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Abstract

This paper studies termination properties of rewrite systems that are typeable using inter-
section types. It introduces a notion of partial type assignment on Curryfied Term Rewrite
Systems, that consists of assigning intersection types to function symbols, and specifying the
way in which types can be assigned to nodes and edges between nodes in the tree representa-
tion of terms. Two operations on types are specified that are used to define type assignment
on terms and rewrite rules, and are proven to be sound on both terms and rewrite rules. Using
a more liberal approach to recursion, a general scheme for recursive definitions is presented,
that generalizes primitive recursion, but has full Turing-machine computational power. It
will be proved that, for all systems that satisfy this scheme, every typeable term is strongly
normalizable.

Introduction

Most functional programming languages, like Miranda [23] or ML [19] for instance, although
implemented through an extended Lambda Calculus (LC) or a combinator system, allow
programmers to specify an algorithm (function) as a set of equations using pattern-matching,
i.e. the formal parameter of a function is allowed to have structure. Functional programs can
then be seen as Term Rewriting Systems (TRS). Because of the underlying formalism, however,
formal notions as type assignment (and other abstract interpretations) are studied in LC rather
than on the level of the term rewriting language; the type assignment systems incorporated
in most functional languages are in fact extensions of type assignment systems for LC.

It may seem straightforward to generalize formal systems defined on LC to the (significantly
larger) world of TRS, but it is not evident that those ported systems have still all the properties
they possessed in the world of LC. For example, type assignment in TRS in general does
not satisfy the subject reduction property, i.e. types are not preserved under rewriting, as
illustrated in [4]. Also, as argued in [2], not every notion of type assignment for LC can be
used for TRS, and vice versa.

To study the problem of termination a notion of types can be of significant value. For LC,
there exists a well understood and well defined notion of type assignment, known as the
Curry Type Assignment System [11] which expresses abstraction and application, and it can
be shown that, for this notion of type assignment, all typeable terms are strongly normalizable.
Curry’s system forms the basis for a number of notions of type assignment used in functional
programming, like for example the ones used in ML, and Miranda. In [9] the Intersection
Type Discipline (the BCD-system) for LC is presented, which is a very powerful extension
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of Curry’s system: it is closed under β-equality. Moreover, the set of terms having a head-
normal form, the set of terms having a normal form, and the set of strongly normalizable
terms can all be characterized by the set of assignable types. Because of this power, type
assignment in this system is undecidable. In [1] a system is studied that is a variant of the
BCD-system: also in this system type assignment is undecidable. That paper also contains
a proof, using a Computability Predicate [22], of the statement that all typeable terms are
strongly normalizable; also the converse holds.

In this paper we study the problem of termination of functional programs. Instead of
studying the problem of termination using types in the world of LC, the approach taken
will be to study the desired property directly on the level of a programming language with
patterns, i.e. in the world of TRS. For this purpose, we introduce a notion of type assignment
on Curryfied TRS (CTRS) that uses intersection types. CTRS are defined as a slight extension
of the first order TRS defined in [12], in that functional types are allowed. They are restrictions
of the Applicative TRS (ATRS) as defined in [4], in that the role of Ap in the left-hand side is
restricted further.

In the past the role of types in TRS has been studied within the framework of first-order
sorted rewrite systems [12], as used in the underlying model for the language OBJ (see e.g.
[14]). For notions of type assignment that use the sorted approach, an enumerable collection
of sorts is defined, and it is assumed that every F with arity n has a type s1×· · ·×sn→sn+1,
where s1, . . . , sn+1 are sorts; functional types are not allowed. This implies that, by definition,
there are sorts s1, s2 and s3 such that (the binary operator) Ap has type s1×s2→s3.

The disadvantage of this approach is, however, that the collection of typeable rewrite rules
is very restricted. For example, the rewrite rules that correspond to Combinatory Logic,

Ap (Ap (Ap (S, x),y),z) → Ap (Ap (x,z), Ap (y,z))
Ap (Ap (K, x),y) → x
Ap (I, x) → x.

cannot be typed using the types associated to the lambda term that correspond to the combi-
nators S, K, and I.

The notion of type assignment presented in this paper combines the approach taken in those
many-sorted, first-order rewrite systems, with the one commonly used for type assignment
in LC (normally defined by presenting derivation rules). First of all, by introducing Ap next
to other function symbols, we are able to express partial applications of those symbols. Sec-
ondly, using for Ap the type implicitly used in the derivation rule (→E), as defined in type
assignment systems for LC,

M:σ→τ N:σ
(→E):

MN:τ

i.e. (σ→τ)×σ→τ – or, in a Curryfied notation, (σ→τ)→σ→τ – invokes the possibility to assign
arrow-types to all objects: we consider higher order types.

Our type assignment system is partial in the sense of [20]: we will assume that every function
symbol already has a type (given in an environment), whose structure is usually motivated by
a rewrite rule. In fact, the approach we take here is very much the same as the one taken by
Hindley in [16], where he defines the principal Curry-type scheme of an object in Combinatory
Logic. Even this notion of type assignment could be regarded as a partial one.

In [6] another partial type assignment system for higher-order rewrite systems that uses
intersection types is defined. It differs from ours in that function symbols are strongly-typed
with sorts only, whereas we allow for types to contain type-variables as well, and in this way
we can model polymorphism (by allowing for the replacement of type-variables in types by
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other types).
In [4] and [2] two partial intersection type assignment systems for ATRS are presented.

Apart from the difference in the syntactic definition, the system we present here is a restriction
of the first one, mainly because we do not consider the type-constant ω. The second system
is a decidable restriction of the one presented here; the restriction lies in the structure of types.

Unlike typeable terms in LC, typeable terms in CTRS need not be strongly normalizable
(consider a typeable term t and a rule t → t). In order to ensure strong normalization of
typeable terms in CTRS we will impose some syntactical restrictions on the rewrite rules: we
will present a general scheme for recursive definitions that generalizes primitive recursion. This
kind of recursive definition was presented by Jouannaud and Okada in [17] for the incremental
definition of higher order functionals based on first order definitions, so that the whole system
is terminating. The general scheme of [17] was also used in [6] and [7] for defining higher
order functions compatible with different lambda calculi.

We will prove (using the well-known method of Computability Predicates [15], [22]) that for
all typeable CTRS satisfying this scheme, every typeable term is strongly normalizable.

In Sect. 1 we define CTRS. The type assignment system is presented in Sect. 2. In Sect. 3 we
introduce the general scheme and we prove that typeable systems satisfying this scheme are
strongly normalizing on typeable terms. Section 4 contains the conclusions.

1 Preliminaries

We assume the reader to be familiar with LC [8], and refer to the papers [9], [1], and [3] for
an overview of intersection type assignment. For full definitions of rewrite systems we refer
to [18] and [12]. Typeability of lambda terms in the system as presented in [4] is denoted in
this paper by the symbol �λ∩, and by �λ∩−ω typeability in the system that is obtained from
that one by removing the type-constant ω completely.

The intersection type assignment system for LC satisfies the following properties:

Theorem 1.1 i) B �λ∩ M:σ & M =β N ⇒ B �λ∩ N:σ.
ii) ∃ B, σ [B �λ∩ M:σ & B, σ ω-free] ⇐⇒ M has a normal form.

iii) ∃ B, σ [B �λ∩ M:σ & σ �= ω] ⇐⇒ M has a head normal form.
iv) ∃ B, σ [B �λ∩−ω M:σ] ⇐⇒ M is strongly normalizable.

1.1 Curryfied Term Rewriting Systems

In this subsection we will present Curryfied Term Rewriting Systems as an extension of first-
order TRS ([18], [12]) that allow partial application of function symbols. It is easy to see that
the systems presented here are equivalent to another popular way to write TRS, i.e. as the
pure applicative systems, that contain only one function symbol (an implicit application that
is normally omitted when writing terms and rules). In view of this equivalence, we have
chosen to develop theory and results in the first-order setting. The language of our systems is
first-order, and we add the binary operator Ap rather that restricting us to systems with only
that function symbol.

CTRS are also an extension of the function constructor systems used in most functional pro-
gramming languages. In function constructor systems the collection of function symbols is
divided in two categories: constructor symbols that, given sufficient data of the right kind,
create an object of a specific algebraic data-type, and function symbols that specify arbitrary
operations; and in rewrite rules, function symbols are not allowed to occur in patterns, and
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constructor symbols can not occur at the left-most, outermost position of the left-hand side.
The systems proposed here do not discriminate in this way. The extension we made consists

of allowing for not only constructor symbols in the operand space of the left-hand side of
rewrite rules, but all function symbols.

Definition 1.1 An alphabet or signature Σ consists of:
i) A countable infinite set X of variables x1, x2, x3, . . . (or x, y, z, x′, y′, . . . ).

ii) A non-empty set F of function symbols F, G, . . . , each with an ‘arity’.
iii) A special binary operator, called application (Ap).

Definition 1.2 The set T(F,X ) of terms (or expressions) is defined inductively:
i) X ⊆ T(F,X ).

ii) If F ∈ F ∪{Ap} is an n-ary symbol (n ≥ 0), and t1, . . . , tn ∈T(F,X ), then
F (t1, . . . , tn) ∈T(F,X ).

Definition 1.3 A replacement R is a map from T(F,X ) to T(F,X ) satisfying

R(F (t1, . . . , tn)) = F (R(t1), . . . , R(tn)) .

So, R is determined by its restriction to the set of variables, and sometimes we will use the
notation {x1 
→ t1, . . . , xn 
→ tn} to denote a replacement. We also write tR instead of R(t).

Definition 1.4 i) A rewrite rule is a pair (l, r) of terms in T(F,X ); we write r : l → r. Three
conditions will be imposed:
a) l is not a variable.
b) The variables occurring in r are contained in l.
c) If Ap occurs l, then r is of the shape:

Ap (Fi (x1, . . . , xi), xi+1) → Fi+1 (x1, . . . , xi+1).
ii) For every rewrite rule with left-hand side F (t1, . . . , tn) there are n additional rewrite rules:

Ap (Fn−1 (x1, . . . , xn−1), xn) → F (x1, . . . , xn),
...

Ap (F0, x1) → F1 (x1).
iii) A rewrite rule r : l → r determines a set of rewrites lR → rR for all replacements R. The

left hand side lR is called a redex; it may be replaced by its ‘contractum’ rR inside a context
C[ ]; this gives rise to rewrite steps:

C[ lR ] →r C[ rR ].
iv) We call →r the one-step rewrite relation generated by r. Concatenating rewrite steps we

have (possibly infinite) rewrite sequences t0 → t1 → t2 → ·· · (or derivations for short). If
t0 → ·· · → tn, we write t0 →∗ tn.

v) We write t →R t′, if there is a r ∈ R such that t →r t′.

The added rules in part (ii) with Fn−1, . . . , F1, F0, etc. give the ‘Curried’-versions of F, and
the rewrite systems are called Curry-closed. When presenting a rewrite system, however, we
will only show the rules that are essential; we will not show the rules that define the Curried
versions.

Definition 1.5 A Curryfied Term Rewriting System (CTRS) is a pair (Σ, R) of an alphabet Σ and
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a set R of rewrite rules.

We take the view that in a rewrite rule a certain symbol is defined; it is this symbol to which
the structure of the rewrite rule gives a type.

Definition 1.6 In a rewrite rule r, the leftmost, outermost symbol in the left hand side that is
not an Ap, is called the defined symbol of r. Then r defines F, and F is a defined symbol. Q ∈ F is
called a constant symbol, if there is no rewrite rule that defines Q.

We can draw the dependency-graph of the defined function-symbols, i.e. we can construct a
graph whose nodes are labeled by the defined symbols of the rewrite rules, and draw an edge
going from F to G if G occurs in the right hand side of one of the rules that define F. Then in
that graph cycles can occur, like for the rewrite rules

F (x) → G (x)
G (x) → F (x).

We will call a defined symbol F a recursive symbol if F occurs on a cycle in the dependency-
graph, and call every rewrite rule that defines F recursive. All function-symbols that oc-
cur on one cycle in the dependency-graph depend on each other and are, therefore, defined
simultaneously, so we are in fact forced to give a different notion of defined symbol; the two
rewrite rules above are called mutually recursive, and both define the symbols F and G.

It is always possible to introduce tupels into the language, and solve the problem of mutual
recursion using them, so without loss of generality, we will assume that rules are not mutually
recursive.

Definition 1.7 A TRS whose dependency-graph is acyclic is called a hierarchical TRS. The
rewrite rules of a hierarchical TRS can be regrouped in such a way that they are incremental
definitions of the defined symbols F1, . . . , Fk, so that the rules defining Fi only depend on F1,
. . . , Fi−1.

Example 1.8 Our definition of recursive symbols, using the notion of defined symbols, is dif-
ferent from the one normally considered. Since Ap is never a defined symbol, the following
rewrite system

D (x) → Ap (x, x)
Ap (D0, x) → D (x)

– or, equivalently, Ap (D, x) → Ap (x, x) – is not considered a recursive system. Notice that,
for example, the term D (D0) (or Ap (D, D)) has no normal form (these terms play the role of
(λx.xx)(λx.xx) in LC). This means that, in the formalism of this paper, there exist non-recursive
first-order rewrite systems that are not normalizable.

Definition 1.9 Applicative Combinatory Logic (ACL) is the CTRS (Σ, R), where F = {S, S2, S1,
S0, K, K1, K0, I, I0}, and R contains the rewrite rules

S (x,y,z) → Ap (Ap (x,z), Ap (y,z))
K (x,y) → x
I (x) → x

Because ACL is Curry-closed, it is in fact combinatory complete: every lambda term can be
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translated into a term in ACL; for details of such a translation, see [8, 13].

2 Type assignment in CTRS

The set of types that will be used in the remainder of this paper is a subset of the one used in
[4]: since we are going to use types to study strong normalization, we will not consider the
type constant ω. This means that the system we present here is a subsystem of that of [4],
and, in particular, no properties proved there are automatically ‘inherited’.

Definition 2.1 i) T−ω, the set of strict types, is inductively defined by:
a) All type-variables ϕ0, ϕ1, . . . ∈ T−ω.
b) If τ, σ1, . . . , σn ∈ T−ω (n ≥ 1), then σ1∩· · ·∩σn→τ ∈ T−ω.

ii) T∩, the set of strict intersection types, is defined by: If σ1, . . . , σn ∈ T−ω (n ≥ 1), then
σ1∩· · ·∩σn ∈ T∩.

iii) On T∩, the relation ≤∩ is defined by:
a) ∀ 1≤ i≤n (n ≥ 1) [σ1∩· · ·∩σn ≤∩ σi].
b) ∀ 1≤ i≤n (n ≥ 1) [σ ≤∩ σi] ⇒ σ ≤∩ σ1∩· · ·∩σn.
c) σ ≤∩ τ ≤∩ ρ ⇒ σ ≤∩ ρ.

iv) On T∩, the relation ∼∩ is defined by:
a) σ ≤∩ τ ≤∩ σ ⇒ σ ∼∩ τ.
b) ρ ∼∩ σ & τ ∼∩ µ ⇒ σ→τ ∼∩ ρ→µ.

T∩ may be considered modulo ∼∩ . Then ≤∩ becomes a partial order, and in this paper we
consider types modulo ∼∩ .

Unless stated otherwise, if σ1∩· · ·∩σn is used to denote a type, then by convention all σ1,
. . . , σn are assumed to be strict. Notice that T−ω is a proper subset of T∩. The notion of
type assignment as presented in [2] is a (decidable) restriction of the one presented in this
paper (and of the one presented in [4]). Decidability is, in that paper, achieved by limiting
the structure of types, by requiring that in σ1∩· · ·∩σn→τ, the types σ1, . . . , σn do not contain
intersections.

Definition 2.2 i) A statement is an expression t:σ, with t ∈T(F,X ) and σ ∈ T∩. t is the subject
and σ the predicate of t:σ.

ii) If B is a basis and σ ∈ TS, then T<B,σ> is the set of all strict subtypes occurring in the pair
〈B,σ〉.

iii) If B1, . . . , Bn are bases, then Π{B1, . . . , Bn} is the basis defined as follows:
x:σ1∩· · ·∩σm ∈ Π{B1, . . . , Bn} if and only if {x:σ1, . . . , x:σm} is the set of all statements
whose subject is x that occur in B1 ∪ . . . ∪ Bn.

Notice that if n = 0, then Π{B1, . . . , Bn} = ∅.

2.1 Operations on pairs

In this subsection we present two different operations on pairs of 〈basis,type〉, namely substi-
tution and expansion, that are variants of similar definitions given in [4, 5, 3]. The operation
of substitution deals with the replacement of type-variables by types and is the one normally
used. The operation of expansion replaces types by the intersection of a number of copies of
that type and coincides with the one given in [10, 21].
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Definition 2.1 i) The substitution (ϕ 
→ α) : T∩ → T∩, where ϕ is a type-variable and α ∈ T−ω,
is defined by:
a) (ϕ 
→ α) (ϕ) = α.
b) (ϕ 
→ α) (ϕ′) = ϕ′, if ϕ �≡ ϕ′.
c) (ϕ 
→ α) (σ→τ) = (ϕ 
→ α) (σ)→ (ϕ 
→ α) (τ).
d) (ϕ 
→ α) (σ1∩· · ·∩σn) = (ϕ 
→ α) (σ1) ∩· · ·∩ (ϕ 
→ α) (σn).

ii) If S1, S2 are substitutions, then so is S1◦S2, where S1◦S2 (σ) = S1 (S2 (σ)).

The operation of expansion is an operation on types that deals with the replacement of
(sub)types by an intersection of a number of copies of that type. In this process, it can be that
also other types need to be copied. An expansion indicates not only the type to be expanded,
but also the number of copies that has to be generated.

Definition 2.2 The last type-variable of a strict type is defined by:
i) The last type-variable of ϕ is ϕ.

ii) The last type-variable of σ1∩· · ·∩σn→τ is the last type-variable of τ.

Definition 2.3 For every µ ∈ T−ω, n ≥ 2, basis B and σ ∈ T∩, the quadruple <µ,n, B,σ> deter-
mines an expansion E<µ,n,B,σ> : T∩ → T∩, that is constructed as follows.

i) The set of type-variables Vµ(<B, σ>) is constructed by:
a) If ϕ occurs in µ, then ϕ ∈ Vµ(<B, σ>).
b) If the last type-variable of τ ∈ T<B,σ> is in Vµ(<B, σ>), then all type-variables that

occur in τ are in Vµ(<B, σ>).
ii) Suppose Vµ(<B, σ>) = {ϕ1, . . . , ϕm}. Choose m × n different type-variables ϕ1

1, . . . , ϕ1
n,

. . . , ϕm
1 , . . . , ϕm

n , such that each ϕ
j
i (1≤ j≤m, 1≤ i≤n) does not occur in 〈B,σ〉. Let Si =

(ϕ1 
→ ϕ1
i )◦· · ·◦(ϕm 
→ ϕm

i ).
iii) Let α ∈ T∩. E<µ,n,B,σ> (α) is obtained by traversing α top-down and replacing, in α, a

subtype β which last type-variable is an element of Vµ(<B, σ>), by S1 (β) ∩· · ·∩Sn (β).

Both operations are, in a natural way, extended into operations that are also defined on
bases and pairs of basis and type.

For these operations, the following properties hold:

Lemma 2.4 Let S be a substitution, and E = E<µ,n,B,σ> an expansion.
i) If τ ≤∩ ρ, then S (τ) ≤∩ S (ρ), and E (τ) ≤∩ E (ρ).

ii) If B ≤∩ B′, then S (B) ≤∩ S (B′), and E () ≤∩ E (B′′).
iii) If τ ∈ T<B,σ>, then either: E (τ) = τ1∩· · ·∩τn where for every 1≤ i≤n, τiis a trivial variant of τ,

or E (τ)∈ T−ω.
iv) E (Π{B1, . . . , Bn}) = Π{E (B1), . . . , E (Bn)}.

Definition 2.5 A chain is an object <O1, . . . ,On>, with each Oi an operation of substitution or
expansion, such that:

<O1, . . . ,On> (〈B,σ〉) = On (· · ·(O1 (〈B,σ〉))· · ·).
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2.2 Type assignment

The notion of type assignment on CTRS will in fact be defined on the tree-representation of
terms and rewrite rules of these systems.

Definition 2.6 i) The tree-representation of terms and rewrite rules is obtained in a straight-
forward way by representing a term F (t1, . . . , tn) by:

�
F

���
t1

���
tn

· · ·

The spine of a term-tree is defined as usual, i.e. the root node of the term-tree is on the
spine, and if a node is on the spine, then its left most descendent is on the spine. The first
node on the spine of the left hand side (starting from the root node) that does not contain
an Ap is called the defining node of that rule. The edge pointing to the the root of a term
is called the root edge, and a node containing a term-variable (a function symbol F ∈ F ,
the symbol Ap) will be called a variable node (function node, application node). Notice that if
F is the defined symbol of the rule, then it occurs in the defining node.

ii) Subterms can be numbered by positions, which are sequences of natural numbers denoting
the path from the root of the term to the root of the subterms. The letters p and q stand
for positions. The empty sequence (root position) is denoted by Λ. The subterm of t at
position p is denoted by t|p and t[u]p is the result of replacing the subterm of t at position
p by u.

Partial intersection type assignment on a CTRS (Σ, R) is defined as the labelling of nodes and
edges in the tree-representation of terms and rewrite rules with types in T∩. In this labelling,
we use a mapping that provides a type in T−ω for every F ∈ F ∪{Ap}. Such a mapping is
called an environment.

Definition 2.7 Let (Σ, R) be a CTRS.
i) An environment E : F ∪{Ap} → T−ω is such that for every F ∈F with arity n, E (F) =
E (Fn−1) = · · · = E (F0), and E (Ap) = (ϕ1→ϕ2)→ϕ1→ϕ2.

ii) For F ∈ F with arity n ≥ 0, σ ∈ T−ω, and E an environment, the environment E [F :=σ] is
defined by:

E [F :=σ] (G) = σ, if G ∈ {F, Fn−1, . . . , F0},
E [F :=σ] (G) = E (G), otherwise.

Type assignment on CTRS is defined in two stages. In the next definition we define type
assignment on terms, in Def.2.12 we define type assignment on term rewrite rules.

Definition 2.8 Let (Σ, R) be a CTRS, and E an environment.
i) We say that t ∈T(F,X ) is typeable by σ ∈ T∩ with respect to E , if there exists an assignment

of types to edges and nodes that satisfies the following constraints:
a) The root edge of t is typed with σ.
b) The type assigned to a function node containing F ∈ F ∪{Ap} (where F has arity n ≥ 0)

is τ1∩· · ·∩τm, if and only if, for every 1≤ i≤m, there are σi
1, . . . , σi

n ∈ T∩, and σi ∈ T−ω,
such that τi= σi

1→·· ·→σi
n→σi, the type assigned to the j-th (1≤ j≤n) out-going edge

is σ1
j ∩· · ·∩σm

j , and the type assigned to the incoming edge is σ1∩· · ·∩σm.
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�
σ1∩· · ·∩σm

F:(σ1
1→·· ·→σ1

n→σ1) ∩· · ·∩ (σm
1 →·· ·→σm

n →σm)
�����

σ1
1∩· · ·∩σm

1 �
�

�
�	

σ1
2∩· · ·∩σm

2








�
σ1

n−1∩· · ·∩σm
n−1

����

σ1

n∩· · ·∩σm
n. . .

c) If the type assigned to a function node containing F ∈F ∪{Ap} is τ, then there is a
chain C, such that C (E (F)) = τ.

ii) Let t ∈T(F,X ) be typeable by σ with respect to E . If B is a basis such that for every
statement x:τ occurring in the typed term-tree there is a x:τ′ ∈ B such that τ′ ≤∩ τ, we
write B �E t:σ.

Notice that if B �E t:σ, then B can contain more statements than needed to obtain t:σ.

The use of an environment and part (i.c) of Def.2.8 introduce a notion of polymorphism
into our type assignment system. The environment returns the ‘principal type’ for a function
symbol; this symbol can be used with types that are ‘instances’ of its principal type.

A typical example for part (i.b) of Def.2.8 is the symbol Ap; for every occurrence of Ap in a
term-tree, there are σ1, . . . , σn and τ1, . . . , τn such that the following is part of the term-tree.

�
τ1∩· · ·∩τn

Ap: ((σ1→τ1)→σ1→τ1)∩· · ·∩((σn→τn)→σn→τn)
�

��
(σ1→τ1)∩· · ·∩(σn→τn) �

��
σ1∩· · ·∩σn

Example 2.9 The term S (K0,S0, I0) can be typed with the type σ→σ, under the assumption
that: E (S) = (1→2→3)→(4→2)→1∩4→3, E (K) = 5→6→5, and E (I) = 7→7.

�σ→σ

S:((σ→σ)→((τ→ρ)→(ρ→µ)∩τ→µ)→σ→σ) →
(((ρ→µ)→ρ→µ)→(τ→ρ)→(ρ→µ)∩τ→µ) →

(σ→σ)∩((ρ→µ)→ρ→µ) → σ→σ

���
K0:(σ→σ)→((τ→ρ)→(ρ→µ)∩τ→µ)→σ→σ

�
S0:((ρ→µ)→ρ→µ)→(τ→ρ)→(ρ→µ)∩τ→µ

���
I0:(σ→σ)∩((ρ→µ)→ρ→µ)

Notice that to obtain the type for S in the root-node, we have used the chain
<(1 
→ σ→σ), (2 
→ (τ→ρ)→(ρ→µ)∩τ→µ), (3 
→ σ→σ), (4 
→ (ρ→µ)→ρ→µ)>.
Notice, moreover, that to obtain the type for I0, an expansion is needed.

If we define D (x) → Ap (x, x), then we can even check that for example D (S (K0,S0, I0))
and D (I0) are both typeable by σ→σ.

The here defined notion of type assignment satisfies the following properties:

Lemma 2.10 i) B �E t:σ1∩· · ·∩σn ⇐⇒∀ 1≤ i≤n [B �E t:σi].
ii) B �E t:σ & σ ≤∩ τ ⇒ B �E t:τ.

iii) B �E Fn (t1, . . . , tn):σ & σ ∈ T−ω ⇒ ∃ α ∈ T∩, β ∈ T−ω [σ = α→β].
iv) Π{B,{x:α}} �E Ap (t, x):β & x does not occur in B ⇒ B �E t:α→β.
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By Def.1.4, if a term t is rewritten to the term t′ using the rewrite rule l → r, there is a
subterm t0 of t, and a replacement R, such that lR = t0, and t′ is obtained by replacing t0 by
rR. The subject reduction property for this notion of reduction is: If B �E t:σ, and t can be
rewritten to t′, then B �E t′:σ.

To ensure the subject reduction property, as in [4], type assignment on rewrite rules will be
defined using the notion of principal pair for a typeable term.

Definition 2.11 Let t ∈T(F,X ). A pair 〈P,π〉 is called a principal pair for t with respect to E , if
P �E t:π and for every B, σ such that B �E t:σ there is a chain C such that C (〈P,π〉) = 〈B,σ〉.

Notice that we do not show that every typeable term has a principal pair with respect to E ;
at the moment we cannot give a construction of such a pair for every term. But even with
this non-constructive approach we can show that the condition is sufficient with respect to the
subject reduction property.

Definition 2.12 Let (Σ, R) be a CTRS, and E an environment.
i) We say that l → r ∈ R with defined symbol F is typeable with respect to E , if there are basis

P, type π ∈ T∩, and an assignment of types to nodes and edges such that:
a) 〈P,π〉 is a principal pair for l with respect to E , and P �E r:π.
b) In P �E l:π and P �E r:π, all nodes containing F are typed with E (F).

ii) We say that (Σ, R) is typeable with respect to E , if every r ∈ R is typeable with respect to E .

From now on, we will only consider CTRS that are typeable with respect to a certain envi-
ronment.

Condition (i.b) of Def.2.12 is in fact added to make sure that the type provided by the
environment for a function symbol F is not in conflict with the rewrite rules that define F. By
restricting the type that can be assigned to the defined symbol to the type provided by the
environment, we are sure that the rewrite rule is typed using that type, and not using some
other type. Since by part (i.b) of Def.2.12 all occurrences of the defined symbol in a rewrite
rule are typed with the same type, type assignment of rewrite rules is actually defined using
Milner’s way of dealing with recursion [19].

Using the same technique as in [4], it is possible to show that subject reduction holds.

Theorem 2.13 Subject Reduction Theorem. If B �E t:σ, and t →R t′, then B �E t′:σ.

It is possible to show that the two operations on pairs (substitution and expansion) are
sound on typed term-trees, and that part (i.c) of Def.2.8 is sound in the following sense: if
there is an operation O such that O (E (F)) = σ, then for every type τ ∈ T−ω such that σ ≤∩ τ,
the rewrite rules that define F are typeable with respect to the changed environment E [F :=τ].

Theorem 2.14 Soundness of substitution. Let S be a substitution.
i) If B �E t:σ, then S (B) �E t:S (σ).

ii) Let r: l → r with defined symbol F be typeable with respect to E . Then r is typeable with respect
to E [F :=S (E (F))].

Theorem 2.15 Soundness of expansion. Let E be an expansion.
i) If B �E t:σ, then E (B) �E t:E (σ).

ii) Let r: l → r with defined symbol F be typeable with respect to E . If E (E (F)) = τ ∈ T∩, then for
every µ ∈ T−ω such that τ ≤∩ µ, r is typeable with respect to E [F :=µ].
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3 Strong Normalization and Typeability

Unlike typeable terms in �λ∩, typeable terms in �E need not be normalizable. This means
that the characterization of strongly normalizable terms and strongly normalizing CTRS can
not be based on type conditions only, as it is possible for LC (see [1]).

In this section we analyze the relations between typeability and strong normalization in
CTRS. First we show the relation between strong normalization in CTRS and normalization
in �λ∩; however, since the property we are characterizing is non-decidable, the condition we
obtain is non-decidable as well. From a practical point of view, a decidable, sufficient (but not
necessary) condition is clearly better. For this reason, in the second subsection we introduce a
general scheme, inspired by [17], which imposes some syntactical restrictions on CTRS’s rules
so as to guarantee the strong normalization of all typeable terms.

From now on, we will abbreviate ‘t is strongly normalizable’ by SN(t).

3.1 Strong Normalization of CTRS and Typeability in �λ∩

Let us consider an interpreter of CTRS, i.e. a program such that, given a term t and a CTRS
(Σ,R), returns the set {t’ | t →R t’} (the empty set if t is a normal form for (Σ,R)). In fact,
we will consider a generalized interpreter P, which takes a set I of terms and a CTRS (Σ,R)
as input and returns the set

⋃
t∈I {t’ | t →r t’} (the empty set if I is a set of normal forms for

(Σ,R)). We assume that the inputs and the output of P are sets of strings representing terms
and rewrite rules. Besides, we assume that pure LC is used to write P, that is, P is a λ-term
that will be applied to sets of strings (also coded in LC). We will use the symbol t for both the
term in CTRS and its interpretation in LC. Then the λ-term PR t has a β-normal form which
represents the set of one-step reducts of t (with respect to (Σ,R)).

The following property will be used to characterize strongly normalizable terms and CTRS:

Property 3.1 Let (Σ,R) be a CTRS, and let PnR t denote the term (PR (PR· · ·(PR t)· · ·)), with n times
P.

i) SNRt ⇐⇒∃ n ≥ 0 [PnR t =β ∅],
ii) SN ((Σ,R)) ⇐⇒∀ t ∈T(F,X ) [SNRt].

Given t and (Σ,R), we can obtain any t′ such that t →∗
R t’ using a program P∗ (also in pure

LC) that applies P a number of times. By definition, the result of applying P∗ to (Σ,R) and t
is the set of strings {t’ | t →∗

R t’}.
Since β-reduction is confluent, property 3.1 can be reformulated in this way: For any

strongly normalizable term t in a CTRS (Σ,R), the λ-term P∗Rt has a β-normal form. A CTRS
(Σ,R) is strongly normalizing if for all t the term P∗Rt has a β-normal form. Therefore, using
Thm.1.1 we can characterize strongly normalizable terms and strongly normalizing systems
using �λ∩:

Property 3.2 Let (Σ,R) be a CTRS.
i) SNRt ⇐⇒ P∗Rt is typeable in �λ∩ with a type different from ω,

ii) SN ((Σ,R)) ⇐⇒ for all t, P∗Rt is typeable in �λ∩ with a type different from ω.

Note that the above results show no relation between the types assignable to a term in a
CTRS, and those assignable to its interpretation in LC. In fact, Prop.3.2 shows only the relation
between β-reduction and →R , since we are implementing →R by means of →β .
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3.2 Strong Normalization versus Typeability in CTRS

In this section we give decidable conditions for strong normalization of typeable CTRS. Since
typeability alone is not sufficient, we will impose syntactic restrictions on the rules in order to
get strongly normalizing systems.

We will prove that the class of typeable non-recursive CTRS is strongly normalizing. To
appreciate the non-triviality of this condition, remember Ex.1.8: a non-recursive CTRS can
be non-terminating. In fact, the main result of this section (every typeable term is strongly
normalizable) shows that the term D (D0) (or Ap (D, D)) is not typeable.

Theorem 3.3 If R contains no recursive rule and is typeable in �E , then any typeable term is strongly
normalizable with respect to R.

The converse of this theorem does not hold. However, the restriction to non-recursive sys-
tems is too strong indeed. In the following we will show that there is class of recursive func-
tions that are safe: generalized primitive recursive functions satisfying the general scheme
below. This scheme for definitions is inspired by [17] where generalized primitive recursive
definitions were shown strongly normalizing when combined with typed LC. The same re-
sults were shown in [6] in the context of type assignment systems for LC and in [7] for typed
LC of order ω.

Definition 3.4 Let Fn = C ∪ {Ap} ∪ {F1, . . . , Fn}, where F1, . . . , Fn are the defined symbols
of the signature, that are not Curried-versions, and assume that F1, . . . , Fn are defined in
an incremental way. Suppose, moreover, that the rules defining F1, . . . , Fn satisfy the general
scheme:

Fi (C
→
[x→],y→) → C′[Fi (C1

→
[x→],y→), . . . , Fi (Cm

→
[x→],y→), x→,y→],

where x→, y→ are sequences of variables, and x→ ⊆ y→. Also, C
→

[ ], C’[ ], C1
→

[ ], and Cm
→

[ ] are
sequences of contexts in T(Fi−1,X ), and, for 1≤ j≤m, C

→
[x→]>mul Cj

→
[x→] (where < is the strict

subterm ordering and mul denotes multiset extension).
The rules defining F1, . . . , Fn and their Curry-closure together form a safe recursive system.

This general scheme imposes some restrictions on the definition of functions: the terms
in every Cj

→
[x→] are subterms of terms in C

→
[x→] (this is the ‘primitive recursive’ aspect of the

scheme), and the variables x→ must also appear as arguments in the left-hand side of the rule.
It is worthwhile noting that the rewrite rules of Def. 1.9 are not recursive, so, in particular,

satisfy the scheme. Therefore, although the severe restriction imposed on rewrite rules, the
systems satisfying the scheme still have full Turing-machine computational power, a property
that systems without Ap would not possess.

Example 3.5 The following rewrite system satisfies the general scheme:

Add (Zero,y) → y
Add (Succ (x),y) → Succ (Add (x,y))
Mul (Zero,y) → Zero
Mul (Succ (x),y) → Add (Mul (x,y),y)
Fac (Zero) → Succ (Zero)
Fac (Succ (x)) → Mul (Succ (x),Fac (x))
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Note that if we extend the definition of Add with the rule that expresses the associativity of
Add,

Add (Add (x,y),z) → Add (x,Add (y,z))

the rewrite system is no longer safe.

Theorem 3.3 is actually a corollary of the Strong Normalization Theorem (Thm.3.11). To
prove this theorem, we will use the well-known method of Computability Predicates ([15],
[22]). The proof will have two parts; in the first one we give the definition of a predicate Comp
on bases, terms, and types, and prove some properties of Comp. The most important one
states that if for a term t there are a basis B and type σ such that Comp (B, t,σ) holds, then t is
strongly normalizable. In the second part Comp is shown to hold for each typeable term.

Definition 3.6 i) Let B be a basis, t a term, and σ a type, such that B �E t:σ. We define the
Computability Predicate Comp (B, t,σ) by induction on σ:
a) Comp (B, t, ϕ) ⇐⇒ SN(t).
b) Comp (B, t,σ→τ) ⇐⇒

∀ u ∈T(F,X ) [Comp (B′,u,σ) ⇒ Comp (Π{B, B′}, Ap (t,u),τ)].
c) Comp (B, t,σ1∩· · ·∩σn) ⇐⇒∀ 1≤ i≤n [Comp (B, t,σi)].

ii) We say that t is computable if there exist B, σ such that Comp (B, t,σ).
iii) R is computable in B ⇐⇒∃B’ [∀ x:σ ∈ B [Comp (B′, xR,σ)]].

Notice that because we use intersection types, and because of Def.2.2 (iii), in part (iii) we
need not consider the existence of different bases for each x:σ ∈ B.

Definition 3.7 A term is neutral if it is not of the form Fn(t1, . . . , tn) where Fn is a ‘Curried’-
version of some defined symbol F.

Property 3.8 Comp satisfies the standard properties of computability predicates:
C1) Comp (B, t,σ) ⇒ SN(t).
C2) If Comp (B, t,σ), and t →∗ t′, then Comp (B, t′,σ).
C3) If t is neutral, B �E t:σ for some B, σ, and for all v such that t →R v, Comp (B,v,σ) holds, then

also Comp (B, t,σ) holds.

Proof: By induction on the structure of types.
i) σ = ϕ.
C1) By Def.3.6 (i.a).
C2) By Def.3.6 (i.a), and Thm.2.13.
C3) By Def.3.6 (i.a), SN(v). Then SN(t) and again by 3.6 (i.a), Comp (B, t, ϕ).

ii) σ = α→β.
C1) Let u ≡ x (a new variable). x is a neutral term in normal form, and

{x:α} �E x:α. Then, by induction hypothesis (C3), Comp ({x:α}, x,α), and by
Def.3.6 (i.b), Comp (Π{B,{x:α}}, Ap (t, x), β). By induction hypothesis, SN(Ap (t, x)),
which implies SN(t).

C2) Assume Comp (B′,u,α), then by Def.3.6 (i.b), Comp (Π{B, B′}, Ap (t,u), β). Since
Ap (t,u) →∗ Ap (t′,u), by induction we get Comp (Π{B, B′}, Ap (t′,u), β). Then, by
Def.3.6 (i.b), Comp (B, t′,α→β).
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C3) Since σ = α→β, we have to prove:
∀ u ∈T(F,X ) [Comp (B′,u,α) ⇒ Comp (Π{B, B′}, Ap (t,u), β)].

Since Ap (t,u) is neutral of type β, by induction hypothesis, it is sufficient to prove
that for all v′ such that Ap (t,u) →R v′, Comp (Π{B, B′},v′, β) holds. For this we apply
induction on the length of the maximal derivation from u to its normal form (by
Property (C1) we know that SN(u)).

(Base) : If u is a normal form, because t is neutral Ap (t,u) reduces only inside t, so
Ap (t,u) →R Ap (v,u) and Comp (B,v,α→β) holds by assumption. Then, by Def.3.6,
Comp (Π{B, B′}, Ap (v,u), β) holds.

(Induction step) : Consider all possible one step reductions from Ap (t,u): In case
Ap (t,u) →R Ap (v,u) we proceed as before. In case Ap (t,u) →R Ap (t,u′),
Comp (Π{B, B′}, Ap (t,u′), β) follows by induction hypothesis. And these are all
possible cases, because Ap (t,u) can not be a redex itself since t is neutral and the
rewrite system is safe.

iii) σ = σ1∩· · ·∩σn.
C1) By Def.3.6 (i.c), Comp (B, t,σ1∩· · ·∩σn) implies Comp (B, t,σi) for 1≤ i≤n, and then by

induction SN(t).
C2) As in the previous proof, Comp (B, t,σi) holds for 1≤ i≤n. By induction, for 1≤ i≤n,

Comp (B, t′,σi), then, by Def.3.6 (i.c), also Comp (B, t′,σ1∩· · ·∩σn).
C3) Using Lem.2.10 (i), we obtain B �E t:σi, and by theorem 2.13, B �E v:σi. More-

over, Comp (B,v,σ1∩· · ·∩σn) implies Comp (B,v,σi) for 1≤ i≤n. Then, by induction,
Comp (B, t,σi) for 1≤ i≤n, and by Def.3.6 (i.c), Comp (B, t,σ1∩· · ·∩σn).

In order to prove the Strong Normalization Theorem we shall prove a stronger property, for
which we will need the following ordering.

Definition 3.9 Let (Σ,R) be a CTRS. Let >IIN denote the standard ordering on natural num-
bers, >· stand for the well-founded encompassment ordering, (i.e. u ·>v if u �= v and u|p = vR

for some position p ∈ u and replacement R), and lex, mul denote respectively the lexicographic
and multiset extension of an ordering. Note that encompassment contains strict subterm.

We define the ordering � on triples – consisting of a pair of natural numbers, a term, and
a multiset of terms – as the object (>IIN, ·>, (→R ∪>)mul)lex .

We will interpret the term uR by the triple I(uR) = <(i, j),u,{R}>, where i is the maximal
super-index of the function symbols belonging to u, j is the minimum of the differences
arity(Fi)− arity(Fi

j ) such that Fi
j occurs in u, and {R} is the multiset {xR | x ∈Var (u)}. These

triples are compared in the ordering �.
When R is computable, then by Prop. C1 every t in the image of R is strongly normalizable,

so →R is well-founded on the image of R. Also, because the union of the strict subterm
relationship with a terminating rewrite relation is well-founded [12], the relation (→R ∪>)mul
is well-founded on {R}. Hence, when restricted to computable replacements, � is a well-
founded ordering.

We use �n when we want to indicate that the nth element of the triple has decreased but
not the n-1 first ones.

We would like to stress that we do not just interpret terms, but terms that are obtained
by performing a replacement. This implies that when tR = t’R

′
, their interpretations are not

necessarily equal.
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We now come to the main theorem of this section, in which we show that for any typeable
term and computable replacement R also the term tR is computable. The strong normalization
result then follows, using Prop.C1, for any typeable term t, taking for R the identity.

In the proof, the main idea is to write a term tR like t’R
′

(so they are equal as terms), where
t ·>t′, and R′ is a computable extension of R. This is accomplished by taking a computable
subterm v of t, to put a new variable z in its place and to define R′ = R∪ {z 
→ v}.

Property 3.10 Let t be such that B �E t:σ, and R be computable in B. Then there is a B’ such that
Comp (B′, tR,σ).

Proof: By noetherian induction on �. Let B = {x1:σ1, . . . , xn:σn}, and R = {x1 
→ u1, . . . ,
xn 
→ un}. Because of part (i.c) of Def.3.6, we can restrict the proof to the case σ ∈ T−ω.

We distinguish the cases:
i) t is a neutral term. If t is a term-variable then the thesis follows trivially since R is

computable. Let t be a non-variable term, so also tR is neutral. If tR is irreducible, then
Comp (B′, tR,σ) holds by Prop.C3.

Otherwise, let tR →R w at position p. We will prove either Comp (B′, tR,σ) itself, or
prove Comp (B′,w,σ) and apply Prop.C3.
a) p = qp′, t|q = xi ∈ X , so the rewriting takes place in a subterm of tR that is introduced

by the replacement. Let z be a new term-variable.
Take R′ = R ∪ {z 
→w|q}, and note that tR|q →R w|q at position p′. Since tR|q ∈ {R},
and R is assumed to be computable, also Comp (B, tR|q,σi) holds. So Comp (B,w|q,σi)
holds by Prop.C2, hence R′ is computable in B∪{zi:σi}.
Now, if the variable xi has exactly one occurrence in t, then t = t[z]q modulo renaming
of term-variables, and otherwise t ·>t[z]q . In the first case (since R contains a term that is
rewritten to get R′) we have I(tR)�3 I(t[z]qR′

), and I(tR)�2 I(t[z]qR′
) in the second

case. Both cases yield, by induction, Comp (B′, t[z]R
′

q ,σ) and note that t[z]qR′ ≡ w.
b) Now assume that p is a non-variable position in t. We analyze separatedly the cases:

1) p �= Λ (p is not the root position). Then t ·>t|p, hence I(tR)�2 I(t|Rp ), and t|Rp = tR|p.
Let τ be the type assigned to t|p in the derivation of B �E t:σ, then Comp (B, tR|p,τ)
holds by induction.
Let z be a new variable, and R′ = R∪{z 
→ tR|p}, then R′ is computable in
B∪{z:τ}, and B∪ {z:τ} �E t[z]p:σ. Now t ·>t[z]p, hence I(tR)�2 I(t[z]pR′

), hence
Comp (B, tR,σ).

2) p = Λ. Then the possible cases for t are:
A) t ≡ F (t1, . . . , tn), where F is a defined symbol of arity n or F ≡ Ap and n = 2,

and at least one of the ti is not a variable. Take R′ = {z1 
→ tR
1 , . . . , zn 
→ tR

n}.
Since t ·>ti, I(tR)�2 I(tR

i ). If B �E ti:σi, then by induction Comp (B, tR
i ,σi). Hence,

R′ is computable in B∪ {z1:σ1, . . . , zn:σn}. But I(tR)�2 I(F(z1, . . . ,zn)R′
),

and F(z1, . . . ,zn)R′
= tR and B∪{z1:σ1, . . . , zn:σn} �E F(z1, . . . ,zn):σ. Hence

Comp (B, tR,σ).
B) t ≡ Fk (z1, . . . ,zn) where z1, . . . ,zn are different term-variables. (If zi = zj for some

i �= j, we can reason as in part (i.a).) Then tR must be an instance of the left hand
side of a rule defining Fk: tR = Fk (z1, . . . ,zn)R = Fk (C

→
[M

→
], N

→
) →R C’[Fk (C1

→
[M

→
],

N
→

), . . . , Fk (Cm
→

[M
→

], N
→

), M
→

, N
→

] = w, where C
→

[M
→

], N
→

are all terms in {R}, so are
computable by hypothesis. Now we will deduce Comp (B,w,σ) in three steps:

(Step I) : Let R′ be the replacement that maps the left-hand side of the rewrite rule

into tR, so xR′→
= M

→
. Since M

→ ⊆ N
→

, and all N
→

are computable, also R′ is
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computable. For every 1≤ j≤m, Fk does not occur in Cj
→

(by definition of
the general scheme), hence I(Fk (z1, . . . ,zn)R)�1 I(Cj

R′
), hence Cj

R′
is com-

putable.
(Step II) : Let, for 1≤ j≤m, Rj be the computable replacement such that

tRj = Fk (Cj
→
[x→],y→)R′

. Since C
→
>mul Cj

→
, and > is closed under replace-

ment, also C
→R′

>mul Cj
→R′

, hence I(Fk (z1, . . . ,zn)R)�3 I(Fk (z1, . . . ,zn)
Rj), hence

Fk (z1, . . . ,zn)
Rj is computable.

(Step III) : Let v be the term obtained by replacing, in the right hand side of the rule,
the terms Fk (C1

→
[M

→
], N

→
), . . . , Fk (Cm

→
[M

→
], N

→
), M

→
, and N

→
by fresh variables.

Let R′′ be the replacement such that C’[Fk (C1
→

[M
→

], N
→

), . . . , Fk (Cm
→

[M
→

], N
→

),
M
→

,N
→

] = vR′′
, then tR →R vR′′

. Notice that above we have shown that R′′ is
computable. When Fj occurs in v, then by definition of the general scheme
j < k, and therefore I(tR)�1 I(vR′′

), hence vR′′
is computable, and since w =

vR′′
, we get Comp (B,w,σ).

C) t = Ap (z1,z2) where z1,z2 ∈ X . By assumption, zR
1 and zR

2 are computable, and
since t is well-typed, z1 must have an arrow type. Then, by Def.3.6, Ap (zR

1 ,zR
2 )

is computable. But Ap (zR
1 ,zR

2 ) is the same as Ap (z1,z2)R.
ii) Let t ≡ Fn (t1, . . . , tn). Again we distinguish two cases:

a) Assume that at least one of the ti is not a term-variable. Since t ·>ti (for 1≤ i≤n), by
induction there exist B′,σi such that Comp (B′, ti,σi), and also the replacement R′ =
{z1 
→ t1, . . . ,zn 
→ tn} is computable. Since t ·>Fn(z1, . . . ,zn), we have I(tR)�I(tR′

), and
tR′

is computable by induction. Note that tR′
= tR.

b) All ti are term-variables. Since B �E t:σ, by Lem.2.10 (iii) there exist α ∈ T∩, β ∈ T−ω

such that σ = α→β. For all u such that Comp (B′′,u,α), we have to prove
Comp (Π{B′, B′′}, Ap (tR,u), β). Since Ap (tR,u) is neutral, by Prop.C3, it is sufficient to
prove Comp (Π{B′, B′′}, t′, β) for all t′ such that Ap (tR,u) →R t′. This will be proved
by induction on the sum of the maximal length of the derivations out of u and out of
R. Note that since u and R are computable, by Prop.C1, SN(u) and SN(R).

(Base) : If u and R are in normal form, the only reduction step out of
Ap (tR,u) could be: Ap (Fn(z1, . . . ,zn)R,u) →R t′ ≡ Fn+1(zR

1 , . . . ,zR
n ,u). Then, since

I(tR)�1 I(Fn+1(zR
1 , . . . ,zR

n ,u)), t′ is computable.
(Induction step) : If the reduction step out of Ap (tR,u) takes place inside u or inside tR

(in the last case it must be inside R since the rewrite system is safe) then t′ is
computable by induction.
If Ap (Fn(z1, . . . ,zn)R,u) →R t′ ≡ Fn+1(zR

1 , . . . ,zR
n ,u), then we proceed as in the base

case.

Theorem 3.11 Strong Normalization Theorem. If (Σ,R) is typeable in �E and safe, then any
typeable term is strongly normalizable with respect to R.

Proof: From Prop. 3.10 and C1, taking R such that xR = x.

4 Final remarks

The type assignment system defined in this paper for CTRS is undecidable: it is feasible to
show that for every lambda term typeable in �λ∩−ω there exists a term in ACL, obtained
by bracket-abstraction, that is typeable as well, and vice versa. However, if we restrict the
system as in [2], then typeability is decidable, and since the Strong Normalization Theorem
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we proved in Section 3.2 is still valid in this weaker system, any typeable CTRS satisfying the
general scheme (as given in Def.3.4) is terminating on typeable terms.
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