
Classical Sequents and Computation : An overview

To Henk Barendregt, in honour of his 60th birthday

(Reflections on Type Theory, Lambda Calculus, and the Mind, Essays Dedicated to Henk Barendregt
on the Occasion of his 60th Birthday. Radboud University, 2007)

Steffen van Bakel

Department of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2BZ, UK

svb@doc.ic.ac.uk

Abstract

This paper presents a short overview of some of the results achieved for the calculus X , which
is based on Gentzen’s lk. It presents the calculus, its suitability for encoding the λ-calculus
and the λµ-calculus, as well as a type-preserving encoding of X into the π-calculus.

Introduction

We discuss the calculus X (a first version of this calculus was proposed in [24, 23, 22]; the
implicative fragment of X was studied in [5]), which has the Curry-Howard property for
proofs of Gentzen’s sequent calculus lk [11], and briefly discuss interpretations of various
calculi as well as an encoding into the π-calculus [17], that all respect cut-elimination as well
as assignable types.

lk is a logical system in which the rules only introduce connectives (but on either side of a
sequent), in contrast to natural deduction (also introduced in [11]) which uses rules that intro-
duce or eliminate connectives in the logical formulae. Natural deduction derives statements
with a single conclusion, whereas lk allows for multiple conclusions, deriving sequents of
the form A1, . . . , An � B1, . . . , Bm. X achieves the Curry-Howard isomorphism for proofs in lk
by constructing witnesses, called nets, for derivable sequents; this is achieved without using
application.

Nets in X have multiple named inputs and multiple named outputs, that are collectively
called connectors. Names on the left can be seen as inputs to the net, and names to the right
as outputs. Similar to calculi like λµ [18] and λµµ̃ [10], there are two kinds of names in X :
sockets (inputs, with Roman names) that are attached to formulae in the left context, and plugs
(outputs, with Greek names) for those in the right context. Plugs and sockets correspond,
respectively, to variables and co-variables in [25], or, alternatively, to Parigot’s λ- and µ-variables
[18] (see also [10]).

In the construction of the witness, when in applying a rule a premise or conclusion disap-
pears from the sequent, the corresponding name gets bound in the net that is constructed, and
when a premise or conclusion gets created, a different free (often new) name is associated to
it. For example, in the creation of the net for right-introduction of the arrow via rule (exp):

P ··· Γ, x:A � α:B,∆

x̂Pα̂·β ··· Γ � β:A→B∆

Reflections on Type Theory, Lambda Calculus, and the Mind, 2007 2

the input x and the output α are bound, and β is free. This case is interesting in that it
highlights a special feature of X , not found in other calculi. In (applicative) calculi related to
natural deduction, like the λ-calculus [8], only inputs are named, and the linking to a term
that will be inserted is done via λ-abstraction and application. The output (i.e. result) on the
other hand is anonymous; where a term ‘moves to’ carries a name via a variable that acts
as a pointer to the positions where the term is to be inserted, but where it comes from is
not mentioned, since it is implicit. Since a term P can have many inputs and outputs, it is
unsound to consider P a function; however, fixing one input x and one output α, we can see P
as a function ‘from x to α’. We make this limited view of P available via the output β, thereby
exporting ‘P is a function from x to α’; notice that the types given to the connectors conform to
this point of view.

Implicative lk has four rules: axiom, left introduction of the arrow, right introduction, and cut.

(Ax) :
Γ, A � A,∆ (⇒L) :

Γ � A,∆ Γ, B � ∆

Γ, A⇒B � ∆
(⇒R) :

Γ, A � B,∆

Γ � A⇒B,∆
(cut) :

Γ � A,∆ Γ, A � ∆

Γ � ∆

Since lk has only introduction rules, the only way to eliminate a connective is to eliminate
the whole formula in which it appears via an application of the (cut)-rule. Gentzen defined
a cut-elimination procedure that eliminates all applications of the (cut)-rule from a proof of a
sequent (via an innermost reduction strategy), generating a proof in normal form for the same
sequent.
X is a true term rewriting language that distinguishes itself from other, more common

programming paradigms in that it is a language of connecting nets, rather than a language
based on application and substitution, with variables that can be replaced by entire terms.
Reduction in X is expressed via a set of rewrite rules that represent cut-elimination, eventually
leading to renaming of connectors, and gives computational meaning to classical (sequent)
proof reduction. It is well known that cut-elimination in lk is not confluent, and consequently,
neither is reduction in X . The intuition behind reduction is: the cut Pα̂† x̂Q expresses the
intention to connect all αs in P and xs in Q, which reduction will realise by either connecting
all αs to all xs (if x does not exist in Q, P will disappear), or all xs to all αs (if α does not exist
in P, Q will disappear). So, when P does not contain α and Q does not contain x, reducing
Pα̂† x̂Q leads to both P and Q, two different nets.

This paper presents the calculus X , together with some of its main results; these first ap-
peared in various papers, of which we mention [4, 5, 6, 21, 7, 2]. In [4, 5] X is presented and,
respectively, the embedding of the λ-calculus, λx [9], the λµ-calculus and the λµµ̃-calculus is
studied. [2] studies mapping X into λµ. [21] studies the relation between X enriched with
quantification and System F and ml. [6, 7] discuss implementation issues. [3] studies the
encoding of X into the π-calculus. The intention of this paper is to be an overview, as a
showcase of the expressive power of X ; for details of proofs, I would like to refer the reader
to the papers mentioned above.

1 The calculus X
In this section we will give the definition of the X -calculus. X features two separate categories
of ‘connectors’, plugs and sockets, that act as input and output channels. A consequence of
the fact that the origin of X is a sequent calculus is that has no notion of substitution or
application.

Definition 1.1 (Syntax) The nets of the X -calculus are defined by the following grammar:

Reflections on Type Theory, Lambda Calculus, and the Mind, 2007 3

P, Q ::= 〈x·α〉 | ŷPβ̂·α | Pβ̂ [y] x̂Q | Pα̂† x̂Q
capsule export import cut

where x,y range over sockets, α, β over plugs (together called connectors). The symbol ‘ˆ’ is a
binder; the definition of free (or bound) or connector is as usual; we write fs(P), fp(P) or fc(P).

The origin of X can be found in Urban’s PhD thesis; the calculus defined there is the same
in spirit, but very different in presentation. Urban uses the first letters of the Latin alphabet
for plugs, and the last for sockets; he expresses input and output behaviour by using a π-
calculus-like notation, putting sockets between parentheses and plugs between angles.

X : 〈x·α〉 x̂Pβ̂·α Pα̂ [x] ŷQ Pα̂† x̂Q

Urban : Ax(x, a) ImpR((x)〈b〉P, a) ImpL(〈a〉P, (y)Q, x) Cut(〈a〉P, (x)Q)

Notice that Urban’s notation is pre-fix, which distorts the notion of ‘flow’ X expresses; also,
in ImpL(〈a〉P, (y)Q, x), it is not clear that x will interface between P and Q.

Reduction strongly depends on the notion of an introduced connector.

Definition 1.2 (Introduction)(P introduces x) : P = 〈x·α〉 or P = Qβ̂ [x] ŷR with x �∈ fs(Q, R).

(P introduces α) : P = 〈x·α〉 or P = x̂Qβ̂·α and α �∈ fp(Q).

The principal reduction rules are:

Definition 1.3 (Logical rules) Let α and x be introduced in, respectively, the left- and right-
hand side of the main cuts below.

(cap) : 〈y·α〉α̂ † x̂〈x·β〉 → 〈y·β〉
(exp) : (ŷPβ̂·α)α̂ † x̂〈x·γ〉 → ŷPβ̂·γ
(imp) : 〈y·α〉α̂ † x̂(Qβ̂ [x] ẑR) → Qβ̂ [y] ẑR

(exp-imp) : (ŷPβ̂·α) α̂ † x̂(Qγ̂ [x] ẑR) →
{

Qγ̂ † ŷ(Pβ̂† ẑR)
(Qγ̂† ŷP) β̂ † ẑR

The first three logical rules above specify a renaming procedure, whereas the last rule spec-
ifies the basic computational step: it links the export of a function, available on the plug α,
to an adjacent import via the socket x. The effect of the reduction will be that the exported
function is placed in-between the two sub-terms of the import, acting as interface.

In X there are in fact two kinds of reduction, the one above, and the one which defines
how to reduce a cut when one of its sub-nets does not introduce a connector mentioned in
the cut. This will involve moving the cut inwards, towards a position where the connector is
introduced. In case both connectors are not introduced, this search can start in either direction,
(either to the left or to the right), indicated by the tilting of the dagger.

Definition 1.4 (Active cuts) The syntax is extended with two flagged or active cuts:

P ::= . . . | P1α̂ † x̂P2 | P1α̂ † x̂P2

Reflections on Type Theory, Lambda Calculus, and the Mind, 2007 4

We define two cut-activation rules.

(a†) : Pα̂† x̂Q → Pα̂ † x̂Q if P does not introduce α

(†a) : Pα̂† x̂Q → Pα̂ † x̂Q if Q does not introduce x

The next rules define how to move an activated dagger inwards.

Definition 1.5 (Propagation rules) Left propagation:

(d†) : 〈y·α〉α̂ † x̂P → 〈y·α〉α̂ † x̂P
(cap†) : 〈y·β〉α̂ † x̂P → 〈y·β〉, β �= α

(exp-outs†) : (ŷQβ̂·α) α̂ † x̂P → (ŷ(Qα̂ † x̂P) β̂·γ)γ̂ † x̂P, γ fresh
(exp-ins†) : (ŷQβ̂·γ)α̂ † x̂P → ŷ(Qα̂ † x̂P) β̂·γ, γ �= α

(imp†) : (Qβ̂ [z] ŷR) α̂ † x̂P → (Qα̂ † x̂P) β̂ [z] ŷ(Rα̂ † x̂P)
(cut†) : (Qβ̂† ŷR) α̂ † x̂P → (Qα̂ † x̂P) β̂ † ŷ(Rα̂ † x̂P)

Right propagation:

(†d) : Pα̂ † x̂〈x·β〉 → Pα̂ † x̂〈x·β〉
(†cap) : Pα̂ † x̂〈y·β〉 → 〈y·β〉, y �= x
(†exp) : Pα̂ † x̂(ŷQβ̂·γ) → ŷ(Pα̂ † x̂Q) β̂·γ

(†imp-outs) : Pα̂ † x̂(Qβ̂ [x] ŷR) → Pα̂ † ẑ((Pα̂ † x̂Q) β̂ [z] ŷ(Pα̂ † x̂R)), z fresh
(†imp-ins) : Pα̂ † x̂(Qβ̂ [z] ŷR) → (Pα̂ † x̂Q) β̂ [z] ŷ(Pα̂ † x̂R), z �= x

(†cut) : Pα̂ † x̂(Qβ̂† ŷR) → (Pα̂ † x̂Q) β̂ † ŷ(Pα̂ † x̂R)

We write → for the (reflexive, transitive, compatible) reduction relation generated by the
logical, propagation and activation rules, and write P ↓ Q to express that P and Q share a
reduct, i.e. when there exists an R such that P → R and Q → R.

As mentioned above, the reduction relation → is not confluent; this comes from the critical
pair that activates a cut Pα̂† x̂Q in two ways, and the critical pair that is the rule (exp-imp).

In short, reduction brings all cuts down via propagation to logical cuts or to elimination
cuts that are cutting towards a capsule that does not contain the relevant connector, as in
Pα̂ † x̂〈z·β〉 or 〈z·β〉α̂ † x̂P; performing the elimination cuts, via (†cap) or (cap†), will remove
the term P.

Two sub-reduction systems are introduced which explicitly favour one kind of activation
whenever the above critical pair occurs:

Definition 1.6 We define Call-By-Name and Call-By-Value reduction by:

• If a cut can be activated in two ways, the cbv strategy only allows to activate it via (a†);
we write P→v Q in that case. This can be obtained by replacing rule (†a) by:

(†a) : Pα̂† x̂Q → Pα̂ † x̂Q, if P introduces α and Q does not introduce x.

• The cbn strategy can only activate such a cut via (†a), and we write P→n Q. Likewise,
we can obtain this by replacing rule (a†) by:

(a†) : Pα̂† x̂Q → Pα̂ † x̂Q, if P does not introduce α and Q introduces x.

Reflections on Type Theory, Lambda Calculus, and the Mind, 2007 5

• We split the two variants of (exp-imp) over the two notions of reduction: for cbv we take:

(ŷPβ̂·α) α̂ † x̂(Qγ̂ [x] ẑR) → Qγ̂ † ŷ(Pβ̂† ẑR)

and for cbn:
(ŷPβ̂·α) α̂ † x̂(Qγ̂ [x] ẑR) → (Qγ̂† ŷP) β̂ † ẑR

We so obtain two notions of reduction that are confluent: all rules are left-linear and non-
overlapping.

2 Explicit α-conversion

Normally, renaming is an essential part of α-conversion, the process of renaming bound objects
in a language to avoid clashes during computation. The most familiar context in which this
occurs is the λ-calculus, where, when reducing (λxy.xy)(λxy.xy), α-conversion is essential.

While building an efficient implementation of an interpreter for X , it was noted that the
α-conversion can in X be dealt with at the level of the language itself, unlike for the λ-calculus.
There proved to be several ways to do this in X : three solutions to the problem of α-conversion
are proposed in [6, 7], that are compared in terms of efficiency. The first uses a lazy-copying
strategy to avoid sharing of bound connectors; the second enforces Barendregt’s convention,
by renaming bound connectors when nesting is created; the third avoids capture of names, but
allows breaches of Barendregt’s convention. α-conversion is necessary, for example, in rule
(exp-imp)

(ŷPβ̂·α) α̂ † x̂(Qγ̂ [x] ẑR) →
{

Qγ̂ † ŷ(Pβ̂† ẑR)
(Qγ̂† ŷP) β̂ † ẑR

A conflict with Barendregt’s convention is generated in this rule by the fact that perhaps β = γ
or y = z. Or, when striving for capture avoidance, it might be that y occurs free in R, or β
in Q. In either case, these connectors need to be renamed; one of the great plus points of
X is that this can be done within the language itself. For example, to accurately deal with
α-conversion for the case of capture-avoidance, the rule (exp-imp) needs to be replaced by (α, x
are introduced, v,δ are fresh):

(ŷPβ̂·α) α̂ † x̂(Qγ̂ [x] ẑR) →

Qγ̂ † ŷ(Pβ̂† ẑR), y �∈ fs(R)
Qγ̂ † v̂((〈v·δ〉δ̂ † ŷP) β̂ † ẑR), y ∈ fs(R)
(Qγ̂† ŷP) β̂ † ẑR, β �∈ fp(Q)

(Qγ̂ † ŷ(Pβ̂ † v̂〈v·δ〉)) δ̂ † ẑR, β ∈ fp(Q)

Almost all propagation rules (but for (d†), (cap†), (†d), and (†cap)) need dealing with as
well.

3 Typing for X : from lk to X
The notion of type assignment on X that we present in this section is the basic implicative sys-
tem for Classical Logic (Gentzen’s system LK) as described above. When building witnesses
for proofs, propositions receive names; those that appear in the left part of a sequent receive
names like x,y,z, etc, and those that appear in the right part of a sequent receive names like
α, β,γ, etc. When in applying a rule a formula disappears from the sequent, the corresponding
connector will get bound in the net that is constructed, and when a formula gets created, a
different connector will be associated to it.

Reflections on Type Theory, Lambda Calculus, and the Mind, 2007 6

Definition 3.1 (Types and Contexts) i) The set of types is defined by the grammar:

A, B ::= ϕ | A→B.

where ϕ is a basic type of which there are infinitely many.
ii) A context of sockets Γ is a finite set of statements x:A with distinct subjects (x). We write

Γ1, Γ2 for the union of Γ1 and Γ2, provided Γ1 and Γ2 are compatible (if Γ1 contains x:A1
and Γ2 contains x:A2 then A1 = A2), and write Γ, x:A for Γ,{x:A}.

iii) Contexts of plugs ∆ are defined in a similar way.

(Simple) type assignment for X is defined using the following sequent calculus: the Curry-
Howard isomorphism for Implicative lk is easily achieved by erasure.

Definition 3.2 (Typing for X) i) Type judgements are expressed as P ··· Γ � ∆, where Γ is a
context of sockets and ∆ is a context of plugs, and P is a net, the witness of this judgement.

ii) Type assignment for X is defined by the following rules:

(cap) : 〈y·α〉 ··· Γ,y:A � α : A,∆ (imp) :
P ··· Γ � α : A,∆ Q ··· Γ, x:B � ∆

Pα̂ [y] x̂Q ··· Γ,y:A→B � ∆

(exp) :
P ··· Γ, x:A � α : B,∆

x̂Pα̂·β ··· Γ � β:A→B,∆
(cut) :

P ··· Γ � α : A,∆ Q ··· Γ, x:A � ∆

Pα̂† x̂Q ··· Γ � ∆

We write P ··· Γ � ∆ if there exists a derivation that has this judgement in the bottom line.

Notice that the system does not deal with contraction or weakening; in fact, that’s the reason
the propagation rules are present in X . For a linear version of X that has explicit contraction
and weakening, see [16]. Notice that Γ and ∆ carry the types of the free connectors in P, as
unordered sets. There is no notion of type for P itself, instead the derivable statement shows
how P is connectable.

Example 3.3 (An inhabited proof of Peirce’s Law)

(cap)〈y·δ〉 ··· y:A � δ:A,η:B
(exp)

ŷ〈y·δ〉η̂ ·α ··· � α:A→B,δ:A
(cap)〈w·δ〉 ··· w:A � δ:A
(imp)

(ŷ〈y·δ〉η̂ ·α)α̂ [z] ŵ〈w·δ〉 ··· z:(A→B)→A � δ:A
(exp)

ẑ((ŷ〈y·δ〉η̂ ·α) α̂ [z] ŵ〈w·δ〉) δ̂·γ ··· � γ:((A→B)→A)→A

The following soundness result is proven in [5]:

Theorem 3.4 (Witness reduction) If P ··· Γ � ∆, and P → Q, then Q ··· Γ � ∆.

4 The relation with the Lambda Calculus

In this section, we will briefly highlight the relation between the λ-calculus and X , from [5].
We assume the reader to be familiar with λ-calculus; the direct encoding of λ-terms into X is
defined by:

Reflections on Type Theory, Lambda Calculus, and the Mind, 2007 7

Definition 4.1 (Interpreting the λ-calculus) The interpretation of lambda terms into X in
the context α, 		M

α

λ, is defined by:

		x

α
λ =

∆ 〈x·α〉
		λx.M

α

λ =
∆ x̂		M

β

λβ̂·α, β fresh
		MN

α

λ =
∆ 		M

γ

λγ̂ † x̂(N

β
λβ̂ [x] ŷ〈y·α〉), x,y, β,γ fresh

We can even represent substitution explicitly (so represent λx) via 		·

·λx, by adding the clause

		M[N/x]

α
λx = 		N

γ

λxγ̂ † x̂		M

α
λx, γ fresh

Notice that every sub-term of 		M

α has exactly one free plug; also, this interpretation is the
standard way of encoding natural deduction in the sequent calculus.

In [4], the following relation is shown between reduction in λ-calculus and X :

Theorem 4.2 ([4]) If M →β N, then 		M

α → 		N

α; this is true also for cbn and cbv.

To strengthen the fact that we consider more than just those nets that represent proofs, it is
straightforward to verify that 		∆∆

β

λ → 		∆∆

β
λ.

It is worthwhile to notice that the image of Λ under the interpretation function 		·

α
λ does

not generate a confluent sub-calculus, since we can show both

		(λx.xx)(yy)

α
λ →v 〈y·σ〉σ̂ [y] ẑ(〈z·τ〉τ̂ [z] û〈u·α〉)

and also
		(λx.xx)(yy)

α

λ →n 〈y·σ〉σ̂ [y] ẑ((〈y·σ〉σ̂ [y] ẑ〈z·τ〉) τ̂ [z] û〈u·α〉)
Notice that both reductions return normal forms, and that these are different, so 		(λx.xx)(yy)

α

λ

has two normal forms (see also [4]); this in fact corresponds to the fact that (λx.xx)(yy) has
different normal forms with respect to cbn and cbv reduction.

5 The relation with λµ

In this section we will briefly discuss the result regarding the relation between λµ and X ,
as previously presented in [5] and [2]. Parigot’s λµ is a proof-term syntax for classical logic,
different in approach from X in that it is expressed in the setting of Natural Deduction. The
typing system of λµ is isomorphic to the multi-conclusion logical system; as X , it uses two
disjoint sets of variables (Roman letters and Greek letters). The sequents typing terms are of
the form Γ � A | ∆ , marking the conclusion A as active.

Definition 5.1 (λµ (cf [19, 12]) The terms of λµ are defined by the grammar:

M, N ::= x | λx.M | MN | µβ.[α]M

Reduction on λµ-terms is defined as the compatible closure of the rules:

logical (β) : (λx.M)N → M[N/x]
structural (µ) : (µα.[β]M)N → µγ.([β]M)[N·γ/α]

renaming : µα.[β](µγ.[δ]M) → µα.[δ]M[β/γ]

erasing : µα.[α]M → M, if α does not occur in M.

where M[N·γ/α] stands for the term obtained from M in which every (pseudo) sub-term of

Reflections on Type Theory, Lambda Calculus, and the Mind, 2007 8

the form [α]M′ is substituted by [γ](M′N) (γ is a fresh variable).
The typing rules for λµ are:

(x:A ∈ Γ)
Γ �λµ x : A |∆

Γ �λµ M : A→B |∆ Γ �λµ N : A |∆
Γ �λµ MN : B |∆

Γ, x:A �λµ M : B |∆
Γ �λµ λx.M : A→B |∆

Γ �λµ M : B |α:A, β:B,∆

Γ �λµ µα.[β]M : A |β:B,∆

Γ �λµ M : B |α:B,∆

Γ �λµ µα.[α]M : B |∆

This notion of type assignment is a natural extension of that for the λ-calculus (apart from a
trailing ∆, the first three rules are exactly the same), and adds the notion that there is a main,
or active, conclusion, labelled by a term of the calculus, and alternative conclusions, labelled by
α, β,

We will now define how to interpret λµ in X .

Definition 5.2 (Interpretation of λµ in X) We define 		·

α
λµ as 		·

α

λ, by adding the alter-
native:

		µδ.[γ]M

α
λµ =

∆ 		M

γ
λµδ̂ † x̂〈x·α〉

Notice that, in the interpretation of the λ-calculus, we can only connect to the plug that
corresponds to the name of the term itself, whereas for the λµ-calculus, we can also connect
to plugs that occur inside, i.e., to named sub-terms.

The following lemma shows how µ-substitution can be expressed in X .

Lemma 5.3 i) 		M

δ
λµδ̂ † x̂(N

β

λµβ̂ [x] ŷ〈y·γ〉) ↓ 		M[N·γ/δ]N

γ
λµ.

ii) 		M

ν
λµδ̂ † x̂(N

β

λµβ̂ [x] ŷ〈y·γ〉) ↓ 		M[N·γ/δ]

ν
λµ, if δ �= ν.

In [5] it is shown that the encoding of λµ-terms is correct, as stated below; notice that, unlike
for the λ-calculus, it is only shown that the interpretation is preserved modulo equivalence,
not modulo reduction; a similar restriction holds for the interpretation of λµ in λµµ̃ achieved
in [10]1. We can now show that λµ’s reduction is preserved by our interpretation.

Theorem 5.4 (Simulation of cbn for λµ) If M →n N then 		M

α
λµ ↓ 		N

α

λµ.

We can also show that types are preserved by the interpretation:

Theorem 5.5 If Γ �λµ M : A |∆, then 		M

α
λµ ··· Γ � α:A,∆.

We can even go back again, and interpret X in λµ, as done in [2]. However, since reduction
is confluent in λµ, we are forced to consider confluent sub-reduction systems of X , like cbn
and cbv. The type-preserving properties of these two encodings are achieved via the standard
double negation translation, followed by double negation elimination.

Definition 5.6 First, let Ω be any (fixed) type and, for convenience, ¬T ≡ T→Ω. Also, take

(force)F =
∆

µτ.[ω]F λt.µ!.[τ]t =v F− (delay)t =
∆

λ f . f t

Then force : ¬¬T→T and delay : T→¬¬T and force ◦ delay is the identity on T, for every T.

1 A corrected version of this paper is available from Herbelin’s home page.

Reflections on Type Theory, Lambda Calculus, and the Mind, 2007 9

Definition 5.7 The cbn interpretation of T, 		T

n
µ =

∆ ¬¬		T

n
µ′′ is defined inductively by:

		φ

n
µ′′ =∆ φ,

		A→B

n
µ′′ =∆ 		A

n

µ→		B

n
µ

Also 		Γ, x:T

n
µ =

∆ 		Γ

n
µ, x:		T

n

µ.

Type recovery is possible, owing to the following result.

Lemma 5.8 For any type T, there exist ϕT : 		T

n
µ→T and ψT : T→		T

n

µ.

The first step of the interpretation is type-free, athough our definition aims at complying
with types later; the notation µ!.C is a shortcut for µη.C where η is a fresh µ-variable.

Definition 5.9 (Call by name) Let

		〈x·α〉

n
µ′ ′ =∆ λv.µ!.[α]λ f . f v

		Pβ̂ [x] ŷQ

n
µ′ ′ =∆ λv.µ!.[ω](λy.µ!.		Q

n

µ)v µβ.		P

n
µ

For P any X -term, we define 		P

n
µ by structural induction

		〈x·α〉

n
µ =

∆
[ω]x		〈x·α〉

n

µ′ ′
		ŷPβ̂·α

n

µ =
∆

[α]λ f . f λy.µβ.		P

n
µ

		Pβ̂ [x] ŷQ

n
µ =

∆
[ω]x		Pβ̂ [x] ŷQ

n

µ′′
		Pα̂† x̂Q

n

µ =
∆ 		Pα̂ † x̂Q

n

µ =
∆

[ω](λx.µ!.		Q

n
µ)µα.		P

n

µ

		Pα̂ † x̂Q

n
µ =

∆
[ω](µα.		P

n

µ)		Q

n
µ′ ′

We can now first show that the encoding is faithful.

Theorem 5.10 For all X -terms P, Q, if P→n
∗Q, then Pn

Ω=n Qn
Ω.

The main result is that type contexts are preserved.

Theorem 5.11 (Conservation of types in cbn) For any P ··· Γ � ∆ in X , and type Ω there exists
a λµ-term Pn

Ω such that Γ �λµ Pn
Ω : Ω | ∆.

We can show similar results for cbv-reduction.

Definition 5.12 (Call by value) For P any X -term, we define Pv
µ

by structural induction:

〈x·α〉v
µ
=
∆

[α]λ f . f x
ŷPβ̂·αv

µ
=
∆

[α]λ f . f λy.µβ. Pv
µ

Pβ̂ [x] ŷQv
µ
=
∆

[ω](µβ. Pv
µ
)λv.µ!.[ω](x v)λy.µ!. Qv

µ

Pα̂† x̂Qv
µ
=
∆ Pα̂ † x̂Qv

µ
=
∆

[ω](µα. Pv
µ
)λx.µ!. Qv

µ

Pα̂ † x̂Qv
µ
=
∆

[ω](λx.µ!. Qv
µ
)µα. Pv

µ−

The faithfulness result is:

Theorem 5.13 For all X -terms P, P′, if P→v P′, then Pv
Ω =v P′

v
Ω.

Theorem 5.14 (Conservation of types in cbn) For any P ··· Γ � ∆ in X , and type Ω there exists

Reflections on Type Theory, Lambda Calculus, and the Mind, 2007 10

a λµ-term Pv
Ω such that Γ �λµ Pv

Ω : Ω | ∆.

6 The relation with λµµ̃

Another proof-system has been proposed for classical sequent calculus is Curien and Her-
belin’s λµµ̃-calculus. We will see that it is possible to relate this formalism to X , in both
directions.

The syntax of λµµ̃, as presented in [10], has three different categories: commands, terms,
and contexts or co-terms. Correspondingly, they are typed by three kinds of sequents: the
usual sequents Γ � ∆ type commands, while the sequents typing terms (resp. contexts) are of
the form Γ � A | ∆ (resp. Γ | A � ∆), marking the conclusion (resp. hypothesis) A as active, as
in λµ.

Definition 6.1 The syntax of λµµ̃’s commands, terms and contexts is defined by:

c ::= 〈v | e〉 (commands)
e ::= α | v·e | µ̃x.c (contexts)
v ::= x | λx.v | µβ.c (terms)

Reduction in λµµ̃ is defined by:

(→) : 〈λx.v1 |v2 · e〉 → 〈v2 | µ̃x.〈v1 | e〉〉
(µ) : 〈µβ.c | e〉 → c[e/β]

(µ̃) : 〈v | µ̃x.c〉 → c[v/x]

Typing for λµµ̃ is defined by:

(cut) :
Γ �λµµ̃ v : A |∆ Γ | e : A �λµµ̃ ∆

〈v | e〉 : Γ �λµµ̃ ∆
(µ̃) :

c : Γ, x : A �λµµ̃ ∆

Γ | µ̃x.c : A �λµµ̃ ∆
(µ) :

c : Γ �λµµ̃ α : A,∆

Γ �λµµ̃ µα.c : A |∆

(Ax-c) : Γ | α : A �λµµ̃ α:A,∆

(LI) :
Γ �λµµ̃ v : A |∆ Γ | e : B � ∆

Γ | v · e : A→B �λµµ̃ ∆

(Ax-t) : Γ, x:A �λµµ̃ x : A |∆

(RI) :
Γ, x:A �λµµ̃ v : B |∆

Γ �λµµ̃ λx.v : A→B |∆

With conventional notations about contexts, v · e is to be thought of as e[[] v].
We see here how a term (context) is built either by introducing ‘→’ on the right-hand side

(left-hand side) of a sequent, or just by activating one conclusion (hypothesis) from a sequent
typing a command: µα.c is inherited from λµ, and µ̃x.c is to be thought as let x = [] in c. Note
that the type of a context is the type that a term is expected to have in order to fill the hole,
much like the import net in X .

The system has a critical pair 〈µα.c1 | µ̃x.c2〉 and applying in this case rule (µ) gives a call-
by-value evaluation, whereas applying rule (µ̃) gives a call-by-name evaluation. As can be
expected, the system with both rules is not confluent.

We can show that there exists an obvious translation from X into λµµ̃:

Definition 6.2 (Translation of X into λµµ̃ [15])

		〈x·α〉

X =
∆ 〈x |α〉

		x̂Pα̂·β

X =
∆ 〈λx.µα.		P

X |β〉

		Pα̂ [x] ŷQ

X =
∆ 〈x | (µα.		P

X)·(µ̃y.		Q

X)〉

		Pα̂† x̂Q

X =
∆ 〈µα.		P

X | µ̃x.		Q

X〉

Reflections on Type Theory, Lambda Calculus, and the Mind, 2007 11

Definition 6.3 (Translation of λµµ̃ into X [15])

		〈v | e〉

λµµ̃ =
∆ 		v

λµµ̃

α α̂ † x̂		e

λµµ̃
x

		x

λµµ̃
α =

∆ 〈x·α〉
		λx.v

λµµ̃

α =
∆ x̂		v

λµµ̃

β β̂·α
		µβ.c

λµµ̃

α =
∆ 		c

λµµ̃β̂ † x̂〈x·α〉

		α

λµµ̃
x =

∆ 〈x·α〉
		v·e

λµµ̃

x =
∆ 		v

λµµ̃

α α̂ [x] ŷ		e

λµµ̃
y

		µ̃y.c

λµµ̃
x =

∆ 〈x·β〉β̂ † ŷ		c

λµµ̃

Also these interpretations respect reduction and types.

7 The π-calculus with pairing

In the rest of this overview we will summarise the results of [3], that studies the relation
between X and the π-calculus. The notion of π-calculus that is considered in that paper is
slightly different from other systems studied in the literature. The reason for this change
lies directly in the calculus that is going to be interpreted, X : since we are going to model
sending and receiving pairs of names as interfaces for functions, we consider the π-calculus
with pairing, inspired by [1].

To ease the definition of the interpretation function of circuits in X to processes, we deviate
slightly from the normal practice, and write either Greek characters α, β,υ, . . . or Roman char-
acters x,y,z, . . . for channel names; we use n for either a Greek or a Roman name, and ‘·’ for
the generic variable. We also introduce a structure over names, such that not only names but
also pairs of names can be sent (but not a pair of pairs). We also introduce the let-construct to
deal with inputs of pairs of names that get distributed over the continuation.

Definition 7.1 Channel names and data are defined by:

a,b, c,d ::= x | α names p ::= a | a,b data

Notice that pairing is not recursive. Processes are defined by:

P, Q ::= 0 Nil
| P |Q Composition
| ! P Replication
| (νa)P Restriction

| a(x). P Input
| a〈p〉. P Output
| let x,y = z in P Let construct

We abbreviate a(x). let y,z = x in P by a(y,z). P, and (νm) (νn)P by (νm,n)P.

Definition 7.2 (Congruence) The structural congruence is the smallest equivalence relation
closed under contexts defined by the following rules:

P |0 ≡ P
P |Q ≡ Q |P

(P |Q) |R ≡ P | (Q |R)
! P ≡ P | ! P

(νn)0 ≡ 0
(νm,n)P ≡ (νn,m)P

(νn) (P |Q) ≡ P | (νn)Q if n �∈ fn(P)
let x,y = a,b in R ≡ R[a/x,b/y]

Reflections on Type Theory, Lambda Calculus, and the Mind, 2007 12

Definition 7.3 i) The reduction relation of the π-calculus is defined by following rules:

(synchronisation) : a〈b〉. P | a(x). Q →π P |Q[b/x]
(binding) : P →π P′ ⇒ (νn)P →π (νn)P′

(composition) : P →π P′ ⇒ P |Q →π P′ |Q
(congruence) : P ≡ Q & Q →π Q′ & Q′ ≡ P′ ⇒ P →π P′

ii) We write →∗
π for the reflexive and transitive closure of →π .

iii) We write P↓n if P ≡ (νp1 . . . pm) (α.R |Q), where α = n〈b〉 or α = n(x) and n �= p1 . . . pm for
some R, Q.

iv) We write Q⇓n if there exists P such that Q →∗
π P and P↓n.

Notice that a〈 b, c 〉. P | a(x,y). Q →∗
π P |Q[b/x, c/y] .

Definition 7.4 Barbed contextual simulation is the largest relation �π such that P �π Q implies:

• for each name n, if P↓n then Q⇓n;
• for any context C, if C[P]→π P′, then for some Q′, C[Q]→∗

π Q′ and P′ �π Q′.

8 Interpreting X into π

In this section, we define an encoding from nets in X onto processes in π. Since in π it is
impossible to reduce under an input, as in [17, 20, 14], we cannot fully encode reduction in
X , but have to limit the notion of reduction in that reduction is not possible under an import.
We show that this limited reduction in X is preserved by the encoding, as well as is type
assignment.

As mentioned in the introduction, we add pairing to the π-calculus in order to be able to
deal with arrow types. Notice that using the polyadic π-calculus would not be sufficient:
since we would like the interpretation to respect reduction, in particular we need to be able
to reduce the interpretation of (x̂Pα̂·β) β̂ † ẑ〈z·γ〉 to that of x̂Pα̂·γ (with β not free in P). So,
choosing to encode the export of x and α over β as β〈x,α〉 would force the interpretation of
〈z·γ〉 to receive a pair of names. But requiring for a capsule to always deal with pairs of names
is too restrictive, it is desirable to allow capsules to deal with single names as well. So, rather
than moving towards the polyadic π-calculus, we opt for the following: communication will
take place sending a single item, which is either a name or a pair of names. This implies
that a process sending a pair can also successfully communicate with a process not explicitly
demanding to receive a pair.

Definition 8.1 (Notation) In the definition below, we use ‘·’ for the generic variable, to sep-
arate plugs and sockets (and their interpretation) from the ‘internal’ variables of π. Also,
although the departure point is to view Greek names for outputs and Roman names for in-
puts, by the very nature of the π-calculus (it is only possible to communicate using the same
channel for in and output), in the implementation we are forced to use Greek names also for
inputs, and Roman names for outputs; in fact, we need to explicitly convert ‘an output sent on
α is to be received as input on x’ via ‘α(·)x〈·〉’ (so α is now also an input, and x also an output
channel), which for convenience is abbreviated into α=x.

Reflections on Type Theory, Lambda Calculus, and the Mind, 2007 13

Definition 8.2 The interpretation of circuits is defined by:

〈x·α〉π = x(·). α〈·〉
ŷQβ̂·α π = (νy, β) (Q π |α〈 y, β 〉)

Pα̂ [x] ŷQ π = x(v,d). (να) (! P π | ! α=v) | (νy) (! d=y | ! Q π)

Pα̂† x̂Q π = Pα̂ † x̂Q π = Pα̂ † x̂Q π = (να, x) (! P π | ! α=x | ! Q π)

Notice that the interpretation of the inactive cut is the same as that of activated cuts.

The need to restrict reduction in X , as mentioned in the beginning of this section, is clear
after the definition of encoding. The alternative for the import Pα̂ [x] ŷQ (and not, perhaps
surprisingly, the export, which corresponds to a function) creates a process that inputs a
pair, over a combination of processes, including the interpretation of P and Q; therefore, all
cuts that appear in either P or Q are inactive after the interpretation. Since if P → P′ and
Q → Q′, then Pα̂ [x] ŷQ → P′α̂ [x] ŷQ′, this reduction cannot be mimicked by the encoding,
and therefore has to be blocked.

One way to overcome this shortcoming would be to allow equivalence between processes in
our reduction system for π, generated by silent actions (normally called τ-actions), which are
communications between processes that are hidden from the context, as are reductions in X
(or in the λ-calculus, for that matter). This would allow for a rule like:

P →τ Q

x(·). P ≡ x(·). Q

When we use this kind of equivalence in our system, we can simulate full cut-elimination.
Notice that, by construction of the encoding, we are actually using the asynchronous π-calculus
as a model for cut-elimination.

The correctness result for the encoding essentially states that the image of the encoding
in π contains some extra behaviour that can be disregarded. The precise formulation of the
correctness lemma is stated below.

Lemma 8.3 (Correctness) If P → P′, then for some Q, P π →∗
π Q and P′

π �π Q.

One of the main goals we aimed for with our interpretation was: if α does not occur free
in P, and x does not occur free in Q, then both Pα̂† x̂Q π →π P π and Pα̂† x̂Q π →π Q π .
However, we have not achieved this; we can at most show that Pα̂† x̂Q π reduces to a process
that contains P π | Q π . It is as yet not clear what this say about either X , or lk, or π, or
simply about the encoding. The problem seems to be linked to the fact that π does not have
an automatic cancellation: since communication is based on the exchange of channel names,
processes that do not communicate with each other just ‘sit next to each other’. In X , a
process that wants to be ‘heard’, but is not ‘listened’ to, disappears; this corresponds to a
proof contracting to a proof, not to two proofs for the same sequent. But, when moving to
linear X , or ∗X , studied in [16], this all changes. Since there reduction can generate non
connected nets, it seems promising to explore an encoding of ∗X in π.

9 Classic type assignment for π

We will now introduce a notion of type assignment for processes in π, that describes the
‘input-output interface’ of a process. This notion is novel in that it assigns to channels the type
of the input or output that is sent over the channel; in that it differs from normal notions, that

Reflections on Type Theory, Lambda Calculus, and the Mind, 2007 14

would state:

P ··· Γ,b:A � ∆

a〈b〉. P ··· Γ,b:A � a:ch(A),∆

In order to be able to encode lk, types in our system will not be decorated with channel
information.

As for the notion of type assignment on X terms, in the typing judgements we always write
channels used for input on the left and channels used for output on the right; this implies
that, if a channel is both used to send and to receive, it will appear on both sides.

Definition 9.1 (Type assignment) The types and contexts we consider for the π-calculus are
defined like those of Definition 3.1, generalised to names.

Type assignment for π-calculus is defined by the following sequent system:

(0) : 0 ··· Γ �π ∆

(!) :
P ··· Γ �π ∆

! P ··· Γ �π ∆

(ν) :
P ··· Γ, a:A �π a:A,∆

(νa)P ··· Γ �π ∆

(|) :
P ··· Γ �π ∆ Q ··· Γ �π ∆

P |Q ··· Γ �π ∆

(pair-out) :
P ··· Γ,b:A �π c:B,∆

a〈 b, c 〉. P ··· Γ,b:A �π a:A→B, c:B,∆

(let) :
P ··· Γ,y:B �π x:A,∆

let x,y = z in P ··· Γ,z:A→B �π ∆

(in) :
P ··· Γ, x:A �π x:A.∆

a(x). P ··· Γ, a:A �π ∆

(out) :
P ··· Γ,b:A �π b:A,∆

a〈b〉. P ··· Γ,b:A �π a:A,b:A,∆

Notice that it is possible to derive a〈a〉 ··· �π a:A, but that this is not generated by the encoding.
The ‘input-output interface of a π-process’ property is nicely preserved by all the rules; it also

explains how the type system confines the handling of pairs to the rules (let) and (pair-out).
It should be remarked that this notion of type assignment does not (directly) relate back to

lk. For example, rules (|) and (!) do not change the contexts, so do not correspond to any
rule in the logic, not even to a λµ-style activation step. Moreover, rule (ν) just hides a formula.

Example 9.2 We can derive

P ··· Γ,y:B �π x:A,∆

let x,y = z in P ··· Γ,z:A→B �π ∆

a(z). let x,y = z in P ··· Γ, a:A→B �π ∆

so the following rule is derivable:

(pair-in) :
P ··· Γ,y:B �π x:A,∆

a(x,y). P ··· Γ, a:A→B �π ∆

Notice that the rules (pair-out) and (pair-in) correspond to the logical rules (⇒R) and (⇒L).
We now come to the main results for our notion of type assignment.

Theorem 9.3 (Witness reduction) If P ··· Γ �π ∆ and P →π Q, then Q ··· Γ �π ∆.

Reflections on Type Theory, Lambda Calculus, and the Mind, 2007 15

The following theorem states that the encoding preserves types.

Theorem 9.1 If P ··· Γ � ∆, then P π ··· Γ �π ∆.

Conclusions

We have seen that X is a very powerful formalism, capable of expressing a large variety of
(essentially different) calculi, preserving types, and that computation in X looks very much
like synchronisation in π, so that that calculus is a good system to study classical logic.

Acknowledgement

Of course this work would not exist without my co-authors and collaborators: I would like
to thank Pierre Lescanne, Stéphane Lengrand, Alexander Summers, Jayshan Raghunandan,
Philippe Audebaud, Luca Cardelli and Maria Grazia Vigliotti for their effort and energy.

References

[1] M. Abadi and A. Gordon. A Calculus for Cryptographic Protocols: The Spi Calculus. In Proceedings
of the Fourth ACM Conference on Computer and Communications Security, pages 36–47. ACM Press,
1997.

[2] P. Audebaud and S. van Bakel. Understanding X with λµ. Consistent interpretations of the im-
plicative sequent calculus in natural deduction. Submitted.

[3] S. van Bakel, L. Cardelli, and M.G. Vigliotti. From X to π; representing the classical sequent
calculus in π-calculus. Submitted.

[4] S. van Bakel, S. Lengrand, and P. Lescanne. The language X : circuits, computations and classical
logic. In ICTCS’05, LNCS 3701, pages 81–96, 2005.

[5] S. van Bakel and P. Lescanne. Computation with classical sequents. Mathematical Structures of
Computer Science, 2008. To appear.

[6] S. van Bakel and J. Raghunandan. Implementing X . In TermGraph’04, ENTCS, 2005.
[7] S. van Bakel and J. Raghunandan. Capture avoidance and garbage collection for X . Submitted.
[8] H. Barendregt. The Lambda Calculus: its Syntax and Semantics. North-Holland, Amsterdam, revised

edition, 1984.
[9] R. Bloo and K.H. Rose. Preservation of strong normalisation in named lambda calculi with explicit

substitution and garbage collection. In CSN’95, pages 62–72, 1995.
[10] P.-L. Curien and H. Herbelin. The Duality of Computation. In Proceedings of the 5 th ACM SIGPLAN

International Conference on Functional Programming (ICFP’00), pages 233–243. ACM, 2000.
[11] G. Gentzen. Untersuchungen über das Logische Schliessen. Mathematische Zeitschrift, 39:176–210

and 405–431, 1935.
[12] Ph. de Groote. On the relation between the λµ-calculus and the syntactic theory of sequential

control. In LPAR’94, LNCS 822, pages 31–43, 1994.
[13] H. Herbelin. C’est maintenant qu’on calcule: au cœur de la dualité. Mémoire de habilitation, Univ. Paris

11, 2005.
[14] K. Honda, N. Yoshida, and M. Berger. Control in the π-calculus. In Proc. Fourth ACM-SIGPLAN

Continuation Workshop (CW’04), 2004.
[15] S. Lengrand. Call-by-value, call-by-name, and strong normalization for the classical sequent cal-

culus. In WRS 2003, ENTCS 86, 2003.
[16] P. Lescanne and D. Žunić. ∗X : a diagrammatic calculus with a classical fragrance. Manuscript.
[17] R. Milner. Function as processes. Mathematical Structures in Computer Science, 2(2):269–310, 1992.

Reflections on Type Theory, Lambda Calculus, and the Mind, 2007 16

[18] M. Parigot. An algorithmic interpretation of classical natural deduction. In LPAR’92, LNCS 624,
pages 190–201, 1992.

[19] M. Parigot. Classical proofs as programs. In Kurt Gödel Colloquium, pages 263–276, 1993.
[20] D. Sangiorgi and D. Walker. On barbed equivalences in the π-calculus. In CONCUR’01, LNCS

2154, 2001.
[21] A. Summers and S. van Bakel. Approaches to polymorphism in classical sequent calculus. In

ESOP’06, LNCS 3924, pages 84 – 99, 2006.
[22] C Urban. Strong Normalisation for a Gentzen-like Cut-Elimination Procedure’. In TLCA’01, LNCS

2044, pages 415–429, 2001.
[23] C. Urban and G. M. Bierman. Strong normalisation of cut-elimination in classical logic. Fundamen-

tae Informaticae, 45(1,2):123–155, 2001.
[24] Christian Urban. Classical Logic and Computation. PhD thesis, Univ. Cambridge, 2000.
[25] Philip Wadler. Call-by-Value is Dual to Call-by-Name. In Proceedings of the eighth ACM SIGPLAN

international conference on Functional programming, pages 189 – 201, 2003.

