
Orchestrated compliance
for session-based client/server interactions∗

(Proceedings of 8th Interaction and Concurrency Experience, EPTCS 189, pp. 21-36)

Steffen van Bakel
Imperial College London

London, UK
svb@doc.ic.ac.uk

Franco Barbanera
Università di Catania

Catania, Italy
barba@dmi.unict.it

Ugo de’Liguoro
Università di Torino

Torino, Italy
deliguoro@di.unito.it

s.vanbakel@imperial.ac.uk

Abstract

We investigate the notion of orchestrated compliance for client/server interactions in the
context of session contracts. Devising the notion of orchestrator in such a context makes it
possible to have orchestrators with unbounded buffering capabilities and at the same time
to guarantee any message from the client to be eventually delivered by the orchestrator to
the server, while preventing the server from sending messages which are kept indefinitely
inside the orchestrator. The compliance relation is shown to be decidable by means of 1) a
procedure synthesising the orchestrators, if any, making a client compliant with a server, and
2) a procedure for deciding whether an orchestrator behaves in a proper way as mentioned
before.

1 Introduction

Session types and contracts are two formalisms used to study client/server protocols. Session
types have been introduced in [18] as a tool for statically checking safe message exchanges
through channels. Contracts, on the other hand, as proposed in [13, 20, 14, 15], are a subset
of CCS without τ, that address the problem of abstractly describing behavioural properties of
systems by means of process algebra. In between these two formalisms lie session contracts1

as introduced in [2, 4, 9, 10]; this is a formalism interpreting the session types into a subset of
contracts.

In the theory of contracts, as well as in the formalism of session contracts, the notion of
compliance plays a central role. A client ρ is defined as being compliant with a server σ

(written as ρ � σ) whenever all of its requests are satisfied by the server. Now it might be
the case that client satisfaction cannot be achieved just because of a difference in the order
in which the partners exchange information, or because one of them provide some extra un-
needed information.

Consider the example of a meteorological data processing system (MDPS) that is perma-
nently connected to a weather station to which it sends, according to its processing needs,
particular data requests. For the sake of simplicity, we consider just two particular requests,
namely for temperature and humidity. After the requests, the MDPS expects to receive the

∗ This work was partially supported by COST Action IC1201 BETTY, MIUR PRIN Project CINA Prot.
2010LHT4KM and Torino University/Compagnia San Paolo Project SALT.

1 They were dubbed session behaviours in [2, 4]. For sake of uniformity and since session contract sounds more
appealing, we adhere here to that name.

Proceedings of 8th Interaction and Concurrency Experience, EPTCS 189, pp. 21-36 2

data in the order they were requested. In the session-contracts formalism the interface for the
simplified MDPS can be stated as follows:

MDPS = recx .tempReq·humReq·temperature·humidity·x
(Here, as in CCS, a symbol like ‘a’ stands for on input action, whereas ‘a’ denotes the cor-
responding output). We assume a weather station to be able to send back the asked-for
information in the order decided by its sensors, interspersed with information about wind
speed:

WeatherStation = recx .tempReq·humReq·(temperature·humidity·wind·x
⊕
humidity·temperature·wind·x)

With the standard notion of compliance, it is not difficult to check that MDPS �� WeatherStation ,
since the client MDPS has no input action for the wind data, and also since it could occur that
the temperature and humidity data are delivered in a different order than expected by the
MDPS.

A natural solution to this would consist of devising a process that acts as a mediator (here
called orchestrator) between the client and the server, coordinating them in a centralised way
in order to make them compliant. This sort of solution is the one adopted in the practice of
web-service interaction, in particular for business processes, where the notion of orchestration
has been introduced and developed:

“ Orchestration: Refers to an executable business process that may interact with both internal
and external web services. Orchestration describes how web services can interact at the message
level, including the business logic and execution order of the interactions. ” [22]

In the context of the theory of contracts, this solution was formalised and investigated by
Padovani [21], where orchestrators are processes that cannot affect the internal decisions of
the client nor of the server, but can affect the way their synchronisation is carried out.

The orchestrating actions an orchestrator can perform have the following forms:

〈a,a〉 (resp. 〈a,a〉) : the orchestrator gets a from the client (resp. server) and immediately
delivers it to the server (resp. client) in a synchronous way.

〈a, ε〉 (resp. 〈ε,a〉) : the orchestrator gets a from the client (resp. server) and stores it in the
buffer.

〈a, ε〉 (resp. 〈ε,a〉) : the orchestrator takes a from the buffer and sends it to the client (resp.
server).

So a possible orchestrator enabling compliance for our example would be

f = recx .〈tR,tR〉·〈hR,hR〉·(〈t,t〉·〈h,h〉·〈ε,w〉·x
∨
〈ε,h〉·〈t,t〉·〈h, ε〉·〈ε,w〉·x)

where tR, hR, t, h, and w stand for tempReq, humReq, temperature, humidity, and wind, respec-
tively. The orchestrator f rearranges the order of messages when necessary, and retains the
wind information, not needed by MDPS.

Actually, the orchestrator f is not a valid orchestrator in the sense of [21]: indeed the wind

information is never delivered to the client (i.e. it is implicitly discarded), so that the buffer
corresponding to f would be unbounded. Unbounded buffers are not allowed in [21], where
boundedness of buffers is used to guarantee both decidability and the possibility of synthe-
sising orchestrators. In a session setting instead, as is the present one, decidability and or-

Proceedings of 8th Interaction and Concurrency Experience, EPTCS 189, pp. 21-36 3

σ,ρ ::= 1 success
| a1 ·σ1 + · · ·+ an ·σn external choice
| a1 ·σ1 ⊕ · · · ⊕ an ·σn internal choice
| x variable
| recx .σ recursion

Figure 1: The grammar of raw session-contracts

chestrators synthesis can be established even in presence of unbounded buffering capabilities
of orchestrators.

In a two-parties session-based interaction, the choice among several continuations always
depends on just one of the two actors. To let our formalism fully adhere to such a viewpoint
our session orchestrators, besides (as argued in [21]) being processes that cannot affect the inter-
nal decision of the client or the server, are such that they do not create any non-determinism
besides that already present in the partners. This will correspond to restricting the syntax in
such a way that orchestrators like, for instance, 〈ε,a〉·f1 ∨ 〈b, ε〉·f2, are not allowed. In fact, in
the latter orchestrator, the choice of receiving an input from the client or from the server would
not depend solely on the partners. The f described above does respect this syntax restriction.

Moreover, in our system it will be possible to prove that

f : MDPS �� WeatherStation

i.e.: MDPS and WeatherStation manage to be compliant (represented by �� in our context) when
their interaction is mediated by f.

In our system we will also manage to prevent the presence of fake orchestrated complying in-
teractions, like that between the client a .b and the server a through the orchestrator 〈a,a〉·〈b, ε〉.
In this case the client gets the illusion that all its requests are satisfied, whereas its output b
never reaches the server, but will be indefinitely kept inside the orchestrator’s buffer. While
in the contract setting of [21] such compliant interactions are allowed, in our session context
we manage to rule out orchestrators behaving like 〈a,a〉·〈b, ε〉, which never deliver a message
from the client to the server.

We shall prove that properties like the one just mentioned, characterising well-behaved or-
chestrators, are decidable. Given an f, decidability of orchestrated compliance through f will
be proved. We will also show that, given a client and a server, it is possible to synthesise all
the orchestrators that make the client and system compliant, if any.

2 Session contracts and orchestrated compliance

Session contracts are a restriction of contracts [20, 15]. They are designed to be in one-to-one
correspondence to session types [18] without delegation (in [2, 4] a version with delegation
was investigated). The restriction consists in constraining internal and external choices in a
way that limits the non-determinism to (internal) output selection.

Definition 2.1 (Session Contracts) i) Let N be a countable set of symbols and N = { a |
a ∈N }. The set RSC of raw session contracts is defined by the grammar in Figure 1, where:

– for external and internal choices, n ≥ 1, and ai ∈ N (hence ai ∈ N) for all 1 ≤ i ≤ n;
– the variable x is a session-contract variable out of a denumerable set; we consider oc-

currences of x in σ bound in recx .σ. An occurrence of x in σ is free if it is not bound,

Proceedings of 8th Interaction and Concurrency Experience, EPTCS 189, pp. 21-36 4

and we write fv(σ) for the set of free variables in σ. σ is said to be closed whenever
fv(σ) = ∅.

Act =N ∪N is the set of actions.
ii) The set SC of session contracts is the subset of closed raw session contracts such that in

a1 ·σ1 + · · ·+ an ·σn and a1·σ1 ⊕ · · · ⊕ an ·σn, the ai and the ai are, in both, pairwise distinct;
moreover, in recx .σ the expression σ is not a variable.

As usual, we abbreviate a1·σ1 + · · ·+ an ·σn by ∑n
i=1 ai ·σi, and a1·σ1 ⊕ · · · ⊕ an ·σn by

⊕n
i=1 ai·σi.

We also use the notations ∑i∈I ai ·σi and
⊕

i∈I ai·σi for finite and non-empty I. We take the
equi-recursive view of recursion, by equating recx .σ with σ{x/rec x .σ}.

The trailing 1 is normally omitted: for example, we will write a + b for a·1 + b·1. Session
contracts will be considered modulo commutativity of internal and external choices.

The operational semantics of session contracts is given in terms of a labeled transition
system (lts) σ

α−→ σ′ where σ,σ′ ∈ SC and α either belongs to a set of actions Act or is an
internal action τ.

Definition 2.2 (lts for Session Contracts) We define the labelled transition system
(SC,Act,−→) by the rules:

a1·σ1 ⊕ · · · ⊕ an ·σn
τ−→ ak ·σk a·σ a−→ σ a1 ·σ1 + · · ·+ an ·σn

ak−→ σk

where 1 ≤ k ≤ n, and σ
α−→ σ′ is short for (σ,α,σ′) ∈ −→. We shall use −→ as shorthand for τ−→.

As usual, we write =⇒ for −→∗ and α
=⇒ for −→∗ α−→−→∗ with α ∈ Act.

Notice that reduction is not defined through contextual rules, so reduction only takes place
at the ‘top’ level. Thereby, it is impossible for recx .σ to unfold more than once without
consuming a guard (remember that σ is not a variable): so recursion is contractive in the
usual sense. We will safely assume that no two consecutive rec binders (as in recx . recy . σ) are
present in a session contract.

We observe that α
=⇒ is well defined, in that if σ ∈ SC and σ

α
=⇒ σ′ (or σ =⇒ σ′), then

σ′ ∈ SC.

Session orchestrators As also done in [21] in the context of the theory of contracts, we intend
to investigate the notion of compliance when the interaction between a client and a server are
mediated by an orchestrator. Different from the contract setting, the session setting we are
in induces some natural restrictions to the syntax of orchestrators, making it safe to have
orchestrators with unbounded buffers. Moreover, it is possible to check whether any output
from the client is eventually delivered by the orchestrator to the server, as well as whether
there might be an infinite interaction which falsely progresses because it is made only of
outputs from the server to the orchestrator (see Section 4).

The set of actions an orchestrator can perform, that we take from [21], have been informally
described in the introduction.2

It can be reasonably argued that orchestrators must not show any internal non-determinism.
Taking into account now the session-based interactions of our setting, such an assumption
should be further extended, keeping in mind that in a session-based client/server interaction

2 One could wonder whether just asynchronous orchestration actions can be taken into account, since any 〈a, a〉
action can be safely mimicked by two asynchronous ones, namely 〈a,ε〉.〈ε, a〉 (similarly for 〈a, a〉). A difference
in fact would arise only for what concerns implementation, since the protocol for a synchronous exchange would
not involve the use of a buffer, which is instead necessary for asynchronous actions. Such an implementation
issue seems unlikely to be related to our theoretical treatment. In contrast, we shall point out in Remark 4.5 how
implementation related aspects might affect our formalisation.

Proceedings of 8th Interaction and Concurrency Experience, EPTCS 189, pp. 21-36 5

any possible non-determinism is due only to the internal non-determinism of the two partners.
We therefore define our session-orchestrators so as to enforce this point of view. It follows that
the only choice we allow in session-orchestrators (represented by ‘∨’ in expressions like f ∨ g)
is an external one, and it is necessarily driven by the internal choice of one of the two partners.
This implies that the actions immediately exhibited by f and g in an orchestrator like f ∨ g
must have the same direction, i.e. must belong to just one of the two subsets {〈a, ε〉, 〈a, a〉 | a ∈
N } or {〈ε, a〉 | 〈a, a〉 | a ∈ N }. Besides, orchestration actions of the form 〈a, ε〉 or 〈ε, a〉 must be
used just as prefixes µ in orchestrators like µ. f .

The other ruled-out cases, like 〈c, ε〉· f ′ ∨ 〈ε, b〉·g′ or 〈c, ε〉· f ′ ∨ 〈ε, b〉·g′, would conflict with
the session viewpoint or, like 〈c, ε〉· f ′ ∨ 〈b, ε〉·g′, would be meaningless according to the syntax
of session contracts.

We now formally define orchestration actions by partitioning them into different syntactic
categories.

Definition 2.3 (Session-orchestration actions) We define OrchAct as the set of session-
orchestration actions described by the following grammar (where a ∈ N and a ∈ N):

µ ::= ιL | ιR | o
ιL ::= 〈a, ε〉 | 〈a, a〉
ιR ::= 〈ε, a〉 | 〈a, a〉
o ::= 〈a, ε〉 | 〈ε, a〉

We let µ,µ′,µ1, . . . range over orchestration actions. By µ we shall denote either a finite se-
quence µ1 . . . µn in OrchAct∗ or an infinite sequence µ1 . . . µn . . . in OrchAct∞.

Session orchestrators are now defined as follows.

Definition 2.4 (Session Orchestrators) We define Orch as the set of session orchestrators,
ranged over by f , g,h, . . ., described by the closed terms generated by the following grammar:

f , g ::= 1

| ιL· f1 ∨ · · · ∨ ιL · fn (n ≥ 1)
| ιR· f1 ∨ · · · ∨ ιR · fn (n ≥ 1)
| o· f
| x
| recx . f

We impose session orchestrators to be contractive, i.e. the f in recx . f is assumed to not be a
variable.

The expression 1 represents the orchestrator offering no action. o· f offers just the orches-
tration action of the category o and continues as f , whereas ιL · f1 ∨ · · · ∨ ιL · fn and ιR · f1 ∨ · · · ∨
ιR · fn offer n (uni-directional) actions of the syntactical categories, respectively, ιL and ιR. Re-
cursive orchestrators can be expressed by means of the rec binder and recursion variables, in
the usual way. As for session contracts, orchestrators are defined as to have recursion variables
guarded by at least one orchestration action. In the following we shall often refer to ‘session
orchestrators’ as simply ‘orchestrators.’ As for session contracts, we take an equi-recursive
point of view, so identify recx . f and f{x/rec x . f}.

We now define the operational semantics of orchestrators as an lts.

Definition 2.5 (lts for Orchestrators) We define the labelled transition system

Proceedings of 8th Interaction and Concurrency Experience, EPTCS 189, pp. 21-36 6

(Orch,OrchAct,−→) by the rules:

µ· f
µ�−→ f

f
µ�−→ f ′

f ∨ g
µ�−→ f ′

g
µ�−→ g′

f ∨ g
µ�−→ g′

Given a sequence µ, we write f
µ�−→ whenever f

µ1�−→ f1
µ2�−→ · · · µn�−→ fn if µ = µ1 · · ·µn ∈ OrchAct∗,

or f
µ1�−→ · · · µn�−→ fn

µn+1�−−→· · · if µ = µ1 · · ·µn · · · ∈ OrchAct∞. We write f � �−→ if there is no µ such
that f

µ�−→.

Definition 2.6 (Orchestrator Traces) Let f ∈ Orch.

i) The set Tr(f) ⊆ (OrchAct∗ ∪ OrchAct∞) of traces of f is defined by: Tr(f) = {µ | f
µ�−→ }.

ii) The set MaxTr(f) ⊆ (OrchAct∗ ∪ OrchAct∞) of maximal traces of f is defined by

MaxTr(f) = {µ ∈ Tr(f) | ∃ f ′ [f
µ�−→ f ′ � �−→] or µ ∈ OrchAct∞ }

As in [21], we define an orchestrated system as a triple 〈ρ, f ,σ〉 (written ρ ‖ f σ) of a (client)
session-contract ρ and a (server) session contract σ interacting with each other while being
supervised by the orchestrator f .

For the operational semantics of orchestrated systems, we define labelled reductions instead
of a reduction relation (as done in [21]). We label orchestrated-systems’ transitions by the
orchestration actions which make them possible, since in our setting we need to check for
particular conditions of orchestrator buffers after the evolution of an orchestrated system. A
buffer can be explicitly coupled with an orchestrator or can be represented implicitly by the
actions performed by the orchestrator. The latter is the choice of [21], that we maintain.

Definition 2.7 (Orchestrated Systems operational semantics) i) The operational seman-
tics of orchestrated systems is defined as follows:

ρ −→ ρ′

ρ ‖ f σ −→ ρ′ ‖ f σ

σ −→ σ′

ρ ‖ f σ −→ ρ ‖ f σ′

ρ
α−→ ρ′ f

〈α,α〉�−−−→ f ′ σ
α−→ σ′

ρ ‖ f σ
〈α,α〉−−−→ ρ′ ‖ f ′ σ′

ρ
α−→ ρ′ f

〈α,ε〉�−−→ f ′

ρ ‖ f σ
〈a,ε〉−−→ ρ′ ‖ f ′ σ

f
〈ε,α〉�−−→ f ′ σ

α−→ σ′

ρ ‖ f σ
〈ε,a〉−−→ ρ ‖ f ′ σ′

ii) We define ρ ‖ f σ �−→ as: ρ ‖ f σ �−→ & ¬∃µ [ρ ‖ f σ
µ

=⇒].

We write
µ

=⇒ for −→∗ ◦ µ−→ ◦ −→∗, and
µ

=⇒ for
µ1
=⇒ ◦· · · ◦ µn

=⇒ (resp.
µ1
=⇒ ◦ µ2

=⇒ ◦· · ·) if µ is
finite (resp. infinite).

We now define a notion of compliance which is coarser than expected because of possible
unfair behaviour of the orchestrators, which will be refined in Section 4.

Definition 2.8 (Disrespectful and Strict Orchestrated Compliance) An orchestrator f is
said to be ρ-σ strict whenever, for any finite µ, f

µ�−→ implies ρ‖ f σ
µ

=⇒ . We define:
i) f : ρ��ds σ if f is ρ-σ strict, and for any µ, ρ′ and σ′, the following holds:

ρ ‖ f σ
µ

=⇒ ρ′ ‖ f ′ σ′ �−→ implies ρ′ = 1.

ii) ρ��ds σ if ∃ f [f : ρ��ds σ].

Proceedings of 8th Interaction and Concurrency Experience, EPTCS 189, pp. 21-36 7

(Ax) :
Γ �inf 1 : 1�ds σ

(Hyp) : Γ, x:ρ�ds σ �inf x : ρ�ds σ

(Cpl∑-L) :
Γ, x: ∑i∈I ai ·ρi �ds σ �inf f ′ : ρp �ds σ

(p ∈ I)
Γ �inf recx .〈ap, ε〉· f ′ : ∑i∈I ai ·ρi �ds σ

(Cpl∑-R) :
Γ, x:ρ�ds ∑i∈I ai ·σi �inf f ′ : ρ�ds σp

(p ∈ I)
Γ �inf recx .〈ε, ap〉· f ′ : ρ�ds ∑i∈I ai ·σi

(Cpl
⊕

-R) :
Γ, x:

⊕
i∈I ai ·ρi �ds ⊕

j∈J bj ·σj �inf f j :
⊕

i∈I ai ·ρi �ds σj (∀j ∈ J)

Γ �inf recx .
∨

j∈J〈ε, bj〉· f j :
⊕

i∈I ai ·ρi �ds ⊕
j∈J bj ·σi

(Cpl
⊕

-L) :
Γ, x:

⊕
i∈I ai ·ρi �ds ⊕

j∈J bj ·σi �inf fi : ρi �ds ⊕
j∈J bj ·σi (∀i ∈ I)

Γ �inf recx .
∨

i∈I〈ai, ε〉· fi :
⊕

i∈I ai ·ρi �ds ⊕
j∈J bj ·σi

(Cpl
⊕

.∑) :
Γ′ �inf fi : ρi �ds ∑j∈J aj ·σj (∀i ∈ H) Γ′ �inf fi : ρi �ds σi (∀i ∈ K)

(I = H ∪ K, K ⊆ J)
Γ �inf recx .(

∨
h∈H〈ah, ε〉· fh) ∨ (

∨
k∈K〈ak, ak〉· fk) :

⊕
i∈I ai ·ρi �ds ∑j∈J aj ·σj

where Γ′ = Γ, x:
⊕

i∈I ai ·ρi�ds ∑j∈J aj ·σj.

(Cpl∑.
⊕
) :

Γ′ �inf f j : ∑i∈I ai ·ρi �ds σj (∀j ∈ H) Γ′ �inf f j : ρj �ds σj (∀j ∈ K)
(J = H ∪ K, K ⊆ I)

Γ �inf recx .(
∨

h∈H〈ε, ah〉· fh) ∨ (
∨

k∈K〈ak, ak〉· fk) : ∑i∈I ai ·ρi �ds ⊕
j∈J aj ·σj

where Γ′ = Γ, x:∑i∈I ai ·ρi�ds ⊕
j∈J aj ·σj

Figure 2: The inference system �inf.

3 Orchestrators Synthesis

In this section we define an inference system �inf for (possibly open) orchestrators to deduce
that f : ρ��ds σ, under finitely many assumptions of a certain shape. We first establish that
the system is sound with respect to the ��ds relation. Then, on the basis of that system, we
provide an algorithm Synth for orchestrator synthesis which, given ρ and σ, returns the set
of all orchestrators f such that �inf f : ρ�ds σ (namely with Γ = ∅) and hence that f : ρ��ds σ.
The algorithm is essentially an exhaustive proof search for � that can be shown to be always
terminating.

Definition 3.1 (The orchestrators inference system �inf) The judgements of the system are
expressions of the form Γ �inf f : ρ�ds σ, where ρ,σ ∈ SC, f is a (possibly open) orchestrator and
Γ is a set of assumptions of the form x : ρi �ds σi such that: x:ρ�ds σ ∈ Γ & y:ρ�ds σ ∈ Γ =⇒ x = y
(so Γ represents an injective mapping from variables to expressions of the form ρ�ds σ). The
axioms and rules of the system are described in Figure 2.

In the inference system of Figure 2 the symbol �ds is a relation symbol representing the
relation ��ds as defined in Definition 2.8. In order to give the intuition behind the inference
system, let us briefly comment on one of the rules, say (Cpl∑-L). In case it is possible to show
that f ′ is an orchestrator for fp ��ds σ, orchestrated compliance can be obtained for ∑i∈I ai ·ρi �ds σ

by means of 〈ap, ε〉· f ′, since the 〈ap, ε〉 action satisfies one of the input requests ais. In case
x �∈ f n(f ′), we get that recx .〈ap, ε〉· f ′ = 〈ap, ε〉· f ′. This means that axiom (Ax) has been used in
the derivation of f ′ and the interaction between ∑i∈I ai ·ρi and σ finitely succeeds if the actions
described in the branch from (Cpl∑-L) to (Ax) are performed. In case x ∈ f n(f ′), rule (Hyp)

has been used for f ′, and a successful infinite interaction is possible between ∑i∈I ai ·ρi and σ

when the orchestrator repeatedly performs the actions in the branch from (Cpl∑-L) to (Hyp), as
described by the recursive orchestrator recx .〈ap, ε〉· f ′.

Definition 3.2 (Judgment Semantics) Let Γ = { x1 : ρ1 �ds σ1, . . . , xk : ρk �ds σk }, and θ be a map

Proceedings of 8th Interaction and Concurrency Experience, EPTCS 189, pp. 21-36 8

Synth(Γ,ρ,σ) =

if x : ρ�ds σ ∈ Γ then {x}
else if ρ = 1 then {1}
else if ρ = ∑i∈I ai ·ρi and σ = ∑j∈J aj ·σj then

let Γ′ = Γ, x:ρ�ds σ in
⋃

i∈I{ recx .〈ai, ε〉· f | f ∈ Synth(Γ′,ρi,σ)} ∪ ⋃
j∈J{ recx .〈ε, aj〉· f | f ∈ Synth(Γ′,ρ,σj)}

else if ρ =
⊕

i∈I ai ·ρi and σ =
⊕

j∈J aj ·σi then
let Γ′ = Γ, x:ρ�ds σ in

{ recx .
∨

i∈I〈ai, ε〉· fi | fi ∈ Synth(Γ′,ρi,σ)} ∪ { recx .
∨

j∈J〈ε, aj〉· fj | fj ∈ Synth (Γ′,ρ,σj)}
else if ρ =

⊕
i∈H∪K ai ·ρi and σ = ∑j∈J aj ·σj and K ⊆ J then

let Γ′ = Γ, x:ρ�ds σ in
{ recx .(

∨
h∈H〈ah, ε〉· fh) ∨ (

∨
k∈K〈ak, ak〉· fk)

| H ∪ K = I,K ⊆ J, fh ∈ Synth(Γ′,ρh,σ), fk ∈ Synth(Γ′,ρk,σk)}
∪ ⋃

j∈J{ recx .〈ε, aj〉· f | f ∈ Synth (Γ′,ρ,σj }
else if f = (

∨
h∈H〈ε, ah〉· fh) ∨ (

∨
k∈K〈ak, ak〉· fk)

and ρ = ∑i∈I ai ·ρi and σ =
⊕

j∈H∪K aj ·σj and K ⊆ I then
let Γ′ = Γ, x:ρ�ds σ in

{ recx .(
∨

h∈H〈ε, ah〉· fh) ∨ (
∨

k∈K〈ak, ak〉· fk)
| H ∪ K = I,K ⊆ I, fh ∈ Synth((Γ′,ρh,σ), fk ∈ Synth(Γ′,ρk,σk)}

∪ ⋃
i∈I{ recx .〈ai, ε〉· f | f ∈ Synth(Γ′,ρ,σj }

else ∅

Figure 3: The algorithm Synth.

such that θ(xi) = fi, where the fis are proper (i.e. closed) orchestrators. Then we define:

θ |= Γ � ∀(xi : ρi �ds σi) ∈ Γ [θ(xi) : ρi ��ds σi]

Γ |= f : ρ�ds σ � ∀θ [θ |= Γ =⇒ θ(f) : ρ��ds σ]

where θ(f) is the result of substituting, for all variables x ∈ f , all free occurrences of x by θ(x).

Theorem 3.3 (Soundness) If Γ �inf f : ρ�ds σ then Γ |= f : ρ�ds σ.

Proof : (Sketch3) It is possible to device a sound and complete system � for judgments of the
shape Γ � f : ρ�ds σ, where f is a closed orchestrator and where Γ is a set of assumption on
closed orchestrators (not on variables as in �inf). Now it can be proved that if f is closed and
Γ �inf f : ρ�ds σ is derivable, then for any θ such that θ |= Γ we have θ(Γ) � f : ρ�ds σ, where
θ(Γ) is the result of substituting all orchestrator variables x by θ(x). Then the thesis follows
from the soundness of �.

The synthesis algorithm Synth is defined in Figure 3. Given a set of assumptions Γ, a client
ρ and a server σ, the algorithm computes a set of orchestrators F such that for all f ∈ F a
derivation of Γ �inf f : ρ�ds σ exists. The algorithm essentially mimics the rules of the inference
system of Figure 2. Intuitively, in case we are looking for orchestrators for ρ =

⊕
i∈I ai·ρi and

σ =
⊕

j∈J aj ·σi under the assumptions Γ, we notice that they can be inferred for such ρ and σ

in system �inf only by means of rules (Cpl
⊕

-R) or (Cpl
⊕

-L) and that their form is, respectively,
recx .

∨
i∈I〈ai, ε〉· fi or recx .

∨
j∈J〈ε, aj〉· fj, where the fis and the fjs are the orchestrators for the

pairs ρi,σ and ρ,σj, respectively. This accounts for the fourth clause in the synthesis algorithm.
We can prove the algorithm to be sound.

3 See [1] for details.

Proceedings of 8th Interaction and Concurrency Experience, EPTCS 189, pp. 21-36 9

Lemma 3.4 If Synth(Γ,ρ,σ) = F �= ∅ then, for all f ∈ F , Γ �inf f : ρ�ds σ is derivable.

On the other hand, the algorithm is complete in the following sense:

Lemma 3.5 If f : ρ��ds σ and Synth(∅,ρ,σ) terminates then f ∈ Synth(∅,ρ,σ).

It remains to show that Synth is terminating:

Lemma 3.6 For all Γ, ρ and σ, the execution of Synth (Γ,ρ,σ) terminates.

Proof : (Sketch4) The proof is based on the fact that all session contracts in the recursive calls
of Synth are either a sub-expression of ρ or σ, or a sub-expression of the session contracts
occurring in the judgments in Γ (which is finite). Since session contracts are regular trees,
their sub-expressions are a finite set, so that the test x : ρ�ds σ ∈ Γ (where x is any variable) at
the beginning of Synth cannot fail infinitely many times.

We draw the consequences of the above lemmas and of the soundness theorem in the next
corollary:

Corollary 3.7 The relation ��ds is decidable; moreover if ρ��ds σ then there is a finite and computable set
F containing all the orchestrators f such that f : ρ��ds σ.

4 Respectfulness

The definition of orchestrators implies they have buffering capabilities. The sort of buffer
taken into account in [21], as well as by us, is made of a finite number of bi-directional
buffers, one for each possible name handled by the orchestrator. A bi-directional buffer is
actually made of two distinct buffers, one containing the messages received from the client
that have to be delivered to the server, and the other one containing the messages received
from the server that should be delivered to the client.

In [21] orchestrators are restricted to have bounded buffering capabilities and such a re-
striction is used in the proofs of several properties concerning contract orchestrators. In our
setting we can eliminate that restriction, so allowing more client/server pairs to be compliant,
like for instance recx . a and recx .b·a, and the example in the introduction.

We will now formalise the notion of buffer.

Definition 4.1 (Buffers) i) A bi-directional buffer B is a set of the form { ca a sa | a ∈ N }
where, for any a ∈ N , ca, sa ∈ Z. The ca in ca a sa represents the number of a’s in the part of
the buffer containing messages sent by the client to the server. The sa in ca a sa represents
the number of a’s in the part of the buffer containing messages sent by the server to the
client.

ii) We define: ∅̃ = { 0a0 | a ∈ N } and

�+a B = (B \ { ca a sa }) ∪ { ca+1asa }
�−a B = (B \ { ca a sa }) ∪ { ca−1asa }

B+
a� = (B \ { ca a sa }) ∪ { ca a sa+1}

B−
a� = (B \ { ca a sa }) ∪ { ca a sa−1}

iii) We denote by |B|a the number of a’s in the server-to-client part of the buffer, i.e. |B|a = sa

and similarly for the client-to-server part, i.e. a|B| = ca.

4 See [1] for details.

Proceedings of 8th Interaction and Concurrency Experience, EPTCS 189, pp. 21-36 10

iv) The state of a buffer B after an orchestration action µ will be denoted by Bµ, defined by

B〈a, ε〉 = �−a B

B〈a, ε〉 = �+a B
B〈α, α〉 = B

B〈ε, a〉 = B−
a�

B〈ε, a〉 = B+
a�

v) By Bµ we denote the buffer B after the sequence µ of orchestration actions.

In Definition 2.8 we considered the relation ��ds, which we have studied so far. This is
however much weaker than expected, and it is time to face the issue. Consider the simple
orchestrated system

a·b ‖ f a·c·d where f = 〈a, a〉·〈b, ε〉·1.

It is easy to check that f : a·b��ds a·c·d since f is strict for the given client/server pair and
a·b ‖ f a·c·d µ

=⇒ 1 ‖1 c·d �−→ , where µ = 〈a, a〉〈b, ε〉. It is definitely true that all the client’s
‘requests’ have been satisfied, but not all by the server! The action b of the client has been
taken care of exclusively by the orchestrator, which in that case has not acted simply as a
mediator, but has effectively participated to the completion of the client’s requests.

So, in order to strengthen Definition 2.8 ((i)), in case ρ′ ‖ f ′ σ′ �−→ , we have to impose
some conditions on the client-to-server buffer associated to f ′; in particular, that it should
be empty. Of course, a similar condition must hold also for infinite interactions; this implies
that in an infinite interaction, for any possible name, say a, used by the orchestrator, the
latter cannot indefinitely perform input actions for a from the client (even if interspersed
with actions for other names) without ever delivering an a to the server. We must therefore
forbid a client like recx . a·c·x to be compliant with the server b because of the presence of the
orchestrator recx .〈a, ε〉·〈c, c〉·x. Orchestrated finite and infinite interaction sequences which do
not correspond to unwanted situations like those just sketched will be called client-respectful.

Even if the notion of compliance enforces the sense of the bias towards the client (any client
request must be eventually satisfied by the server), some conditions need to be imposed on
the part of interactions on behalf of the server. In fact, we wish to prevent a server to be
compliant with a client by means of an orchestrator that, from a certain moment on, interacts
infinitely many times with the server only, like in the orchestrated system

a·b ‖ f recx . c·b·x where f = recx .〈ε, c〉·〈ε, b〉
We wish to prevent this kind of infinite interaction that we dub definitely server-inputted.
Notice that, however, we can permit infinite interactions in which the orchestrator just per-
forms inputs of some a from the server, like in the example in the introduction.

We observe that the problem – whether an orchestrator will ever engage in any of the
aforementioned pathological interactions – might well be undecidable for contracts in general;
indeed, it shares similarities with, for example, termination of two-counter machines [19].
However, we stress that we are in the restricted setting of session contracts, which suffices to
make such properties decidable.

Among the properties we have to take care of, one is that in an interaction sequence there
cannot exist an orchestrator action removing an element from an empty buffer, i.e. a sound
sequence never sends an element a to a server or to a client if the a has not been previously
received. We call the sum of all the above properties respectfulness.

Definition 4.2 Given µ ∈ OrchAct∗ ∪ OrchAct∞, we define a�µ, its left-restriction to a name a,

Proceedings of 8th Interaction and Concurrency Experience, EPTCS 189, pp. 21-36 11

as follows (λ is the empty sequence):

a�λ = λ,

a�(µµ′) = µ a�µ′, if µ ∈ {〈ε, a〉, 〈a, ε〉},

a�(µµ′) = a�µ′ otherwise.

Definition 4.3 (Respectful sequences and orchestrators) Let µ ∈ OrchAct∗ ∪ OrchAct∞

and µ ∈ OrchAct.
i) Given S ⊆N , we say µ to be definitely-S whenever:

∃k ∀m ≥ k [the m-th element of µ belongs to S];

For sets that are singletons we write ‘definitely-µ’ instead of ‘definitely-{µ}.’
ii) We say µ to be a sound sequence whenever:

∀a ∈ N ∀n ≤ |µ| [a| ∅̃µ1 · · ·µn | ≥ 0 and | ∅̃µ1 · · ·µn | a ≥ 0]

iii) We say µ to be client-respectful sequence whenever, for any a ∈ N :

a�µ is finite and a| ∅̃µ | = 0 or a�µ is infinite and non-definitely-〈a, ε〉
iv) We say µ to be non-definitely server–inputted whenever:

µ is infinite =⇒ µ is non-definitely-{〈ε, a〉 | a ∈ N }
v) We say µ to be respectful whenever µ is sound, client-respectful and non-definitely server-

inputted.
vi) We say that an orchestrator f is respectful whenever every µ ∈ MaxTr(f) is so.

We will look now at a few examples in order to get a better intuition about the above
definition.

Example 4.4 • The finite sequence 〈a, ε〉·〈ε, b〉·〈ε, a〉 is not respectful since it is not sound. In
fact, for the name b, we have that | ∅̃·〈a, ε〉·〈b, ε〉 | b = −1 < 0.

• The sequence 〈a, ε〉·〈b, ε〉·〈ε, a〉 instead, is sound, but nonetheless it is not client-respectful,
since it is not infinite and for the name b we have b| ∅̃〈a, ε〉·〈b, ε〉·〈ε, a〉 | = 1 �= 0.

• The orchestrator f = 〈c, c〉·recx .(〈a, a〉 ∨ 〈c, ε〉·〈b, b〉·x) is not respectful since it is not client-
respectful. In fact, for the sequence µ = 〈c, c〉·〈c, ε〉·〈b, b〉·〈c, ε〉·〈b, b〉 · · · ∈ MaxTr(f) (c ∈ N),
we have that c�µ is infinite and c�µ = 〈c, ε〉·〈c, ε〉·〈c, ε〉 · · · is definitely-〈c, ε〉. In fact, from
the second element on it is made of 〈ε, c〉 actions.

• The orchestrator f = 〈c, c〉·recx .(〈a, a〉 ∨ 〈ε, b〉·〈ε, c〉·x) is not respectful since it is not def-
initely server-inputted. In fact, the infinite sequence µ = 〈c, c〉·〈ε, b〉·〈ε, c〉·〈ε, b〉·〈ε, c〉 · · · ∈
MaxTr(f) is definitely-{〈ε, a〉 | a ∈ N }. The orchestrator f in the introduction, instead, is
non-definitely server-inputted, and also respectful, as a matter of fact.

Remark 4.5 By Definition 4.2, the sequence a�µ in Definition 4.3((iii)) cannot contain syn-
chronous orchestration actions like 〈a, a〉. Hence, for example, the orchestrator

g = recx .〈a, ε〉·〈a, a〉·x
is not client-respectful, and so it is not respectful at all. This is because one a coming from the
client will never be delivered to the server since any subsequent output a will be paired with
a further input of a. This might be irrelevant when distinct occurrences of the same message
are indistinguishable, but in general the number of input-output actions matters.

On the other hand forcing the orchestrator to immediately forward a message is a desirable
capability, which would be definitely lost by equating 〈a, ε〉·〈ε, a〉 to 〈a, a〉, and by ruling out

Proceedings of 8th Interaction and Concurrency Experience, EPTCS 189, pp. 21-36 12

the latter.

We can now properly define the full notion of compliance and characterise it.

Definition 4.6 (Orchestrated Session Compliance) i) We say that a client ρ is compliant
with a server σ through the orchestration of f , and denote this by f : ρ �� σ, whenever

a) ρ ‖ f σ
µ

=⇒ ρ′ ‖ f ′ σ′ �−→ implies ρ′ = 1 and µ is respectful, and

b) ρ ‖ f σ
µ

=⇒ with µ ∈ OrchAct∞ implies µ is respectful.
ii) We write ρ �� σ whenever there exists an orchestrator f such that f : ρ �� σ.

Notice that we cannot define orchestrated compliance by simply imposing f to be respectful
in Def. 4.6((i)), since that would prevent the possibility of a be compliant with a through the
mediation of the orchestrator 〈a, a〉 ∨ 〈ε, b〉. This orchestrator is not respectful, but its sequences
of actions in any possible orchestration between a and a are respectful.

We can show that, if compliance could be obtained by means of a non-respectful orches-
trator, it is always possible to get it through a respectful one. Besides, we can show the
correspondence between �� and ��ds.

Proposition 4.7 i) f : ρ �� σ =⇒ ∃ f ′ [f ′ : ρ �� σ such that f ′ is ρ-σ strict].

ii) f : ρ �� σ and f is ρ-σ strict ⇔ f : ρ��ds σ and f is respectful.

iii) ρ �� σ ⇔ ∃ f [f : ρ��ds σ where f is respectful].

In order to show decidability, we provide a characterisation of respectfulness based on the
notion of buffer-aware trees and its related labelings below.

Definition 4.8 (Buffer-aware trees of f) i) Let a ∈ N . We define the buffer-aware a-tree of
an orchestrator f , denoted by cTsa(f), as the tree defined by induction in Figure 4. The
edges of the tree have a left- and a right-weight denoting, respectively, the increment of
the client-to-server and of the server-to-client buffer caused by the orchestration actions
performed by f .

Given an edge e of a buffer-aware a-tree t, we denote is left (resp. right) weight by lwt(e)
(resp. rwt(e)).

ii) We define the buffer-aware ∗-tree of an orchestrator f , denoted by cTs∗(f), as the tree with the
same nodes and edges as any cTsa(f), but such that the left (resp. right) weight of an edge
e is ∑a∈N lwcTsa(f)(e) (resp. ∑a∈N rwcTsa(f)(e)).

Note that the left and right weights of the edges of a buffer-aware ∗-tree of an orchestrator
f are either 0, −1, or +1.

Definition 4.9 (Buffer-labelling of cTsa(f)) We define the buffer-labelling of cTsa(f) by labelling
its nodes with left and right labels as follows: given a node N and the path P in cTsa(f) from
the root to N, we left-label N with the sum of all the left-weights of the edges in P, whereas
we right-label N with the sum of all the right-weights of the edges in P.

We now provide characterisations for the properties defining respectfulness.

Definition 4.10 (Sound buffer-labelling) The buffer-labelling of cTsa(f) is sound whenever
i) there is no negative left-label and no negative right-label and

ii) for any leaf x and corresponding recx . node, if k is the left (resp. right) label of x and h is
the left (resp. right) label of recx ., then: k − h ≥ 0.

Proposition 4.11 The following conditions are equivalent:

Proceedings of 8th Interaction and Concurrency Experience, EPTCS 189, pp. 21-36 13

cTsa(1) = 1 cTsa(x) = x

cTsa(〈ε, a〉· f ′) =

◦
0 | -1

cTsa(f ′)
cTsa(〈a, ε〉· f ′) =

◦
+1 | 0
cTsa(f ′)

cTsa(〈a, ε〉· f ′) =

◦
-1 | 0
cTsa(f ′)

cTsa(〈ε, a〉· f ′) =

◦
0 | +1

cTsa(f ′)

cTsa(µ· f ′) =

◦
0 | 0

cTsa(f ′)
if µ �∈ { 〈ε, a〉, 〈a, ε〉, 〈a, ε〉, 〈ε, a〉}

cTsa(f1 ∨ . . . ∨ fn) =

◦
� . . .�

cTsa(f1) . . .cTsa(fn)

cTsa(recx . f ′) =

recx .
|

cTsa(f ′)

Figure 4: Buffer-aware a-tree

i) f is sound.
ii) For any a ∈ N , the buffer-labelling of cTsa(f) is sound.

Proof : ((ii) ⇒ (i)) By the labelling, it is impossible to get a non-client-respectful sequence out
of f .

((i) ⇒ (ii)) By contraposition; assume that for a name b ∈ N , the buffer-labelling of cTsb(f)
be unsound. Then we have two cases to consider:

i) There is a negative label. We then get immediately an unsound sequence.
ii) There exists a leaf x and its corresponding recx . node, if k is the left(or right-)-label of

x and h is the left-(or right-)label of recx ., we have k − h < 0. It is immediate to get an
unsound sequence.

We say that a node gets to 1 whenever its subtree contains a 1 node.

Definition 4.12 (Client-respectful buffer-labelling) The buffer-labelling of cTsa(f) is client-
respectful whenever

i) any 1 node is left-labelled with 0;
ii) for any leaf x and corresponding node of its binder recx ., if k is the left-label of x and h is

the left-label of recx ., then
a) if the recx . node gets to 1, then h = k;
b) otherwise, if all the left-labels of the edges from x to recx . are 0 then h = 0;

iii) for any path from a leaf x to its corresponding recx . node, either no edge is right-weighted
with +1 or there is at least an edge with right-weight −1.

Proposition 4.13 The following conditions are equivalent:
i) f is client-respectful.

ii) For any a ∈ N , the buffer-labelling of cTsa(f) is client-respectful.

Proof : ((ii) ⇒ (i)) By the labeling rule it is impossible to get a non client-respectful sequence
out of f . For finite sequences this impossibility is guaranteed by clauses ((i)) and ((ii)) of
Definition 4.12, for infinite ones by clause ((iii)).

((i) ⇒ (ii)) By contraposition; assume that for a name b ∈ N , the buffer-labelling of cTsb(f)
be non-client-respectful. We consider the four possible cases:

Proceedings of 8th Interaction and Concurrency Experience, EPTCS 189, pp. 21-36 14

i) A label of a 1 leaf is not 0. In that case we immediately get a finite sequence out of f which
is non-client-respectful.

ii) There is a node x labelled with k and its corresponding node recx . gets to 1 and it is
labelled with h, with k �= h. Then the sequence out of f corresponding to going to rec x .,
then from node recx . to x a non negative number of times n and finally to the 1 node
cannot be client-respectful, since at the end the client-to-server buffer for b would have
n ∗ (h − k) elements in it.

iii) There is a node x labelled with k, its corresponding node recx . does not get to 1, all the left-
labels of the edges from x to recx . are 0 and h = 0. In that case the trace µ corresponding to
the infinite path starting from the root and then keeping indefinitely on passing through
recx . and x is such that b�µ is finite and |∅̃(b�µ)| �= 0.

iv) there exists a path from a leaf x to its corresponding recx . such that there are some
right-weighted edges right-weighted with +1 and no edge with right-weight −1. Then
it is immediate to get an infinite definitely server-inputted sequence out of f which is
definitely-〈b, ε〉 and hence not client-respectful.

Definition 4.14 (Non definitely server-inputted ∗-tree) Given an orchestrator f , its ∗-tree
cTs∗(f) is non-definitely server-inputted whenever, for any path from a leaf x to its corresponding
recx . node, either no edge is right-weighted with +1 or there is at least an edge with right-
weight −1.

Proposition 4.15 The following conditions are equivalent:
i) f is not definitely server-inputted.

ii) cTs∗(f) is non-definitely server-inputted.

Proof : ((ii) ⇒ (i)) By the labelling it is impossible to get a definitely server-inputted sequence
out of f .

((i) ⇒ (ii)) By contraposition; assume that scT∗(f) be definitely server-inputted. So there
exists a path from a leaf x to its corresponding recx . such that there are some right-weighted
edges right-weighted with +1 and no edge with right-weight −1. Then it is immediate to get
a definitely server-inputted sequence out of f .

In summary we have established:

Theorem 4.16 Orchestrator respectfulness is decidable.

From the above result and from decidability of ��ds (Corollary 3.7) we can get decidability
of ��. The algorithm to decide whether ρ �� σ will first compute F = Synth(∅,ρ,σ); then if
F �= ∅ it suffices to check whether there is a strict and respectful f ∈ F , which is a decidable
problem by the above.

Theorem 4.17 Given ρ and σ, it is decidable whether ρ �� σ.

We conclude by observing that in [21], the lack of unbounded buffering capabilities pre-
vents orchestrators to be used to ensure client compliance with a server that might send an
unbounded number of unnecessary outputs. To let such sort of interaction possible, in [3] the
notion of skp-compliance (dubbed �skp) was investigated for session contracts, where a client
is compliant with a server whenever all its requests can be satisfied thanks to the possibility
of discarding a (possibly unbounded) number of unnecessary server outputs. Interactions of
this sort can actually be carried out by means of our session orchestrators, since it is possible
to prove that ρ �skp σ implies ρ��ds σ. In the example in the introduction, in fact, the wind

Proceedings of 8th Interaction and Concurrency Experience, EPTCS 189, pp. 21-36 15

information is unbounded and ‘discarded’ by the orchestrator.

5 Related and future work

The notion of compliance naturally induces a substitutability relation on servers that may
be used for implementing contract-based query engines (see [21] for a detailed discussion).
Hence it seems worthwhile, as a development of the results of the present paper, to investigate
the session sub-contract relation induced by our orchestrated compliance on session contracts.
Whereas this sort of server substitutability relation is at the core of the results in [21], we deem
it relevant to investigate also client substitutability, in the style of what was done in [2, 4] for
session contract and in [11] for the more general notion of contract.

An approach to the formal description of service contracts in terms of automata has been
recently developed in [7]. The notion of contract automaton is related to that of contract as well
as of session contract. Besides, the notion of contract agreement in [7] somewhat resembles that
of compliance. In the framework of that paper, orchestrators are synthesised to enforce con-
tract composition to adhere to the requirements for contract agreement. Even if the authors of
[7] work on the overall satisfaction in a multiparty composition of principals, it is definitely
worthwhile, as a future investigation, to study the relation between the notion of orchestration,
as developed in [21] and in the present paper, and the approach of [7], which in turn has been
related in [8] to the model of choreography of communicating finite state machines (CFMS)
[12]. For what concerns session contracts in particular, the investigation of the correspondence
with the above mentioned formalisms could start from the result concerning the correspon-
dence of binary session types with a particular two-communicating-machines subclass (see [17]
for references). Such a correspondence between session types and communicating machines
has been pushed further to the multiparty setting in [17].

Many properties of the model of CFSM which are untractable ceases to be so when Bags,
instead of - or together with - FIFO queues are taken into account [16]. The similarity of
contracts and session contracts with the CFSM model suggests to investigate the use of bags
for session-contract interactions to reduce decidability problems in our context to problems
in the CFSM model with bags. What does a bag correspond to in our context is however not
immediate to device. In fact, by putting a bag in between a.b and a + b would result in a
number of possible non-deterministic evolutions of the system: as soon as a is in the bag, it
could be used as input for the server; or, in case both a and b get into the bag, the server could
non-deterministically choose amongst them; etc. Such a behaviour of the system, however,
goes far beyond the session setting we are in, where non-determinism is restricted to occur
only inside the client and server.

Session contracts have been also investigated in papers like [5, 6] where, overloading the
name, they also have been dubbed session types. In [5] the authors establish a relation between
session contracts and a model based on game-theoretic notions, showing that compliance
corresponds to the existence of particular winning strategies. It should be interesting to inves-
tigate the meaning and role of the notion of orchestration in such a game-theoretical setting.

Acknowledgments. We are grateful to the referees for their helpful and meaningful advices.
The interaction with them has been pleasing and fruitful thanks to the forum tool provided
by the workshop organisation. We also wish to thank Mariangiola Dezani for her everlasting
support.

Proceedings of 8th Interaction and Concurrency Experience, EPTCS 189, pp. 21-36 16

References
[1] Franco Barbanera, Steffen van Bakel & Ugo de’Liguoro (2015): Orchestrated compliance for session-

based client/server interactions. Available at http://www.dipmat.unict.it/˜barba/Publications/
sessionOrchCompl.pdf. Unpublished.

[2] Franco Barbanera & Ugo de’Liguoro (2010): Two notions of sub-behaviour for session-based
client/server systems. In: PPDP, ACM Press, pp. 155–164, doi:10.1145/1836089.1836109.

[3] Franco Barbanera & Ugo de’ Liguoro (2014): Loosening the notions of compliance and sub-behaviour
in client/server systems. In: Proceedings 7th ICE 2014, EPTCS 166, pp. 94–110, doi:10.4204/EPTCS.
166.10.

[4] Franco Barbanera & Ugo de’ Liguoro (2014): Sub-behaviour relations for session-based client/server
systems. Math. Struct. in Comp. Science, doi:10.1017/S096012951400005X. To appear, published
online.

[5] Massimo Bartoletti, Tiziana Cimoli & G. Michele Pinna (2014): A note on two notions of compliance.
In: Proceedings 7th ICE 2014, EPTCS 166, pp. 86–93, doi:10.4204/EPTCS.166.9.

[6] Massimo Bartoletti, Alceste Scalas & Roberto Zunino (2014): A semantic deconstruction of session
types. In: Proc. CONCUR, pp. 402–418, doi:10.1007/978-3-662-44584-6$_$28.

[7] Davide Basile, Pierpaolo Degano & Gian Luigi Ferrari (2014): Automata for Analysing Service Con-
tracts. In: TGC 2014, LNCS 8902, pp. 34–50, doi:10.1007/978-3-662-45917-1-3.

[8] Davide Basile, Pierpaolo Degano, Gian-Luigi Ferrari & Emilio Tuosto (2014): From Orchestration
to Choreography through Contract Automata. In: Proceedings 7th ICE 2014, EPTCS 166, pp. 67–85,
doi:10.4204/EPTCS.166.8.

[9] Giovanni Bernardi & Matthew Hennessy (2012): Modelling session types using contracts. In: Pro-
ceedings of 27th Annual ACM SAC ’12, ACM, New York, NY, USA, pp. 1941–1946, doi:10.1145/
2231936.2232097.

[10] Giovanni Bernardi & Matthew Hennessy (2014): Modelling session types using contracts. Math.
Struct. in Comp. Science, doi:10.1017/S0960129514000243. To appear, published online.

[11] Giovanni Bernardi & Matthew Hennessy (2015): Mutually Testing Processes. 24h CoRR
abs/1502.06360, doi:10.1007/978-3-642-40184-8$_$6.

[12] Daniel Brand & Pitro Zafiropulo (1983): On Communicating Finite-State Machines. JACM 30(2), pp.
323–342, doi:10.1145/322374.322380.

[13] S. Carpineti, G. Castagna, C. Laneve & L. Padovani (2006): A formal account of contracts for Web
Services. In: WS-FM, LNCS 4184, Springer, pp. 148–162, doi:10.1007/11841197_10.

[14] Giuseppe Castagna, Nils Gesbert & Luca Padovani (2008): A theory of contracts for web services. In:
Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2008, San Francisco, California, USA, January 7-12, 2008, ACM, pp. 261–272, doi:10.1145/
1328438.1328471. Available at http://doi.acm.org/10.1145/1328438.1328471.

[15] Giuseppe Castagna, Nils Gesbert & Luca Padovani (2009): A theory of contracts for Web services.
ACM Trans. on Prog. Lang. and Sys. 31(5), pp. 19:1–19:61, doi:10.1145/1538917.1538920.

[16] L. Clemente, F. Herbreteau & G. Sutre (2014): Decidable Topologies for Communicating Automata with
FIFO and Bag Channels. In: Proc. CONCUR’14, LNCS 8704, doi:10.1007/978-3-662-44584-6$_$20.

[17] Pierre-Malo Deniélou & Nobuko Yoshida (2012): Multiparty Session Types Meet Communicating
Automata. In: ESOP, pp. 194–213, doi:10.1007/978-3-642-28869-2$_$10.

[18] Kohei Honda, Vasco T. Vasconcelos & Makoto Kubo (1998): Language Primitives and Type Disciplines
for Structured Communication-based Programming. In: ESOP, LNCS 1381, Springer, pp. 22–138,
doi:10.1007/BFb0053567.

[19] Oscar H. Ibarra, Jianwen Su, Zhe Dang, Tevfik Bultan & Richard Kemmerer (2000): Counter
Machines: Decidable Properties and Applications to Verification Problems. In: Mathematical Founda-
tions of Computer Science 2000, LNCS 1893, Springer Berlin Heidelberg, pp. 426–435, doi:10.1007/
3-540-44612-5-38.

[20] Cosimo Laneve & Luca Padovani (2007): The Must Preorder Revisited: An Algebraic Theory
for Web Services Contracts. In: CONCUR’07, LNCS 4703, Springer, pp. 212–225, doi:10.1007/
978-3-540-74407-8$_$15.

[21] Luca Padovani (2010): Contract-Based Discovery of Web Services Modulo Simple Orchestrators. Theo-
retical Computer Science 411, pp. 3328–3347, doi:10.1016/j.tcs.2010.05.002.

[22] Chris Peltz (2003): Web Services Orchestration and Choreography. Computer 36(10), pp. 46–52, doi:10.
1109/MC.2003.1236471.

