
The Heart of Intersection Type Assignment
Normalisation proofs revisited

(With minor corrections with respect to the published paper)

To Mariangiola, Mario, and Simona
(Theoretical Computer Science, 398(1-3):82-94, 2008)

Steffen van Bakel‡

Department of Computing, Imperial College London,
180 Queen’s Gate London SW7 2BZ, U.K.

svb@doc.ic.ac.uk

Abstract

This paper gives a new proof for the approximation theorem and the characterisation of nor-
malisability using intersection types for a system with ω and a ≤-relation that is contra-variant
over arrow types. The technique applied is to define reduction on derivations and to show a
strong normalisation result for this reduction. From this result, the characterisation of strong
normalisation and the approximation result will follow easily; the latter, in its turn, will lead
to the characterisation of (head-) normalisability.

Introduction

The main result of in this paper will be to show that all the famous characterisation properties
for the Intersection Type Discipline [7] are all in fact the consequences of a single result: cut-
elimination is terminating. This result was already shown to hold for the strict system in [3];
the contribution of this paper is to show these results for a notion of type assignment that is
closed for η-reduction, i.e. has a inclusion relation on types that is contra-variant on arrow
types.

The Intersection Type Discipline as presented in [8] (a more enhanced system was presented
in [7]; for an overview of the various existing systems, see [2]), is an extension of Curry’s
system [9] that consists mainly of allowing for term variables (and terms) to have more than
one type, or an empty type. Intersection types are constructed by adding, next to the type
constructor ‘→’ of Curry’s system, the type constructor ‘∩’ and the type-constant ‘ω’.

This slight generalisation causes a great change in complexity; in fact, now type assignment
is closed for β-equality: M =β N ⇒ (B � M : σ ⇐⇒ B � N : σ) and (head/strong) normalisation
can be characterised by assignable types:

M has a head normal form ⇐⇒ B � M : σ & σ �= ω

M has a normal form ⇐⇒ B � M : σ & ω does not occur in B,σ
M is strongly normalisable ⇐⇒ B � M : σ, where ω is not used at all

(see, for example, [7, 1, 2]). These properties immediately show that type assignment (even in
the system that does not contain ω, see [1]) is undecidable.

‡ On sabbatical leave at Inria Sophia Antipolis, 2004 route des Lucioles, BP 93, 06902 Sophia Antipolis, France

Theoretical Computer Science, 398(1-3):82-94, 2008 2

As in [13, 6], the set of terms can be extended by adding the term-constant ⊥. Adding also
the reduction rules ⊥N →β⊥ ⊥, and λx.⊥→β⊥ ⊥ to the notion of reduction gives rise to the
notion of approximate normal forms that are in essence finite rooted segments of Böhm-trees.
It is well known that interpreting a term by the set of approximants that can be associated
to it gives a model for the Lambda Calculus. From the Approximation Theorem, i.e. the
observation that there exists a very precise relation between types assignable to a term M and
those assignable to its approximants, A(M) (see [11, 1, 2], and Def. 4.2), it is clear that the
set of intersection types assignable to a term can be used to define a model for the Lambda
Calculus (see [7, 1, 2]).

Of the above mentioned results, all but the first will be proved again in this paper; in fact,
we will show that these can all be obtained from one more fundamental result, being the
strong normalisation of cut elimination.

In previous papers, the Approximation Theorem and Strong Normalisation Theorem were
proved independently (see, respectively, [2] and [1]), though both using the same technique
of Computability Predicates [12, 10]. In this paper, we will show that both are special cases
of strong normalisation of cut elimination, using a variant of the technique developed in [5],
that has also found its application in other fields [4]. We will define a notion of reduction
on derivations in ‘�’ that generalises cut elimination, and prove that this kind of reduction
is strongly normalisable. It might seem surprising, but this result does not come easy at all.
The reason for this is that, unlike for ordinary systems of type assignment, for the intersection
system there is a significant difference between derivation reduction and ordinary reduction
(see the beginning of Section 2); unlike ‘normal’ typed- or type assignment system, in ‘�’ not
every term-redex occurs with types in a derivation. Moreover, especially the use of a relation
‘≤’ on types, together with a derivation rule (≤), greatly disturbs the smoothness of proofs
(see again Section 2).

From this strong normalisation result for derivation reduction, the Approximation Theo-
rem and Strong Normalisation Theorem follow easily. The first of these implies the Head-
Normalisation Theorem and (indirectly) the Normalisation Theorem, as was already demon-
strated in [2].

The kind of intersection type assignment considered in this paper is that of [2], i.e. the
essential intersection type assignment system, a restricted version of the BCD-system of [7],
that is equally powerful in terms of typeability and expressiveness. The major feature of this
restricted system is, compared to the BCD-system, a restricted version of the derivation rules
and the use of strict types (first introduced in [1]).

In [3] similar results were shown for the strict intersection type assignment system. This
differs from the one considered here in that the ≤ relation on types used there is not contra-
variant over arrow types, but only allows for the selection of one of the types in an intersection.
The contribution of this paper is to generalise that result to the essential intersection type
assignment system, a notion of type assignment that is also closed for η-reduction.

As shown in [2], the essential system is the nucleus of the BCD-system, in the sense that
B �bcd M : σ ⇐⇒ ∃B′ ∼ B,σ′ ∼ σ [B � M : σ]. This implies that all normalisation results for that
system are also consequences of the main result of this paper. It will be feasible to give a
direct proof for the BCD system as well, albeit that the notion of reduction on derivations will
be slightly different, as then also (∩I)−(∩E) cuts will have to contract. Although in the BCD-
system the ≤-relation is more complex, the derivation rule (≤) is a normal rule, and extending
the proof that the computability predicate is closed for (≤) is easy. It feels safe to conjecture
that the main result of this paper (strong normalisation of derivation reduction) will hold in
all other intersection type systems with a contra-variant ≤-relation on (non-recursive) types.

Theoretical Computer Science, 398(1-3):82-94, 2008 3

The outline of this paper is as follows. In Section 1, we will recall the definition of the essential
type assignment system of [2], together with some of its main properties. In Section 2, a notion
of reduction on derivations in ‘�’ is defined, for which we will show a strong normalisation
result in Section 3. In Section 4 we will focus on the head normalisation and approximation
results, and show that they are consequences of the result of Section 3. We will finish this
paper in Section 5 by extending the result of Section 3 to the characterisations of normalisation
and termination.

The technique applied in this paper is similar to that of [3], but for the subtle differences
caused by the presence of ≤, like the first part of Def. 2.1, Lem. 3.2, and Thm. 3.5. Since the
systems differ, of course all properties had to be checked again; only those that do not depend
on which notion is used but are of use here are quoted without proof.

We assume the reader to be familiar with the λ-calculus [6].

1 Intersection type assignment

In this section, the essential type assignment system of [2] is presented, a restricted version
of the system presented in [7], together with some of its properties. The major feature of
this restricted system is, compared to the BCD-system, a restricted version of the derivation
rules and the use of strict types. It also forms a slight extension of the strict type assignment
system that was presented in [1]; the main difference is that the strict system is not closed for
η-reduction, whereas the essential system is.

Definition 1.1 i) Let Φ be a countable (infinite) set of type-variables, ranged over by ϕ. Ts,
the set of strict types, ranged over by φ,ψ, . . ., and T , the set of strict intersection types,
ranged over by σ,τ, . . ., are defined by:

φ,ψ ::= ϕ | (σ→φ)

σ,τ ::= (φ1∩· · ·∩φn), (n ≥ 0)

ii) A statement is an expression of the form M : σ, with M ∈ Λ (the set of λ-terms), and σ ∈ T .
M is the subject and σ the predicate of M : σ.

iii) A basis is a set of statements with only distinct variables as subjects.
iv) For a collection of bases B1, . . . , Bn, the basis ∩{B1, . . . , Bn} is defined by:

x:∩mφi ∈ ∩{B1, . . . , Bn} if and only if {x:φ1, . . . , x:φm} is the set of all statements about x
that occur in B1∪· · ·∪Bn.

Notice that Ts is a proper subset of T . Often B, x:σ will be written for the basis ∩{B,{x:σ}},
when x does not occur in B.

We will write n for the set {1, . . . ,n}, and ∩nφi for φ1∩ · · · ∩φn. We define ω as the empty
intersection: if n = 0, then ∩nφi ≡ ω, so ω does not occur in an intersection subtype.

Notice that intersection type schemes (so also ω) occur in strict types only as subtypes at
the left-hand side of an arrow type scheme. Unless stated otherwise, if ∩nφi is used to denote
a type, then all φi (i ∈ n) are assumed to be strict.

Definition 1.2 (Relations on types) i) The relation ≤ is defined as the least pre-order (i.e.

Theoretical Computer Science, 398(1-3):82-94, 2008 4

reflexive and transitive relation) on T such that:

∀i ∈ n [∩nφi ≤ φi], (n ≥ 1)
∀i ∈ n [σ ≤ φi] ⇒ σ ≤ ∩nφi, (n ≥ 0)
ρ ≤ σ & φ ≤ ψ ⇒ σ→φ ≤ ρ→ψ

ii) The equivalence relation ∼ on types is defined by: σ ∼ τ ⇐⇒ σ ≤ τ ≤ σ, and we will work
with types modulo ∼.

iii) We write B ≤ B′ if and only if for every x:σ′ ∈ B′ there is an x:σ ∈ B such that σ ≤ σ′, and
B ∼ B′ ⇐⇒ B ≤ B′ ≤ B.

Notice that T may be considered modulo ∼; then ≤ becomes a partial order. In this paper,
however, in order to get a strong relation between the structure of types and derivations, types
will not be considered modulo ∼.

Moreover, since intersections are not allowed to appear on the right-hand side of arrows,
σ→(τ∩ρ) is not a type; therefore, clause (σ→τ)∩(σ→ρ) ≤ σ→τ∩ρ is not part of the above
definition.

For the relation ≤, the following properties hold:

Lemma 1.3 i) ϕ ≤ σ ⇐⇒ σ ≡ ϕ. So {σ | σ ∼ ϕ} = { ϕ}.
ii) ω ≤ σ ⇐⇒ σ ≡ ω. So {σ | σ ∼ ω }= {ω }.

iii) σ→φ ≤ ρ ∈ Ts ⇐⇒ ∃α ∈ T ,ψ ∈ Ts [ρ ≡ α→ψ & α ≤ σ & φ ≤ ψ].
iv) ∩nφi ≤ τ ∈ Ts ⇒ ∃i ∈ n [φi ≤ τ].
v) σ ≤ τ ⇒ ∃φi (i ∈ n),ψj (j ∈ m) [σ = ∩nφi & τ = ∩mψj & ∀ j ∈ m ∃i ∈ n [φi ≤ ψj]].

Proof: Easy.

The (essential) intersection type assignment system is constructed from the set of strict
types and the following derivation rules. In this way a syntax directed system is obtained,
that satisfies the main properties of the BCD-system (see [2]; the presentation of the derivation
rules in that paper differs from the one used here).

Definition 1.4 (Intersection type assignment) i) Intersection type assignment and intersec-
tion derivations are defined by the following natural deduction system:

(Ax) : (σ ≤ ψ)
B, x:σ � x : ψ (∩I) :

B � M : φ1 · · · B � M : φn
(n ≥ 0)

B � M :∩nφi

(→I) :
B, x:σ � M : φ

B � λx.M : σ→φ
(→E) :

B � M : σ→φ B � N : σ

B � MN : φ

ii) We write B � M : σ if this statement is derivable using an intersection derivation, and write
D :: B � M : σ to specify that this result was obtained through the derivation D.

Notice that B � M : ω, for all B and M, as a special case of rule (∩I).

We should emphasise the difference between this notion of type assignment and the strict
one that was defined in [3]; instead of the rule (Ax) given above, it contained the rule

(∩E) : (n ≥ 1, i ∈ n)
B, x:∩nφi � s x : φi

Theoretical Computer Science, 398(1-3):82-94, 2008 5

Notice, that this rule is a special case of rule (Ax) in that ∩nφi ≤ φi, for all i ∈ n. This is, in
fact, the only difference between strict and non-strict type assignment. As for the difference in
derivable statements, in the essential system it is possible to derive � λx.x : (α→β)→(α∩γ)→β,
which is not possible in ‘� s’.

For this notion of type assignment, the following properties hold:

Lemma 1.5 (Generation Lemma) i) B � x : σ ⇐⇒ ∃ρ ∈ T [x:ρ ∈ B & ρ ≤ σ].
ii) B � MN : φ ⇐⇒ ∃τ ∈ T [B � M : τ→φ & B � N : τ].

iii) B � λx.M : σ ⇐⇒ ∃ρ ∈ T ,φ ∈ Ts [σ = ρ→φ & B, x:ρ � M : φ].
iv) B � M : σ & σ ∈ T ⇐⇒ ∃φ1, . . . ,φn [σ = ∩nφi & ∀i ∈ n [B � M : φi]].
v) B � M : σ ⇐⇒ { x:τ ∈ B | x ∈ fv(M)} � M : σ.

vi) B � M : σ ⇒ { x:ρ | x:ρ ∈ B & x ∈ fv(M)} � M : σ.

Proof: Easy.

Some of the properties of this system, proved in [2], are:

Property 1.6 ([2]) i) If M →η N and B � M : σ, then B � N : σ.
ii) If M =β N, then B � M : σ if and only if B � N : σ.

Although the rule (Ax) is defined only for term-variables, � is closed for ≤ and weakening;
the proof first appeared in [2], and is repeated here for completeness and its importance in
this paper.

Lemma 1.7 ([2]) If B � M : σ and B′ ≤ B,σ ≤ τ, then B′ � M : τ, so the following is an admissible rule
in �:

(≤) :
B � M : σ

(B′ ≤ B,σ ≤ τ)
B′ � M : τ

Proof: By induction on �.

(Ax) : Then M ≡ x, and there is x:ρ ∈ B such that ρ ≤ σ. Since B′ ≤ B, by Lem. 1.5 (i), there
exists x:µ ∈ B′ such that µ ≤ ρ. Notice that µ ≤ ρ ≤ σ ≤ τ, so, by Lem. 1.5 (i), B′ � x : τ.

(→I) : Then M≡ λx.M′, and there are ρ,φ such that σ = ρ→φ and B, x:ρ � M′ : φ. By Lem. 1.3 (v)
and (iii) there are ρi,φi (i ∈ n) such that τ = ∩n(ρi→φi), and for i ∈ n, ρi ≤ ρ and φ ≤ φi.
Since B′ ≤ B and ρi ≤ ρ, also B′, x:ρi ≤ B, x:ρ, and by induction B′, x:ρi � M′ : φi. So, by
(→I), for every i ∈ n, B′ � λx.M′ : ρi→φi, so, by (∩I), B′ � λx.M′ : τ.

(→E) : Then M ≡ M1M2 and there is a µ such that B � M1 : µ→σ and B � M2 : µ. Since σ ≤ τ,
also µ→σ ≤ µ→τ and, by induction, B � M1 : µ→τ. Then, by (→E), B � M1M2 : τ.

(∩I) : Then σ = ∩nφi, and, for every i ∈ n, B � M : φi. By Lem. 1.3 (v), there are ψj (j ∈ m) such
that τ = ∩mψj and, for every j ∈ m, there is a i ∈ n such that φi ≤ ψj. By induction, for
j ∈ m, B′ � M : ψj. But then B′ � M : τ, by (∩I).

Notice that, although the proof above is constructive, it is not sufficient to show the result of
this paper. We need not just a derivation for the desired result, but all; see also the example
after Def. 1.9.

We will use the following short-hand notation for derivations.

Definition 1.8 i) D = 〈Ax〉 :: B � x : σ if D consists of nothing but an application of rule (Ax).

Theoretical Computer Science, 398(1-3):82-94, 2008 6

ii) D= 〈D1, . . . ,Dn,∩I〉, if and only if there are φi (i ∈ n) such that, for all i ∈ n, Di :: B � M : φi,
D is obtained from D1, . . . ,Dn by applying rule (∩I), and D :: B � M :∩nφi.

iii) D = 〈D1,→I〉, if and only if there are M1,σ,φ such that D1 :: B, x:σ � M1 : φ, D is obtained
from D1 by applying rule (→I), and D :: B � λx.M1 : σ→φ.

iv) D = 〈D1,D2,→E〉, if and only if there are P, Q,σ, and φ such that there are derivations
D1 :: B � P : σ→φ and D2 :: B � Q : σ, D is obtained from D1 and D2 by applying rule
(→E), and D :: B � PQ : φ.

We now extend the relation ≤ to derivations in �; this notion is pivotal in the proof of strong
normalisation of derivation reduction.

Definition 1.9 i) 〈Ax〉 :: B � x : σ ≤ 〈Ax〉 :: B′ � x : σ′ for all B′ ≤ B, and σ ≤ σ′.
ii) 〈D1, . . . ,Dn,∩I〉 :: B � M :∩nφi ≤ 〈D′

1, . . . ,D′
m,∩I〉 :: B′ � M :∩mψj, if and only if for every

j ∈ m there exists an i ∈ n such that Di ≤ D′
j.

iii) 〈D1 :: B, x:σ � M : φ,→I〉 :: B � λx.M : σ→φ ≤
〈D′

1 :: B′, x:τ � M : ψ,→I〉 :: B′ � λx.M′ : τ→ψ if and only if D1 ≤ D′
1.

iv) 〈D1 :: B � P : σ→φ,D2 :: B � Q : σ,→E〉 :: B � PQ : φ ≤
〈D′

1 :: B � P : τ→ψ,D′
2 :: B � Q : τ,→E〉 :: B � PQ : ψ if and only if D′

1 ≤ D1, and D′
2 ≥D2.

Notice that ‘≤’ is contra-variant in (→E); this is especially important in the proof of Lem. 3.2.

Example 1.10 Let B = x:α→ω→γ,y:ω,z:α; take the derivation

B � x : α→ω→γ B � z : α

B � xz : ω→γ
(∩I)

B � yz : ω

B � xz(yz) : γ

B\ z � λz.xz(yz) : α→γ

B\y,z � λyz.xz(yz) : ω→α→γ

∅ � λxyz.xz(yz) : (α→ω→γ)→ω→α→γ

Because (α→ω→γ)→ω→α→γ ≤ (α→ω→γ)→(δ→β)→α∩δ→γ, the following derivation is
larger in the sense of ≤ on derivations (where B′ = x:α→ω→γ, y:δ→β,z:α∩δ).

(α→ω→γ ≤ α→β→γ)
B′ � x : α→β→γ B′ � z : α

B′ � xz : β→γ

B′ � y : δ→β B′ � z : δ

B′ � yz : β

B′ � xz(yz) : γ

B′ \ z � λz.xz(yz) : α∩δ→γ

B′ \y,z � λyz.xz(yz) : (δ→β)→α∩δ→γ

∅ � λxyz.xz(yz) : (α→ω→γ)→(δ→β)→α∩δ→γ

Theoretical Computer Science, 398(1-3):82-94, 2008 7

On the other hand, the derivation ‘generated’ by Lem. 1.7 is:

B′ � x : α→ω→γ B′ � z : α

B′ � xz : β→γ
(∩I)

B′ � yz : ω

B′ � xz(yz) : γ

B′ \z � λz.xz(yz) : α∩δ→γ

B′ \y,z � λyz.xz(yz) : (δ→β)→α∩δ→γ

∅ � λxyz.xz(yz) : (α→ω→γ)→(δ→β)→α∩δ→γ

This derivation is also larger, but limiting the relation to just this choice would not give suffi-
cient expressive power in the proof of the main result of this paper; we need there to include
all those derivations that are larger in the more general sense, as is the second derivation.

The following is easy to show, and establishes the relation between ‘≤’ on types and ‘≤’ on
derivations:

Lemma 1.11 i) If D :: B � M : σ and B′ ≤ B, σ ≤ σ′, then there exists D′ ≥ D such that
D′ :: B′ � M′ : σ′.

ii) If D :: B � M : σ ≤ D′ :: B′ � M′ : σ′, then B′ ≤ B, σ ≤ σ′.

Proof: i) We separate two cases:
(σ′ ∈ Ts) : By induction on the structure of derivations.
(Ax) : Then D = 〈Ax〉 :: B, x:ρ � x : σ, with ρ ≤ σ. Since B′ ≤ B, x:ρ, there exists x:µ ∈ B′

such that µ ≤ ρ ≤ σ ≤ σ′. Take D′ = 〈Ax〉 :: B′ � x : σ′, then D ≤ D′.
(∩I) : Then D = 〈D1, . . . ,Dn,∩I〉 :: B � M :∩nφi, with Di :: B � M : σi, for i ∈ n; notice that

D ≤ Di. Then, by Lem. 1.3, there exists j ∈ n such that σj ≤ σ′, and, by induction,
there exists D′

j :: B′ � M : σ′, with Dj ≤ D′
j. Take D′ = D′

j, then D ≤ D′.

(→I) : Then D = 〈D1 :: B, x:τ � M′ : φ,→I〉 :: B � λx.M′ : τ→φ, and σ = τ→φ. Then σ′ =
ρ→ψ such that ρ≤ τ and φ≤ψ, and B′, x:ρ≤ B, x:σ. Then, by induction, there exists
D′

1 ≥ D1, such that D′
1 :: B′, x:ρ � M′ : µ. Take

D′ = 〈D′
1 :: B′, x:ρ � M′ : ψ,→I〉 :: B′ � λx.M′ : ρ→µ, then D ≤ D′.

(→E) : Then σ ∈ Ts, and D = 〈D1 :: B � M1 : γ→σ,D2 :: B � M2 : γ,→E〉 :: B � M1M2 : σ.
Notice that γ→σ ≤γ→σ′; so, by induction, there exists D′

1 ≥ D1 such that D′
1 ::

B′ � M′
1 : γ→σ′; notice that D2 ≤ D2. Take D′ = 〈D′

1,D2,→E〉 :: B′ � M1M2 : σ′, then
D ≤ D′.

(σ′ = ∩nφ′
i) : By Lem. 1.3, for i ∈ n, σ ≤ φ′

i ∈ Ts; by part (ii), there exists D′
i ≥ Di such that

D′
i :: B′ � M : φ′

i . Take D′ = 〈D′
i , . . . ,D′

n,∩I〉 :: B′ � M : σ′, then D ≤ D′.
ii) Easy, from Def. 1.9.

2 Derivation reduction

In this section, we will define a notion of reduction on derivations and show this notion to be
strongly normalisable in the next section.

We start by defining a notion of reduction on derivations D :: B � M : σ that will follow
ordinary reduction, by contracting typed redexes that occur in D, i.e. redexes for sub-terms of

Theoretical Computer Science, 398(1-3):82-94, 2008 8

M of the shape (λx.P)Q, for which the following is a sub-derivation of D:

(σ ≤ ρ)
x:σ � x : ρ

D1

B, x:σ � P : τ
(→I)

B � λx.P : σ→φ

D2

B � Q : σ
(→E)

B � (λx.P)Q : τ

(a derivation of this shape, where an introduction rule is followed by the corresponding elim-
ination rule, is called a cut). As can be expected, the effect of this reduction will be that this
derivation will be replaced by a derivation for the contractum P[Q/x]; this can be regarded
as a generalisation of cut-elimination, but, because the system at hand uses intersection types
together with the relation ‘≤’, has to be defined with care. So, when contracting D it is in
general not the case that the derivation D2 will just be inserted in the positions of D1 where a
type for the variable x is derived, since that would give an illegal derivation. The (≤)-step ‘to
be applied at the end of D2’ has to be pushed upwards. We have shown that this is possible
in Lem. 1.11 (ii); this procedure, in general, changes the structure of the derivation D2.

Before formally defining reduction on derivations, we will first define a notion of substitution
on derivations. It is this operation that deals adequately with the occurrences of derivation
rule (≤) in the leaves of a derivation.

Definition 2.1 (Derivation substitution) For D :: B, x:σ � M : τ, and D0 :: B � N : σ, the re-
sult D′ of substituting D0 in D, D [D0/x:σ] :: B � M[N/x] : τ is inductively defined by:

i) D = 〈Ax〉 :: B, x:σ � x : τ, with σ ≤ τ. By the proof of Lemma 1.7, there exists D′
0 such that

D0 ≤ D′
0 :: B � N : τ, then D [D0/x:σ] = D′

0.
ii) D = 〈D1, . . . ,Dn,∩I〉 :: B, x:σ � M :∩nψj, so Di :: B, x:σ � M : ψi for i ∈ n. Let

D′
i = Di [D0/x:σ] :: B � M[N/x] : ψi,

then D′ = 〈D′
1, . . . , D′

n,∩I〉 :: B � M[N/x] :∩nψj = 〈D1, . . . ,Dn,∩I〉[D0/x:σ].
iii) D = 〈D1 :: B, x:σ,y:α � M1 : β,→I〉 :: B, x:σ � λy.M1 : τ→ψ. Let

D′
1 = D1 [D0/x:σ] :: B,y:τ � M1[N/x] : ψ,

then D′ = 〈D′
1,→I〉 :: B � (λy.M1)[N/x] : τ→ψ = 〈D′

1,→I〉[D0/x:σ].
iv) D = 〈D1 :: B, x:σ � P : τ→ψ,D2 :: B, x:σ � Q : τ,→E〉 :: B, x:σ � PQ : ψ. Let

D′
1 = D1 [D0/x:σ] :: B � P[N/x] : τ→ψ, and

D′
2 = D2 [D0/x:σ] :: B � Q[N/x] : τ,

then D′ = 〈D′
1,D′

2,→E〉 :: B � (PQ)[N/x] : ψ = 〈D1,D2,→E〉[D0/x:σ].

We also need to define the concept of ‘position of a sub-derivation in a derivation’.

Definition 2.2 Let D be a derivation, and D′ be a sub-derivation of D. The position p of D′

in D is defined by:
i) If D′ = D, then p = ε.

ii) If the position of D′ in D1 is q, and D = 〈D1,→I〉, or D = 〈D1,D2,→E〉, then p = 1q.
iii) If the position of D′ in D2 is q, and D = 〈D1,D2,→E〉, then p = 2q.

Theoretical Computer Science, 398(1-3):82-94, 2008 9

iv) If the position of D′ in Di (i ∈ n) is q, and D = 〈D1, . . . ,Dn,∩I〉, then p = q.

We now can give a clear definition of our notion of reduction on derivations.

Definition 2.3 (Derivation reduction) i) We say that the derivation D :: B � M : σ reduces
to D′ :: B � M′ : σ at position p with redex R, if and only if:

(σ ∈ Ts) : 1) D= 〈〈D1,→I〉,D2,→E〉 :: B � (λx.M)N : σ. Then D reduces to D1 [D2/x:τ] ::
B � M[N/x] : σ at position ε with redex (λx.M)N.

2) If D1 reduces to D′
1 at position p with redex R, then

A) D = 〈D1,→I〉 :: B � λx.P : α→β reduces at position 1p with redex R to D′ =
〈D′

1,→I〉 :: B � λx.P′ : α→β.
B) D = 〈D1,D2,→E〉 :: B � PQ : σ reduces at position 1p with redex R to D′ =

〈D′
1,D2,→E〉 :: P′Q : σ.

C) D = 〈D2,D1,→E〉 :: B � PQ : σ reduces at position 2p with redex R to D′ =
〈D2,D′

1,→E〉 :: PQ′ : σ.
(σ = ∩nφi) : If D :: B � M :∩nφi, then, for every i ∈ n, there is a Di, such that Di :: B � M : σi,

and D = 〈D1, . . . ,Dn,∩I〉. If there is an i ∈ n > 0 such that Di reduces to D′
i at position

p with redex R = (λx.P)Q (a sub-term of M), then, for all 1≤ j �= i≤n, either
1) there is no redex at position p because there is no sub-derivation at that position,

and D′
j = Dj, with P[Q/x] instead of R, or

2) Dj reduces to D′
j at position p with redex R.

Then D reduces to 〈D′
1, . . . ,D′

n,∩I〉 at position p with redex R.
ii) We write D →D D′ if there exists a position p and redex R such that D reduces to D′ at

position p with redex R. If D1 →D D2 →D D3, then D1 →D D3.
iii) We abbreviate ‘D is strongly normalisable with respect to →D ’ by ‘SN (D)’, and use SN

for the set of strongly normalisable derivations: SN = {D | SN (D)}.

Notice that this reduction corresponds to contracting a redex in the conclusion of the deriva-
tion only if that redex appears at least once in a sub-derivation with type different from ω.

The following lemma formulates the relation between derivation reduction and β-reduction,
and is easy to show.

Lemma 2.4 ([3]) Let D :: B � M : σ, and D →D D′ :: B � N : σ, then M →→β N.

The following states some standard properties of strong normalisation.

Lemma 2.5 i) SN (〈D1,D2,→E〉) ⇒ SN (D1) & SN (D2).
ii) If SN (D1 :: B � xM1· · ·Mn : σ→φ) and SN(D2 :: B � N : σ), then also SN(〈D1,D2,→E〉).

iii) Let D :: B � M : σ be 〈D1∩ · · · ∩Dn,∩I〉, so σ = ∩nφi. If D →D D′ :: B � M′ : σ at position p,
then there exists an i ∈ n such that Di reduces to D′

i at position p with redex R.
iv) For all i ∈ n, SN(Di :: B � M : σi) if and only if SN (〈D1∩ · · · ∩Dn,∩I〉).
v) If SN(D1 :: B � C[M[N/x]] : σ), and SN(D2 :: B � N : ρ), then there exists a derivation D3 such

that SN (D3 :: B � C[(λy.M)N] : σ).

Theoretical Computer Science, 398(1-3):82-94, 2008 10

3 Strong normalisation of derivation reduction

In order to prove that each derivation in ‘�’ is strongly normalisable with respect to →D , a no-
tion of computable derivations is defined (based on the technique of computability predicates
[12, 10]). We will show that all computable derivations are strongly normalisable with respect
to derivation reduction, and then that all derivations in ‘�’ contain a computable component.

Definition 3.1 (Computable derivations ([3])) The Computability Predicate Comp(D) is de-
fined inductively on types by:

Comp(D :: B � M : ϕ) ⇐⇒ SN(D)

Comp(D1 :: B � M : σ→φ) ⇐⇒
Comp(D2 :: B � N : σ) ⇒ Comp(〈D1,D2,→E〉 :: B � MN : φ)

Comp(〈D1, . . . ,Dn,∩I〉 :: B � M :∩nφi) ⇐⇒ ∀i ∈ n [Comp(Di :: B � M : σi)]

Notice that, as a special case for the third rule, we get Comp(〈∩I〉 :: B � M : ω)

The following lemma formulates the relation between the computability predicate and the
relation ≤ on derivations, and is crucial for the proof of Thm. 3.5. The main difference between
the solution of [3] and the one presented here lies in the fact that here we need to prove this
lemma, whereas in [3], it is not needed at all. In the strict system, rule (Ax) corresponds to
(∩E), and existence of a computable derivation of type ∩nφi immediately implies existence of
a computable derivation of type φi via the third part of Def. 3.1: it is a direct sub-derivation.

Lemma 3.2 If Comp(D :: B � M : σ), and D ≤ D′, then Comp(D′).

Proof: By induction on the structure of types. Notice that, by Lem. 1.11, D′ = B′ � M : σ′, with
B′ ≤ B, σ ≤ σ′.

We distinguish two cases:

(σ′ ∈ Ts) :(σ = ϕ) : Since ϕ ≤ σ′, also σ′ = ϕ, and the result is immediate.
(σ = α→φ) : Then σ′ = ρ→ψ, with ρ≤ α, φ≤ψ, and let D′ :: B� M : α→ψ. To show Comp(D′),

by Def. 3.1, we assume Comp(D0 :: B � N : ρ), and use this to show that 〈D′,D0,→E〉 :: B �
MN : ψ. Since D0 ≤D′

0 :: B� N : α, we get Comp(D′
0) by induction. Assuming Comp(D :: B � M : α→φ),

by Def. 3.1, Comp(〈D,D′
0,→E〉 :: B � MN : φ). Since

〈D,D′
0,→E〉 ≤ 〈D′,D0,→E〉 :: B � MN : ψ,

we get, by induction Comp(〈D′,D0,→E〉). So Comp(D′ :: B � M : ρ→ψ) by Def. 3.1.
(σ = ∩nφi) : If Comp(D :: B � M :∩nφi), then D = 〈D1, . . . ,Dn,∩I〉, by Def. 3.1, and

Comp(Di :: B � M : φi) for i ∈ n. Since ∩nφi ≤ σ′, by Lem. 1.3, there exists ij ∈ n such
that φij ≤ σ′. Then D ≤ Dij :: B � M : φij and, by induction, Comp(Dij).

(σ′ = ∩nφi) : If Comp(D :: B � M :∩nφi), then, by Def. 3.1, for every i ∈ n there exist Di such
that Comp(Di :: B � M : φi), and D = 〈D1, . . . ,Dn,∩I〉. Since ∩nφi ≤ τ, by Lem. 1.3, τ =
∩mψj, and for all j ∈ m there exists ij ∈ n such that φij ≤ τj. Since Di ≤ Dij :: B � M : τj, by
induction, Comp(Dij), and, by Def. 3.1, Comp(〈Di1 , . . . ,Dim ,∩I〉 :: B � M :∩mψj).

The following lemma states that Comp satisfies the standard properties of computability
predicates, being that computability implies strong normalisation, and that, for the so-called
neutral objects, also the converse holds; the proof is the same as that of [3].

Theoretical Computer Science, 398(1-3):82-94, 2008 11

Lemma 3.3 ([3]) i) Comp(D :: B � M : σ) ⇒ SN (D).
ii) SN(D :: B � xM1· · ·Mm : σ) ⇒ Comp(D).

The following theorem (3.5) shows that, if the instances of rule (Ax) are to be replaced
by computable derivations, then the result itself will be computable. Before coming to this
result, we show that the predicate is closed for subject-expansion; we will use an abbreviated
notation, and write P for P1 · · ·Pn, as well as [Ni/xi] for [N1/x1, . . . , Nn/xn], etc.

Lemma 3.4 If Comp(D′ :: B � Q : ν) and Comp(D[D′/y:ν] :: B � M[Q/y]P : σ), then there exists a
derivation D′′ such that Comp(D′′ :: B � (λy.M)QP : σ).

Proof: By induction on the structure of types.

(σ = ϕ) : Comp(D[D′/y:ν] :: B � M[Q/y]P : ϕ) & Comp(D′ :: B � Q : ν) ⇒ 3.3(i)
SN(D[D′/y:ν]) & SN (D′) ⇒ 2.5(v))
∃D′′ [SN (D′′ :: B � (λy.M)QP : ϕ)] ⇒ 3.1
∃D′′ [Comp(D′′ :: B � (λy.M)QP : ϕ)].

(σ = σ→φ) : Comp(D1 :: B � N : σ) & Comp(D2 :: B � Q : ν) ⇒ 3.1
Comp(〈D[D′/y:ν],D2,→E〉 :: B � M[Q/y]PN : φ) ⇒ (IH)

∃D′′[Comp(〈D′′,D2,→E〉 :: B � (λy.M)QPN : φ) ⇒ 3.1)
∃D′′[Comp(D′′ :: B � (λy.M)QP : σ→φ)]

(σ = ∩nφi) : By induction and Def. 3.1.

We now come to the main result.

Theorem 3.5 (Replacement Theorem) Let B = x1:µ1, . . . , xn:µn, D :: B � M : σ, and assume that,
for every i ∈ n, there are Di, Ni such that Comp(Di :: B′ � Ni : µi). Then

Comp(D[Di/xi:µi] :: B′ � M[Ni/xi] : σ).

Proof: By induction on the structure of derivations.

(Ax) : Then M ≡ xi, for some i ∈ n, with µi ≤ σ. Since Di ≤ D′ :: B′ � Ni : σ, from Comp(Di),
by Lem. 3.2, Comp(〈Ax〉 :: B � x : σ)[Di/xi:µi]).

(→I) : Then σ = τ→ψ, and D = 〈D1 :: B,y:τ � M′ : ψ,→I〉 :: B � λy.M′ : τ→ψ.

∀i ∈ n [Dj :: B � Ni : µi] & Comp(D2 :: B � P : τ) ⇒ (IH)

Comp(D1[Di/xi:µi ,D2/y:τ] :: B � M[N/x , P/y] : ψ) ⇒ (3.4)
Comp(〈〈D1[Di/xi:µi],→I〉,D2,→E〉 :: B � (λy.M[Ni/xi])P : τ) ⇒ (3.1)
Comp(〈D1[Di/xi:µi],→I〉 :: B � λy.M[Ni/xi] : τ→ψ)

and D′ = 〈D1[Di/xi:µi],→I〉 = D[Di/xi:µi].

Cases (∩I) and (→E) follow by induction.

Using this, we prove a strong normalisation result for derivation reduction.

Theorem 3.6 (Strong normalisation) If D :: B � M : σ, then SN(D).

Proof: By Lem. 3.3 (ii), for every xi:τi ∈ B, there exists Dxi = 〈Ax〉 :: xi:τi � xi : τi such that
Comp(Dxi), so by Thm. 3.5, Comp(D[Dxi /xi:τi] :: B � M[xi/xi] : σ). Notice that M[xi/xi] = M
and D[Dxi /xi:τi] = D, and by Thm. 3.5, SN (D).

Theoretical Computer Science, 398(1-3):82-94, 2008 12

4 Approximation and head-normalisation

We will now show that the above strong normalisation result leads to the approximation
theorem, for which we will prepare the ground by introducing the necessary concepts.

4.1 Approximants

The notion of approximant for λ-terms was first presented in [13], and is defined using the
notion of terms in λ⊥-normal form (like in [6], ⊥ (called bottom) is used, instead of Ω; also,
the symbol � is used as a relation on λ⊥-terms, inspired by a similar relation defined on
Böhm-trees in [6]).

Definition 4.1 i) The set of λ⊥ -terms is defined as the set λ of λ-terms, by extending the
syntax with ⊥ (called bottom).

ii) The notion of reduction →β⊥ is defined as →β, extended by:

λx.⊥ →β⊥ ⊥ and ⊥M →β⊥ ⊥

iii) The set of normal forms for elements of λ⊥ with respect to →β⊥, is the set N of λ⊥-normal
forms or approximate normal forms, ranged over by A, inductively defined by:

A ::= ⊥ | λx.A (A �= ⊥) | xA1 · · · An (n ≥ 0).

The rules of the system ‘�’ are generalised to terms containing ⊥ by allowing for the terms
to be elements of λ⊥. Notice that, because type assignment is almost syntax directed, if ⊥
occurs in a term M and D :: B � M : σ, then in D, ⊥ appears in a position where the rule (∩I)
is used with n = 0. Moreover, the terms λx.⊥ and ⊥M1 · · · Mn are typeable by ω only.

Definition 4.2 i) The relation � ⊆ λ⊥2 is defined by:

⊥ � M
x � x

M � M′ ⇒ λx.M � λx.M′

M1 � M′
1 & M2 � M′

2 ⇒ M1M2 � M′
1M′

2.

If A ∈N, M ∈ Λ, and A � M, then A is called a direct approximant of M.
ii) The relation ∼ ⊆N × λ is defined by: A ∼ M ⇐⇒ ∃M′ =β M [A � M′].

iii) If A ∼ M, then A is called an approximant of M, and A(M) = { A ∈ N | A ∼ M}.

Type assignment is closed for ‘�’:

Lemma 4.3 (cf. [3]) B � M : σ & M � M′ ⇒ B � M′ : σ.

Proof: By easy induction on the definition of �.

The following definition introduces an operation of join on λ⊥-terms.

Definition 4.4 i) On λ⊥, the partial mapping � : λ⊥ × λ⊥→ λ⊥ is defined by:

⊥�M ≡ M�⊥ ≡ M
x� x ≡ x

(λx.M)�(λx.N) ≡ λx.(M�N)

(M1M2)�(N1N2) ≡ (M1�N1) (M2�N2)

� is pronounced join.
ii) If M�N is defined, then M and N are called compatible.

Theoretical Computer Science, 398(1-3):82-94, 2008 13

From now on, to shorten proofs, ⊥ will be the same as the empty join, i.e. if M ≡ M1�· · ·�Mn
(= �nMi), and n = 0, then M ≡ ⊥.

The last alternative in the definition of � defines the join on applications in a more general
way than Scott’s, that states (M1M2)�(N1N2) � (M1�N1)(M2�N2), since it is not always
sure if a join of two arbitrary terms exists. However, we will use our more general definition
only on terms that are compatible.

The following lemma shows that � acts as least upper bound of compatible terms.

Lemma 4.5 ([3]) i) If M1 � M, and M2 � M, then M1�M2 is defined, and:
M1 � M1�M2, M2 � M1�M2, and M1�M2 � M.

ii) If M � Mi, for i ∈ n, then M ��nMi.
iii) If M � N, and N � P, then M � P.
iv) If M � M1M2, then there are M3, M4 such that M = M3M4, and M3 � M1, M4 � M2.

Lemma 4.6 If D :: B � M : σ, with D in normal form, then there exists A ∈N such that A � M, and
D :: B � A : σ.

Proof: By induction on the structure of derivations.

(D = 〈Ax〉) : Immediate.

(D = 〈D1, . . . ,Dn,∩I〉) : Then σ = ∩nφi and, for every i ∈ n, Di :: B � M : σi, and, by induction
there exists Mi ∈N such that Mi � M1 and Di :: B � Mi : σi. Notice that then these Mi are
compatible, so �nMi exists, and by Lem. 4.3, also Di :: B � �nMi : σi. Then, by rule (∩I),
we have B � �nMi :∩nφi. Notice that, since � acts as least upper bound, �nMi � M.

(D = 〈D1,→I〉) : Then M ≡ λx.N, and σ = α→φ, and B, x:α � N : φ. So, by induction, there
exists A′ ∈ N such that A′ � N and B, x:α � A′ : φ. Then, by rule (→I) we obtain B �
λx.N : α→φ. Notice that λx.A′ � λx.N, and λx.A′ ∈ N .

(D = 〈D1,D2,→E〉) : Then M ≡ M1M2, and there is a τ such that B � M1 : τ→φ, and B � M2 : τ.
Then, by induction, there are A1, A2 ∈N such that A1 � M1, A2 � M2, B � A1 : τ→φ, and
B � A2 : τ. Then, by (→E), B � A1A2 : φ. Notice that A1A2 � M1M2. Since D is in normal
form, D1 does not finish with (→I), so A1 is not an abstraction. Since τ→φ is strict,
neither can it be ⊥; then A1A2 ∈N .

Notice that the case σ = ω is present in the case (∩I) of the proof. Then n = 0, and �nMi =⊥.
Moreover, since A need not be the same as M, the second derivation in Lem. 4.6 is not exactly
the same; however, it has the same structure in terms of applied derivation rules.

5 Approximation and normalisation results

In this section, we will conclude the main contribution of this paper by showing two main re-
sults, that are both direct consequences of the strong normalisation result proved in Section 3.
Both results have been proven, at least partially, in [1, 2].

5.1 Approximation result

First we will prove the approximation result. From this, the well-known characterisation of
(head-)normalisation of λ-terms using intersection types follows easily, i.e., all terms having
a (head) normal form are typeable in ‘�’ (with a type without ω-occurrences). The second

Theoretical Computer Science, 398(1-3):82-94, 2008 14

result is the the well-known characterisation of strong normalisation of typeable λ-terms, i.e.
all terms, typeable in ‘�’ without the type-constant ω, are strongly normalisable.

Using Thm. 3.6, as for the BCD-system and the strict system, the relation between types
assignable to a lambda term and those assignable to its approximants can be formulated as
follows:

Theorem 5.1 (Approximation theorem cf. [3]) B � M : σ ⇐⇒ ∃A ∈A(M) [B � A : σ]

Proof: (⇒) : Let D :: B � M : σ, then, by Thm. 3.6, SN (D). Let D0 :: B � N : σ be the normal
form of D with respect to →D , then by Lem. 2.4, M →→β N, and by Lem. 4.6, there is
A ∈N such that D0 :: B � A : σ, and A � N, and A ∈A(M).

(⇐) : Since A ∈ A(M), there is an M′ such that M′ =β M and A � M′. Then, by Lem. 4.3,
B � M′ : σ, and, by Thm. 1.6 (ii), also B � M : σ.

Using this result, the following becomes easy; the proof is identical to that in [3], although
formally on a different notion of type assignment.

Theorem 5.2 (cf. [3]) ∃B,σ [B � M : σ] ⇐⇒ M has a head normal form.

5.2 Intersection Type Assignment without ω

As in [1] for the strict system, we will prove that the essential intersection type assignment
system satisfies the (strong) normalisation properties of the BCD-system.

We will first prove that the set of all terms typeable by the system without ω is the set of all
strongly normalisable terms. To start, we define ω-free types.

Definition 5.3 i) T−ω−, the set of ω-free intersection types, ranged over by σ,τ etc, is inductively
defined by:

φ,ψ ::= ϕ | (σ→φ)

σ,τ ::= ∩nφi, (n ≥ 1)
ii) On T−ω− the relation ≤ is as defined in Def. 1.2, except for the second alternative.

∀i ∈ n [∩nφi ≤ σi] (n ≥ 1)
∀i ∈ n [σ ≤ σi] ⇒ σ ≤∩nφi (n ≥ 1)

σ ≤ τ ≤ ρ ⇒ σ ≤ ρ

The relations ≤ and ∼ are extended to bases as before.
iii) If M : σ is derivable from a basis B, using only ω-free types and the derivation rules of

‘�’, we write B �−ω− M : σ.

Notice that the only difference between this definition and Def. 1.1 and 1.2 is that n ≥ 1 rather
than n ≥ 0.

The following results were shown in [2].

Theorem 5.4 ([2]) i) ∃B,σ [B � M : σ & B,σ ω-free] ⇐⇒ M has a normal form.
ii) If A is ⊥-free, then there are B, and σ, such that B �−ω− A : σ.

iii) If B �−ω− M[N/x] : σ and B �−ω− N : ρ, then B �−ω− (λx.M)N : σ.

Theoretical Computer Science, 398(1-3):82-94, 2008 15

5.3 Strong normalisation for Intersection Type Assignment without ω

To show the strong normalisation result, notice that Lem. 5.4 (iii)) is also essentially the proof
for the statement that each strongly normalisable term can be typed in the system ‘�−ω−’. A
proof for this property in the context of the strict system appeared in [3]; since the strict system
is a sub-system of the essential system, the proof is also valid here.

Theorem 5.5 ([3]) If M is strongly normalisable, then there are B and σ such that B �−ω− M : σ.

Thm. 5.6 shows that the set of strongly normalisable terms is exactly the set of terms ty-
peable in the intersection system without using the type constant ω.

Theorem 5.6 If B �−ω− M : σ for some B and σ, then M is strongly normalisable with respect to →β.

Proof: If D :: B �−ω− M : σ, then also D :: B � M : σ. Then D is strongly normalisable with respect
to →D by Thm. 3.6. Since D contains no ω, all redexes in M correspond to redexes in D; since
derivation reduction does not introduce ω, this property is preserved by reduction. So also M
is strongly normalisable with respect to →β.

Concluding remarks

This paper presents a result that has eluded me for more than a decade. The quest for it
started in 1995, while I worked in Turin, and many an afternoon was spent discussing with
Mariangiola, trying to understand the ins and outs of the bottom system (see [3]), then thought
to be the key to the proof of strong normalisation.

But I could not find the proof, and, over the following years, filled many pages with at-
tempts, trying to find the correct notion of computability. During this initial proof search, I
quickly found a solution for the strict system, but since I considered that solution almost triv-
ial compared to what I was really looking for, I left it ‘on the shelf’ for many years. Only after
a casual conversation with Simona did I understand its importance and decided to submit it;
it ended up as a [3].

Then, years later, in the quiet, comfortable environment that is Inria in Sophia Antipolis,
France, I finally had the decisive ‘flash’ and found the solution in the definition of the ≤-
relation on derivations as defined here. As is not uncommon, all that was needed was a slight
generalisation of the notions already at hand.

And it fills me with pride that I managed to finish this proof on time, to make it in time
for my ‘most important’ intersection result to appear in the festschrift for my three generous,
inspiring Italian instructors, who have received me so welcomingly every time at il dipartimento
in Turin since I started my regular sequence of visits in 1988.

Acknowledgement

Many thanks to Franco Barbanera for pointing out a series of annoying little mistakes and
gaffes in the published paper. They are all corrected here.

References

[1] S. van Bakel. Complete restrictions of the Intersection Type Discipline. Theoretical Computer Science,
102(1):135–163, 1992.

Theoretical Computer Science, 398(1-3):82-94, 2008 16

[2] S. van Bakel. Intersection Type Assignment Systems. Theoretical Computer Science, 151(2):385–435,
1995.

[3] S. van Bakel. Cut-Elimination in the Strict Intersection Type Assignment System is Strongly Nor-
malising. Notre Dame journal of Formal Logic, 45(1):35–63, 2004.

[4] S. van Bakel and M. Fernández. Approximation and Normalization Results for Typeable Term
Rewriting Systems. In HOA’95, volume 1074 of Lecture Notes in Computer Science, pages 17–36.
Springer-Verlag, 1996.

[5] S. van Bakel and M. Fernández. Normalization Results for Typeable Rewrite Systems. Information
and Computation, 2(133):73–116, 1997.

[6] H. Barendregt. The Lambda Calculus: its Syntax and Semantics. North-Holland, Amsterdam, revised
edition, 1984.

[7] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and the completeness
of type assignment. journal of Symbolic Logic, 48(4):931–940, 1983.

[8] M. Coppo and M. Dezani-Ciancaglini. An Extension of the Basic Functionality Theory for the
λ-Calculus. Notre Dame journal of Formal Logic, 21(4):685–693, 1980.

[9] H.B. Curry and R. Feys. Combinatory Logic, volume 1. North-Holland, Amsterdam, 1958.
[10] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Tracts in Theoretical Computer

Science. Cambridge University Press, 1989.
[11] S. Ronchi Della Rocca and B. Venneri. Principal type schemes for an extended type theory. Theo-

retical Computer Science, 28:151–169, 1984.
[12] W.W. Tait. Intensional interpretation of functionals of finite type I. journal of Symbolic Logic,

32(2):198–223, 1967.
[13] C.P. Wadsworth. The relation between computational and denotational properties for Scott’s D∞-

models of the lambda-calculus. SIAM J. Comput., 5:488–521, 1976.

