
Reduction in X does not agree with Intersection and
Union Types

Extended abstract
(4th International Workshop on Intersection Types and Related Systems (ITRS’08), 2008)

Steffen van Bakel

Department of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2BZ, UK

svb@doc.ic.ac.uk

Abstract

This paper defines intersection and union type assignment for the calculus X , a substitution
free language that enjoys the Curry-Howard correspondence with respect to Gentzen’s se-
quent calculus for classical logic. We show that this notion is closed for subject-expansion,
and show that it needs to be restricted to satisfy subject-reduction as well, making it unsuit-
able to define a semantics.

Introduction

This paper will present a notion of intersection and union type assignment for the (untyped)
calculus X , that was first defined in [21] and later extensively studied in [3]. X is based on the
sequent calculus [16], in contrast to the λ-calculus [6] which is related to natural deduction
(see also [16]); in X , duality is ubiquitous, as for example call-by-name is dual to call-by-
value (see also [26]), and as intersection will be shown to be dual to union in this paper.
The advantage of using the sequent approach here is that now we can explore the duality of
intersection and union fully, through which we can study and explain various anomalies of
union type assignment [24, 5] and quantification [17, 22].

The type system defined here initially will be shown to be the natural one, in that inter-
section and union play their expected roles for witness expansion (also called completeness).
However, we show that witness reduction (also called soundness, the converse of completeness)
no longer holds, and will reason that this is caused by the fact that both intersection and union
lack a logical foundation: the obtained system is not Curry-Howard [19], i.e. accompanying
syntax for the intersection and union type constructors is missing. This problem also appears
in other contexts, such as that of ml with side-effects [17, 27, 22], and that of using intersection
and union types in an operational setting [11, 15]. As here, also there the cause of the problem
is that the type-assignment rules are not fully logical, making the context calls (which form
part of the reduction in X) unsafe. As, in part, already has been observed in [18] in the context
of the calculus λµµ̃ of [10], the problem is that the added rules are not logical.

The advantage of studying this problem in the context of the highly symmetric sequent
calculi will be made clear: intersection and union are truly dual for these calculi, and the
at the time surprising loss of soundness for the system with intersection and union types in
[24, 5] becomes now natural and inevitable. Also, we will show that it is not union alone that
causes problems, but that the problem is much more profound: although both intersection
and union might be seem to be related to the (logical) and and or, the fact that they are both
not logical destroys the soundness, both for a system based on intersection as for a system

4th International Workshop on Intersection Types and Related Systems (ITRS’08), 2008 2

based on union. This also explains why, for ml with side-effects, quantification is no longer
sound [17, 22]: also the (∀I) and (∀E) rules of ml are not logical.

Intersection and union have been studied in the context of classical sequents in [2, 12, 18,
13, 14], and all these systems suffer from the same kind of problem with respect to reduction.
In this paper we will improve on those results by presenting two systems that address the
problems successfully.

This paper corrects [2]; the system now types all normal forms, and the subject-reduction
problem is caught.

1 The calculus X
In this section we will give the definition of the X -calculus which has been proven to be a
fine-grained implementation model for various well-known calculi [3], like the λ-calculus [6],
λx [8], λµ [23] and λµµ̃ [18]. As discussed in the introduction, the calculus X is inspired by
the sequent calculus; the system we will consider in this section has only implication, and no
structural rules. X features two separate categories of ‘connectors’, plugs and sockets, that act
as input and output channels, respectively.

Definition 1.1 (Syntax) The nets of the X -calculus are defined by the following syntax, where
x,y range over the infinite set of sockets, α, β over the infinite set of plugs.

P, Q ::= 〈x·α〉 | ŷP β̂·α | P β̂ [y] x̂ Q | P α̂ † x̂Q
capsule export import cut

The ·̂ symbolises that the socket or plug underneath is bound in the net. The notion of bound
and free connector is defined as usual, and we will identify nets that only differ in the names
of bound connectors, as usual. We write fs(P) for the set of free sockets of P, and fp(P) for
the set of free plugs of P; a socket x or plug α occurring in P which is not free is called bound.
We will write x ∈ fs(P, Q) for x ∈ fs(P) & x ∈ fs(Q). We adopt Barendregt’s convention in that
free and bound names will be different.

The calculus, defined by the reduction rules below, explains in detail how cuts are propa-
gated through nets to be eventually evaluated at the level of capsules, where the renaming
takes place. Reduction is defined by specifying both the interaction between well-connected
basic syntactic structures, and how to deal with propagating active nodes to points in the net
where they can interact.

It is important to know when a connector is introduced; this will play a crucial role in the
reduction rules. Informally, a net P, containing a socket x, introduces x if P is constructed
from sub-nets which do not contain x as free socket, so x only occurs at the “top level.”

Definition 1.2 (Introduction) (P introduces x) : Either P = Q β̂ [x] ŷ R with x �∈ fs(Q, R), or
P = 〈x·α〉.

(P introduces α) : Either P = x̂Q β̂·α and α �∈ fp(Q), or P = 〈x·α〉.

The principal reduction rules are:

Definition 1.3 (Logical rules) Let α and x be introduced in, respectively, the left- and right-

4th International Workshop on Intersection Types and Related Systems (ITRS’08), 2008 3

hand side of the main cuts below.

(cap) : 〈y·α〉 α̂ † x̂〈x·β〉 → 〈y·β〉
(exp) : (ŷP β̂·α) α̂ † x̂〈x·γ〉 → ŷP β̂·γ
(imp) : 〈y·α〉 α̂ † x̂(Q β̂ [x] ẑ R) → Q β̂ [y] ẑ R

(exp-imp) : (ŷP β̂·α) α̂ † x̂(Q γ̂ [x] ẑ R) →
{

Q γ̂ † ŷ(P β̂ † ẑR)
(Q γ̂ † ŷP) β̂ † ẑR

If these rules cannot be applied, cuts need to be activated:

Definition 1.4 (Active cuts) The syntax is extended with two flagged or active cuts:

P ::= . . . | P1 α̂ † x̂P2 | P1 α̂ † x̂P2

We define two cut-activation rules.

(a†) : P α̂ † x̂Q → P α̂ † x̂Q if P does not introduce α

(†a) : P α̂ † x̂Q → P α̂ † x̂Q if Q does not introduce x

The next rules define how to move an activated dagger inwards.

Definition 1.5 (Propagation rules) Left propagation:

(d†) : 〈y·α〉 α̂ † x̂P → 〈y·α〉 α̂ † x̂ P
(cap†) : 〈y·β〉 α̂ † x̂P → 〈y·β〉, β �= α

(exp-out†) : (ŷQ β̂·α) α̂ † x̂P → (ŷ(Q α̂ † x̂P) β̂·γ) γ̂ † x̂P, γ fresh
(exp-in†) : (ŷQ β̂·γ) α̂ † x̂P → ŷ(Q α̂ † x̂P) β̂·γ, γ �= α

(imp†) : (Q β̂ [z] ŷ R) α̂ † x̂P → (Q α̂ † x̂P) β̂ [z] ŷ(R α̂ † x̂ P)
(cut†) : (Q β̂ † ŷR) α̂ † x̂P → (Q α̂ † x̂P) β̂ † ŷ(R α̂ † x̂P)

Right propagation:

(†d) : P α̂ † x̂〈x·β〉 → P α̂ † x̂〈x·β〉
(†cap) : P α̂ † x̂〈y·β〉 → 〈y·β〉, y �= x
(†exp) : P α̂ † x̂(ŷQ β̂·γ) → ŷ(P α̂ † x̂Q) β̂·γ

(†imp-out) : P α̂ † x̂(Q β̂ [x] ŷ R) → P α̂ † ẑ((P α̂ † x̂Q) β̂ [z] ŷ(P α̂ † x̂R)), z fresh
(†imp-in) : P α̂ † x̂(Q β̂ [z] ŷ R) → (P α̂ † x̂Q) β̂ [z] ŷ(P α̂ † x̂ R), z �= x

(†cut) : P α̂ † x̂(Q β̂ † ŷR) → (P α̂ † x̂Q) β̂ † ŷ(P α̂ † x̂R)

We write → for the (reflexive, transitive, compatible) reduction relation generated by the
logical, propagation and activation rules.

In [4], two sub-reduction systems were introduced which explicitly favour one kind of acti-
vation whenever the above critical pair occurs:

Definition 1.6 (Call By Name and Call By Value) We define Call By Name (cbn) and Call
By Value (Acbv) reduction by:

• If a cut can be activated in two ways, Acbv only allows to activate it via (a†); we write
P →v Q in that case. This is obtained by replacing rule (†a) with:

(†a) : P α̂ † x̂Q →v P α̂ † x̂Q, if P introduces α and Q does not introduce x.

4th International Workshop on Intersection Types and Related Systems (ITRS’08), 2008 4

• cbn can only activate such a cut via (†a); like above, we write P →n Q. Likewise, we can
reformulate this as the reduction system obtained by replacing rule (a†) with:

(a†) : P α̂ † x̂Q →n P α̂ † x̂Q, if P does not introduce α and Q introduces x.

• As in [21], we split the two variants of (exp-imp) over the two notions of reduction:

(ŷP β̂·α) α̂ † x̂(Q γ̂ [x] ẑ R) →v Q γ̂ † ŷ(P β̂ † ẑR)
(ŷP β̂·α) α̂ † x̂(Q γ̂ [x] ẑ R) →n (Q γ̂ † ŷP) β̂ † ẑR

Notice that the full reduction relation → is not confluent; this comes in fact from the critical
pair that activates a cut P α̂ † x̂Q in two ways. In fact, assuming α does not occur in P and x
does not occur in Q, then P α̂ † x̂Q reduces to both P and Q. The first reduction takes place in
Acbv, the second in cbn.

2 Typing for X : from G3 to X
X offers a natural presentation of the classical propositional calculus with implication, and
can be seen as a variant of the G3 system for lk [20].

Definition 2.1 (Types and Contexts) i) The set of types is defined by the grammar
A, B ::= ϕ | A→B, where ϕ is a basic type of which there are infinitely many.

ii) A context of sockets Γ is a mapping from sockets to types, denoted as a finite set of state-
ments x:A, such that the subject of the statements (x) are distinct. We write Γ1, Γ2 to mean
the union of Γ1 and Γ2, provided Γ1 and Γ2 are compatible (if Γ1 contains x:A1 and Γ2
contains x:A2 then A1 = A2), and write Γ, x:A for Γ,{x:A}.

iii) Contexts of plugs ∆ are defined in a similar way.

Definition 2.2 (Typing for X) i) Type judgements are expressed via the ternary relation
P : Γ � ∆, where Γ is a context of sockets and ∆ is a context of plugs, and P is a net. We say
that P is the witness of this judgement.

ii) Context assignment for X is defined by the following rules:

(cap) : 〈y·α〉 : Γ,y:A � α:A,∆ (imp) :
P : Γ � α:A,∆ Q : Γ, x:B � ∆

P α̂ [y] x̂ Q : Γ,y:A→B � ∆

(exp) :
P : Γ, x:A � α:B,∆

x̂ P α̂·β : Γ � β:A→B,∆
(cut) :

P : Γ � α:A,∆ Q : Γ, x:A � ∆

P α̂ † x̂ Q : Γ � ∆

We write P : Γ � ∆ if there exists a derivation that has this judgement in the bottom line,
and write D :: P : Γ � ∆ if we want to name that derivation.

Notice that Γ and ∆ carry the types of the free connectors in P, as unordered sets. There is
no notion of type for P itself, instead the derivable statement shows how P is connectable.

The soundness result of simple type assignment with respect to reduction is stated as usual:

Theorem 2.3 (Witness reduction [4]) If P : Γ � ∆, and P → Q, then Q : Γ � ∆.

4th International Workshop on Intersection Types and Related Systems (ITRS’08), 2008 5

3 The relation with the Lambda Calculus

The remainder of this paper will be dedicated to the definition of a notion of intersection type
assignment on X . The definition will be such that it will be a natural extension of a system
with intersection types for the λ-calculus; we will start by briefly summarising the latter. We
assume the reader to be familiar with the λ-calculus [6]; we just recall the definition of lambda
terms and β-contraction.

We can define the direct encoding of the λ-calculus into X :

Definition 3.1 ([3]) The interpretation of lambda terms into terms of X via the plug α, M α
λ,

is defined by:

x α
λ = 〈x·α〉

λx.M α
λ = x̂ M β

λ
β̂·α

MN α
λ = M γ

λ
γ̂ † x̂(N β

λ
β̂ [x] ŷ〈y·α〉), with x fresh

Notice that every sub-term of M α
λ has exactly one free plug, which corresponds to the name

of hole of the present context in which M appears, i.e. its continuation.
As shown in [3], the notion of Curry type assignment for the λ-calculus, Γ �λ M : A, is

strongly linked to the one defined for X .

Definition 3.2 (Curry type assignment for λ-calculus) The type assignment rules for the
Curry type assignment system for the λ-calculus are:

(Ax) :
Γ, x:A �λ x : A (→I) :

Γ, x:A �λ M : B

Γ �λ λx.M : A→B
(→E) :

Γ �λ M : A→B Γ �λ N : A

Γ �λ MN : B

In [3], the following relation is shown between λ-calculus and X :

Theorem 3.3 ([3]) i) If M →β N, then M α
λ → N α

λ.

ii) If M →n N, then M α
λ →n N α

λ.

iii) If M →v N, then M α
λ →v N α

λ.

iv) If Γ �λ M : A, then M α
λ : Γ � α:A.

4 Intersection Type Assignment for the Lambda Calculus

The notion of intersection type assignment for X as defined in the next section is a conser-
vative extension of the Intersection Type Assignment System of [7], in that we can translate
lambda terms typeable in that system to X circuits while preserving types. In this section,
we will briefly discuss that system; we will modify it slightly, since we do not want to model
extensionality.

The type assignment system presented here is based on the BCD-system defined by H. Baren-
dregt, M. Coppo and M. Dezani-Ciancaglini in [7], in turn based on the system as presented
in [9]. The BCD-system treats the two type constructors ‘→’ and ‘∩’ the same, allowing, in
particular, intersection to occur at the right of arrow types. It also introduced a partial order
relation ‘≤’ on types, adds the type assignment rule (≤), and introduced a more general form
of the rules concerning intersection. We will deviate here slightly from that system.

4th International Workshop on Intersection Types and Related Systems (ITRS’08), 2008 6

Definition 4.1 (Intersection types, statements, and contexts) i) Let Φ be a countable (in-
finite) set of type-variables, ranged over by ϕ. T , the set of intersection types, ranged
over by A, B, . . . 1, is defined through: A, B ::= ϕ |
 | (A→B) | (A∩B) .
 is pronounced
“top”.

ii) A statement is an expression of the form M : A, with M ∈ Λ, and A ∈ T . M is the subject
and A the predicate of M : A.

iii) A context Γ is a partial mapping from term variables to intersection types, and we write
x:A ∈ Γ if Γ x = A, i.e. if A is the type stored for x in Γ. We will write x �∈ Γ if Γ is not
defined on x, and Γ\x when we remove x from the domain of Γ.

iv) We write Γ∩ x:A for the context Γ∩{x:A}, i.e., the context defined by:

Γ∩ x:A = Γ ∪ {x:A}, if x �∈ Γ

= Γ\x ∪ {x:A∩B}, if x:B ∈ Γ

We will often write Γ, x:A for Γ ∩ x:A when x �∈ Γ. In the notation of types, as usual,
right-most outer-most brackets will be omitted.

We will consider a pre-order (i.e. reflexive and transitive relation) on types which takes into
account the idem-potence, commutativity and associativity of the intersection type construc-
tor, and defines
 to be the maximal element.

Definition 4.2 (Relations on types) On T , the relation ≤ is defined as the smallest pre-order
such that: A ≤
, A∩B ≤ A, A∩B ≤ B, and C ≤ A & C ≤ B ⇒ C ≤ A∩B.

The relation ∼ is defined by: A ≤ B ≤ A ⇒ A ∼ B and A ∼ C & B ∼ D ⇒ A→B ∼ C→D.
T will be considered modulo ∼; then ≤ becomes a partial order.

We need to point out that the ≤ relation as defined in [7] is slightly different. It also contains
the cases (A→B)∩ (A→C)≤ A→(B∩C), C ≤ A & B ≤ D ⇒ A→B ≤ C→D, and
≤
→
.
These were mainly added to obtain a system closed for η-reduction (see also [1]), which is not
an issue in this paper.

It is easy to show that both (A∩B)∩C ∼ B∩(A∩C) and A∩B∼ B∩A, so the type constructor
∩ is associative and commutative, and we will write A∩B∩C rather than (A∩B)∩C. We will
write n for the set {1, . . . ,n}, and often write ∩nA i for A1 ∩ · · · ∩ An, and consider
 to be the
empty intersection:
 = ∩0A i.

Definition 4.3 Type assignment is defined by the following natural deduction system.

(Ax) :
Γ, x:AA �∩ x : A (∩I) :

ΓA �∩ M : Aj (∀j ∈ n)
(n ≥ 0)

ΓA �∩ M :∩nA i
(∩E) :

ΓA �∩ M :∩nA i
(j ∈ n)

ΓA �∩ M : Aj

(→I) :
Γ, x:AA �∩ M : B

ΓA �∩ λx.M : A→B
(→E) :

ΓA �∩ M : A→B ΓA �∩ N : A

ΓA �∩ MN : B

Again, notice that the original definition contained also the rule (≤), added to be able to
express contra-variance of the (original) ≤-relation over arrow types. The system as set up
here does not need this rule.

1 In [7], Greek characters are used to represent types, and ω is used for
; we use Greek characters for plugs.

4th International Workshop on Intersection Types and Related Systems (ITRS’08), 2008 7

5 Intersection and Union Context Assignment for X
The notion of intersection context assignment on X that we will present in this section is a
natural extension of the system considered in [3], i.e. the basic implicative system for Classical
Logic, but extended with intersection and union types and the type constants
 and ⊥. The
system we present here is a correction of the system presented in [2].

The following definition of types is a natural extension of the notion of types of the previous
section, by adding union as a type constructor.

Definition 5.1 (Intersection and Union Types, Contexts) i) The set T of intersection-union
types, ranged over by A, B, . . . is defined by: T ::= ϕ |
 | ⊥ | (T →T) | (T ∩T) | (T ∪ T) .

The set Tp is the set of proper types, defined by: Tp ::= ϕ | (T →T) .
ii) A context Γ of sockets (∆ of plugs) is a partial mapping from sockets (plugs) to types in

T , represented as a set of statements with only distinct connectors as subjects. We write
x ∈ Γ (x ∈ ∆) if x (α) gets assigned a type by Γ (∆).

We will consider a pre-order on types which takes into account the idempotence, commu-
tativity and associativity of the intersection and union type constructors, and defines
 to be
the maximal element, and ⊥ to be the minimal.

Definition 5.2 (Relations on types) The relation ≤ is defined as the least pre-order on T
such that: A ≤ A, A∩B ≤ A, A∩B ≤ B, C ≤ A & C ≤ B ⇒ C ≤ A∩B, A ≤
, and A ≤ A ∪ B,
B ≤ A ∪ B, A ≤ C & B ≤ C ⇒ A ∪ B ≤ C, and ⊥≤ A.

The equivalence relation ∼ on types is defined as before .
We will consider types modulo ∼; then ≤ becomes a partial order.

Notice that we can show that A ∪ (B∩C)≤ (A ∪ B)∩ (A ∪ C), but cannot show the converse.
Remark, as mentioned above, that the relation is not defined over arrow types, as in the

system of [7]. More pointedly, we do not consider the type A→(C ∩ (C→D)) smaller than
(A→C)∩ (A→C→D); the system would not be closed for the relation.

Definition 5.3 i) For contexts of sockets Γ1, . . . , Γn, the context Γ1 ∩ · · · ∩Γn is defined by:
x:A1 ∩ · · · ∩ Am ∈ Γ1 ∩ · · · ∩ Γn if and only if {x:A1, . . . , x:Am} is the set of all statements
about x that occur in

⋃
n Γi, where

⋃
is set-union. The notations Γ ∩ x:A and Γ, x:A are

defined as above; we will write ∩n Γi for Γ1 ∩· · · ∩Γn.
ii) For contexts of plugs, ∆1, . . . ,∆n, the context ∆1 ∪ · · ·∪∆nand the notions α:A ∪ ∆ and

α:A,∆ are defined similarly.

We will write ∩nA i for A1∩· · ·∩A n (with each Ai in T∪), and
 (top) for the empty intersection
type, as well as ∪n Ai for A1 ∪ · · ·∪A n (Ai in T∩), and ⊥ (bottom) for the empty union.

We will now define a notion of intersection-union context assignment for X .

Definition 5.4 (Intersection and Union Typing for X) Intersection and union context assign-

4th International Workshop on Intersection Types and Related Systems (ITRS’08), 2008 8

ment for X is defined by the following sequent style calculus:

(Ax) : 〈y·α〉 : Γ,y:A � α:A,∆ (cut) :
P : Γ � α:A,∆ Q : Γ, x:A � ∆

P α̂ † x̂ Q : Γ � ∆

(→L) :
P : Γ � α:A,∆ Q : Γ, x:B � ∆

P α̂ [y] x̂ Q : Γ∩y:A→B � ∆
(→R) :

P : Γ, x:A � α:B,∆

x̂ P α̂·β : Γ � β:A→B ∪ ∆

(∩R) :
P : Γ � α:Aj,∆ (∀j ∈ n)

(n ≥ 0)
P : Γ � α:∩nA i,∆

(∪L) :
P : Γ, x:Aj � ∆ (∀j ∈ n)

(n ≥ 0)
P : Γ, x:∪n Ai � ∆

(∩E) :
P : Γ � α:∩nA i,∆

(j ∈ n)
P : Γ � α:Aj,∆

(∪E) :
P : Γ, x:∪n Ai � ∆

(j ∈ n)
P : Γ, x:Ajs � ∆

NB: rule (cut) is also used for the activated cuts.

As will be argued below, this notion of type assignment is too liberal to obtain preservation
of types under conversion. The system is constructed to satisfy preservation of types under
expansion (see Theorem 6.1), but we will see that it is not closed for reduction (Section 6). We
will partly recover from this in Section 7, where we define restrictions of the system above
that satisfy preservation of types under, respectively, cbn and Acbv reduction. However, a
natural consequence of these restrictions made is that the systems no longer will be closed for
expansion.

We can show that typeability is preserved by · α
λ:

Theorem 5.5 If ΓA �∩ M : A, then M α
λ : Γ � α:A.

6 Witness expansion and reduction

One of the main properties of the intersection type assignment system is the perseverance of
types under both subject reduction and subject expansion. We will show the same results for
our system for X , but with restrictions. We are able to show the witness expansion result for
the notion of context assignment of Definition 5.4, but for witness reduction, we will have to
limit that notion.

Theorem 6.1 (Witness expansion) Let P → Q: if Q : Γ �p ∆ then P : Γ �p ∆.

As in the system of [5] defined for the λ-calculus, we suffer loss of the subject reduction
property (here called witness reduction). This problem also appears in other contexts, such
as that of ml with side-effects [17, 27, 22], and that of using intersection and union types in
an operational setting [11, 15], and has also been observed (giving little detail) in [18]. The
advantage of studying this problem in the context of sequent calculi is clearly shown by the
examples in this section. These examples will lead to the definition of two restrictions on
the notions of type assignment, �n and �v, that we will show to be closed for reduction for,
respectively, call-by-name and call-by-value reduction.

As in [5], for X , using the (unrestricted) notion of type assignment we gave above, we can
show that subject reduction does not hold in general.

Example 6.2 (First counterexample) Take

(〈x·γ〉 γ̂ [x] v̂〈v·α〉) α̂ † ŷ(〈y·δ〉 δ̂ [y] ŵ〈w·β〉) →v 〈x·γ〉 γ̂ [x] v̂(〈v·δ〉 δ̂ [v] ŵ〈w·β〉)

4th International Workshop on Intersection Types and Related Systems (ITRS’08), 2008 9

We can type the first net as follows:

(〈x·γ〉 γ̂ [x] v̂〈v·α〉) α̂ † ŷ(〈y·δ〉 δ̂ [y] ŵ〈w·β〉) : x:A∩ (A→C)∩ (A→C→D) � β:D

We cannot use these contexts to type the right-hand side net. The cbn reduction however,
does not pose any problems.

Example 6.3 (Second counterexample) Similarly, we can derive:

(x̂〈x·δ〉 β̂·δ) δ̂ † ẑ(v̂〈z·α〉 α̂·γ) : � γ:(C→A) ∪ (C→A→B)

This net reduces (x̂〈x·δ〉 β̂·δ) δ̂ † ẑ(v̂〈z·α〉 α̂·γ) →n v̂(x̂〈x·α〉 β̂·α) α̂·γ ; we cannot derive the
same type for the latter term. The Acbv reduction, on the other hand, does not create a
problem.

So, this notion of type assignment is too liberal to obtain preservation of types under con-
version: analysing the problems above, we can summarise them by: both i) right-propagation
into union, and ii) left-propagation into intersection break the witness-reduction property.

7 Systems with preservance of types under cbn or Acbv reduction

In this section, we will try and retrieve the witness-reduction property using a restriction of
the system proposed in the previous section. The approach we choose here is, in fact, partially
inspired by [5], where union types can only be assigned to values. The solutions we present
here are, however, very different: we do not need to limit the structure of types, and, for cbn,
limit union types to names, i.e. nets that introduce sockets. For Acbv, we limit intersection
types to values, i.e. nets that introduce plugs; this is reminiscent of the limitation in ml of
quantification of types to terms that are values [17, 22], and is used also in [25].

We define P : Γ �n ∆ as in Definition 5.4, where we change the applicability of rule (∪L),
and add a rule to treat left-activated cuts:

Definition 7.1 The context assignment rules for �n are (we only show the changed rules):

(cut) :
P : Γ �n α:A,∆ Q : Γ, x:A �n ∆

(for inactive and right-activated cuts)
P α̂ † x̂ Q : Γ �n ∆

(†) :
P : Γ �n α:A,∆ Q : Γ, x:A �n ∆

(A not an intersection type, x introduced)
P α̂† x̂ Q : Γ �n ∆

(∪L) :
P : Γ, x:Ai �n ∆ (∀i ∈ n)

(n ≥ 0, x introduced in P)
P : Γ, x:∪n Ai �n ∆

The cbn reduction however, does not pose any problems.
We can easily verify that this notion of type assignment is not closed for witness expansion.

This is clear from the fact that the side-condition of rule (∪L) is not preserved by witness
expansion: take (ŷP β̂·α) α̂ † x̂〈x·γ〉 such that α is introduced, and γ does not appear in P,
then γ is introduced in the net that is the result of contracting this cut, ŷP β̂·γ, but not in the
net (ŷP β̂·α) α̂ † x̂〈x·γ〉 itself.

The addition of rule (†) solves the problem of ‘left propagation into intersection’ in the
context of cbn reduction, and that the restriction on rule (∪L) solves ‘right propagation into

4th International Workshop on Intersection Types and Related Systems (ITRS’08), 2008 10

union’.

Theorem 7.2 (Witness reduction for �n wrt cbn) If P : Γ �n ∆, and P →n Q, then Q : Γ �n ∆.

We also define a notion of context assignment that will prove to be closed to reduction with
respect to Acbv reduction. Since the definition is in idea and concept entirely dual to the
restriction for cbn defined above, we will just focus on the differences.

Definition 7.3 The context assignment rules for �v are the same as those for �n, except for:

(cut) :
P : Γ �v α:A,∆ Q : Γ, x:A �v ∆

(for inactive and left-activated cuts)
P α̂ † x̂ Q : Γ �v ∆

(†) :
P : Γ �v α:A,∆ Q : Γ, x:A �v ∆

(A not a union type,α introduced)
P α̂ † x̂ Q : Γ �v ∆

(∩R) :
P : Γ �v α:Ai,∆ (∀i ∈ n)

(n ≥ 0,α introduced in P)
P : Γ �v α:∩nA i,∆

We can easily verify that this notion of type assignment is not closed for witness expansion.
This is clear from the fact that the side-condition of rule (∩R) is not preserved.

Theorem 7.4 (Witness reduction for �v wrt Acbv) If P : Γ �v ∆, and P →v Q, then Q : Γ �v ∆.

8 Conclusions

We have seen that it is straightforward to define a natural notion of context assignment to the
sequent calculus X that uses intersection and union types.

However, as in similar notions for the λ-calculus, combining union and intersection types
breaks the soundness of the system. We have isolated the problem cases, and seen that it is
exactly the non-logical behaviour of both type constructors that causes the problem. We have
looked at a number of restrictions for either cbn or Acbv reduction that overcome this defect,
but all with the loss of the witness expansion result.

This implies that it is impossible to define a semantics using types for X , even for the two
confluent sub-reduction systems.

Acknowledgement

I would like to thank Philippe Audebaud, Mariangiola Dezani and Alexander Summers for
fruitfull discussions, and especially thank Vanessa Loprete for valuable support.

References

[1] S. van Bakel. Intersection Type Assignment Systems. TCS, 151(2):385–435, 1995.
[2] S. van Bakel. Intersection and Union Types for X . In ITRS’04, ENTCS, 2004.
[3] S. van Bakel, S. Lengrand, and P. Lescanne. The language X : circuits, computations and classical

logic. In ICTCS’05, LNCS 3701, pages 81–96, 2005.
[4] S. van Bakel and P. Lescanne. Computation with classical sequents. MSCS, 2008. To appear.

4th International Workshop on Intersection Types and Related Systems (ITRS’08), 2008 11

[5] F. Barbanera, M. Dezani-Ciancaglini, and U. de’ Liguoro. Intersection and Union Types: Syntax
and Semantics. I&C, 119(2):202–230, 1995.

[6] H. Barendregt. The Lambda Calculus: its Syntax and Semantics, 1984.
[7] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and the completeness

of type assignment. JSL, 48(4):931–940, 1983.
[8] R. Bloo and K.H. Rose. Preservation of strong normalisation in named lambda calculi with explicit

substitution and garbage collection. In CSN’95, pages 62–72, 1995.
[9] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functional characters of solvable terms.

Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 27:45–58, 1981.
[10] P.-L. Curien and H. Herbelin. The Duality of Computation. In Proceedings of the 5 th ACM SIGPLAN

International Conference on Functional Programming (ICFP’00), pages 233–243. ACM, 2000.
[11] R. Davies and F. Pfenning. A judgmental reconstruction of modal logic. MSCS, 11(4):511–540, 2001.
[12] D. Dougherty, S. Ghilezan, and P. Lescanne. Intersection and Union Types in the λµµ̃-calculus. In

ITRS’04, ENTCS, 2004.
[13] D. Dougherty, S. Ghilezan, and P. Lescanne. Strong Normalization of the Dual Classical Sequent

Calculus. In LPAR’05, LNCS, pages 169–182, 2005.
[14] D. Dougherty, S. Ghilezan, and P. Lescanne. Characterizing strong normalization in the Curien-

Herbelin symmetric lambda calculus: extending the Coppo-Dezani heritage. TCS, 2008.
[15] J. Dunfield and F. Pfenning. Tridirectional typechecking. In POPL’04, pages 281–292, 2000.
[16] G. Gentzen. Investigations into logical deduction. In The Collected Papers of Gerhard Gentzen. Ed M.

E. Szabo, North Holland, 68ff (1969), 1935.
[17] B. Harper and M. Lillibridge. ML with callcc is unsound. Post to TYPES mailing list, July 8, 1991.
[18] H. Herbelin. C’est maintenant qu’on calcule: au cœur de la dualité. Mémoire de habilitation, Université

Paris 11, Décembre 2005.
[19] J.R. Hindley. Coppo-Dezani Types do not Correspond to Propositional Logic. TCS, 28:235–236,

1984.
[20] S.C. Kleene. Introduction to Metamathematics. Études et Recherches en Informatique, 1952.
[21] S. Lengrand. Call-by-value, call-by-name, and strong normalization for the classical sequent cal-

culus. In WRS 2003, ENTCS 86, 2003.
[22] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML, 1990.
[23] M. Parigot. An algorithmic interpretation of classical natural deduction. In LPAR’92, LNCS 624,

pages 190–201, 1992.
[24] B. C. Pierce. Programming with intersection types, union types, and polymorphism. Technical

Report CMU-CS-91-106, Carnegie Mellon University, 1991.
[25] A.J. Summers. Approaches to Polymorphism in Classical Sequent Calculus. Manuscript, 2008.
[26] Philip Wadler. Call-by-Value is Dual to Call-by-Name. In ICFP’03, pages 189 – 201, 2003.
[27] A. K. Wright. Simple imperative polymorphism. Lisp and Symbolic Computation, 8(4):343–355, 1995.

