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Università di Catania

Catania, Italy
barba@dmi.unict.it

Ugo de’Liguoro
Università di Torino
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Abstract

We provide a characterisation of strongly normalising terms of the λµ-calculus by means of a
type system with intersection and product types. The presence of the latter and a restricted
use of the type ω enable us to represent the particular notion of continuation used in the
literature for the definition of semantics for the λµ-calculus. This makes it possible to lift the
well-known characterisation property for strongly-normalising λ-terms - that uses intersection
types - to the λµ-calculus. From this result an alternative proof of strong normalisation for
terms typeable in Parigot’s propositional logical system follows, by means of an interpretation
of that system into ours.

Introduction

Parigot’s λµ-calculus [20] is an extension of the λ-calculus [11, 9] that was first introduced in
[20] to express a notion of (confluent) computation with classical proofs in Gentzen’s sequent
calculus lk. That calculus was introduced in [15] as a logical system in which the rules only
introduce connectives (but on either side of a sequent), in contrast to natural deduction (also
introduced in [15]) which uses rules that introduce or eliminate connectives in the logical
formulae. Natural deduction normally derives statements with a single conclusion, whereas
lk allows for multiple conclusions, deriving sequents of the form A1, . . . , An � B1, . . . , Bm, where
A1, . . . , An is to be understood as A1∧ . . .∧An and B1, . . . , Bm is to be understood as B1∨ . . .∨Bm.

With λµ, Parigot created a multi-conclusion typing system that is, in fact, based on a mixture
of Gentzen’s two approaches: the system is a natural deduction system that has introduction
and elimination rules, but derivable statements have the shape Γ � M : A | ∆, where A is the
main conclusion of the statement, expressed as the active conclusion. Here ∆ contains the
alternative conclusions, consisting of pairs of Greek characters and types; the left-hand context
Γ, as usual, contains pairs of Roman characters and types, and represents the types of the free
term variables of M. This yields a logic with focus where the main conclusion is the focus of
the proof; derivable judgements correspond to provable statements in minimal classical logic
[1]. In addition to the normal λ-calculus reduction rules, Parigot needed to express that the
focus of the derivation (proof) changes; he therefore added structural rules, where elimination
takes place for a type constructor that appears in one of the alternative conclusions (the Greek
variable is the name given to a subterm). This is achieved by extending the syntax with
two new constructs [α]M and µα.M that act as witness to deactivation and activation, which
together move the focus of the derivation. The collection of reduction rules Parigot defined
are carefully engineered to yield a confluent reduction system; normally, systems based on
classical logic are not confluent, as is the case for example for the Symmetric λ-calculus [8],
λµµ̃ [14], and X [7].
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In spite of being motivated by classical logic, the λµ-calculus itself is type free. As a conse-
quence there exist more terms than proofs, and properties of pure λµ-terms have been exten-
sively studied (see e.g. [23, 18, 24]). In particular, among them there are perfectly meaningful
terms that do not correspond to any proof, like fixed-point constructors for example. The ba-
sic idea here to turn non-constructive proofs into algorithms is to add a form of continuation
by means of names and µ-abstraction to capture (a notion of) control. However, continuations
introduce a great deal of complexity to the calculus’ semantics and inspired by the results
proven in [4] we decided to explore the possibility of defining filter semantics for λµ. Starting
from Streicher and Reus’ denotational semantics of λµ in [25], in [6] we have introduced an
intersection type assignment system that induces a filter model. This, essentially, is a logical
description of the domain-theoretic model of [25], with the advantage of providing a formal
tool to reason about the meaning of terms.

One of the main results for λµ, proved in [21], states that all λµ-terms that correspond to
proofs of second-order natural deduction are strongly normalising; the reverse of this property
does not hold for Parigot’s system, since there, for example, not all terms in normal form are
typeable.

The full characterisation of strong normalisation (M is strong normalising if and only if M
is typeable) is a property that is shown for various intersection systems for the λ-calculus, and
towards the end of [6] we conjectured that in an appropriate subsystem we would be able to
type exactly all strongly normalising λµ-terms as well. The first to state the characterisation
result was Pottinger [22] for a notion of type assignment similar to the intersection system
of [12, 13], but extended in that it is also closed for η-reduction, and is defined without
the type constant ω. However, to show that all typeable terms are strongly normalisable,
[22] only suggests a proof using Tait’s computability technique [26]. A detailed proof, using
computability, in the context of the ω-free BCD-system [10] is given in [2]; to establish the
same result saturated sets are used by Krivine in [19] (chapter 4), in Ghilezan’s survey [16],
and in [5].

The converse of that result, the property that all strongly normalisable terms are typeable
has proven to be more elusive: it has been claimed in many papers but not shown in full (we
mention [22, 2, 16]); in particular, the proof for the property that type assignment is closed for
subject expansion (the converse of subject reduction) is dubious. Subject expansion can only
reliably be shown for left-most outermost reduction, which is used for the proofs in [19, 3, 5],
and our result follows that approach as well.

In the full system of [6], all terms are typeable with ω and this clearly interferes with the
termination property. However, the problem we face is slightly more complex than straight-
forwardly removing ω, as done in [2, 3]. In the model (for details, see [6]) a continuation
is an infinite tuple of terms, which is typed in the system by (a finite intersection of) types
κ = δ1×· · · δk×ω for some k > 0, where the leading δ1, . . . ,δk encode the information about the
first k terms in the tuple, while the ending ω represents the lack of information about the
remaining infinite part. This implies that, for our system for λµ, we cannot remove ω com-
pletely. To solve this problem, we first restrict types to those having ω only as the final part
of a product type; we then suitably modify the standard interpretation of intersection types,
adapting Tait’s argument in such a way that the semantics of κ is the set of all finite tuples
L (called stacks) of strongly normalising terms that begin with k terms L1 . . . , Lk that belong
to the interpretations of, respectively, δ1, . . . ,δk. For this restricted system, we will show that
typeability characterises strong normalisability for λµ-terms.

As a consequence of our characterisation result we also obtain an alternative proof of
Parigot’s termination result [21] (for the propositional fragment), by interpreting ordinary
types into our intersection types and proving that the translation preserves derivability from
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Parigot’s system to ours.

Outline of this paper. In Section 1, we will briefly recall Parigot’s untyped λµ-calculus
[20]. After defining appropriate sets of types in 2.1, a pre-order over types, and our typeing
system in Section 2.2, we will show that typeability implies strong normalisation. The opposite
implication, proved in Section 2.3, will complete our main results. The alternative proof of
Parigot’s theorem for the propositional fragment will be developed in Section 3, and we finish
by giving concluding remarks.

1 The λµ-calculus

In this section we present Parigot’s pure λµ-calculus as introduced in [20], slightly changing
the notation.

Definition 1.1 (Term Syntax [20]) i) The sets Trm of terms and Cmd of commands are defined
inductively by the following grammar (where x∈Var, a set of term variables, and α∈Name,
a set of names, both denumerable):

M, N ::= x | λx.M | MN | µα.C (terms)
C ::= [α]M (commands)

ii) We call L ≡ L1 : · · · : Lk a stack of terms; we denote the set of all finite (possibly empty)
stacks of terms by Trm∗, and write ε for the empty stack. If M ∈ Trm and L ≡ L1 : · · · : Lk

then M : L ≡ M : L1 : · · · : Lk ∈ Trm∗, while we define M(P : L) =∆ MPL, so ML ≡ ML1 · · · Lk.

We will often speak of a stack rather than a stack of terms. For convenience of notation, for
L = L1 : · · · : Lk ∈ Trm∗, we introduce the notation:

M[α⇐ L] =
∆ M[α⇐ L1][α⇐ L2] · · · [α⇐ Ln]

when each Li does not contain α. In particular, M[α⇐ ε] =
∆ M. Notice that, by definition of

structural substitution,

[α]M[α⇐ L] =
∆ [α]M[α⇐ L1][α⇐ L2] · · · [α⇐ Ln] =

∆ [α](M[α⇐ L])L

As usual, we consider λ and µ to be binders; we adopt Barendregt’s convention on terms,
and will assume that free and bound variables are different; the sets fv (M) and fn (M) of,
respectively, free variables and free names in a term M are defined in the usual way.

Definition 1.2 (Substitution [20]) Substitution takes two forms:

term substitution: M[N/x] (N is substituted for x in M, avoiding capture)
structural substitution: T[α⇐ L] (every subterm [α]N of M is replaced by [α]NL)

where M, N, L ∈ Trm, C ∈ Cmd and T ∈ Trm ∪ Cmd. More precisely, T[α⇐ L] is defined by:

([α]M)[α⇐ L] =
∆ [α](M[α⇐ L])L

([β]M)[α⇐ L] =
∆ [β]M[α⇐ L] if α 	= β

(µβ.C)[α⇐ L] =
∆ µβ.C[α⇐ L]

x[α⇐ L] =
∆ x

(λx.M)[α⇐ L] =
∆ λx.M[α⇐ L]

(MN)[α⇐ L] =
∆ (M[α⇐ L])(N[α⇐ L])
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Definition 1.3 (Reduction [20]) The reduction relation M → N, where M, N ∈ Trm, is defined
as the compatible closure of the following rules:

(β) : (λx.M)N → M[N/x] (logical reduction)
(µ) : (µβ.C)N → µβ.C[β⇐N] (structural reduction)

2 Characterisation of Strong Normalisation

In this section we will show that we can characterise strong normalisation for pure λµ-terms
completely through a notion of intersection typeing which employs product types and a re-
stricted use of the type ω.

2.1 The type system

As mentioned in the introduction, our characterisation can be carried out by means of a
precisely tailored version of the type system we presented in [6]. The types of our system will
be formed by means of the →, ×, and ∧ type constructors over a single base type ν. 1

Definition 2.1 (Types) The sets TD of term types and TC of continuation-stack types are defined
inductively by the following grammar, where ν is a type constant:

TD : δ ::= ν | ω→ν | κ→ν | δ∧δ

TC : κ ::= δ×ω | δ×κ | κ∧κ

(we will call the types δ×ω and δ×κ also product types). We define the set T of types as
T = TD ∪ TC and let σ, τ, ρ, etc. range over T .

Notice that an important feature of our system is the absence of ω as a proper type (and,
consequently, the absence of its corresponding typeing rule); notice that we have not removed
ω completely, since it always occurs at the very end of any product type in order to represent
the (unspecified) last part of a continuation stack.

Definition 2.2 The relations ≤D and ≤C are the least pre-orders over TD and TC, respectively,
such that:

σ∧τ ≤A σ σ∧τ ≤A τ ν ≤D ω→ν ω→ν ≤D ν δ1×δ2×ω ≤C δ1×ω

(δ1×ω)∧(δ2×κ) ≤C (δ1∧δ2)×κ
(κ1,κ2 	≡ ω)

(δ1×κ1)∧(δ2×κ2) ≤C (δ1∧δ2)×(κ1∧κ2)

δ1 ≤D δ2

δ1×ω ≤C δ2×ω

δ1 ≤D δ2 κ1 ≤C κ2

δ1×κ1 ≤C δ2×κ2

σ ≤A τ1 σ ≤A τ2

σ ≤A τ1∧τ2

κ2 ≤C κ1

κ1→ν ≤D κ2→ν

where A is either D or C. As usual, we define =A =
∆ ≤A ∩ ≥A.

For convenience of notation, in the following the subscripts D and C on ≤ are normally omit-
ted.

The pre-orders in Definition 2.2 are a restriction to T of the pre-orders defined in [6]. We point
out that, in the system defined in that paper, the inequality δ1×δ2×ω ≤ δ1×ω is derivable.
In fact, in [6] we had ω =C ω×ω and hence δ1×δ2×ω ≤ δ1×ω×ω = δ1×ω. In the present

1 In [6], more base types are used, but for our present purposes one suffices.
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system, instead, ω 	∈ TD so that δ1×ω×ω 	∈ TC, and therefore this inequality has to be explicitly
postulated above.

The notions of basis (variable context), denoted by Γ, Γ′, . . . , and name context, denoted by
∆, ∆′, . . . , are defined in the standard way as, respectively, mappings of a finite set of term
variables to types in TD, and of a finite set of names to types in TC, represented for convenience
as sets of statements on variables and names (we call these assumptions). Below we shall write
Γ, x:δ for Γ∪{x:δ} where x 	∈ dom (Γ); similarly for α:κ,∆ (note that the order in which variable
and name assumptions are listed in the rules is immaterial).

Definition 2.3 (Typeing System) i) A judgement in our system has the form Γ � M : δ | ∆,
where Γ is a basis, M ∈ Trm, δ ∈ TD and ∆ is a name context.

ii) We define typeing for pure λµ-terms (in Trm) through the following natural deduction
system:

(ax) : Γ, x:δ � x:δ | ∆ (µ) :
Γ � M :κ′→ν | α:κ,∆

Γ � µα.[β]M :κ→ν | β:κ ′,∆

Γ � M :κ→ν | α:κ,∆

Γ � µα.[α]M : κ→ν | ∆

(abs) :
Γ, x:δ � M :κ→ν | ∆

Γ � λx.M : δ×κ→ν | ∆
(app) :

Γ � M : δ×κ→ν | ∆ Γ � N : δ | ∆

Γ � MN : κ→ν | ∆

(≤) :
Γ � M : δ | ∆

(δ ≤ δ′)
Γ � M : δ′ | ∆

(∧) :
Γ � M : δ | ∆ Γ � M :δ′ | ∆

Γ � M : δ∧δ′ | ∆

where κ in rules (abs) and (app) 2 is either a type in TC or ω.
iii) We write Γ � M : δ | ∆ whenever there exists a derivation built using the above rules that

has this judgement in the bottom line, and D :: Γ � M : δ | ∆ when we want to name that
derivation. We write � M : δ | ∆ when the variable context is empty, and Γ � M : δ | when
the name context is.

Note that we use a single name, (µ), for the two rules concerning µ-abstraction; which is
the one actually used will always be clear from the context.

We extend Barendregt’s convention to judgements Γ � M : δ | ∆ by seeing the variables that
occur in Γ and names in ∆ as binding occurrences over M as well; in particular, we can assume
that no variable in Γ and no name in ∆ is bound in M.

Definition 2.4 i) The relation ≤ is naturally extended to bases as follows:

Γ′ ≤ Γ iff x:δ ∈ Γ ⇒ ∃ x:δ′ ∈ Γ′ [δ′ ≤ δ ].

The ≤ relation on name contexts is defined in the same way.
ii) Given two bases Γ1 and Γ2, we define the basis Γ1∧Γ2 as follows:

Γ1∧Γ2 =
∆ {x:δ1∧δ2 | x:δ1 ∈ Γ1 & x:δ2 ∈ Γ2} ∪

{x:δ | x:δ ∈ Γ1 & x 	∈ dom (Γ2)} ∪
{x:δ | x:δ ∈ Γ2 & x 	∈ dom (Γ1)}

iii) The name context ∆1∧∆2 is constructed out of ∆1 and ∆2 in a similar way.

2 We use (app) and (abs) to name the rules concerning λ-abstraction and application, rather than the more
usual (→I) and (→E), since in our system there is no introduction or elimination of the → type constructor.
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Trivially, dom (Γ1∧Γ2) = dom (Γ1) ∪ dom (Γ2) and dom (∆1∧∆2) = dom (∆1) ∪ dom (∆2). More-
over, it is straightforward to show that:

Proposition 2.5 Γ1∧Γ2 ≤ Γi and ∆1∧∆2 ≤ ∆ i for i = 1,2.

We can also show that Weakening and Strengthening rules are implied by the system:

Lemma 2.6 (Weakening and Strengthening) The following rules are admissible3:

(W) :
Γ � M : δ | ∆

(Γ′ ≤ Γ,∆′ ≤ ∆)
Γ′ � M : δ | ∆′

(S) :
Γ � M : δ | ∆

(Γ′ = {x:δ ∈ Γ | x ∈ fv (M)}, ∆′ = {α:κ ∈∆ | α ∈ fn (M)})
Γ′ � M : δ | ∆′

The above lemma and Proposition 2.5 lead immediately to the following:

Corollary 2.7 If Γ1 � M : δ | ∆1 then for any Γ2, ∆2: Γ1∧Γ2 � M : δ | ∆1∧∆2 .

Notice that, by Barendregt’s convention, the variables in Γ2 and names in ∆2 are not bound in
M.

The following substitution results can be proved along the lines of similar ones in [6]:

Lemma 2.8 (Substitution Lemma) i) Γ � M[N/x] : δ | ∆ with x ∈ fv (M), if and only if there
exists δ′ such that Γ � N : δ′ | ∆ and Γ, x:δ′ � M : δ | ∆.

ii) Γ � M[α⇐ L] : δ | α:κ,∆ with α ∈ fn (M), if and only if there exists δ′ such that Γ � L : δ′ | ∆,
and Γ � M : δ | α:δ′×κ,∆.

2.2 Typeability implies Strong Normalisation

In this subsection we will show that – as can be expected of a well-defined notion of type
assignment that does not type recursion and has no general rule that types all terms – all
typeable terms are strongly normalising. Such a property does not hold for the system in
[6] where, in fact, by means of types not allowed in the present system, it is possible to type
the fixed-point constructor λ f .(λx. f (xx))(λx. f (xx)) in a non-trivial way, as shown by the
following derivation:

(ax)
f :ω×ω→ν, x:ω � f : ω×ω→ν | (ω)

f :ω×ω→ν, x:ω � xx : ω |
(app)

f :ω×ω→ν, x:ω � f (xx) : ω→ν |
(abs)

f :ω×ω→ν � λx. f (xx) : ω×ω→ν | (ω)
f :ω×ω→ν � λx. f (xx) : ω |

(app)
f :ω×ω→ν � (λx. f (xx))(λx. f (xx)) : ω→ν |

(abs)
� λ f .(λx. f (xx))(λx. f (xx)) : (ω×ω→ν)×ω→ν |

3 We should perhaps point out that Barendregt’s convention, extended to judgements as we do here, is essential
for the correctness of this result. By writing Γ′ � M : δ | ∆′ , we assume that Γ′ and ∆′ do not contain statements for
variables and names that occur bound in M, so we do not allow contexts to be weakened by statements concerning
bound names or variables. As a counter example, take � µα.[α]λx.x : (κ→ν)→κ→ν | and Γ2 = x:δ, ∆2 = α:κ; we
cannot derive x:δ � µα.[α]λx.x : (κ→ν)→κ→ν | α:κ .

This is also the case for systems for the λ-calculus; in past papers it has been claimed that, if Γ1 �λ M : A and
Γ2 �λ N : B (without any restrictions), then also Γ1∧Γ2 � M : A and Γ1∧Γ2 � N : B. This is incorrect for the same
reason: take �λ λy.y : A→A and y:(A→A)∧A→A � yy : A; we cannot derive y:(A→A)∧A→A �λ λy.y : A→A.
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Notice that this term does not have a normal form, so is not strongly normalisable.

Definition 2.9 The set SN of strongly normalisable terms is defined as usual as the set of all
terms M such that no infinite reduction sequence out of M exists; we use SN (M) for M ∈SN ,
and SN ∗ for the set of finite stacks of terms in SN .

The following is straightforward:

Proposition 2.10 i) If SN (xM) and SN (N), then SN (xMN).
ii) If SN (M[N/x]P) and SN (N), then SN ((λx.M)NP).

iii) If SN (M), then SN (µα.[β]M).
iv) If SN (µα.[β]M[α⇐ N]L) and SN (N), then SN ((µα.[β]M)NL).
v) If SN (µα.[α]M[α⇐ N]NL), then SN ((µα.[α]M)NL).

Definition 2.11 (Type Interpretation) i) We define a map

[[·]] : (TD → ℘(Trm)) + (TC → ℘(Trm∗))

(where ℘ represents the powerset constructor) interpreting term types and continuation-
stack types as, respectively, sets of terms and sets of stacks, as follows:

[[ν]] = [[ω→ν]] = SN
[[κ→ν]] = {M ∈ Trm | ∀L ∈ [[κ]] [ML ∈ [[ν]] ]}
[[δ×ω]] = {N : L | N ∈ [[δ]], L ∈ SN ∗}
[[δ×κ]] = {N : L | N ∈ [[δ]], L ∈ [[κ]]}
[[σ∧τ]] = [[σ]] ∩ [[τ]]

ii) We define the length of a stack type, | · | : TC → N, as follows:

|δ×ω| = 1
|δ×κ| = 1 + |κ|
|κ1∧κ2| = max |κ1| |κ2|

By this interpretation, the elements of [[δ1×· · ·×δn×ω]] are stacks of strongly normalisable
terms that have an arbitrary length greater than or equal to n. It is easy to check that |κ|
returns the minimal length of the stacks in [[κ]].

We can show:

Lemma 2.12 For any δ ∈ TD and κ ∈ TC:
i) [[δ]] ⊆ SN and [[κ]] ⊆ SN ∗.

ii) xN ∈ SN ⇒ xN ∈ [[δ]].
iii) x = x1 : . . . : xn ∈ [[κ]], for all n such that n ≥ |κ| .

Proof: By simultaneous induction on the structure of types, using Definition 2.11. We show
some of the cases.

i)(κ→ν) : M ∈ [[κ→ν]] ⇒ (IH((ii)))
x ∈ [[κ]] & M ∈ [[κ→ν]] ⇒ (2.11)
M x ∈ [[ν]] ⇒ (2.11)
M x ∈ SN ⇒ M ∈ SN .
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(δ×ω) : M ∈ [[δ×ω]] ⇒ (2.11))
M = N : L & N ∈ [[δ]] & L ∈ SN ⇒ (IH((i)))
N ∈ SN & L ∈ SN ∗ ⇒ N : L ∈ SN ∗.

(δ×κ) : M ∈ [[δ×κ]] ⇒ (2.11))
M = N : L & N ∈ [[δ]] & L ∈ [[κ]] ⇒ (IH((i)))
N ∈ SN & L ∈ SN ∗ ⇒ N : L ∈ SN ∗.

ii)(κ→ν) : xN ∈ SN ⇒ (2.11 & IH((i)))
L ∈ [[κ]] ⇒ xN ∈ SN & L ∈ SN ∗ ⇒ (2.10)
L ∈ [[κ]] ⇒ xNL ∈ SN ⇒ (IH((ii)))
L ∈ [[κ]] ⇒ xNL ∈ [[ν]] ⇒ (2.11) xN ∈ [[κ→ν]].

iii)(δ×ω) : x = x : x ′ ⇒ (IH((ii)))
x ∈ [[δ]] & x ′ ∈ SN ∗ ⇒ (2.11) x ∈ [[δ×ω]].

(δ×κ) : x = x : x ′ ⇒ (IH((ii)) & IH((iii)))
x ∈ [[δ]] & x ′ ∈ [[κ]] ⇒ (2.11) x ∈ [[δ×κ]].

The following result follows immediately from Lemma 2.12 ((ii)):

Corollary 2.13 For any x ∈ Var and any δ ∈ TD: x ∈ [[δ]].

The following lemma shows that our type interpretation is closed under the type inclusion
relation.

Lemma 2.14 For all σ,τ ∈ T : if σ ≤ τ, then [[σ]] ⊆ [[τ]].

Proof: By induction on the definition of ≤. We show some of relevant cases.

(δ1×ω)∧(δ2×κ) ≤ (δ1∧δ2)×κ) : [[(δ1×ω)∧(δ2×κ)]] =
{M : L | M ∈ [[δ1]], L ∈ SN ∗} ∩ {M : L | M ∈ [[δ2]], L ∈ [[κ]]} = ([[κ]] ⊆ SN ∗ by 2.12 ((i)))
{M : L | M ∈ [[δ1]] ∩ [[δ2]], L ∈ [[κ]]} =
{M : L | M ∈ [[δ1∧δ2]], L ∈ [[κ]]} =
[[(δ1∧δ2)×κ]]

.

(κ2 ≤ κ1 ⇒ κ1→ν ≤ κ2→ν) : [[κ1→ν]] =
{M ∈ Trm | ∀L ∈ [[κ1]] [ML ∈ SN ]} ⊆ ([[κ2]] ⊆ [[κ1]] by induction)
{M ∈ Trm | ∀L ∈ [[κ2]] [ML ∈ SN ]} =
[[κ2→ν]]

Our type interpretation is closed under expansion for the logical and for the structural
reduction, with the proviso that the term or stack to be substituted is an element of an inter-
preted type as well.

Lemma 2.15 For any δ,δ′ ∈ TD and κ ∈ TC:
i) If M[N/x]P ∈ [[δ]] and N ∈ [[δ′]], then (λx.M)NP ∈ [[δ]].

ii) If µα.[β]M[α⇐ N]P ∈ [[δ]] and N ∈ [[κ]], then (µα.[β]M)NP ∈ [[δ]].
iii) If µα.[α]M[α⇐ N]NP ∈ [[δ]], then (µα.[α]M)NP ∈ [[δ]].

Proof: By induction on the structure of types, using 2.10, 2.11 and 2.12.

In Theorem 2.18 we will show that all typeable terms are strongly normalisable. In order
to achieve that, we first show, in Lemma 2.17, that for any a term M typeable with δ, any full
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substitution instance Mξ (i.e. replacing all free term variables by terms, and feeding stacks to
all free names) is an element of the interpretation of δ, which by Lemma 2.12 implies that Mξ

is strongly normalisable. We need these substitutions to be applied all ‘in one go’, so define
a notion of parallel substitution. The main result is then obtained by taking the substitution
that replaces term variables by themselves and names by stacks of term variables. The reason
we first prove the result for any substitution is that, in the proof of Lemma 2.17, in the case for
λx.M and µα.Q the substitution is extended, by replacing the bound variable or name with a
normal term (or stack).

Definition 2.16 i) A partial mapping ξ : (Var→ Trm)+ (Name→ Trm∗) is a parallel substitution
if, for every p,q ∈ dom(ξ), if p 	= q then p 	∈ fv (ξq) and p 	∈ fn (ξq).

ii) Borrowing a notation for valuations, for a parallel substitution ξ we define the application
of ξ to a term by:

([α]M)ξ =
∆ [α]Mξ L if ξα = L

([β]M)ξ =
∆ [β]Mξ if β 	∈ dom(ξ)

(µβ.Q)ξ =
∆ µβ.Qξ

xξ =
∆ N if ξx = N

yξ =
∆ y if y 	∈ dom(ξ)

(λx.M)ξ =
∆ λx.Mξ

(MN)ξ =
∆ Mξ Nξ

iii) We define ξ[N/x] and ξ[α⇐ L] by, respectively,

ξ[N/x]y =
∆

{
N if y = x
ξ y otherwise

ξ[α⇐ L]β =
∆

{
L if α = β
ξ β otherwise

iv) We will say that ξ extends Γ and ∆, if, for all x:δ ∈ Γ and α:κ ∈ ∆, we have, respectively,
ξ (x) ∈ [[δ]] and ξ (α) ∈ [[κ]].

Notice that we do allow a variable to appear in its own image under ξ. Since x does not
appear in M[N/x], this does not violate Barendregt’s convention.

Lemma 2.17 (Replacement Lemma) Let ξ be a parallel substitution that extends Γ and ∆. Then:

if Γ � M : δ | ∆ then Mξ ∈ [[δ]].

Proof: By induction on the structure of derivations. We show some more illustrative cases.

(abs) : Then M = λx.M′, δ = δ′×κ→ν, and Γ, x:δ′ � M′ :κ→ν | ∆. Take N ∈ [[δ′]]; since x is
bound, by Barendregt’s convention we can assume that it does not occur free in the
image of ξ, so ξ[N/x] is a well-defined parallel substitution that extends Γ, x:δ′ and ∆.
Then by induction, we have M′

ξ[N/x] ∈ [[κ→ν]]. Since x does not occur free in the image of
ξ, M′

ξ[N/x] = M′
ξ[N/x], so also M′

ξ[N/x] ∈ [[κ→ν]]. By Lemma 2.15 ((i)), also (λx.M′
ξ)N ∈

[[κ→ν]]. By definition of [[κ→ν]], for any L ∈ [[κ]] we have (λx.M′
ξ)NL ∈ [[ν]]; notice that

N : L ∈ [[δ×κ]], so (λx.M′)ξ ∈ [[δ′×κ→ν]].

(µ) : Then M = µα.[β]M′ , and δ = κ→ν. We distinguish two different sub-cases.

α = β : Then M = µα.[α]M′, δ = κ→ν, and Γ � M′ :κ→ν | α:κ,∆. Take L ∈ [[κ]]; since α is
bound in M, we can assume it does not occur free in the image of ξ, so ξ[α⇐ L] is a
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well-defined parallel substitution that extends Γ and ∆,α:κ, and by induction, M′
ξ[α⇐ L] ∈

[[κ→ν]]. Since α does not occur free in the image of ξ, M′
ξ[α⇐L] = M′

ξ[α⇐ L], so we have
M′

ξ[α⇐ L] ∈ [[κ→ν]], and therefore M′
ξ[α⇐ L]L ∈ [[ν]].

Then by Definition 2.11, SN (M′
ξ[α⇐ L]L), but then also SN (µα.[α]M′

ξ[α⇐ L]L), by
Lemma 2.10 ((iii)). So µα.[α]M′

ξ[α⇐ L]L ∈ [[ν]]. Then by Lemma 2.15 ((iii)), (µα.[α]M′
ξ)L ∈

[[ν]]; so (µα.[α]M′)ξ ∈ [[κ→ν]].

α 	= β : Then ∆ = β:κ′,∆′, and Γ � M′ :κ′→ν | α:κ, β:κ′,∆. Assume L ∈ [[κ]], then ξ[α⇐ L]
extends Γ and α:κ, β:κ′,∆′. Then, by induction, M′

ξ[α⇐ L] ∈ [[κ′→ν]]. Now let Q ∈ [[κ′ ]], then
M′

ξ[α⇐L]Q ∈ [[ν]] and then also (M′Q)ξ[α⇐ L] ∈ [[ν]].
Then SN ((M′Q)ξ[α⇐L]) by Definition 2.11, and SN (µα.[β](M′Q)ξ[α⇐L]) by Lemma

2.10 ((iii)), so, again by Definition 2.11, µα.[β](M′Q)ξ[α⇐ L] ∈ [[ν]]. As in the previous part,
α is not free in the image of ξ, and therefore also µα.[β](M′Q)ξ[α⇐ L] ∈ [[ν]]. Then, by
Lemma 2.15 ((ii)), (µα.[β](M′Q)ξ)L∈ [[ν]]. Notice that [β]M′

ξQ = [β]M′
ξ[β⇐Q]; since ξβ =

Q, we can infer that [β]M′
ξQ = [β]M′

ξ, so (µα.[β]M′)ξL ∈ [[ν]]. But then (µα.[β]M′)ξ ∈
[[κ→ν]].

We now come to the main result of this section, that states that all terms typeable in our
system are strongly normalisable.

Theorem 2.18 (Typeable terms are SN ) If Γ � M : δ | ∆ for some Γ, ∆ and δ, then M ∈ SN .

Proof: Let ξ be a parallel substitution such that

ξ (x) = x for x ∈ dom(Γ)
ξ (α) = y α for α ∈ dom(∆)

where the length of the stack y α is |κ| if α:κ ∈∆ (notice that ξ is well defined). By Lemma 2.12,
ξ extends Γ and ∆. Hence, by Lemma 2.17, Mξ ∈ [[δ]], and then Mξ ∈ SN by Lemma 2.12 ((i)).
Now

Mξ ≡ M [x1/x1, . . . , xn/xn,α1⇐ y α1
, . . . ,αm⇐ y αm

]

≡ M [α1⇐ y α1
, . . . ,αm⇐ y αm

]

Then, by Proposition 2.10, for any β also (µα1.[β1] · · ·µαm.[βm]M)y α1
· · · y αm

∈ SN , and there-
fore also M ∈ SN .

2.3 Strongly Normalising Terms are Typeable

In this section we will show the counterpart of the previous result, namely that all strongly
normalisable terms are typeable in our intersection system.

First we describe the shape of the terms in normal form.

Definition 2.19 (Normal Forms) The set N ⊆ Trm of normal forms is defined by the grammar:

N ::= xN1 · · ·Nk | λx.N | µα.[β]N

It is straightforward to verify that the terms in N are precisely the irreducible ones.

We can show that all terms in N are typeable.

Lemma 2.20 If N ∈N then there exist Γ, ∆, and a type κ→ν such that Γ � N :κ→ν | ∆.

Proof: By induction on the definition of N . We show the most relevant cases.
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(N ≡ xN1 . . . Nk) : Since N1, . . . , Nk ∈N , by induction we have that, for all i ≤ k there exist Γi,
∆ i and δi such that Γi � Ni : δi | ∆i (the structure of each δi plays no role in this part). Take

Γ = Γ1∧· · ·∧Γk∧x:(δ1×· · ·×δk×δ×ω)→ν, and ∆ = ∆1∧· · ·∧∆k.

where δ is any element of TD. Then, by Lemma 2.6, Γ � Ni : δi | ∆ for all i ≤ n, and Γ �
x : (δ1×· · ·×δk×δ×ω)→ν | ∆. By repeated application of (app) we get Γ� xN1 · · ·Nk :κ→ν | ∆
for κ = δ×ω.

(N ≡ µα.[β]N′) : By induction, Γ � N′ :κ→ν | ∆. We distinguish two cases:
(α ≡ β) : In case α ∈ fn (N′) and ∆ = α:κ′,∆′, we can construct:

Γ � N′ :κ→ν | α:κ′,∆′
(W)

Γ � N′ :κ→ν | α:κ∧κ′,∆′
(≤)

Γ � N′ :κ∧κ′→ν | α:κ∧κ′,∆′
(µ)

Γ � µα.[α]N′ :κ∧κ′→ν | ∆′

In case α 	∈ fn (N′), we can construct

Γ � N′ :κ→ν | ∆
(W)

Γ � N′ :κ→ν | α:κ,∆′
(µ)

Γ � µα.[α]N′ :κ→ν | ∆′

(α 	≡ β) : We can proceed as in the previous case, obtaining now Γ � N :κ→ν | α:κ′, β:κ,∆′ .
So by rule (µ) we get Γ � µα.[β]N′ :κ′→ν | β:κ′′,∆′ .

We will now show that typeing is closed under expansion with respect to both logical and
structural reduction, with the proviso that the term (stack) that gets substituted is typeable as
well in the same contexts.

Lemma 2.21 (Contractum Expansion) i) If Γ � M[N/x] : δ | ∆ and Γ � N : δ′ | ∆ then
Γ � (λx.M)N : δ | ∆.

ii) If Γ � µα.[β]M[α⇐ N] : δ | ∆ and Γ � N : δ′ | ∆ then Γ � (µα.[β]M)N : δ | ∆.

Proof: i) Much the same as the similar result for the intersection systems for the λ-calculus.
ii) We need to consider two different cases:
(α 	∈ fn ([β]M)) : Then ([β]M)[α⇐N] ≡ [β]M and α 	≡ β. We consider all the n minimal

sub-derivations (n ≥ 1) having µα.[β]M as subject, from which conclusions we derive
Γ � µα.[β]M[α⇐ N] : δ | ∆ by applying any number of (≤) and (∧) rules.
The last step in each of these derivations is of the shape:

Γ � M :κ→ν | α:κi, β:κ,∆′
(µ)

Γ � µα.[β]M :κi→ν | β:κ,∆′

where ∆ = β:κ,∆′. Since α 	∈ fn ([β]M), by strengthening (Lemma 2.6) we can re-
move α:κi from the name context, so also Γ � M :κ→ν | β:κ,∆′ ; then, by weakening
(Lemma 2.6), we can add α:δ′×κi,, so Γ � M :κ→ν | α:δ′×κi, β:κ,∆′ , and then we can
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construct

Γ � M :κ→ν | α:δ′×κi, β:κ,∆′
(µ)

Γ � µα.[β]M : δ′×κi→ν | β:κ,∆′
Γ � N : δ′ | ∆

(app)
Γ � (µα.[β]M)N :κi→ν | ∆

from which it is possible to derive Γ � (µα.[β]M)N : δ | ∆ by applying the same (≤)
and (∧) rules mentioned above.

(α ∈ fn ([β]M)) : We distinguish two further cases:
(α = β) : Then ([β]M)[α⇐N]≡ ([α]M)[α⇐N]≡ [α](M[α⇐N])N; we can assume, with-

out loss of generality, that δ = (κ1→ν)∧· · ·∧(κn→ν), and that for all i ≤ n there are
sub-derivations constructed like

Γ � M[α⇐N] : δi×κi→ν | α:κi,∆ Γ � N : δi | ∆
(app)

Γ � (M[α⇐N])N : κi→ν | α:κi,∆
(µ)

Γ � µα.[α](M[α⇐N])N : κi→ν | ∆

Then there exists δ′i such that Γ � N : δ′i | ∆, and Γ � M : δi×κi→ν | α:δ′i×κi,∆ by Lemma
2.8 ((ii)); so we can build the derivation:

Γ � M : δi×κi→ν | α:δ′i×κi,∆
(≤)

Γ � M : δi∧δ′i×κi→ν | α:δ′i×κi,∆
(W)

Γ � M : δi∧δ′i×κi→ν | α:δi∧δ′i×κi,∆
(µ)

Γ � µα.[α]M : δi∧δ′i×κi→ν | ∆

Γ � N : δi | ∆ Γ � N : δ′i | ∆
(∧)

Γ � N : δi∧δ′i | ∆
(app)

Γ � (µα.[α]M)N :κi→ν | ∆

We derive Γ � (µα.[α]M)N : δ | ∆ by rule (∧).
(α 	= β) : Then ([β]M)[α⇐N] ≡ [β](M[α⇐N]); as above δ = (κ1→ν)∧· · ·∧(κn→ν), and

for all i ≤ n there are derivations structured like:

Γ � M[α⇐N] : κ′i→ν | α:κi, β:κ′i ,∆
′

(µ)
Γ � µα.[β](M[α⇐N]) : κi→ν | β:κ′i ,∆

′

where ∆ = β:κ′i ,∆
′. As above, by Lemma 2.8 ((ii)) there exists δi such that both

Γ � N : δi | β:κ′i ,∆
′ and Γ � M :κ′i→ν | α:δi×κi, β:κ′i ,∆

′ . We can then construct:

Γ � M :κ′i→ν | α:δi×κi, β:κ′i ,∆
′
(µ)

Γ � µα.[β]M : δi×κi→ν | ∆ Γ � N : δi | ∆
(app)

Γ � (µα.[β]M)N :κi→ν | ∆

As above, we conclude that Γ � (µα.[β]M)N : δ | ∆ by rule (∧).

We will now show that all strongly normalisable terms are typeable in our system. The
proof of the crucial lemma for this result as presented below (Lemma 2.23) goes by induction
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on the left-most outer-most reduction path.

Definition 2.22 An occurrence of a redex R = (λx.P)Q or (µα.[β]P)Q in a term M is called
the left-most outer-most redex of M (lor (M)), if and only if:

i) there is no redex R′ in M such that R′ = C[R] (outer-most);
ii) there is no redex R′ in M such that M = C0[C1[R

′]C2[R]] (left-most).
M →lor N is used to indicate that M reduces to N by contracting lor (M).

The following lemma formulates a subject expansion result for our system with respect to
left-most outer-most reduction. A proof for this property in the context of strict intersection
type assignment for the λ-calculus appeared in [3, 5].

Lemma 2.23 Let M →lor N, lor (M) = RQ, Γ1 � N : δ1 | ∆1 with δ1 not an intersection, and Γ2 �
Q : δ2 | ∆2 , then there exist Γ3, ∆3 and δ3 such that Γ3 ≤ Γ1, ∆3 ≤ ∆1, δ1 ≤ δ3, and Γ3 � M : δ3 | ∆3 .

Proof: By induction on the structure of terms.

M = VP1 · · ·Pn : Then either:
a) V is a redex (λy.P)Q, so lor (M) = V; let V ′ ≡ P[Q/y]; or
b) V is a redex (µα.[β]P)Q, so lor (M) = V; let V ′ ≡ µα.[β]P[α⇐Q]; or
c) V ≡ z and there is an i∈ n such that lor (M) = lor (Pj), N ≡ zP1 · · ·P′

i · · ·Pn, and Pi →lor P′
i ;

let V ′ = z.
By assumption δ1 = κ1→ν. Then there are δj (j∈n), such that Γ1 �V ′ : δ′1×· · ·×δ′n×κ1→ν | ∆1
and Γ1 � Pi : δ′i | ∆1 , for all i ∈ n.

We distinguish:
a) V ′ ≡ P[Q/y], where the substitution is capture avoiding, so all free variables in Q are

free in P[Q/y] when y∈ fv (P), and we can assume that Γ2 and ∆2 do not have types for
bound variables and names in P. Let Γ3 = Γ1∧Γ2 and ∆3 = ∆1∧∆2, then by Corollay 2.7
and Lemma 2.21, Γ3 � (λy.P)Q : δ′1×· · ·×δ′n×κ1→ν | ∆3 .

b) V ′ ≡ µα.[β]P[α⇐Q]; we can assume that Γ2 and ∆2 do not have types for bound
variables and names in µα.[β]P. Let Γ3 = Γ1∧Γ2 and ∆3 = ∆1∧∆2, then by Corollay 2.7
and Lemma 2.21, Γ3 � (µα.[β]P)Q : δ′1×· · ·×δ′n×κ1→ν | ∆3 .

c) V ′ ≡ z. Then, by induction, there are Γ′, ∆′, δ′′j such that δ′′j ≤ δ′j, and Γ′ � Pj : ψ′
j | ∆′ .

Take Γ3 = Γ1∧Γ′,z:δ′1×· · ·×δ′′j ×· · ·×δ′n×κ′1→ν, and ∆3 = ∆1∧∆′, then

Γ3 � z : δ′1×· · ·×δ′′j ×· · ·×δ′n×κ′1→ν|∆3.

In all cases, Γ3 ≤ Γ1, ∆3 ≤ ∆1, and Γ3 � VP1 · · ·Pn : δ | ∆3 .

M = λy.M′ : If M →lor N, then N = λy.N′ and M′ →lor N′. Then there exists δ and κ such that
δ1 = δ×κ→ν, and Γ1,y:δ � N′ :κ→ν | ∆1 . By induction, there exists Γ′ ≤ Γ1, ∆′ ≤∆1, δ′ ≤ δ,
and κ′ ≤ κ such that Γ′,y:δ′ � M′ :κ′→ν | ∆′ . Then, by rule (abs), Γ′ � λy.M′ : δ′×κ′→ν | ∆′ .
Notice that δ×κ→ν ≤ δ′×κ′→ν; take Γ3 = Γ′, ∆3 = ∆′, and δ3 = δ′×κ′→ν.

M = µα.[β]M′ : If M →lor N, then N = µα.[β]N′ and M′ →lor N′. Then there exists κ1 and κ2
such that δ1 = κ1→ν, ∆1 = α:κ2,∆′

1 and Γ1 � N′ :κ2→ν | β:κ1,∆′
1 . By induction, there exists

Γ′ ≤ Γ1, ∆′ ≤ ∆1, κ′ ≤ κ1 and κ′′ ≤ κ2 such that Γ′ � M′ :κ′′→ν | α:κ′,∆′ . Then, by rule
(µ), Γ′ � µα.[β]M′ : κ′→ν | β:κ′′,∆′ . Notice that κ1→ν ≤ κ′→ν, and β:κ′′,∆′ ≤ β:κ2,∆′

1; take
Γ3 = Γ′, ∆3 = β:κ′′,∆′, and δ3 = κ′→ν.

M = µα.[α]M′ : If M →lor N, then N = µα.[α]N′ and M′ →lor N′. Then there exists κ such that
δ1 = κ→ν, ∆1 = α:κ,∆′

1 and Γ1 � N′ : κ→ν | α:κ,∆′
1 . By induction, there exists Γ′ ≤ Γ1, ∆′ ≤
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∆1, and κ1 ≤ κ, κ2 ≤ κ such that Γ′ � M′ :κ2→ν | α:κ1,∆′ . Take κ′ = κ1∧κ2, then by weaken-
ing and rule (≤), also Γ′ � M′ :κ′→ν | α:κ′,∆′ . Then, by rule (µ), Γ′ � µα.[α]M′ :κ′→ν | ∆′ .
Notice that κ→ν ≤ κ′→ν; take Γ3 = Γ′, ∆3 = ∆′, and δ3 = κ′→ν.

We can now show that all strongly normalisable terms are typeable in our system.

Theorem 2.24 (Typeability of SN -Terms) For all M ∈SN there exist Γ and ∆ and a type δ such
that Γ � M :δ | ∆.

Proof: By induction on the maximum of the lengths of reduction sequences for a strongly
normalisable term to its normal form (denoted by #(M)).

i) If #(M) = 0, then M is in normal form, and by Lemma 2.20, there exist Γ and δ such that
Γ � M : δ | ∆.

ii) If #(M) ≥ 1, so M contains a redex, then let M →lor N by contracting PQ. Then #(N) <
#(M), and #(Q) < #(M) (since Q is a proper subterm of a redex in M), so by induction
Γ � N : δ1 | ∆ and Γ′ � Q : δ2 | ∆, for some Γ, Γ′, δ1, and δ2. Then, by Lemma 2.23, there
exist Γ1, ∆1 and δ′ such that Γ1 � M : δ′ | ∆1 .

In the following section we will prove strong normalisation for terms typeable in the propo-
sitional fragment of Parigot’s logical system [20] via an interpretation in our system.

3 Interpretation of Parigot’s Logical System

We use a version of Parigot’s logical system (as presented in [20] which is equivalent to the
original one if only terms (so not also proper commands, i.e. elements of Cmd) are typed. This
implies that the rule for ⊥ does not need to be taken into account.4 We call this propositional
fragment of Parigot’s original system the simply-typed λµ-calculus.

Definition 3.1 (Simply Typed λµ-calculus) i) The set LF of Logical Formulas is defined by

A, B ::= ϕ | A→B

where ϕ ranges over an infinite set of Proposition (Type) Variables.
ii) The inference rules of this system are:

(ax) : Γ, x:A � x : A | ∆ (µ1) :
Γ � M : A | α:A,∆

Γ � µα.[α]M : A | ∆
(µ2) :

Γ � M : B | α:A,β:B,∆

Γ � µα[β]M : A | β:B,∆

(→I) :
Γ, x:A � M : B | ∆

Γ � λx.M : A→B | ∆
(→E) :

Γ � M : A→B | ∆ Γ � N : A | ∆

Γ � MN : B | ∆

We write Γ �p M : A | ∆ to denote that this judgement is derivable in this system.

We can interpret formulas into types of our system as follows.

Definition 3.2 The translation functions (·)D : LF→TD and (·)C : LF→TC are defined by (re-

4 The system we consider here does not include rules (∀I) and (∀E), since they have no effect on the subject in
Parigot’s first-order type assignment system.
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member that ν is the (only) base type):

ϕC = ν×ω
(A→B)C = (AC→ν)×BC

AD = AC→ν

For example, (ϕ1→ϕ2→ϕ3)C = (ν×ω→ν)×(ν×ω→ν)×(ν×ω→ν).
It is straightforward to show that the above translations are well defined. We extend them

to bases and name contexts as follows: ΓD = {x:AD | x:A ∈ Γ} and ∆C = {α:AC | α:A ∈ ∆}.

Theorem 3.3 (Derivability preservation) If Γ �p M : A | ∆, then ΓD � M : AD | ∆C .

Proof: By induction on the structure of derivations. Each rule of the simply-typed λµ-calculus
has a corresponding one in our intersection type system (allowing for the fact that rule (→I)
gets mapped unto (abs) and (→E) gets mapped unto (app)); hence it suffices to show that
rules are preserved when translating formulas into types. We show just the cases for the
µ-abstraction.

ΓD � M : AD | α:AC,∆C
(µ1)

ΓD � µα.[α]M : AD | ∆C

becomes ΓD � M : AC→ν | α:AC,∆C
(µ)

ΓD � µα.[α]M : AC→ν | ∆C

ΓD � M : BD | α:AC, β:BC,∆C
(µ2)

ΓD � µα.[β]M : AD | β:BC,∆C

becomes ΓD � M : BC→ν | α:AC, β:BC,∆C
(µ)

ΓD � µα.[β]M : AC→ν | β:BC,∆C

notice that the applications of rule (µ) are valid instances of that rule.

Strong normalisation of typeable terms in Parigot’s simply typed λµ-calculus now follows
as a consequence of our characterisation result.

Theorem 3.4 (Strong Normalisability of Parigot’s Simply Typed λµ-calculus)
If Γ �p M : A | ∆, then M ∈ SN .

Proof: By Theorem 3.3, if Γ �p M : A | ∆ then ΓD � M : AD | ∆C is derivable in the intersection
type system. Hence M ∈ SN by Theorem 2.18.

Conclusion

We have defined an intersection type system which characterises strongly normalising λµ-
terms, extending the strong normalisation result for the λ-calculus to the pure λµ-calculus.

We have also provided a translation of propositional types of Parigot’s system into types of
the system proposed in this paper (a restriction of the one presented in [6]) and proved that
derivability is preserved. We are confident that such a result can be extended to the full first-
order type assignment system, to obtain an alternative proof of Parigot’s strong normalisation
theorem.

As we have observed in [6], our intersection-type assignment system can be adapted to
de Groote’s variant of the λµ-calculus (see e.g. [17]) (called Λµ by Saurin [23]), that satisfies
stronger properties than Parigot’s original calculus, such as Böhm’s theorem. We leave the
question whether the present characterisation result extends to those cases to future work.
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