Abstract

In this paper we define intersection and union type assignment for Parigot’s calculus $\lambda\mu$. We show that this notion is complete (i.e. closed under subject-expansion), and show also that it is sound (i.e. closed under subject-reduction). This implies that this notion of intersection-union type assignment is suitable to define a semantics.

keywords: Classical Logic, $\lambda\mu$-Calculus, intersection types, union types.

Introduction

The Intersection Type Discipline has proven to be an expressive tool for studying termination and semantics for the λ-calculus [12, 10]. Intersection type assignment is defined as an extension of the standard, implicative type assignment known as Curry’s system [15] (see also [24]), which expresses function composition and application; the extension made consists of relaxing the requirement that a parameter for a function should have a single type, adding the type constructor \cap next to \to. This simple extension allows for a great leap in complexity: not only can a (filter) model be built for the λ-calculus using intersection types, also strong normalisation (termination) can be characterised via assignable types; however, type assignment becomes undecidable. The literature on intersection types is vast; it was first defined by Coppo and Dezani-Ciancaglini in [13] and its development took place over a number of years, culminating in the paper by Barendregt, Coppo, and Dezani-Ciancaglini [11], and has been explored by many people since.

It is natural to ask if these results can be achieved for other calculi (reduction systems) as well, and in previous papers the author investigated (in collaboration) Term Rewriting Systems [6], and Object Oriented Calculi [5]; Maffeis looked at intersection types in the context of the π-calculus [26]. In order to come to a characterisation of strong normalisation for Curien and Herbelin’s (untyped) sequent calculus $\lambda\mu\tilde{\mu}$ [14], Dougherty, Ghilezan and Lescanne presented System $M^{\cap\cup}$ [17], that defines a notion of intersection and union typing for that calculus; in a later paper [18], they presented an improved version of their original system.

In [3], the author revisited System $M^{\cap\cup}$, and showed that that system was neither sound (i.e. closed under reduction), nor complete (i.e. closed under reverse reduction); the same holds for the system presented in [18]. To address completeness, [3] adds \top as the maximal and \bot as the minimal type, and extends the set of derivation rules; however, soundness is shown to be impossible to achieve without restricting typeability (effectively making less terms typeable). In [4], the author attempted to solve the same issue, but this time in the context of the sequent calculus \mathcal{X}, as defined by Lengrand [25], and later studied by Lescanne and the author [7, 8]; \mathcal{X} is a sequent calculus in that it enjoys the Curry-Howard isomorphism with respect to the implicative fragment of Gentzen’s LK [20]. The advantage of using the sequent approach is
that it is now possible to explore the duality of intersection and union fully, through which we can study and explain various anomalies of union type assignment \[32, 9\] and quantification \[22, 27\]. Also for \(X\), the completeness result follows relatively easily, but soundness can only be shown for restricted systems (effectively call-by-name and call-by-value reduction, but it might be possible that other sound restrictions exist as well). The main conclusion of those papers is that, in symmetric calculi (like \(\lambda\mu\bar{\beta}\mu\bar{\beta}\) and \(X\)) it is inevitable that intersection and union are truly dual, and that the very nature of those calculi makes a sound and complete system unachievable.

In this paper we will continue on this path and bring intersection types to the context of classical logic, by presenting a notion of intersection and union type assignment for the (untyped) calculus \(\lambda\mu\), that was first defined by Parigot in [31], and was later extensively studied by various authors.

Intersection and union types have also been studied in the context of the \(\lambda\)-calculus in [9]; also for the system defined in that paper soundness is lost, which can only be recovered by limiting to parallel reduction, i.e. all residuals of a redex need to be contracted in parallel. The problem of loss of soundness also appears in other contexts, such as that of ML with side-effects [22, 33, 27], and that of using intersection and union types in an operational setting [16, 19]. As here, also there the cause of the problem is that the type-assignment rules are not fully logical, making the context calls (which form part of the reduction in \(X\)) unsafe; this has, in part, already been observed in [23] in the context of Curien and Herbelin’s calculus \(\bar{\lambda}\mu\bar{\beta}\) [14]. This also explains why, for ML with side-effects, quantification is no longer sound [22, 27]; also the \((\forall I)\) and \((\forall E)\) rules of ML are not logical.

In the view of those failures, the result presented here comes as a surprise. We will define a notion of type assignment for \(\lambda\mu\) that uses intersection and union types, and show that it is both sound and complete. The system presented is a natural extension of the strict intersection type assignment system as defined in [2]; this implies that intersection models the distribution of arguments in a parameter call. But it is also a natural extension of the system for \(\lambda\mu\), and in order to achieve completeness for structural reduction, as in the papers mentioned above, union types are added. However, the union types are no longer dual to intersection types; union types play only a marginal role, as was also the intention of [18]. Contrary to that paper, however, we do not see union as negated intersection, but see a union type as a strict type; in particular, we do not allow the normal \((\bigcup I)\) and \((\bigcup E)\) rules as used in [9], which we know create the same soundness problem. Moreover, although one can link intersection types with the logical connector and, the union types we use here have no relation with or; one could argue that therefore perhaps union is not the right name to use for this type constructor, but we will stick with it nonetheless.

The limited view of union types is mirrored by \(\lambda\mu\)’s limited (with respect to \(\bar{\lambda}\mu\bar{\beta}\) and \(X\)) notion of context\(^1\). In \(\lambda\mu\), we distinguish control structures as those terms that start with a context switch \(\mu\alpha.\beta[M]\), followed by a number of arguments; since union types allow us to express that the various continuations (all called \(\alpha\)) need not have the same type, we use a different formulation for rule \((\rightarrow E)\), which has an implicit use of union elimination (see Definition 3.2). The type system defined here will be shown to be the natural one, in that intersection and union play their expected roles for completeness. Because the use of intersection and union is limited in that a context variable cannot have an intersection type, and although we allow union types for term variables, we do not have the normal union elimination rule; thanks to these two restrictions, we can show soundness as well.

\(^1\) In particular, \(\bar{\lambda}\mu\bar{\beta}\)’s \(\bar{\beta}x.c\) is not represented.
1 The calculus \(\lambda \mu \)

Parigot’s \(\lambda \mu \)-calculus [29] is a proof-term syntax for classical logic, expressed in Natural Deduction, defined as an extension of the Curry type assignment system for the \(\lambda \)-calculus. We quickly revise some basic notions:

Definition 1.1 (Lambda terms and \(\beta \)-contraction [10])

i) \(\lambda \)-terms are defined by:

\[
M, N ::= x \mid \lambda x. M \mid MN
\]

ii) The reduction relation \(\rightarrow_\beta \) is defined as the contextual closure of the rule:

\[
(\lambda x. M) N \rightarrow_\beta M[N/x]
\]

Curry (or simple) type assignment for the \(\lambda \)-calculus is defined as:

Definition 1.2

i) Let \(\varphi \) range over a countable (infinite) set of type-variables. The set of Curry-types is defined by the grammar:

\[
A, B ::= \varphi \mid (A \rightarrow B)
\]

ii) Curry-type assignment is defined by the following natural deduction system.

\[
(Ax) : \frac{\Gamma, x : A}{\Gamma, x : A} \hspace{2cm} (\rightarrow I) : \frac{\Gamma, x : A \vdash M : B \quad \Gamma \vdash \lambda x. M : A \rightarrow B}{\Gamma \vdash \lambda x. M : A \rightarrow B} \hspace{2cm} (\rightarrow E) : \frac{\Gamma \vdash M : A \rightarrow B \quad \Gamma \vdash N : A}{\Gamma \vdash MN : B}
\]

With \(\lambda \mu \) Parigot created a multi-conclusion typing system which corresponds to classical logic; the derivable statements have the shape \(\Gamma \vdash_\mu M : A \mid \Delta \), where \(A \) is the main conclusion of the statement, expressed as the active conclusion, and \(\Delta \) contains the alternative conclusions, consisting of pairs of Greek characters and types; the left-hand context \(\Gamma \), as usual, contains pairs of Roman characters and types, and represents the types of the free term variables of \(M \). As with Implicative Intuitionistic Logic, the reduction rules for the terms that represent the proofs correspond to proof contractions; the difference is that the reduction rules for the \(\lambda \)-calculus are the logical reductions, i.e. deal with the elimination of a type construct that has been introduced directly above. In addition to these, Parigot expresses also the structural rules, where elimination takes place for a type constructor that appears in one of the alternative conclusions (the Greek variable is the name given to a subterm): he therefore needs to express that the focus of the derivation (proof) changes, and this is achieved by extending the syntax with two new constructs \([\alpha]M \) and \(\mu \alpha. M \) that act as witness to deactivation and activation, which together move the focus of the derivation.

We will now present the variant of \(\lambda \mu \) we consider in this paper, as considered by Parigot in [30]; for convenience, we split terms into two categories: we define terms, and control structure:

Definition 1.3 (Syntax of \(\lambda \mu \)) The \(\lambda \mu \)-terms we consider are:

\[
M, N ::= x \mid \lambda x. M \mid MN \mid \mu \alpha. [\beta] M.
\]

We also define control structure as a subset of terms: \(C ::= \mu \alpha. [\beta] M \mid CM \).

To shorten proofs and notation, we will treat \(\mu \alpha. M \) as a term as well, whenever convenient.

As usual, \(\lambda x. M \) binds \(x \) in \(M \), and \(\mu \alpha. [\beta] M \) binds \(\alpha \) in \(M \), and the notions of free and bound variables are defined accordingly; the notion of \(\alpha \)-conversion extends naturally to bound names, and we assume Barendregt’s convention on free and bound variables.
In \(\lambda \mu \), reduction of terms is expressed via implicit substitution; as usual, \(M[N/x] \) stands for the substitution of all occurrences of \(x \) in \(M \) by \(N \), and \(M[N\cdot \gamma /\alpha] \) stands for the term obtained from \(M \) in which every (pseudo) sub-term of the form \([\alpha]M' \) is substituted by \([\gamma](M'N) \) (\(\gamma \) is a fresh variable) (in Parigot’s notation: \((\mu \alpha.[\beta]M)N \to \mu \gamma.[\beta]M[\gamma]PN/[\alpha]P \)).

We define formally how to perform the \(\mu \)-substitution; this is convenient in later proofs.

Definition 1.4 We define \(M[N\cdot \gamma /\alpha] \) by induction over the structure of terms by:

\[
\begin{align*}
 x[N\cdot \gamma /\alpha] & \triangleq x \\
 (\lambda x.M)[N\cdot \gamma /\alpha] & \triangleq \lambda x.(M[N\cdot \gamma /\alpha]) \\
 (M_1M_2)[N\cdot \gamma /\alpha] & \triangleq M_1[N\cdot \gamma /\alpha]M_2[N\cdot \gamma /\alpha] \\
 (\mu \delta.[\alpha]M)[N\cdot \gamma /\alpha] & \triangleq \mu \delta.[\gamma](M[N\cdot \gamma /\alpha])N \\
 (\mu \delta.[\beta]M)[N\cdot \gamma /\alpha] & \triangleq \mu \delta.[\beta](M[N\cdot \gamma /\alpha]) \quad \beta \neq \alpha
\end{align*}
\]

We have the following rules of computation in \(\lambda \mu \):

Definition 1.5 (\(\lambda \mu \) Reduction) Parigot defines a number of reduction rules: two computational rules

- logical (\(\beta \)) : \((\lambda x.M)N \to M[N/x] \)
- structural (\(\mu \)) : \((\mu \alpha.[\beta]M)N \to \mu \gamma.(.[\beta]M[\gamma]N) \)

as well as the simplification rules:

- renaming : \(\mu \alpha.[\beta](\mu \gamma.[\delta]M) \to \mu \alpha.[\delta]M[\beta/\gamma] \)
- erasing : \(\mu \alpha.[\alpha]M \to M \) if \(\alpha \) does not occur in \(M \).
- \(\eta \mu \) : \(\mu \alpha.[\beta]M \to \lambda x \mu \gamma.[\beta]M[x\cdot \gamma /\alpha] \)

which are added mainly to simplify the presentation of his results\(^2\).

Reduction on \(\lambda \mu \)-terms is defined as the compatible closure of these rules.

It is possible to define more reduction rules, but Parigot refrained from that since he aimed at defining a confluent reduction system.

The intuition behind the structural rule is given by de Groote [21]: “in a \(\lambda \mu \)-term \(\mu \alpha.M \) of type \(A \to B \), only the subterms named by \(\alpha \) are really of type \(A \to B \) (…) ; hence, when such a \(\mu \)-abstraction is applied to an argument, this argument must be passed over to the sub-terms named by \(\alpha \).” In this paper, we will only deal with the logical, structural and renaming rule; this is also the restriction made by de Groote in [21].

Type assignment for \(\lambda \mu \) is defined by the following natural deduction system; there is a main, or active, conclusion, labelled by a term of this calculus, and the alternative conclusions are labelled by the set of Greek variables \(\alpha, \beta, \text{etc} \).

Definition 1.6 (Typing Rules for \(\lambda \mu \)) Our types are those of Definition 1.2, extended with the type constant \(\bot \) that is essentially added to express negation, i.e.:

\[
A, B ::= \varphi \mid \bot \mid (A \to B) \quad (A \neq \bot)
\]

\(^2\) In fact, Parigot formulates the renaming rule as \([\beta](\mu \gamma.M) \to M[\beta/\gamma] \); since \([\beta](\mu \gamma.M) \) is not a term, we write the rule differently.
The type assignment rules are:

\[
\begin{align*}
(Ax) & : \quad \Gamma, x : A \vdash A \\
(\mu) & : \quad \Gamma \vdash_{\Lambda\mu} M : B \mid \alpha : A, \beta : B, \Delta \\
(\rightarrow I) & : \quad \Gamma, x : A \vdash_{\Lambda\mu} M : B \mid \Delta \\
(\rightarrow E) & : \quad \Gamma \vdash_{\Lambda\mu} M : A \rightarrow B \mid \Delta \\
(\rightarrow) & : \quad \Gamma \vdash_{\Lambda\mu} N : A \mid \Delta
\end{align*}
\]

We can think of \([\alpha]M\) as storing the type of \(M\) amongst the alternative conclusions by giving it the name \(\alpha\) - the set of Greek variables is called the set of context variables (or names).

As an example illustrating the fact that this system is more powerful than the system for the \(\lambda\)-calculus, here is a proof of Peirce’s Law (due to Ong and Steward [28]):

\[
\begin{align*}
\Gamma \vdash_{\Lambda\mu} M : A \rightarrow B \rightarrow A \\
\end{align*}
\]

Notice that \(\bot\) plays no part in this proof. Indeed, we can define the set of types without \(\bot\); the underlying logic of such a system then corresponds to minimal classical logic [1].

Since we allow \(\bot\) as a proper type, we can even express negation (of course, it is also implicitly present in the right-hand type environment), and can give a derivation for \(\neg\neg A \rightarrow A\), so can express double negation elimination; so in \(\lambda\mu\) we can represent full Classical Logic.

\[
\begin{align*}
\Gamma \vdash_{\Lambda\mu} \lambda x : \alpha. [\alpha]y : A \mid \alpha : A \\
\end{align*}
\]

Notice that this term is not closed, since \(\beta\) is free, albeit of type \(\bot\).

De Groote [21] considers a variant of \(\lambda\mu\) which separates the naming and \(\mu\)-binding features\(^3\). This gives a considerable different system, that allows for \(\neg\neg A \rightarrow A\) to be inhabitated via (the closed term) \(\lambda y. \mu a. y (\lambda x. [\alpha]x)\). De Groote’s variant of \(\lambda\mu\) [21] uses the syntax

\[
M, N :: \lambda x. M | MN | \mu a. M | [\beta]M
\]

and splits rule \((\mu)\) into

\[
\begin{align*}
(\mu) & : \quad \Gamma \vdash_{\Lambda\mu} M : \bot \mid \alpha : A, \Delta \\
\end{align*}
\]

\(^3\) Notice that then Parigot’s renaming rule is correct. We could have presented our results for this more permissive system, but would have had to sacrifice soundness and completeness for the renaming rule. Notice that we would still have soundness and completeness for the two computational rules, which are arguably the most important.
In this system we can derive

\[
\frac{\vdash \bot}{\vdash A \rightarrow \bot} \quad (Ax)
\]
\[
\frac{\vdash \bot}{\vdash A \rightarrow \bot} \rightarrow \bot \quad (\bot)
\]
\[
\frac{\vdash \bot}{\vdash A \rightarrow \bot} \rightarrow \bot \quad (\rightarrow I)
\]
\[
\frac{\vdash \bot}{\vdash A \rightarrow \bot} \rightarrow \bot \quad (\rightarrow E)
\]
\[
\frac{\vdash \bot}{\vdash \lambda x. \alpha x : A \rightarrow \bot | \alpha : A} \quad (\rightarrow I)
\]
\[
\frac{\vdash \bot}{\vdash \lambda y. \mu \alpha y (\lambda x [\alpha] x) : ((A \rightarrow \bot) \rightarrow \bot) \rightarrow \bot} \quad (\rightarrow I)
\]

For the moment, we will deal with Parigot’s original system only; we aim to extend our results to de Groote’s variant in future work.

2 The Strict Intersection Type Assignment System for the \(\lambda\)-calculus

The remainder of this paper will be dedicated a notion of intersection/union typing on \(\lambda\mu\). This will be defined as a natural extension of the Strict Intersection System [2] for the \(\lambda\)-calculus. Before we come to that, we will briefly summarise the latter.

\textbf{Definition 2.1} (\textit{Strict types})

\(i\) Let \(\varphi\) range over an infinite, enumerable set of type variables. The set \(\mathcal{T}_s\) of \textit{strict types}, ranged over by \(A, B, \text{ etc}\) is defined through the grammar:

\[
A, B ::= \varphi \mid \top \rightarrow B \mid (A_1 \cap \ldots \cap A_n) \rightarrow B \ (n \geq 1)
\]

The set \(\mathcal{T}\) of \textit{intersection types} is defined as the union of \{ \top \} and the closure of \(\mathcal{T}_s\) under intersection; we will use \(A, B, \text{ etc}\) for intersection types as well, and mention which set they belong to when necessary.

\(ii\) A \textit{statement} is an expression of the form \(M : A\), with \(M \in \Lambda\) and \(A \in \mathcal{T}\). \(M\) is the \textit{subject} and \(A\) the \textit{predicate} of \(M: A\).

\(iii\) A \textit{type-environment} \(\Gamma\) is a partial mapping from term variables to intersection types, and we write \(x : A \in \Gamma\) if \(\Gamma (x) = A\).

So if we write a type as \(A \rightarrow B\), then \(B \in \mathcal{T}_s\), and \(A \in \mathcal{T}\).

In the notation of types, as usual, right-most outer-most parentheses in arrow types will be omitted, and we assume \(\cap\) to bind stronger than \(\rightarrow\). From hereon, we will write \(\mathbb{N}\) for the set \(\{1, \ldots, n\}\).

We will consider a pre-order on types which takes into account the idempotence, commutativity and associativity of the intersection type constructor, and defines \(\top\) to be the maximal element.

\textbf{Definition 2.2} \(i\) The relation ‘\(\leq\)’ is defined as the least pre-order on \(\mathcal{T}\) such that:

\[
A_1 \cap \ldots \cap A_n \leq A_i, \quad \text{for all } i \in \mathbb{N}, \ n \geq 1
\]

\[
B \leq A_i, \quad \text{for all } i \in \mathbb{N}, \ \Rightarrow \ B \leq A_1 \cap \ldots \cap A_n, \ n \geq 0
\]

\(ii\) On \(\mathcal{T}\), the relation ‘\(\sim\)’ is defined by:

\[
A \leq B \leq A \Rightarrow A \sim B \quad A \sim B \& C \sim D \iff A \rightarrow C \sim B \rightarrow D
\]
iii) The relations ‘≤’ and ‘∼’, are extended to contexts by: \(\Gamma ≤ \Gamma' \) if and only if for every \(x:A' \in \Gamma' \) there is an \(x:A \in \Gamma \) such that \(A ≤ A' \), and: \(\Gamma ∼ \Gamma' ⇔ \Gamma ≤ \Gamma' ≤ \Gamma \).

\(\mathcal{T} \) will be considered modulo \(∼ \); then \(≤ \) becomes a partial order. It is easy to show that both \((A \cap B) \cap C ∼ A \cap (B \cap C) \) and \(A \cap B ∼ B \cap A \), so the type constructor \(\cap \) is associative and commutative, and we will write \(\cap_n A_i \) for \(A_1 \cap \cdots \cap A_n \), and consider \(\top \) to be the empty intersection: \(\top = \cap_0 A_i \). Moreover, we will assume, unless stated explicitly otherwise, that in \(\cap_n A_i \) each \(A_i \) is strict.

Definition 2.3 The strict type assignment is defined by the following natural deduction system (where all types mentioned are strict, with the exception of \(\top \)):

\[
\begin{align*}
\text{(\(\cap E \))}: & \frac{\Gamma, x: \cap_n A_i \vdash x: A_j}{\Gamma \vdash \cap_{i,j} A_i} \quad (n \geq 1, j \in \mathbb{N}) \\
\text{(\(\cap I \))}: & \frac{\Gamma \vdash M: A_i \quad (\forall i \in \mathbb{N})}{\Gamma \vdash \cap_n A_i} \quad (n \geq 0) \\
\text{(\(\to I \))}: & \frac{\Gamma, x:A \vdash M:B}{\Gamma \vdash \lambda x.M:A \to B} \\
\text{(\(\to E \))}: & \frac{\Gamma \vdash M:A \to B \quad \Gamma \vdash N:A}{\Gamma \vdash MN:B}
\end{align*}
\]

We will write \(\Gamma \vdash M: A \) for statements that are derived using these rules.

Notice that \(\Gamma \vdash M: \top \) for all \(\Gamma, M \) by rule \((\cap I) \).

Properties of this system have been studied in [2].

3 Intersection and union type assignment for \(\lambda\mu \)

We will now define a notion of type assignment for \(\lambda\mu \) that uses intersection and union types.

We see the context variables \(\alpha \) as names for possible continuations that in the philosophy of intersection types need not all be typed with the same type; we therefore allow multiple types for a context variable in the environment \(\Delta \), grouped using a new type constructor, which we call union.

Binding a context variable then generates a context switch \(\mu \alpha[\beta]M \), which naturally has a union type \(\cup_n A_i \); reduction of the term \((\mu \alpha[\beta]M)N \) will bring the operand \(N \) to each of the pseudo subterms in \(M \) of the shape \([\alpha]Q \) (‘named’ with \(\alpha \)), where \(Q \) has type \(A_i \); since \(N \) gets placed behind \(Q \), this implies that \(A_i = C_i \to B_i \) and that therefore the type for \(\alpha \) should be \(\cup_n (C_i \to B_i) \); this then also implies that \(N \) should have all the types \(C_i (\forall i \in n) \); rule \((\to E) \) as below expresses exactly that. The only ‘functionality’ we need for union types therefore is the ability to choose a collection of types for \(\alpha \) amongst those stored in \(\Delta \); this is represented by rule \((\cup E) \).

Definition 3.1 (The system \(\lambda\mu(\cup) \)) i) The set of strict types we consider for the intersection-union type assignment is:

\[
A, B ::= \emptyset \mid B_1 \cup \cdots \cup B_m \mid (A_1 \cap \cdots \cap A_n) \to B \quad (n, m ≥ 0)
\]

As above, we call \(A_1 \cap \cdots \cap A_n \) (with \(n ≥ 0 \)) an intersection type, and call \(B_1 \cup \cdots \cup B_m \) (with \(m ≥ 0 \)) a union type; we use \(\top \) for the empty intersection type, and \(\bot \) for the empty union type.
ii) The relation \leq of Definition 2.2 is extended to intersection-union types by:

\[
\begin{align*}
A_1 \cap \cdots \cap A_n & \leq A_i \quad \text{for all } i \in n, n \geq 1 \\
B & \leq A_i, \text{ for all } i \in n \Rightarrow B \leq A_1 \cap \cdots \cap A_n, \ n \geq 0 \\
B_j & \leq B, \text{ for all } j \in m, m \geq 1 \\
B_j & \leq A, \text{ for all } j \in m, m \geq 0
\end{align*}
\]

On \mathcal{T}, the relation ‘\sim’ is defined by the same way as in Definition 2.2.

iii) A left environment Γ is a partial mapping from term variables to intersections of strict types, and we write $x:A \in \Gamma$ if $\Gamma (x) = A$. Similarly, a right environment Δ contains only strict types, which can be union types.

iv) The relations ‘\leq’ and ‘\sim’, are extended to left and right environments by: $\Gamma \leq \Gamma'$ if and only if for every $x:A' \in \Gamma'$ there is an $x:A \in \Gamma$ such that $A \leq A'$, and $\Gamma \sim \Gamma' \iff \Gamma \leq \Gamma' \leq \Gamma$, and $\Delta \leq \Delta'$ if for every $a:A \in \Delta$ there exists $a:A' \in \Delta'$ such that $A \leq A'$, and $\Delta \sim \Delta' \iff \Delta \leq \Delta' \leq \Delta$.

Notice that we consider union types to be strict as well; this implies that we allow an intersection of union types, a union of union types, but not a union of intersection types.

Definition 3.2 (The system $\Gamma \vdash_{\lambda \mu}^\cap \cup$) Intersection-union type assignment for $\lambda \mu$ is defined via:

\[
\begin{align*}
(nE): & \quad \Gamma, x: \cap_n A_i \vdash x : A_i | \Delta \\
(nI): & \quad \Gamma \vdash M : A_i | \Delta \quad (\forall i \in n) \\
(\cap) & \quad \Gamma \vdash m : A_i | \Delta \quad (n \geq 0, n \neq 1) \\
(-I): & \quad \Gamma, x:A \vdash M : B | \Delta \quad \Gamma \vdash \lambda x.M : A \rightarrow B | \Delta \\
(\rightarrow): & \quad \Gamma \vdash M : A_i | \Delta \\
(\cup): & \quad \Gamma \vdash M : \cap_n A_i \cup \cap_n B_j | \Delta \\
(\cup I): & \quad \Gamma, x: A_i \vdash M : \cap_n A_i | \Delta \\
(\cup E): & \quad \Gamma \vdash M : \cap_n A_i \cup \cap_n B_j | \Delta \\
(\cup R): & \quad \Gamma \vdash M : \cap_n A_i \cup \cap_n B_j | \Delta \\
(\cup): & \quad \Gamma \vdash M : \cap_n A_i | \Delta \\
\end{align*}
\]

We write $\Gamma \vdash_{\lambda \mu}^\cap \cup M : A | \Delta$ if this statement is derivable using these rules.

We will normally not distinguish between the two variants of $(\cup E)$.

Notice that the traditional $(\rightarrow)\text{ of Definition 2.3}$ is obtained by taking $n = 1$. Moreover, all A_i can be intersection types, so each can be \top; this is why that rule is not formulated using $\Gamma \vdash_{\lambda \mu}^\cap \cup N : \cap_m A_i | \Delta$. If $x: \cap_n B_j \in \Gamma$, then we can only derive $\Gamma \vdash_{\lambda \mu}^\cap \cup x : \cap_n B_j | \Delta$, i.e. we have no way of eliminating a union assigned to a term variable. Moreover, we have no traditional rules $(\cup I)$ and $(\cup E)$ on terms, which would be formulated (as in [9]), via

\[
\begin{align*}
(\cup I): & \quad \Gamma \vdash_{\lambda \mu}^\cap \cup M : A | \Delta \\
(\cup E): & \quad \Gamma \vdash_{\lambda \mu}^\cap \cup N : A \cup B | \Delta \\
(\cup R): & \quad \Gamma, x : A \vdash_{\lambda \mu}^\cap \cup M : C | \Delta \\
(\cup): & \quad \Gamma, x : B \vdash_{\lambda \mu}^\cap \cup M : C | \Delta \\
\end{align*}
\]

These create the subject-reduction problem dealt with in that paper by limiting to parallel reduction.

Notice that both the strict system for the λ-calculus and the system for $\lambda \mu$ are true subsystems; the first by not allowing union types, or alternative conclusions, the second by limiting to Curry types.

Lemma 3.3 (Generation Lemma)

- If $\Gamma \vdash_{\lambda \mu}^\cap \cup x : A | \Delta$, then there exists $x : B \in \Gamma$ such that $B \leq A$.

- If $\Gamma \vdash_{\lambda \mu}^\cap \cup \lambda x.M : A | \Delta$, then there exists $B_i, C_i (\forall i \in n)$ such that $A = \cap_n (B_i \rightarrow C_i)$, and, for all $i \in n$, $\Gamma, x : B_i \vdash_{\lambda \mu}^\cap \cup M : C_i | \Delta$.

- If $\Gamma \vdash_{\lambda \mu}^\cap \cup \lambda x.M : A | \Delta$, then $A = \cup_n A_i$, and for every $i \in n$ there exists $B_i \in \mathcal{T}$ such that $\Gamma \vdash_{\lambda \mu}^\cap \cup$
\[M : \cup_i (B_i \rightarrow A_i) | \Delta \text{ and } \Gamma \Downarrow_{\lambda \mu} N : B_i | \Delta. \]

- If \(\Gamma \Downarrow_{\lambda \mu} \mu \alpha. [\beta] M : A | \Delta, \text{ then there are } A_i (\forall i \in n) \text{ such that } A = \cap_i A_i, \text{ and, for every } i \in n, \text{ there are } m_i, m'_i \text{ with } m'_i \leq m_i \text{ and } B_j (\forall j \in m_i) \text{ such that } \Gamma \Downarrow_{\lambda \mu} M : \cup_i m'_i B'_i | \beta : \cup_i m'_i B'_i \alpha : A_i, \Delta. \]

Proof. By easy induction. \(\square \)

The system \(\Downarrow_{\lambda \mu} \) does not have choice, i.e. we cannot show that, if \(\Gamma \Downarrow_{\lambda \mu} M : A \cup B | \Delta, \text{ then either } \Gamma \Downarrow_{\lambda \mu} M : A | \Delta \text{ of } \Gamma \Downarrow_{\lambda \mu} M : B | \Delta \) as would hold in an intuitionistic system. Take:

\[
\begin{align*}
x : A & \Downarrow_{\lambda \mu} x : A | \beta : B, \delta : A \cup (A \rightarrow B) \\
x : A & \Downarrow_{\lambda \mu} \mu \beta, [\delta] x : B | \delta : A \cup (A \rightarrow B) \\
\vdash_{\lambda \mu} \lambda x. \mu \beta, [\delta] x : A \rightarrow B | \delta : A \cup (A \rightarrow B) \\
\vdash_{\lambda \mu} \mu \delta, [\delta] (\lambda x. \mu \beta, [\delta] x) : A \cup (A \rightarrow B)
\end{align*}
\]

Notice that we cannot derive \(\Downarrow_{\lambda \mu} \mu \delta, [\delta] (\lambda x. \mu \beta, [\delta] x) : A \), nor \(\Downarrow_{\lambda \mu} \mu \delta, [\delta] (\lambda x. \mu \beta, [\delta] x) : A \rightarrow B \), since the two occurrences of \([\delta] \) need to be typed differently, but with related types. This is comparable to both \(A \) and \(A \rightarrow B \) to be needed as assumption for \(x \) to type \(\lambda x. xx \).

We can show that a general \((\cap E)\) (for all terms) is admissible.

Lemma 3.4 If \(\Gamma \Downarrow_{\lambda \mu} M : \cap_i A_i | \Delta, \text{ then } \Gamma \Downarrow_{\lambda \mu} M : A_i | \Delta, \text{ for all } i \in n. \)

Proof. Easy. \(\square \)

The following result is standard.

Lemma 3.5 (Thinning & Weakening)

i) Let \(\Gamma \Downarrow_{\lambda \mu} M : A | \Delta; \text{ take } \Gamma' = \{ x : B \in \Gamma | x \in \text{fv}(M) \} \) and \(\Delta' = \{ \alpha : B \in \Delta | \alpha \in \text{fv}(M) \} \), then \(\Gamma' \Downarrow_{\lambda \mu} M : A | \Delta'. \)

ii) Let \(\Gamma \Downarrow_{\lambda \mu} M : A | \Delta, \text{ and } \Gamma' \subseteq \Gamma \text{ and } \Delta \subseteq \Delta', \text{ then } \Gamma' \Downarrow_{\lambda \mu} M : A | \Delta'. \)

Proof. By easy induction. \(\square \)

As a consequence, the following rules are admissible:

\[
\begin{align*}
(Th): & \quad \Gamma \Downarrow_{\lambda \mu} M : A | \Delta \\
& \quad \{ x : B \in \Gamma | x \in \text{fv}(M) \} \Gamma \Downarrow_{\lambda \mu} M : A | \{ \alpha : B \in \Delta | \alpha \in \text{fv}(M) \}
\end{align*}
\]

\[
\begin{align*}
(Wk): & \quad \Gamma \Downarrow_{\lambda \mu} M : A | \Delta \\
& \quad \Gamma' \Downarrow_{\lambda \mu} M : A | \Delta' \quad (\Gamma' \subseteq \Gamma, \Delta \subseteq \Delta')
\end{align*}
\]

4 Subject reduction and expansion

We will now show our main results, by showing that our notion of type assignment is sound and complete. We start by showing two variants of the substitution lemma.

Lemma 4.1 (Term substitution lemma) Let \(A \) be strict; \(\Gamma \Downarrow_{\lambda \mu} M[N/x] : A | \Delta \) if and only if there exists \(C \in T \) such that \(\Gamma, x : C \Downarrow_{\lambda \mu} M : A | \Delta \) and \(\Gamma \Downarrow_{\lambda \mu} N : C | \Delta. \)

Proof. By induction on \(M. \)
(M ⊢ x): (⇒): If Γ ⊢_{\text{A}_\mu} x[N/x] : A, then Γ, x : A ⊢_{\text{A}_\mu} x : A and Γ ⊢_{\text{A}_\mu} N : A.

(⇐): If Γ ⊢_{\text{A}_\mu} x : A | Δ, then there exists A_i (\forall i \in n) such that A = A_k from some k ∈ \underline{n} and
Γ = Γ', x : \bigcup_i A_i, so Γ', x : \bigcup_i A_i ⊢_{\text{A}_\mu} x : A_k | Δ. From Γ ⊢_{\text{A}_\mu} N : \bigcap_i A_i | Δ and Lemma 3.4, we have Γ ⊢_{\text{A}_\mu} N : A | Δ, so Γ ⊢_{\text{A}_\mu} x[N/x] : A | Δ.

(M ⊢ y \neq x): (⇒): By Lemma 3.5, since y[N/x] ≡ y, and x \notin \text{fv}(y).

(⇐): Take C = T; by Lemma 3.5, Γ, x : T ⊢_{\text{A}_\mu} y : A | Δ.

(M' = M_1 M_2): Let A = \bigcup_i A_i, with r ≥ 1. Notice that (M_1 M_2)[N/x] = M_1[N/x] M_2[N/x].

(⇒): Then, by Lemma 3.3, there are D_j ∈ T (\forall j \in \underline{r}) such that Γ ⊢_{\text{A}_\mu} M_1[N/x] : \bigcup_j (D_j → A_j) | Δ and Γ ⊢_{\text{A}_\mu} M_2[N/x] : D_j | Δ, for all j ∈ \underline{r}. Then by induction, there are C_1, C_2, ..., C_r such that:

* Γ, x : C_1 ⊢_{\text{A}_\mu} M_1 : \bigcup_j (D_j → A_j) | Δ and Γ ⊢_{\text{A}_\mu} N : C_1 | Δ, as well as

* Γ, x : C_2 ⊢_{\text{A}_\mu} M_2 : D_j | Δ and Γ ⊢_{\text{A}_\mu} N : C_2 | Δ, for all j ∈ \underline{r}.

Take C = C_1 \cap C_2 \cap ... \cap C_r; then by weakening and (→E), we get Γ, x : C ⊢_{\text{A}_\mu} M_1 M_2 : A | Δ; notice that Γ ⊢_{\text{A}_\mu} N : C | Δ by (∩I).

(⇐): If Γ, x : C ⊢_{\text{A}_\mu} M_1 M_2 : \bigcup_i A_i | Δ, then by Lemma 3.3 there exists D_j ∈ T (\forall j \in \underline{r}) such that
Γ, x : C ⊢_{\text{A}_\mu} M_1 : \bigcup_j (D_j → A_j) | Δ and Γ, x : C ⊢_{\text{A}_\mu} M_2 : D_j | Δ, for j ∈ \underline{r}. Then, by induction, we have both Γ ⊢_{\text{A}_\mu} M_1[N/x] : \bigcup_j (D_j → A_j) | Δ and Γ ⊢_{\text{A}_\mu} M_2[N/x] : D_j | Δ, for all j ∈ \underline{r}; the result follows by (→E).

(M ≡ \lambda y.M'; M ≡ \mu a.[\beta]M'): By induction.

Because of Lemma 3.4, we can extend the above results also to the case that A is an intersection type; notice that this is implicitly used in the third case, where D_j can be an intersection type.

Dually, we have:

Lemma 4.2 (Structural Substitution Lemma) Γ ⊢_{\text{A}_\mu} M'[N·\gamma/a] : C | γ; \bigcup_i B_i Δ if and only if there are A_i (\forall i \in n) such that for every A_i there exists a B_i such that, for all i ∈ \underline{n}, Γ ⊢_{\text{A}_\mu} N : A_i | Δ, and Γ ⊢_{\text{A}_\mu} M' : C | α; \bigcup_i (A_i → B_i), Δ.

Proof. We only show the interesting cases.

(M' = x): Then x[N·\gamma/a] = x; as above the result follows, in either direction, by thinning and weakening.

(M' = \lambda x.M): By induction.

(M' = M_1 M_2): Then M_1 M_2[N·\gamma/a] = M_1[N·\gamma/a] M_2[N·\gamma/a]; assume C is strict.

(⇒): Let C = \bigcup_i C_i, with r ≥ 1. Then, by Lemma 3.3, there exists D_j ∈ T (\forall j \in \underline{r}) such that
Γ ⊢_{\text{A}_\mu} M_1[\bigcap_i (D_j → C_j)] | γ; \bigcup_i B_i Δ and Γ ⊢_{\text{A}_\mu} M_2[N·\gamma/a] : D_j | γ; \bigcup_i B_i Δ, for j ∈ \underline{r}. Then by induction, there are A_i (\forall i \in \underline{k}) and A'_i (\forall i \in \underline{l}) with k + l = m such that

* Γ ⊢_{\text{A}_\mu} M_1 : \bigcup_j (D_j → C_j) | α; \bigcup_k (A_i → B_i) Δ and, for all i ∈ \underline{k}, Γ ⊢_{\text{A}_\mu} N : D_i | Δ, as well as

* Γ ⊢_{\text{A}_\mu} M_2 : D_j | α; \bigcup_i (A'_i → B_i) Δ, for all j ∈ \underline{r} and, for all i ∈ \underline{l}, Γ ⊢_{\text{A}_\mu} N : A'_i | Δ.

Then by weakening and (→E), we get Γ ⊢_{\text{A}_\mu} M_1 M_2 : \bigcup_i C_i | α; \bigcup_k (A_i → B_i) \cup \bigcup_i (A'_i → B_i), Δ; notice that Γ ⊢_{\text{A}_\mu} N : F | Δ for all F ∈ \{ A_i (\forall i \in \underline{k}), A'_i (\forall i \in \underline{l}) \}.
\(\equiv \): If \(\Gamma \vdash_{\lambda \mu}^\omega M_1 M_2 : \bigcup C_j \mid \alpha : \bigcup (A_i \rightarrow B_i), \Delta \), then \(A = \bigcup A_i \), and there are \(D_j \in \Gamma \) (\(\forall j \in r \)) such that \(\Gamma \vdash_{\lambda \mu}^\omega M_1 : \bigcup (D_j \rightarrow C_j) \mid \alpha : \bigcup (A_i \rightarrow B_i), \Delta \) and \(\Gamma \vdash_{\lambda \mu}^\omega M_2 : D_j \mid \alpha : \bigcup (A_i \rightarrow B_i), \Delta \), for \(j \in \Gamma \). Then, by induction, \(\Gamma \vdash_{\lambda \mu}^\omega M_1 [N \cdot \gamma / \alpha] : \bigcup (D_j \rightarrow C_j) \mid \gamma : \bigcup B_j, \Delta \) and \(\Gamma \vdash_{\lambda \mu}^\omega M_2 [N \cdot \gamma / \alpha] : D_j \mid \gamma : \bigcup B_j, \Delta \) for all \(j \in \Gamma \); the result follows by \(\rightarrow \).

\((M' = \mu \beta. [\alpha] M) : \rightarrow \): Notice that \(\mu \beta. [\alpha] M[\gamma / \Delta] = \mu \beta. [\gamma] (M[\gamma / \Delta] N) \) by definition. From \(\Gamma \vdash_{\lambda \mu}^\omega \mu \beta. [\gamma] (M[\gamma / \Delta] N) : C \mid \gamma : \bigcup B_i, \Delta \), by Lemma 3.3, there are \(r < n \) and \(E_i, D_i (\forall i \in r) \) such that, without loss of generality, \(\bigcup (E_i \rightarrow D_i) \cup \bigcup (A_i \rightarrow B_i) = \bigcup (A_i \rightarrow B_i) \), and the derivation is shaped like (notice that we can assume \(\gamma, \beta \notin \Gamma (N) \)):

\[
\begin{array}{c}
\Gamma \vdash_{\lambda \mu}^\omega M[\gamma / \alpha] : \bigcup (E_i \rightarrow D_i) \mid \gamma : \bigcup B_i, \beta : C, \Delta \\
\Gamma \vdash_{\lambda \mu}^\omega N : E_i \mid \Delta (\forall i \in r)
\end{array}
\]

Then, by induction, there exist \(A_i (\forall i \in n - r) \) such that \(\Gamma \vdash_{\lambda \mu}^\omega M : B_i \mid \alpha : \bigcup (A_i \rightarrow B_i), \beta : C, \Delta \) and, for all \(i \in n - r \), \(\Gamma \vdash_{\lambda \mu}^\omega N : A_i \mid \Delta \), and we can construct:

\[
\begin{array}{c}
\Gamma \vdash_{\lambda \mu}^\omega M : \bigcup (E_i \rightarrow D_i) \mid \alpha : \bigcup (A_i \rightarrow B_i), \beta : C, \Delta \\
\Gamma \vdash_{\lambda \mu}^\omega \mu \beta. [\alpha] M : C \mid \alpha : \bigcup (E_i \rightarrow D_i) \cup \bigcup (A_i \rightarrow B_i), \beta : C, \Delta
\end{array}
\]

Notice that also \(\Gamma \vdash_{\lambda \mu}^\omega N : D \mid \Delta' \) for every \(D \in \{ E_1, \ldots, E_r, A_1, \ldots, A_{n - r} \} \).

\(\equiv \): If \(\Gamma \vdash_{\lambda \mu}^\omega \mu \beta. [\alpha] M : C \mid \alpha : \bigcup (A_i \rightarrow B_i), \Delta \) and \(\Gamma \vdash_{\lambda \mu}^\omega N : A_i \mid \Delta' \) for every \(i \in n \), then, by Lemma 3.3, this derivation is constructed as follows:

\[
\begin{array}{c}
\Gamma \vdash_{\lambda \mu}^\omega \mu \beta. [\alpha] M : C \\
\Gamma \vdash_{\lambda \mu}^\omega M : \bigcup (A_i \rightarrow B_i) \mid \alpha : \bigcup (A_i \rightarrow B_i), \beta : C, \Delta
\end{array}
\]

for some \(r \leq n \). Then, by induction, \(\Gamma \vdash_{\lambda \mu}^\omega M[N \cdot \gamma / \alpha] : \bigcup (A_i \rightarrow B_i) \mid \gamma : \bigcup B_i, \beta : C, \Delta \), and we can construct:

\[
\begin{array}{c}
\Gamma \vdash_{\lambda \mu}^\omega M[N \cdot \gamma / \alpha] : \bigcup (A_i \rightarrow B_i) \mid \gamma : \bigcup B_i, \beta : C, \Delta \\
\Gamma \vdash_{\lambda \mu}^\omega N : A_i \mid \Delta (\forall i \in r)
\end{array}
\]

Using these two lemmas, we can prove the two main results of this paper:

Theorem 4.3 (Subject expansion) If \(M \rightarrow_{\lambda \mu} N \), and \(\Gamma \vdash_{\lambda \mu}^\omega N : A \mid \Delta \) (\(A \) strict), then \(\Gamma \vdash_{\lambda \mu}^\omega M : A \mid \Delta \).

Proof. By induction on the definition of reduction, where we focus on the reduction rules.

\(((\lambda x. M) N) \rightarrow M[N / x]\): If \(\Gamma, x : B \vdash_{\lambda \mu}^\omega M[N / x] : A \mid \Delta \), then by Lemma 4.1 there exists a \(B \in T \)
such that \(\Gamma, x: B \vdash_{\Lambda \mu} M : A \mid \Delta \) and \(\Gamma \vdash_{\Lambda \mu} N : B \mid \Delta \); then, by applying rule (\(\rightarrow I \)) to the first result we get \(\Gamma \vdash_{\Lambda \mu} \lambda x. M : B \rightarrow A \mid \Delta \) and then by \((\rightarrow E) \) we get \(\Gamma \vdash_{\Lambda \mu} \lambda x. (\lambda x. M)N : A \mid \Delta \).

\[
\left((\mu a. [a] M) N \rightarrow \mu \gamma . [\gamma] M[\gamma / a]N \right) : \text{If } \Gamma \vdash_{\Lambda \mu} \mu \gamma . [\gamma] M[\gamma / a]N : A \mid \Delta \text{, then } A = \cup_{i} A_i, \text{ and by Lemma 3.3, (wlog) there is } m \leq n \text{ such that } \Gamma \vdash_{\Lambda \mu} M[\gamma / a]N : \cup_{i} A_i \mid \gamma : \cup_{i} A_i, \Delta, \text{ and there are } B_i (\forall i \in m) \text{ such that } \Gamma \vdash_{\Lambda \mu} M[\gamma / a] : \cup_{i} (B_i \rightarrow A_i) \mid \gamma : \cup_{i} A_i, \Delta \text{ and for all } j \in n, \Gamma \vdash_{\Lambda \mu} N : B_j \mid \Delta. \text{ Then, by Lemma 4.2, there are } C_i (\forall i \in n) \text{ such that for all } i \in n, \Gamma \vdash_{\Lambda \mu} N : C_i \mid \Delta, \text{ and } \Gamma \vdash_{\Lambda \mu} M : \cup_{\mu} (B_i \rightarrow A_i) \mid \alpha : \cup_{i} (C_i \rightarrow A_i), \Delta; \text{ (wlog) by weakening, we can assume } \cup_{\mu} B_i \leq \cup_{\mu} C_i. \text{ Then, by rule } (\cup E), \Gamma \vdash_{\Lambda \mu} \mu a. [a] M : \cup_{i} (C_i \rightarrow A_i) \mid \Delta, \text{ and } \Gamma \vdash_{\Lambda \mu} \mu a. [a] M : \cup_{i} A_i \mid \Delta \text{ then follows by rule } (\rightarrow E). \right]

\[
\left((\mu a. [\beta] M) N \rightarrow \mu \gamma . [\beta] M[\gamma / \alpha] \right) : \text{If } \Gamma \vdash_{\Lambda \mu} \mu a. [\beta] M N : A \mid \Delta, \text{ then } A = \cup_{i} A_i, \text{ and by } (\rightarrow E) \text{ there are } C_i (\forall i \in n) \text{ such that } \Gamma \vdash_{\Lambda \mu} \mu a. [\beta] M : \cup_{i} A_i \mid \Delta, \text{ and } \Gamma \vdash_{\Lambda \mu} N : C_i \mid \Delta \text{ for all } i \in n, \text{ then by Lemma 4.2, } \Gamma \vdash_{\Lambda \mu} \mu \gamma . [\beta] M[\gamma / \alpha] : A \mid \Delta. \right]

\[
(\mu a. [\beta] \mu \gamma . [\beta] M[\gamma / \alpha]) : \text{If } \Gamma \vdash_{\Lambda \mu} \mu a. [\beta] (M[\gamma / \alpha]) : A \mid \Delta, \text{ then by rule } (\cup E), \text{ there exist } \delta : \cup_{\mu} D_i \in \Delta \text{ and } m \leq n \text{ such that } \Gamma \vdash_{\mu \gamma . [\beta]} M[\beta / \gamma] : \cup_{\mu} D_i \mid \alpha : A, \Delta. \text{ Let } \Delta = \delta : \cup_{\mu} D_i, \beta : \cup_{\mu} B_i, \Delta'. \text{ Since } M \text{ can contain } \beta \text{ as well, this means that there are } C_j (\forall j \in k), E_i (\forall i \in \nu) \text{ with } \cup_{\mu} C_j \cup \cup_{\beta} E_i = \cup_{\mu} B_i \text{, and we can construct:}
\]

\[
\begin{align*}
\Gamma \vdash_{\lambda \mu} M : D_k \mid \gamma : \cup_{\mu} C_j, \delta : \cup_{\mu} D_i, \beta : \cup_{\mu} E_i, \alpha : A, \Delta' & \quad (\cup E) \\
\Gamma \vdash_{\lambda \mu} \mu \gamma . [\beta] M : \cup_{\mu} C_j \mid \delta : \cup_{\mu} D_i, \beta : \cup_{\mu} E_i, \alpha : A, \Delta' & \quad (\cup E) \\
\Gamma \vdash_{\lambda \mu} \mu a. [\beta] \mu \gamma . [\beta] M : A \mid \Delta \\
\end{align*}
\]

which shows the result. \(\square \)

Theorem 4.4 (Subject Reduciton) If \(M \rightarrow_{\lambda \mu} N \), and \(\Gamma \vdash_{\Lambda \mu} M : A \mid \Delta \), where A is not an intersection, then \(\Gamma \vdash_{\Lambda \mu} N : A \mid \Delta \)

Proof. \(((\lambda x. M) N \rightarrow M[\gamma / x]) : \text{Let } \Gamma \vdash_{\Lambda \mu} (\lambda x. M) N : A \mid \Delta. \text{ Then by Lemma 3.3 there exists } B \in T \text{ such that } \Gamma \vdash_{\Lambda \mu} \lambda x. M : B \rightarrow A \mid \Delta \text{ and } \Gamma \vdash_{\Lambda \mu} N : B \mid \Delta, \text{ and also } \Gamma, x : B \vdash_{\Lambda \mu} M : A \mid \Delta. \text{ Then by Lemma 4.1, we have } \Gamma \vdash_{\Lambda \mu} M[\gamma / x] : A \mid \Delta. \right)

\[
(\mu a. [\beta] M) N \rightarrow \mu \gamma . [\gamma] M[\gamma / a]N : \text{If } \Gamma \vdash_{\Lambda \mu} (\mu a. [\beta] M) N : A \mid \Delta, \text{ then by Lemma 3.3 there exist } A_i (\forall i \in n) \text{ and } C_i (\forall i \in n) \text{ such that } A = \cup_{i} A_i, \text{ and } \Gamma \vdash_{\Lambda \mu} \mu a. [\beta] M : \cup_{\mu} (C_i \rightarrow A_i) \mid \Delta \text{ and, for all } i \in n, \Gamma \vdash_{\Lambda \mu} N : C_i \mid \Delta; \text{ then also } \Gamma \vdash_{\Lambda \mu} M : B \mid \alpha : \cup_{\mu} (C_i \rightarrow A_i), \Delta, \text{ with } \beta : B' \in \Delta \text{ with } B \text{ and } B' \text{ union types such that } B \leq B'. \text{ Then, by Lemma 4.2, } \Gamma \vdash_{\Lambda \mu} M[\gamma / a] : B \mid \gamma : \cup_{\mu} A_i, \Delta, \text{ so, by rule } (\cup E), \text{ } \Gamma \vdash_{\Lambda \mu} \mu \gamma. [\beta] M[\gamma / a] : \cup_{\mu} A_i \mid \Delta. \text{ Then, by } (\rightarrow E), \text{ } \Gamma \vdash_{\Lambda \mu} \mu a. [\beta] \mu \gamma. [\beta] M : A \mid \Delta, \text{ the derivation is shaped like:}
\]

\[
\begin{align*}
\Gamma \vdash_{\lambda \mu} M : D_p \mid \gamma : B_i, \delta : \cup_{\mu} D_i, \beta : \cup_{\mu} B_i, \alpha : A, \Delta' & \quad (\cup E) \\
\Gamma \vdash_{\lambda \mu} \mu \gamma [\beta] M : B_i \mid \beta : \cup_{\mu} B_i, \alpha : A, \Delta' & \quad (\cup E) \\
\Gamma \vdash_{\lambda \mu} \mu a [\beta] \mu \gamma . [\beta] M : A \mid \beta : \cup_{\mu} B_i, \Delta' & \quad (\cup E)
\end{align*}
\]

with \(\Delta = \beta : \cup_{\mu} B_i, \Delta' \), for some \(B_i (\forall i \in m) \), with \(l \in k \) and \(p \in n \). It is straightforward to show that then \(\Gamma \vdash_{\Lambda \mu} M[\beta / \gamma] : D_p \mid \beta : \cup_{\mu} B_i, \alpha : A, \Delta' \), and applying rule \((\cup E) \) to this deriva-
Notice that we cannot show subject reduction for the erasing rule. Assume the derivation for \(\mu a. [x] M \) with \(M \) not a control structure is shaped like

\[
\Gamma \vdash_{\lambda \mu} M : A_j | a : \cup_{i} A_i | \Delta
\]

Since \(a \) does not appear in \(M \), by thinning we can derive \(\Gamma \vdash_{\lambda \mu} M : A_j | \Delta \), but have no rule to allow us to derive \(\Gamma \vdash_{\lambda \mu} M : \cup_{i} A_i | \Delta \) from that.

Conclusions

We have seen that the calculus \(\lambda \mu \) is sufficiently limited to allow for the definition of a sound and complete notion of type assignment. This will need to be investigated further, towards the definition of semantics, and characterisation of the termination properties. Also, we need to look at the ignored reduction rules, and see if it is possible to generalise the system such that also these will be preserved, without sacrificing the main results. The approach we use here seems to be promising also for the setting of (restrictions of) \(\lambda \tilde{x} \mu \tilde{\mu} \); we will leave this for future work.

References

