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Abstract

This paper introduces a notion of intersection type assignment on the Lambda Calculus that
is a restriction of the BCD-system as presented in [4]. This restricted system is essential in the
following sense: it is an almost syntax directed system that satisfies all major properties of
the BCD-system. The set of typeable terms can be characterized in the same way, the system
is complete with respect to the simple type semantics, and it has the principal type property.

Introduction

In the recent years several notions of type assignment for several (extended) lambda calculi
have been studied. The oldest among these is the well understood and well defined notion of
type assignment on lambda terms, known as the Curry Type Assignment System [6] which
expresses abstraction and application. It is well known that in that system, the problem of
typeability

Given a term M, are there basis B and type σ such that B � M:σ

is decidable. Although many of the now existing type assignment systems for functional
programming languages are based on (extensions of) Curry’s system, it has some drawbacks.
In Curry’s system it is, for example, not possible to assign a type to the term (λx.xx); moreover,
although the lambda terms (λcd.d) and ((λxyz.xz(yz))(λab.a)) are β-equal, the principal type
schemes for these terms are different. The Intersection Type Discipline as presented in [5]
(a more enhanced system was presented in [4]) is an extension of Curry’s system that does
not have these drawbacks. The extension being made consists mainly of allowing for term
variables (and terms) to have more than one type. Intersection types are constructed by
adding, next to the type constructor ‘→’ of Curry’s system, the type constructor ‘∩’ and the
type constant ‘ω’. By introducing this extension a system is obtained that is very powerful:
is closed under β-equality: if B � M:σ and M=β N, then B � N:σ. Because of this power, in
the intersection system (and even in the system that does not contain ω) type assignment is
undecidable.

The type assignment system presented in [4] (the BCD-system) is based on the system as
presented in [5]; it defines the set of intersection types T in a more general way, and is
strengthened further by introducing a partial order relation ‘≤’ on types as well as adding the
type assignment rule (≤) and a more general form of the rules concerning intersection. The
rule (≤), as well as the more general treatment of intersection types were introduced mainly
to prove completeness of type assignment.

In that paper it was shown that the set of types derivable for a lambda term in the extended
system is a filter, i.e. a set closed under intersection and right-closed for ≤ (if σ≤ τ and
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σ ∈ d where d is a filter, then τ ∈ d.) The interpretation of a lambda term by the set of types
derivable for it – [[M]]ξ – is defined in the standard way, and gives a filter lambda model F .
The main result of that paper is that, using this model, completeness is proved by proving
the statement: � M:σ ⇐⇒ [[M]] ∈ υ(σ), where υ : T → F is a simple type interpretation as
defined in [10]. In order to prove the ⇐-part of this statement (completeness), the relation
≤ is needed. The BCD-system has the principal type property, as was shown in [13]; the
set of operations needed for this system consists of substitutions, expansions, and rises. A
disadvantage of the BCD-system is that it is too general: in this system there are several ways
to deduce a desired result, due to the presence of the derivation rules (∩I), (∩E) and (≤). These
rules not only allow of superfluous steps in derivations, but they also make it possible to give
essentially different derivations for the same result. Moreover, in [4] the relation ≤ induced
an equivalence relation ∼ on types. Equivalence classes are big (for example: ω ∼ σ→ω, for
all types σ) and type assignment is closed for ∼ . And although the set {〈B, σ〉 | B � M:σ}
can be generated using the three operations specified in [13], the problem

Given a term M and type σ, is there a B such that B � M:σ?

is complicated. The Essential Type Assignment System as presented in this paper is a true re-
striction of the system of [4] that satisfies all properties of that system, and is also an extension
of Curry’s system. We will compare the notion of type assignment presented in this paper
with the one defined in [9]; the set of derivable statements of these two systems will turn out
to be exactly the same. We will show that, in order to prove a completeness result using in-
tersection types, there is no need to be as general as in [4]; this result can also be obtained for
the essential system. The main advantage of the essential system over the intersection system
is that the set of types assignable to a term is significantly smaller. An other advantage of the
essential system is that derivations are syntax-directed: there is, unlike in the BCD-system,
a one-one relationship between terms and skeletons of derivations. These two features are
supported by a less complicated type structure.

The system presented here is also an extension of the Strict Type Assignment System as
presented in [1]. The major difference is that the essential system will prove to be closed
for η-reduction: If B �E M:σ and M →η N, then B �E N:σ. This does not hold for the strict
system.

In this paper, to avoid parentheses in the notation of types, ‘→’ is assumed to associate to
the right; as in logic, ‘∩’ binds stronger than ‘→’. I assume the reader to be familiar with
the Lambda Calculus, including the definition of the set N of terms in λ⊥-normal form (like
there, I use the symbol ⊥ instead of Ω), and the notion of approximant.

1 The Barendregt-Coppo-Dezani type assignment system

In this subsection we give the definitions of the system as presented in [4] that are relevant for
the results presented in this paper, together with its major features.

Definition 1.1 ([4]) i) T , the set of BCD-types is inductively defined by: All type-variables ϕ0,
ϕ1, . . . ∈ T , ω ∈ T , and if σ and τ ∈ T , then (σ→τ) and (σ∩τ) ∈ T .

ii) A BCD-statement is an expression of the form M:σ where M ∈ Λ and σ ∈ T .
iii) A BCD-basis is a finite set of statements over (distinct) term-variables.

Definition 1.2 i) On T the type inclusion relation ≤ is defined as the smallest relation satis-
fying: σ≤ σ, σ≤ω, ω≤ω→ω, σ∩τ ≤ σ, σ∩τ ≤ τ, (σ→τ)∩(σ→ρ)≤ σ→τ∩ρ, σ≤ τ≤ ρ ⇒
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σ≤ ρ, σ≤ τ & σ≤ ρ ⇒ σ≤ τ∩ρ, and ρ≤ σ & τ ≤ µ ⇒ σ→τ ≤ ρ→µ.
ii) B≤ B′ ⇐⇒ ∀ x:σ′ ∈ B′ ∃ x:σ ∈ B [σ≤ σ′].

iii) σ∼ τ ⇐⇒ σ≤ τ≤ σ, and B∼ B′ ⇐⇒ B≤ B′ ≤ B.

Definition 1.3 ([4]) i) BCD-type assignment and BCD-derivations are defined by the following
natural deduction system.

[x:σ]
:

M:τ
(→I): (a)

λx.M:σ→τ

M:σ→τ N:σ
(→E):

MN:τ

M:σ σ≤ τ
(≤):

M:τ

M:σ M:τ
(∩I):

M:σ∩τ

M:σ∩τ
(∩E):

M:σ

M:σ∩τ

M:τ
(ω):

M:ω

((a)) : If x:σ is the only statement about x on which M:τ depends.
ii) B � M:σ is used for: M:σ is derivable from a basis B with a BCD-derivation.

The BCD-type discipline has a great expressive power: all solvable terms have types not
equivalent to ω, and a term has a normal form if and only if it has a type without ω occur-
rences.

The relation between types assignable to a lambda term and those assignable to its approx-
imants is formulated by the following:

Property 1.4 ([13]) B � M:σ ⇐⇒ ∃ A ∈ A(M) [B � A:σ].

The main result of [4] is the proof for completeness of type assignment. This is achieved
by showing that the set of types derivable for a lambda term is a filter, i.e. a set closed under
intersection and right closed for ≤. The construction of a filter lambda model F and the
definition of a map from types to elements of this model (a simple type interpretation) make
the proof of completeness possible: if the interpretation of the term M is an element of the
interpretation of the type σ, then M is typeable with σ. Filters and the filter λ-model F are
defined by:

Definition 1.5 ([4]) A BCD-filter is a subset d ⊆ T such that: ω ∈ d, if σ, τ ∈ d then σ∩τ ∈ d,
and if σ ≥ τ ∈ d then σ ∈ d. F = {d | d is a BCD-filter}, and for d1, d2 ∈ F define d1 · d2 =
{τ ∈ T | ∃ σ ∈ d2 [σ→τ ∈ d1]}.

The following properties are proved in [4]:

• ∀ M ∈ Λ [{σ | ∃ B [B � M:σ]} ∈ F ].
• For M ∈ Λ define [[M]]ξ = {σ | ∃ B ⊆ {x:τ | τ ∈ ξ (x)} [Bξ � M:σ]}, where ξ is a valu-

ation of term-variables in F . Then 〈F , · , [[ ]]〉 is a λ-model.

In constructing a complete system, the semantics of types plays a crucial role. As in [7], [12]
and essentially following [9], a distinction can be made between several notions of type inter-
pretations and semantic satisfiability. There are, roughly, three notions of type semantics that
differ in the meaning of an arrow type scheme: inference-, simple-, and F type interpretations.
These different notions of type interpretations induce of course different notions of semantic
satisfiability. In this paper we concentrate on the simple type interpretations.

Definition 1.6 Let 〈D, · , ε〉 be a continuous lambda model. A mapping
υ: T → ℘(D) = {X | X ⊆ D} is a simple type interpretation if and only if: υ(σ→τ) = {d | ∀ e
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[e ∈ υ(σ) ⇒ d · e ∈ υ(τ)]}, and υ(σ∩τ) = υ(σ) ∩ υ(τ).

This notion of type interpretation leads, naturally, to the following definition for semantic
satisfiability (called simple semantics).

Definition 1.7 i) Let M = 〈D, · , [[ ]]〉 be a λ-model, and ξ a valuation. Then [[M]]ξ
M ∈ D is

the interpretation of M in M via ξ.
ii) We define �� by: (where M is a lambda model, ξ a valuation and υ a simple type inter-

pretation)
a) M, ξ, υ ��M:σ ⇐⇒ [[M]]M

ξ ∈ υ(σ).

b) M, ξ, υ ��B ⇐⇒ M, ξ, υ ��x:σ for every x:σ ∈ B.
c) B ��M:σ ⇐⇒ ∀M, ξ, υ [M, ξ, υ ��B ⇒ M, ξ, υ ��M:σ].

The method followed in [4] was to define a simple type interpretation υ on the filter lambda
model and to use it for the proof of completeness. The main result of that paper was obtained
by proving:

Property 1.8 ([4]) i) Soundness. B � M:σ ⇒ B ��M:σ.
ii) Completeness. B ��M:σ ⇒ B � M:σ.

Since the type interpretation υ is simple, the results of [4] in fact show that type assignment in
the BCD-system is complete with respect to simple type semantics. (Type assignment in the
strict system as presented in [1] was proven in that paper to be complete with respect to the
inference semantics.)

2 Essential type assignment for the lambda calculus

In this section we present the Essential Type Assignment System, a restricted version of the
system presented in [4].

Compared to the BCD-system, the major feature of this system is a restricted version of the
derivation rules, as well as a restriction of the set of types. It also forms a slight extension of
the Strict Type Assignment System that was presented in [1]; the main difference is that that
systems is not closed for η-reduction, whereas the system presented here is.

2.1 Essential type assignment

Strict types are the types that are strictly needed to assign a type to a term in the system as
presented in [4] (see also [1]). In the set of strict types intersection type schemes and the type
constant ω play a limited role. We will assume that ω is the same as an intersection over
zero elements: if n = 0, then σ1∩· · ·∩σn ≡ω, so ω does not occur in an intersection subtype.
Moreover, intersection type schemes (so also ω) occur in strict types only as subtypes at the
left hand side of an arrow type scheme.

Definition 2.1 (cf. [1]) i) Ts, the set of strict types, is inductively defined by:
a) All type-variables ϕ0, ϕ1, . . . ∈ Ts.
b) If τ, σ1, . . . , σn ∈ Ts (n ≥ 0), then σ1∩· · ·∩σn→τ ∈ Ts.

ii) TS is defined by: If σ1, . . . , σn ∈ Ts (n ≥ 0), then σ1∩· · ·∩σn ∈ TS.
iii) On TS, the relation ≤S is defined by:

a) ∀ 1≤ i≤n (n ≥ 1) [ σ1∩· · ·∩σn ≤S σi ].
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b) ∀ 1≤ i≤n (n ≥ 0) [ σ ≤S σi ] ⇒ σ ≤S σ1∩· · ·∩σn.
c) σ ≤S τ ≤S ρ ⇒ σ ≤S ρ.

iv) We define ≤E on TS like ≤S , by adding an extra alternative.
d) ρ ≤E σ & τ ≤E µ ⇒ σ→τ ≤E ρ→µ.

v) On TS, the relation ∼E is defined by: σ ∼E τ ⇐⇒ σ ≤E τ ≤E σ.

TS may be considered modulo ∼E . Then ≤E becomes a partial order, and in this paper we
consider types modulo ∼E .

Unless stated otherwise, if σ1∩· · ·∩σn is used to denote a type, then all σ1, . . . , σn are assumed
to be strict. Notice that Ts is a proper subset of TS. The relations ≤S , ≤E , and ∼E are, as
with ≤ in definition 1.2, extended to bases.

Definition 2.2 i) If B1, . . . , Bn are bases, then Π{B1, . . . , Bn} is the basis defined as follows:
x:σ1∩· · ·∩σm ∈ Π{B1, . . . , Bn} if and only if {x:σ1, . . . , x:σm} is the set of all statements
about x that occur in B1 ∪ . . . ∪ Bn.

ii) If B is a basis and σ ∈ TS, then T〈B,σ〉 is the set of all strict subtypes occurring in the pair
〈B, σ〉.

For the relation ≤E the following properties hold:

Lemma 2.3 i) σ ≤S τ ⇒ σ ≤E τ.
ii) ϕ ≤E σ ⇐⇒ σ≡ ϕ. So {σ | σ ∼E ϕ} = {ϕ}.

iii) ω ≤E σ ⇐⇒ σ≡ω. So {σ | σ ∼E ω} = {ω}.
iv) σ→τ ≤E ρ ∈ Ts ⇐⇒ ∃ α ∈ TS, β ∈ Ts [ρ≡ α→β & α ≤E σ & τ ≤E β].
v) σ1∩· · ·∩σn ≤E τ ∈ Ts ⇒ ∃ 1≤ i≤n [σi ≤E τ].

Proof: Easy.

Lemma 2.4 i) σ1∩· · ·∩σn ≤E τ ∈ TS ⇒
∃ τ1, . . . , τm [τ ≡ τ1∩· · ·∩τm & ∀ 1≤ j≤m ∃ 1≤ i≤n [σi ≤E τj]].

ii) σ ≤E τ & σ ∈ Ts ⇒ ∃ τ1, . . . , τm [τ ≡ τ1∩· · ·∩τm & ∀ 1≤ j≤m [σ ≤E τj]].
iii) B′ ≤E B ≤S {x:σ} & σ ∈ Ts ⇒ ∃ σ′ ∈ Ts [B′ ≤S {x:σ′} & σ′ ≤E σ].

Proof: Easy.

The Essential Type Assignment System is constructed from the set of strict types, and a
restriction of the derivation rules as in definition 1.3.(i). In this way a syntax directed system
is obtained, that satisfies the main properties of the BCD-system.

Definition 2.5 i) Essential type assignment and essential derivations are defined by the following
natural deduction system (where all types displayed are strict, except σ in the rules (→I)
and (≤E)):

x:σ σ ≤E τ
(≤E):

x:τ

M:σ1∩· · ·∩σn→τ N:σ1 . . . N:σn
(→E): (n ≥ 0)

MN:τ
[x:σ]

:
M:τ

(→I): (a)
λx.M:σ→τ

(a)) If x:σ is the only statement about x on which M:τ depends.
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If M:σ is derivable from B using an essential derivation, we write B �e M:σ.
ii) We define �E by: B �E M:σ if and only if: there are σ1, . . . , σn (n ≥ 0) such that

σ≡ σ1∩· · ·∩σn and for every 1≤ i≤n B �e M:σi.

Like with the BCD-type assignment rules, the rules of the Essential Type Assingment System
are generalized to terms containing ⊥ of by allowing for the terms to be elements of that set.
Notice that, because essential type assignment is almost syntax directed, if ⊥ occurs in a term
M and B �E M:σ, then either σ≡ω, or in the derivation for M:σ, ⊥ appears in the right hand
subterm of an application on which the rule (→E) is used with n = 0.

For this notion of type assignment, the following properties hold:

Lemma 2.6 i) B �e MN:σ ⇐⇒ ∃ τ ∈ TS [B �e M:τ→σ & B �E N:τ].
ii) B �e λx.M:σ ⇐⇒ ∃ ρ ∈ TS, µ ∈ Ts [σ≡ ρ→µ & B ∪ {x:ρ} �e M:µ].

iii) B �E M:σ ⇐⇒ ∃ σ1, . . . , σn [σ≡ σ1∩· · ·∩σn & ∀ 1≤ i≤n [B �e M:σi]].
iv) B �E x:σ ⇐⇒ ∃ ρ ∈ TS [x:ρ ∈ B & ρ ≤E σ].
v) B �E M:σ & B′ ≤E B ⇒ B′ �E M:σ.

Proof: Easy.

As in [1], it is possible to prove that the essential type assignment system satisfies the main
properties of the BCD-system:

Theorem 2.7 i) B �E M:σ & M=β N ⇒ B �E N:σ.
ii) ∃ B, σ [B �E M:σ & B, σ ω-free] ⇐⇒ M has a normal form.

iii) ∃ B, σ [B �E M:σ & σ �≡ω] ⇐⇒ M has a head normal form.

Although the rule (≤E) is not allowed on all terms, we can prove the following:

Theorem 2.8 i) If B �E M:σ, and σ ≤E τ, then B �E M:τ.
ii) If B �E M:σ and M →η N, then B �E N:σ.

Proof: i) By straightforward induction on �E , using lemmas 2.3, 2.4, and 2.6.
ii) The proof is given by induction on the definition of →η , of which only the part λx.Mx →η M,

where x does not occur free in M, is interesting; it follows from part (i). The other parts
are dealt with by induction.

2.2 Soundness and completeness of essential type assignment

The Essential Type Assignment System is the nucleus of the BCD-system: we will show that,
for any derivation in the BCD-system, it is possible to find an equivalent derivation in the
essential system.

The proof is based on the fact that for every σ ∈ T there is a σ∗ ∈ TS such that σ∼ σ∗, and
an approximation theorem.

Property 2.9 ([9, 1]) For every σ ∈ T there is a σ∗ ∈ TS such that σ∼ σ∗.

The proof for the main theorem of this section is achieved by proving first, for terms in
N , if in the derivation the derivation-rule (≤) is used, then for that term a derivation in the
essential system can be built for which basis and type in the conclusion are equivalent, and
afterwards generalizing this result to arbitrary lambda terms.
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Theorem 2.10 B � A:σ ⇒ ∃ B′, σ′ ∈ TS [B′ �E A:σ′ & σ′ ∼ σ & B′ ∼ B].

Proof: By induction on the structure of terms in N , using property 2.9.

As for the BCD-system, we can formulate the relation between types assignable to a lambda
term and those assignable to its approximants as follows:

Theorem 2.11 B �E M:σ ⇐⇒ ∃ A ∈ A(M) [B �E A:σ].

Proof: ⇒) By computability.
⇐) If B �E A:σ, then by the remark made after definition 2.5, ⊥ appears only in subterms

that are typed by ω. Since A ∈ A(M), there is an M′ such that M′=β M and A matches
M′ except for occurrences of ⊥. Then obviously B �E M′:σ, and by property 2.6.(i) also
B �E M:σ.

The relation between the two different notions of type assignment is formulated as follows:

Theorem 2.12 B � M:σ ⇒ ∃ B′, σ′ [B′ �E M:σ′ & σ∼ σ′ & B∼ B′].

Proof: B � M:σ ⇒ (1.4) ∃ A ∈ A(M) [B � A:σ] ⇒ (2.10)
∃ A ∈ A(M), B′, σ′ ∈ TS [B′ �E A:σ′ & σ′ ∼ σ & B′ ∼ B] ⇒ (2.11)
∃ B′, σ′ ∈ TS [B′ �E M:σ′ & σ′ ∼ σ & B′ ∼ B].

Notice that, in particular, σ′ ≤ σ and B≤ B′.

For this essential system, it is possible to prove completeness of type assignment with re-
spect to the simple type semantics the same way as done in [4]. Since such a proof would
be obtained in exactly the same way as in [4], we will not present it here. Instead, we will
prove a completeness result using results proven in [9]. In that paper, some restrictions of
the BCD-system were investigated, and one of them proved to be essentially the same as the
BCD-system.

Definition 2.13 ([9]) i) The set TN of normal intersection types is defined by:
a) Type-variables and ω are in TN .
b) If σ, τ ∈ TN – {ω}, then σ∩τ ∈ TN.
c) If σ ∈ TN , and τ ∈ TN-{ω, intersections}, then σ→τ ∈ TN .

ii) On TN , the relation ≤N is defined as the restriction of ≤ to TN .
iii) The notion of type assignment �N is defined as � , but by adding: All types are in TN ,

derivation rule (∩E) never immediately follows (∩I), and derivation rules (∩E) and (≤N)
are only used with atomic subjects.

It is straightforward to show that TN = TS, and ≤N = ≤E .

Proposition 2.14 (cf. [9]) i) If σ, τ ∈ TS, then σ≤ τ ⇐⇒ σ ≤E τ.
ii) Let ∗ be defined as in property 2.9. B � M:σ ⇐⇒ B∗ �N M:σ∗.

Theorem 2.15 Conservativity. B � M:σ ⇒ B �E M:σ, for B, σ ∈ TS.

Proof: B � M:σ ⇒ (2.12) ∃ B′, σ′ [B′ �E M:σ′ & σ′ ∼ σ & B∼ B′] ⇒ (2.14.(i)) ∃ B′, σ′

[B′ �E M:σ′ & σ′ ≤E σ & B ≤E B′] ⇒ (2.6.(v) & 2.8) B �E M:σ.

The implication in the other direction also holds: If B �E M:σ, then B � M:σ.
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Also, soundness and completeness of essential type assignment are easy to prove.

Theorem 2.16 Soundness and completeness of essential type assignment. Let B and σ contain types
in TS. Then B �E M:σ ⇐⇒ B ��M:σ.

Proof: ⇒) B �E M:σ ⇒ B � M:σ ⇒ (1.8.(i)) B ��M:σ.
⇐) B ��M:σ ⇒ (1.8.(ii)) B � M:σ ⇒ (2.15) B �E M:σ.

Finally, we show that �N and �E are equivalent.

Theorem 2.17 B �N M:σ ⇐⇒ B �E M:σ.

Proof: ⇒) B �N M:σ ⇒ (2.14.(ii)) B � M:σ ⇒ (2.15) B �E M:σ.
⇐) B �E M:σ ⇒ B � M:σ ⇒ (2.14.(ii)) B �N M:σ.

3 Principal type property for the essential system

It is well known that the Curry Type Assignment System also has the principal type property:
M is typeable if and only if there are a basis P, and type π, such that P � M:π, and: for every
pair 〈B, σ〉 such that B � M:σ, there exists an operation O (from a specified set of operations)
such that O (〈P, π〉) = 〈B, σ〉. The type π is then called a ‘principal type for M’. For Curry’s
system the operation O consists entirely of substitutions, i.e. operations that replace type-
variables by types. Principal type schemes for Curry’s system were defined in [8].

Since substitution is an easy operation, the set {〈B, σ〉 | B � M:σ} can be computed in
Curry’s system easily from the principal pair for M. In [13] was shown that the BCD-system
has the principal type property. This was achieved in that paper by defining a principal pair
consisting of basis and type for terms in N . Then three operations on pairs of basis and type
– substitution, expansion and rise – were specified that were proved sound and sufficient to
generate, for every term in N , all possible pairs from its principal one. Using this technique
– which is similar to the one used in [2] – in this section we will sketch the construction of
the proof that the Essential Type Assignment System has the principal type property. For
each lambda term the principal pair (of basis and type) will be defined. We will define three
operations on pairs of basis and types, namely substitution, expansion, and lifting, that are
correct and sufficient to generate all derivable pairs for lambda terms. First we will define a
notion of principal pairs for terms in N , and later generalize this to arbitrary lambda terms.

Principal pairs for the Essential Type Assignment System are defined by:

Definition 3.1 i) Let A ∈ N . pp(A), the principal pair of A, is defined by:
a) pp(⊥) = 〈∅, ω〉.
b) pp(x) = 〈{x:ϕ}, ϕ〉.
c) If A �=⊥, and pp(A) = 〈P, π〉, then:

1) If x occurs free in A, and x:σ ∈ P, then pp(λx.A) = 〈P\x, σ→π〉.
2) Otherwise pp(λx.A) = 〈P, ω→π〉.

d) If pp(Ai) = 〈Pi, πi〉, 1≤ i≤n (disjoint in pairs), then pp(xA1 . . . An) = 〈Π{P1, . . . , Pn, {x:π1→·· ·→πn→ϕ}}, ϕ
where ϕ is a type-variable that does not occur in pp(Ai) for 1≤ i≤n.

ii) PP = {〈P, π〉 | ∃ A ∈ N [pp(A) = 〈P, π〉]}.

Notice that, if 〈P, π〉 ∈ PP, then π ∈ Ts. The notion of principal pairs for terms in N will be
generalized to arbitrary lambda terms in definition 3.8.
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We will now present three different operations on pairs of 〈basis, type〉, namely substitution,
expansion, and lifting as defined in [2]. Substitution is normally defined on types as the
operation that replaces type-variables by types. For strict types this definition would not be
correct. For example, the replacement of ϕ by ω would transform σ→ϕ (or σ∩ϕ) into σ→ω
(σ∩ω), which is not a strict type. Therefore, for strict types substitution is not defined as an
operation that replaces type-variables by types, but as a mapping from types to types.

Definition 3.2 ([2]) i) The substitution (ϕ �→ α) : TS → TS, where ϕ is a type-variable and
α ∈ Ts ∪ {ω}, is defined by:
a) (ϕ �→ α) (ϕ) = α.
b) (ϕ �→ α) (ϕ′) = ϕ′, if ϕ �≡ ϕ′.
c) (ϕ �→ α) (σ→τ) = ω, if (ϕ �→ α) (τ) = ω.
d) (ϕ �→ α) (σ→τ) = (ϕ �→ α) (σ)→ (ϕ �→ α) (τ), if (ϕ �→ α) (τ) �≡ω.
e) (ϕ �→ α) (σ1∩· · ·∩σn) = (ϕ �→ α) (σ1

′) ∩· · ·∩ (ϕ �→ α) (σm
′), where {σ1

′, . . . , σm
′} = {σi ∈ {σ1,

. . . , σn} | (ϕ �→ α) (σi) �≡ω}.
ii) If S1 and S2 are substitutions, then so is S1◦S2, where S1◦S2 (σ) = S1 (S2 (σ)).

iii) S (B) = {x:S (α) | x:α ∈ B & S (α) �≡ω}.
iv) S (〈B, σ〉) = 〈S (B), S (σ)〉.

The operation of expansion is an operation on types that corresponds to notions of ex-
pansion as defined in [13]. It is an operation on types, that deals with the replacement of
(sub)types by an intersection of a number of copies of that type. In this process it can be that
also other types need to be copied.

It is a complex operation, possibly affecting more types than just the one to be expanded
occurs in. (For a clear discussion of the complexity of this operation, see [2].)

Definition 3.3 ([2]) The last type-variable of a strict type is defined by:
i) The last type-variable of ϕ is ϕ.

ii) The last type-variable of σ1∩· · ·∩σn→τ is the last type-variable of τ.

Definition 3.4 ([2]) For every µ ∈ Ts, n ≥ 2, basis B and σ ∈ TS, the quadruple 〈µ, n, B, σ〉
determines an expansion E〈µ,n,B,σ〉 : TS → TS, that is constructed as follows.

i) The set of type-variables Vµ(〈B, σ〉) is constructed by:
a) If ϕ occurs in µ, then ϕ ∈ Vµ(〈B, σ〉).
b) If the last type-variable of τ ∈ T〈B,σ〉 is in Vµ(〈B, σ〉), then for all type-variables ϕ that

occur in τ: ϕ ∈ Vµ(〈B, σ〉).
ii) Suppose Vµ(〈B, σ〉) = {ϕ1, . . . , ϕm}. Choose m × n different type-variables ϕ1

1, . . . , ϕn
1 ,

. . . , ϕ1
m, . . . , ϕn

m, such that each ϕi
j does not occur in 〈B, σ〉, for 1≤ i≤n and 1≤ j≤m. Let

Si be such that Si (ϕj) = ϕi
j.

iii) E〈µ,n,B,σ〉 (τ) is obtained by traversing τ top-down and replacing every subtype α by
S1 (α) ∩· · ·∩ Sn (α), if the last type-variable of α is in Vµ(〈B, σ〉).

iv) E〈µ,n,B,σ〉 (B′) = {x:E〈µ,n,B,σ〉 (ρ) | x:ρ ∈ B′}.
v) E〈µ,n,B,σ〉 (〈B′, σ′〉) = 〈E〈µ,n,B,σ〉 (B′), E〈µ,n,B,σ〉(σ′)〉.

The last operation on pairs defined in this subsection is the operation of lifting.

Definition 3.5 ([2]) A lifting L is an operation denoted by a pair of pairs
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〈〈B0, τ0〉, 〈B1, τ1〉〉 such that τ0 ≤E τ1 and B1 ≤E B0, and is defined by:
i) L (σ) = τ1, if σ≡ τ0; L (σ) = σ, otherwise.

ii) L (B) = B1, if B = B0; L (B) = B, otherwise.
iii) L (〈B, σ〉) = 〈L (B), L (σ)〉.

Definition 3.6 ([2]) A chain is an object 〈O1, . . . , On〉, where each Oi is an operation of substi-
tution, expansion or lifting, and

i) 〈O1, . . . , On〉 (σ) = On (. . . (O1 (σ)). . . ).
ii) 〈O1, . . . , On〉 (〈B, σ〉) = On (· · ·(O1 (〈B, σ〉))· · ·).

It is possible to show that all pairs for a term can be generated by chains that exist of a
number of expansions, and that end with one substitution and one lifting (in that order).
Moreover, all three operations can be proven to be sound on all pairs. The technique needed
for these proofs can be found in [13] and [2]; because of the direct similarities with especially
the proofs in the latter paper, proofs will be omitted here.

Theorem 3.7 Let A ∈ N , 〈B, σ〉 be such that B �E A:σ, and let O be an operation of substitution,
expansion or rise. Then O (B) �E A:O (σ).

Definition 3.8 (cf. [13, 2]) i) Linear chains of operations are defined as chains that start with
a number of expansions, followed by a substitution, and that end with a lifting.

ii) Let M be a term. Let Π(M) be the set of all principal pairs for all approximants of M:
Π(M) = {pp(A) | A ∈ A(M)}.

iii) On PP it is possible to define the preorder relation �w by:

〈P, π〉�w 〈P′, π′〉 ⇐⇒
∃ ϕ1, . . . , ϕn [〈P, π〉 = (ϕ1 := ω)◦· · ·◦(ϕn := ω) (〈P′, π′〉)],

and PP, �w is a meet semilattice isomorphic to N , ≤.
iv) Π(M) is an ideal in PP and therefore:

a) If Π(M) is finite, then there exists a pair 〈P, π〉 =
⊔

Π(M), where 〈P, π〉 ∈ PP. This pair
is then called the principal pair of M.

b) If Π(M) is infinite,
⊔

Π(M) does not exist in PP. The principal pair of M is then the
infinite set of pairs Π(M).

The proof of the principal type property is completed by proving the following:

Theorem 3.9 i) Let A ∈ N and 〈P, π〉 be the principal pair for A. For any pair 〈B, σ〉 such that
B �E A:σ there exists a linear chain C such that C (〈P, π〉) = 〈B, σ〉.

ii) a) A(M) is finite. Let 〈P, π〉 be the principal pair of M. Then there exists a chain C such that
C (〈P, π〉) = 〈B, σ〉.

b) A(M) is infinite. Then there exist a pair 〈P, π〉 ∈ Π(M) and a chain C such that C (〈P, π〉)
= 〈B, σ〉.
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