
Intersection and Union Types for X ∗

(ITRS’04, 2004; ENTCS, volume 136)

Steffen van Bakel

Department of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2BZ, UK, svb@doc.ic.ac.uk

s.vanbakel@imperial.ac.uk

Abstract

This paper presents a notion of intersection and union type assignment for the calculus X , a
substitution free language that can be used to describe the behaviour of functional program-
ming languages at a very low level of granularity, and has first been defined in [13, 5]. X has
been designed to give a Curry-Howard-de Bruijn correspondence to the sequent calculus for
classical logic.
In this paper we will define a notion of sequent-style intersection type assignment on X that
needs union types, and show that this notion is closed for both subject-reduction and subject-
expansion. We will also show that it is an extension of the Strict system for λ-calculus.

Introduction

This paper will present a notion of intersection and union type assignment for the (untyped)
calculus X , as first defined in [13] and later extensively studied in [5]. The origin of X lies
within the quest for a language designed to give a Curry-Howard-de Bruijn correspondence
to the sequent calculus for Classical Logic. X is defined as a substitution-free programming
language that, perhaps surprisingly, is extremely well equipped to describe the behaviour of
functional programming languages at a very low level of granularity (see [13, 5]).

The Curry-Howard property strongly links typeable programs and provable theorems, and
can be understood as follows:

(Curry-Howard isomorphism) “Terms as Proofs, Types as Propositions.” Let M be a
term, and A a type, then M is of type A if and only if A, read as a logical formula, is
provable in the corresponding logic, using a proof which structure corresponds to M.

A sequent style implicative classical logic can be defined by:

(Ax) :
Γ, A � A,∆ (cut) :

Γ � A,∆ Γ, A � ∆

Γ � ∆

(LI) :
Γ � A,∆ Γ, B � ∆

Γ, A→B � ∆
(RI) :

Γ, A � B,∆

Γ � A→B,∆

Starting from different approaches in that area [10, 14], in [13] the calculus X was intro-
duced, and shown to be equivalent to the λµµ̃-calculus of [10] in terms of expressivity. Using
this correspondence, a strong normalization result is shown for λµµ̃. In fact, [13] did not
study any property of untyped X , but focused only on its type aspects in connection with the
sequent calculus.

∗ The results claimed in Section 6 are wrong; the paper has been superseded by the author’s ITRS’08 and
Fundamenta Informaticae 121 papers.

ITRS’04, 2004; ENTCS, volume 136 2

As far as the Curry-Howard isomorphism is concerned, X stands out in that it is the first
calculus to achieve that in full for a classical logic. For example, in λµµ̃, all provable propo-
sitions can be inhabited, but not all terms correspond to proofs, and in λµ, not all proofs can
be represented, since there reduction is confluent.

When studying X as an untyped language, soon the unexpected special properties surfaced:
it became apparent that X provides an excellent general purpose machine, very well suited
to encode various calculi (for details, see [5]). Amongst the calculi studied in that paper,
the Calculus of Explicit Substitutions λx stands out. In fact, a ‘subatomic’ level was reached
by decomposing explicit substitutions into smaller components. Even more, the calculus is
actually symmetric [7]; the ‘cut’, represented by P α̂ † x̂Q represents, in a sense, the explicit
substitution of P for x in Q, but also that of Q for α in P.

Perhaps the main feature of X is that it constitutes a variable and substitution-free method
of computation. Rather than having variables like x representing places where terms can
be inserted, in X the symbol x represents a socket, to which a term can be attached. The
definition of reduction on X shows nicely how the interaction between the two subtly and
gently percolates through the terms.

Although the origin of X is a logic, and one could expect it to be close to λ-calculus, it is
in fact specified as a conditional term rewriting system; the only non-standard aspect is that it
treats three different classes of variables (for plugs, sockets, and nets).

In this paper we will treat X as a pure, untyped calculus, and ignore its origin in that we
define a notion of sequent-style intersection type assignment on X ; intersection types are
notorious for lacking a solid background in logic. We will see that, in view of the special
nature of X as an input-output calculus, we will need to add also union types. The notion
of intersection type assignment for X as defined in this paper is inspired by the system of
[12] (the precise relation between the two –through the interpretation functions as defined in
[13, 5]– needs to be studied, and is left for further research).

It is a conservative extension of the Strict Intersection Type Assignment System of [1] (see
also [2, 3]), in that lambda terms typeable in that system translate to X -nets, while preserving
the type. It is also a natural extension of the system considered in [5], i.e. the basic implicative
system for Classical Logic, but extended with (strict) intersection and union types and the
type constant �. The main results of this paper are that this notion is closed for both subject-
reduction and subject-expansion.

As was the case for systems with intersection types for λ-calculus [9, 2], in order to get a
notion of type assignment that is closed for η-reduction, we would need to introduce a ≤-
relation on types which is contra-variant in the arrow; this is not part of the present system.

This paper is constructed as follows. Section 1 presents the syntax and reduction system of
the calculus X . In Section 2 we define the basic system of type assignment for X , then in
Section 3 we will embed λ-calculus into X and discuss η-reduction, and, in Section 4, present
the Strict Intersection System for λ-calculus. Then, in Section 5, we will define a notion of type
assignment on X that uses strict intersection and union types, give an extended example, and
show that type assignment in the strict system is preserved by the translation of λ-calculus
into X . Finally, in Section 6, we will show that the notion of type assignment introduced in
this paper is closed for both subject-reduction and expansion, but not for η-reduction.

ITRS’04, 2004; ENTCS, volume 136 3

1 The X -calculus

In this section we will give the definition of the X -calculus, that was proven to be a fine-
grained implementation model for various well-known calculi in [5]. Its features two separate
categories of ‘connectors’, plug and socket, that act as input and output channel, and is defined
without a notion of substitution (implicit or explicit).

Definition 1.1 (Syntax) The nets of the X -calculus are defined by the following syntax, where
x,y, . . . range over the infinite set of sockets, and α, β over the infinite set of plugs.

P, Q ::= 〈x·α〉 | ŷP β̂·α | P β̂ [y] x̂ Q | P α̂ † x̂Q

In this definition, the ·̂ symbolizes that the socket or plug underneath is bound in the net. The
free sockets fc(P) and free plugs fs(P) in a net P are defined as usual. The set of free connectors is
the union of those of free sockets and plugs: fc(P) = fs(P) ∪ fp(P)

A connector (socket or plug) which is not free is called bound. We will, as usual, identify
porcesses that only differ in the names of bound connectors (α-conversion).

The set of available sockets of a net is defined by:

av(〈x·α〉) = {x}
av(ŷP β̂·α) = av(P) \ {y}

av(P α̂ [y] x̂ Q) = av(P) ∪ {y} ∪ av(Q) \ {x}
av(P α̂ † x̂Q) = av(P) ∪ av(Q) \ {x}
av(P α̂ † x̂Q) =

{
av(P) ∪ av(Q) \ {x} x ∈ av(Q)
av(Q) x
∈ av(Q)

av(P α̂ † x̂Q) =

{
av(P) ∪ av(Q) \ {x} α ∈ av(P)
av(P) α
∈ av(P)

The set of available plugs of a net is defined by:

av(〈x·α〉) = {α}
av(ŷP β̂·α) = av(P) ∪ {α} \ {β}

av(P α̂ [y] x̂ Q) = av(P) ∪ av(Q) \ {α}
av(P α̂ † x̂Q) = av(P) ∪ av(Q) \ {α}
av(P α̂ † x̂Q) =

{
av(P) ∪ av(Q) \ {α} x ∈ av(Q)
av(Q) x
∈ av(Q)

av(P α̂ † x̂Q) =

{
av(P) ∪ av(Q) \ {α} α ∈ av(P)
av(Q) α
∈ av(P)

We use the following terminology for our nets: 〈x·α〉 is called a capsule, (ŷP β̂·α) an export
net, (P β̂ [y] x̂ Q) a mediator, and (P α̂ † x̂Q) a cut.

Diagrammatically, we represent these nets as:

�x α� �̂y P �̂β �α P �̂β [] x̂� Q�y P �̂α x̂ Q

The nets of X can be seen as a collection (heap) of wires (streams, strings), each with an
input and an output. When two heaps interact, they do so through one input and one output
name only, that are bound in the interaction. This interaction can be possible via a net like
(P α̂ † x̂Q) that expresses an active computation; it will try to connect the wires ending with α

ITRS’04, 2004; ENTCS, volume 136 4

(cap) : �y α� �̂α x̂ �x β� → �y β�

(exp) : �̂y P �̂β �α �̂α x̂ �x γ� → �̂y P �̂β �γ

(med) : �y α� �̂α x̂ Q �̂β [] ẑ� P�x → Q �̂β [] ẑ� P�y

(exp-imp) : �̂y P �̂β �α �̂α x̂ Q �̂γ [] ẑ� P�x →

Q �̂γ ŷ P �̂β ẑ P

Q �̂γ ŷ P �̂β ẑ P

Figure 1: The logical rules in their diagrammatical representation

in the heap called P to the wires beginning with x in the heap called Q. On the other hand,
they can be bound as in (P β̂ [y] x̂ Q), which expresses two heaps that try to connect the wires
ending with β and beginning with x, but that need another heap to mediate between them;
this new net will need to interact via the input name y (which might appear in P and Q as
well). Also, a heap P that is willing to interact via the names y and β can itself be made
available (exported) via the name α, as in (ŷP β̂·α).

At any given moment, all names of unconnected inputs and outputs in a heap make up the
collection of free names, that are inactive during the computational step; the bound names are
all involved in some interaction.

The calculus, defined by the reduction rules below, explains in detail how cuts are dis-
tributed through nets to be eventually evaluated at the level of capsules. Reduction is defined
by giving how the basic syntactic structures that are well-connected interact, and specifies how
to deal with propagating active nodes in the computation to points where they can interact.

Definition 1.2 (Reduction: Logical rules)

(cap) : 〈y·α〉 α̂ † x̂〈x·β〉 → 〈y·β〉
(exp) : (ŷP β̂·α) α̂ † x̂〈x·γ〉 → ŷP β̂·γ, α
∈ fp(P)
(med) : 〈y·α〉 α̂ † x̂(Q β̂ [x] ẑ P) → Q β̂ [y] ẑ P, x
∈ fs(Q, P)

(exp-imp) : (ŷP β̂·α) α̂ † x̂(Q γ̂ [x] ẑ P) →
{

Q γ̂ † ŷ(P β̂ † ẑP)
(Q γ̂ † ŷP) β̂ † ẑP

α
∈ fp(P), x
∈ fs(Q, P)

The diagrammatical representation of the rules is given in Figure 1.

The first three logical rules above specify a renaming (reconnecting) procedure, whereas the
last rule specifies the basic computational step: it links a function, available over the unique
plug α, to an open adjacent mediator position in the net that ports the unique socket x.

We now extend the syntax with two flagged, or active cuts:

P ::= . . . | P1 α̂ † x̂P2 | P1 α̂ † x̂P2

ITRS’04, 2004; ENTCS, volume 136 5

Terms constructed from the restricted syntax without those flagged cuts are called pure (the
diagrammatical representation of flagged cuts is the same as that for unflagged cuts). These
flagged cuts either reduce to normal cuts when dealing with a capsule, or are propagated
through the net.

Definition 1.3 (Reduction: Activating the cuts) We define the following two activation rules.

(a†) : P α̂ † x̂Q → P α̂ † x̂Q if P does not introduce α

(†a) : P α̂ † x̂Q → P α̂ † x̂Q if Q does not introduce x

where:

(P introduces x) : Either P = P α̂ [x] ŷQ, and x does not occur free in P, Q, or P = 〈x·δ〉.
(P introduces δ) : Either P = x̂Q β̂·δ, and δ does not occur free in Q, or P = 〈x·δ〉.

The activated cuts (obtained from cuts to which the logical rules cannot be applied) are
introduced to obtained a fine-tuned reduction system. An activated cut is processed, by
‘pushing’ it, systematically, in the direction indicated by the tilting of the dagger, through its
syntactic structure, until a cut is created that involves a capsule. The cut is then deactivated,
such that a logical rule can be applied or, else, the ‘pushing’ can go on, but now in the other
direction.

Definition 1.4 (Reduction: Propagation rules) Left propagation

(d†) : 〈y·α〉 α̂ † x̂P → 〈y·α〉 α̂ † x̂ P
(cap†) : 〈y·β〉 α̂ † x̂P → 〈y·β〉 β
= α

(exp-out†) : (ŷP′ β̂·α) α̂ † x̂P → (ŷ(P′ α̂ † x̂ P) β̂·γ) γ̂ † x̂ P, γ fresh
(exp-in†) : (ŷP′ β̂·γ) α̂ † x̂P → ŷ(P′ α̂ † x̂ P) β̂·γ,γ
= α

(imp†) : (Q β̂ [z] ŷ P) α̂ † x̂P → (Q α̂ † x̂P) β̂ [z] ŷ(P α̂ † x̂P)
(cut†) : (Q β̂ † ŷP) α̂ † x̂P → (Q α̂ † x̂P) β̂ † ŷ(P α̂ † x̂ P)

Right propagation

(†d) : P α̂ † x̂〈x·β〉 → P α̂ † x̂〈x·β〉
(†cap) : P α̂ † x̂〈y·β〉 → 〈y·β〉 y
= x
(†exp) : P α̂ † x̂(ŷP′ β̂·γ) → ŷ(P α̂ † x̂ P′) β̂·γ

(†imp-out) : P α̂ † x̂(Q β̂ [x] ŷ P) → P α̂ † ẑ((P α̂ † x̂Q) β̂ [z] ŷ(P α̂ † x̂P)) z fresh
(†imp-in) : P α̂ † x̂(Q β̂ [z] ŷ P) → (P α̂ † x̂Q) β̂ [z] ŷ(P α̂ † x̂P) z
= x

(†cut) : P α̂ † x̂(Q β̂ † ŷP) → (P α̂ † x̂Q) β̂ † ŷ(P α̂ † x̂ P)

We write → for the (transitive, compatible) reduction relation that only reduces active cuts
(and those to which the logical rules can be applied).

Although the origin of X is a logic, and one could expect it to be close to λ-calculus, it is
in fact specified as a conditional term rewriting system; the only non-standard aspect is that it
treats three different classes of variables (for plugs, sockets, and nets). The implications of this
observation are left for further research; a first result can be found in [6].

The rules (exp-out†) and (†imp-out) deserve some attention. Here the exposed occurence
of the plug α (socket x) need not be the only one. The cut wants to connect all its occurences
to the corresponding socket (plug), so, first all other occurences, i.e. not to top one, are elimi-
nated (notice that reducing the cut will erase the bound connectors), at the end of which the
remaining occurence is now introduced in the term, and can be dealt with (if the other side of

ITRS’04, 2004; ENTCS, volume 136 6

the cut is of the right shape). We rename to avoid α (x) to occur both bound and free; but, in
fact, no confusion is possible, so the α-conversion here is almost cosmetical.

The reduction relation → is not confluent; this comes in fact from the critical pair that
activates a cut P α̂ † x̂Q in two ways if P does not introduce α and Q does not introduce x.
When activating according to the first criterium, the reduction will connect the wires in P that
end with α with the wires from Q that begin with x; if α does not appear in P, this will return
P. When using the second, the reduction will connect the wires in Q that begin with x with
the wires from P that end with α; if x does not appear in Q, this will return Q. As an example,
consider that (when β
= γ, and y
= z)

(x̂〈x·α〉 α̂·γ) β̂ † ẑ〈y·δ〉 →
{
(x̂〈x·α〉 α̂·γ) β̂ † ẑ〈y·δ〉 → 〈y·δ〉
(x̂〈x·α〉 α̂·γ) β̂ † ẑ〈y·δ〉 → x̂〈x·α〉 α̂ ·γ

So, if activation in both directions is possible, the end result of the reduction can be different.
In [5] some basic properties were shown, which essentially show that the calculus is well-

behaved, and the relation between X and a number of other calculi. These results motivate
the formulation of new rules:

Lemma 1.5 ([5]) The following reduction rules are admissible:

(gc†) : P α̂ † x̂Q → P, if α
∈ fp(P), P pure.
(†gc) : P α̂ † x̂Q → Q, if x
∈ fs(Q), P pure
(ren†) : P δ̂ † ẑ〈z·α〉 → P[α/δ], P pure
(†ren) : 〈z·α〉 α̂ † x̂ P → P[z/x], P pure

2 Typing for X
The notion of Curry type assignment as presented in [13, 5] on X is defined in such a way
that it gives a straightforward Curry-Howard isomorphism and Gentzen’s sequent calculus
for (implicative) Classical Logic [?].

Definition 2.1 (Curry types and Contexts) i) The set of Curry types is defined by the gram-
mar:

A, B ::= ϕ | A→B
The Curry types considered in this paper are normally known as Curry types.

ii) A context of variables Γ is a mapping from variables to types, denoted as a finite set of
statements x:A, such that the subject of the statements (x) are distinct. We write Γ, x:A for
the context of names defined by:

Γ, x:A = Γ ∪ {x:A}, if Γ is not defined on x
= Γ, otherwise

So, when writing a context as Γ, x:A, this implies that x:A ∈ Γ, or Γ is not defined on x.
Contexts of names are defined in a similar way.

The normal view for derivable statements in Gentzen’s system, like Γ � ∆, is that the
formulae in the context Γ are all assumptions and are therefore supposed to hold, and at least
one of the formulea in ∆ is a consequence of Γ. However, not all the formulae in ∆ necessarily
follow from Γ. In other words, the formulae in the context Γ are connected through the logical
‘and’, whereas those in ∆ are connected through the logical ‘or’. This is reflected in the type

ITRS’04, 2004; ENTCS, volume 136 7

assignment rules of the system of Definition 5.1.

Definition 2.2 (Curry Typing for X [5]) i) Type judgements are expressed via a ternary rela-
tion M : Γ�C∆, where Γ is a context of variables and ∆ is a context of names, and M is a
term. We say that M is the witness of this judgement.

ii) Curry type assignment for X is defined by the following sequent calculus:

(cap) : 〈y·α〉 : Γ,y:A�Cα:A,∆ (cut) :
M : Γ�Cα:A,∆ N : Γ, x:A�C∆

M α̂ † x̂ N : Γ�C∆

(imp) :
M : Γ�Cα:A,∆ N : Γ, x:B�C∆

M α̂ [y] x̂ N : Γ,y:A→B�C∆
(exp) :

M : Γ, x:A�Cα:B,∆

x̂ M α̂·β : Γ�Cβ:A→B,∆

We write M : Γ�C∆ if there exists a derivation that has this judgement in the bottom
line, and write D :: M : Γ�C∆ if we want to name that derivation.

3 The relation with the Lambda Calculus

The remainder of this paper will be dedicated to the definition of a notion of intersection
type assignment on X . The definition will be such that it will be a natural extension of a
system with intersection types for λ-calculus; we will start by briefly summarizing the latter.
We assume the reader to be familiar with the λ-calculus [8]; we just recall the definition of
lambda terms and β-contraction. We will write n for {1, . . . ,n}, where n ≥ 0.

Definition 3.1 (Lambda terms and β-contraction [8]) i) The set Λ of lambda terms is de-
fined by the syntax:

M ::= x | λx.M | M1M2

ii) The reduction relation →β is defined as the contextual (i.e. compatible [8]) closure of the
rule:

(λx.M)N →β M[N/x]
The relation →→β is the reflexive and transitive closure of →β, and the =β is the equiv-

alence relation generated by →→β

We can define the direct encoding of λ-calculus into X :

Definition 3.2 ([5]) The interpretation of lambda terms into terms of X via the plug α, M nα,
is defined by:

x nα = 〈x·α〉
λx.M nα = x̂ M nβ β̂ ·α

MN nα = M nγ γ̂ † x̂(N nβ β̂ [x] ŷ〈y·α〉), with x fresh

Notice that every sub-term of M nα has exactly one free plug.

Example 3.3 In Figure 2 we show how the net (λx.xx)(λy.y) nα can be reduced, using the
rules above.

Example 3.4 That X does not provides an α-conversion free implementation of λ-calculus is
shown by the following example. In λ-calculus, one needs α-conversion for the correct reduc-

ITRS’04, 2004; ENTCS, volume 136 8

(λx.xx)(λy.y) nα =

λx.xx nβ β̂ † ẑ(λy.y nγγ̂ [z] v̂〈v·α〉) =

(x̂ xx nε ε̂ ·β) β̂ † ẑ(λy.y nγ γ̂ [z] v̂〈v·α〉) → (exp-imp)
λy.y nγ γ̂ † x̂(xx nε ε̂ † v̂〈v·α〉) =

λy.y nγ γ̂ † x̂((〈x·γ〉 γ̂ † ẑ(〈x·δ〉 δ̂ [x] ŵ〈w·ε〉)) ε̂ † v̂〈v·α〉) → (ren†), (†ren), (†a)
λy.y nγ γ̂ † x̂(〈x·δ〉 δ̂ [x] ŵ〈w·α〉) →
λy.y nγ γ̂ † ẑ((λy.y nγ γ̂ † x̂〈x·δ〉) δ̂ [z] ŵ(λy.y nγ γ̂ † x̂〈w·α〉))

→ (†d), (†exp), (†ren)
λy.y nγ γ̂ † ẑ(λy.y nδ δ̂ [z] ŵ〈w·α〉) =

(ŷ〈y·µ〉 µ̂·γ) γ̂ † ẑ(λy.y nδ δ̂ [z] ŵ〈w·α〉) → (exp-imp)
λy.y nδ δ̂ † ŷ(〈y·µ〉 µ̂ † ŵ〈w·α〉) → (cap), (†ren)
λy.y nα

Figure 2: Reducing (λx.xx)(λy.y) nα to λy.y nα.

tion of (λa.aa)(λxy.xy). Without it, one would get

(λa.aa)(λxy.xy) → (λxy.xy)(λxy.xy) → λy.(λxy.xy)y → λyy.yy

and the fact that the first λ binds only the first y is lost. Instead, the reduction should be:

(λa.aa)(λxy.xy) → (λxy.xy)(λxy.xy) → λy.(λxy.xy)y =α λy.(λxz.xz)y → λyz.yz

In X , (λa.aa)(λxy.xy) translates to

(λa.aa)(λxy.xy) nα = λa.aa nρρ̂ † ŵ(λxy.xy nα α̂ [z] p̂〈p·α〉)

and the reduction behaves as given in Figure 3.

The image of Λ in to X is not extensional:

λx.yx nα =
∆ x̂ yx nβ β̂ ·α =

∆

x̂(y nγ γ̂ † ẑ(x nδ δ̂ [z] ŵ〈w·β〉)) β̂·α =
∆

x̂(〈y·γ〉 γ̂ † ẑ(〈x·δ〉 δ̂ [z] ŵ〈w·β〉)) β̂·α →
x̂(〈x·δ〉 δ̂ [y] ŵ〈w·β〉) β̂·α
= 〈y·α〉 = y nα

Directly translating the η-reduction rule ‘λx.Mx → M if x
∈ fv (M)’ into X would give:

x̂(M nγ γ̂ † ẑ(〈x·δ〉 δ̂ [z] ŵ〈w·β〉)) β̂·α → M nα

or, in a more general notation:

Definition 3.5 (η-reduction on X)

x̂(P γ̂ † ẑ(〈x·δ〉 δ̂ [z] ŵ〈w·β〉)) β̂·α → P γ̂ † ẑ〈z·α〉

Notice that we need to create a cut on the right-hand side to make sure that the result of P is
available on the plug α.

This is of course a true extension of the notion of reduction, but we can ‘justify’ it by taking
P to be the interpretation of abstraction (with x
∈ fv (Q)):

ITRS’04, 2004; ENTCS, volume 136 9

λa.aa nρ ρ̂ † ŵ(λxy.xy nγγ̂ [w] p̂〈p·α〉) =
(â aa nτ τ̂ ·ρ) ρ̂ † ŵ(λxy.xy nγγ̂ [w] p̂〈p·α〉) →
λxy.xy nγ γ̂ † â(aa nτ τ̂ † p̂〈p·α〉) →
λxy.xy nγ γ̂ † â aa n →
λxy.xy nγ γ̂ † â(〈a·β〉 β̂ [a] v̂〈v·α〉) →
λxy.xy nγ γ̂ † â(〈a·β〉 β̂ [a] v̂〈v·α〉) →
λxy.xy nγ γ̂ † ẑ((λxy.xy nγ γ̂ † â〈a·β〉) β̂ [z] v̂(λxy.xy nγ γ̂ † ẑ〈v·α〉)) →
λxy.xy nγ γ̂ † ẑ(λxy.xy nβ β̂ [z] v̂〈v·α〉) =

(x̂ λy.xy nδ δ̂·γ) γ̂ † ẑ(λxy.xy nβ β̂ [z] v̂〈v·α〉) →
λxy.xy nβ β̂ † x̂ (λy.xy nδ δ̂ † v̂〈v·α〉) →
λxy.xy nβ β̂ † x̂ λy.xy nα =

λxy.xy nβ β̂ † x̂ (ŷ xy nµµ̂ ·α) →
λxy.xy nβ β̂ † x̂ (ŷ xy nµµ̂ ·α) →, (α)

x̂(λxv.xv nβ β̂ † ŷ xy nµ) µ̂ ·α →
x̂(λxv.xv nβ β̂ † ŷ(〈y·β〉 β̂ [x] ẑ〈z·µ〉)) µ̂ ·α →
x̂(λxv.xv nβ β̂ † ŷ((λxv.xv nβ β̂ † ŷ〈y·β〉) β̂ [x] ẑ(λxv.xv nβ β̂ † ŷ〈z·µ〉))) µ̂·α →
x̂(λxv.xv nβ β̂ † x̂(〈y·β〉 β̂ [x] ẑ〈z·µ〉)) µ̂·α =

x̂((x̂ λv.xv nδ δ̂·β) β̂ † x̂(〈y·β〉 β̂ [x] ẑ〈z·µ〉)) µ̂·α →
x̂(〈y·β〉 β̂ † x̂(λv.xv nδ δ̂ † ẑ〈z·µ〉)) µ̂·α →
x̂(〈y·β〉 β̂ † x̂ λv.xv nµ) µ̂ ·α =

x̂(〈y·β〉 β̂ † x̂(v̂ xv nσ σ̂ ·µ)) µ̂ ·α →
x̂(〈y·β〉 β̂ † x̂(v̂ xv nσ σ̂ ·µ)) µ̂ ·α →
x̂(v̂(〈y·β〉 β̂ † x̂ xv nσ) σ̂ ·µ) µ̂ ·α →
x̂(v̂(〈y·β〉 β̂ † x̂(〈v·γ〉 γ̂ [x] ŵ〈w·σ〉)) σ̂ ·µ) µ̂·α →
x̂(v̂(〈y·β〉 β̂ † x̂((〈y·β〉 β̂ † x̂〈v·γ〉) γ̂ [x] v̂(〈y·β〉 β̂ † x̂〈w·σ〉))) σ̂ ·µ) µ̂·α →
x̂(v̂(〈y·β〉 β̂ † x̂(〈v·γ〉 γ̂ [x] v̂〈w·σ〉)) σ̂ ·µ) µ̂ ·α →
x̂(v̂(〈v·γ〉 γ̂ [y] v̂〈v·σ〉) σ̂ ·µ) µ̂ ·α =
λyv.yv nα

Figure 3: Reducing (λa.aa)(λxy.xy) nα to λyv.yv nα.

x̂((v̂Q ε̂·γ) γ̂ † ẑ(〈x·δ〉 δ̂ [z] ŵ〈w·β〉)) β̂·α →
x̂(〈x·δ〉 δ̂ † v̂(Q ε̂ † ŵ〈w·β〉)) β̂·α →
x̂(〈x·δ〉 δ̂ † v̂(Q[β/ε])) β̂ ·α →
x̂(Q[β/ε][x/v]) β̂ ·α = (α-conversion)
v̂ N ε̂·α

and that (v̂ N ε̂·γ) γ̂ † ẑ〈z·α〉 → v̂ N ε̂·α, exactly as expected.
As shown in [5], the notion of Curry type assignment for λ-calculus, Γ �λ M : A is strongly

linked to the one defined for X .

Definition 3.6 (Curry type assignment for λ-calculus) The type assignment rules for the
Curry type assignment system for λ-calculus are:

(Ax) :
Γ, x:A �λ x : A (→I) :

Γ, x:A �λ M : B

Γ �λ λx.M : A→B
(→E) :

Γ �λ M : A→B Γ �λ N : A

Γ �λ MN : B

In [5], the following relation is shown between λ-calculus and X :

ITRS’04, 2004; ENTCS, volume 136 10

Theorem 3.7 ([5]) i) If M →β N, then M nα → N nα.
ii) if Γ �λ M : A, then M nα : Γ�Cα:A.

4 Intersection Type Assignment for the Lambda Calculus

The notion of intersection type assignment for X as defined in the next section is inspired by
the system of [12] (the precise relation between the two – through the interpretation functions
as defined in [13, 5] – needs to be studied, and is left for further research). It is a conservative
extension of the Strict Intersection Type Assignment System of [1] (see also [2, 3]), in that
lambda terms typeable in that system translate to X nets, while preserving the type.

In this section, we will present that strict system; it can be seen as a restricted version of
the BCD-system as presented in [9]. The major feature of this restricted system, compared to
the BCD-system, is that the ≤-relation on types is not contra-variant over arrow types. Also,
the ≤ relation on types is no longer contra-variant on the argument type in arrow-types, but
restricted to the one induced by A∩B ≤ A and taking � to be the maximal type.

We now come to the definition of strict intersection types.

Definition 4.1 (Strict types, statements, and contexts) i) Let Φ be a countable (infinite)
set of type-variables, ranged over by ϕ. Ts, the set of strict types, and the set T of intersec-
tion types, both ranged over by A, B, . . ., are defined through:

– The set Ts of strict types is inductively defined by:

A, B ::= ϕ | ((A 1 ∩ · · · ∩A n)→ B), (n ≥ 0)

– The set T of strict intersection types is defined by:

{A 1 ∩ · · · ∩A n | n ≥ 0 & ∀i ∈ n [Ai is a strict type]}

We will write � for the empty intersection type.
ii) A statement is an expression of the form M:A, with M ∈ Λ, and A ∈ T . M is the subject

and A the predicate of M:A.
iii) A context Γ is a partial mapping from term variables to intersection types, so we can use

Γx for the type stored for x in Γ. As standard, a context is also represented as a set of
statements with only distinct variables as subjects. We will write x
∈ Γ if Γ is not defined
on x.

iv) For contexts Γ1, . . . , Γn, the context Γ1 ∩· · ·∩Γn is defined by: x:A1∩· · ·∩Am ∈ Γ1∩· · ·∩Γn if
and only if {x:A1, . . . , x:Am} is the set of all statements with strict predicate about x that
occur in Γ1

⋃ · · ·⋃Γn.
v) We write Γ∩ x:A for the context Γ∩{x:A}, i.e., the context defined by:

Γ∩ x:A = Γ ∪ {x:A}, if x
∈ Γ
= Γ\x ∪ {x:A∩B}, if x:B ∈ Γ

We will often write Γ, x:A for Γ∩ x:A when x
∈ Γ.

Notice that strict types are either type-variables, ϕ, or arrow types. In an arrow type, the
type on the right of the arrow type constructor is always strict; the type on the left of the
arrow is an intersection type, but since Ts is a proper subset of T , it can be strict.

In the notation of types, as usual, right-most outer-most brackets will be omitted. Also, we
write ∩nA i for the type A 1 ∩· · · ∩A n.

ITRS’04, 2004; ENTCS, volume 136 11

We will consider a pre-order on types which takes into account the idem-potence, commu-
tativity and associativity of the intersection type constructor, and defines � to be the maximal
element.

Definition 4.2 (Relations on types) i) The relation ≤ is defined as the least pre-order (i.e.
reflexive and transitive relation) on Ts such that:

∩nA i ≤ Ai, for all i ∈ n, (n ≥ 1)
B ≤ Ai, for all i ∈ n ⇒ B ≤ ∩nA i, (n ≥ 0)

ii) The equivalence relation ∼ on types is defined by: A ∼ B ⇐⇒ A ≤ B ≤ A, and we will
consider types modulo ∼.

iii) We write Γ ≤ Γ′ if and only if for every x:A′ ∈ Γ′ there is an x:A ∈ Γ such that A ≤ A′,
and Γ ∼ Γ′ ⇐⇒ Γ ≤ Γ′ ≤ Γ.

T may be considered modulo ∼; then ≤ becomes a partial order.

Notice that A ≤ A, and A ≤�, for all A; it is easy to show that both (A∩B)∩C ∼ B∩(A∩C)
and A∩B ∼ B∩A, so the type constructor∩ is associative and commutative, and we will write
A∩B∩C rather than (A∩B)∩C. Moreover, we will assume, unless stated explicitly otherwise,
that in ∩nA i each Ai is a strict type.

The definition of the ≤-relation as given in [9] (apart from dealing with intersection types
occurring on the right of the arrow type constructor) or [2] also contained the alternative:

C ≤ A & B ≤ D ⇒ A→B ≤ C→D

This was added mainly to obtain a notion of type assignment closed for η-reduction (i.e. β-
reduction extended with λx.Mx → η M, if x is not free in M), a feature that is not considered
here.

The following property is easy to show:

Property 4.3 (cf. [2]) For all A, B ∈ T , A ≤ B if and only if there are n,m ≥ 0, A1, . . . , An, B1, . . . , Bm
such that A = ∩nA i, B = ∩mB j, and, for all j ∈ m there exists i ∈ n such that Bj = Ai.

Definition 4.4 (Strict type assignment and derivations) i) Strict intersection type assignment
and strict intersection derivations are defined by the following natural deduction system
(where A in rules (→E) and (→I) is in T):

(Ax) : (i ∈ n)
x:∩nA i �λ x : Ai

(∩I) :
Γ �λ M : A1 . . . Γ �λ M : An

(n ≥ 0)
Γ �λ M :∩nA i

(→I) :
Γ, x:A �λ M : B

Γ �λ λx.M : A→B
(→E) :

Γ �λ M : A→B Γ �λ N : A

Γ �λ MN : B

ii) We write Γ �λ M : A if this statement is derivable using a strict intersection derivation,
and write D :: Γ �λ M : A to specify that this result was obtained through the derivation
D.

To illustrate that the strict system is not closed for η-reduction, notice that we can give a
derivation for �λ λxy.xy : (A→B)→(C∩ A)→B, but not for �λ λx.x : (A→B)→(C∩ A)→B.

ITRS’04, 2004; ENTCS, volume 136 12

Notice that, since � is considered to be the empty intersection, the derivation rule

(�) :
Γ �λ M :�

is implicit in rule (∩I).

Theorem 4.5 (cf. [1, 4]) The following rules are admissible:

(≤) :
Γ �λ M : A

(Γ′ ≤ Γ, A ≤ B)
Γ′ �λ M : B

(=β) :
Γ �λ M : A

(M =β N)
Γ �λ N : A

(cut) :
Γ, x:A �λ M : B Γ �λ N : A

Γ �λ M[N/x] : B

5 Intersection and Union Type Assignment for X
The notion of intersection type assignment on X that we will present in this section is a natural
extension of the system considered in [5], i.e. the basic implicative system for Classical Logic,
but extended with intersection and union types and the type constant �.

The initial aim of this work was to define a system using intersection types only, but, when
trying to prove the conversion results of the next section, problems were encountered. These
were mainly due to the fact that, in that approach, when a plug carried an intersection type
A∩B, if was not sure if this was derived by combining two derivations, one with A, and the
other with B, so, in particular, step (†imp-out) of the proof of Theorem 6.1 was troublesome.

Also, just forcing intersection types only on the system violates the normal interpretation
of the system of Classical Logic of Definition 2.2. The normal view for statements like Γ � ∆
is that the formulae in the context Γ are all necessary for the result, and not all the formulae
in ∆ necessarily follow from Γ; in other words, the formulae in the context Γ are connected
through the logical ‘and’, whereas those in ∆ are connected through the logical ‘or’. So, also
inspired by [12], a system was set up that allowed only intersection types for sockets, and
only union types for plugs, but this soon proved to be too restrictive. Intersection types are
sometimes needed on plugs, and union types can be needed on sockets.

These observations then led to the present definition. Essentially, the choice above still
stands: intersection types for sockets, and union types for plugs, and obsolete types can be
added at will via the rules (∩L) and (∪R), respectively. However, a union type like A ∪ B
for sockets is allowed, but only if both A and B can be justified (see rule (∪L)); similarly, an
intersection type like A∩B for plugs is only allowed if both A and B can be justified (see rule
(∩R)).

The following definition of strict types is a natural extension of the notion of strict types of
the previous section, by adding union as a type constructor.

Definition 5.1 (Types, statements, and contexts) i) a) The set Ts of strict types is induc-
tively defined by:

A, B ::= ϕ | ((A 1 ∩ · · · ∩A n)→ B), (n ≥ 0)
| ((A1 ∪ · · ·∪A n)→ B), (n ≥ 0)

b) The set T of types is defined by:

{A 1 ∩· · · ∩A n | n ≥ 0 & ∀i ∈ n [Ai is a strict type]} ∪
{A 1 ∪ · · ·∪A n | n ≥ 0 & ∀i ∈ n [Ai is a strict type]}

ITRS’04, 2004; ENTCS, volume 136 13

We will write � for the empty intersection type.
ii) Statements and contexts are defined as in Definition 4.1.

iii) For contexts of sockets Γ1, . . . , Γn, the context Γ1 ∩ · · · ∩Γn is defined by:
x:A1 ∩ · · · ∩ Am ∈ Γ1 ∩ · · · ∩ Γn if and only if {x:A1, . . . , x:Am} is the set of all statements
about x that occur in {v:C | ∃i ∈ Γi [v:C ∈ Γi]}. We write Γ∩ x:A for the context of sockets
Γ∩{x:A}, i.e., the context defined by (where

⋃
is the operation of union on sets):

Γ∩ x:A = Γ
⋃{x:A}, if x
∈ Γ

= Γ\x
⋃{x:A∩B}, if x:B ∈ Γ

We will often write Γ, x:A for Γ∩ x:A when x
∈ Γ.
iv) For contexts of plugs, ∆1, . . . ,∆n, the context ∆1 ∪ · · ·∪∆n is defined by: α:A1 ∪ · · ·∪Am ∈

∆1 ∪ · · ·∪∆n if and only if {α:A1, . . . ,α:Am} is the set of all statements about α that occur
in {β:C | ∃i ∈ ∆ i [β:C ∈ ∆ i]}. We write α:A ∪ ∆ for the context of sockets {α:A} ∪ ∆, i.e.,
the context defined by:

α:A ∪ ∆ = {α:A}⋃∆, if α
∈ ∆
= {α:A ∪ B}⋃∆\α, if α:B ∈ ∆

We will often write α:A,∆, for α:A ∪ ∆ when α
∈ ∆.

In order to not have derivations littered with applications of the Weakening rule, we allow
rules to combine the contexts of the subterms involved; this does not exclude the normal
approach, since the contexts can be equal. The most important thing to notice is that, by rule
(Ax), only strict types are added to contexts, and that, via the rules, intersection types are built
of contexts of sockets, and union types are built for contexts of plugs.

However, a union type can appear in a contexts of sockets, but only via the rule (∪L);
similarly, an intersection type can appear in a contexts of plugs, but only via the rule (∩R).
This restriction helps to avoid the famous subject reduction problem of systems with union
types.

Definition 5.1 (Intersection and Union Typing for X) i) Intersection type
judgements are expressed via a ternary relation P : Γ � ∆, where Γ is a context of sockets
and ∆ is a context of plugs, and P is a net. We say that P is the witness of this judgement.

ii) Intersection and union type assignment for X is defined by the following sequent calculus:

(Ax) : (A ∈ Ts)
〈y·α〉 : Γ∩y:A � α:A ∪ ∆ (→R) :

P : Γ, x:A � α:B,∆

x̂ P α̂·β : Γ � β:A→B ∪ ∆

(→L) :
P : Γ1 � α:A,∆1 Q : Γ2, x:B � ∆2

P α̂ [y] x̂ Q : Γ1 ∩Γ2 ∩y:A→B � ∆1 ∪ ∆2

(cut) :
P : Γ1 � α:A,∆1 Q : Γ2, x:A � ∆2

P α̂ † x̂ Q : Γ1 ∩Γ2 � ∆1 ∪ ∆2

(∩L) :
P : Γ, x:A � ∆

P : Γ, x:A∩B � ∆
(∩R) :

P : Γ1 � α:A,∆1 P : Γ2 � α:B,∆2

P : Γ1 ∩Γ2 � α:A∩B,∆1 ∪ ∆2

(∪L) :
P : Γ1, x:A � ∆1 P : Γ2, x:B � ∆2

P : Γ1 ∩Γ2, x:A ∪ B � ∆1 ∪ ∆2
(∪R) :

P : Γ � α:A,∆

P : Γ � α:A ∪ B,∆

(�L) : P : Γ, x:� � ∆
(�R) : P : Γ � α:�,∆

ITRS’04, 2004; ENTCS, volume 136 14

We write P : Γ � ∆ if there exists a derivation that has this judgement in the bottom line,
and write D :: P : Γ � ∆ if we want to name that derivation.

Notice that, in P : Γ �∆, there is no notion of type for P itself, instead the derivable statement
shows how P is connectable; Γ and ∆ carry the types of the free connectors in P, as unordered
sets.

Example 5.2 We will show how the net (λx.xx)(λy.y) nα (see Example 3.3) can be typed,
using the rules above, and type some of the reducts as well. Notice that

(λx.xx)(λy.y) nα = (x̂(〈x·γ〉 γ̂ † ẑ(〈x·δ〉 δ̂ [z] ŵ〈w·ε〉)) ε̂·β) β̂ † ẑ((ŷ〈y·µ〉 µ̂ ·γ) γ̂ [z] v̂〈v·α〉)

We start with x̂(〈x·γ〉 γ̂ † ẑ(〈x·δ〉 δ̂ [z] ŵ〈w·ε〉)) ε̂·β : � β:(((C→C)→C→C)∩ (C→C))→C→C
(notice that this net is exactly λx.xx nβ). To save space, we use D = C→C.

(Ax)
〈x·γ〉 : x:D→D � γ:D→D

(Ax)
〈x·δ〉 : x:D � δ:D

(Ax)
〈w·ε〉 : w:D � ε:D

(→L)
〈x·δ〉 δ̂ [z] ŵ〈w·ε〉 : x:D,z:D→D � ε:D

(cut)
〈x·γ〉 γ̂ † ẑ(〈x·δ〉 δ̂ [z] ŵ〈w·ε〉) : x:(D→D)∩D � ε:D

(→R)
x̂(〈x·γ〉 γ̂ † ẑ(〈x·δ〉 δ̂ [z] ŵ〈w·ε〉)) ε̂·β : � β:((D→D)∩D)→D

Now we derive (ŷ〈y·µ〉 µ̂·γ) γ̂ [z] v̂〈v·α〉 : z:((D→D)∩D)→D � .

(Ax)
〈y·µ〉 : y:D � µ:D

(→R)
ŷ〈y·µ〉 µ̂·γ : � γ:D→D

(Ax)
〈y·µ〉 : y:C � µ:C

(→R)
ŷ〈y·µ〉 µ̂·γ : � γ:D

(∩R)
ŷ〈y·µ〉 µ̂ ·γ : � γ:(D→D)∩D

(Ax)
〈v·α〉 : v:D � α:D

(→L)
(ŷ〈y·µ〉 µ̂ ·γ) γ̂ [z] v̂〈v·α〉 : z:((D→D)∩D)→D � α:D

The result (λx.xx)(λy.y) nα : � α:D now follows by applying the rule (cut). Notice that,
although the cut is typed using a strict type, in the second sub-derivation the plug γ carries a
true intersection type; this is necessary to be able to express that the net that will be connected
as a mediator to the socket z has the appropriate type.

To derive (ŷ〈y·µ〉 µ̂ ·γ) γ̂ † x̂((〈x·γ〉 γ̂ † ẑ(〈x·δ〉 δ̂ [z] ŵ〈w·ε〉)) ε̂ † v̂〈v·α〉) : � α:D, we proceed
as follows:

〈y·µ〉 : y:D � µ:D

ŷ〈y·µ〉 µ̂·γ : � γ:D→D

〈y·µ〉 : y:C � µ:C

ŷ〈y·µ〉 µ̂·γ : � γ:D

ŷ〈y·µ〉 µ̂·γ : � γ:(D→D)∩D

〈x·γ〉 : x:D→D � γ:D→D

〈x·δ〉 : x:D � δ:D 〈w·ε〉 : w:D � ε:D

〈x·δ〉 δ̂ [z] ŵ〈w·ε〉 : x:D,z:D→D � ε:D

〈x·γ〉 γ̂ † ẑ(〈x·δ〉 δ̂ [z] ŵ〈w·ε〉) : x:(D→D)∩D � ε:D 〈v·α〉 : v:D � α:D

(〈x·γ〉 γ̂ † ẑ(〈x·δ〉 δ̂ [z] ŵ〈w·ε〉)) ε̂ † v̂〈v·α〉 : x:(D→D)∩D � α:D
Notice that these derivations are (naturally) composed out of subderivations of the first con-
struction. Again, applying rule (cut), we get the result.

Now the latter net (〈x·γ〉 γ̂ † ẑ(〈x·δ〉 δ̂ [z] ŵ〈w·ε〉)) ε̂ † v̂〈v·α〉 reduces easily to 〈x·δ〉 δ̂ [x] ŵ〈w·α〉,

ITRS’04, 2004; ENTCS, volume 136 15

and we obtain:

〈y·µ〉 : y:D � µ:D

ŷ〈y·µ〉 µ̂·γ : � γ:D→D

〈y·µ〉 : y:C � µ:C

ŷ〈y·µ〉 µ̂·γ : � γ:D

ŷ〈y·µ〉 µ̂ ·γ : � γ:(D→D)∩D

〈x·δ〉 : x:D � δ:D 〈w·α〉 : w:D � α:D

〈x·δ〉 δ̂ [x] ŵ〈w·α〉 : x:D∩ (D→D) � α:D

(ŷ〈y·µ〉 µ̂·γ) γ̂ † x̂(〈x·δ〉 δ̂ [x] ŵ〈w·α〉) : � α:D

This now reduces to

(ŷ〈y·µ〉 µ̂·γ) γ̂ † ẑ(((ŷ〈y·µ〉 µ̂ ·γ) γ̂ † x̂〈x·δ〉) δ̂ [z] ŵ((ŷ〈y·µ〉 µ̂·γ) γ̂ † x̂〈w·α〉))

which is typeable as follows (we abbreviate ŷ〈y·µ〉 µ̂ ·γ by λy.y nγ; notice the role of the type
� here, and how the derivation for the intersection type for λy.y nγ from the derivation
above distributes)

〈y·µ〉 : y:D � µ:D

λy.y nγ : � γ:D→D

〈y·µ〉 : y:C � µ:C

λy.y nγ : � γ:D 〈x·δ〉 : x:D � δ:D

λy.y nγ γ̂ † x̂ 〈x·δ〉 : � δ:D ..
..
..
.

λy.y nγ : � γ:�
〈w·α〉 : w:D � α:D

〈w·α〉 : w:D, x:� � α:D

λy.y nγ γ̂ † x̂ 〈w·α〉 : w:D � α:D

(λy.y nγ γ̂ † x̂ 〈x·δ〉) δ̂ [z] ŵ(λy.y nγ γ̂ † x̂ 〈w·α〉) : z:D→D � α:D

λy.y nγ γ̂ † ẑ((λy.y nγ γ̂ † x̂ 〈x·δ〉) δ̂ [z] ŵ(λy.y nγ γ̂ † x̂ 〈w·α〉)) : � α:D

This reduces to (ŷ〈y·µ〉 µ̂·γ) γ̂ † ẑ((ŷ〈y·µ〉 µ̂·δ) δ̂ [z] ŵ〈w·α〉), which we can type as follows:

〈y·µ〉 : y:C→C � µ:C→C

ŷ〈y·µ〉 µ̂·γ : � γ:(C→C)→C→C

〈y·µ〉 : y:C � µ:C

ŷ〈y·µ〉 µ̂·δ : � δ:C→C 〈w·α〉 : w:C→C � α:C→C

(ŷ〈y·µ〉 µ̂ ·δ) δ̂ [z] ŵ〈w·α〉 : z:(C→C)→C→C � α:C→C

(ŷ〈y·µ〉 µ̂ ·γ) γ̂ † ẑ((ŷ〈y·µ〉 µ̂·δ) δ̂ [z] ŵ〈w·α〉) : � α:C→C

This net now reduces to (ŷ〈y·µ〉 µ̂·δ) δ̂ † ŷ(〈y·µ〉 µ̂ † ŵ〈w·α〉), which is typeable as follows:

〈y·µ〉 : y:C � µ:C

ŷ〈y·µ〉 µ̂·δ : � δ:C→C

〈y·µ〉 : y:C→C � µ:C→C 〈w·α〉 : w:C→C � α:C→C

〈y·µ〉 µ̂ † ŵ〈w·α〉 : y:C→C � α:C→C

(ŷ〈y·µ〉 µ̂ ·δ) δ̂ † ŷ(〈y·µ〉 µ̂ † ŵ〈w·α〉) : � α:C→C

This net now reduces to ŷ〈y·µ〉 µ̂·α, which is typeable by:

〈y·µ〉 : y:C � µ:C

ŷ〈y·µ〉 µ̂ ·α : � α:C→C

which concludes this example.

Part of the operations performed on derivations in this example will reappear in the proof
of Theorem 6.1.

ITRS’04, 2004; ENTCS, volume 136 16

Lemma 5.3 (Weakening) The following rule is admissible:

(Wk) :
P : Γ � ∆

P : Γ∩x:A � α:B ∪ ∆

We can even show the following (standard) result:

Lemma 5.4 (Strenghtening) The following rule is admissible:

(FC) :
P : Γ � ∆

(Γ′ = {x:A ∈ Γ | x ∈ fs(P)},∆′ = {α:A ∈ ∆ | α ∈ fp(P)})
P : Γ′ � ∆′

We can now show that typeability is preserved by · nα:

Theorem 5.5 If Γ �λ M : A, then M nα : Γ � α:A.

Proof: By induction on the structure of derivations in �λ.

(Ax) : Then M ≡ x, and Γ = Γ′, x:∩nA i, and A = Ai ∈ Ts for some 1≤i≤n. Take

Γ′′ = Γ, x:A1 ∩ · · · ∩ Ai−1∩ Ai+1∩ · · · ∩ An

so Γ′′ ∩ x:Ai = Γ, then

(Ax)
x nα : Γ′′ ∩x:Ai � α:Ai

(→I) : Then M ≡ λx.N, A = C→D, and Γ, x:C �λ N : D. Then D :: N nβ : Γ, x:C � β:D
exists by induction, and we can construct:

D

N nβ : Γ, x:C � β:D
(→R)

x̂ N nβ β̂·α : Γ � α:C→D

Notice that x̂ N nβ β̂·α = λx.N nα.

(∩I) : Then A = ∩nA i, and we have Γ �λ M : Ai for all i ∈ n. By induction, M nα : Γ � α:Ai
for all i ∈ n, so, by rule (∩R), also M nα : Γ � α:A.

(�) : Notice that P nα : Γ � α:� by rule (�R).

(→E) : Then M ≡ M1M2, and there exists B such that both Γ �λ M1 : B→A and Γ �λ

M2 : B. By induction, both D1 :: M1 nγ : Γ � γ:B→A and
D2 :: M2 nβ : Γ � β:B exist, and we can construct:

D1

M1 nγ : Γ � γ:B→A

D2

M2 nβ : Γ � β:B
(Ax)

〈y·α〉 : y:A � α:A
(→L)

M2 nβ β̂ [x] ŷ〈y·α〉 : Γ, x:B→A � α:A
(cut)

M1 nγ γ̂ † x̂(M2 nβ β̂ [x] ŷ〈y·α〉) : Γ � α:A

Notice that M1M2 nα = M1 nγ γ̂ † x̂(M2 nβ β̂ [x] ŷ〈y·α〉), and that, by construction,
x,y
∈ Γ.

Example 5.6 (Why strict types) The real motivation for using strict types rather than the –
perhaps more easier to understand – normal types defined by the syntax

A, B ::= ϕ | A∩B | A ∪ B

ITRS’04, 2004; ENTCS, volume 136 17

is that we would have loss of the subject reduction property, as in the system of [11] defined
for λ-calculus (there the solution is to use Harrop types).

Using essentially the same rules as in Definition 5.1 (using normal types rather than strict
types, of course), we can derive:

D1

Iyz nδ : Γ � δ:A ∪ B,∆

DA
2

xtt nβ : Γ, t:A � ∆

DB
2

xtt nβ : Γ, t:B � ∆

xtt nβ : Γ, t:A ∪ B � ∆

Iyz nδ δ̂ † t̂ xtt nα : Γ � ∆

where Γ = x:(A→A→C)∩ (B→B→C),y:D→(A ∪ B),z:D, and ∆ = α:C. In this derivation,
D2

A and D2
B are identical, but for the type used for t, and the choice for x:A→A→C or

x:B→B→C. Now

Iyz nδ δ̂ † t̂ xtt nα

= Iyz nδ δ̂ † t̂(xt nε ε̂ † ĉ(〈t·µ〉 µ̂ [c] d̂〈d·α〉))
→ (Iyz nδ δ̂ † t̂ xt nε) ε̂ † ĉ(Iyz nδ δ̂ † t̂(〈t·µ〉 µ̂ [c] d̂〈d·α〉))
→ (Iyz nδ δ̂ † t̂ xt nε) ε̂ † ĉ((Iyz nδ δ̂ † t̂〈t·µ〉) µ̂ [c] d̂(Iyz nδ δ̂ † t̂〈d·α〉))
→ (Iyz nδ δ̂ † t̂ xt nε) ε̂ † ĉ(Iyz nδ δ̂ [c] d̂〈d·α〉)

Now the last term above is not typeable. This can be observed from the fact that the deriva-
tion would need to have the following shape:

D1

Iyz nδ : Γ � δ:A ∪ B,∆

D3

xt nε : Γ, t:A ∪ B � ε:(A ∪ B)→C,∆

Iyz nδ δ̂ † t̂ xt nε : Γ � ε:(A ∪ B)→C,∆

D1

Iyz nδ : Γ � δ:A ∪ B,∆ 〈d·α〉 : Γ,d:C � ∆

Iyz nδ δ̂ [c] d̂〈d·α〉 : Γ, c:(A ∪ B)→C � ∆

(Iyz nδ δ̂ † t̂ xt nε) ε̂ † ĉ(Iyz nδ δ̂ [c] d̂〈d·α〉) : Γ � ∆

but the subderivation D3 does not exist: picking either A or B for t gives derivations for

xt nε : Γ, t:A � ε:A→C,∆and xt nε : Γ, t:B � ε:B→C,∆

Notice that the types ’derived’ for the plug ε differ, and do not permit the application of rule
(∪L); there is no way around this problem.

In fact, the proofs of Theorems 6.1 and 6.2 strongly depend on the fact that, when we have
a derivation for P : Γ, t:A ∪ B � ∆, then rule (∪L) has been used to ‘insert’ the union type.

6 Preservance of types under conversion

In this section, we will perform the main ‘soundness’ checks of the system with intersection
and union types as introduced for X above. We will show that the notion of type assignment
is closed for both reduction and expansion, but that it is not with respect to the notion of
η-reduction as introduced in Definition 3.5.

Theorem 6.1 (Subject reduction) If P : Γ � ∆, and P → Q, then Q : Γ � ∆.

Proof: By induction on the definition of →, where we focus on the rules: the proof consists
of showing, for each rule, the ’minimal’ derivation for the left-hand side, and that, using the
restrictions that poses, we can type the right-hand side. We only show the interesting cases.

ITRS’04, 2004; ENTCS, volume 136 18

(Logical rules) : (cap) : 〈y·α〉 α̂ † x̂〈x·β〉 → 〈y·β〉.

〈y·α〉 : y:A � α:A 〈x·β〉 : x:A � β:A

〈y·α〉 α̂ † x̂ 〈x·β〉 : y:A � β:A
〈y·β〉 : y:A � β:A

(exp) : (ŷP β̂·α) α̂ † x̂〈x·γ〉 → ŷP β̂·γ, with α
∈ fp(P).

D

P : Γ,y:A � β:B,∆

ŷ P β̂·α : Γ � α:A→B,∆ 〈x·γ〉 : x:A→B � γ:A→B

(ŷP β̂·α) α̂ † x̂ 〈x·γ〉 : Γ � γ:A→B ∪ ∆

D

P : Γ,y:A � β:B,∆

ŷ P β̂·γ : Γ � γ:A→B ∪ ∆

(med) : 〈y·α〉 α̂ † x̂(P β̂ [x] ẑ Q) → P β̂ [y] ẑ Q, with x
∈ fs(P, Q)

〈y·α〉 : y:A→B � α:A→B

D1

P : Γ1 � β:A,∆1

D2

Q : Γ2,z:B � ∆2

P β̂ [x] ẑQ : Γ1 ∩Γ2, x:A→B � ∆1 ∪∆2

〈y·α〉 α̂ † x̂(P β̂ [x] ẑQ) : Γ1 ∩Γ2 ∩y:A→B � ∆1 ∪ ∆2

D1

P : Γ1 � β:A,∆1

D2

Q : Γ2,z:B � ∆2

P β̂ [y] ẑQ : Γ1 ∩Γ2 ∩y:A→B � ∆1 ∪ ∆2

(exp-imp) : (ŷP β̂·α) α̂ † x̂(Q γ̂ [x] ẑ R) → (Q γ̂ † ŷP) β̂ † ẑR, with α
∈ fp(R), x
∈ fs(Q, R).

D1

P : Γ1,y:A � β:B,∆1

ŷ P β̂·α : Γ1 � α:A→B,∆1

D2

Q : Γ2 � γ:A,∆2

D3

R : Γ3,z:B � ∆3

Q γ̂ [x] ẑ P : Γ2 ∩Γ3, x:A→B � ∆2 ∪∆3

(ŷ P β̂·α) α̂ † x̂(Q γ̂ [x] ẑR) : Γ1 ∩Γ2 ∩Γ3 � ∆1 ∪∆2 ∪∆3

Notice that y, β
∈ fc(Q, R).

D2

Q : Γ2 � γ:A,∆2

D1

P : Γ1,y:A � β:B,∆1

Q γ̂ † ŷ P : Γ1 ∩Γ2 � β:B,∆1 ∪ ∆2

D3

R : Γ3,z:B � ∆3

(Q γ̂ † ŷ P) β̂ † ẑR : Γ1 ∩Γ2 ∩Γ3 � ∆1 ∪ ∆2 ∪∆3

(exp-imp) : (ŷP β̂·α) α̂ † x̂(Q γ̂ [x] ẑ P) → Q γ̂ † ŷ(P β̂ † ẑP), with α
∈ fp(P), x
∈ fs(Q, R).
Notice that y, β
∈ fc(Q, R).

D2

Q : Γ2 � γ:A,∆2

D1

P : Γ1,y:A � β:B,∆1

D3

R : Γ3,z:B � ∆3

P β̂ † ẑP : Γ1 ∩Γ3,y:A � ∆1 ∪ ∆3

Q γ̂ † ŷ(P β̂ † ẑR) : Γ1 ∩Γ2 ∩Γ3 � ∆1 ∪ ∆2 ∪ ∆3

(CBV propagation) : 〈y·α〉 α̂ † x̂P → 〈y·α〉 α̂ † x̂P: trivial.

ITRS’04, 2004; ENTCS, volume 136 19

〈y·β〉 α̂ † x̂ P → 〈y·β〉, with β
= α.

〈y·β〉 : y:A � β:A
(Wk)

〈y·β〉 : y:A � α:C, β:A P : Γ, x:C � ∆

〈y·β〉 α̂ † x̂ P : Γ∩y:A � β:A ∪∆

〈y·β〉 : Γ∩y:A � β:A ∪ ∆

(ŷP β̂·α) α̂ † x̂Q → (ŷ(P α̂ † x̂Q) β̂·γ) γ̂ † x̂Q, with γ fresh. Notice that α is not intro-
duced in ŷP β̂·α, so might appear inside P; also, y, β
∈ fc(Q).

D1

P : Γ1,y:A � β:B,α:C,∆1

ŷ P β̂·α : Γ1 � α:(A→B) ∪ C,∆1

D2

Q : Γ2, x:A→B � ∆2

D3

Q : Γ3, x:C � ∆3
(∪L)

Q : Γ2 ∩Γ3, x:(A→B) ∪ C � ∆2 ∪∆3

(ŷ P β̂·α) α̂† x̂ Q : Γ1 ∩Γ2 ∩Γ3 � ∆1 ∪∆2 ∪∆3

D1

P : Γ1,y:A � β:B,α:A→B,∆1

D2

Q : Γ2, x:A→B � ∆2

P α̂† x̂ Q : Γ1 ∩Γ2,y:A � β:B,∆1 ∪ ∆2

ŷ(P α̂† x̂ Q) β̂·γ : Γ1 ∩Γ2 � γ:A→B,∆1 ∪ ∆2

D3

Q : Γ3, x:A→B � ∆3

(ŷ(P α̂† x̂ Q) β̂·γ) γ̂ † x̂ Q : Γ1 ∩Γ2 ∩Γ3 � ∆1 ∪ ∆2 ∪ ∆3

(ŷP β̂·γ) α̂ † x̂Q → ŷ(P α̂ † x̂Q) β̂·γ, with γ
= α.

D1

P : Γ1,y:A � α:C, β:B,∆1

ŷP β̂·γ : Γ1 � α:C,γ:A→B ∪∆1

D2

Q : Γ2, x:C � ∆2

(ŷ P β̂·γ) α̂† x̂ Q : Γ1 ∩Γ2 � γ:A→B ∪ ∆1 ∪ ∆2

D1

P : Γ1,y:A � α:C, β:B,∆1

D2

Q : Γ1, x:C � ∆2

P α̂† x̂ Q : Γ1 ∩Γ2,y:A � β:B,∆1 ∪∆2

ŷ(P α̂† x̂ Q) β̂·γ : Γ1 ∩Γ2 � γ:A→B ∪ ∆1 ∪ ∆2

(P β̂ [z] ŷ Q) α̂ † x̂P → (P α̂ † x̂R) β̂ [z] ŷ(Q α̂ † x̂ R). Notice that y, β
∈ fc(R).

D1

P : Γ1 � α:C, β:A,∆1

D2

Q : Γ2,y:B � α:C,∆2

P β̂ [z] ŷQ : Γ1 ∩Γ2 ∩ z:A→B � α:C,∆1 ∩∆2

D3

R : Γ3, x:C � ∆3

(P β̂ [z] ŷQ) α̂ † x̂ R : Γ1 ∩Γ2 ∩Γ3 ∩ z:A→B � ∆1 ∩∆2 ∩∆3

D1

P : Γ1 � α:C, β:A,∆1

D3

R : Γ3, x:C � ∆3

P α̂† x̂ R : Γ1 ∩Γ3 � β:A,∆1 ∪ ∆3

D2

Q : Γ2,y:B � α:C,∆2

D3

R : Γ3, x:C � ∆3

Q α̂† x̂ R : Γ2 ∩Γ3,y:B � ∆2 ∪ ∆3

(P α̂† x̂ R) β̂ [z] ŷ(Q α̂† x̂ R) : Γ1 ∩Γ2 ∩Γ3 ∩ z:A→B � ∆1 ∩∆2 ∩∆3

ITRS’04, 2004; ENTCS, volume 136 20

(P β̂ † ŷQ) α̂ † x̂R → (P α̂ † x̂P) β̂ † ŷ(Q α̂ † x̂R).

D1

P : Γ1 � α:C, β:B,∆1

D2

Q : Γ2,y:B � α:C,∆2

P β̂ † ŷQ : Γ1 ∩Γ2 � α:C,∆1 ∪ ∆2

D3

R : Γ3, x:C � ∆3

(P β̂ † ŷQ) α̂† x̂ R : Γ1 ∩Γ2 ∩Γ3 � ∆1 ∪ ∆2 ∪ ∆3

D1

P : Γ1 � α:C, β:B,∆1

D3

R : Γ3, x:C � ∆3

P α̂† x̂ R : Γ1 ∩Γ3 � β:B,∆1 ∪ ∆3

D2

Q : Γ2,y:B � α:C,∆2

D3

R : Γ3, x:C � ∆3

Q α̂† x̂ R : Γ1 ∩Γ3,y:B � ∆2 ∪ ∆3

(P α̂† x̂ R) β̂ † ŷ(Q α̂† x̂ R) : Γ1 ∩Γ2 ∩Γ3 � ∆1 ∪∆2 ∪∆3

(CBN propagation) : P α̂ † x̂〈x·β〉 → P α̂ † x̂〈x·β〉 trivial.
P α̂ † x̂〈y·β〉 → 〈y·β〉, y
= x

P : Γ∩y:B � α:A,∆

〈y·β〉 : y:B � β:B
(Wk)

〈y·β〉 : y:B, x:A � β:B

P α̂ † x̂ 〈y·β〉 : Γ∩y:B � β:B ∪ ∆

〈y·β〉 : Γ∩y:B � β:B ∪ ∆

P α̂ † x̂(ŷQ β̂·γ) → ŷ(P α̂ † x̂Q) β̂·γ. Notice that y, β
∈ fc(P).

D1

P : Γ1 � α:C,∆1

D2

Q : Γ2, x:C,y:A � β:B,∆2

ŷQ β̂·γ : Γ2, x:C � γ:A→B ∪ ∆2

P α̂ † x̂(ŷQ β̂·γ) : Γ1 ∩Γ2 � γ:A→B ∪ ∆1 ∪ ∆2

D1

P : Γ1 � α:C,∆1

D2

Q : Γ2, x:C,y:A � β:B,∆2

P α̂ † x̂ Q : Γ1 ∩Γ2,y:A � β:B,∆1 ∪∆2

ŷ(P α̂ † x̂ Q) β̂·γ : Γ1 ∩Γ2 � γ:A→B ∪ ∆1 ∪ ∆2

P α̂ † x̂(Q β̂ [x] ŷ R) → P α̂ † v̂((P α̂ † x̂Q) β̂ [v] ŷ(P α̂ † x̂R)), with v fresh. Notice that
y, β
∈ fc(P).

D1

P : Γ1 � α:A→B,∆1

D2

P : Γ2 � α:C,∆2
(∩R)

P : Γ1 ∩Γ2 � α:A→B∩C,∆1 ∪∆2

D3

Q : Γ3, x:C � β:A,∆3

D4

R : Γ4,y:B, x:C � ∆4

Q β̂ [x] ŷ P : Γ3 ∩Γ4, x:A→B∩C � ∆3 ∪ ∆4

P α̂† x̂(Q β̂ [x] ŷ R) : Γ1 ∩· · · ∩Γ4 � ∆1 ∪ · · ·∪∆4

ITRS’04, 2004; ENTCS, volume 136 21

D1

P : Γ1 � α:A→B,∆1

D2

P : Γ2 � α:C,∆2

D3

Q : Γ3, x:C � β:A,∆3

P α̂ † x̂ Q : Γ2 ∩Γ3 � β:A,∆2 ∪ ∆3
D2

P : Γ2 � α:C,∆2

D4

R : Γ4,y:B, x:C � ∆4

P α̂ † x̂ R : Γ2 ∩Γ4,y:B � ∆2 ∪ ∆4

(P α̂ † x̂ Q) β̂ [v] ŷ(P α̂ † x̂ R) : Γ2 ∩Γ3 ∩Γ4,v:A→B � ∆2 ∪ ∆3 ∪ ∆4

P α̂ † v̂((P α̂ † x̂ Q) β̂ [v] ŷ(P α̂ † x̂ R)) : Γ1 ∩· · · ∩Γ4 � ∆1 ∪ · · ·∪∆4

P α̂ † x̂(Q β̂ [z] ŷ P) → (P α̂ † x̂Q) β̂ [z] ŷ(P α̂ † x̂P), x
= z

D1

P : Γ1 � α:C,∆1

D2

Q : Γ2, x:C � β:A,∆2

D3

P : Γ3, x:C,y:B � ∆3

Q β̂ [z] ŷ P : Γ2 ∩Γ3 ∩ z:A→B, x:C � ∆2 ∪ ∆3

P α̂† x̂(Q β̂ [z] ŷ P) : Γ1 ∩Γ2 ∩Γ3 ∩ z:A→B � ∆1 ∪ ∆2 ∪ ∆3

D1

P : Γ1 � α:C,∆1

D2

Q : Γ2, x:C � β:A,∆2

P α̂ † x̂ Q : Γ1 ∩Γ2 � β:A,∆1 ∪ ∆2

D1

P : Γ1 � α:C,∆1

D3

P : Γ3, x:C,y:B � ∆3

P α̂ † x̂ P : Γ1 ∩Γ3,y:B � ∆1 ∪ ∆3

(P α̂ † x̂ Q) β̂ [z] ŷ(P α̂ † x̂ P) : Γ1 ∩Γ2 ∩Γ3 ∩ z:A→B � ∆1 ∪∆2 ∪ ∆3

P α̂ † x̂(Q β̂ † ŷP) → (P α̂ † x̂Q) β̂ † ŷ(P α̂ † x̂P)

D1

P : Γ1 � α:A,∆1

D2

Q : Γ2, x:A � β:B,∆2

D3

P : Γ3, x:A,y:B � ∆3

Q β̂ † ŷ P : Γ1 ∩Γ2, x:A � ∆1 ∪ ∆2

P α̂ † x̂(Q β̂ † ŷP) : Γ1 ∩Γ2 ∩Γ3 � ∆1 ∪ ∆2 ∪ ∆3

D1

P : Γ1 � α:A,∆1

D2

Q : Γ2, x:A � β:B,∆2

P α̂ † x̂ Q : Γ1 ∩Γ2 � β:B,∆1 ∪ ∆2

D1

P : Γ1 � α:A,∆1

D3

P : Γ3, x:A,y:B � ∆3

P α̂ † x̂ P : Γ1 ∩Γ3,y:B � ∆1 ∪ ∆3

(P α̂ † x̂ Q) β̂ † ŷ(P α̂ † x̂ P) : Γ1 ∩Γ2 ∩Γ3 � ∆1 ∪ ∆2 ∪ ∆3

(Activating the cuts) : (a†) : P α̂ † x̂Q → P α̂ † x̂Q, if P does not introduce α: trivial.
(†a) : P α̂ † x̂Q → P α̂ † x̂Q, if Q does not introduce x: trivial.

Theorem 6.2 (Subject expansion) If Q : Γ � ∆, and P → Q, then P : Γ � ∆.

Proof: See the appendix. By induction on the definition of →, where we focus on the rules:
the proof consists of showing, for each rule, the ’minimal’ derivation for the right-hand side,
and that, using the restrictions that poses, we can type the left-hand side. We will only show
the interesting cases.

(Logical rules) : (cap) : 〈y·α〉 α̂ † x̂〈x·β〉 → 〈y·β〉.

〈y·β〉 : y:A � β:A
〈y·α〉 : y:A � α:A 〈x·β〉 : y:A � β:A

〈y·α〉 α̂ † x̂ 〈x·β〉 : y:A � β:A

ITRS’04, 2004; ENTCS, volume 136 22

(exp) : (ŷP β̂·α) α̂ † x̂〈x·γ〉 → ŷP β̂·γ, with α
∈ fp(P).

D

P : Γ,y:A � β:B,∆

ŷ P β̂·γ : Γ � γ:A→B ∪ ∆

D

P : Γ,y:A � β:B,∆

ŷ P β̂·α : Γ � α:A→B,∆ 〈x·γ〉 : x:A→B � γ:A→B

(ŷP β̂·α) α̂ † x̂ 〈x·γ〉 : Γ � γ:A→B ∪ ∆

(med) : 〈y·α〉 α̂ † x̂(P β̂ [x] ẑ Q) → P β̂ [y] ẑ Q, with x
∈ fs(M, N).

D1

P : Γ1 � β:A,∆1

D2

Q : Γ1,z:B � ∆2

P β̂ [y] ẑQ : Γ1 ∩Γ2 ∩y:A→B � ∆1 ∪ ∆2

〈y·α〉 : y:A→B � α:A→B

D1

P : Γ1 � β:A,∆1

D2

Q : Γ1,z:B � ∆2

P β̂ [x] ẑQ : Γ1 ∩Γ2, x:A→B � ∆1 ∪∆2

〈y·α〉 α̂ † x̂(P β̂ [x] ẑQ) : Γ1 ∩Γ2 ∩y:A→B � ∆1 ∪ ∆2

(exp-imp) : (ŷP β̂·α) α̂ † x̂(Q γ̂ [x] ẑ P) → (Q γ̂ † ŷP) β̂ † ẑP, with α
∈ fp(P), x
∈ fs(Q, R).
Notice that β
∈ fp(Q).

D1

Q : Γ1 � γ:A,∆1

D2

P : Γ2,y:A � β:B,∆2

Q γ̂ † ŷ P : Γ1 ∩Γ2 � β:B,∆1 ∪ ∆2

D3

P : Γ3,z:B � ∆3

(Q γ̂ † ŷ P) β̂ † ẑP : Γ1 ∩Γ2 ∩Γ3 � ∆1 ∪ ∆2 ∪ ∆3

D2

P : Γ2,y:A � β:B,∆2

ŷ P β̂·α : Γ2 � α:A→B,∆2

D1

Q : Γ1 � γ:A,∆1

D3

P : Γ3,z:B � ∆3

Q γ̂ [x] ẑ P : Γ1 ∩Γ3, x:A→B � ∆1 ∪∆3

(ŷP β̂·α) α̂ † x̂(Q γ̂ [x] ẑ P) : Γ1 ∩Γ2 ∩Γ3 � ∆1 ∪ ∆2 ∪ ∆3

(exp-imp) : (ŷP β̂·α) α̂ † x̂(Q γ̂ [x] ẑ P) → Q γ̂ † ŷ(P β̂ † ẑP), with α
∈ fp(P), x
∈ fs(Q, R).
Notice that y
∈ fs(P).

D1

Q : Γ1 � γ:A,∆1

D2

P : Γ2,y:A � β:B,∆2

D3

P : Γ3,z:B � ∆3

P β̂ † ẑP : Γ2 ∩Γ3,y:A � ∆2 ∪ ∆3

Q γ̂ † ŷ(P β̂ † ẑ P) : Γ1 ∩Γ2 ∩Γ3 � ∆1 ∪ ∆2 ∪ ∆3

D2

P : Γ2,y:A � β:B,∆2

ŷ P β̂·α : Γ2 � α:A→B,∆2

D1

Q : Γ1 � γ:A,∆1

D3

P : Γ3,z:B � ∆3

Q γ̂ [x] ẑ P : Γ1 ∩Γ3, x:A→B � ∆1 ∪∆3

(ŷP β̂·α) α̂ † x̂(Q γ̂ [x] ẑ P) : Γ1 ∩Γ2 ∩Γ3 � ∆1 ∪ ∆2 ∪ ∆3

(CBV propagation) : 〈y·α〉 α̂ † x̂P → 〈y·α〉 α̂ † x̂P: trivial.

ITRS’04, 2004; ENTCS, volume 136 23

〈y·β〉 α̂ † x̂ P → 〈y·β〉, with β
= α. Notice the use of the type �.

〈y·β〉 : y:A � β:A

〈y·β〉 : y:A � β:A
(Wk)

〈y·β〉 : y:A � α:�, β:A
(�L)

P : x:� �
〈y·β〉 α̂† x̂ P : y:A � β:A

(ŷP β̂·α) α̂ † x̂Q → (ŷ(P α̂ † x̂Q) β̂·γ) γ̂ † x̂Q, with γ fresh. Notice that y, β
∈ fc(Q).

D1

P : Γ1,y:A � α:C, β:B,∆1

D2

Q : Γ2, x:C � ∆2

P α̂† x̂ Q : Γ1 ∩Γ2,y:A � β:B,∆1 ∪ ∆2

ŷ(P α̂† x̂ Q) β̂·γ : Γ1 ∩Γ2 � γ:A→B,∆1 ∪ ∆2

D3

Q : Γ3, x:A→B � ∆3

(ŷ(P α̂† x̂ Q) β̂·γ) γ̂ † x̂ Q : Γ1 ∩Γ2 ∩Γ3 � ∆1 ∪ ∆2 ∪ ∆3

D1

P : Γ1,y:A � α:C, β:B,∆1

ŷ P β̂·α : Γ1 � α:(A→B) ∪ C,∆1

D2

Q : Γ2, x:C � ∆2

D3

Q : Γ3, x:A→B � ∆3
(∪L)

Q : Γ2 ∩Γ3, x:(A→B) ∪ C � ∆2 ∪∆3

(ŷP β̂·α) α̂† x̂ Q : Γ � ∆

(ŷP β̂·γ) α̂ † x̂Q → ŷ(P α̂ † x̂Q) β̂·γ, with γ
= α. Notice that y, β
∈ fc(Q).

D1

P : Γ1,y:A � α:C, β:B,∆1

D2

Q : Γ2, x:C � ∆2

P α̂† x̂ Q : Γ1 ∩Γ2,y:A � β:B,∆1 ∪∆2

ŷ(P α̂† x̂ Q) β̂·γ : Γ1 ∩Γ2 � γ:A→B ∪ ∆1 ∪ ∆2

D1

P : Γ1,y:A � α:C, β:B,∆1

ŷP β̂·γ : Γ1 � α:C,γ:A→B ∪∆1

D2

Q : Γ2, x:C � ∆2

(ŷ P β̂·γ) α̂† x̂ Q : Γ1 ∩Γ2 � γ:A→B ∪ ∆1 ∪ ∆2

(P β̂ [z] ŷ Q) α̂ † x̂R → (P α̂ † x̂R) β̂ [z] ŷ(Q α̂ † x̂ R). Notice that y, β
∈ fc(R).

D1

P : Γ1 � α:C, β:A,∆1

D2

R : Γ2, x:C � ∆2

P α̂† x̂ R : Γ1 ∩Γ2 � β:A,∆1 ∪ ∆2

D3

Q : Γ3,y:B � α:D,∆3

D4

R : Γ4, x:D � ∆4

Q α̂† x̂ R : Γ3 ∩Γ4,y:B � ∆3 ∪ ∆4

(P α̂† x̂ R) β̂ [z] ŷ(Q α̂† x̂ R) : Γ1 ∩· · · ∩Γ4 ∩ z:A→B � ∆1 ∪ · · ·∪∆4

D1

P : Γ1 � α:C, β:A,∆1

D3

Q : Γ3,y:B � α:D,∆3

P β̂ [z] ŷQ : Γ1 ∩Γ3 ∩ z:A→B � α:C ∪ D,∆1 ∪ ∆3

D2

R : Γ2, x:C � ∆2

D4

R : Γ4, x:D � ∆4
(∪L)

R : Γ2 ∩Γ4, x:C ∪ D � ∆2 ∪ ∆4

(P β̂ [z] ŷQ) α̂ † x̂ R : Γ1 ∩· · · ∩Γ4 ∩ z:A→B � ∆1 ∪ · · ·∪∆4

ITRS’04, 2004; ENTCS, volume 136 24

(P β̂ † ŷQ) α̂ † x̂R → (P α̂ † x̂R) β̂ † ŷ(Q α̂ † x̂R). Notice that y, β
∈ fc(R).

D1

P : Γ1 � α:C, β:B,∆1

D2

R : Γ2, x:C � ∆2

P α̂† x̂ R : Γ1 ∩Γ2 � β:B,∆1 ∪ ∆2

D3

Q : Γ3,y:B � α:D,∆3

D4

R : Γ4, x:D � ∆4

Q α̂† x̂ R : Γ3 ∩Γ4,y:B � ∆3 ∪ ∆4

(P α̂† x̂ R) β̂ † ŷ(Q α̂† x̂ R) : Γ1 ∩· · · ∩Γ4 � ∆1 ∪ · · ·∪∆4

D1

P : Γ1 � α:C, β:B,∆1

D3

Q : Γ3,y:B � α:D,∆3

P β̂ † ŷQ : Γ1 ∩Γ3 � α:C ∪ D,∆1 ∪∆3

D2

R : Γ2, x:C � ∆2

D4

R : Γ4, x:D � ∆4
(∪L)

R : Γ2 ∩Γ4, x:C ∪ D � ∆2 ∪ ∆4

(P β̂ † ŷQ) α̂† x̂ R : Γ1 ∩· · · ∩Γ4 � ∆1 ∪ · · ·∪∆4

(CBN propagation) : P α̂ † x̂〈x·β〉 → P α̂ † x̂〈x·β〉 trivial.
P α̂ † x̂〈y·β〉 → 〈y·β〉, y
= x. Again, notice the use of the type �.

〈y·β〉 : y:B � β:B
(�R)

P : � α:�
〈y·β〉 : y:B � β:B

(Wk)
〈y·β〉 : y:B, x:� � β:B

P α̂ † x̂ 〈y·β〉 : y:B � β:B

P α̂ † x̂(ŷQ β̂·γ) → ŷ(P α̂ † x̂Q) β̂·γ. Notice that y, β
∈ fc(P).

D1

P : Γ1 � α:C,∆1

D2

Q : Γ2, x:C,y:A � β:B,∆2

P α̂ † x̂ Q : Γ1 ∩Γ2,y:A � β:B,∆1 ∪∆2

ŷ(P α̂ † x̂ Q) β̂·γ : Γ1 ∩Γ2 � γ:A→B ∪ ∆1 ∪ ∆2

D1

P : Γ1 � α:C,∆1

D2

Q : Γ2, x:C,y:A � β:B,∆2

ŷQ β̂·γ : Γ2, x:C � γ:A→B ∪ ∆2

P α̂ † x̂(ŷQ β̂·γ) : Γ1 ∩Γ2 � γ:A→B ∪ ∆1 ∪ ∆2

P α̂ † x̂(Q β̂ [x] ŷ R) → P α̂ † v̂((P α̂ † x̂Q) β̂ [v] ŷ(P α̂ † x̂R)), with v fresh. Notice that
y, β
∈ fc(P).

D1

P : Γ1 � α:A→B,∆1

..

.

D2

P : Γ2 � α:C,∆2

D3

Q : Γ3, x:C � β:A,∆3

P α̂ † x̂ Q : Γ2 ∩Γ3 � β:A,∆2 ∪ ∆3

D4

P : Γ4 � α:D,∆4

D5

R : Γ5, x:D,y:B � ∆5

P α̂ † x̂ R : Γ4 ∩Γ5,y:B � ∆4 ∪ ∆5

(P α̂ † x̂ Q) β̂ [v] ŷ(P α̂ † x̂ R) : Γ2 ∩· · · ∩Γ5,v:A→B � ∆2 ∪ · · ·∪∆5

P α̂ † v̂((P α̂ † x̂ Q) β̂ [v] ŷ(P α̂ † x̂ R)) : Γ1 ∩· · · ∩Γ5 � ∆1 ∪ · · ·∪∆5

ITRS’04, 2004; ENTCS, volume 136 25

..

..

..

..

..

D1

P : Γ1 � α:A→B,∆1

D2

P : Γ2 � α:C,∆2

D4

P : Γ4 � α:D,∆4
(∩R)

P : Γ1 ∩Γ2 ∩Γ4 � α:(A→B)∩C∩D,∆1 ∪ ∆2 ∪ ∆4

D3

Q : Γ3, x:C � β:A,∆3

D5

R : Γ5, x:D,y:B � ∆5

Q β̂ [x] ŷ R : Γ3 ∩Γ5, x:A→B∩C∩D � ∆3 ∪ ∆5

P α̂† x̂(Q β̂ [x] ŷ R) : Γ1 ∩· · · ∩Γ5 � ∆1 ∪ · · ·∪∆5

P α̂ † x̂(Q β̂ [z] ŷ R) → (P α̂ † x̂Q) β̂ [z] ŷ(P α̂ † x̂ R), x
= z. Notice that y, β
∈ fc(P).

D1

P : Γ1 � α:C,∆1

D2

Q : Γ2, x:C � β:A,∆2

P α̂ † x̂ Q : Γ1 ∩Γ2 � β:A,∆1 ∪ ∆2

D3

P : Γ3 � α:D,∆3

D4

R : Γ4, x:D,y:B � ∆4

P α̂ † x̂ R : Γ3 ∩Γ4,y:B � ∆3 ∪ ∆4

(P α̂ † x̂ Q) β̂ [z] ŷ(P α̂ † x̂ R) : Γ1 ∩· · · ∩Γ4 ∩ z:A→B � ∆1 ∪ · · ·∪∆4

D1

P : Γ1 � α:C,∆1

D3

P : Γ3 � α:D,∆3
(∩R)

P : Γ1 ∩Γ3 � α:C∩D,∆1 ∪∆3

D2

Q : Γ2, x:C � β:A,∆2

D4

R : Γ4, x:D,y:B � ∆4

Q β̂ [z] ŷ R : Γ2 ∩Γ4 ∩ z:A→B, x:C∩D � ∆2 ∪ ∆4

P α̂† x̂(Q β̂ [z] ŷ R) : Γ1 ∩· · · ∩Γ4 ∩ z:A→B � ∆1 ∪ · · ·∪∆4

P α̂ † x̂(Q β̂ † ŷR) → (P α̂ † x̂Q) β̂ † ŷ(P α̂ † x̂R). Notice that y, β
∈ fc(P).

D1

P : Γ1 � α:A,∆1

D2

Q : Γ2, x:A � β:B,∆2

P α̂ † x̂ Q : Γ1 ∩Γ2 � β:B,∆1 ∪ ∆2

D3

P : Γ3 � α:C,∆3

D4

R : Γ4, x:C,y:B � ∆4

P α̂ † x̂ R : Γ3 ∩Γ4,y:B � ∆3 ∪∆4

(P α̂ † x̂ Q) β̂ † ŷ(P α̂ † x̂ R) : Γ1 ∩· · · ∩Γ4 � ∆1 ∪ · · ·∪∆4

D1

P : Γ1 � α:A,∆1

D3

P : Γ3 � α:C,∆3
(∩R)

P : Γ1 ∩Γ3 � α:A∩C,∆1 ∪ ∆3

D2

Q : Γ2, x:A � β:B,∆2

D4

R : Γ4, x:C,y:B � ∆4

Q β̂ † ŷ R : Γ2 ∩Γ4, x:A∩C � ∆2 ∪∆4

P α̂ † x̂(Q β̂ † ŷ R) : Γ1 ∩· · · ∩Γ4 ∩ z:A→B � ∆1 ∪ · · ·∪∆4

(Activating the cuts) : (a†) : P α̂ † x̂Q → P α̂ † x̂Q, if P does not introduce α: trivial.
(†a) : P α̂ † x̂Q → P α̂ † x̂Q, if Q does not introduce x: trivial.

We will finish the presentation of the results of this paper by looking at the η-reduction rule,
and show, as can be expected – seen that the notion of type assignment defined here for X is
a natural extension of the strict system for λ-calculus – that type assignment in the system as
presented here is not preserved by this rule.

Example 6.3 Take the η-rule for X as defined in Definition 3.5:

x̂(P γ̂ † ẑ(〈x·δ〉 δ̂ [z] ŵ〈w·β〉)) β̂·α → P γ̂ † ẑ〈z·α〉

ITRS’04, 2004; ENTCS, volume 136 26

Let A be strict; the following is a possible derivation for the left-hand side:

D

P : Γ � γ:A→B,∆

〈x·δ〉 : x:A∩C � δ:A 〈w·β〉 : w:B � β:B

〈x·δ〉 δ̂ [z] ŵ〈w·β〉 : x:A∩C,z:A→B � β:B

P γ̂ † ẑ(〈x·δ〉 δ̂ [z] ŵ〈w·β〉) : Γ, x:A∩C � β:B.∆

x̂(P γ̂ † ẑ(〈x·δ〉 δ̂ [z] ŵ〈w·β〉)) β̂·α : Γ � α:(A∩C)→B,∆

However, using the same derivation for P, we cannot derive

P γ̂ † ẑ〈z·α〉 : Γ � α:(A∩C)→B

At most, we can derive:

D

P : Γ � γ:A→B,∆ 〈z·α〉 : z:A→B � α:A→B

P γ̂ † ẑ〈z·α〉 : Γ � α:A→B,∆

As was the case for systems with intersection types for λ-calculus [9, 2], in order to get a notion
of type assignment that is closed for η-reduction, we would need to introduce a ≤-relation on
types which is contra-variant in the arrow (see the discussion after Definition 4.2).

In such a system, in the style of [2], the (Ax)-rule of Definition 5.1 could be replaced by:

(Ax) : (A ≤ B; A, B strict)
〈y·α〉 : Γ∩y:A � α:B ∪ ∆

With this new rule, we can derive the desired result:

D

P : Γ � γ:A→B,∆ 〈z·α〉 : z:A→B � α:(A∩C)→B

P γ̂ † ẑ 〈z·α〉 : Γ � α:(A∩C)→B,∆

If this indeed gives a sound system (and a true extension of the system of [9, 2]), will be left
for future research.

Future work

There exists a whole plethora of directions of research that need exploration for X . The one
started with this paper, a notion of type assignment using intersection types, will need to be
more strongly linked to existing systems, like those of [9, 2, 12]. Using those results, we want
to look at the problem of termination, semantics, approximation, etc.

Also, in view of the striking similarities between the processes of X and those of the π-
calculus, perhaps a suitable notion of type assignment using both intersection and union
types can be defined for the latter.

Acknowledgements

I am greatly indebted to Pierre Lescanne, who not only suggested to use union types, but
also drew my attention to the paper [12]. The solution for various problems noted there
for a system with intersection types for Curien and Herbelein’s calculus λµµ̃ gave the final
inspiration towards my definition of proper types and the type assignment rules defined here.

ITRS’04, 2004; ENTCS, volume 136 27

My thanks go also to Mariangiola Dezani, who pointed out a flaw in an earlier version of
this paper.

References

[1] S. van Bakel. Complete restrictions of the Intersection Type Discipline. Theoretical Computer Science,
102(1):135–163, 1992.

[2] S. van Bakel. Intersection Type Assignment Systems. Theoretical Computer Science, 151(2):385–435,
1995.

[3] S. van Bakel. Strongly Normalising Cut-Elimination with Strict Intersection Types. In Electronic
Proceedings of International Workshop Intersection Types and Related Systems 2002 (ITRS ’02), Copen-
hagen, Denmark, volume 70.1 of Electronic Notes in Theoretical Computer Science, 2002.

[4] S. van Bakel. Cut-Elimination in the Strict Intersection Type Assignment System is Strongly Nor-
malising. To appear in: Notre Dame Journal of Formal Logic, 2004.

[5] S. van Bakel, S. Lengrand, and P. Lescanne. The language §: computation and sequent calculus in
classical logic. Submitted, 2004.

[6] S. van Bakel and J. Raghunandan. Implementing §. In Electronic Proceedings of TermGraph’04,
Rome, Italy, Electronic Notes in Theoretical Computer Science, 2004. To appear.

[7] F. Barbanera and S. Berardi. A symmetric lambda calculus for classical program extraction. Infor-
mation and Computation, 125(2):103–117, 1996.

[8] H. Barendregt. The Lambda Calculus: its Syntax and Semantics. North-Holland, Amsterdam, revised
edition, 1984.

[9] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and the completeness
of type assignment. Journal of Symbolic Logic, 48(4):931–940, 1983.

[10] Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In Proceedings of the 5 th
ACM SIGPLAN International Conference on Functional Programming (ICFP’00), pages 233–243. ACM,
2000.

[11] M. Dezani-Ciancaglini, U. de’ Liguoro, and A. Piperno. Intersection and union types: syntax and
semantics. Information and Computation, 119:202–230, 1995.

[12] Dan Dougherty, Sivia Ghilezan, and Pierre Lescanne. Characterizing strong normalization in a
language with control operators. To appear, 2004.

[13] Stéphane Lengrand. Call-by-value, call-by-name, and strong normalization for the classical sequent
calculus. In Bernhard Gramlich and Salvador Lucas, editors, Electronic Notes in Theoretical Computer
Science, volume 86. Elsevier, 2003.

[14] Christian Urban. Classical Logic and Computation. PhD thesis, University of Cambridge, October
2000.

