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Abstract

This paper defines reduction on derivations in the strict intersection type assignment sys-
tem of [2], by generalising cut-elimination, and shows a strong normalisation result for this
reduction. Using this result, new proofs are given for the approximation theorem and the
characterisation of normalisability using intersection types.
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Introduction

Strong normalisation of cut-elimination is a well-established property in the area of logic that
has been studied profoundly, as it has been in various systems that define type assignment for
the Lambda Calculus. For intersection type assignment, proofs of strong normalisation of cut-
elimination have at best been indirect, i.e. obtained through a mapping from the derivations
into a logic, where the property has been established before. Since there is no logic to which
the type-constant ω can be adequately mapped, the intersection systems studied in this way
are ω-free. This paper will use the Strict Type Assignment System of [2] (which contains ω),
and will present a proof for the property directly on the derivations themselves.

The second, and perhaps more suprising, result of this paper is then that all normal char-
acterisations of (strong/ head) normalisation are consequences of the strong normalisation
of cut-elimination. Many strong normalisation results in the context of types use the tech-
nique of Computability Predicates [14, 10], which provides a means for proving termination
of typeable terms using a predicate defined by induction on the structure of types. This tech-
nique has been widely used to study normalisation properties (or similar results), as well as
head-normalisation and approximation results (see Thm. 5.3).

This papers considers intersection types, also because, using those types, various normali-
sation properties can be characterised. The Intersection Type Discipline (itd) as presented in
[7] (a more enhanced system was presented in [6]; for an overview of the various existing sys-
tems, see [3]), was introduced mainly to overcome the limitations of Curry’s type assignment
system [8, 9] and has been used to characterise normalisation using types. It is an extension
of Curry’s system, in that term variables (and terms) are allowed to have more than one type:
in a certain context M, a term-variable x can play different, even non-unifyable, roles. This
slight generalisation of Curry’s system causes a great change in complexity; although type
assignment in Curry’s system is decidable, in itd type assignment is undecidable, since it is
closed for β-equality:

M =β N ⇒ (B � M : σ ⇐⇒ B � N : σ) .
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The itd is most renown for providing proofs for the following characterisation of (head/strong)
normalisation by assignable types (where ω is a type-constant, and stands for the universal
type, i.e. all terms are typeable by ω):

M has a head normal form ⇐⇒ B � M : σ & σ �= ω

M has a normal form ⇐⇒ B � M : σ & ω does not occur in B,σ
M is strongly normalisable ⇐⇒ B � M : σ, where ω is not used at all.

These properties immediately show that type assignment, even in the system that does not
contain ω [2], is undecidable.

However, in the context of weak reduction, the approximation result is no longer obtained
via a straightforward application of the same technique. Rather, as argued and shown in [4, 1],
to obtain this result in the context of Combinator Systems or Term Rewriting Systems, a more
general solution was needed: strong normalisation of cut-elimination. Perhaps surprisingly, the
machinery involved to prove this gives the characterisation results for typeable terms as a
corollary.

In this paper, we will show these results in the context of Lambda Calculus: we will show
that cut-elimination is strongly normalising, and that all characterisation results are direct con-
sequences of it. The added complexity of intersection types implies that, unlike for ordinary
systems of type assignment, there is a significant difference between derivation reduction and
ordinary reduction (see the beginning of Section 2); unlike normal typed- or type assignment
system, in ‘�’ not every term-redex occurs with types in a derivation.

As far as cut-elimination is concerned in the context of intersection types, there exists but
few related results in the literature. As [12], where a strong normalisation result was proved
for derivation reduction in the setting of the notion of intersection type assignment known
as D [11], most papers consider the BCD-system [6] without the type-constant ω. Since we
consider the type ω here, together with a type inclusion relation ≤, that strong normalisation
result itself is a true special case of the results of this paper presented in Section 5.

The Approximation Theorem hinted at above is a (perhaps less known) fundamental result
for itd, and is more relevant in the context of semantics. Essentially following [15, 5], the set
of terms can be extended by adding the term-constant ⊥. Adding also the reduction rules
⊥N→β⊥⊥, and λx.⊥→β⊥⊥ to the notion of reduction gives rise to the notion of approximate
normal forms that are in essence finite rooted segments of Böhm-trees [5], and a model for the
Lambda Calculus can be obtained by interpreting a term M by the set of approximants that
can be associated to it, AM. The Approximation Theorem now states that there exists a very
precise relation between types assignable to a term and those assignable to its approximants
and is formulated as

B � M : σ ⇐⇒ ∃ A ∈ AM [B � A : σ ]

(see [13, 2, 3]), it is immediately clear that the set of intersection types assignable to a term can
be used to define a model for the Lambda Calculus (see [6, 2, 3]).

The kind of intersection type assignment considered in this paper is that of [2], i.e. the
strict intersection type assignment system, a restricted version of the BCD-system of [6], that
is equally powerful in terms of typeability and expressiveness. The major feature of this
restricted system, compared to the BCD-system, a restricted version of the derivation rules
and the use of strict types (first introduced in [2]); notably, the strict system is not closed for
η-reduction.
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Notation

Often B, x:σ will be written for the basis ∩{B,{x:σ}}, when x does not occur in B, and we will
omit the brackets ‘{’ and ‘}’ when writing a basis explicitly. Also, in the notation of types,
as usual, right-most outer-most brackets will be omitted, and, since the type constructor ∩ is
associative and commutative, we will write σ∩τ∩ρ rather than (σ∩τ)∩ρ. Moreover, we will,
when appropriate, denote σ1∩ · · · ∩σn by ∩nσi (where n = {1, . . . ,n}, n≥0, and ∩1σi = σ1) and
will assume, unless stated explicitly otherwise, that each σi is not an intersection type.

1 Strict intersection type assignment

In this section, we will present the strict intersection type assignment system as first presented
in [2], which can be seen as a restricted version of the BCD-system as presented in [6]. The
major feature of this restricted system is, compared to the BCD-system, is that the ≤ relation
on types is no longer contra-variant on arrow-types, but restricted to the one induced by
σ∩τ≤σ and taking ω to be the maximal type.

We assume the reader to be familiar with the Lambda Calculus [5].

Definition 1.1 i) Let V be a countable infinite set of type-variables, ranged over by ϕ. TS,
the set of strict types, and the set T of intersection types, both ranged over by σ,τ, . . ., are
defined through:

TS ::= ϕ | (T → TS),
T ::= (TS1

∩ · · · ∩TSn), n≥0
We will write ω for an intersection of zero strict types.

ii) A statement is an expression of the form M : σ, with M ∈Λ, a term of the Lambda Calculus,
and σ ∈ T . M is the subject and σ the predicate of M : σ.

iii) A basis is a partial mapping from term variables to intersection types that are not ω, and
is represented as a set of statements with only distinct variables as subjects.

iv) For bases B1, . . . , Bn, the basis ∩{B1, . . . , Bn} is defined by:
x:∩mσi ∈ ∩{B1, . . . , Bn} if and only if {x:σ1, . . . , x:σm} is the (non-empty) set of all state-
ments about x that occur in B1∪ · · · ∪Bn.

Notice that T is a proper subset of T .

We will consider a pre-order on types which takes into account the idempotence, commu-
tativity and associativity of the intersection type constructor, and defines ω to be the maximal
element.

Definition 1.2 (Relations on types) i) The relation ≤ is defined as the least pre-order (i.e.
reflexive and transitive relation) on T such that:

∩nσi ≤ σi, for all i ∈ n
τ≤σi, for all i ∈ n ⇒ τ≤∩nσi

σ≤τ≤ρ ⇒ σ≤ρ

ii) The equivalence relation ∼ on types is defined by: σ∼τ ⇐⇒ σ≤τ≤σ, and we will con-
sider types modulo ∼.

iii) We write B≤B′ if and only if for every x:σ′ ∈ B′ there is an x:σ ∈ B such that σ≤σ′, and
B∼B′ ⇐⇒ B≤B′ ≤B.
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Notice that σ≤σ, and σ≤ω, for all σ; T may be considered modulo ∼; then ≤ becomes a
partial order.

The definition of the ≤-relation as given in [6] (apart from dealing with intersection types
occurring on the right of the arrow type constructor) also contained the alternative:

ρ≤σ & τ≤µ ⇒ σ→τ≤ρ→µ

This was added mainly to obtain a notion of type assignment closed for η-reduction (λx.Mx →η

M, if x is not free in M), a feature that is not considered here.
The following property is easy to show:

Property 1.3 (cf. [3]) For all σ,τ ∈ T , σ≤τ if and only if there are n,m≥0, σi (∀i ∈ n),τj (∀j ∈ m)
such that σ = ∩nσi, τ = ∩mτi, and, for all j ∈ m there exists i ∈ n such that τj = σi.

Definition 1.4 i) Strict intersection type assignment and strict intersection derivations are defined
by the following natural deduction system:

(Ax) : (n≥0, i ∈ n)
B, x:∩nσi � x : σi

(→E) :
B � M : σ→τ B � N : σ

B � MN : τ

(∩I) :
B � M : σ1 · · · B � M : σn

(n≥0)
B � M :∩nσi

(→I) :
B, x:σ � M : τ

B � λx.M : σ→τ

ii) We write B � M : σ if this statement is derivable using a strict intersection derivation, and
write D :: B � M : σ to specify that this result was obtained through the derivation D.

To illustrate that the strict system is not closed for η-reduction, notice that we can give a
derivation for � λxy.xy : (σ→τ)→(ρ∩σ)→τ, but cannot give a derivation for

� λx.x : (σ→τ)→(ρ∩σ)→τ.

Notice that, since ω is considered to be the empty intersection, the derivation rule

(ω) : B � M : ω

is implicit in rule (∩I).
We will use the following notation for derivations, that aims to show the structure, in linear

notation, of the derivation in terms of rules applied.

Definition 1.5 i) If a derivation D consists of an application of rule (Ax), there n,σi (∀i ∈ n)
and B such that D :: B, x:∩nσi � x : σj with j ∈ n; we then write D = 〈Ax〉 :: B, x:∩nσi � x : σj.

ii) If a derivation D finishes with rule (→I), there are M1,α, β such that D :: B � λx.M1 : α→β,
and there is a sub-derivation D1 :: B, x:α � M1 : β in D; we then write D = 〈D1,→I〉 :: B �
λx.M1 : α→β.

iii) If a derivation D finishes with rule (→E), there are P, Q, such that D :: B � PQ : σ, and
there are τ and sub-derivations D1 :: B � P : τ→σ and D2 :: B � Q : τ in D; we then write
D = 〈D1,D2,→E〉 :: B � PQ : σ.

iv) If a derivation D finishes with rule (∩I), there are σi (∀i ∈ n) such that D :: B � M :∩nσi,
and, for all i ∈ n, there exists a Di :: B � M : σi that is a sub-derivation of D; we then write
D = 〈D1, . . . ,Dn,∩I〉 :: B � M :∩nσi.

We will often abbreviate the short-hand notation for derivations, and, e.g., write 〈D1,D2,→E〉
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instead of 〈D1,D2,→E〉 :: B � PQ : σ.

As shown in [2], we have the following property.

Theorem 1.6 (cf. [2]) The following rules are admissible:

(≤) :
B � M : σ

(B′ ≤B,σ≤τ)
B′ � M : τ

(=β) :
B � M : σ

(M =β N)
B � N : σ

2 Derivation reduction

The notion of reduction on derivations D :: B � M : σ defined in this section will follow ordinary
reduction, by contracting typed redexes that occur in D, i.e. redexes for sub-terms of M of the
shape (λx.P)Q, for which the following is a sub-derivation of D:

〈〈 D1 :: B, x:ρ � P : τ,→I〉 :: B � λx.P : ρ→τ,
D2 :: B � Q : ρ,→E〉 :: B � (λx.P)Q : τ,

A derivation of this structure will be called a redex, or a cut. We will prove in Section 4 that
this notion of reduction is terminating, i.e. strongly normalisable.

The effect of this reduction will be that the derivation for the redex (λx.P)Q will be replaced
by a derivation for the contractum P[Q/x]; this can be regarded as a generalisation of cut-
elimination, but has, because the system at hand uses intersection types, including ω, to be
defined with care, since in D :: B � M : σ it is possible that M contains a redex whereas D does
not.

Before formally defining reduction on derivations, we will first define a notion of substitu-
tion on derivations.

Definition 2.1 Let D :: B, x:σ � M : τ, and D0 :: B � N : σ, the derivation

D [D0/x:σ] :: B � M[N/x] : τ,

the result of substituting D0 for x:σ in D, is inductively defined by:
i) D = 〈Ax〉 :: y:∩nσi � y : σj with j ∈ n. Then D [D0/x:σ] = D.

ii) D = 〈Ax〉 :: x:∩nσi � x : σj with j ∈ n. Then

D0 = 〈D1
0 :: B � N : σ1, . . . ,Dn

0 :: B � N : σn,∩I〉 :: B � N :∩nσi,

so, in particular, D j
0 :: B � N : σj. Then D [D0/x:σ] = D j

0.
iii) D = 〈D1 :: B, x:σ,y:α � M1 : β,→I〉 :: B, x:σ � λy.M1 : α→β. Let

D′ = D1 [D0/x:σ] :: B,y:α � M1[N/x] : β.

Then 〈D1,→I〉 [D0/x:σ] = 〈D′,→I〉 :: B � (λy.M1)[N/x] : α→β .
iv) D = 〈D1 :: B, x:σ � P : ρ→τ,D2 :: B, x:σ � Q : ρ,→E〉 :: B, x:σ � PQ : τ. Let

D′
1 = D1 [D0/x:σ] :: B � P[N/x] : ρ→τ, and

D′
2 = D2 [D0/x:σ] :: B � Q[N/x] : ρ,

then 〈D1,D2,→E〉[D0/x:σ] = 〈D′
1,D′

2,→E〉 :: B � (PQ)[N/x] : τ .
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v) D = 〈D1, . . . ,Dn,∩I〉 :: B, x:σ � M :∩nτi. Let, for all i ∈ n,

D′
i = Di [D0/x:σ] :: B � M[N/x] : τi,

then 〈D1, . . . ,Dn,∩I〉[D0/x:σ] = 〈D′
1, . . . , D′

n,∩I〉 :: B � M[N/x] :∩nτi .

Before coming to the definition of derivation-reduction, we need to define the notion of
‘position of a sub-derivation in a derivation’.

Definition 2.2 Let D be a derivation, and D′ be a sub-derivation of D. The position p of D′ in
D is defined by:

i) If D′ = D, then p = ε.
ii) If the position of D′ in D1 is q, and D = 〈D1,→I〉, or D = 〈D1,D2,→E〉, then p = 1q.

iii) If the position of D′ in D2 is q, and D = 〈D1,D2,→E〉, then p = 2q.
iv) If the position of D′ in Di (i ∈ n) is q, and D = 〈D1, . . . ,Dn,∩I〉, then p = q.

We can now define a notion of reduction on derivations; notice that this reduction corre-
sponds to contracting a redex in the term involved only if that redex appears in the derivation
in a sub-derivation with type different from ω.

Definition 2.3 We say that the derivation D :: B � M : σ reduces to D′ :: B � M′ : σ at position p
with redex R, if and only if:

i) σ ∈ TS.
a) D = 〈〈D1,→I〉,D2,→E〉 :: B � (λx.M)N : σ (a derivation of this shape is called a redex)..

Then D reduces to D1 [D2/x:ρ] :: B � M[N/x] : σ at position ε with redex (λx.M)N.
b) If D1 reduces to D′

1 at position p with redex R, then

∗ D = 〈D1,→I〉 :: B � λx.M1 : α→β reduces at position 1p with redex R to
D′ = 〈D′

1,→I〉 :: B � λx.M′
1 : α→β.

∗ D = 〈D1,D2,→E〉 :: B � PQ : σ reduces at position 1p with redex R to
D′ = 〈D′

1,D2,→E〉 :: P′Q : σ.
∗ D = 〈D2,D1,→E〉 :: B � PQ : σ reduces at position 2p with redex R to
D′ = 〈D2,D′

1,→E〉 :: PQ′ : σ.

ii) σ = ∩nσi. If D :: B � M :∩nσi, then, for every i ∈ n, there are Di, such that Di :: B � M : σi,
and D = 〈D1, . . . ,Dn,∩I〉. If there is an i ∈ n such that Di reduces to D′

i at position p with
redex R, then, for all j �= i ∈ n, either
a) there is no redex at position p because there is no sub-derivation at that position. Let

R→βR’ and D′
j = Dj[R’/R] (i.e. Dj where each R is replaced by R′), or

b) Dj reduces to D′
j at position p with redex R.

Then D →D 〈D′
1, . . . ,D′

n,∩I〉 at position p with redex R.
D1 →D D2 →D D3, then D1 →D D3.

We say, as usual, that D is normalisable is there exists a redex-free D′ such that D →D D′, and
that D is strongly normalisable if all reduction sequences starting in D are of finite length. We
abbreviate ‘D is strongly normalisable’ by ‘SN(D)’.

It is worth noting that, when we do not allow the use of ω to type a redex, typeable terms
need not be strongly normalizing, as clearly illustrated by the following example.
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Example 2.4 Let D1 be the derivation (with B1 = {x:(α→β→γ)∩α,y:(γ→δ)∩β}, and
Θ ≡ λxy.y(xxy)):

(Ax)
B1 � y : γ→δ

(Ax)
B1 � x : α→β→γ

(Ax)
B1 � x : α

(→E)
B1 � xx : β→γ

(Ax)
B1 � y : β

(→E)
B1 � xxy : γ

(→E)
B1 � y(xxy) : δ

(→I)
B1\y � λy.y(xxy) : (γ→δ)∩β → δ

(→I)
� Θ : (α→β→γ)∩α → (γ→δ)∩β → δ

then we can construct (with B = {y:τ,y:ω→ρ}, and τ = (α→β→γ)∩α → (γ→δ)∩β → δ) D2:

(Ax)
B2 � y : ω→ρ

(ω)
B2 � xxy : ω

(→E)
B2 � y(xxy) : ρ

(→I)
x:τ � λy.y(xxy) : (ω→ρ)→ρ

(→I)
� Θ : τ→(ω→ρ)→ρ

From D1 and D2 we can now construct:

D2

� Θ : τ→(ω→ρ)→ρ

D2

� Θ : τ
(→E)

� ΘΘ : (ω→ρ)→ρ

Notice that the term ΘΘ has only one redex, that is not typed with ω. This derivation has
only one (derivation)-redex, and contracting it gives:

(Ax)
y:ω→ρ � y : ω→ρ

(ω)
y:ω→ρ � ΘΘy : ω

(→E)
y:ω→ρ � y(ΘΘy) : ρ

(→I)
� λy.y(ΘΘy) : (ω→ρ)→ρ

Notice that this last derivation is in normal form, although λy.y(ΘΘy) obviously is not.

For another, more involved example of derivation reduction, see Example A.2 in the appendix.
The following lemma formulates the relation between derivation reduction and β-reduction.

Lemma 2.5 Let D :: B � M : σ, and D →D D′ :: B � N : σ, then M →→β N.

Proof: By the above definition.

3 Approximation

In Sections 5 and 6 we will show two main results, that are both direct consequences of the
strong normalisation result proved in Section 4. Both results have been proven in the past, at
least partially, in [2, 3]. In fact, some of the theorems and lemmas presented here were already
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presented in those papers and are repeated here, for completeness, with their proofs.
The notion of approximant for lambda terms was first presented in [15], and is defined using

the notion of terms in λ ⊥-normal form (like in [5], ⊥ is used, instead of Ω; also, the symbol
� is used as a relation on Λ⊥-terms, inspired by a similar relation defined on Böhm-trees in
[5]).

Definition 3.1 i) The set of Λ⊥ -terms is defined as the set Λ of lambda terms, by:

M ::= x | ⊥ | λx.M | M1M2

ii) The notion of reduction →β⊥ is defined as →β, extended by: λx.⊥→β⊥⊥ and ⊥M→β⊥⊥.
iii) The set of normal forms for elements of Λ⊥ with respect to →β⊥ is the set A of λ⊥-normal

forms or approximate normal forms, ranged over by A, inductively defined by:

A ::= ⊥ | λx.A (A �= ⊥) | xA1 · · · An (n≥0)

The rules of the system ‘�’ are generalised to terms containing ⊥ by allowing for the terms
to be elements of Λ⊥. Notice that, if ⊥ occurs in a term M and D :: B � M : σ, then in D, ⊥
appears in a position where the rule (∩I) is used with n = 0, i.e., in a sub-term typed with ω.
Moreover, the terms λx.⊥ and ⊥M1 · · · Mn are typeable by ω only.

Definition 3.2 i) The partial order �⊆ (Λ⊥)2 is defined as the transitive and reflexive closure
of:

⊥ � M
M � M′ ⇒ λx.M � λx.M′

M1 � M′
1 & M2 � M′

2 ⇒ M1M2 � M′
1M′

2.
If A ∈ A, M ∈ Λ, and A � M, then A is called a direct approximant of M.

ii) The relation ∼⊆ A × Λ is defined by:

A ∼ M ⇐⇒ ∃ M′ =β M [A � M′].

iii) If A ∼ M, then A is called an approximant of M, and A(M) = {A ∈ N | A ∼ M}.

Lemma 3.3 B � M : σ & M � M′ ⇒ B � M′ : σ.

Proof: By easy induction on the definition of �.

The following definition introduces an operation of join on Λ⊥-terms.

Definition 3.4 i) On Λ⊥, the partial mapping join, � : Λ⊥ × Λ⊥→ Λ⊥, is defined by:

⊥ � M ≡ M � ⊥ ≡ M
x � x ≡ x

(λx.M) � (λx.N) ≡ λx.(M � N)

(M1M2) � (N1N2) ≡ (M1 � N1) (M2 � N2)

ii) If M � N is defined, then M and N are called compatible.

Note that ⊥ can be defined as the empty join, i.e. if M ≡ M1 � · · · � Mn, and n = 0, then
M ≡ ⊥.

The last alternative in the definition of � defines the join on applications in a more general
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way than Scott’s, that would state that

(M1M2) � (N1N2) � (M1 � N1)(M2 � N2),

since it is not always sure if a join of two arbitrary terms exists. However, we will use our
more general definition only on terms that are compatible, so the conflict is only apparent.

The following lemma shows that the join acts as least upper bound of compatible terms.

Lemma 3.5 If M1 � M, and M2 � M, then M1 � M2 is defined, and:

M1 � M1 � M2, M2 � M1 � M2, and M1 � M2 � M.

Proof: By induction on the definition of �.

4 Strong normalisation of derivation reduction

In this subsection, we will prove a strong normalisation result for derivation reduction.
In order to prove that each derivation in ‘�’ is strongly normalisable with respect to →D, a

notion of computable derivations will be introduced.

Definition 4.1 The Computability Predicate Comp (D) is defined recursively on types by:

Comp (D :: B � M : ϕ) ⇐⇒ SN (D)

Comp (D :: B � M : α→β) ⇐⇒
∀D′ [Comp (D′ :: B � N : α)⇒ Comp (〈D,D′,→E〉 :: B � MN : β) ]

Comp (〈D1, . . . ,Dn,∩I〉 :: B � M :∩nσi) ⇐⇒ ∀ i ∈ n [Comp (Di :: B � M : σi) ]

Notice that, as a special case for the third rule, we get Comp (〈∩I〉 :: B � ⊥ : ω)

We will prove that Comp satisfies the standard properties of computability predicates, being
that computability implies strong normalisation, and that, for the so-called neutral objects,
also the converse holds.

Lemma 4.2 If Comp (D :: B � M : σ), B′ ≤B, σ≤σ′, then Comp (D′ :: B′ � M : σ′) for some D′.

Proof: Easy.

Lemma 4.3 i) Comp (D :: B � M : σ)⇒ SN(D).
ii) SN(D :: B � xM1· · ·Mm : σ)⇒ Comp (D).

Proof: By simultaneous induction on the structure of types.

The following theorem (4.5) shows that, in a derivation, replacing sub-derivations for term-
variables by computable derivations yields a computable derivation. Before coming to this
result, first an auxiliary lemmas has to be proved, that formulates that the computability
predicate is closed for subject-expansion with respect to derivation reduction.

Lemma 4.4 If Comp (〈· · ·D1[D2/y:ρ] · · · ,→E〉 :: B � M[Q/y]P : τ) and Comp (D2 :: B � Q : ρ), then

Comp (〈· · · 〈〈D1,→I〉,D2,→E〉 · · · ,→E〉 :: B � (λy.M)Q P : τ).

Proof: By induction on the structure of types, using Definition 4.1.
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We now come to the Replacement Theorem, i.e. the proof that for every derivation in ‘�’,
if the assumptions in the derivation are to be replaced by computable derivations, then the
result itself will be computable. We will use an abbreviated notation, and write [N/x ] for
[N1/x1, . . . , Nn/xn], etc.

Theorem 4.5 Let B′ = x1:µ1, . . . , xm:µm, D :: B′ � M : σ, and, for every i ∈ m, there are Di and Ni
such that Comp (Di :: B � Ni : µi). Then Comp (D [D/x:µ ] :: B � M[N/x ] : σ).

Proof: By induction on the structure of derivations.

(Ax) : Then M ≡ x, x:∩nσi ∈ B′, σ = σi for some i ∈ n, and Di :: B � N1 : σ. By Definition 2.1,
D [D/x:µ ] = Di.

(∩I) : Then σ = ∩nσi, and, for all i ∈ n, there exists Di :: B′ � M : σj such that
D = 〈D1, . . . ,Dm,∩I〉. Then, by induction, for all i ∈ n,
Comp (Di[D/x:µ ] :: B � M[N/x ] : σi), and, by Definition 4.1,
Comp (D[D/x:µ ] :: B � M[N/x ] :∩nσi).

(→I) : Then σ = ρ→τ, D = 〈D1 :: B′,y:ρ � M′ : τ,→I〉 :: B′ � λy.M′ : ρ→τ. Assume
Comp (D′ :: B � Q : ρ), then:

∀j ∈ m [Comp (Dj) ] & Comp (D′ :: B � Q : ρ) ⇒ IH
Comp (D1[D/x:µ ,D′/y:ρ] :: B � M[N/x , Q/y] : τ) ⇒
Comp (〈〈D1[D/x:µ ],→I〉,D′,→E〉 :: B � (λy.M[N/x ])Q : τ)

so, by Definition 4.1, Comp (〈D1[D/x:µ ],→I〉 :: B � λy.M[N/x ] : ρ→τ), so also
Comp (〈D1,→I〉[D/x:µ ] :: B � (λy.M)[N/x ] : ρ→τ).

(→E) : Then M ≡ M1M2, there are D1,D2, and τ such that D = 〈D1,D2,→E〉,
D1 :: B′ � M1 : τ→σ, and D2 :: B′ � M2 : τ. Then, by induction,

Comp (D1[D/x:µ ] :: B � M1[N/x ] : τ→σ), and
Comp (D2[D/x:µ ] :: B � M2[N/x ] : τ).

Then, by Definition 4.1,

Comp (〈D1[D/x:µ ],D2,→E〉 :: B � M1[N/x ]M2[N/x ] : σ)

so also Comp (〈D1,D2,→E〉[D/x:µ ] :: B � (M1M2)[N/x ] : σ).

Using this last result, we now prove a strong normalisation result for derivation reduction
in ‘�’.

Theorem 4.6 If D :: B � M : σ, then SN (D).

Proof: By Lemma 4.3(ii), for every x:τ ∈ B, Comp (Dx :: B � x : τ), so by Theorem 4.5,
Comp (D :: B � M : σ). Notice that, by Lemma 4.3(i), SN (D).

5 Normalisation results

In what follows below, first an approximation result will be proved, i.e. for every M, B and
σ such that B � M : σ, there exists an A ∈ AM such that B � A : σ. From this, the well-known
characterisation of (head-)normalisation of lambda terms using intersection types follows eas-
ily, i.e. all terms having a (head) normal form are typeable in ‘�’ (with a type without ω-
occurrences). The second result is the well-known characterisation of strong normalisation of
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typeable lambda terms, i.e. all terms, typeable in ‘�’ without using the type-constant ω, are
strongly normalisable.

First we give some auxiliary definitions and results. The first is a notion of type assignment
that, essentially, assigns ω only to the term ⊥.

Definition 5.1 ⊥-type assignment and ⊥-derivations are defined by the following natural de-
duction system (where all types displayed are strict, except σ in the rules (→I), and (→E)):

(Ax) : (n≥0, i ∈ n)
B, x:∩nσi �⊥ x : σi

(→E) :
B �⊥ M : σ→τ B �⊥ N : σ

B �⊥ MN : τ

(∩I) :
B �⊥ M1 : σ1 . . . B �⊥ Mn : σn

(n≥0)
B �⊥ M1 � · · · � Mn :∩nσi

(→I) :
B, x:σ �⊥ M : τ

B �⊥ λx.M : σ→τ

We write B �⊥ M : σ if this statement is derivable using a ⊥-derivation.

Notice that, by rule (∩I), ∅ �⊥ ⊥ : ω, and that this is the only way to assign ω to a term.
Moreover, in that rule, the terms Mj need to be compatible (otherwise their join would not be
defined).

Lemma 5.2 i) If D :: B �⊥ M : σ, then D :: B � M : σ.
ii) If D :: B � M : σ, then there exists M′ � M, such that D :: B �⊥ M′ : σ.

Proof: By easy induction on the structure of derivations, using Lemma 3.5 in part (ii).

Notice that, since M′ need not be the same as M, the second derivation in part (ii) is not
exactly the same; however, it has the same structure in terms of applied derivation rules.

Using Theorem 4.6, as for the BCD-system and the strict system, the relation between types
assignable to a lambda term and those assignable to its approximants can be formulated as
follows:

Theorem 5.3 (Approximation) B � M : σ ⇐⇒ ∃ A ∈ A(M) [B � A : σ ].

Proof: ⇒) If D :: B � M : σ, then, by Theorem 4.6, SN (D). Let D′ :: B � N : σ be a normal
form of D with respect to →D, then by Lemma 2.5, M →→β N and, by Lemma 5.2(ii),
there exists P � N such that D′ :: B �⊥ P : σ. So, in particular, P contains no redexes (no
typed redexes since D′ is in normal form, and none untyped since only ⊥ can be typed
with ω), so P ∈ A, and therefore P ∈ AM.

⇐) Since A ∈ A(M), there is an M′ such that M′ =β M and A � M′. Then, by Lemma 3.3,
B � M′ : σ, and, by Theorem 1.6, also B � M : σ.

Using this result, the following becomes easy.

Theorem 5.4 (Head-normalisation [3]) ∃B,σ [B � M : σ ]⇐⇒ M has a head normal form.

Proof: ⇒) If B � M : σ, then, by Theorem 5.3,

∃ A ∈ A(M) [B � A : σ ].

By Definition 3.2, there exists M′ =β M such that A � M′. Since σ ∈ T , A �≡⊥, so A is
either x,λx.A′ or xA1· · ·An. Since M′ matches A, M′ is either x,λx.M1 or xM1· · ·Mn; so
M′ is in head-normal from. Then M has a head-normal form.
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⇐) If M has a head-normal form, then there exists M′ =β M such that M′ is either x, λx.M1
or xM1· · ·Mn, with each Mi ∈ Λ.
a) M′ ≡ x. Take B = x:ϕ, and σ = ϕ.
b) M′ ≡ λx.M1. Since M1 is in head-normal form, by induction there are B′,σ′ such that

B′ � M1 : σ′. If x:τ ∈ B, take B = B′\x, and σ = τ→σ′, otherwise B = B′ and σ = ω→σ′.
c) M′ ≡ xM1· · ·Mn. Take B = x:ω→·· ·→ω→ϕ and σ = ϕ.
Notice that, in all cases, B � M′ : σ. Then, by Theorem 1.6, B � M : σ.

6 ω-free type assignment

In this section we revisit the strong normalisation proof, for which we first define a notion of
derivability obtained from ‘�’ by removing the type constant ω.

Definition 6.1 i) The set of ω-free strict types is inductively defined by:

σ ::= ϕ | ((σ1 ∩ · · · ∩ σn)→ σ), (n≥1)

The set T−ω− of ω-free intersection types is defined by:

{∩nσi | n≥1 & ∀ i ∈ n [σi is an ω-free strict type ]}

ii) The relation ≤ is defined in ω-free types as the least pre-order on T−ω− such that:

∩nσi ≤ σi, for all i ∈ n
τ≤σi, for all i ∈ n ⇒ τ≤∩nσi n≥1

σ≤τ≤ρ ⇒ σ≤ρ

iii) The equivalence relation ∼ on types is defined by: σ∼τ ⇐⇒ σ≤τ≤σ, and we will work
with types modulo ∼.

Definition 6.2 i) ω-free intersection type assignment and ω-free intersection derivations are de-
fined by the following natural deduction system:

(Ax) : (n≥1, i ∈ n)
B, x:∩nσi �−ω− x : σi

(→E) :
B �−ω− M : σ→τ B �−ω− N : σ

B �−ω− MN : τ

(∩I) :
B �−ω− M : σ1 · · · B �−ω− M : σn

(n≥1)
B �−ω− M :∩nσi

(→I) :
B, x:σ �−ω− M : τ

B �−ω− λx.M : σ→τ

ii) We write B �−ω− M : σ if this statement is derivable using a strict intersection derivation, and
write D :: B �−ω− M : σ to specify that this result was obtained through the derivation D.

Then the following properties hold:

Lemma 6.3 i) B �−ω− x : σ ⇐⇒ ∃σi (∀i ∈ n) ∈ T−ω− [ x:∩nσi ∈ B & ∃ i ∈ n[σ = σi ]].
ii) B �−ω− MN : σ & σ ∈ T−ω− ⇐⇒ ∃ τ ∈ T−ω− [B �−ω− M : τ→σ & B �−ω− N : τ ].

iii) B �−ω− λx.M : σ & σ ∈ T−ω− ⇐⇒ ∃ ρ ∈ T−ω−,µ ∈ T−ω− [σ = ρ→µ & B, x:ρ �−ω− M : µ ].
iv) B �−ω− M : σ & B′ ≤B ⇒ B′ �−ω− M : σ.
v) If D :: B �−ω− M : σ, then D :: B � M : σ.

Proof: Easy.
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To prepare the characterisation of terms by their assignable types, first is proved that a term
in λ⊥-normal form is typeable without ω, if and only if it does not contain ⊥. This forms the
basis for the result that all normalisable terms are typeable without ω.

Lemma 6.4 ([3]) i) If B � A : σ, and B,σ are ω-free, then A is ⊥-free.
ii) If A is ⊥-free, then there are B, and σ, such that B �−ω− A : σ.

Now, as also shown in [2], it is possible to prove that the strict intersection type assignment
system satisfies the main properties of the BCD-system.

Theorem 6.5 [2] ∃B,σ [B � M : σ & B,σ ω-free ]⇐⇒ M has a normal form.

Proof: ⇒) If B � M : σ, then, by Theorem 5.3, there exists A ∈ AM such that B � M : σ.
Since B,σ are ω -free, by Lemma 6.4(i), this A is ⊥-free. By Definition 3.1 there exists
M′ =β M such that A � M′. Since A contains no ⊥, A = M′, so M′ is a normal form, so,
especially, M has a normal form.

⇐) If M′ is the normal form of M, then it is a ⊥-free approximate normal form. Then by
Lemma 6.4(ii) there are B,σ such that B �−ω− M′ : σ. Then, by Theorem 1.6, B � M : σ.

Theorem 6.9 shows that the set of strongly normalisable terms is exactly the set of terms
typeable in the intersection system without using the type constant ω. The same result was
stated in [2] for the BCD-system, but the proof there was not complete. The proof of the
crucial lemma as presented below (Lemma 6.8) and part (⇐) of the proof of Theorem 6.9 are
essentially due to Betti Venneri, of the University of Florence, Italy, and goes by induction on
the left-most outer-most reduction path.

The following lemma shows a subject expansion result for the ω-free system.

Lemma 6.6 If B �−ω− M[N/x] : σ and B �−ω− N : ρ, then B �−ω− (λx.M)N : σ.

Proof: Standard.

This result extends by induction (easily) to all contexts: if B �−ω− C[M[N/x]] : σ and B �−ω− N : ρ,
then B �−ω− C[(λx.M)N ] : σ.

Lemma 6.6 is also essentially the proof for the statement that each strongly normalisable
term can be typed in the system ‘�−ω−’, a property that we will now show.

Definition 6.7 An occurrence of a redex R = (λx.P)Q in a term M is called the left-most outer-
most redex of M (lor (M)), if:

i) There is no redex R′ in M such that R′ = C[R ] (outer-most).
ii) There is no redex R′ in M such that M = C0 [C1 [R′ ]C2 [R]] (left-most).

M→lor N is used to indicate that M reduces to N by contracting lor (M).

The following lemma formulates a subject expansion result for ‘�−ω−’ with respect to left-most
outer-most reduction. The proof follows a similar proof by Betti Venneri, of the University of
Florence, Italy (unpublished), set in the context of the BCD-system.

Lemma 6.8 Let M→lor N, lor (M) = (λx.P)Q, B �−ω− N : σ, and B′ �−ω− Q : τ, then there exists B1,ρ
such that B1 �−ω− M : ρ.

Proof: By induction on the structure of types, of which only the part σ ∈ TS will be shown,
by induction on the structure of terms; note that M ≡ λx1 · · · xk.VP1 · · ·Pn (k,n≥0), where
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either
i) V is a redex, so V ≡ (λy.P)Q, so lor (M) = V and N ≡ λx1 · · · xk.(P[Q/y])P1 · · ·Pn, or

ii) V ≡ y, so there is an j ∈ n such that lor (M) = lor (Pj), and Pj→lor P′, and
N ≡ λx1 · · · xk.yP1 · · ·P′ · · ·Pn.

In either case, we have, by Lemma 6.3, that there are α1, . . . ,αk, γ1, . . . ,γn, and β such that
σ = α1→·· ·→αk→β, B0 �−ω− V ′ : γ1→·· ·→γn→β, and B0 �−ω− Pi : γi (i ∈ n), where
B0 = B, x1:α1, . . . , xk:αk, and V ′ is either P[Q/y] or y. We distinguish two cases:

i) V ′ ≡ P[Q/y]. Let B1 = B′, then ∩{B0, B1} �−ω− (λy.P)Q : γ1→·· ·→γn→β, by Lemma 6.6,
ii) V ′ ≡ y. Then, by induction, there are B′,ρ such that B′ �−ω− Pj : ρ. Take

µ = γ1→·· · ρ · · ·→γn→β, B1 = B′,y:µ, then ∩{B0, B1} �−ω− y : µ.
In either case, ∩{B0, B1} �−ω− VP1 · · ·Pn : β. Let, for all i ∈ k, xi:βi ∈ ∩{B0, B1}, then

∩{B0, B1}\x1, . . . , xk �−ω− λx1 · · · xk.yP1 · · ·Pn : β1→·· ·→βk→β.

We can now show that all strongly normalisable terms are exactly those typeable in ‘�−ω−’.

Theorem 6.9 ∃B,σ [B �−ω− M : σ ]⇐⇒ M is strongly normalisable with respect to →β.

Proof: ⇒) If D :: B �−ω− M : σ, then by Lemma 6.3(v), also D :: B � M : σ. Then, by Theorem
4.6, D is strongly normalisable with respect to →D. Since D contains no ω, all redexes in
M correspond to redexes in D. Since derivation reduction does not introduce ω, also M
is strongly normalisable with respect to →β.

⇐) With induction on the maximum of the lengths of reduction sequences for a strongly
normalisable term to its normal form (denoted by #(M)).
a) If #(M) = 0, then M is in normal form, and by Lemma 6.4(ii), there exist B and σ ∈ T

such that B �−ω− M : σ.
b) If #(M)≥1, so M contains a redex, then let M→lor N by contracting (λx.P)Q. Then

#(N) ≤ #(M), and #(Q) ≤ #(M) (since Q is a proper sub-term of a redex in M), so by
induction B �−ω− M : σ and B′ �−ω− Q : τ, for some B, B′, σ, and τ. Then, by Lemma 6.8,
there exist B1,ρ such that B1 �−ω− M : ρ.

Conclusions and future work

We have shown that cut-elimination is strongly normalising also for an intersection type as-
signment systems that contains ω, and that all standard characterisations of normalisation
are consequences of this result. A future extension of this result could be to consider a type-
inclusion relation that is contra-variant over the arrow, so to consider a system that is closed
for η-reduction.
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Appendix A Extended examples

We give an example of a non-strongly normalising term for which it is possible to find a
derivation such no redex is covered with ω; moreover, for all the β-reducts of this term, the
same property holds. We will show that this derivation has a normal from, and construct the
reduction sequences.

Example A.1 The derivation we will construct is similar to the one of Example 2.4, but differs
in the type derived for ΘΘ: (ρ→ρ)∩(ω→ρ)→ ρ rather than (ω→ρ)→ρ. Take Θ = λxy.y(xxy),
then ΘΘ is typeable in �, without covering a redex by ω.

Let τ = ((α→β→γ)∩α)→((γ→δ)∩β)→δ, and take the derivations D1 :: � Θ : τ and D2 :: �
Θ : τ(ω→ρ)→ρ of Example 2.4.

From these two, by applying (∩I), we get D3 :: � Θ : (τ→(ω→ρ)→ρ)∩ τ:

D2

� λxy.y(xxy) : τ→(ω→ρ)→ρ

D1

� λxy.y(xxy) : τ
(∩I)

� Θ : (τ→(ω→ρ)→ρ)∩ τ
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Also, we can construct D4 :: � Θ : (τ→(ω→ρ)→ρ)∩τ → (ρ→ρ)∩(ω→ρ)→ ρ (taking B′ =
{x:(τ→(ω→ρ)→ρ)∩τ,y:(ρ→ρ)∩ (ω→ρ)}):

(Ax)
B′ � y : ρ→ρ

(Ax)
B′ � x : τ→(ω→ρ)→ρ

(Ax)
B′ � x : τ

(→E)
B′ � xx : (ω→ρ)→ρ

(Ax)
B′ � y : ω→ρ

(→E)
B′ � xxy : ρ

(→E)
B′ � y(xxy) : ρ

(→I)
B′\y � λy.y(xxy) : (ρ→ρ)∩(ω→ρ)→ ρ

(→I)
� Θ : (τ→(ω→ρ)→ρ)∩τ → (ρ→ρ)∩(ω→ρ)→ ρ

Then, by applying (→E), we get D5 :: � ΘΘ : (ρ→ρ)∩(ω→ρ)→ ρ:

D4

� Θ : (τ→(ω→ρ)→ρ)∩τ→(ρ→ρ)∩(ω→ρ)→ρ

D3

� Θ : (τ→(ω→ρ)→ρ)∩τ
(→E)

� ΘΘ : (ρ→ρ)∩(ω→ρ)→ ρ

Let D6 :: v:(ρ→ρ)∩(ω→ρ) � v : (ρ→ρ)∩(ω→ρ) be:

(Ax)
v:(ρ→ρ)∩(ω→ρ) � v : ρ→ρ

(Ax)
v:(ρ→ρ)∩(ω→ρ) � v : ω→ρ

(∩I)
v:(ρ→ρ)∩(ω→ρ) � v : (ρ→ρ)∩(ω→ρ)

then, adding a statement for v to D5, we get also D7 :: v:(ρ→ρ)∩(ω→ρ) � ΘΘv : ρ:

D5

v:(ρ→ρ)∩(ω→ρ) � ΘΘ : (ρ→ρ)∩(ω→ρ)→ ρ

D6

v:(ρ→ρ)∩(ω→ρ) � v : (ρ→ρ)∩(ω→ρ)
(→E)

v:(ρ→ρ)∩(ω→ρ) � ΘΘv : ρ

Notice that ΘΘv is not strongly normalisable, since
ΘΘv →→β v(ΘΘv)→→β v(v(ΘΘv)) →→β · · · .

Moreover, all these reducts are typeable in ‘�’ such that no redex is typed with ω: since we can
derive both v:(ρ→ρ)∩(ω→ρ) � v : ρ→ρ, and v:(ρ→ρ)∩(ω→ρ) �ΘΘv : ρ, we get v:(ρ→ρ)∩(ω→ρ) �
v(ΘΘv) : ρ by rule (→E), and so on.

The next example shows all the reduction sequences starting form the derivation given in
the previous example.

Example A.2 Take Θ, D1, . . . ,D7 as in Example A.1, then, using B = {v:(ρ→ρ)∩(ω→ρ)} (to
save space, we use α for (τ→(ω→ρ)→ρ)∩τ → (ρ→ρ)∩(ω→ρ)→ ρ):

D :
D4

B � Θ : α

D2

B � Θ : τ→(ω→ρ)→ρ

D1

B � Θ : τ
(∩I)

B � Θ : (τ→(ω→ρ)→ρ)∩τ
(→E)

B � ΘΘ : (ρ→ρ)∩(ω→ρ)→ρ

D6

B � v : (ρ→ρ)∩(ω→ρ)
(→E)

B � ΘΘv : ρ
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This derivation has only one redex (where B′ = B, x:(τ→(ω→ρ)→ρ)∩ τ,y:(ρ→ρ)∩(ω→ρ);
remark that derivation D4 finishes with an application of rule (→I)):

(Ax)
B′ � y : ρ→ρ

(Ax)
B′ � x : τ→(ω→ρ)→ρ

(Ax)
B′ � x : τ

(→E)
B′ � xx : (ω→ρ)→ρ

(Ax)
B′ � y : ω→ρ

(→E)
B′ � xxy : ρ

(→E)
B′ � y(xxy) : ρ

(→I)
B′\y � λy.y(xxy) : (ρ→ρ)∩(ω→ρ)→ ρ

(→I)
B � λxy.y(xxy) : α

D2

B � Θ : τ→(ω→ρ)→ρ

D1

B � Θ : τ
(∩I)

B � Θ : (τ→(ω→ρ)→ρ)∩τ
(→E)

B � ΘΘ : (ρ→ρ)∩(ω→ρ)→ρ

Contracting this redex makes D reduce to D′ (where B′′ = B,y:(ρ→ρ)∩(ω→ρ)):

(Ax)
B′′ � y : ρ→ρ

D2

B′′ � Θ : τ→(ω→ρ)→ρ

D1

B′′ � Θ : τ
(→E)

B′′ � ΘΘ : (ω→ρ)→ρ
(Ax)

B′′ � y : ω→ρ
(→E)

B′′ � ΘΘy : ρ
(→E)

B′′ � y(ΘΘy) : ρ
(→I)

B � λy.y(ΘΘy) : (ρ→ρ)∩(ω→ρ)→ρ

D6

B � v : (ρ→ρ)∩(ω→ρ)
(→E)

B � (λy.y(ΘΘy))v : ρ

Now D′ has two redexes (notice that D2 finishes with rule (→I)); contracting the outer-most
distributes (the two sub-derivations of) D6 and creates;

(Ax)
B � v : ρ→ρ

D2

B � Θ : τ→(ω→ρ)→ρ

D1

B � Θ : τ
(→E)

B � ΘΘ : (ω→ρ)→ρ
(Ax)

B � v : ω→ρ
(→E)

B � ΘΘv : ρ
(→E)

B � v(ΘΘv) : ρ

As illustrated by Example 2.4, contracting the remaining redex creates

(Ax)
B � v : ρ→ρ

(Ax)
B,z:ω→ρ � z : ω→ρ

(ω)
B,z:ω→ρ � ΘΘz : ω

(→E)
B,z:ω→ρ � z(ΘΘz) : ρ

(→I)
B � λz.z(ΘΘz) : (ω→ρ)→ρ

(Ax)
B � v : ω→ρ

(→E)
B � (λz.z(ΘΘz))v : ρ

(→E)
B � v((λz.z(ΘΘz))v) : ρ
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This derivation has again one redex: contracting it will generate the derivation D′′:

(Ax)
B � v : ρ→ρ

(Ax)
B � v : ω→ρ

(ω)
B � ΘΘv : ω

(→E)
B � v(ΘΘv) : ρ

(→E)
B � v(v(ΘΘv)) : ρ

This derivation now is in normal form; again, the term v(v(ΘΘv)) is not.
On the other hand, contracting first the inner-most redex of D′ creates:

(Ax)
B′′ � y : ρ→ρ

(Ax)
B′′,z:ω→ρ � z : ω→ρ

(ω)
B′′,z:ω→ρ � ΘΘz : ω

(→E)
B′′,z:ω→ρ � z(ΘΘz) : ρ

(→I)
B′′ � λz.z(ΘΘz) : (ω→ρ)→ρ

(Ax)
B′′ � y : ω→ρ

(→E)
B′′ � (λz.z(ΘΘz))y : ρ

(→E)
B′′ � y((λz.z(ΘΘz))y) : ρ

(→I)
B � λy.y((λz.z(ΘΘz))y) : (ρ→ρ)∩(ω→ρ)→ρ

D6

B � v : (ρ→ρ)∩(ω→ρ)
(→E)

B � (λy.y(λz.z(ΘΘz))y)v : ρ

This derivation has again two redexes. Contracting the outer-most creates:

(Ax)
B � v : ρ→ρ

(Ax)
B,z:ω→ρ � z : ω→ρ

(ω)
B,z:ω→ρ � ΘΘz : ω

(→E)
B,z:ω→ρ � z(ΘΘz) : ρ

(→I)
B � λz.z(ΘΘz) : (ω→ρ)→ρ

(Ax)
B � v : ω→ρ

(→E)
B � (λz.z(ΘΘz))v : ρ

(→E)
B � v((λz.z(ΘΘz))v) : ρ

and contracting the remaining redex creates D′′. Alternatively, contracting the inner-most
redex creates:

(Ax)
B′′ � y : ρ→ρ

(Ax)
B′′ � y : ω→ρ

(ω)
B′′ � ΘΘy : ω

(→E)
B′′ � y(ΘΘy) : ρ

(→E)
B′′ � y(y(ΘΘy)) : ρ

(→I)
B � λy.y(y(ΘΘy)) : (ρ→ρ)∩(ω→ρ)→ρ

D6

B � v : (ρ→ρ)∩(ω→ρ)
(→E)

B � (λy.y(y(ΘΘy)))v : ρ

This derivation has only one redex, and reduces to D′′.


