if F is used with a type containing ω. To exclude these terms, we will assume
that the environment E is such that F (t1, . . . , tn) cannot have an arrow type if F has arity n.
The definition of complete TRS+β is similar to the definition of complete CuTRS [6, 7].

Definition 4.2 Let E be an environment such that for any F ∈ F of arity n, F (t1, . . . , tn) cannot
have an arrow type. A TRS+β is complete in the environment E if whenever a typeable term t,
of which the type does not contain ω, is reducible at a position p such that t|p can be assigned
a type containing ω, there exists q < p such that t|q has a type without ω and t|q[x]p (where x
is a fresh variable) is not in head normal form.

Intuitively, in a complete TRS+β a term F (t1, . . . , tn) that has an ω-free type, and where
there is a redex ti that can be assigned a type containing ω, will be reducible either at the root
or in some tj with an ω-free type. This means that the rules defining F cannot have patterns
that have types with ω, and also that constructors cannot accept arguments having a type
which contains ω. Moreover, if a defined function accepts arguments having types with ω
then its definition must be exhaustive.
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Defined functions of safe systems satisfy the first condition. So, a safe system is complete
whenever constructors have ground types and for all defined function F that accept arguments
with types that contain ω, the rules defining F cover all possible cases.

The following lemma is easy to prove for complete TRS+β.

Lemma 4.3 Let (Σ,R) be a complete TRS+β in E . Let a ∈ DA. If B �E a:σ, and ω does not occur in
B and σ, then a contains no ⊥.

With the help of this lemma and the Approximation Theorem, we can show the following:

Theorem 4.4 Let (Σ,R) be typeable in E , safe and complete. If B �E t:σ, and ω does not occur in B
and σ, then t is normalizable.

Proof: If B �E t:σ, then by Theorem 3.16, there is an a ∈ A (t) such that B �E a:σ. So there is a
v such that t →∗ v and a � DA (v). Then by the above lemma, a is free of ⊥, so in particular
a ≡ v, so t has a normal form.

When the type constant ω is removed from the system, all typeable terms are strongly
normalizable. The technique required to prove this property is very similar to the one used
in [2, 5], so we will not give the details of the proof.

Theorem 4.5 Let �−ω−
E denote the notion of type assignment obtained from �E by removing the type

constant ω, and let t be a term in a TRS+β that satisfies the general scheme. Then B �−ω−
E t:σ implies

that t is strongly normalizable.

5 Conclusions

We have extended first-order term rewriting systems with application, abstraction and β-
reduction, and have proposed a type assignment system for this language. Term rewriting
systems with abstraction and application combine the advantages of algebraic rewrite sys-
tems, which model algebraic operations on data structures, with the power of LC. The type
assignment system that we defined is a true extension of the intersection system for LC, so
the pure LC-fragment of the language has the well-known normalization properties:

i) the set of terms typeable without ω is the set of strongly normalizable terms,
ii) the set of terms typeable with type σ from a basis B, such that ω does not occur in B

and σ, is the set of normalizable terms, and
iii) the set of terms typeable with type σ 	= ω is the set of terms having a head normal

form.
If we do not allow abstractions in right-hand sides of rewrite rules, and consider the alge-

braic fragment of our language, we obtain a CuTRS, for which the following properties hold [7]:
i) terms typeable without ω are strongly normalizable,

ii) non-Curryfied terms typeable with type σ from a basis B, such that ω does not occur
in B and σ are normalizable, and
iii) terms typeable with type σ 	= ω have a head normal form.

Notice that the converses of the previous properties do not hold, because the environment is
given (and fixed).

In [7], these properties were proved directly from the strong normalization property of
“derivation reduction,” a rewrite relation on derivations that is strongly normalizing even in
type systems with ω. The Approximation Theorem is also a consequence of this property.
Since it is at this moment not clear if that technique extends to systems with abstraction, in
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this paper we have given a direct proof of the Approximation Theorem from which we can
easily deduce the head-normalization and normalization properties (at the expense of a more
complicated strong normalization proof).

We have shown that the normalization properties that are enjoyed by both languages when
considered separately, are inherited by the combined language. This supports our initial
claim that type assignment systems provide a sound environment for the combination of the
programming paradigms based on TRS and LC. But in order to provide more evidence for this
claim, other important properties (such as confluence, preservation of normalizing strategies)
have to be studied. This will be a subject of future work.
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