
Rank 2 Intersection Type Assignment
in Term Rewriting Systems
(Fundamenta Informaticae, 26(2):141-166, 1996)

Steffen van Bakel

Dipartimento di Informatica, Università degli Studi di Torino,
Corso Svizzera 185, 10149 Torino, Italia

bakel@di.unito.it

Abstract

A notion of type assignment on Curryfied Term Rewriting Systems is introduced that uses
Intersection Types of Rank 2, and in which all function symbols are assumed to have a type.
Type assignment will consist of specifying derivation rules that describe how types can be
assigned to terms, using the types of function symbols.
Using a modified unification procedure, for each term the principal pair (of basis and type)
will be defined in the following sense: from these all admissible pairs can be generated by
chains of operations on pairs, consisting of the operations substitution, copying, and weaken-
ing.
In general, given an arbitrary typeable CuTRS, the subject reduction property does not hold.
Using the principal type for the left-hand side of a rewrite rule, a sufficient and decidable
condition will be formulated that typeable rewrite rules should satisfy in order to obtain this
property.

Introduction

In the recent years, several paradigms have been investigated for the implementation of func-
tional programming languages. Not only the Lambda Calculus (LC) [10], but also Term
Rewriting Systems (TRS) [28] and Term Graph Rewriting Systems (TGRS) [12] are topics of
research. LC (or rather Combinator Systems) constitutes the underlying model for the func-
tional programming language Miranda [37], TRS were used in the underlying model for the
language OBJ [22], and TGRS were the model for the language Clean [13, 32].

For the implementation of a language, independent of the chosen implementation model,
the notion of types plays an important role. Types are essential to obtain efficient machine
code when compiling a program and are also used to make sure that the programmer has a
clearer understanding of the programs that are written. In fact, type assignment to programs
and objects is a way of performing abstract interpretation that provides necessary information
for both compilers and programmers.

Since functional programming languages had their origin in LC, formal notions like type
assignment or strictness analysis, used for those languages, are often studied on the level of
LC. Several authors, when presenting new notions of type assignment to be used in program-
ming, presented their results within (extended) lambda calculi (see, for example, [30], and
[31]) that are normally extensions of the Curry Type Assignment System [19].

The scope of this paper is to develop decidable intersection type assignment in the context
of TRS. The restriction studied in this paper of the Intersection Type Discipline (ITD) for LC
as presented in [16, 11, 1, 3] is the one suggested in [29]: the limitation of the set of types to
intersection types of Rank 2. In that paper is stated that (part of) the type assignment system

Fundamenta Informaticae, 26(2):141-166, 1996 2

for ML can be seen as a restriction of ITD when types are limited in that way. However, using
Rank 2 intersection types significantly extends the set of typeable terms as well as the accuracy
of derivable types. Moreover, sometimes a program that is correct in the programmers mind
can be rejected because of type errors, while it could be accepted after the programmer has
rewritten the specification. Such a rewrite would not be necessary if Rank 2 types are used
(see Subsection 1.2 for an example).

In [2], Curryfied Term Rewriting Systems (CuTRS) were defined as the TRS that contain a
special binary operator Ap. 1 The motivation for the use of Curryfied TRS instead of the general
first-order TRS is the following. The notion of type assignment as studied in this paper uses
higher-order types: in general, a term t can have a type σ→τ, a type that expresses that t is
considered to be a function. Given a term t′ of type σ, it is natural to allow for the application
of t to t′, creating in this way a term of type τ. This calls for the introduction of a notion of
explicit application into the first-order rewrite systems, and, therefore, in this paper systems
equipped with a binary function Ap are considered. Using this Ap, also Curryfied versions of
function symbols (other than Ap), and related rewrite rules can be expressed, thus enlarging
the expressive power of the rewrite system. In this way, it is possible to formulate a typeable
first-order rewrite system that has full Turing-machine power (see Definition 2.7).

For these systems, in [4] strong normalization of typeable terms has been proved, provided
that recursive rules do not surpass the complexity of primitive recursion (for details, see [4]); a
head-normalization result was shown to hold in [5] for systems that are a slight restriction of
those considered in [4]. The notion of type assignment presented here is a restriction of those
presented in [2, 4, 5] in that types are restricted to those of Rank 2; in particular, the result of
[4] applies: given the there defined restriction on recursive rewrite rules, typeable terms are
strongly normalizable.

Although it may seem straightforward to generalize type assignment systems for LC to the
(significantly larger) world of TRS, it is not evident that those borrowed systems have still
all the properties they possessed in the world of LC. For example, type assignment in TRS
in general does not satisfy the subject reduction property, i.e.: types are not preserved under
rewriting, as illustrated in [6]. Moreover, this paper aims to present type assignment for
languages that allow for patterns, and as discussed in Section 6.1, notions of type assignment
with intersection types for LC and TRS are, in general, incomparable, and cannot be ported
from one to the other.

Recently, some results have been obtained in the field of typed TRS [20] and the combination
of those with (intersection) type assignment systems for LC (e.g. [7], [8], [9]).

Using essentially the solution of [6], also for the system as presented in this paper we will
prove that type assignment is closed for subject reduction. To obtain this result, first the three
operations specified (Subsection 3.1) are proven to be sound on typeable terms (Theorem 3.8).
Then principal pairs are defined for terms (Definition 4.2), followed by the proof that every
typeable term has a principal pair (Theorem 4.13). Using the principal pair of the left-hand
side, type assignment on rewrite rules is defined (Definition 5.1) that is proven to be sufficient
for the subject reduction result (Theorem 5.6). Since it is decidable if a term has a principal
type, also the restrictions that rewrite rules should satisfy to obtain subject reduction are
decidable.

1 In fact, there the name Applicative TRS is used; the set-up of the systems defined in this paper is almost the
same as the one used there.

Fundamenta Informaticae, 26(2):141-166, 1996 3

1 Context of this paper

1.1 Rank 2 type assignment for Lambda Calculus

In this subsection, we will briefly discuss a notion of Rank 2 type assignment for LC (the
system presented here is not the only one possible: a variant could be to consider also the
empty intersection, but we will not take that direction here).

Intersection types of Rank 2 are a true subset of the set of intersection types as defined in
[16, 11, 1, 3], and only a minor extension of the set of Curry-types. They are defined by:

Definition 1.1 i) TC, the set of Curry-types is inductively defined by:
a) All type-variables ϕ0, ϕ1, . . . ∈ TC.
b) If σ, τ ∈ TC, then σ→τ ∈ TC.

ii) T1 is defined by: If σ1. . . . ,σn ∈ TC (n ≥ 1) then σ1∩· · ·∩σn ∈ T1.
iii) T2 is inductively defined by:

a) If σ ∈ TC, then σ ∈ T2.
b) If σ ∈ T1, τ ∈ T2, then σ→τ ∈ T2.

iv) TR, the set of intersection types of Rank 2 is defined by: if σ1. . . . ,σn ∈ T2 (n≥ 1) then σ1∩· · ·∩σn ∈ TR.

The next definition presents a partial order relation ≤ on TR, that is induced by intersec-
tions. This relation is used to define an equivalence relation ∼ on types. Types σ and τ are
equivalent under this relation if σ can be obtained from τ by permuting subtypes that are part
of an intersection subtype.

Definition 1.2 i) On TR, the relation ≤ is defined by:
a) ∀ 1≤ i≤n (n ≥ 1) [σ1∩· · ·∩σn ≤ σi].
b) ∀ 1≤ i≤n (n ≥ 1) [σ ≤ σi] ⇒ σ ≤ σ1∩· · ·∩σn.
c) σ ≤ τ ≤ ρ ⇒ σ ≤ ρ.

ii) On TR, the relation ∼ is defined by:
a) For σ, τ ∈ TR: σ ≤ τ ≤ σ ⇒ σ ∼ τ.
b) For σ→τ, ρ→µ ∈ TR: σ ∼ ρ & τ ∼ µ ⇒ σ→τ ∼ ρ→µ.

In this paper, types are considered modulo ∼ . Therefore, ρ∩(σ∩τ) = (ρ∩σ)∩τ, and σ∩σ→τ =
σ→τ. Unless stated otherwise, if σ1∩· · ·∩σn is used to denote a type, all σ1. . . . ,σn are assumed
to be in T2.

Definition 1.3 i) A statement is an expression of the form M:σ, where M ∈ Λ and σ ∈ TR. M
is the subject and σ the predicate of M:σ.

ii) A basis is a set of statements with distinct term-variables as subjects and types in T1 as
predicates.

iii) Two types (bases, pairs of basis and type) are disjoint if and only if they have no type-
variables in common.

Notice that, in bases, only types in T1 are allowed as predicates.

Definition 1.4 i) The relation ≤ is extended to bases by:

B ≤ B′ ⇐⇒ ∀ x:σ′ ∈ B′ ∃ x:σ ∈ B [σ ≤ σ′].

Fundamenta Informaticae, 26(2):141-166, 1996 4

ii) If B1, . . . , Bn are bases, then Π{B1, . . . , Bn} is the basis defined as follows:
x:σ1∩· · ·∩σm ∈ Π{B1, . . . , Bn} if and only if {x:σ1, . . . , x:σm} is the set of all statements

whose subject is x that occur in B1∪· · ·∪Bn.

Notice that Π{B1, . . . , Bn} is well defined, since if σ1, . . . , σm are predicates of statements in
B1∪· · ·∪Bn, then all σ1, . . . , σm, and σ1∩· · ·∩σm are elements of T1.

Definition 1.5 For LC, Rank 2 type assignment and Rank 2 derivations are defined by:

[x:σ1] · · · [x:σn]...
M:τ

(→I): (a)
λx.M:σ→τ

M:σ→τ N:σ
(→E):

MN:τ

M:σ1 . . . M:σn
(∩I): (n ≥ 1)

M:σ1∩· · ·∩σn

(a) If x:σ1, . . . , x:σn are all and nothing but the statements about x on which M:τ depends,
and σ ≤ σ1∩· · ·∩σn. If x does not occur free in M, so no statement with subject x is used
to obtain M:τ, then σ ∈ T1.

It is possible to show that the system presented in this way has the principal type property,
and that type assignment is decidable. The technique to prove the first of these properties
is very similar to the one used in this paper: specifying operations on types that are proven
sound, to define principal pairs and to show that the specified operations are complete, i.e.
every correct pair for a typeable term can be obtained from its principal pair by applying some
sequence of operations to it. Because of the strong similarity in approach, we will not present
the details of such a result; instead, in Subsection 6.1, we will briefly discuss the fundamental
differences between the two systems.

To avoid confusion, it is necessary to point out that there also exists a notion of type assign-
ment that is called the Rank 2 Polymorphic Type Assignment System, defined in [25]. This
system is an extension of Milner’s system, by allowing for the ∀-type constructor to occur also
on the left-hand side of an arrow-type, instead of only at top level. (It is also a restriction
of the Polymorphic Type Discipline [23], where types are restricted to polymorphic types of
Rank 2.) As in the system presented here, type assignment in that system is decidable.

1.2 Intersection type assignment versus ML type assignment

In [29] was remarked that (part of) the ML Type Assignment System [30] can be seen as a
restriction of the ITD [11] by limitation of the set of types to intersection types of Rank 2. This
observation can be understood by the following intuitive argument:

The ML Type Assignment System is in fact a type assignment system for an extended
lambda calculus. This calculus is defined by:

Definition 1.6 i) The set of ML terms, Exp, is defined as Λ, the set of lambda terms, extended
by:
a) If M, N ∈ Exp, and x a term-variable, then (let x = N in M) ∈ Exp.
b) Y ∈ Exp.

ii) The notion of reduction on Exp, →ML , is defined as →β , extended by:
a) (let x = N in M) →ML M[N/x].
b) YM →ML M(YM).

Fundamenta Informaticae, 26(2):141-166, 1996 5

With this extended notion of reduction, the terms (let x = N in M) and ((λx.M)N) are both
denotations for reducible expressions (redexes) that both reduce to the term M[N/x]. How-
ever, the semantic interpretation of these terms is different (for details of this semantic, see
[30]). The term ((λx.M)N) is interpreted as a function with an operand, whereas the term
(let x = N in M) is interpreted as the term M[N/x] would be interpreted. This difference is
reflected in the way the type assignment system treats these terms.

In fact, the let-construct is added to ML to cover precisely those cases in which the term
((λx.M)N) is not typeable, but the contraction M[N/x] is, while it is desirable for the term
((λx.M)N) to be typeable. The problem to overcome is that, in assigning a type to ((λx.M)N),
the term-variable x can only be typed with one Curry-type; this is not required for x in
(let x = N in M). When assigning a type to that term, first the ‘operand’ N is typed by, say,
the Curry-type σ. Suppose M is typeable with the type τ, and the n free occurrences of x in
M are typed by the Curry-types σ1. . . . ,σn respectively. If for every σi there is a substitution Si
such that Si (σ) = σi, then also (let x = N in M) is typeable by τ.

B∪{x:σ} x:σ
(INST)

B∪{x:σ} x:σ1
· · ·

B∪{x:σ} x:σ
(INST)

B∪{x:σ} x:σn...
B∪{x:σ} M:τ B N:σ

(LET)
B (let x = N in M):τ

Under those conditions, however, the term ((λx.M)N) can be typed in the Rank 2 system,
because there the term (λx.M) can be typed by σ1∩· · ·∩σn→τ. Also, since B N:σ, and type
assignment in the Rank 2 system is closed for substitution of types, N is typeable by every σi.
So, when using intersection types, the let-construct is not needed.

[x:σ1] · · · [x:σn]...
M:τ

λx.M:σ1∩· · ·∩σn→τ

N:σ1 · · · N:σn

N:σ1∩· · ·∩σn

(λx.M)N:τ

Notice that the construction sketched above uses only Rank 2 intersection types.
The Rank 2 system and Milner’s system are not really equivalent, because there are terms

that are typeable in the former and not typeable in the latter, like the term λx.xx. Moreover,
when using the ML-type checker it can be that a program is rejected because of occurring type
conflicts, whereas it could be accepted after the programmer has rewritten the specification,
by performing in advance some of the reductions. Such a rewrite would not be necessary if
Rank 2 types are used.

Example 1.7 Take the following Miranda program:

Add x y = x + y

LengthList [] = 0
LengthList (a:b) = 1 + (LengthList b)

F f g c i = f (g c) (g i)

F Add LengthList [’a’,’b’,’c’] [1,2,3]

Fundamenta Informaticae, 26(2):141-166, 1996 6

When using Milner’s approach to type this program (as is done in Miranda), the last term
in this program gives a type-error, since the type derived for the symbol F is:

F :: (∗∗→∗∗→∗∗∗) → (∗→∗∗) → ∗ → ∗ → ∗∗∗,

and the types [char] and [num] cannot be unified. (Notice that the definition for F corresponds
to the ML-term (λfgci. f (gc)(gi)).) It is possible to modify this into a typeable program, by
replacing the definition for F:

Add x y = x + y

LengthList [] = 0
LengthList (a:b) = 1 + (LengthList b)

F f c i = f (LengthList c) (LengthList i)

F Add [’a’,’b’,’c’] [1,2,3]

but of course this is not the same program. Notice that in this modification, the definition for
F has been replaced by the ‘ML-term’ (let g = LengthList in λfci. f (gc)(gi)).

Using intersection types, however, the first definition of F is typeable with

F :: (∗∗→∗∗∗∗∗→∗∗∗) → ((∗→∗∗)∩(∗∗∗∗→∗∗∗∗∗)) → ∗ → ∗∗∗∗ → ∗∗∗,

so third and fourth argument need not be of the same type, which makes the last term ty-
peable. Notice that this last type for F is an intersection type of Rank 2.

But not only the class of typeable terms is significantly extended when intersection types of
Rank 2 are used, also more accurate types can be deduced for terms. For example, the term
SKS I (where S, K and I are the well-known lambda terms) has in the Rank 2 system a more
general principal type than in the ML system; in the notion of type assignment as presented
in the previous subsection, the principal type for SKS I is ϕ→ϕ, whereas in Milner’s system
it is (ϕ0→ϕ1)→ϕ0→ϕ1 (see Example 4.8). This implies, for instance, that more accurate types
can be deduced for programs that are translated into combinator expressions.

The here noted equivalence gives rise to the idea that the ML-Type Assignment System (and
in particular, the unification algorithm for that system), and the limitation of the ITD to Rank 2
are as far as decidability is concerned, equivalent. In fact, the results of this paper show that
type assignment in the here presented notion of Rank 2 type assignment is decidable. This
is accomplished mainly by showing that the unification procedure as defined in this paper is
always terminating.

1.3 CuTRS versus Function-Constructor systems

The kind of rewrite systems presented in this paper is an extension to those suggested by
most functional programming languages. Such languages, like Miranda for instance, allow
for the formal operand of a function to have structure. This makes definitions like

In-left(Pair(x,y)) → x
In-right(Pair(x,y)) → y

possible. The subterm Pair(x,y) in the definitions of both In-left and In-right is called a pattern,
and the term In-right t, for example, can only be reduced when there are terms t1 and t2 such
that t ≡ Pair(t1,t2). As suggested by this example, languages like Miranda allow programmers
to specify an algorithm (function) as a set of rewrite rules, although there is a restriction on

Fundamenta Informaticae, 26(2):141-166, 1996 7

the kind of patterns that is allowed: the symbols of the language are divided in two groups,
function symbols and constructors. Constructors are meant to construct objects of a specific
algebraic data type (hence their name), and are only allowed to occur in a pattern when
supplied with all the required arguments.

The reason to distinguish between function symbols and constructors is fundamental, and
lies directly in the fact that programming languages in this class are in fact sugared lambda
calculi: only those patterns are allowed that can be translated to LC. When translating function
definitions using patterns to pure lambda terms through a mapping [[]], at a certain stage it is
necessary to deal with the pattern. One approach could be to, given the rewrite rule F(P) → E,
define that

[[F]] = (λv.IF (v = [[P]]) [[E]] FAIL)

but this gives only a solution for certain cases. The problem is that the function ‘=’, i.e. equality
between lambda terms, cannot be expressed in LC: there exist no lambda term that is capable
of deciding if two terms are the same (this is known as the problem of separability). Only
in specific cases, like for example when dealing with Church-numerals, lists, or pairs, it is
possible to express equality. To guarantee that patterns in function-constructor systems can
be adequately translated to LC, the only patterns allowed are those based on data structures,
using constructors (see, for an extensive treatment, Chapter Six of [34]). So functions symbols
are not allowed to occur in patterns; for example, a definition like

Pair(In-left(x),In-right(x)) → x.

is, given the two rules above, not allowed.
A difficulty with these three rules together, is that they form Klop’s famous ‘Surjective

Pairing’ example [27]; this function cannot be expressed in LC because when added to LC,
the Church-Rosser property no longer holds. This implies that, although both LC and TRS
are Turing-machine complete, there is no general syntactic solution for patterns in LC, so a
full-purpose translation (interpretation) of TRS in LC is not feasible. It is this fundamental
impossibility that prohibits rules like the last one: in order to be able to apply that rule to a
term

Pair(In-left(t1)),(In-right(t2)),

the terms t1 and t2 have to be equivalent, something that cannot be expressed in LC.
For a very elegant discussion of a lambda calculus with patterns, see [33].

The kind of programming language we aim at uses more general rewrite systems than just
function-constructor systems. The systems considered in this paper do not discriminate
against the varieties of function symbols that can be used in patterns. As such there is no
distinction between function symbols and constructor symbols; the extension made consists
of allowing for not only constructor-symbols in the operand space of the left-hand side of
rewrite rules, but all function symbols. Since function-constructor systems are a true restric-
tion of the systems considered here, the results obtained in this paper apply also there.

1.4 The limitations of many-sorted rewrite systems

One way to study type assignment on TRS is to work within the framework of first-order
many-sorted rewrite systems, as used in the underlying model for the language OBJ [22]. The
differences between that approach and the one taken in this paper are significant.

Fundamenta Informaticae, 26(2):141-166, 1996 8

First of all, first-order many-sorted rewrite systems are far less general than those suggested
by functional programming languages: rewrite rules are considered to specify operations over
data-types, instead of over arbitrary objects. This implies that an enumerable collection of sorts
is defined, and it is assumed that every F with arity n has a type s1×· · ·×sn→sn+1, where s1,
. . . , sn+1 are sorts. Using this approach, every F has in fact only one type, so in particular
no function symbol can be called polymorphic. Moreover, the biggest shortcoming of this
approach is that neither one of the arguments of a function symbol, nor the result of applying
a function symbol to sufficiently many arguments can have a type that is not a sort: ‘higher-
order’ types are not allowed.

The notion of type assignment as presented in this paper is combining the approach taken in
those multi-sorted, first-order rewrite systems, with the one commonly used for type assign-
ment in LC. Compared to the multi-sorted systems, the main change is to allow for higher-
order types. In multi-sorted systems, a term containing the binary function Ap can be typed,
but only in one way; by definition, there are sorts s1, s2 and s3 such that Ap has type s1×s2→s3.
In order to get a notion of type assignment that resembles notions for LC, in this paper the
type used for Ap is the one implicitly used in the derivation rule (→E). That rule describes
what the relation is between the types assigned to the left-hand term in an application, to the
right-hand term, and to the application itself.

M:σ→τ N:σ
(→E):

MN:τ

This scheme gives that the natural type-scheme for Ap should be (σ→τ)×σ→τ – or, in a
different notation, (σ→τ)→σ→τ – so in particular the left-hand argument has an arrow-type.
This extension invokes the possibility to assign arrow-types to all objects.

2 Curryfied Term Rewriting Systems

In this paper, type assignment on Curryfied Term Rewriting Systems is studied, that are
defined as a slight extension of TRS as defined in [28] or [20]. In the literature, several different
formal definitions of TRS exist. The one chosen in this paper is that of functional, first-order
systems: terms are constructed from term variables and function symbols that have a fixed
arity greater than or equal to zero, and each function symbol can only be used with the right
amount of arguments present.

Definition 2.1 An alphabet or signature Σ consists of:
i) A countable infinite set X of variables x1, x2, x3, . . . (or x, y, z, . . .).

ii) A non-empty set F of function symbols F, G, . . . , each with an ‘arity’ (a natural number),
i.e. the number of ‘arguments’ it is supposed to have.

iii) A special binary operator, called application (Ap).

Definition 2.2 The set T(F,X) of terms (or expressions) is defined inductively by:
i) X ⊆ T(F,X).

ii) If F ∈ F ∪{Ap} is an n-ary symbol (n≥ 0), and t1, . . . , tn ∈T(F,X), then F (t1, . . . , tn) ∈ T(F,X).
The ti (1≤ i≤n) are the arguments of the last term.

Definition 2.3 A replacement R is a map from T(F,X) to T(F,X) satisfying

R(F (t1, . . . , tn)) = F(R(t1), . . . , R(tn)).

Fundamenta Informaticae, 26(2):141-166, 1996 9

So, R is determined by its restriction to the set of variables; we will write tR instead of R(t).

Definition 2.4 i) A rewrite rule r is a pair (l,r) of terms in T(F,X), also written as r : l → r.
Three conditions will be imposed:
a) l is not a variable.
b) The variables occurring in r are contained in l.
c) If Ap occurs l, then r is of the shape:

Ap(Fi−1 (x1, . . . , xi−1), xi) → Fi (x1, . . . , xi)
For every (unindexed) F ∈ F ∪{Ap} with arity n there are n additional rewrite rules:

Ap(Fn−1 (x1, . . . , xn−1), xn) → F(x1, . . . , xn)
...

Ap(F1 (x1),x2) → F2 (x1,x2)
Ap(F0, x1) → F1 (x1)

The function symbols Fn, . . . , F1, F0, are the Curryfied versions of F.
ii) A rewrite rule r : l → r determines a set of rewrites lR → rR for all replacements R. The

left-hand side lR is called a redex; it may be replaced by its ‘contractum’ rR inside a context
C[]; this gives rise to rewrite steps:

C[lR] →r C[rR].
iii) →r is called the one-step rewrite relation generated by r. Concatenating rewrite steps (pos-

sibly infinite) rewrite sequences t0 → t1 → t2 → ·· · are obtained.

Because of the added rules for F0, . . . , Fn, the rewrite systems considered in this paper
are called Curry-closed. When presenting a rewrite system, however, only the rules that are
essential are shown, not the rules that define the Curryfied versions.

Definition 2.5 A Curryfied Term Rewriting System (CuTRS) is a pair (Σ,R) of an alphabet Σ and
a set R of rewrite rules.

In a rewrite rule a certain symbol is defined; it is this symbol to which the structure of the
rule gives a type.

Definition 2.6 In a rewrite rule r, the leftmost, outermost symbol in the left-hand side that is
not an Ap, is called the defined symbol of r. Then r defines F, and F is a defined symbol. Q ∈ F is
called a constant symbol, if there is no rewrite rule that defines Q.

When the dependency-graph of the defined function-symbols of a CuTRS is drawn (i.e. a
graph is constructed whose nodes are labeled by the defined symbols of the rewrite rules,
with a directed edge going from F to G if G occurs in the right-hand side of one of the rules
that define F) then in that graph cycles can occur, like for the rewrite system

F(x) → G(x)
G(x) → F(x)

A defined symbol F is called a recursive symbol if it occurs on a cycle in the dependency-
graph, and every rewrite rule that defines F is called recursive. All function-symbols that
occur on one cycle in the dependency-graph depend on each other and are, therefore, defined
simultaneously. This in fact forces to give a different notion of defined symbol; the two rewrite
rules above are called mutually recursive, and both define the symbols F and G. To avoid this

Fundamenta Informaticae, 26(2):141-166, 1996 10

problem, rules are assumed to be not mutually recursive.
Notice that the definition of recursive symbols, using the notion of defined symbols, is

different from the one normally considered. Since Ap is never a defined symbol, the following
rewrite system

D(x) → Ap(x, x)
Ap(D0, x) → D(x)

is not considered a recursive system. Moreover, the term D(D0) has no normal form (this term
plays the role of (λx.xx)(λx.xx) in LC). This means that, in the formalism of this paper, there
exist non-recursive first-order rewrite systems that are not normalizing.

Definition 2.7 Curryfied Combinatory Logic (CCL) is the CuTRS (Σ,R), where F = {S, S2, S1, S0,
K, K1, K0, I, I0}, and R contains the rewrite rules

S(x, y, z) → Ap(Ap(x, z), Ap(y, z))
K(x, y) → x
I(x) → x

and their Curryfied versions. Since CCL is Curry-closed, it is even combinatory complete:
every lambda term can be translated into a term in CCL; for details of such a translation, see
[10, 21].

Example 2.8 In general, if the left-hand side of a rewrite rule is F (t1, . . . , tn), then the ti need
not be simple variables, but can be terms as well, as for example in the rewrite rule

M(S2 (x, y)) → S2 (I0, y)

It is also possible that for a certain symbol F, there are more than one rewrite rule that define
F, as for example for the rewrite rules:

F(x) → x
F(x) → Ap(x, x)

3 Rank 2 Intersection Type Assignment

The notion of type assignment presented here is defined following the type assignment strat-
egy as used for languages like ML and Miranda. In particular, the way of dealing with func-
tion symbols that are defined by more than one rewrite rule as used in Miranda is copied, as
well as the way of dealing with untyped recursive definitions. (This is a slightly more liberal
way of dealing with recursion than used for ML. In [31, 26] another extension of the way of
dealing with recursion in the ML-system is presented, in which type assignment is no longer
decidable, but that is nevertheless used for type checking in Miranda. This system was used
for the notion of type assignment defined in [6], but will not be used here.)

Compared to the notion of type assignment used in OBJ, the system here is an extension by
allowing for higher-order types as well as polymorphism.

3.1 Operations on pairs

In this subsection, three operations on pairs of basis and type are defined, namely substitution,
copying, and weakening. In Theorem 3.8 it will be proved that these operations are sound:

Fundamenta Informaticae, 26(2):141-166, 1996 11

they return admissible pairs for a term when applied to an admissible pair for that term (see
Definition 3.7 (ii), and in Theorem 4.12 that they are complete: they are sufficient to generate
all admissible pairs for a term from its principal pair.

In this paper, substitution is defined as the operation that replaces type-variables by elements
of TC. Although perhaps this is a more restricted kind of substitution than could be expected,
it is a sound operation and will be proven to be sufficient.

Definition 3.1 The substitution (ϕ �→ α) : TR → TR, where ϕ is a type-variable and α ∈ TC, is
defined by:

(ϕ �→ α)(ϕ) = α
(ϕ �→ α)(ϕ′) = ϕ′, if ϕ �= ϕ′

(ϕ �→ α)(σ→τ) = (ϕ �→ α)(σ)→(ϕ �→ α)(τ)
(ϕ �→ α)(σ1∩· · ·∩σn) = (ϕ �→ α)(σ1)∩· · ·∩(ϕ �→ α)(σn).

If S1 and S2 are substitutions, then so is S1◦S2, where S1◦S2 (σ) = S1 (S2 (σ)). Substitutions are
extended to bases by S (B) = {x:S (σ) | x:σ ∈ B}, and S (〈B,σ〉) = 〈S(B),S (σ)〉.

Substitution is normally defined as the operation that replaces type-variables by types, with-
out restriction. In general, this definition would not be correct for the Rank 2 system, since,
for example, the replacement of the type-variable ϕ in ϕ→ϕ by the type (σ→τ)∩σ→τ would
give a type that is not an element of TR.

The next operation on pairs, copying, can be seen as a very simple version of the various
operations of expansion as defined in [17, 36, 3]. For readers familiar with those definitions of
expansion: copying is a total expansion, that is not ‘computed’: all type-variables occurring
in basis and type are copied. It is an operation on types that deals with the replacement of a
type by an intersection of a number of copies of that type.

Definition 3.2 Let B be a basis, σ ∈ TR, and n ≥ 1. The triple <n, B,σ> determines a copying
C<n,B,σ> : TR → TR, that is constructed as follows: Suppose V = {ϕ1, . . . , ϕm} is the set of all
type-variables occurring in 〈B,σ〉. Choose m × n different type-variables ϕ1

1, . . . , ϕn
1 , . . . , ϕ1

m,
. . . , ϕn

m, such that each ϕi
j (1≤ i≤n, 1≤ j≤m) does not occur in V. Let Si be the substitution

that replaces every ϕj by ϕi
j. Then

C<n,B,σ> (τ) = S1 (τ)∩· · ·∩Sn (τ).

Copying is extended to bases and pairs by: C<n,B,σ> (B′) = {x:C<n,B,σ> (ρ) | x:ρ ∈ B′}, and
C<n,B,σ> (〈B′,σ′〉) = 〈C<n,B,σ> (B′),C<n,B,σ> (σ

′)〉.
To simplify notation, <n, B,σ> will be written instead of C<n,B,σ>.

Notice that if τ does not contain type-variables that occur in V, then <n, B,σ>(τ) = τ∩· · ·∩τ,
which is by definition of ∼ the same as τ.

The last operation is that of weakening; it replaces a basis by a more informative one.

Definition 3.3 A weakening W is an operation characterized by a pair of bases 〈B0, B1〉 such
that B1 ≤ B0, and is defined by: if B = B0, then W (〈B,σ〉) = 〈B1,σ〉, and W (〈B,σ〉) = 〈B,σ〉,
otherwise.

Fundamenta Informaticae, 26(2):141-166, 1996 12

Definition 3.4 i) A transformation sequence is an object <O1, . . . ,On>, where each Oi is an op-
eration of substitution, copying, or weakening, and

<O1, . . . ,On>(〈B,σ〉) = On (· · ·(O1 (〈B,σ〉))· · ·).

ii) On transformation sequences the operation of concatenation is denoted by ∗ , and:

<O1, . . . ,Oi> ∗<Oi+1, . . . ,On> = <O1, . . . ,On>.

iii) A type-chain is a transformation sequence <O1, . . . ,On> of operations of substitution and
copying only, and is extended to types by:

<O1, . . . ,On>(σ) = On (· · ·(O1 (σ))· · ·).

iv) A chain is a type-chain concatenated with one operation of weakening.
v) We say that Ch1 = Ch2, if for all σ, Ch1 (σ) = Ch2 (σ).

For type-chains, the following properties hold:

Lemma 3.5 Let Ch be a type-chain.
i) There are a copying C and substitutions S1, . . . , Sn such that Ch = <C,S1, . . . ,Sn>.

ii) If σ ∈ T2, and Ch(σ) ∈ T2, then there is a substitution S such that Ch(σ) = S (σ). Without loss
of generality, there is also a type-chain Ch′ such that Ch = <S> ∗Ch′.

iii) If σ ∈ T2, and Ch(σ) ∈ TR, then there are σ1. . . . ,σn and substitutions S1, . . . , Sn such that Ch(σ)
= σ1∩· · ·∩σn, and, for every 1≤ i≤n, Si (σ) = σi.

Proof: Easy, using part (i in part (iii.

3.2 Rank 2 type assignment in CuTRS

The type assignment system presented in this paper is a partial system in the sense that not
only will be defined how terms and rewrite rules can be typed, but it is also assumed that
every function symbol already has a type, stored in an environment, of which the structure
is usually motivated by a rewrite rule. In fact, this approach is very close to the one taken in
[24], where the principal Curry-type scheme of an object in Combinatory Logic is defined.

Definition 3.6 Let (Σ,R) be a CuTRS.
i) A mapping E : F → T2 is called an environment if, for every F ∈ F with arity n, E (F) =
E (Fn−1) = · · · = E (F0).

ii) For F ∈ F , σ ∈ T2, and E an environment, the environment E [F :=σ] is defined by:
E [F :=σ](G) = σ, if G ∈ {F, Fn−1, . . . , F0}
E [F :=σ](G) = E (G), otherwise.

Type assignment on CuTRS is defined in two stages. In the next definition type assignment on
terms is defined, and in Definition 5.1 type assignment on term rewrite rules will be defined.

Definition 3.7 Let (Σ,R) be a CuTRS, and E an environment.
i) Type assignment and derivations are defined by the following natural deduction system.

Fundamenta Informaticae, 26(2):141-166, 1996 13

x:σ σ ≤ τ
(≤): (σ ∈ T1, τ ∈ TC)

x:τ

t:σ1 . . . t:σn
(∩I): (a)

t:σ1∩· · ·∩σn

t1:σ→τ t2:σ
(Ap): (τ ∈ T2, σ ∈ T1)

Ap(t1, t2):τ

t1:σ1 . . . tn:σn
(F): (b)

F(t1, . . . , tn):σ

(a) If n ≥ 1, and for every 1≤ i≤n, σi ∈ T2.
(b) if there exists a type-chain Ch such that Ch (E (F)) = σ1→·· ·→σn→σ, and for every

0≤ i≤n, σi ∈ T1.
ii) Let t ∈ T(F,X) be typeable by σ with respect to E . The notation B E t:σ is used to express

that B is a basis that contains at least all the statements with variables as subject that occur
in the derivation for t:σ. Then 〈B,σ〉 is called an admissible pair for t.

An environment does not provide a type for Ap; instead in rule (Ap) it is defined how
an application should be typed; this is because although σ→τ and σ ∈ T1, not necessarily
(σ→τ)→σ→τ ∈ T2.

The use of an environment corresponds to the use of ‘axiom-schemes’, and the use of a chain
in rule (F) to the use of ‘axioms’ as in [24], and corresponds to the use of a ‘combinator
basis’ and the axioms in Definition 3.2 of [21]. The combination of those two definitions also
introduces a notion of polymorphism into the type assignment system of this paper. The
environment returns the ‘principal type’ for a function symbol; this symbol can be used with
types that are ‘instances’ of its principal type.

The following theorem shows the operations are sound on derivations; in Theorem 5.4, we
will prove a soundness result for rewrite rules.

Theorem 3.8 i) Let S be a substitution. If B E t:σ, then S(B) E t:S(σ).
ii) Let C be a copying such that C(〈B,σ〉) = 〈B′,σ′〉. If B E t:σ, then B′ E t:σ′.

iii) For every t ∈ T(F,X): if B E t:σ, then, for every weakening W: if W(〈B,σ〉) = 〈B′,σ′〉, then
B′ E t:σ′.

Proof: Part (i follows by straightforward induction, part (ii follows by Definition 3.2, part (i
and rule (∩I), and part (iii follows by an easy induction.

4 Completeness of operations on pairs

In this section, the principal type property will be shown to hold for the here presented type
assignment system: for every term t typeable with respect to E , there exists a pair PPE (t) =
〈P,π〉, the principal pair of t with respect to E , such that P E t:π, and, for every pair 〈B,σ〉
such that B E t:σ, there exists a chain of operations Ch such that Ch (〈P,π〉) = 〈B,σ〉.

As in [24], principal types are defined using a notion of unification.

4.1 Unification of intersection types of Rank 2

In the context of types, unification is a procedure normally used to find a common instance
for demanded and provided type for applications, i.e: if t1 has type σ→τ, and t2 has type α,
then unification looks for a common instance of the types σ and α such that Ap (t1,t2) can be
typed properly. The unification algorithm unifyR2 presented in the next definition deals with

Fundamenta Informaticae, 26(2):141-166, 1996 14

just that problem. This means that it is not a full unification algorithm for intersection types
of Rank 2, but only an algorithm that finds the most general unifying chain for demanded
and provided type. It is defined using Robinson’s well-known unification algorithm unify.

Definition 4.1 (Robinson’s Unification Algorithm [35]) Let S be the set of all substitu-
tions.

unify : TC×TC → S
unify (ϕ, ϕ′) = (ϕ �→ϕ′)
unify (ϕ, τ) = (ϕ �→τ), if ϕ does not occur in τ and τ is not a type-variable
unify (σ, ϕ) = unify (ϕ, σ)
unify (σ→τ, ρ→µ) = S2◦S1

where S1 = unify (σ, ρ)
S2 = unify (S1 (τ), S1 (µ))

Property 4.2 ([35]) unify returns the most general unifier of two Curry-types σ and τ (if it exists),
i.e.: For all σ, τ ∈ TC, substitutions S: if S(σ) = S(τ), then there are substitutions Su and S′ such that

Su = unify(σ,τ), and S(σ) = S′◦Su (σ) = S′◦Su (τ) = S(τ).

Since the substitution returned by unify is defined only on type-variables occurring in σ and
τ, it is even possible to show that S = S′◦Su.

The unification algorithm works roughly as follows: in finding the principal pair for the
term Ap (t1,t2), by construction the demanded type σ in σ→τ is in T1 and the provided type
α is in T2. The unification algorithm looks for types that can be assigned to the terms t1 and
t2 such that the application term can be typed properly. In order to be consistent, the result
of the unification of σ and α – a chain Ch – should always be such that Ch (α) ∈ T1. However,
if α �∈ TC, then in general Ch (α) �∈ T1. To overcome this difficulty, an algorithm toTC will be
inserted that, when applied to the type α, returns a type-chain of operations that removes, if
possible, intersections in α.

Definition 4.3 Let C be the set of all type-chains, and let IdS be the substitution that replaces
all type-variables by themselves.

toTC : T2 → C
toTC (σ) = <IdS>, if σ ∈ TC

toTC (σ1∩· · ·∩σn→σ) = <S1, . . . ,Sn−1> ∗Ch, otherwise
where Si = unify (<S1, . . . ,Si−1> (σ1), <S1, . . . ,Si−1>(σi+1)),

for every 1≤ i≤n−1
Ch = toTC (<S1, . . . ,Sn−1>(σ))

The algorithm unifyR2 is called with the types σ and α′, the latter being α in which the
intersections are removed (so α′ = toTC (α)(α); notice that toTC (α) is an operation on types that
removes all intersections in α).

It is possible that σ �∈ TC, so it can be that α′ must be duplicated. Since such an operation
affects also the basis, the third argument of unifyR2 is a basis.

Definition 4.4 (Rank 2 Unification) Let B be the set of all bases, and C the set of all type-
chains.

unifyR2 : T1×TC×B → C
unifyR2 (σ, α, B) = unify (σ, α), if σ ∈ TC

Fundamenta Informaticae, 26(2):141-166, 1996 15

unifyR2 (σ1∩· · ·∩σn, α, B) = <C,S1, . . . ,Sn>, otherwise
where C = <n, B,α>

α1∩· · ·∩αn = C (α)
Si = unify (<S1, . . . ,Si−1>(σi), αi), for every 1≤ i≤n

Notice that unifyR2 and toTC only fail when unify fails, and that <n, B,α> never fails. Because
of this relation between unifyR2 and toTC on one side, and unify on the other, the procedures
defined here are terminating and type assingment in the system defined in this paper is
decidable.

With Property 4.2, it is possible to prove the following lemma.

Lemma 4.5 i) For every σ ∈ T2, type-chain Ch: if Ch(σ) = τ ∈ T1, then there is a type-chain Ch′ such
that toTC (σ) ∗Ch′ (σ) = τ. (Without loss of generality, Ch = toTC (σ) ∗Ch′.)

ii) For every σ ∈ T1, α ∈ TC that are disjoint: if there exists a type-chain Ch such that Ch(σ) =
Ch(α), then, for every basis B that shares no type-variables with σ, there are type-chains Ch′

and Chu such that Chu = unifyR2 (σ,α, B) and Ch(σ) = Chu ∗Ch′ (σ) = Chu ∗Ch′ (α) = Ch (α).
(Without loss of generality, Ch = Chu ∗Ch′.)

Proof: i) By 3.5 (iii there are substitutions S1, . . . , Sn such that Ch (σ) = S1 (σ)∩· · ·∩Sn (σ). Let σ =
α1∩· · ·∩αm→β. Since, for every 1≤ i≤n, Si (σ) ∈ TC, also for 1≤ i≤n, 1≤ j �= k≤m, Si (αj)
= Si (αk). The result follows from Property 4.2 and Definition 4.3.

ii) If σ ∈ TC, then it is easy to show that σ and α must have a common substitution-instance,
so from Property 4.2 the result follows. If σ = σ1∩· · ·∩σn, then likewise it is easy (but labo-
rious) to show that, for every 1≤ i≤n, σi and α have a substitution-instance in common.
Then by induction on Definition 4.4, using Property 4.2, the result follows.

4.2 Principal pairs for terms

In this subsection, the principal pair for a term t with respect to E – PPE (t) – is defined,
consisting of basis P and type π. In Theorem 4.13 it will be shown that, for every term, this is
indeed the principal one.

Definition 4.6 For every t ∈ T(F,X), using unifyR2, PPE (t) = 〈P,π〉 is defined by:
i) t ≡ x. Then 〈P,π〉 = 〈{x:ϕ}, ϕ〉.

ii) t ≡ Ap (t1,t2). Let PPE (t1) = 〈P1,π1〉, PPE (t2) = 〈P2,π2〉, (choose, if necessary, trivial vari-
ants such that these pairs are disjoint), and S2 = toTC (π2), then:
a) If π1 = ϕ, then:

PPE (Ap (t1,t2)) = 〈S2,S1〉 (〈Π{P1, P2}, ϕ′〉)
where S1 = unify (ϕ, S2 (π2)→ϕ′),

and ϕ′ is a type-variable not occurring in any other type.
b) If π1 = σ→τ, then:

PPE (Ap (t1,t2)) = 〈S2〉 ∗Ch (〈Π{P1, P2},τ〉)
where Ch = unifyR2 (σ, S2 (π2), S2 (P2)).

iii) t ≡ F (t1, . . . , tn). If E (F) = γ1→·· ·→γn→γ, and, for every 1≤ i≤n, PPE (ti) = 〈Pi,πi〉,
(choose, if necessary, trivial variants such that the 〈Pi,πi〉 are disjoint in pairs and these
pairs share no type-variables with γ1→·· ·→γn→γ), then:

PPE (F (t1, . . . , tn)) = Ch (〈Π{P1, . . . , Pn},γ〉)
where Ch = <S1, . . . ,Sn> ∗Ch1 ∗ · · · ∗Chn

Fundamenta Informaticae, 26(2):141-166, 1996 16

Si = toTC (πi)
Chi = unifyR2 (Ch1 ∗ · · · ∗Chi−1 (γi), Si (πi), Si (Pi)).

Note that, since unifyR2 may fail, not every term has a principal pair.

Example 4.7 The typed rules for F as in Example 5.2 seem perhaps somewhat ad hoc, but using
the environment: E (K) = 1→2→1, E (Z) = 3→4→4, E (I) = 5→5, and E (F) = 7∩(6→7)∩6→7, where
Z is defined by Z(x, y) → y, and using Definition 4.6, the following can easily be checked:

i) E F(I0):8→8, E I:8→8, and E I(I0):8→8.
ii) E F(Z0):(8→8)→8→8, E Z0:(8→8)→8→8, and E Z1 (Z0):(8→8)→8→8.

iii) E F(K0):(8→9)→9→8→9, E K0:(8→9)→9→8→9, and E K1 (K0):(8→9)→9→8→9.

The given types are the principal types for respectively F(I0), F(Z0), and F(K0).

Example 4.8 Using Rank 2 intersection types, the term S(K0,S0,I0) has a more general principal
type than using Curry-types. With the environment

E (S) = (1→2→3)→(4→2)→(1∩4)→3
E (K) = 5→6→5
E (I) = 7→7,

and Definition 4.6, the following can easily be checked: E S(K0,S0,I0):8→8.

K0:(8→8)→(((9→10)→9)→(9→10)→10)→8→8
S0:((9→10)→9→10)→((9→10)→9)→(9→10)→10

I0:(8→8)∩((9→10)→9→10)

S(K0,S0,I0):8→8

Notice that in Curry’s system – and in ML – the term SKS I has the principal type (9→10)→9→10.
With D defined by D(x) → Ap(x,x), it is even possible to check that for example D(S(K0,S0,I0))

and D(I0) are typeable by 11→11. Notice that the term I(D0) is not typeable.

The following lemma expresses that a principal pair for the term t is an admissible pair for
t.

Lemma 4.9 If PPE (t) = 〈P,π〉, then P E t:π, and π ∈ T2.

Proof: By induction on the definition of PPE (t), using Theorem 3.8.

The following lemmas are needed in the proofs of Theorem 4.12 and Lemma 5.5 (iii. The
first states that if a type-chain maps the principal pairs of terms in an application to pairs
that allows the application itself to be typed, then these pairs can also be obtained by first
performing a unification. The second generalizes this result to arbitrary function applications.

Lemma 4.10 Let σ ∈ T2, and for i = 1,2: PPE (ti) = 〈Pi,πi〉, such that these pairs are disjoint, and let
Ch be a type-chain such that

Ch(PPE (t1)) = 〈B1,τ→σ〉, and Ch(PPE (t2)) = 〈B2,τ〉.
Then there are type-chains Chg and Ch′, and type α ∈ T2 such that

PPE (Ap (t1,t2)) = Chg (〈Π{P1, P2},α〉), and Ch′ (PPE (Ap (t1,t2))) = 〈Π{B1, B2},σ〉.

Proof: Since Ch (π2) ∈ T1, by 4.5 (i there is a Ch1 such that Ch = <S2> ∗Ch1, with S2 = toTC (π2).

Fundamenta Informaticae, 26(2):141-166, 1996 17

i) π1 = ϕ. Take S1 = unify (ϕ, S2 (π2)→ϕ′), where ϕ′ is a type-variable not occurring in any
other type. Assume, without loss of generality, that Ch1 (ϕ′) = σ. Then, by Definition
4.6 (ii.a),

PPE (Ap (t1,t2)) = 〈S2, S1〉 (〈Π{P1, P2}, ϕ′〉).
Since ϕ ∈ TC and τ→σ ∈ T2, also τ→σ ∈ T1, so τ→σ ∈ TC and τ ∈ TC. So Ch1 (S2 (π2)→ϕ′)

∈ TC, and, by Lemma 3.5 (ii, there are a substitution S3 and a type-chain Ch2 such that
S3 (S2 (π2)→ϕ′) = τ→σ, and Ch1 = <S3> ∗Ch2. Assume, without loss of generality, that
S3 (ϕ) = τ→σ. By Property 4.2, there is a substitution S4 such that S3 = S4◦S1. So

Ch = <S2> ∗Ch1 = <S2> ∗<S3> ∗Ch2 = <S2, S1> ∗<S4> ∗Ch2.

Take Chg = <S2, S1>, Ch′ = <S4> ∗Ch2 and α = ϕ′.
ii) π1 = ρ→µ. Since the pairs 〈P1,ρ→µ〉 and 〈P2,π2〉 are disjoint, Ch1 (ρ→µ) = τ→σ. Since

Ch1 (ρ) = Ch1 (S2 (π2)), by Lemma 4.5 (ii, there are type-chains Chu and Ch2 such that

Chu = unifyR2 (ρ, S2 (π2), S2 (P2)), and Ch1 = Chu ∗Ch2.

By Definition 4.6 (ii.b), PPE (Ap (t1,t2)) = 〈S2〉 ∗Chu (〈Π{P1, P2},µ〉). Then
Ch = <S2> ∗ Ch1 = <S2> ∗ Chu ∗Ch2.

Take Chg = <S2> ∗Chu, Ch′ = Ch2, and α = µ.

Lemma 4.11 Let σ ∈ T2, and, for every 1≤ i≤n, PPE (ti) = 〈Pi,πi〉, such that the pairs 〈Pi,πi〉 and
the type E (F) = γ1→·· ·→γn→γ are disjoint, and let Ch be a type-chain such that

Ch(E (F)) = σ1→·· ·→σn→σ and, for every 1≤ i≤n, Ch(〈Pi,πi〉) = 〈Bi,σi〉.
Then there are type-chains Chg and Chp such that

PPE (F (t1, . . . , tn)) = Chg (〈Π{P1, . . . , Pn},γ〉), and
Chp (PPE (F (t1, . . . , tn))) = 〈Π{B1, . . . , Bn},σ〉.

Proof: As part (ii of the proof for the previous lemma, constructing Chp by induction on n.

In order to prove that the operations are complete, we prove that if B E t:σ, then t has a
principal pair and there is a chain that maps this principal pair to 〈B,σ〉.

Theorem 4.12 If B E t:σ, then there are a basis P, type π and a chain Ch such that PPE (t) = 〈P,π〉,
and Ch(〈P,π〉) = 〈B,σ〉.

Proof: By induction on the structure of derivations.

(≤) : Then t ≡ x, B ≤ {x:σ}, σ ∈ TC, and PPE (x) = 〈{x:ϕ}, ϕ〉.
Take Ch = <ϕ �→σ, 〈{x:σ}, B〉>.

(Ap) : Then t ≡ Ap (t1,t2), and there are τ ∈ T1 and bases B1, B2 such that B1 E t1:τ→σ, and
B2 E t2:τ. By induction for i = 1,2 there are Pi, πi, and chain Chi such that

PPE (ti) = 〈Pi,πi〉, Ch1 (PPE (t1)) = 〈B,τ→σ〉, and Ch2 (PPE (t2)) = 〈B,τ〉.
Let Chi = Ch′

i ∗Wi, where Ch′
i is a type-chain, and Bi ≤ B such that Wi = 〈Bi, B〉. Since

the pairs 〈Pi,πi〉 are disjoint, the type-chains Ch′
i do not interfere, so

Ch′
1 ∗Ch′2 (PPE (t1)) = 〈B1,τ→σ〉, and Ch′

1 ∗Ch′2 (PPE (t2)) = 〈B2,τ〉.
Then, by Lemma 4.10, there is a Ch′ such that Ch′ (PPE (Ap (t1,t2))) = 〈Π{B1, B2},σ〉.
Take Ch = Ch′ ∗<〈Π{B1, B2}, B〉>.

Fundamenta Informaticae, 26(2):141-166, 1996 18

(F) : Then t ≡ F (t1, . . . , tn); let E (F) = γ1→·· ·→γn→γ. There are σ1. . . . ,σn such that, for every
1≤ i≤n, B E ti:σi, and a type-chain ChF such that

ChF (γ1→·· ·→γn→γ) = σ1→·· ·→σn→σ.

By induction, for 1≤ i≤n, there are 〈Pi,πi〉, (disjoint in pairs) and chain Chi, such that

PPE (ti) = 〈Pi,πi〉, and Chi (PPE (ti)) = 〈B,σi〉.
Let Chi = Ch′

i ∗Wi, where Ch′
i is a type-chain, and Bi ≤ B such that Wi = 〈Bi, B〉. Since

the pairs 〈Pi,πi〉 are disjoint, the chains Ch′i do not interfere. Assume, without loss of
generality, that none of the type-variables occurring in γ1→·· ·→γn→γ occur in any of
the pairs 〈Pi,πi〉. Let Ch′ = ChF ∗Ch′

1 ∗ · · · ∗Ch′
n. Since, for every 1≤ i≤n, Ch′ (〈Pi,πi〉) =

〈Bi,σi〉, and Ch′ (γ1→·· ·→γn→γ) = σ1→·· ·→σn→σ, by Lemma 4.11 there is a type-chain
Ch′′ such that Ch′′ (PPE (F (t1, . . . , tn))) = 〈Π{B1, . . . , Bn},σ〉.

Take Ch = Ch′′ ∗<〈Π{B1, . . . , Bn}, B〉>.

(∩I) : Then σ = σ1∩· · ·∩σn, and, for every 1≤ i≤n, B E t:σi.
By induction there are P, π, such that PPE (t) = 〈P,π〉. Let C = <n, P,π>, then

C (〈P,π〉) = 〈Π{P1, . . . , Pn},π1∩· · ·∩πn〉, with PPE (t) = 〈Pi,πi〉.
By induction there are type-chains Ch1, . . . , Chn such that

for 1≤ i≤n, Chi (〈Pi,πi〉) = 〈Bi,σ′
i 〉.

Let Chi = Ch′
i ∗Wi, where Ch′

i is a type-chain, and B′
i ≤ Bi such that Wi = 〈B′

i , Bi〉. With-
out loss of generality, we can assume that every Ch′

i = Ch′′
i ∗<Si>, such that the Ch′′

i do
not interfere.

Take Ch = <C> ∗Ch′′
1 ∗ · · · ∗Ch′′

n ∗<S1◦ · · · ◦Sn, 〈Π{B1, . . . , Bn}, B〉>.

Theorem 4.13 (Principal pair property) i) Soundness. If PPE (t) = 〈P,π〉, and Ch is a chain
such that Ch(〈P,π〉) = 〈B,σ〉, then B E t:σ.

ii) Completeness. If B E t:σ, then there are a basis P and type π such that PPE (t) = 〈P,π〉, and
there is a chain Ch such that Ch (〈P,π〉) = 〈B,σ〉.

Proof: i) By Lemma 4.9, and Theorem 3.8.
ii) By Theorem 4.12.

5 Subject reduction

If a term t is rewritten to the term t′ using the rewrite rule l → r, there is a subterm t0 of t, and
a replacement R, such that lR = t0; t′ is obtained by replacing t0 by rR. The subject reduction
property for this notion of reduction is:

If B E t:σ, and t can be rewritten to t′, then B E t′:σ.

In this section, it will be shown that the notion of type assignment as given in this paper
satisfies the subject reduction property. We will present in Definition 5.1 a notion of type as-
signment on rewrite rules using a restriction on the possible type assignments that guarantees
this property. We will also, through examples, show that if the restriction is weakened, the
thus obtained systems do not satisfy the subject reduction property: then there are rewrite
rules typeable with respect to an environment E , that match a term t typeable by σ with re-
spect to E , for which the result of the application of the rewrite rule on t is not typeable by σ
with respect to E .

Fundamenta Informaticae, 26(2):141-166, 1996 19

Using the notion of principal pair, we now give a definition of a typeable rewrite rule and a
typeable rewrite system.

Definition 5.1 Let (Σ,R) be a CuTRS, and E an environment.
i) r: l → r ∈ R with defined symbol F is typeable with respect to E , if there are basis B, type

σ ∈ T2, such that
a) PPE (l) = 〈B,σ〉, and B E r:σ.
b) In B E l:σ and B E r:σ, all F are typed with E (F).

ii) (Σ,R) is typeable with respect to E , if every r ∈ R is typeable with respect to E .

Example 5.2 Derivations for the rewrite rules as given in Example 2.8, using:

E2 (M) = (1→2)→((3→4)∩1)→4
E2 (F) = (6∩(5→6)∩5)→6
E2 (S) = (7→8→9)→(10→8)→(7∩10)→9
E2 (I) = 11→11.

x:1→3→2 y:1→3

S2(x,y):1→2

M(S2(x,y)):((3→4)∩1)→4

→
I0:(3→4)→3→4 y:1→3

S2(I0,y):((3→4)∩1)→4

x:6∩(5→6)∩5

F(x):6
→ x:6∩(5→6)∩5

x:6

x:6∩(5→6)∩5

F(x):6
→

x:6∩(5→6)∩5

x:5→6

x:6∩(5→6)∩5

x:5

Ap(x,x):6

Example 5.3 ([6]) The condition ‘PPE (l) = 〈B,σ〉’ in Definition 5.1 (i.a) is crucial. Just saying

B E l:σ and B E r:σ

would give a notion of type assignment that is not closed under rewriting (i.e. does not satisfy
the subject reduction property).

Take the rewrite system of Example 2.8, that then would be typeable with respect to the
following environment:

E3 (M) = ((1→2)→3)→(1→2)→2
E3 (S) = (4→5→6)→(4→5)→4→6
E3 (I) = 7→7

x:(1→2)→1→3 y:(1→2)→1

S2(x,y):(1→2)→3

M(S2(x,y)):(1→2)→2

→
I0:(1→2)→1→2 y:(1→2)→1

S2(I0,y):(1→2)→2

Take the term M(S2 (K0,I0)). It is easy to see that the rewrite rule is allowed, and that this
term rewrites to S2 (I0,I0). Although the first term is typeable by (4→5)→5 with respect to E 3,

K0:(4→5)→(4→5)→4→5 I0:(4→5)→4→5

S2(K0,I0):(4→5)→4→5

M(S2(K0,I0)):(4→5)→5

Fundamenta Informaticae, 26(2):141-166, 1996 20

the term S2 (I0,I0) is not typeable by the type (4→5)→5 with respect to E3. (In fact, it is not
typeable at all with respect to E3; when constructing the principal pair for this term with
respect to E 3, unification fails.)

Notice that this example shows that the loss of subject reduction is not connected to the fact
that intersection types are allowed.

In building PPE3 (M(S2 (x, y))), types are assigned in the following way:

x:(1→2)→4→3 y:(1→2)→4

S2(x,y):(1→2)→3

M(S2(x,y)):(1→2)→2

The right-hand side S2 (I0,y) of the rewrite rule is not typeable with (1→2)→2 using the basis
{x:(1→2)→4→3, y:(1→2)→4}. If the right-hand side should be typed with (1→2)→2, the type
needed for y is (1→2)→1.

I0:(1→2)→1→2 y:(1→2)→1

S2(I0,y):(1→2)→2

Since types assigned to term-variables in the right-hand side should occur in type assigned
to types in the left-hand side, the type-variable 4 should be replaced by 1, so in the typed
rewrite rule no longer the most general pair for the left-hand side is used.

We will now show that the use of a type-chain in rule (F) is sound in the following sense:
if there is a type-chain Ch such that Ch (E (F)) = σ, then, for every type τ ∈ T2 such that σ ≤ τ,
the rewrite rules that define F are typeable with respect to a changed environment, in which
E (F) is replaced by τ.

Theorem 5.4 i) Let S be a substitution. Let r: l → r be a rewrite rule typeable with respect to
the environment E , and let F be the defined symbol of r. Then r is typeable with respect to
E [F :=S (E (F))].

ii) Let C be a copying such that C (〈B,σ〉) = 〈B′,σ′〉. Let r: l → r be a rewrite rule typeable with
respect to the environment E , and let F be the defined symbol of r. If C (E (F)) = τ ∈ TR, then, for
every µ ∈ T2 such that τ ≤ µ, r is typeable with respect to E [F :=µ].

Proof: i) Straightforward.
ii) For every µ ∈ T2 such that τ ≤ µ, by Definition 3.2 there is a substitution S such that µ =

S (E (F)). The proof is completed by part (i.

Before coming to the proof that the condition is sufficient, some preliminary results are
needed.

Lemma 5.5 i) If B E tR:σ, then there is a basis B′ such that B′ E t:σ, and for all x:α ∈ B′, B E xR:α.
ii) If B E t:σ, and R is a replacement and B′ a basis such that, for every statement x:α ∈ B, B′ E xR:α,

then B′ E tR:σ.
iii) Let t be typeable, PPE (t) = 〈P,π〉, and for the replacement R there are B and σ such that

B E tR:σ, then there is a type-chain Ch, such that Ch(π) = σ, and, for every statement x:α ∈ P,
B E xR:Ch(α).

Proof: The proofs of parts (i and (ii follow by easy induction on the structure of t. For part (iii,
use part (i, and Theorem 4.13.

Fundamenta Informaticae, 26(2):141-166, 1996 21

The following theorem shows that the condition suffices.

Theorem 5.6 (Subject reduction) Let r : l → r be a typeable rewrite rule. Then, for every replace-
ment R, basis B and a type µ: B E lR:µ ⇒ B E rR:µ.

Proof: Let PPE (l) = 〈P,π〉. Since r is typeable, P E r:π. Suppose R is a replacement such that
there are B, µ such that B E lR:µ. (Assume µ ∈ T2.) By Lemma 5.5 (iii, there is a type-chain
Ch such that

Ch (π) = µ & ∀ x:α ∈ P [B E xR:Ch (α)].

By Theorem 3.8, Ch (P) E r:Ch (π), so Ch (P) E r:µ, and

∀ x:α ∈ P [B E xR:Ch (α)] ⇒ ∀ x:α ∈Ch (P) [B E xR:α].

So, by Lemma 5.5 (ii, B E rR:µ.

In [6] it is also shown that the there formulated condition is necessary. This result is reached
by extending the set of types with type constants, as also used in Example 5.3, and, for every
rewrite rule that is typeable in the less restrictive way, creating a specific replacement that
gives the counterexample. In this construction it is used that every type σ can be inhabited in
a trivial way: just pick a constant Q, not already used, and assume that E (Q) = σ.

In the notion of type assignment as defined in this paper this construction cannot be given,
because not every type can be trivially inhabited. An environment in this paper returns types
in T2, and a function symbol F can only have an intersection type α∩β if there exists a type-
chain Ch such that Ch (E (F)) = α∩β. This means that it is not possible to show that there is for
example a function symbol that can be assigned the type int∩(int→int).

6 Concluding remarks

6.1 Rank 2 type assignment in LC versus Rank 2 type assignment in CuTRS

This paper introduced a notion of type assignment for CuTRS. Although it is possible, as
illustrated in Section 1.1, to define a similar notion for LC, results for such a system cannot be
directly brought to CuTRS. This is caused by an important difference between LC and TRS: the
concept of abstraction is part of the definition of the former, but not of the latter. (Abstraction
can be modelled in TRS, but it is not an explicit syntactic constructor of terms or rules in TRS.)

As argued in that section, it is possible to show that the principal type property holds.
However, an important difference between a proof of the principal type property for the
system for LC and the one obtained here for CuTRS, is that the collection of operations differs.
For the system of this paper, this collection of operations consists of substitution, copying,
and weakening. Notice that, using the approach sketched above, the principal type for the
term (λx.x) would be ϕ→ϕ. Notice that also a type like σ∩τ→σ can be derived for (λx.x), so,
in order to prove the principal type property, an operation of lifting should be specified that
allows for the introduction of more types to the left of an arrow-type constructor, an operation
that can change σ→σ into σ∩τ→σ. Although the CuTRS equivalent of the term (λx.x) can be
given the type σ∩τ→σ, it is not possible to obtain that type from the type σ→σ: none of the
operations specified in this paper is capable of changing a type in the way needed to go from
σ→σ to σ∩τ→σ.

Moreover, the operation that performs this is not sound for CuTRS. Take for example the
rewrite system

Fundamenta Informaticae, 26(2):141-166, 1996 22

I(x) → x
G(I0) → I0
H(x) → x

that is typeable with respect to the environment E :

E (I) = 1→1
E (G) = (1→1)→1→1
E (H) = (1→1)→1→1.

The operations that can be applied to types are defined on types only, so there is no way of
distinguishing the types for G and H. We can safely add types to the ‘argument’ type for the
rule that defines G, since the rule is typeable with respect to E [G := ((1→1)∩σ)→1→1], for all
σ. For the rule that defines G, however, not all types can be safely inserted: since all types σ
should be types for I, the rewrite rule for G is not typeable with respect to the environment
E [G := (2→2)∩4→3→3].

So, the principal type property for the Rank 2 type assignment for LC is no direct consequence
of the results of this paper. The converse also does not hold, since the proof of that property
for the system in LC requires the operation of lifting, that is not provided for in the system
of this paper. This of course implies that a notion of type assignment for LC cannot be
directly translated into a type assignment system for a programming language that allows for
functions to be specified as rewrite rules.

6.2 On implementation

The results of this paper could be used to implement a type-check algorithm for CuTRS. It
should be pointed out that the notion of type assignment as defined in this paper is really a
type-check system, in the sense that it is not possible to create a type-inference algorithm, based
on the approach of this paper. To obtain a type-inference algorithm an operation should be
inserted that allows for more specific types than generated by substitution and copying. Take
for example the rewrite rules (see examples 2.8 and 5.2)

F(x) → x
F(x) → Ap(x,x)

A type-inference algorithm could for example type both alternatives separately and try to
combine the results found. For the first rule it would find E (F) = ϕ1→ϕ1, for the second
E (F) = (ϕ2→ϕ3)∩ϕ2→ϕ3. The problem is that it is not possible to create the desired type,
(ϕ5∩(ϕ4→ϕ5)∩ϕ4)→ϕ5, from these other two applying the operations specified in this paper.
To obtain the correct type for F, ϕ6∩(ϕ5→ϕ6)∩ϕ5→ϕ6, an operation is needed that inserts extra
types in the left-hand side of the top arrow-type constructor, like the one needed for LC.

So, it is allowed to give an environment for function symbols that is not a combination of
possible environments for the various rules. This implies that, in particular, combining types
found for one function symbol defined by several rules, applying the here defined operations,
does not always lead to the right solution. It can be that the user ‘sees’ the right type for
the rules, which the type-check algorithm is not capable of deducing, but will be capable
of checking on its correctness. This can be seen as a disadvantage of the system, but, on
the other hand, for many people it is nowadays considered to be programming hygiene to
explicitly state the types for function definitions.

Although type assignment (and type-checking) using the here defined notion of type as-
signment is decidable, the complexity of type-checking is bigger than for a system based on

Fundamenta Informaticae, 26(2):141-166, 1996 23

Curry-types. The biggest problem arises when checking the type provided for a function sym-
bol. Suppose l → r is a rewrite rule. One way to implement type-checking for this rule would
be to construct the principal pair 〈P,π〉 for the term l and to try to type r using this pair. Let
σ1∩· · ·∩σn be the type assigned to the term-variable x in P. Then, for every occurrence of x in
r, some selection of the types in σ1∩· · ·∩σn should be made. In the worst case the number of
possibilities that must be tried is huge: 2n. There are some more efficient ways to type-check
a rule, but the complexity is still exponential. However, in every day programming life n will
rarely be larger than 2.

6.3 Overloading

The concept of overloading in programming languages is normally used to express that dif-
ferent objects (typically procedures) can have the same identifier. (For another approach to
overloading, see [15, 14].) At first sight this seems to be nothing but a tool to obtain program-
ming convenience, but the implementational aspects of languages with overloading are not at
all trivial. In functional programming languages, functions are first-order citizens which means
that they can be handled as any object, like for example numbers. In particular, a function can
be passed as argument to another one, or could be its result. Especially in the first case it can
occur that at compile time it is not possible to decide which of the several bodies (or pieces of
code) for an overloaded identifier should be linked into the object-code. If this decision can-
not be made, the compiler should generate code that contains all possible functions and some
kind of case-construct that makes it possible to select at runtime which is the code to use. For
reasons of efficiency – and to avoid run-time checks on function types – it seems natural to
allow for overloaded objects only if at compile time it can be decided which of the different
function definitions is meant, since then, for every occurrence of an overloaded symbol, the
compiler can decide which of the several function definitions should be linked into the object
code.

The intersection type constructor is a good candidate to express overloading. It seems
natural to say for example that the type for addition Add is (int→int→int)∩(real→real→real).
Bringing the notion of overloading into a formal system for type assignment as defined in this
paper implies that the restriction on the types that can be provided by an environment should
be dropped; in such a formalism, types provided by the environment should be in TR, not just
T2.

However, this extension itself creates strange effects. Let, for example, F be a function sym-
bol that has type (int→int→int) ∩ (real→real→real) → α. Then, by the notion of type assignment
as defined here, the term F(Add) can be typed by α. Moreover, let G be a function symbol
that has the type σ∩τ→ρ, and let H be an overloaded function symbol with E (H) = α∩β. Then
finding the principal pair for the term G(H) requirers more than just the kind of unification
defined in this paper. In general, there can be several cases, since all possible combinations
have to be tried:

• unify (σ, α) and unify (τ, β) are both successful.
• unify (σ, β) and unify (τ, α) are both successful.
• unifyR2 (σ∩τ, α) and unifyR2 (σ∩τ, β) are both successful.
• unifyR2 (σ∩τ, β) fails, unifyR2 (σ∩τ, α) is successful.
• unifyR2 (σ∩τ, α) fails, unifyR2 (σ∩τ, β) is successful.

It can even be that more than one of these cases is true at the same time, like for example
the first and second. This in particular is troublesome, since it is not obvious at all what in

Fundamenta Informaticae, 26(2):141-166, 1996 24

this case the type of G(H) should be. One solution for this problem would be to allow, like
in [18], for more than one principal pair for a term (notice that this is not the same as saying
that a principal type can be an intersection). Another would be to introduce – formally – an
extra type constructor + with the same meaning as ∩, and to define overloading using this
notion. Then the unification of σ∩τ and α+β can be defined as the combination of the results
of unifying σ∩τ and α, and unifying σ∩τ and β.

A good solution to all aforementioned problems is to force selection of one of the function
definitions for an overloaded identifier. This can be accomplished by defining, as in Definition
5.1, how a rewrite rule can be typed, but by adding that, for every σ ∈ T2 such that E (F) ≤ σ,
all the rewrite rules that define F should be typeable using the type σ, for every occurrence of
F. (Another approach would be to introduce a new syntactic construct into the language that
is used to separate the rules that define F in groups, and to ask that, for every σ ∈ T2 such
that E (F) ≤ σ, there is at least one group of rules that can be typed using σ.) Moreover, it is
possible to define, as in rule (F) how a type for a function symbol can be obtained form the
one provided by the environment, in the following way:

t1:σ1 . . . tn:σn
(F): (∃ τ ∈ T2, Ch [E (F) ≤ τ & Ch (τ) = σ1→·· ·→σn→σ])

F(t1, . . . , tn):σ

Then the term F(Add) mentioned above cannot be typed. This selection is then reflected in
the way intersection types are unified. Since only one of the types in an ‘overloaded’ type
can be used, the unification should try to unify the demanded type with each individual type
occurring in the provided type.

Using this definition, the notion of ‘principal pair’ becomes slightly more complicated. This
is best explained by discussing the implementation of the type-checker that is looking for such
a pair. Take the well-known function foldr that is defined by

foldr f i [] = i
foldr f i (a:b) = f a (foldr f i b)

and can be typed by (1→2→2)→2→[1]→2. Take the term foldr Add 1 [2,3,4], then it is clear that
this term should be typeable by the type int. When constructing the type assignment for this
term, the subterm foldr Add is typed. For this term as such the type needed for Add cannot be
uniquely determined: it is the second argument of foldr that forces the selection. Since there
is a chance of success, the type-checker should postpone the decision to reject the term and
consider both possibilities simultaneously. This means that formally the term foldr Add has two
principal types.

References

[1] S. van Bakel. Complete restrictions of the Intersection Type Discipline. Theoretical Computer Science,
102:135–163, 1992.

[2] S. van Bakel. Partial Intersection Type Assignment in Applicative Term Rewriting Systems. In
M. Bezem and J.F. Groote, editors, Proceedings of TLCA ’93. International Conference on Typed Lambda
Calculi and Applications, Utrecht, the Netherlands, volume 664 of Lecture Notes in Computer Science,
pages 29–44. Springer-Verlag, 1993.

[3] S. van Bakel. Intersection Type Assignment Systems. Theoretical Computer Science, 151(2):385–435,
1995.

[4] S. van Bakel and M. Fernández. Strong Normalization of Typeable Rewrite Systems. In Jan Heer-
ing, Karl Meinke, Bernhard Möller, and Tobias Nipkow, editors, Proceedings of HOA ’93. First Inter-

Fundamenta Informaticae, 26(2):141-166, 1996 25

national Workshop on Higher Order Algebra, Logic and Term Rewriting, Amsterdam, the Netherlands.
Selected Papers, volume 816 of Lecture Notes in Computer Science, pages 20–39. Springer-Verlag, 1994.

[5] S. van Bakel and M. Fernández. (Head-)Normalization of Typeable Rewrite Systems. In Jieh
Hsiang, editor, Proceedings of RTA ’95. 6th International Conference on Rewriting Techniques and Appli-
cations, Kaiserslautern, Germany, volume 914 of Lecture Notes in Computer Science, pages 279–293.
Springer-Verlag, 1995.

[6] S. van Bakel, S. Smetsers, and S. Brock. Partial Type Assignment in Left Linear Applicative Term
Rewriting Systems. In J.-C. Raoult, editor, Proceedings of CAAP ’92. 17th Colloquim on Trees in Algebra
and Programming, Rennes, France, volume 581 of Lecture Notes in Computer Science, pages 300–321.
Springer-Verlag, 1992.

[7] F. Barbanera and M. Fernández. Combining first and higher order rewrite systems with type
assignment systems. In M. Bezem and J.F. Groote, editors, Proceedings of TLCA ’93. International
Conference on Typed Lambda Calculi and Applications, Utrecht, the Netherlands, volume 664 of Lecture
Notes in Computer Science, pages 60–74. Springer-Verlag, 1993.

[8] F. Barbanera and M. Fernández. Modularity of Termination and Confluence in Combinations of
Rewrite Systems with λω. In A. Lingas, R. Karlsson, and S. Carlsson, editors, Proceedings of ICALP
’93. 20th International Colloquium on Automata, Languages and Programming, Lund, Sweden, volume
700 of Lecture Notes in Computer Science, pages 657–668. Springer-Verlag, 1993.

[9] F. Barbanera, M. Fernández, and H. Geuvers. Modularity of Strong Normalization and Confluence
in the λ-algebraic-cube. In Proceedings of the ninth Annual IEEE Symposium on Logic in Computer
Science, Paris, France, 1994.

[10] H. Barendregt. The Lambda Calculus: its Syntax and Semantics. North-Holland, Amsterdam, revised
edition, 1984.

[11] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and the completeness
of type assignment. Journal of Symbolic Logic, 48(4):931–940, 1983.

[12] H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, J.R. Kennaway, M.J. Plasmeijer, and M.R.
Sleep. Term graph rewriting. In Proceedings of PARLE, Parallel Architectures and Languages Europe,
Eindhoven, The Netherlands, volume 259-II of Lecture Notes in Computer Science, pages 141–158.
Springer-Verlag, 1987.

[13] T. Brus, M.C.J.D. van Eekelen, M.O. van Leer, and M.J. Plasmeijer. Clean - A Language for Func-
tional Graph Rewriting. In Proceedings of the Third International Conference on Functional Program-
ming Languages and Computer Architecture, Portland, Oregon, USA, volume 274 of Lecture Notes in
Computer Science, pages 364–368. Springer-Verlag, 1987.

[14] G. Castagna. A Meta-Language for Typed Object-Oriented Languages. In R.K. Shyamasunda,
editor, Proceedings of FST&TCS ’93. 13th Conference on Foundations of Software Technology and Theoret-
ical Computer Science, Bombay, India, volume 761 of Lecture Notes in Computer Science, pages 52,71.
Springer-Verlag, 1993.

[15] G. Castagna, G. Ghelli, and G. Longo. A Calculus for Overloaded Functions with Subtyping.
Information and Computation, 117(1):115–135, 1995.

[16] M. Coppo and M. Dezani-Ciancaglini. An Extension of the Basic Functionality Theory for the
λ-Calculus. Notre Dame Journal of Formal Logic, 21(4):685–693, 1980.

[17] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functional characters of solvable terms.
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 27:45–58, 1981.

[18] M. Coppo and P. Giannini. A complete type inference algorithm for simple intersection types. In
J.-C. Raoult, editor, Proceedings of CAAP ’92. 17th Colloquim on Trees in Algebra and Programming,
Rennes, France, volume 581 of Lecture Notes in Computer Science, pages 102–123. Springer-Verlag,
1992.

[19] H.B. Curry and R. Feys. Combinatory Logic, volume 1. North-Holland, Amsterdam, 1958.
[20] N. Dershowitz and J.P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook of

Theoretical Computer Science, volume B, chapter 6, pages 245–320. North-Holland, 1990.
[21] M. Dezani-Ciancaglini and J.R. Hindley. Intersection types for combinatory logic. Theoretical

Computer Science, 100:303–324, 1992.
[22] K. Futatsugi, J. Goguen, J.P. Jouannaud, and J. Meseguer. Principles of OBJ2. In Proceedings 12th

ACM Symposium on Principles of Programming Languages, pages 52–66, 1985.
[23] J.Y. Girard. The System F of Variable Types, Fifteen years later. Theoretical Computer Science,

Fundamenta Informaticae, 26(2):141-166, 1996 26

45:159–192, 1986.
[24] J.R. Hindley. The principal type scheme of an object in combinatory logic. Transactions of the

American Mathematical Society, 146:29–60, 1969.
[25] A.J. Kfoury and J. Tiuryn. Type reconstruction in finite-rank fragments of the second-order λ-

calculus. Information and Computation, 98(2):228–257, 1992.
[26] A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. A proper extension of ML with an effective type-

assignment. In Proceedings of the Fifteenth Annual ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, San Diego, California, pages 58–69, 1988.

[27] J.W. Klop. Term Rewriting Systems: a tutorial. EATCS Bulletin, 32:143–182, 1987.
[28] J.W. Klop. Term Rewriting Systems. In S. Abramsky, Dov.M. Gabbay, and T.S.E. Maibaum, editors,

Handbook of Logic in Computer Science, volume 2, chapter 1, pages 1–116. Clarendon Press, 1992.
[29] D. Leivant. Polymorphic Type Inference. In Proceedings 10th ACM Symposium on Principles of

Programming Languages, pages 88–98, Austin Texas, 1983.
[30] R. Milner. A theory of type polymorphism in programming. Journal of Computer and System

Sciences, 17:348–375, 1978.
[31] A. Mycroft. Polymorphic type schemes and recursive definitions. In Proceedings of the International

Symposium on Programming, Toulouse, France, volume 167 of Lecture Notes Computer Science, pages
217–239. Springer-Verlag, 1984.

[32] E.G.J.M.H. Nöcker, J.E.W. Smetsers, M.C.J.D. van Eekelen, and M.J. Plasmeijer. Concurrent Clean.
In Proceedings of PARLE ’91, Parallel Architectures and Languages Europe, Eindhoven, The Nether-
lands, volume 506-II of Lecture Notes in Computer Science, pages 202–219. Springer-Verlag, 1991.

[33] V. van Oostrom. Lambda Calculus with Patterns. Technical Report IR-228, Faculteit der Wiskunde
en Informatica, Vrije Universiteit Amsterdam, 1990.

[34] S. Peyton Jones. The Implementation of Functional Programming Languages. Series in Computer
Science. Prentice/Hall International, Englewood Cliffs, NJ, USA, 1987.

[35] J.A. Robinson. A machine-oriented logic based on the resolution principle. Journal of the ACM,
12(1):23–41, 1965.

[36] S. Ronchi della Rocca and B. Venneri. Principal type schemes for an extended type theory. Theo-
retical Computer Science, 28:151–169, 1984.

[37] D.A. Turner. Miranda: A non-strict functional language with polymorphic types. In Proceedings of
the conference on Functional Programming Languages and Computer Architecture, volume 201 of Lecture
Notes in Computer Science, pages 1–16. Springer-Verlag, 1985.

