Characterisation of Strongly Normalising $\lambda\mu$-Terms

(ITRS’12, EPTCS 121, pp 1-17, 2013)

Steffen van Bakel
Imperial College London
London, UK
svb@doc.ic.ac.uk

Franco Barbanera
Università di Catania
Catania, Italy
barba@dmi.unict.it

Ugo de’Liguoro
Università di Torino
Torino, Italy
deliguoro@di.unito.it

Abstract

We provide a characterisation of strongly normalising terms of the $\lambda\mu$-calculus by means of a type system with intersection and product types. The presence of the latter and a restricted use of the type ω enable us to represent the particular notion of continuation used in the literature for the definition of semantics for the $\lambda\mu$-calculus. This makes it possible to lift the well-known characterisation property for strongly-normalising λ-terms - that uses intersection types - to the $\lambda\mu$-calculus. From this result an alternative proof of strong normalisation for terms typeable in Parigot’s propositional logical system follows, by means of an interpretation of that system into ours.

Introduction

Parigot’s $\lambda\mu$-calculus [20] is an extension of the λ-calculus [11, 9] that was first introduced in [20] to express a notion of (confluent) computation with classical proofs in Gentzen’s sequent calculus LK. That calculus was introduced in [15] as a logical system in which the rules only introduce connectives (but on either side of a sequent), in contrast to natural deduction (also introduced in [15]) which uses rules that introduce or eliminate connectives in the logical formulae. Natural deduction normally derives statements with a single conclusion, whereas LK allows for multiple conclusions, deriving sequents of the form $A_1, \ldots, A_n \vdash B_1, \ldots, B_m$, where A_1, \ldots, A_n is to be understood as $A_1 \land \cdots \land A_n$ and B_1, \ldots, B_m is to be understood as $B_1 \lor \cdots \lor B_m$.

With $\lambda\mu$, Parigot created a multi-conclusion typing system that is, in fact, based on a mixture of Gentzen’s two approaches: the system is a natural deduction system that has introduction and elimination rules, but derivable statements have the shape $\Gamma \vdash M : A | \Delta$, where A is the main conclusion of the statement, expressed as the active conclusion. Here Δ contains the alternative conclusions, consisting of pairs of Greek characters and types; the left-hand context Γ, as usual, contains pairs of Roman characters and types, and represents the types of the free term variables of M. This yields a logic with focus where the main conclusion is the focus of the proof; derivable judgements correspond to provable statements in minimal classical logic [1]. In addition to the normal λ-calculus reduction rules, Parigot needed to express that the focus of the derivation (proof) changes; he therefore added structural rules, where elimination takes place for a type constructor that appears in one of the alternative conclusions (the Greek variable is the name given to a subterm). This is achieved by extending the syntax with two new constructs $\alpha[M]$ and $\mu_a. M$ that act as witness to deactivation and activation, which together move the focus of the derivation. The collection of reduction rules Parigot defined are carefully engineered to yield a confluent reduction system; normally, systems based on classical logic are not confluent, as is the case for example for the Symmetric λ-calculus [8], $\bar{\lambda}\mu\bar{\mu}$ [14], and λ' [7].
In spite of being motivated by classical logic, the $\lambda\mu$-calculus itself is type free. As a consequence there exist more terms than proofs, and properties of pure $\lambda\mu$-terms have been extensively studied (see e.g. [23, 18, 24]). In particular, among them there are perfectly meaningful terms that do not correspond to any proof, like fixed-point constructors for example. The basic idea here to turn non-constructive proofs into algorithms is to add a form of continuation by means of names and μ-abstraction to capture (a notion of) control. However, continuations introduce a great deal of complexity to the calculus’ semantics and inspired by the results proven in [4] we decided to explore the possibility of defining filter semantics for $\lambda\mu$. Starting from Streicher and Reus’ denotational semantics of $\lambda\mu$ in [25], in [6] we have introduced an intersection type assignment system that induces a filter model. This, essentially, is a logical description of the domain-theoretic model of [25], with the advantage of providing a formal tool to reason about the meaning of terms.

One of the main results for $\lambda\mu$, proved in [21], states that all $\lambda\mu$-terms that correspond to proofs of second-order natural deduction are strongly normalising; the reverse of this property does not hold for Parigot’s system, since there, for example, not all terms in normal form are typeable.

The full characterisation of strong normalisation (M is strong normalising if and only if M is typeable) is a property that is shown for various intersection systems for the λ-calculus, and towards the end of [6] we conjectured that in an appropriate subsystem we would be able to type exactly all strongly normalising $\lambda\mu$-terms as well. The first to state the characterisation result was Pottinger [22] for a notion of type assignment similar to the intersection system of [12, 13], but extended in that it is also closed for η-reduction, and is defined without the type constant ω. However, to show that all typeable terms are strongly normalisable, [22] only suggests a proof using Tait’s computability technique [26]. A detailed proof, using computability, in the context of the ω-free BCD-system [10] is given in [2]; to establish the same result saturated sets are used by Krivine in [19] (chapter 4), in Ghilezan’s survey [16], and in [5].

The converse of that result, the property that all strongly normalisable terms are typeable has proven to be more elusive: it has been claimed in many papers but not shown in full (we mention [22, 2, 16]); in particular, the proof for the property that type assignment is closed for subject expansion (the converse of subject reduction) is dubious. Subject expansion can only reliably be shown for left-most outermost reduction, which is used for the proofs in [19, 3, 5], and our result follows that approach as well.

In the full system of [6], all terms are typeable with ω and this clearly interferes with the termination property. However, the problem we face is slightly more complex than straightforwardly removing ω, as done in [2, 3]. In the model (for details, see [6]) a continuation is an infinite tuple of terms, which is typed in the system by a finite intersection of types $\kappa = \delta_1 \times \cdots \times \delta_k \times \omega$ for some $k > 0$, where the leading $\delta_1, \ldots, \delta_k$ encode the information about the first k terms in the tuple, while the ending ω represents the lack of information about the remaining infinite part. This implies that, for our system for $\lambda\mu$, we cannot remove ω completely. To solve this problem, we first restrict types to those having ω only as the final part of a product type; we then suitably modify the standard interpretation of intersection types, adapting Tait’s argument in such a way that the semantics of κ is the set of all finite tuples L (called stacks) of strongly normalising terms that begin with k terms L_1, \ldots, L_k that belong to the interpretations of, respectively, $\delta_1, \ldots, \delta_k$. For this restricted system, we will show that typeability characterises strong normalisability for $\lambda\mu$-terms.

As a consequence of our characterisation result we also obtain an alternative proof of Parigot’s termination result [21] (for the propositional fragment), by interpreting ordinary types into our intersection types and proving that the translation preserves derivability from Parigot’s system to ours.
Outline of this paper. In Section 1, we will briefly recall Parigot’s untyped $\lambda \mu$-calculus \cite{20}. After defining appropriate sets of types in 2.1, a pre-order over types, and our typeing system in Section 2.2, we will show that typeability implies strong normalisation. The opposite implication, proved in Section 2.3, will complete our main results. The alternative proof of Parigot’s theorem for the propositional fragment will be developed in Section 3, and we finish by giving concluding remarks.

1 The $\lambda \mu$-calculus

In this section we present Parigot’s pure $\lambda \mu$-calculus as introduced in \cite{20}, slightly changing the notation.

Definition 1.1 (Term Syntax \cite{20}) i) The sets Term of terms and Cmd of commands are defined inductively by the following grammar (where $x \in \text{Var}$, a set of term variables, and $\alpha \in \text{Name}$, a set of names, both denumerable):

$$M, N :: \equiv x | \lambda x.M | MN | \mu \alpha.C \quad \text{(terms)}$$

$$C :: \equiv [\alpha]M \quad \text{(commands)}$$

ii) We call $L \equiv L_1\cdots L_k$ a stack of terms; we denote the set of all finite (possibly empty) stacks of terms by Term^*, and write ϵ for the empty stack. If $M \in \text{Term}$ and $L \equiv L_1\cdots L_k$ then $M;L \equiv M_1;L_1\cdots L_k \in \text{Term}^*$, while we define $M(P;L) \triangleq MPL$, so $M_1L \equiv ML_1\cdots L_k$.

We will often speak of a stack rather than a stack of terms. For convenience of notation, for $L = L_1\cdots L_k \in \text{Term}^*$, we introduce the notation:

$$M[\alpha \leftarrow L] \triangleq M[\alpha \leftarrow L_1][\alpha \leftarrow L_2]\cdots [\alpha \leftarrow L_n]$$

when each L_i does not contain α. In particular, $M[\alpha \leftarrow \epsilon] \triangleq M$. Notice that, by definition of structural substitution,

$$[\alpha] M[\alpha \leftarrow L] \triangleq [\alpha] M[\alpha \leftarrow L_1][\alpha \leftarrow L_2]\cdots [\alpha \leftarrow L_n] \triangleq [\alpha] (M[\alpha \leftarrow L])L$$

As usual, we consider λ and μ to be binders; we adopt Barendregt’s convention on terms, and will assume that free and bound variables are different; the sets $\text{fv}(M)$ and $\text{fn}(M)$ of, respectively, free variables and free names in a term M are defined in the usual way.

Definition 1.2 (Substitution \cite{20}) Substitution takes two forms:

term substitution: $M[N/x]$ (N is substituted for x in M, avoiding capture)

structural substitution: $T[\alpha \leftarrow L]$ (every subterm $[\alpha]N$ of M is replaced by $[\alpha]NL$)

where $M, N, L \in \text{Term}$, $C \in \text{Cmd}$ and $T \in \text{Term} \cup \text{Cmd}$. More precisely, $T[\alpha \leftarrow L]$ is defined by:

$$(\lambda x.M)[\alpha \leftarrow L] \triangleq [\lambda x.M[\alpha \leftarrow L])L$$

$$(\mu \beta.C)[\alpha \leftarrow L] \triangleq [\mu \beta.C[\alpha \leftarrow L] \text{ if } \alpha \neq \beta$$

$$(\lambda x.M)[\alpha \leftarrow L] \triangleq x$$

$$(\lambda x.M)[\alpha \leftarrow L] \triangleq [\lambda x.M[\alpha \leftarrow L])L$$

Definition 1.3 (Reduction \cite{20}) The reduction relation $M \rightarrow N$, where $M, N \in \text{Term}$, is defined as the compatible closure of the following rules:

$$\beta : \quad (\lambda x.M)N \rightarrow M[N/x] \quad \text{(logical reduction)}$$

$$\mu : \quad (\mu \beta.C)N \rightarrow \mu \beta.C[\beta \leftarrow N] \quad \text{(structural reduction)}$$
2 Characterisation of Strong Normalisation

In this section we will show that we can characterise strong normalisation for pure \(\lambda \mu \)-terms completely through a notion of intersection typeing which employs product types and a restricted use of the type \(\omega \).

2.1 The type system

As mentioned in the introduction, our characterisation can be carried out by means of a precisely tailored version of the type system we presented in [6]. The types of our system will be formed by means of the \(\to, \times, \) and \(\land \) type constructors over a single base type \(v \).

Definition 2.1 (Types) The sets \(T_D \) of *term types* and \(T_C \) of *continuation-stack types* are defined inductively by the following grammar, where \(v \) is a type constant:

\[
T_D: \quad \delta ::= v | \omega \to v | \kappa \to v | \delta \land \delta \\
T_C: \quad \kappa ::= \delta \times \omega | \delta \times \kappa | \kappa \land \kappa
\]

(we will call the types \(\delta \times \omega \) and \(\delta \times \kappa \) also *product types*). We define the set \(T \) of *types* as \(T = T_D \cup T_C \) and let \(\sigma, \tau, \rho, \) etc. range over \(T \).

Notice that an important feature of our system is the absence of \(\omega \) as a proper type (and, consequently, the absence of its corresponding type rule); notice that we have not removed \(\omega \) completely, since it always occurs at the very end of any product type in order to represent the (unspecified) last part of a continuation stack.

Definition 2.2 The relations \(\leq_D \) and \(\leq_C \) are the least pre-orders over \(T_D \) and \(T_C \), respectively, such that:

\[
\begin{align*}
\sigma \land \tau & \leq_A \sigma \quad \sigma \land \tau \leq_A \tau \\
\nu \leq_D \omega \to v & \quad \omega \to v \leq_D \nu \\
\delta_1 \times \delta_2 \times \omega \leq_C \delta_1 \times \omega & \quad \delta_1 \times \delta_2 \times \kappa \leq_C \delta_1 \times \delta_2 \times (\kappa_1 \land \kappa_2) \quad (\kappa_1, \kappa_2 \neq \omega) \\
\delta_1 \leq_D \delta_2 & \quad \delta_1 \leq_D \delta_2 \quad \kappa_1 \leq_C \kappa_2 \\
\delta_1 \times \omega \leq_C \delta_2 \times \omega & \quad \delta_1 \times \kappa_1 \leq C \delta_2 \times \kappa_2 \\
\sigma \leq_A \tau_1 \land \tau_2 & \quad \sigma \leq_A \tau_1 \land \tau_2 \\
\kappa_2 \leq_C \kappa_1 & \quad \kappa_1 \to v \leq_D \kappa_2 \to v
\end{align*}
\]

where \(A \) is either \(D \) or \(C \). As usual, we define \(=_A \) \(\Delta \leq_A \cap \geq_A \).

For convenience of notation, in the following the subscripts \(D \) and \(C \) on \(\leq \) are normally omitted.

The pre-orders in Definition 2.2 are a restriction to \(T \) of the pre-orders defined in [6]. We point out that, in the system defined in that paper, the inequality \(\delta_1 \times \delta_2 \times \omega \leq \delta_1 \times \omega \) is derivable. In fact, in [6] we had \(\omega = \omega \times \omega \) and hence \(\delta_1 \times \delta_2 \times \omega \leq \delta_1 \times \omega \times \omega = \delta_1 \times \omega \). In the present system, instead, \(\omega \notin T_D \) so that \(\delta_1 \times \omega \times \omega \notin T_C \), and therefore this inequality has to be explicitly postulated above.

The notions of basis (variable context), denoted by \(\Gamma, \Gamma', \ldots \), and name context, denoted by \(\Delta, \Delta', \ldots \), are defined in the standard way as, respectively, mappings of a finite set of term variables to types in \(T_D \), and of a finite set of names to types in \(T_C \), represented for convenience as sets of statements on variables and names (we call these assumptions). Below we shall write \(\Gamma, x: \delta \) for \(\Gamma \cup \{ x: \delta \} \) where \(x \notin \text{dom} (\Gamma) \); similarly for \(\alpha: \kappa, \Delta \) (note that the order in which variable and name assumptions are listed in the rules is immaterial).

1 In [6], more base types are used, but for our present purposes one suffices.
Definition 2.3 (Typeing System)

i) A judgement in our system has the form $\Gamma \vdash M : \delta \mid \Delta$, where Γ is a basis, $M \in \text{Trm}$, $\delta \in T_D$ and Δ is a name context.

ii) We define typeing for pure $\lambda\mu$-terms (in Trm) through the following natural deduction system:

$$
\begin{align*}
(ax) : \quad & \Gamma, x: \delta \vdash x: \delta \mid \Delta \\
\text{(mu)} : \quad & \Gamma \vdash M: \kappa \rightarrow \nu \mid a: \kappa, \Delta \\
\text{(abs)} : \quad & \Gamma, x: \delta \vdash M: \kappa \rightarrow \nu \mid \Delta \\
\text{(app)} : \quad & \Gamma \vdash M: \kappa \rightarrow \nu \mid \Delta \\
\text{(\leq)} : \quad & \Gamma \vdash M: \delta \mid \Delta \quad \text{(} \delta \leq \delta' \text{)} \\
\text{(\wedge)} : \quad & \Gamma \vdash M: \delta \mid \Delta \quad \Gamma \vdash M: \delta' \mid \Delta \\
\end{align*}
$$

where κ in rules (abs) and (app)\footnote{We use (app) and (abs) to name the rules concerning λ-abstraction and application, rather than the more usual ($\rightarrow I$) and ($\rightarrow E$), since in our system there is no introduction or elimination of the \rightarrow type constructor.} is either a type in T_C or ω.

iii) We write $\Gamma \vdash M: \delta \mid \Delta$ whenever there exists a derivation built using the above rules that has this judgement in the bottom line, and $D :: \Gamma \vdash M: \delta \mid \Delta$ when we want to name that derivation. We write $\vdash M: \delta \mid \Delta$ when the variable context is empty, and $\Gamma \vdash M: \delta \mid \Delta$ when the name context is.

Note that we use a single name, (μ), for the two rules concerning μ-abstraction; which is the one actually used will always be clear from the context.

We extend Barendregt’s convention to judgements $\Gamma \vdash M: \delta \mid \Delta$ by seeing the variables that occur in Γ and names in Δ as binding occurrences over M as well; in particular, we can assume that no variable in Γ and no name in Δ is bound in M.

Definition 2.4

i) The relation \leq is naturally extended to bases as follows:

$\Gamma' \leq \Gamma$ iff $x: \delta \in \Gamma \Rightarrow \exists x: \delta' \in \Gamma'[\delta' \leq \delta]$.

The \leq relation on name contexts is defined in the same way.

ii) Given two bases Γ_1 and Γ_2, we define the basis $\Gamma_1 \wedge \Gamma_2$ as follows:

$$
\Gamma_1 \wedge \Gamma_2 \overset{\Delta}{=} \{ x: \delta_1 \wedge \delta_2 \mid x: \delta_1 \in \Gamma_1 \text{ \& } x: \delta_2 \in \Gamma_2 \} \cup \\
\{ x: \delta \mid x: \delta \in \Gamma_1 \text{ \& } x \notin \text{dom} (\Gamma_2) \} \cup \\
\{ x: \delta \mid x: \delta \in \Gamma_2 \text{ \& } x \notin \text{dom} (\Gamma_1) \}
$$

iii) The name context $\Delta_1 \wedge \Delta_2$ is constructed out of Δ_1 and Δ_2 in a similar way.

Trivially, $\text{dom} (\Gamma_1 \wedge \Gamma_2) = \text{dom} (\Gamma_1) \cup \text{dom} (\Gamma_2)$ and $\text{dom} (\Delta_1 \wedge \Delta_2) = \text{dom} (\Delta_1) \cup \text{dom} (\Delta_2)$. Moreover, it is straightforward to show that:

Proposition 2.5

$\Gamma_1 \wedge \Gamma_2 \leq \Gamma_i$ and $\Delta_1 \wedge \Delta_2 \leq \Delta_i$ for $i = 1, 2$.

We can also show that Weakening and Strengthening rules are implied by the system:
Lemma 2.6 (Weakening and Strengthening) The following rules are admissible:

\[(W) : \Gamma \vdash M : \delta \mid \Delta \quad (\Gamma' \leq \Gamma, \Delta' \leq \Delta)\]

\[(S) : \Gamma \vdash M : \delta \mid \Delta \quad (\Gamma' = \{ x : \delta \in \Gamma \mid x \in \text{fv}(M) \}, \Delta' = \{ \alpha : \kappa \in \Delta \mid \alpha \in \text{fn}(M) \})\]

The above lemma and Proposition 2.5 lead immediately to the following:

Corollary 2.7 If \(\Gamma_1 \vdash M : \delta \mid \Delta_1 \) then for any \(\Gamma_2, \Delta_2 : \Gamma_1 \land \Gamma_2 \vdash M : \delta \mid \Delta_1 \land \Delta_2 \).

Notice that, by Barendregt’s convention, the variables in \(\Gamma_2 \) and names in \(\Delta_2 \) are not bound in \(M \).

The following substitution results can be proved along the lines of similar ones in [6]:

Lemma 2.8 (Substitution Lemma)

i) \(\Gamma \vdash M [N / x] : \delta \mid \Delta \) with \(x \in \text{fv}(M) \), if and only if there exists \(\delta' \) such that \(\Gamma \vdash N : \delta' \mid \Delta \) and \(\Gamma, x : \delta' \vdash M : \delta \mid \Delta \).

ii) \(\Gamma \vdash M [\alpha \leftarrow L] : \delta \mid \alpha, x, \Delta \) with \(\alpha \in \text{fn}(M) \), if and only if there exists \(\delta' \) such that \(\Gamma \vdash L : \delta' \mid \Delta \), and \(\Gamma \vdash M : \delta \mid \alpha, \delta' \times \kappa, \Delta \).

2.2 Typeability implies Strong Normalisation

In this subsection we will show that – as can be expected of a well-defined notion of type assignment that does not type recursion and has no general rule that types all terms – all typeable terms are strongly normalising. Such a property does not hold for the system in [6], where, in fact, by means of types not allowed in the present system, it is possible to type the fixed-point constructor \(\lambda f. (\lambda x. f(xx))(\lambda x. f(xx)) \) in a non-trivial way, as shown by the following derivation:

\[
\begin{align*}
 f : \omega \times \omega \to \nu, x : \omega \vdash f : \omega \times \omega \to \nu & \quad (\text{ax}) \quad \text{f} : \omega \times \omega \to \nu, x : \omega \vdash xx : \omega \quad (\omega) \\
 f : \omega \times \omega \to \nu, x : \omega \vdash f(xx) : \omega \to \nu & \quad (\text{app}) \quad f : \omega \times \omega \to \nu \vdash f(x) : \omega \times \omega \to \nu \quad (\omega) \quad f : \omega \times \omega \to \nu \vdash \lambda x.f(xx) : \omega \to \nu \\
 f : \omega \times \omega \to \nu \vdash \lambda x.f(xx) : \omega \times \omega \to \nu & \quad (\text{app}) \quad f : \omega \times \omega \to \nu \vdash (\lambda x.f(xx))(\lambda x.f(xx)) : \omega \times \omega \to \nu \quad (\omega) \quad f : \omega \times \omega \to \nu \vdash (\lambda x.f(xx))(\lambda x.f(xx)) : (\omega \times \omega \to \nu) \times \omega \to \nu
\end{align*}
\]

Notice that this term does not have a normal form, so is not strongly normalisable.

Definition 2.9 The set \(\text{SN} \) of strongly normalisable terms is defined as usual as the set of all terms \(M \) such that no infinite reduction sequence out of \(M \) exists; we use \(\text{SN}(M) \) for \(M \in \text{SN} \), and \(\text{SN}^* \) for the set of finite stacks of terms in \(\text{SN} \).

The following is straightforward:

Proposition 2.10

i) If \(\text{SN}(xM) \) and \(\text{SN}(N) \), then \(\text{SN}(xM N) \).

3 We should perhaps point out that Barendregt’s convention, extended to judgements as we do here, is essential for the correctness of this result. By writing \(\Gamma' \vdash M : \delta \mid \Delta' \), we assume that \(\Gamma' \) and \(\Delta' \) do not contain statements for variables and names that occur bound in \(M \), so we do not allow contexts to be weakened by statements concerning bound names or variables. As a counter example, take \(\vdash \mu a. [a] \lambda x.x : (k \to \nu) \to k \to \nu \mid \) and \(\Gamma_2 = x : \delta, \Delta_2 = \alpha, \kappa \); we cannot derive \(x : \delta \vdash \mu a. [a] \lambda x.x : (k \to \nu) \to k \to \nu \mid \alpha, \kappa \).

This is also the case for systems for the \(\lambda \)-calculus; in past papers it has been claimed that, if \(\Gamma_1 \vdash_1 M : A \) and \(\Gamma_2 \vdash_1 N : B \) (without any restrictions), then also \(\Gamma_1 \land \Gamma_2 \vdash_1 M : A \) and \(\Gamma_1 \land \Gamma_2 \vdash_1 N : B \). This is incorrect for the same reason: take \(\vdash_1 \lambda y.y : A \to A \) and \(y : (A \to A) \land A \vdash yy : A \); we cannot derive \(y : (A \to A) \land A \vdash_1 \lambda y.y : A \to A \).
ii) If \(SN(M[N/x]\overline{P}) \) and \(SN(N) \), then \(SN((\lambda x.M)N\overline{P}) \).

iii) If \(SN(M) \), then \(SN(\mu a.[\beta]M) \).

iv) If \(SN(\mu a.[\beta]M[a \leftarrow \overline{N}\overline{L}]) \) and \(SN(\overline{N}) \), then \(SN((\mu a.[\beta]M)\overline{N}\overline{L}) \).

v) If \(SN(\mu a.[\alpha]M[a \leftarrow \overline{N}\overline{L}]) \), then \(SN((\mu a.[\alpha]M)\overline{N}\overline{L}) \).

Definition 2.11 (Type Interpretation)

i) We define a map

\[
\| \cdot \| : (T_D \rightarrow \wp(\text{Trm})) + (T_C \rightarrow \wp(\text{Trm}^*))
\]

(where \(\wp \) represents the powerset constructor) interpreting term types and continuation-stack types as, respectively, sets of terms and sets of stacks, as follows:

\[
\|v\| = \|\omega \rightarrow v\| = SN
\]

\[
\|\kappa \rightarrow v\| = \{ M \in \text{Trm} \mid \forall \overline{L} \in \|\kappa\| [M\overline{L} \in \|v\|] \}
\]

\[
\|\delta \times \omega\| = \{ N : \overline{L} \mid N \in \|\delta\|, \overline{L} \in SN^* \}
\]

\[
\|\delta \times \kappa\| = \{ N : \overline{L} \mid N \in \|\delta\|, \overline{L} \in \|\kappa\| \}
\]

\[
\|\sigma \land \tau\| = \|\sigma\| \cap \|\tau\|
\]

ii) We define the length of a stack type, \(|\cdot| : T_C \rightarrow \mathbb{N} \), as follows:

\[
|\delta \times \omega| = 1
\]

\[
|\delta \times \kappa| = 1 + |\kappa|
\]

\[
|\kappa_1 \land \kappa_2| = \max |\kappa_1|, |\kappa_2|
\]

By this interpretation, the elements of \(\|\delta_1 \times \cdots \times \delta_n \times \omega\| \) are stacks of strongly normalisable terms that have an arbitrary length greater than or equal to \(n \). It is easy to check that \(|\kappa| \) returns the minimal length of the stacks in \(\|\kappa\| \).

We can show:

Lemma 2.12 For any \(\delta \in T_D \) and \(\kappa \in T_C \):

i) \(\|\delta\| \subseteq SN \) and \(\|\kappa\| \subseteq SN^* \).

ii) \(x\overline{N} \in SN \Rightarrow x\overline{N} \in \|\delta\| \).

iii) \(\overline{x} = x_1 : \ldots : x_n \in \|\kappa\|, \) for all \(n \) such that \(n \geq |\kappa| \).

Proof. By simultaneous induction on the structure of types, using Definition 2.11. We show some of the cases.

i) \((\kappa \rightarrow v) : M \in \|\kappa \rightarrow v\| \Rightarrow (IH((ii))) \)

\(\overline{x} \in \|\kappa\| \) \& \(M \in \|\kappa \rightarrow v\| \Rightarrow (2.11) \)

\(M\overline{x} \in \|v\| \Rightarrow (2.11) \)

\(M\overline{x} \in SN \Rightarrow M \in SN \).

\((\delta \times \omega) : M \in \|\delta \times \omega\| \Rightarrow (2.11) \)

\(M = N : \overline{L} \land N \in \|\delta\| \land \overline{L} \in SN \Rightarrow (IH((i))) \)

\(N \in SN \land \overline{L} \in SN^* \Rightarrow N : \overline{L} \in SN^* \).

\((\delta \times \kappa) : M \in \|\delta \times \kappa\| \Rightarrow (2.11) \)

\(M = N : \overline{L} \land N \in \|\delta\| \land \overline{L} \in \|\kappa\| \Rightarrow (IH((i))) \)

\(N \in SN \land \overline{L} \in SN^* \Rightarrow N : \overline{L} \in SN^* \).

ii) \((\kappa \rightarrow v) : x\overline{N} \in SN \Rightarrow (2.11 \& IH((i))) \)

\(\overline{L} \in \|\kappa\| \Rightarrow x\overline{N} \in SN \land \overline{L} \in SN^* \Rightarrow (2.10) \)

\(\overline{L} \in \|\kappa\| \Rightarrow x\overline{NL} \in SN \Rightarrow (IH((ii))) \)

\(\overline{L} \in \|\kappa\| \Rightarrow x\overline{NL} \in \|v\| \Rightarrow (2.11) \) \(x\overline{N} \in \|\kappa \rightarrow v\| \).
Corollary 2.13 For any \(x \in \text{Var} \) and any \(\delta \in \mathcal{T}_D \): \(x \in \| \delta \| \).

The following lemma shows that our type interpretation is closed under the type inclusion relation.

Lemma 2.14 For all \(\sigma, \tau \in \mathcal{T} \): if \(\sigma \leq \tau \), then \(\| \sigma \| \subseteq \| \tau \| \).

Proof. By induction on the definition of \(\leq \). We show some of relevant cases.

\[
(\delta_1 \times \omega) \land (\delta_2 \times \kappa) \leq (\delta_1 \land \delta_2) \times \kappa) : \| (\delta_1 \times \omega) \land (\delta_2 \times \kappa) \| = \{ M : L | M \in \| \delta_1 \| \land L \in SN^* \} \cap \{ M : L | M \in \| \delta_2 \| \land L \in \| \kappa \| \} = (\| \kappa \| \subseteq SN^* \text{ by 2.12 (i)})
\]

Lemma 2.15 For any \(\delta, \delta' \in \mathcal{T}_D \) and \(\kappa \in \mathcal{T}_C \):

i) If \(M[N/x]P \in \| \delta \| \) and \(N \in \| \delta' \| \), then \((\lambda x. M)NP \in \| \delta \| \).

ii) If \(\mu \alpha. [\beta]M[\alpha \leftarrow N]P \in \| \delta \| \) and \(N \in \| \kappa \| \), then \((\mu \alpha.[\beta]M)NP \in \| \delta \| \).

iii) If \(\mu \alpha.[\alpha]M[\alpha \leftarrow N]NP \in \| \delta \| \), then \((\mu \alpha.[\alpha]M)NP \in \| \delta \| \).

Proof. By induction on the structure of types, using 2.10, 2.11 and 2.12.

In Theorem 2.18 we will show that all typeable terms are strongly normalisable. In order to achieve that, we first show, in Lemma 2.17, that for any a term \(M \) typeable with \(\delta \), any full substitution instance \(M_\xi \) (i.e. replacing all free term variables by terms, and feeding stacks to all free names) is an element of the interpretation of \(\delta \), which by Lemma 2.12 implies that \(M_\xi \) is strongly normalisable. We need these substitutions to be applied all ‘in one go’, so define a notion of parallel substitution. The main result is then obtained by taking the substitution that replaces term variables by themselves and names by stacks of term variables. The reason we first prove the result for any substitution is that, in the proof of Lemma 2.17, in the case for \(\lambda x.M \) and \(\mu \alpha.Q \) the substitution is extended, by replacing the bound variable or name with a normal term (or stack).

Definition 2.16 i) A partial mapping \(\xi : (\text{Var} \rightarrow \text{Trm}) + (\text{Name} \rightarrow \text{Trm}^*) \) is a parallel substitution if, for every \(p, q \in \text{dom}(\xi) \), if \(p \neq q \) then \(p \notin f^v(\xi q) \) and \(p \notin f^t(\xi q) \).
ii) Borrowing a notation for valuations, for a parallel substitution \(\xi \) we define the application of \(\xi \) to a term by:

\[
 \begin{align*}
 ([\alpha] M_\xi) & \triangleq [\alpha] M \xi L & \text{if } \xi \alpha = L \\
 (\beta M_\xi) & \triangleq [\beta] M_\xi & \text{if } \beta \not\in \text{dom}(\xi) \\
 (\mu \beta, Q)_\xi & \triangleq \mu \beta, Q_\xi \\
 x_\xi & \triangleq N & \text{if } \xi x = N \\
 y_\xi & \triangleq y & \text{if } y \not\in \text{dom}(\xi) \\
 (\lambda x, M)_\xi & \triangleq \lambda x M_\xi \\
 (MN)_\xi & \triangleq M_\xi N_\xi
 \end{align*}
\]

iii) We define \(\xi[N/x] \) and \(\xi[\alpha \leftarrow L] \) by, respectively,

\[
 \xi[N/x] y \triangleq \begin{cases}
 N & \text{if } y = x \\
 \xi y & \text{otherwise}
 \end{cases}
\]

\[
\xi[\alpha \leftarrow L] \beta \triangleq \begin{cases}
 L & \text{if } \alpha = \beta \\
 \xi \beta & \text{otherwise}
 \end{cases}
\]

iv) We will say that \(\xi \) extends \(\Gamma \) and \(\Delta \), if, for all \(x: \delta \in \Gamma \) and \(\alpha: \kappa \in \Delta \), we have, respectively, \(\xi (x) \in \parallel \delta \parallel \) and \(\xi (\alpha) \in \parallel \kappa \parallel \).

Notice that we do allow a variable to appear in its own image under \(\xi \). Since \(x \) does not appear in \(M[N/x] \), this does not violate Barendregt’s convention.

Lemma 2.17 (Replacement Lemma) Let \(\xi \) be a parallel substitution that extends \(\Gamma \) and \(\Delta \). Then:

\[
\text{if } \Gamma \vdash M: \delta \mid \Delta \text{ then } M_\xi \in \parallel \delta \parallel.
\]

Proof. By induction on the structure of derivations. We show some more illustrative cases.

(\text{abs}) : Then \(M = \lambda x. M' \), \(\delta = \delta' \times \kappa \rightarrow \nu \), and \(\Gamma, x: \delta' \vdash M': \kappa \rightarrow \nu \mid \Delta \). Take \(N \in \parallel \delta' \parallel \); since \(x \) is bound, by Barendregt’s convention we can assume that it does not occur free in the image of \(\xi \), so \(\xi[N/x] \) is a well-defined parallel substitution that extends \(\Gamma, x: \delta' \) and \(\Delta \). Then by induction, we have \(M'_\xi[N/x] \in \parallel \kappa \rightarrow \nu \parallel \). Since \(x \) does not occur free in the image of \(\xi \), \(M'_\xi[N/x] = M'_\xi[N/x] \), so also \(M'_\xi[N/x] \in \parallel \kappa \rightarrow \nu \parallel \). By Lemma 2.15((i)), also \((x.M'_\xi)N \in \parallel \kappa \rightarrow \nu \parallel \). By definition of \(\parallel \kappa \rightarrow \nu \parallel \), for any \(L \in \parallel \kappa \parallel \) we have \((\lambda x.M'_\xi)NL \in \parallel \nu \parallel \); notice that \(N:L \in \parallel \delta \times \kappa \parallel \), so \((\lambda x.M'_\xi)N \in \parallel \delta \times \kappa \rightarrow \nu \parallel \).

(\mu) : Then \(M = \mu \alpha. [\beta] M' \), and \(\delta = \kappa \rightarrow \nu \). We distinguish two different sub-cases.

\(\alpha = \beta \) : Then \(M = \mu \alpha. [\alpha] M' \), \(\delta = \kappa \rightarrow \nu \), and \(\Gamma \vdash M': \kappa \rightarrow \nu \mid \alpha: \kappa, \Delta \). Take \(L \in \parallel \kappa \parallel \); since \(\alpha \) is bound in \(M \), we can assume it does not occur free in the image of \(\xi \), so \(\xi[\alpha \leftarrow L] \) is a well-defined parallel substitution that extends \(\Gamma \) and \(\Delta, \alpha; \kappa \), and by induction, \(M'_{\xi[\alpha \leftarrow L]} \in \parallel \kappa \rightarrow \nu \parallel \). Since \(\alpha \) does not occur free in the image of \(\xi \), \(M'_{\xi[\alpha \leftarrow L]} = M'_{\xi[\alpha \leftarrow L]} \), so we have \(M'_{\xi[\alpha \leftarrow L]} \in \parallel \kappa \rightarrow \nu \parallel \), and therefore \(M'_{\xi[\alpha \leftarrow L]} L \in \parallel \nu \parallel \). Then by Definition 2.11, \(SN'(M'_{\xi[\alpha \leftarrow L]} L) \), but then also \(SN'(\mu \alpha. [\alpha] M'_{\xi[\alpha \leftarrow L]} L) \), by Lemma 2.10((iii)). So \(\mu \alpha. [\alpha] M'_{\xi[\alpha \leftarrow L]} L \in \parallel \nu \parallel \). Then by Lemma 2.15((iii)), \((\mu \alpha. [\alpha] M'_{\xi[\alpha \leftarrow L]} L) \in \parallel \nu \parallel \); so \((\mu \alpha. [\alpha] M'_{\xi[\alpha \leftarrow L]} \in \parallel \kappa \rightarrow \nu \parallel \).

\(\alpha \not= \beta \) : Then \(\Delta = \beta: \kappa', \Delta' \), and \(\Gamma \vdash M': \kappa' \rightarrow \nu \mid \alpha: \kappa, \beta: \kappa', \Delta' \). Assume \(L \in \parallel \kappa \parallel \), then \(\xi[\alpha \leftarrow L] \) extends \(\Gamma \) and \(\alpha: \kappa, \beta: \kappa', \Delta' \). Then, by induction, \(M'_{\xi[\alpha \leftarrow L]} \in \parallel \kappa' \rightarrow \nu \parallel \). Now let \(Q \in \parallel \kappa \parallel \), then \(M'_{\xi[\alpha \leftarrow L]} Q \in \parallel \nu \parallel \) and then also \((M'Q)_{\xi[\alpha \leftarrow L]} \in \parallel \nu \parallel \).

Then \(SN'(M'Q)_{\xi[\alpha \leftarrow L]} \) by Definition 2.11, and \(SN'(\mu \alpha. [\beta] (M'Q)_{\xi[\alpha \leftarrow L]} \) by Lemma 2.10((iii)), so, again by Definition 2.11, \(\mu \alpha. [\beta] (M'Q)_{\xi[\alpha \leftarrow L]} \in \parallel \nu \parallel \). As in the previous part, \(\alpha \) is not free in the image of \(\xi \), and therefore also \(\mu \alpha. [\beta] (M'Q)_{\xi[\alpha \leftarrow L]} \in \parallel \nu \parallel \).
Then, by Lemma 2.15 ((iii)), \((\mu a.\beta)(M'Q)_Q)_L \in \|\nu\|. Notice that \([\beta]\)M'Q = [\beta]M'Q[\beta \leftarrow Q]; since \(\xi\beta = Q\), we can infer that \([\beta]\)M'Q = [\beta]M'Q, so \((\mu a.\beta)M'Q)_L \in \|\nu\|. But then
\((\mu a.\beta)M')_L \in \|\kappa \rightarrow \nu\|.

We now come to the main result of this section, that states that all terms typeable in our system are strongly normalisable.

Theorem 2.18 (Typeable terms are \(SN\)) If \(\Gamma \vdash M: \delta | \Delta\) for some \(\Gamma, \Delta\) and \(\delta\), then \(M \in SN\).

Proof. Let \(\xi\) be a parallel substitution such that
\[
\begin{align*}
\xi(x) &= x & \text{for } x \in \text{dom}(\Gamma) \\
\xi(a) &= \bar{\nu}_a & \text{for } a \in \text{dom}(\Delta)
\end{align*}
\]
where the length of the stack \(\bar{\nu}_a\) is \(|\kappa|\) if \(a: \kappa \in \Delta\) (notice that \(\xi\) is well defined). By Lemma 2.12, \(\xi\) extends \(\Gamma\) and \(\Delta\). Hence, by Lemma 2.17, \(M_\xi \in \|\delta\|\), and then \(M_\xi \in SN\) by Lemma 2.12 ((ii)).

Now
\[
M_\xi \equiv M[x_1/x_1, \ldots, x_n/x_n, \alpha_1 \leftarrow \bar{\nu}_{a_1}, \ldots, \alpha_m \leftarrow \bar{\nu}_{a_m}] = M[\alpha_1 \leftarrow \bar{\nu}_{a_1}, \ldots, \alpha_m \leftarrow \bar{\nu}_{a_m}].
\]
Then, by Proposition 2.10, for any \(\bar{\beta}\) also \((\mu a_1.\beta_1) \cdots \mu a_m.\beta_m)\) \(\bar{\nu}_{a_1} \cdots \bar{\nu}_{a_m} \in SN\), and therefore also \(M \in SN\).

2.3 Strongly Normalising Terms are Typeable

In this section we will show the counterpart of the previous result, namely that all strongly normalisable terms are typeable in our intersection system. This result has been claimed in many papers \[22, 2\], but has rarely been proven completely.

First we describe the shape of the terms in normal form.

Definition 2.19 (Normal Forms) The set \(N \subseteq \text{tm}\) of normal forms is defined by the grammar:
\[
N ::= xN_1 \cdots N_k | \lambda x. N | \mu a. [\beta]N
\]
It is straightforward to verify that the terms in \(N\) are precisely the irreducible ones.

We can show that all terms in \(N\) are typeable.

Lemma 2.20 If \(N \in N\) then there exist \(\Gamma, \Delta,\) and a type \(\kappa \rightarrow \nu\) such that \(\Gamma \vdash N: \kappa \rightarrow \nu | \Delta\).

Proof. By induction on the definition of \(N\). We show the most relevant cases.
\(N \equiv xN_1 \ldots N_k\): Since \(N_1, \ldots, N_k \in N\), by induction we have that, for all \(i \leq k\) there exist \(\Gamma_i\), \(\Delta_i\) and \(\delta_i\) such that \(\Gamma_i \vdash N_i: \delta_i | \Delta_i\) (the structure of each \(\delta_i\) plays no role in this part). Take
\[
\Gamma = \Gamma_1 \land \cdots \land \Gamma_k \land x: (\delta_1 \times \cdots \times \delta_k \times \delta \times \omega) \rightarrow \nu, \text{ and } \Delta = \Delta_1 \land \cdots \land \Delta_k.
\]
where \(\delta\) is any element of \(T_D\). Then, by Lemma 2.6, \(\Gamma \vdash N_i: \delta_i | \Delta\) for all \(i \leq n\), and \(\Gamma \vdash x: (\delta_1 \times \cdots \times \delta_k \times \delta \times \omega) \rightarrow \nu | \Delta\). By repeated application of \((app)\) we get \(\Gamma \vdash xN_1 \cdots N_k: \kappa \rightarrow \nu | \Delta\) for \(\kappa = \delta \times \omega\).
\(N \equiv \mu a. [\beta]N'\): By induction, \(\Gamma \vdash N': \kappa \rightarrow \nu | \Delta\). We distinguish two cases:
\((\alpha \equiv \beta)\) : In case \(\alpha \in \text{fn} \,(N')\) and \(\Delta = \alpha' : \kappa', \Delta'\), we can construct:

\[
\frac{\Gamma \vdash N' : \kappa \rightarrow \nu | \alpha : \kappa', \Delta'}{\Gamma \vdash \mu \alpha \,[\alpha \, \mathbf{N}'] : \kappa \rightarrow \nu | \Delta'} \quad (\mu)
\]

In case \(\alpha \not\in \text{fn} \,(N')\), we can construct

\[
\frac{\Gamma \vdash N' : \kappa \rightarrow \nu | \Delta \quad \text{and} \quad \Gamma \vdash \mu \alpha [\alpha \, \mathbf{N}'] : \kappa \rightarrow \nu | \Delta'}{\Gamma \vdash N' : \kappa \rightarrow \nu | \alpha : \kappa', \Delta'} \quad (W)
\]

\((\alpha \neq \beta)\) : We can proceed as in the previous case, obtaining now \(\Gamma \vdash N : \kappa \rightarrow \nu \mid \alpha : \kappa', \beta : \kappa', \Delta'\). So by rule \((\mu)\) we get \(\Gamma \vdash \mu \alpha [\beta] N' : \kappa \rightarrow \nu \mid \beta : \kappa', \Delta'\).

We will now show that typeing is closed under expansion with respect to both logical and structural reduction, with the proviso that the term (stack) that gets substituted is typeable as well in the same contexts.

Lemma 2.21 (Contractum Expansion)

i) If \(\Gamma \vdash M[N / x] : \delta \mid \Delta\) and \(\Gamma \vdash N : \delta' \mid \Delta\) then \(\Gamma \vdash (\lambda x \, M) N : \delta \mid \Delta\).

ii) If \(\Gamma \vdash \mu \alpha [\beta] M[\alpha \leftarrow N] : \delta \mid \Delta\) and \(\Gamma \vdash N : \delta' \mid \Delta\) then \(\Gamma \vdash (\mu \alpha [\beta] M) N : \delta \mid \Delta\).

Proof.

i) Much the same as the similar result for the intersection systems for the \(\lambda\)-calculus.

ii) We need to consider two different cases:

\((\alpha \not\in \text{fn} \,(M))\) : Then \([\beta] (\alpha \leftarrow N) \equiv \beta M\) and \(\alpha \neq \beta\). We consider all the \(n\) minimal sub-derivations \((n \geq 1)\) having \(\mu \alpha [\beta] M\) as subject, from which conclusions we derive \(\Gamma \vdash \mu \alpha [\beta] M[\alpha \leftarrow N] : \delta \mid \Delta\) by applying any number of \((\leq)\) and \((\wedge)\) rules.

The last step in each of these derivations is of the shape:

\[
\frac{\Gamma \vdash M : \kappa \rightarrow \nu \mid \beta \kappa, \Delta'}{\Gamma \vdash \mu \alpha [\beta] M : \kappa \rightarrow \nu \mid \beta \kappa, \Delta'} \quad (\mu)
\]

where \(\Delta = \beta \kappa, \Delta'\). Since \(\alpha \not\in \text{fn} \,(M)\), by strengthening (Lemma 2.6) we can remove \(\alpha : \kappa_i\) from the name context, so also \(\Gamma \vdash M : \kappa \rightarrow \nu \mid \beta \kappa, \Delta'\); then, by weakening (Lemma 2.6), we can add \(\alpha : \delta' \times \kappa_i\), so \(\Gamma \vdash M : \kappa \rightarrow \nu \mid \alpha : \delta' \times \kappa_i, \beta \kappa, \Delta'\), and then we can construct

\[
\frac{\Gamma \vdash M : \kappa \rightarrow \nu \mid \alpha : \delta' \times \kappa_i, \beta \kappa, \Delta'}{\Gamma \vdash \mu \alpha [\beta] M : \delta' \times \kappa_i \rightarrow \nu \mid \beta \kappa, \Delta'} \quad (\mu)
\]

\[
\frac{\Gamma \vdash \mu \alpha [\beta] M N : \kappa_i \rightarrow \nu \mid \Delta}{\Gamma \vdash N : \delta' \mid \Delta \quad \text{(app)}}
\]

from which it is possible to derive \(\Gamma \vdash (\mu \alpha [\beta] M) N : \delta \mid \Delta\) by applying the same \((\leq)\) and \((\wedge)\) rules mentioned above.

\((\alpha \in \text{fn} \,(M))\) : We distinguish two further cases:
\((\alpha = \beta)\): Then \(((\beta)[M][\alpha \leftarrow N]) \equiv ([\alpha][M][\alpha \leftarrow N]) \equiv ([\alpha](M[\alpha \leftarrow N])N);\) we can assume, without loss of generality, that \(\delta = (\kappa_1 \rightarrow \nu) \wedge \cdots \wedge (\kappa_n \rightarrow \nu),\) and that for all \(i \leq n\) there are sub-derivations constructed like

\[
\frac{\Gamma \vdash M[\alpha \leftarrow N] : \delta_i \times \kappa_i \rightarrow \nu | \alpha : \kappa_i \Delta}{\Gamma \vdash (M[\alpha \leftarrow N])N : \kappa_i \rightarrow \nu | \alpha : \kappa_i \Delta}
\]

\[
\frac{\Gamma \vdash \mu a.[\alpha](M[\alpha \leftarrow N])N : \kappa_i \rightarrow \nu | \Delta}{\Gamma \vdash \mu a.[\alpha]M : \kappa_i \rightarrow \nu | \Delta}
\]

Then there exists \(\delta'_i\) such that \(\Gamma \vdash N : \delta'_i | \Delta,\) and \(\Gamma \vdash M : \delta_i \times \kappa_i \rightarrow \nu | \alpha : \delta'_i \times \kappa_i \Delta\) by Lemma 2.8 ((ii)); so we can build the derivation:

\[
\frac{\Gamma \vdash M : \delta_i \times \kappa_i \rightarrow \nu | \alpha : \delta'_i \times \kappa_i \Delta}{\Gamma \vdash M : \delta_i \wedge \delta'_i \times \kappa_i \rightarrow \nu | \alpha : \delta'_i \times \kappa_i \Delta}\]

\[
\frac{\Gamma \vdash M : \delta_i \wedge \delta'_i \times \kappa_i \rightarrow \nu | \alpha : \delta'_i \times \kappa_i \Delta}{\Gamma \vdash \mu a.[\alpha]M : \delta_i \times \delta'_i \times \kappa_i \rightarrow \nu | \Delta}
\]

\[
\frac{\Gamma \vdash \mu a.[\alpha]M : \delta_i \times \delta'_i \times \kappa_i \rightarrow \nu | \Delta}{\Gamma \vdash (\mu a.[\alpha]M)N : \kappa_i \rightarrow \nu | \Delta}
\]

We derive \(\Gamma \vdash (\mu a.[\alpha]M)N : \delta | \Delta\) by rule \((\wedge)\).

\((\alpha \neq \beta)\): Then \(((\beta)[M][\alpha \leftarrow N]) \equiv (\beta)[M[\alpha \leftarrow N]]\); as above \(\delta = (\kappa_1 \rightarrow \nu) \wedge \cdots \wedge (\kappa_n \rightarrow \nu),\) and for all \(i \leq n\) there are derivations structured like:

\[
\frac{\Gamma \vdash M[\alpha \leftarrow N] : \kappa'_i \rightarrow \nu | \alpha : \kappa_i \beta : \kappa'_i \Delta'}{\Gamma \vdash \mu a.[\beta](M[\alpha \leftarrow N]) : \kappa_i \rightarrow \nu | \beta : \kappa'_i \Delta'}\]

where \(\Delta = \beta : \kappa'_i, \Delta'.\) As above, by Lemma 2.8 ((iii)) there exists \(\delta_i\) such that both \(\Gamma \vdash N : \delta_i | \beta : \kappa'_i, \Delta'\) and \(\Gamma \vdash M : \kappa'_i \rightarrow \nu | \alpha : \delta_i \times \kappa_i \beta : \kappa'_i, \Delta'.\) We can then construct:

\[
\frac{\Gamma \vdash M : \kappa'_i \rightarrow \nu | \alpha : \delta_i \times \kappa_i \beta : \kappa'_i, \Delta'}{\Gamma \vdash \mu a.[\beta]M : \delta_i \times \kappa_i \beta : \kappa'_i, \Delta'}\]

\[
\frac{\Gamma \vdash \mu a.[\beta]M : \delta_i \times \kappa_i \beta : \kappa'_i, \Delta'}{\Gamma \vdash (\mu a.[\beta]M)N : \kappa_i \rightarrow \nu | \Delta}
\]

As above, we conclude that \(\Gamma \vdash (\mu a.[\beta]M)N : \delta | \Delta\) by rule \((\wedge)\).

We will now show that all strongly normalisable terms are typeable in our system. The proof of the crucial lemma for this result as presented below (Lemma 2.23) goes by induction on the left-most outer-most reduction path.

Definition 2.22 An occurrence of a redex \(R = (\lambda x)PQ\) or \((\mu a.[\beta]P)Q\) in a term \(M\) is called the left-most outer-most redex of \(M\) (lor \(M\)), if and only if:

i) there is no redex \(R'\) in \(M\) such that \(R' = C[R]\) (outer-most);

ii) there is no redex \(R'\) in \(M\) such that \(M = C_0[C_1[R'] C_2[R]]\) (left-most).

\(M \rightarrow_{lor} N\) is used to indicate that \(M\) reduces to \(N\) by contracting lor \(M\).

The following lemmaformulates a subject expansion result for our system with respect to left-most outer-most reduction. A proof for this property in the context of strict intersection
Lemma 2.23 Let $M \rightarrow \text{lor} N$, $\text{lor} (M) = RQ$, $\Gamma_1 \vdash N : \delta_1 \mid \Delta_1$ with δ_1 not an intersection, and $\Gamma_2 \vdash Q : \delta_2 \mid \Delta_2$, then there exist Γ_3, Δ_3 and δ_3 such that $\Gamma_3 \leq \Gamma_1$, $\Delta_3 \leq \Delta_1$, $\delta_1 \leq \delta_3$, and $\Gamma_3 \vdash M : \delta_3 \mid \Delta_3$.

$M = VP_1 \cdots P_n$: Then either:

a) V is a redex $(\lambda y.P)Q$, so $\text{lor} (M) = V$; let $V' \equiv P[Q/y]$; or

b) V is a redex $(\mu a.[\beta]P)Q$, so $\text{lor} (M) = V$; let $V' \equiv \mu a.[\beta]P[a \leftarrow Q]$; or

c) $V \equiv z$ and there is an $i \in \mathfrak{u}$ such that $\text{lor} (M) = \text{lor} (P_i)$, $N \equiv zP_1 \cdots P'_i \cdots P_n$, and

$P_i \rightarrow \text{lor} P'_i$; let $V' = z$.

By assumption $\delta_1 = \kappa_1 \rightarrow \nu$. Then there are $\delta_i (j \in \mathfrak{u})$, such that $\Gamma_1 \vdash V' : \delta'_1 \times \cdots \times \delta'_n \times \kappa_1 \rightarrow \nu \mid \Delta_1$ and $\Gamma_1 \vdash \delta_i \mid \Delta_1$, for all $i \in \mathfrak{u}$.

We distinguish:

a) $V' \equiv P[Q/y]$, where the substitution is capture avoiding, so all free variables in Q are free in $P[Q/y]$ when $y \notin \text{fv} (P)$, and we can assume that Γ_2 and Δ_2 do not have types for bound variables and names in P. Let $\Gamma_3 = \Gamma_1 \wedge \Gamma_2$ and $\Delta_3 = \Delta_1 \wedge \Delta_2$, then by Corollary 2.7 and Lemma 2.21, $\Gamma_3 \vdash (\lambda y.P)Q : \delta'_1 \times \cdots \times \delta'_n \times \kappa_1 \rightarrow \nu \mid \Delta_3$.

b) $V' \equiv \mu a.[\beta]P[a \leftarrow Q]$; we can assume that Γ_2 and Δ_2 do not have types for bound variables and names in $\mu a.[\beta]P$. Let $\Gamma_3 = \Gamma_1 \wedge \Gamma_2$ and $\Delta_3 = \Delta_1 \wedge \Delta_2$, then by Corollary 2.7 and Lemma 2.21, $\Gamma_3 \vdash (\mu a.[\beta]P)Q : \delta'_1 \times \cdots \times \delta'_n \times \kappa_1 \rightarrow \nu \mid \Delta_3$.

c) $V' \equiv z$. Then, by induction, there are Γ', Δ', δ'_j such that $\delta''_j \leq \delta'_j$, and $\Gamma' \vdash P_j : \psi_j \mid \Delta'$.

Take $\Gamma_3 = \Gamma_1 \wedge \Gamma'$, $z : \delta'_1 \times \cdots \times \delta''_n \times \kappa_1 \rightarrow \nu$, and $\Delta_3 = \Delta_1 \wedge \Delta'$, then

$$\Gamma_3 \vdash z : \delta'_1 \times \cdots \times \delta''_n \times \kappa_1 \rightarrow \nu \mid \Delta_3.$$

In all cases, $\Gamma_3 \leq \Gamma_1$, $\Delta_3 \leq \Delta_1$, and $\Gamma_3 \vdash VP_1 \cdots P_n : \delta \mid \Delta_3$.

$M = \lambda y.M'$: If $M \rightarrow \text{lor} N$, then $N = \lambda y.N'$ and $M' \rightarrow \text{lor} N'$. Then there exists δ and κ such that $\delta_1 = \delta \times \kappa \rightarrow \nu$, and $\Gamma_1, y : \delta \vdash N' : \kappa \rightarrow \nu \mid \Delta_1$. By induction, there exists $\Gamma' \leq \Gamma_1$, $\Delta' \leq \Delta_1$, $\delta' \leq \delta$, and $\kappa' \leq \kappa$ such that $\Gamma', y : \delta' \vdash M' : \kappa' \rightarrow \nu \mid \Delta'$. Then, by rule (abs), $\Gamma' \vdash \lambda y.M' : \delta' \times \kappa' \rightarrow \nu \mid \Delta'$. Notice that $\delta \times \kappa \rightarrow \nu \leq \delta' \times \kappa' \rightarrow \nu$; take $\Gamma_3 = \Gamma'$, $\Delta_3 = \Delta'$, and $\delta_3 = \delta' \times \kappa'$.

$M = \mu a.[\beta]M'$: If $M \rightarrow \text{lor} N$, then $N = \mu a.[\beta]N'$ and $M' \rightarrow \text{lor} N'$. Then there exists κ_1 and κ_2 such that $\delta_1 = \kappa_1 \rightarrow \nu$, $\Delta_1 = \alpha : \kappa_1, \Delta_1'$ and $\Gamma_1 \vdash N' : \kappa_2 \rightarrow \nu \mid \beta : \kappa_2, \Delta_1'$. By induction, there exists $\Gamma' \leq \Gamma_1$, $\Delta' \leq \Delta_1$, $\kappa' \leq \kappa_1$ and $\kappa'' \leq \kappa_2$ such that $\Gamma' \vdash M' : \kappa'' \rightarrow \nu \mid \alpha : \kappa', \Delta'$. Then, by rule ($\mu$), $\Gamma' \vdash \mu a.[\beta]M' : \kappa'' \rightarrow \nu \mid \beta : \kappa'', \Delta'$. Notice that $\kappa_1 \rightarrow \nu \leq \kappa'' \rightarrow \nu$, and $\beta : \kappa'', \Delta' \leq \beta : \kappa_1, \Delta_1'$; take $\Gamma_3 = \Gamma'$, $\Delta_3 = \beta : \kappa'', \Delta'$, and $\delta_3 = \kappa' \rightarrow \nu$.

$M = \mu a.[\alpha]M'$: If $M \rightarrow \text{lor} N$, then $N = \mu a.[\alpha]N'$ and $M' \rightarrow \text{lor} N'$. Then there exists κ such that $\delta_1 = \kappa \rightarrow \nu$, $\Delta_1 = \alpha : \kappa, \Delta_1'$ and $\Gamma_1 \vdash N' : \kappa \rightarrow \nu \mid \alpha : \kappa, \Delta_1'$. By induction, there exists $\Gamma' \leq \Gamma_1$, $\Delta' \leq \Delta_1$, $\kappa_1 \leq \kappa, \kappa_2 \leq \kappa$ such that $\Gamma' \vdash M' : \kappa_2 \rightarrow \nu \mid \alpha : \kappa_1, \Delta'$. Take $\kappa' = \kappa_1 \wedge \kappa_2$, then by weakening and rule (≤), also $\Gamma' \vdash M' : \kappa' \rightarrow \nu \mid \alpha : \kappa', \Delta'$. Then, by rule ($\mu$), $\Gamma' \vdash \mu a.[\alpha]M' : \kappa' \rightarrow \nu \mid \Delta'$. Notice that $\kappa \rightarrow \nu \leq \kappa' \rightarrow \nu$; take $\Gamma_3 = \Gamma'$, $\Delta_3 = \Delta'$, and $\delta_3 = \kappa' \rightarrow \nu$. ■

We can now show that all strongly normalisable terms are typeable in our system.

Theorem 2.24 (Typeability of SN-Terms) For all $M \in SN$ there exist Γ and Δ and a type δ such that $\Gamma \vdash M : \delta \mid \Delta$.

Proof. By induction on the maximum of the lengths of reduction sequences for a strongly normalisable term to its normal form (denoted by $\#(M)$).
i) If \(\#(M) = 0\), then \(M\) is in normal form, and by Lemma 2.20, there exist \(\Gamma\) and \(\delta\) such that \(\Gamma \vdash M : \delta \mid \Delta\).

ii) If \(\#(M) \geq 1\), so \(M\) contains a redex, then let \(M \rightarrow_{\beta} N\) by contracting \(PQ\). Then \(\#(N) < \#(M)\), and \(\#(Q) < \#(M)\) (since \(Q\) is a proper subterm of a redex in \(M\)), so by induction \(\Gamma \vdash N : \delta_1 \mid \Delta\) and \(\Gamma' \vdash Q : \delta_2 \mid \Delta\), for some \(\Gamma, \Gamma', \delta_1,\) and \(\delta_2\). Then, by Lemma 2.23, there exist \(\Gamma_1, \Delta_1\) and \(\delta'\) such that \(\Gamma_1 \vdash M : \delta' \mid \Delta_1\).

In the following section we will prove strong normalisation for terms typeable in the propositional fragment of Parigot’s logical system \[20\] via an interpretation in our system.

3 Interpretation of Parigot’s Logical System

We use a version of Parigot’s logical system (as presented in \[20\]) which is equivalent to the original one if only terms (so not also proper commands, i.e. elements of \(\text{Cmd}\)) are typed. This implies that the rule for \(\bot\) does not need to be taken into account.\(^4\) We call this propositional fragment of Parigot’s original system the simply-typed \(\lambda\mu\)-calculus.

Definition 3.1 (Simply Typed \(\lambda\mu\)-calculus)

i) The set \(\text{LF}\) of Logical Formulas is defined by

\[
A, B ::= \phi \mid A \rightarrow B
\]

where \(\phi\) ranges over an infinite set of Proposition (Type) Variables.

ii) The inference rules of this system are:

\[
\begin{align*}
(ax) : \quad & \Gamma, x : A \vdash x : A \mid \Delta \\
(\mu_1) : \quad & \Gamma \vdash M : \alpha \mid \alpha ; A, \Delta \\
(\mu_2) : \quad & \Gamma \vdash \mu \alpha[A] : A \mid \Delta \\
(\rightarrow I) : \quad & \Gamma, x : A \vdash M : B \mid \Delta \\
(\rightarrow E) : \quad & \Gamma \vdash \lambda x. M : A \rightarrow B \mid \Delta \\
\end{align*}
\]

We write \(\Gamma \vdash M : A \mid \Delta\) to denote that this judgement is derivable in this system.

We can interpret formulas into types of our system as follows.

Definition 3.2 The translation functions \((\cdot)^D : \text{LF} \rightarrow \mathcal{T}_D\) and \((\cdot)^C : \text{LF} \rightarrow \mathcal{T}_C\) are defined by (remember that \(\nu\) is the (only) base type):

\[
\begin{align*}
\phi^C &= \nu \times \omega \\
(A \rightarrow B)^C &= (A^C \rightarrow \nu) \times B^C \\
A^D &= A^C \rightarrow \nu
\end{align*}
\]

For example, \((\phi_1 \rightarrow \phi_2 \rightarrow \phi_3)^C = (\nu \times \omega \rightarrow \nu) \times (\nu \times \omega \rightarrow \nu) \times (\nu \times \omega \rightarrow \nu)\).

It is straightforward to show that the above translations are well defined. We extend them to bases and name contexts as follows: \(\Gamma^D = \{ x : A^D \mid x : A \in \Gamma \}\) and \(\Delta^C = \{ \alpha : A^C \mid \alpha : A \in \Delta \}\).

Theorem 3.3 (Derivability preservation) If \(\Gamma \vdash M : A \mid \Delta\), then \(\Gamma^D \vdash M : A^D \mid \Delta^C\).

Proof. By induction on the structure of derivations. Each rule of the simply-typed \(\lambda\mu\)-calculus has a corresponding one in our intersection type system (allowing for the fact that rule \((\rightarrow I)\) gets mapped unto \((\text{abs})\) and \((\rightarrow E)\) gets mapped unto \((\text{app})\)); hence it suffices to show that

\(^4\) The system we consider here does not include rules \((\forall I)\) and \((\forall E)\), since they have no effect on the subject in Parigot’s first-order type assignment system.
rules are preserved when translating formulas into types. We show just the cases for the
\(\mu\)-abstraction.

\[
\frac{\Gamma^D \vdash M : A^D \mid \alpha : A^C, \Delta^C}{\Gamma^D \vdash \mu\alpha[M] : A^D \mid \Delta^C} \quad (\mu_1)
\]

becomes

\[
\frac{\Gamma^D \vdash M : A^C \to v \mid \alpha : A^C, \Delta^C}{\Gamma^D \vdash \mu\alpha[M] : A^C \to v \mid \Delta^C} \quad (\mu)
\]

\[
\frac{\Gamma^D \vdash M : B^D \mid \alpha : A^C, \beta : B^C, \Delta^C}{\Gamma^D \vdash \mu\alpha[\beta][M] : A^D \mid \beta : B^C, \Delta^C} \quad (\nu_2)
\]

becomes

\[
\frac{\Gamma^D \vdash M : B^C \to v \mid \alpha : A^C, \beta : B^C, \Delta^C}{\Gamma^D \vdash \mu\alpha[\beta][M] : A^C \to v \mid \beta : B^C, \Delta^C} \quad (\mu)
\]

notice that the applications of rule (\(\mu\)) are valid instances of that rule.

Strong normalisation of typeable terms in Parigot’s simply typed \(\lambda\mu\)-calculus now follows
as a consequence of our characterisation result.

Theorem 3.4 (Strong Normalisability of Parigot’s Simply Typed \(\lambda\mu\)-calculus)

If \(\Gamma \vdash M : A \mid \Delta\), then \(M \in SN\).

Proof. By Theorem 3.3, if \(\Gamma \vdash M : A \mid \Delta\) then \(\Gamma^D \vdash M : A^D \mid \Delta^C\) is derivable in the intersection
type system. Hence \(M \in SN\) by Theorem 2.18.

Conclusion

We have defined an intersection type system which characterises strongly normalising \(\lambda\mu\)-
terms, extending the strong normalisation result for the \(\lambda\)-calculus to the pure \(\lambda\mu\)-calculus.

We have also provided a translation of propositional types of Parigot’s system into types
of the system proposed in this paper (a restriction of the one presented in [6]) and proved
that derivability is preserved. We are confident that such a result can be extended to the
full first-order type assignment system, to obtain an alternative proof of Parigot’s strong
normalisation theorem.

As we have observed in [6], our intersection-type assignment system can be adapted to
de Groote’s variant of the \(\lambda\mu\)-calculus (see e.g. [17]) (called \(\Lambda\mu\) by Saurin [23]), that satisfies
stronger properties than Parigot’s original calculus, such as Böhm’s theorem. We leave the
question whether the present characterisation result extends to those cases to future work.

Acknowledgements The authors wish to thank Mariangiola Dezani-Ciancaglini for her
unceasing support.

References

J.K. Lenstra, J. Parrow & G.J. Woeginger, editors: *Proceedings of Automata, Languages and Programming,*
30th International Colloquium, ICALP 2003, Eindhoven, The Netherlands, June 30 - July 4, 2003,
Lecture Notes in Computer Science 2719, Springer Verlag, pp. 871–885, doi:10.1007/3-540-45061-0_8

Intersection Types and Related Systems (ITRS’10), Edinburgh, Scotland, Electronic Proceedings in
Theoretical Computer Science 45*, pp. 31–44, doi:10.4204/EPTCS.45.3

