
Normalization Results for Typeable Rewrite Systems
(Information and Computation, 133(2):73-116, 1997)

Steffen van Bakel1, Maribel Fernández2

1) Department of Computing, Imperial College of Science, Technology and Medicine,
180 Queen’s Gate, London SW7 2BZ, U.K.,

2) DMI - LIENS (CNRS URA 1327), École Normale Supérieure,
45 rue d’Ulm, 75005 Paris, France
svb@doc.ic.ac.uk,maribel@ens.fr

Abstract

In this paper we introduce Curryfied Term Rewriting Systems, and a notion of partial type
assignment on terms and rewrite rules that uses intersection types with sorts and ω. Three
operations on types – substitution, expansion, and lifting – are used to define type assignment,
and are proved to be sound. With this result the system is proved closed for reduction.
Using a more liberal approach to recursion, we define a general scheme for recursive defi-
nitions and prove that, for all systems that satisfy this scheme, every term typeable without
using the type-constant ω is strongly normalizable. We also show that, under certain restric-
tions, all typeable terms have a (weak) head-normal form, and that terms whose type does
not contain ω are normalizable.

1 Introduction

There are essentially three paradigms in common use for the design of functional program-
ming languages: the λ-calculus (LC for short), Term Rewriting Systems (TRS), and Term
Graph Rewriting Systems (TGRS). The LC, or rather combinator systems, forms the under-
lying model for the functional programming language Miranda1 [36], TRS are used in the
language OBJ [24], and TGRS form the base model for the language Clean [17].

For LC, there exists a well understood notion of type assignment known as the Curry type
assignment system [20], that expresses abstraction and application. The intersection type disci-
pline [18, 14] is an extension of Curry’s system that consists of allowing more than one type
for term-variables and terms, adding a type constant ‘ω’, and considering the type constructor
‘∩’ in addition to the type constructor ‘→’. One of the most appealing features of intersec-
tion type assignment in LC is the fact that normalization of terms can be studied through
assignable types (see e.g. [14] and [3]):

• M has a head-normal form iff B � M:σ and σ �= ω.
• M has a normal form iff B � M:σ and ω does not occur in B and σ.
• M is strongly normalizable iff B � M:σ and ω is not used at all.

The essential intersection system for LC defined by Bakel-TCS’95 is a restriction of the inter-
section type discipline that satisfies all the properties above. Its main advantage is that the set
of types assignable to a term is significantly smaller than in the full intersection system.

Though many functional programming languages allow programmers to specify an algo-
rithm (function) as a set of rewrite rules, type assignment for TRS has not attracted much

1 Miranda is a trade mark of Research Software LTD.

Information and Computation, 133(2):73-116, 1997 2

attention until now. This is remarkable, since TRS and LC are essentially different: although
both formalisms are Turing-complete, there exists no direct translation of TRS to LC. For
example, adding the definition of surjective pairing,

Fst (Pair (x,y)) → x
Snd (Pair (x,y)) → y
Pair (Fst (x),Snd (x)) → x

to LC gives a system in which the Church-Rosser property no longer holds [30]; this implies
that the above TRS cannot be expressed in LC.

Although it seems straightforward to extend type assignment systems for LC to TRS, it is
not evident that those borrowed systems will still have, for general TRS, all the properties
they possessed in the setting of LC. For example, some restrictions have to be imposed in the
assignment of types to rewrite rules in order to ensure the subject reduction property (i.e.
preservation of types under rewriting), as illustrated in [10].

The aim of this paper is to define a notion of (essential) intersection type assignment directly
for TRS and to study normalization properties in that setting. We use intersection types be-
cause more meaningful terms can be typed in this way. Also, the notion of type assignment
presented in this paper applies to TGRS and in that framework intersection types are the
natural tool to type nodes that are shared (another notion of type assignment on TGRS was
defined by Barendsen-Smetsers-FSTTCS’93, to study safeness of destructive updates). Inter-
section types are also promising for use in functional languages, since they provide a good
formalism to express overloading, see [34].

We consider Curryfied TRS (CuTRS), a slight extension of the TRS defined by Klop’92, and
Dershowitz-Jouannaud’90. CuTRS contain a special binary operator Ap, that models appli-
cation and allows for partial application of function symbols (Curryfication). CuTRS are also
extensions of the constructor systems used in most functional programming languages in that
they do not discriminate against the varieties of function symbols that can be used in patterns.
However, we will in some cases make this distinction when we will study normalization prop-
erties of CuTRS.

Recently, some results have been obtained in the field of typed TRS [21] and the combination
of those with intersection type assignment systems for LC [11]. The idea behind those systems
is that rewrite rules aim to describe manipulations of objects of an algebraic data-type and,
therefore, concepts like polymorphism are not introduced within TRS. In contrast, in this
paper we present a type assignment system for CuTRS that is closer to the approach of intersection
type assignment in LC; in particular, rewrite rules can be polymorphic.

The type assignment system on CuTRS that we define is based on a combination of the
essential intersection system for LC and the type assignment system of ML [32], both exten-
sions of Curry’s type assignment system. Type assignment will be defined through a natural
deduction system, assuming that every function symbol has a predefined type, given in an
environment. This approach is similar to the one taken by Hindley’69 to define the principal
Curry type of an object in Combinatory Logic.

The polymorphic aspect of our type assignment system becomes apparent in the derivation
rule that deals with the assignment of a type to a term like F(t1, . . . , tn). There the type pre-
defined for F in the environment can be ‘instantiated’ by applying operations of substitution,
expansion, and lifting (see [5]). The operation of substitution deals with the replacement of
type-variables by types, the operation of expansion replaces types by the intersection of a
number of copies of that type and coincides with the one given by Coppo-Dezani-Venneri’80,

Information and Computation, 133(2):73-116, 1997 3

and the operation of lifting deals with both taking more specific types in bases and assigning
a more general type to terms. We use these three operations, instead of just substitution, not
only because more terms are typeable in this way, but also to obtain a natural embedding of
LC in TRS that preserves assignable types (with just substitution, this would not be possible).

The type assignment system presented in this paper can be seen as a generalization of the
systems of Bakel-Smetsers-Brock-CAAP’92 and Bakel-FI; the main difference is the set of types
used: Curry types in [10], intersection types of Rank 2 in [7], and strict intersection types in
this paper. Type assignment in those systems is decidable, whereas in the one presented here
it is not. However, the normalization results we will prove hold also for free in these decidable
restrictions of the system.

In contrast with LC, typeable terms in CuTRS need not even be head-normalizable; for ex-
ample, consider a typeable term t and a rule t → t. That is why we need to control the use
of recursion by imposing some syntactical conditions on the rewrite rules (a generalization
of primitive recursion). We will define a recursive scheme for rewrite rules that is inspired
by the general scheme of Jouannaud-Okada’91. The general scheme was devised for the in-
cremental definition of higher order functionals based on first order definitions, such that
their combination with polymorphic LC is terminating. It was also used for defining higher
order functions compatible with other lambda calculi by Barbanera-Fernandez-TLCA’93 and
Barbanera-Fernandez-Geuvers-LICS’94.

It is worthwhile to notice that, even with the severe restrictions imposed on rewrite rules by
the general scheme, the class of CuTRS that satisfies the scheme is Turing-complete, a property
that systems without Ap would not possess.

For a type assignment system in which the type ω is not used, we will prove (adapting
the method of Computability Predicates of Girard-Lafont-Taylor’89 and Tait’67) that for all
typeable CuTRS satisfying the general scheme, typeable terms are strongly normalizable.

Perhaps surprisingly, in the type system with ω, the general scheme is not enough to ensure
head-normalization of typeable terms. Therefore, to study head-normalization of typeable
CuTRS we will define a suitable restriction of the general scheme, called the HNF-scheme, where
the patterns of rewrite rules are constructor terms that have sorts as types. We should remark
here that our notion of head-normal form for CuTRS is similar in spirit to the notion of weak
head-normal form in LC; the latter is used in most functional programming languages based
on LC, see [1]. We will again use the method of Computability Predicates to prove that for all
typeable CuTRS satisfying the HNF-scheme, every typeable term has a head-normal form. We
will also show that if Curryfication is not allowed, under certain restrictions, terms typeable
with a type that does not contain ω are normalizable.

These results apply in particular to Combinator Systems, a class of CuTRS that satisfies the
required conditions. For Combinator Systems that are combinatory complete, a type assign-
ment system was defined by Dezani-Hindley’92. Our system can be seen as a generalization
of that one.

The lay-out of this paper is as follows: We present CuTRS in Section 2. In Section 3 we briefly
recall the essential intersection system for LC. In Section 4 we introduce the essential inter-
section system for CuTRS, and compare it with the one for LC. In Section 5 we present the
general scheme and prove the strong normalization theorem for the type assignment system
without ω. We then show that in the system with ω, and considering the restrictions formu-
lated in the HNF-scheme, all typeable terms have a head-normal form. Finally we prove the
normalization result. Section 6 contains the conclusions and directions for further work.

The results presented in this paper were first published, in a much condensed form, as [4, 8],
and [9].

Information and Computation, 133(2):73-116, 1997 4

2 Curryfied Term Rewriting Systems

In this section we present Curryfied Term Rewriting Systems (CuTRS), an extension of the TRS
defined by Klop’92, and Dershowitz-Jouannaud’90. CuTRS are first-order TRS extended with
a binary function symbol which models partial application of functions. This feature allows
us to make a straightforward translation of LC to CuTRS (as we will show in Definition 4.16
below), i.e. to a first-order rewrite system.

CuTRS are also an extension of the constructor systems used in most functional programming
languages in that not only constructor symbols can be used in the operand space of the left-
hand side of rewrite rules, but all function symbols.

Definition 2.1 An alphabet or signature Σ consists of a countable infinite set X of variables x,
y, z, x′, y′, . . . ; a non-empty set F of function symbols F, G, . . . , each equipped with an ‘arity’
(a natural number); and a special binary operator, called application (Ap).

Definition 2.2 The set T(F,X) of terms is defined inductively by:
i) X ⊆ T(F,X).

ii) If F ∈ F ∪ {Ap} is an n-ary symbol (n ≥ 0) and t1, . . . , tn ∈ T(F,X), then F(t1, . . . , tn) ∈
T(F,X). The ti (1≤ i≤n) are the arguments of the last term. We will omit the brackets
when n = 0.

We will write Var (t) for the set {x ∈ X | x occurs in t}.

We will introduce in some parts a notation different from the one commonly used in term
rewriting, because some of the symbols were also used in papers about type assignment.
For example, we will call ‘term-substitution’ the operation that replaces variables by terms,
instead of just ‘substitution’ which will be used for operations that replace type-variables by
types. To denote a term-substitution, we will use capital characters like ‘R’ instead of Greek
characters like ‘σ’, which will be used to denote types.

Definition 2.3 A term-substitution R is a mapping from T(F,X) to T(F,X) satisfying

R(F(t1, . . . , tn)) = F (R(t1), . . . , R(tn))

for every n-ary (n ≥ 0) function symbol F, and is determined by its restriction to a finite set
of variables. Sometimes we will use the notation {x1 �→t1, . . . , xn �→tn} for term-substitutions.
We will also write tR instead of R(t).

Definition 2.4 i) Given a signature Σ with a set X of variables and a set F of function
symbols, a rewrite rule in Σ is a pair (l,r) of terms in T(F,X), such that l is not a variable,
and the variables occurring in r appear in l. Often a rewrite rule will get a name, e.g. r,
and we will write r : l → r.

If F (t1, . . . , tn) is the left-hand side of a rule r, and, for 1≤ i≤n, either ti is not a variable,
or ti is a variable and there is a 1≤ i �= j≤n such that ti = tj, then ti is called a pattern of r.

ii) A Curryfied Term Rewriting System (CuTRS) is a pair (Σ,R) of a signature Σ = (F, X) and a
set R of rewrite rules in Σ, such that, for every F∈F of arity n > 0, there exist n additional
function symbols Fn−1, . . . , F1, F0 in F , the Curryfied-versions of F, and R contains the n
rewrite rules:

Ap (Fn−1 (x1, . . . , xn−1), xn) → F (x1, . . . , xn)
...

Information and Computation, 133(2):73-116, 1997 5

Ap (F1 (x1), x2) → F2 (x1, x2)
Ap (F0, x1) → F1 (x1)

If Fi is a Curryfied version of a function symbol F, then its Curryfied versions coincide
with the corresponding Curryfied versions of F, being Fi−1, . . . , F0. Moreover, we will
assume that for any rule r : l → r in R, if Ap occurs in l, then r is of the shape:

Ap (Fi−1 (x1, . . . , xi−1), xi) → Fi (x1, . . . , xi)

for some Curryfied version Fi−1, and that Curryfied versions do not appear in the root of
any left-hand side.

iii) Terms that do not contain Curryfied versions of symbols are called non-Curryfied terms.
iv) A rewrite rule r : l → r determines a set of reductions lR → rR for all term-substitutions

R. The term lR is called a redex; it may be replaced by its contractum rR inside any context
C[]; this gives rise to rewrite steps:

C[lR] →r C[rR].
We will write t →R t′ if there is a r ∈ R such that t →r t′.

Concatenating rewrite steps we have (possibly infinite) rewrite sequences t0 → t1 → ·· ·.
If t0 → ·· · → tn (n ≥ 0) we will also write t0 →∗ tn.

Because of the extra rules for Fn−1, . . . , F1, F0, etc., the rewrite systems are called Curry-closed.
When presenting a rewrite system we will sometimes omit the rules that define the Curryfied
versions.

Example 2.5 Curryfied Combinatory Logic (CCL) is defined as a CuTRS with function symbols F
= {S, S2, S1, S0, K, K1, K0, I, I0} and rewrite rules:

S (x,y,z) → Ap (Ap (x,z), Ap (y,z))
Ap (S2 (x,y),z) → S (x,y,z)
Ap (S1 (x),y) → S2 (x,y)
Ap (S0, x) → S1 (x)
K (x,y) → x
Ap (K1 (x),y) → K (x,y)
Ap (K0, x) → K1 (x)
I (x) → x
Ap (I0, x) → I (x).

Because CCL is Curry-closed, it inherits combinatory completeness from Combinatory Logic:
every λ-term can be translated into a term in CCL (see Definition 4.16).

Recently, Kahrs’96 and Kennaway-et.al-JSC’96 studied the class of rewrite systems obtained
by Currying standard first-order term rewrite systems. The Currying of a system R, denoted
by PP(R), is defined as R extended with Ap, Curryfied versions of all function symbols, and
the additional rules defining Curryfied versions. It is easy to see that PP(R) is a CuTRS, but
note that CuTRS are more general; in particular, Ap can be freely used in right-hand sides,
which allows us to code Combinatory Logic as a CuTRS.

Also the class of applicative systems (i.e. rewrite systems where the signature contains only
Ap and 0-ary function symbols) can be seen as a particular case of CuTRS if a standard “con-
sistency” restriction is satisfied. Roughly, the left-hand side of every rule has to be the Cur-
ryfication of a non-applicative term; otherwise, applicative systems are not CuTRS: they could
have a left-hand side of an arbitrary form. Note that this condition is usually present in the
definition of applicative system (see e.g. [29]).

Information and Computation, 133(2):73-116, 1997 6

Definition 2.6 A rewrite rule r : l → r defines F if F is the leftmost, outermost symbol in l that
is not an Ap; we call F the defined symbol of r.

We say that F ∈ F is a defined symbol if there is a rewrite rule that defines F. Otherwise, it is
a constructor.

We can draw the dependency-graph of the defined function symbols, i.e. we can construct
a graph whose nodes are filled with the defined symbols of the rewrite rules, and draw an
edge going from F to G if G occurs in the right-hand side of one of the rules that define F.
We call a defined symbol F recursive if F occurs on a cycle in the dependency-graph, and call
every rewrite rule that defines F recursive. All function symbols that occur on one cycle in the
dependency-graph depend on each other and are, therefore, defined simultaneously and are
called mutually recursive. Since it is always possible to introduce tuples into the language and
solve the problem of mutual recursion using only recursive rules, we will assume that rules
are not mutually recursive.

Definition 2.7 A TRS whose dependency-graph is an ordered a-cyclic graph is called a hierarchical
TRS. The rewrite rules of a hierarchical TRS can be regrouped in such a way that they are
incremental definitions of the defined symbols F1, . . . , Fk, so that the rules defining Fi only
depend on F1, . . . , Fi.

Incremental definitions arise naturally in programming practice. We will see in Section 5
that hierarchical systems play an important role in the study of the normalization properties
of CuTRS.

Example 2.8 Our definition of recursive symbols, using the notion of defined symbols, is dif-
ferent from the one normally considered. Since Ap is never a defined symbol, the following
CuTRS

D (x) → Ap (x, x)
Ap (D0, x) → D (x)

is not considered a recursive system. Notice that, for example, the term D (D0) has no normal
form (this term plays the role of (λx.xx)(λx.xx) in LC). This means that, in the formalism of
this paper, there exist non-recursive first-order rewrite systems that are not normalizing.

Definition 2.9 i) A term is neutral if it is not of the form Fi (t1, . . . , ti), where Fi is a Curryfied
version of a function symbol F.

ii) A term is in normal form if it is irreducible.
iii) A term t is in head-normal form if for all t′ such that t →∗ t′:

a) t′ is not itself a redex and
b) if t′ = Ap (v,u), then v is in head-normal form.

iv) A term t is in constructor-hat normal form if either
a) t = C [u1, . . . ,un] where C is a context (possibly empty) that contains only constructor

symbols and, for 1≤ i≤n, ui cannot be reduced to a term of the form Q (s1, . . . , si),
where Q is a constructor, or

b) t = Ap (t1, t2) and t1 is in constructor-hat normal form.
v) A term is (head/constructor-hat) normalizable if it can be reduced to a term in (head/con-

structor-hat) normal form.

Information and Computation, 133(2):73-116, 1997 7

vi) A rewrite system is strongly normalizing (or terminating) if all the rewrite sequences are
finite; it is (head/constructor-hat) normalizing if every term is (head/constructor-hat) nor-
malizable.

Example 2.10 Take the CuTRS

F (x, x) → A (x)
B (H) → H
H → H

where F, B, and H are defined symbols, and A is a constructor (notice the use of a defined
symbol as a pattern in the second rule). The term F (B (H), H) is not a redex, but it is not a
head-normal form either, since it reduces to F (H, H) which is a redex. This term reduces to
A (H), which is a head-normal form and a constructor-hat normal form. A (F (x, x)) is also a
head-normal form, but it is not a constructor-hat normal form since it reduces to A (A (x)).
The latter is in constructor-hat normal form.

Our definition of head-normal form is an extension to rewrite systems with Ap of the notion
of root stable form defined by Ariola-et.al-TACS’94. Note that the head of a term of the form
Ap (v,u) is in v, since we can think of Ap as an invisible symbol.

This notion of head-normal form corresponds to the notion of weak head-normal form in
LC. For instance, if F is a function symbol of arity n, Fi (t1, . . . , ti) is a head-normal form
according to the previous definition. Clearly it corresponds to the λ-term

λxi+1 . . . xn.F (t1, . . . , ti, xi+1, . . . , xn),

which is in weak head-normal form.
The notion of constructor-hat normal form is introduced for technical reasons only (con-

structor-hat normal forms are used in the proof of the Head Normalization Theorem in Sec-
tion 5.2).

The notations In-Chnf (t), In-Hnf (t), and In-Nf (t) will indicate that t is in constructor-hat
normal form, in head-normal form, and in normal form, respectively. The notations CHN (t),
HN (t), and N (t) will indicate that t is constructor-hat normalizable, head-normalizable, and
normalizable, respectively.

Lemma 2.11 i) HN (Ap (t,u)) ⇒ HN (t).
ii) CHN (Ap (t,u)) ⇒ CHN (t).

iii) t is neutral & In-Hnf (t) ⇒ ∀ u [In-Hnf (Ap (t,u))].
iv) t is neutral & In-Chnf (t) ⇒ ∀ u [In-Chnf (Ap (t,u))].
v) t is neutral ⇒ ∀ u [Ap (t,u) is neutral].

Proof: This is a direct consequence of the definition of neutral term, head-normal form, and
constructor-hat normal form (Definition 2.9).

3 Essential Intersection System for LC

In this section we present a variant of the essential intersection type assignment system for
LC [6] which will serve as a mould to define our type assignment system for CuTRS in the
following section.

Information and Computation, 133(2):73-116, 1997 8

The essential system uses a set of strict intersection types (built from a set of type variables)
which are the representatives of the equivalence classes of types considered in the system of
Barendregt-Coppo-Dezani’83. The variant we present in this section uses also a set of sorts
(names of domains; the constant types of our system). Sorts will play an important role in the
proof of the Head Normalization Theorem for CuTRS.

Definition 3.1 i) Ts, the set of strict types, and TS, the set of strict intersection types, are defined
through mutual induction by:
a) All type-variables ϕ0, ϕ1, . . . ∈ Ts.
b) All sorts s1, s2, . . . ∈ Ts.
c) If τ ∈ Ts and σ ∈ TS, then σ→τ ∈ Ts.
d) If σ1, . . . ,σn ∈ Ts (n ≥ 0), then σ1∩· · ·∩σn ∈ TS.

ii) The type ω is defined as an intersection of zero types: if n = 0, then σ1∩· · ·∩σn = ω.
iii) On TS, the relation ≤ is defined by:

a) ∀ n ≥ 1, 1≤ i≤n [σ1∩· · ·∩σn ≤ σi].
b) ∀ n ≥ 0 [∀ 1≤ i≤n [σ ≤ σi] ⇒ σ ≤ σ1∩· · ·∩σn].
c) σ ≤ τ ≤ ρ ⇒ σ ≤ ρ.
d) ρ ≤ σ & τ ≤ µ ⇒ σ→τ ≤ ρ→µ.

iv) The relation ∼ is defined by: σ ∼ τ ⇐⇒ σ ≤ τ ≤ σ.

The motivation for defining ω as an intersection of zero types lies in the semantics of types
(see [14]), where [[σ]] is the set of terms that can be assigned the type σ. Then, for all σ1, . . . ,σn,

[[σ1∩ . . .∩σn]] ⊆ [[σ1∩ . . .∩σn−1]] ⊆ . . . ⊆ [[σ1∩σ2]] ⊆ [[σ1]],

so it is natural to extend this sequence with [[σ1]] ⊆ [[]], and therefore to define that the
semantics of the empty intersection is the whole set of λ-terms, which is exactly [[ω]].

Notice that intersection types (so also ω) occur in strict types only as subtypes at the left-
hand side of an arrow type. According to the previous definition, if σ1∩· · ·∩σn is used to
denote a type, then all σ1, . . . ,σn are strict, therefore they cannot be ω. Notice also that Ts is a
proper subset of TS.

To obtain readable types, instead of ϕi we often write only the number i.

Definition 3.2 i) A statement is an expression of the form M:σ, where M is a λ-term and σ ∈
TS. M is the subject and σ the predicate of M:σ.

ii) A basis is a set of statements with only distinct variables as subjects. If σ1∩· · ·∩σn is a
predicate in a basis, then n ≥ 1.

The relations ≤ and ∼ extend to bases in the natural way: B ≤ B′ ⇐⇒ ∀ x:σ′ ∈ B′

∃ x:σ ∈ B [σ ≤ σ′], and B ∼ B′ ⇐⇒ B ≤ B′ ≤ B.
iii) If B is a basis and σ ∈ TS, then T〈B,σ〉 is the set of all strict subtypes occurring in the pair

〈B,σ〉.
iv) If B1, . . . , Bn are bases, then Π{B1, . . . , Bn} is the basis defined as follows: x:σ1∩· · ·∩σm ∈

Π{B1, . . . , Bn} if and only if {x:σ1, . . . , x:σm} is the (non-empty) set of all statements whose
subject is x that occur in B1 ∪ . . . ∪ Bn.

Notice that if n = 0, then Π{B1, . . . , Bn} = ∅.

Often B∪ {x:σ} (or B, x:σ) will be written for the basis Π{B,{x:σ}}, when x does not occur
in B.

Information and Computation, 133(2):73-116, 1997 9

Definition 3.3 i) Type assignment and derivations in the essential system for LC are defined by
the following natural deduction system (where all types displayed belong to Ts, except σ
in the derivation rules (→I), (→E), and (≤)):

[x:σ]
...

M:τ
(→I): (a)

λx.M:σ→τ

M:σ→τ N:σ
(→E):

MN:τ

x:σ σ ≤ τ
(≤):

x:τ

M:σ1 . . . M:σn(∩I): (n ≥ 0)
M:σ1∩· · ·∩σn

(a) : If x:σ is the only statement about x on which M:τ depends.
ii) We write B � M:σ if there exists a derivation built using the rules given above that has

the statement M:σ as its conclusion, and B contains at least all statements for the free
variables of M that occur in the leaves of this derivation.

4 Essential Intersection System for CuTRS

In this section we present an intersection type assignment on CuTRS that is inspired by the
essential system for LC. It is a partial system in the sense of Pfenning’88: not only will we
define how terms and rewrite rules can be typed, but we will also assume that every function
symbol in the signature has a type, provided by an environment (i.e. a mapping from function
symbols to types). There are several reasons to do so.

First of all, a term rewrite system can contain constructors, i.e. symbols that are not defined
by the rewrite rules. If the environment provides a type for every constructor, it is possi-
ble to (partially) check the consistency of the system, by checking that the types used for a
constructor are related to the provided type.

Moreover, for every defined symbol there must be some way of determining what type can
be used for an occurrence. If no type is given for a function symbol, the rewrite rules that
define that symbol have to be investigated, and from analyzing the structure of those rules
the ‘most general type’ for that symbol is constructed. Instead of investigating all the defining
rules for a defined symbol every time the symbol is encountered, we can store the type of the
symbol in an environment. Of course it makes no difference to assume the existence from the
start of such a mapping from symbols to types, and to define type assignment using it.

In fact, the approach we take here is very much the same as the one taken by Hindley’69
to define the principal Curry type of an object in Combinatory Logic. Even that notion of
type assignment could be regarded as a partial one. Also the notion of type assignment
on (combinatory complete) combinator systems of Dezani-Hindley’92 uses this approach. An
important difference is, however, that there the environment can contain only ‘principal types’
for combinators, i.e. the principal type of the λ-term that can naturally be associated to that
combinator (for a presentation of principal intersection types for λ-terms, see [5]).

4.1 Bases, Types, and Operations

Types and bases are defined as for LC (Section 3). To assign types to terms in the CuTRS
framework, we are going to use three operations on types (that extend to bases and to pairs of

Information and Computation, 133(2):73-116, 1997 10

〈basis,type〉), namely substitution, expansion, and lifting. These will be taken from [5], where
also the here cited properties are proved.

Roughly, substitution is the operation that instantiates a type (replacing type-variables by
types), expansion replaces types by the intersection of a number of copies of that type, and
the operation of lifting replaces basis and type by a smaller basis and a larger type, in the
sense of ≤.

These three operations are of use in Definition 4.10, when we want to specify how, for
a specific function symbol, a type required by the context can be obtained from the type
provided for that symbol by the environment. It is possible to define sound type assignment
with fewer or less powerful operations on types, but in order to obtain enough expressive
power to prove Property 4.18, all operations specified here are needed.

In the essential type assignment system, substitution has to be defined carefully to avoid
going out of the set of strict intersection types. For example, the replacement of ϕ by ω would
transform σ→ϕ into σ→ω, which is not in TS. The following definition takes this fact into
account.

Definition 4.1 The substitution (ϕ �→α) : TS → TS, where ϕ is a type-variable and α ∈ Ts ∪{ω},
is defined by:

i) (ϕ �→α) (ϕ) = α,
ii) (ϕ �→α) (ϕ′) = ϕ′, if ϕ �= ϕ′,

iii) (ϕ �→α) (s) = s.
iv) (ϕ �→α) (σ→τ) = ω, if (ϕ �→α) (τ) = ω,
v) (ϕ �→α) (σ→τ) = (ϕ �→α) (σ)→ (ϕ �→α) (τ),

if (ϕ �→α) (τ) �= ω,
vi) (ϕ �→α) (σ1∩· · ·∩σn) = (ϕ �→α) (τ1) ∩· · ·

∩ (ϕ �→α) (τm), where {τ1, . . . ,τm} = {σi ∈ {σ1, . . . ,σn} | (ϕ �→α) (σi) �= ω}.

We will use S to denote a generic substitution. Substitutions extend to bases and to pairs of
basis and type in the natural way:

i) S (B) = {x:S (α) | x:α ∈ B & S (α) �= ω}.
ii) S (〈B,σ〉) = 〈S (B),S (σ)〉.

Notice that, in part (vi), if for 1≤ i≤n, (ϕ �→α) (σi) = ω, then (ϕ �→α) (σ1∩· · ·∩σn) = ω.

For substitutions, the following properties hold:

Property 4.2 Let S be a substitution.
i) If σ ≤ τ, then S (σ)≤ S (τ).

ii) If B ≤ B′, then S (B)≤ S (B′).

The operation of expansion deals with the replacement of (sub)types of a type by an inter-
section of a number of copies of that subtype. In this process, new variables are generated
(the notion of last type variable in a type, i.e. the rightmost variable occurring in a type, plays
an important role in this operation). For more details on the complexity of expansion, see [5].

Definition 4.3 The last type-variable of a strict type is defined by:
i) The last type-variable of ϕ is ϕ.

ii) s has no last type-variable.

Information and Computation, 133(2):73-116, 1997 11

iii) The last type-variable of σ→τ is the last type-variable of τ.

An expansion indicates not only the type to be expanded, but also the number of copies
that has to be generated.

Definition 4.4 For every µ∈Ts, n ≥ 2, basis B and σ∈TS, the quadruple 〈µ,n, B,σ〉 determines
an expansion Exp〈µ,n,B,σ〉 : TS → TS, that is constructed as follows.

i) The set of type-variables Vµ(〈B,σ〉) is constructed by:
a) If ϕ occurs in µ, then ϕ ∈ Vµ(〈B,σ〉).
b) Let τ be a strict (sub)type occurring in 〈B,σ〉, with last type-variable ϕ0. If ϕ0 ∈

Vµ(〈B,σ〉), then for all type-variables ϕ that occur in τ, ϕ ∈ Vµ(〈B,σ〉).
ii) Suppose Vµ(〈B,σ〉) = {ϕ1, . . . , ϕm}. Choose m × n different type-variables ϕ1

1, . . . , ϕn
1 , . . . ,

ϕ1
m, . . . , ϕn

m, such that each ϕi
j does not occur in 〈B,σ〉, for 1≤ i≤n and 1≤ j≤m. Let Si

be the substitution that replaces every ϕj by ϕi
j.

iii) Exp〈µ,n,B,σ〉 (α) is obtained by traversing α top-down and replacing, in α, a subtype β, with
last type-variable in Vµ(〈B,σ〉), by S1 (β) ∩· · ·∩Sn (β).

The operation of expansion extends to bases and to pairs of basis and type in the natural
way:

i) Exp〈µ,n,B,σ〉 (B′) = {x:Exp〈µ,n,B,σ〉 (ρ) | x:ρ ∈ B′}.
ii) Exp〈µ,n,B,σ〉 (〈B′,σ′〉) = 〈Exp〈µ,n,B,σ〉 (B′),Exp〈µ,n,B,σ〉(σ

′)〉.
Instead of Exp〈µ,n,B,σ〉, the notation 〈µ,n, B,σ〉 will be used.

Example 4.5 Let γ be (ϕ1→ϕ2)→(ϕ3→ϕ1)→ϕ3→ϕ2, and E the expansion 〈ϕ1,2,∅,γ〉. Then
Vϕ1 (〈∅,γ〉) = {ϕ1, ϕ3}, and E (γ) = ((ϕ4∩ϕ5)→ϕ2)→((ϕ6→ϕ4)∩(ϕ7→ϕ5))→(ϕ6∩ϕ7)→ϕ2.

For an operation of expansion the following properties hold:

Property 4.6 Let E = 〈µ,n, B,σ〉 be an expansion.
i) If τ ∈ T〈B,σ〉, then either:

a) E (τ) = τ1∩· · ·∩τn, with for every 1≤ i≤n, τi is a trivial variant of τ, or:
b) E (τ) ∈ Ts.

ii) E (Π{B1, . . . , Bn}) = Π{E (B1), . . . ,E (Bn)}.
iii) If σ ≤ τ, then E (σ)≤E (τ).
iv) If B ≤ B′, then E (B)≤E (B′).

The last operation defined in this subsection is the operation of lifting.

Definition 4.7 An operation of lifting is denoted by a pair L= <〈B0,τ0〉, 〈B1,τ1〉> such that
τ0 ≤ τ1 and B1 ≤ B0. L can be applied to a type, a basis, or a pair of basis and type:

i) L (σ) = τ1 if σ = τ0; L (σ) = σ otherwise.
ii) L (B) = B1 if B = B0; L (B) = B otherwise.

iii) L (〈B,σ〉) = 〈L (B),L (σ)〉.

For liftings, the following properties hold:

Information and Computation, 133(2):73-116, 1997 12

Property 4.8 i) <〈B∪{x:σ},τ〉, 〈B∪{x:σ′},τ′〉> is a lifting if and only if <〈B,σ→τ〉, 〈B′,σ′→τ′〉>
is a lifting (where τ, τ′ ∈ Ts).

ii) <〈Bi,σi〉, 〈B′
i ,σ

′
i 〉> is a lifting for every 1≤ i≤n, if and only if

〈〈Π{B1, . . . , Bn,{x:σ1→·· ·→σn→ϕ}}, ϕ〉, 〈Π{B′
1, . . . , B′

n,{x:σ′
1→·· ·→σ′

n→ϕ}}, ϕ〉〉
is a lifting.

The operations of substitution, expansion, and lifting can be composed to form chains of
operations. The set Ch of chains is defined as the smallest set containing expansions, substitu-
tions, and liftings, that is closed under composition ◦ .

4.2 Type Assignment in CuTRS

The three operations on types defined above will be used in this subsection to define type
assignment on CuTRS: the types assigned to occurrences of function symbols will be obtained
from the type provided by the environment by making a chain of operations.

We will start by defining an environment, which is a mapping from function symbols to
strict types. Since we want to associate the Curryfied versions of a function symbol not only
through their rewrite rules, but also through their assignable types, we will require that the
environment maps a function F and all its Curryfied versions Fi to the same type.

Definition 4.9 Let (Σ,R) be a CuTRS, and F the set of function symbols in Σ.
i) A mapping E : F ∪ {Ap} → Ts is called an environment if E (Ap) = (ϕ1→ϕ2)→ϕ1→ϕ2 and,

for every F ∈ F with arity n, E (F) = E (Fn−1) = · · · = E (F0).
ii) For F ∈ F with arity n ≥ 0, σ ∈ Ts, and E an environment, the environment E [F:σ] is

defined by:
a) E [F:σ] (G) = σ, if G ∈ {F, Fn−1, . . . , F0}.
b) E [F:σ] (G) = E (G), otherwise.

Since E maps all F ∈ F to types in Ts, in particular no function symbol is mapped to ω.

In the following we will assume that E is a given environment for a CuTRS (Σ,R).

Definition 4.10 i) Type assignment and derivations are defined by the following natural deduc-
tion system (where all types displayed are in Ts, except for σ in rule (≤) and σ1, . . . ,σn in
rule (→E)):

x:σ σ ≤ τ
(≤):

x:τ
t:σ1 . . . t:σn

(∩I): (n ≥ 0)
t:σ1∩· · ·∩σn

t1:σ1 . . . tn:σn
(→E): (a)

F(t1, . . . , tn):σ

((a)) : If there exists C ∈ Ch such that C (E(F)) = σ1→·· ·→σn→σ.
ii) We write B �E t:σ if and only if t:σ is derivable from B by using the natural deduction

system above. We will say that t is typeable with respect to E (or simply that t is typeable, if
the environment is clear from the context) if there exists a basis B and a type σ �= ω such
that B �E t:σ.

Notice that if B �E t:σ, then B can contain more statements than needed to obtain t:σ. More-
over, by (∩I), for every B and t, B �E t:ω.

Information and Computation, 133(2):73-116, 1997 13

The use of an environment in derivation rule (→E) introduces a notion of polymorphism
into our type assignment system. The environment returns the ‘principal type’ for a function
symbol; this symbol can be used with types that are ‘instances’ of its principal type, obtained
by applying chains of operations.

Example 4.11 i) Let ECL be the environment (remember that instead of ϕi we just write the
number i)
ECL (S) = (1→2→3)→(4→2)→1∩4→3,
ECL (K) = 5→ω→5,
ECL (I) = 6→6.

(See also Example 4.15). With respect to this environment, the term S (K0,S0, I0) can be
assigned the type 7→7.

(→E)
K0:(7→7)→ω→7→7

(∩I)
S0:ω

(→E)
I0:7→7

(→E)
S (K0,S0, I0):7→7

Notice that, for example, to obtain
((7→7)→ω→7→7)→ω→(7→7)→7→7

for S, we have used the chain
(1 �→ 7→7)◦ (2 �→ ω)◦ (3 �→ 7→7)◦ (4 �→ ω).

ii) If we define ECL (D) = (1→2)∩1→2, then we can even check that for example D (S (K0,S0, I0))
and D (I0) are both typeable by 8→8, as shown by the following derivations, where σ =
8→8, and τ = (8→8)→8→8:

I0:τ I0:σ
I0:τ∩σ

D (I0):σ

K0:τ→ω→τ S0:ω I0:τ
S (K0,S0, I0):τ

K0:σ→ω→σ S0:ω I0:σ
S (K0,S0, I0):σ

S (K0,S0, I0):τ∩σ

D (S (K0,S0, I0)):σ

iii) Take the environment
E (F) = (1→2)→(3→1)→3→2,
E (D) = (4→5)∩4→5,
E (I) = 6→6.

Then the term F (D0, I0, I0) is typeable by 7→7 (= α).

D0:(α→α)∩α→α

I0:(α→α)→α→α I0:α→α

I0:((α→α)→α→α)∩(α→α)

I0:α→α I0:α
I0:(α→α)∩α

F (D0, I0, I0):7→7

To obtain the type used for F in this derivation from E (F), the first step is to perform the
expansion 〈ϕ1,2, ∅, E (F)〉.

The following properties are needed further on:

Lemma 4.12 i) If B �E t:σ and B′ ≤ B, then B′ �E t:σ.
ii) If B �E t:σ and σ ≤ τ, then B �E t:τ.

iii) If B, x:α �E Ap (t, x):β, β ∈ Ts, and x does not occur in t, then B �E t:α→β.
iv) B �E t:σ1∩· · ·∩σn, if and only if, B �E t:σi, for all 1≤ i≤n.

Information and Computation, 133(2):73-116, 1997 14

v) For any Curryfied version Fn of a function symbol F, if B �E Fn(t1, . . . , tn):σ and σ ∈ Ts, then
there are α ∈ TS, β ∈ Ts such that σ = α→β.

Proof: By induction on derivations.

We will now define the type assignment for rewrite rules. This will be done in a careful
way to ensure that the subject reduction property (i.e. preservation of types under rewriting)
holds.

In [10] and [7] two restrictions of the type assignment system defined above are discussed,
for which there is a decidable and sufficient condition on rewrite rules that ensures subject
reduction. The condition a rewrite rule should satisfy is that the principal pair for the left-hand
side is also a correct pair for the right-hand side of the rule. The notion of principal pair is in
those papers defined in a constructive way, by defining a unification algorithm for types and
defining principal pairs using that algorithm.

Since at this moment there is no general unification algorithm for types in TS that works well
on all types, we cannot take this approach here. Therefore, for the notion of type assignment
defined in this paper we will show (in Subsection 4.4 below) that if a left-hand side of a rewrite
rule has a principal pair and using that pair the rewrite rule can be typed, then rewriting using
this rule preserves types.

Definition 4.13 A pair 〈P,π〉 is called a principal pair for a term t with respect to an environment
E if P �E t:π and, for every B, σ such that B �E t:σ, there is a chain C such that C (〈P,π〉) =
〈B,σ〉.

Definition 4.14 Let (Σ,R) be a CuTRS, and E an environment.
i) We will say that l → r ∈ R with defined symbol F is typeable with respect to E , if there are

basis P, type π ∈ Ts, and an assignment of types to l and r such that:
a) 〈P,π〉 is a principal pair for l with respect to E , and P �E r:π.
b) In P �E l:π and P �E r:π, the type actually used for each occurrence of F (or Curryfied

versions of F) is E (F).
ii) We will say that (Σ,R) is typeable with respect to E , if every r ∈ R is typeable with respect

to E .

Condition (i.b) of Definition 4.14 is in fact added to make sure that the type provided by
the environment for a function symbol F is not in conflict with the rewrite rules that define F.
Since by part (i.b) of Definition 4.14, all occurrences of the defined symbol in a rewrite rule are
typed with the same type, type assignment of rewrite rules is actually defined using Milner’s
way of dealing with recursion [32].

It is easy to check that if F is a function symbol with arity n and all rewrite rules that define
F are typeable, then there are γ1, . . . ,γn, γ such that E (F) = γ1→·· ·→γn→γ.

Example 4.15 Type assignment for some of the rewrite rules given in Example 2.5, under the
assumption that:

E (S) = (1→2→3)→(4→2)→1∩4→3,
E (K) = 5→ω→5,
E (I) = 6→6.

Information and Computation, 133(2):73-116, 1997 15

x:1→2→3 y:4→2 z:1∩4

S (x,y,z):3
→ x:1→2→3

z:1∩4

z:1
Ap (x,z):2→3

y:4→2

z:1∩4

z:4
Ap (y,z):2

Ap (Ap (x,z), Ap (y,z)):3

x:5 y:ω

K(x,y):5
→ x:5 x:6

I(x):6
→ x:6

4.3 Relating the essential system for CuTRS with the essential system for LC

As remarked after Example 2.5, every λ-term can be translated into a term in CCL. In the
setting of CuTRS, the translation is specified by:

Definition 4.16 ([13]) Let Λ be the set of λ-terms and TCCL = T({S,S2,S1,S0,K,K1,K0, I, I0},X).
i) The mapping 〈 〉 : Λ → TCCL is defined by:

〈x〉 = x,
〈λx.M〉 = λ∗x.〈M〉,
〈MN〉 = Ap (〈M〉, 〈N〉).

where λ∗x.t, with t ∈TCCL, is defined by induction on the structure of M:
λ∗x.x = I0,
λ∗x.t = Ap (K0, t), if x not in t,

λ∗x.Ap (t,u) = Ap (Ap (S0,λ∗x.t),λ∗x.u).
ii) The mapping [[]]CL : TCCL → Λ is defined by:

[[x]]CL = x,
[[Ap (t1, t2)]]CL = [[t1]]CL[[t2]]CL,

[[S0]]CL = λxyz.xz(yz),
[[K0]]CL = λxy.x,
[[I0]]CL = λx.x,

[[Fn (t1, . . . , tn)]]CL = [[Ap (Fn−1(t1, . . . , tn−1), tn)]]CL,
for Fn ∈ {S,S2,S1,K,K1, I}.

Notice that the auxiliary function λ∗, that takes a variable and a term in TCCL and returns
a term in TCCL, is only evaluated in the definition of 〈 〉 with a variable or an application as
second argument.

Let →β denote β-reduction and →→β its reflexive and transitive closure. For the interpre-
tations defined above the following property holds:

Property 4.17 ([13]) i) [[〈M〉]]CL →→β M.
ii) If t →r u in CCL, then [[t]]CL →→β [[u]]CL.

For example,

〈λxy.x〉 = λ∗x.〈λy.x〉 = λ∗x.λ∗y.x = λ∗x.Ap (K0, x) =
Ap (Ap (S0,λ∗x.K0),λ∗x.x) = Ap (Ap (S0, Ap (K0,K0)), I0),

and

[[Ap (Ap (S0, Ap (K0,K0)), I0)]]CL = (λxyz.xz(yz))((λxy.x)λxy.x)λx.x →→β λxy.x.

Notice also that

Information and Computation, 133(2):73-116, 1997 16

Ap (Ap (S0, Ap (K0,K0)), I0) →r Ap (S1 (Ap (K0,K0)), I0) →r S2 (Ap (K0,K0), I0) →r

S2 (K1 (K0), I0),

and

[[S2 (K1 (K0), I0)]]CL = [[Ap (Ap (S0, Ap (K0,K0)), I0)]]CL.

The relation between essential type assignment in LC and that in CuTRS (restricted to CCL
with the environment ECL of Example 4.11) is very strong, as the following theorem shows.

Theorem 4.18 i) B � M:σ implies B �ECL 〈M〉:σ.
ii) B �ECL t:σ implies B � [[t]]CL:σ.

Proof: By induction on the definition of 〈 〉 and [[]]CL.
As a corollary, we obtain the undecidability of type assignment in our system (or, more pre-
cisely, the undecidability of type assignment in CCL with respect to ECL).

4.4 Subject Reduction

In Subsection 4.2 we defined type assignment on rules in such a way that a rewrite rule is
typeable only if it can be typed using the principal pair of the left-hand side. We will show
that this condition is sufficient for subject reduction. First we need to prove that the three
operations on pairs (substitution, expansion, and lifting), defined in Subsection 4.1, are sound
on typeable terms. We will also show that the operations of substitution and expansion are
sound on rewrite rules. It is not possible to prove such a property for the operation of lifting.

The following theorem shows the soundness of substitution.

Theorem 4.19 Let S be a substitution and E an environment.
i) If B �E t:σ, then S (B) �E t:S (σ).

ii) Let r: l → r be a rewrite rule typeable with respect to the environment E , and let F be the defined
symbol of r. Then r is typeable with respect to E [F:S (E(F))].

Proof: i) By induction on the structure of derivations.
((≤)) : Then t ≡ x and B ≤ {x:σ}. By Lemma 4.2(ii), S (B) ≤ S ({x:σ}) = {x:S (σ)}, so

S (B) �E x:S (σ).
((→E)) : Then t ≡ F(t1, . . . , tn), there are σ1, . . . ,σn ∈ TS and a chain C such that, for ev-

ery 1≤ i≤n, B �E ti:σi and C (E (F)) = σ1→·· ·→σn→σ. Then by induction, for every
1≤ i≤n, S (B) �E ti:S (σi); since S◦C is a chain and

S◦C (E(F)) = S (σ1)→·· ·→S (σn)→S (σ),
by (→E) also S (B) �E t:S (σ).

((∩I)) : Then σ = σ1∩· · ·∩σn and B �E t:σi, for all 1≤ i≤n. By induction, S (B) �E t:S (σi), for
every 1≤ i≤n. Then, by (∩I), S (B) �E t:S (σ1) ∩· · ·∩S (σn), so also S (B) �E t:S (σ).

ii) If r is a rewrite rule typeable with respect to E , then by Definition 4.14(i) there is a basis
P, and π ∈ Ts, such that
a) 〈P,π〉 is a principal pair for l with respect to E ,
b) P �E r:π,
c) In P �E l:π and P �E r:π, all occurrences of F are typed with E (F).

Let E′ = E [F:S (E (F))]. From P �E l:π and part (i) we obtain S (P) �E l:S (π). Since E
and E′ only differ in the type for F, it is easy to see that S (P) �E′ l:S (π). Likewise, we

Information and Computation, 133(2):73-116, 1997 17

can conclude that S (P) �E′ r:S (π). Notice that in these type assignments, all Fs are typed
with E′ (F).

We will now prove that 〈S (P),S (π)〉 is the principal pair for l with respect to E′.
Suppose B �E′ l:σ, then also B �E l:σ. Since 〈P,π〉 is principal for l with respect to E ,
there is a chain C such that C (〈P,π〉) = 〈B,σ〉. Suppose F occurs n times in l; from
B �E′ l:σ, by Definition 4.10 for the j-th occurrence (1≤ j≤n) there is a chain Cj such that
the type used for that F is Cj (E(F)). Assume, without loss of generality, that these chains
Cj and C do not interfere. Take C′ = C◦ C1◦ · · ·◦ Cn, then C′ (〈S (P),S (π)〉) = 〈B,σ〉.

The following theorem shows the soundness of expansion, for which we need the next
lemma.

Lemma 4.20 Let B′ �E t:τ, where τ ∈ Ts, E = 〈µ,n, B,σ〉 be an expansion such that T<B′,τ> ⊆ T〈B,σ〉,
and ρ ∈ T〈B,σ〉. Then

i) a) For 1≤ i≤n, there are ρi and a substitution Si such that Si (ρ) = ρi and E (ρ) = ρ1∩· · ·∩ρn,
or,

b) E (ρ) ∈ Ts.
ii) a) For 1≤ i≤n, there are Bi, τi, and substitution Si such that E (〈B′,τ〉) = 〈Π{B1, . . . , Bn},τ1∩· · ·∩τn〉,

and Si (〈B′,τ〉) = 〈Bi,τi〉, for every 1≤ i≤n, or,
b) E (〈B′,τ〉) = 〈B′′,τ′〉, with τ′ ∈ Ts.

Proof: By Definition 4.4 and Lemma 4.6 (i).

Theorem 4.21 Let E be an expansion such that E (〈B,σ〉) = 〈B′,σ′〉.
i) If B �E t:σ, then B′ �E t:σ′.

ii) Let r: l → r be a rewrite rule typeable with respect to the environment Eand let F be the defined
symbol of r. If E (E (F)) = σ1∩· · ·∩σn, then for every 1≤ i≤n, r is typeable with respect to E [F:σi].

Proof: i) By induction on TS, of which we will only show the part σ ∈ Ts. Let E (〈B,σ〉) =
〈B′,σ′〉. Then by Lemma 4.20 either:
a) σ′ = τ1∩· · ·∩τm, for every 1≤ j≤m there are a substitution Sj and basis Bj such that

Sj (σ) = τj, Sj (B) = Bj, and B′ = Π{B1, . . . , Bm}. Then by Theorem 4.19(i), for every
1≤ j≤m, Bj �E t:τj, so, by (∩I) and 4.2(ii), B′ �E t:σ′.

or,
b) σ′ ∈ Ts. This part is proved by induction on the structure of derivations.
((≤)) : Then t ≡ x and B ≤ {x:σ}. By Lemma 4.6(iv), B′ ≤ {x:σ′}, so B′ �E x:σ′.
((→E)) : Then t ≡ F(t1, . . . , tn), and there are σi, σ′

i ∈ TS, for 1≤ i≤n, and a chain C such
that C (E (F)) = σ1→·· ·→σn→σ and, for every 1≤ i≤n, B �E ti:σi and E (σi) = σ′

i .
By induction, for every 1≤ i≤n, B′ �E ti:σ′

i ; since E◦C is a chain and E◦C (E(F)) =
σ′

1→·· ·→σ′
n→σ, also B′ �E t:σ.

ii) Since E (F) ∈ Ts, by Lemma 4.6(i) either:
a) τ = τ1∩· · ·∩τn. Then, for every 1≤ i≤n, there is a substitution S such that S (E (F)) =

τi. The proof is completed by Theorem 4.19(ii).
or,
b) τ ∈ Ts. The proof for this part is very similar to part (ii) of the proof of Theorem

4.19.

The following theorem shows the soundness of lifting.

Information and Computation, 133(2):73-116, 1997 18

Theorem 4.22 If B �E t:σ and L is a lifting, then also L (B) �E t:L (σ).

Proof: By Lemma 4.12(i) and (ii).

Since a lifting can introduce non-relevant types into bases, obviously not every lifting per-
formed on a pair 〈B,σ〉 such that 〈B,σ〉 is a principal pair for t produces a pair with this same
property. Since type assignment of rewrite rules is defined using the notion of principal pairs,
it is clear that lifting cannot be a sound operation on rewrite rules. This can also be illustrated
by the following:

Take the rewrite system

I (x) → x
F (I0) → I0

that is typeable with respect to the environment E 1 (I) = 1→1, E 1 (F) = (2→2)→3→3. Since
(2→2)→3→3 ≤ (2→2)∩4→3→3, <〈∅, (2→2)→3→3〉, 〈∅, (2→2)∩4→3→3〉> is a lifting. It is not
possible to show that the rewrite rule that defines F is typeable with respect to E [F:(2→2)∩4→3→3],
since all types in (2→2)∩4 should be types for I.

Combining the above results for the different operations, we have:

Theorem 4.23 i) If B �E t:σ then for every chain C such that C (〈B,σ〉) = 〈B′,σ′〉, B′ �E t:σ′.
ii) Let r: l → r be a rewrite rule typeable with respect to the environment E and let F be the defined

symbol of r. If C is a chain that contains no lifting, then: if C (E (F)) = σ1∩· · ·∩σn, then for every
1≤ i≤n, r is typeable with respect to E [F:σi].

Proof: By Theorems 4.19, 4.21, and 4.22.

In the proof of Subject Reduction we will use one more lemma:

Lemma 4.24 Let E be an environment, t ∈T(F,X), and R a term-substitution.
i) If B �E t:σ and B′ is a basis such that B′ �E xR:ρ for every statement x:ρ ∈ B, then B′ �E tR:σ.

ii) If there are B and σ such that B �E tR:σ, then for every x occurring in t there is a type ρx such
that

{x:ρx | x occurs in t} �E t:σ, and B �E xR:ρx.

Proof: By induction on the structure of derivations.

Theorem 4.25 (Subject Reduction Theorem) Let (Σ,R) be a typeable CuTRS with respect to an
environment E . If B �E t:σ and t →R t′, then B �E t′ :σ.

Proof: Let r : l → r be the typeable rewrite rule applied in the rewrite step t →R t′. We will
prove that for every term-substitution R and type µ, if B �E lR:µ, then B �E rR:µ, which proves
the theorem.

Since r is typeable, there are P, π such that 〈P,π〉 is a principal pair for l with respect to E ,
and P �E r:π. Suppose R is a term-substitution such that B �E lR:µ. By Lemma 4.24(ii) there
is a B′ such that for every x:ρ ∈ B′, B �E xR:ρ, and B′ �E l:µ. Since 〈P,π〉 is a principal pair for
l with respect to E , by Definition 4.13 there is a chain C such that C (〈P,π〉) = 〈B′,µ〉. Since
P �E r:π, by Theorem 4.23(i) also B′ �E r:µ. Then by Lemma 4.24(i) B �E rR:µ.

It is important to note that the condition ‘〈P,π〉 is a principal pair for l with respect to E ’ in
Definition 4.14 is crucial. Just saying naively:

Information and Computation, 133(2):73-116, 1997 19

l → r ∈ R is typeable with respect to E if there are basis B
and type σ ∈ Ts such that: B �E l:σ and B �E r:σ,

would give a notion of type assignment that is not closed under rewriting and is not a natural
extension of the essential intersection system for LC. The following is an example of the loss
of subject reduction (see [10] for more details).

Example 4.26 Consider the rewrite system

H (S2 (x,y)) → S2 (I0,y)
S (x,y,z) → Ap (Ap (x,z), Ap (y,z))
K (x,y) → x
I (x) → x

and the environment

E0 (H) = ((1→2)→3)→(1→2)→2,
E0 (S) = (1→2→3)→(1→2)→1→3,
E0 (K) = 1→2→1,
E0 (I) = 1→1.

The first rule is naively typeable with respect to E 0:

x:(1→2)→1→3 y:(1→2)→1

S2 (x,y):(1→2)→3

H (S2 (x,y)):(1→2)→2

→ I0:(1→2)→1→2 y:(1→2)→1

S2 (I0,y):(1→2)→2

Take the term H (S2 (K0, I0)), which reduces to S2 (I0, I0). Although the first term is typeable
with respect to E 0:

K0:(4→5)→(4→5)→4→5 I0:(4→5)→4→5

S2 (K0, I0):(4→5)→4→5

H (S2 (K0, I0)):(4→5)→5

the term S2 (I0, I0) is not typeable with respect to E 0 with the type (4→5)→5. In our system
the rule is not typeable in this way, because the type assignment used for H (S2 (x,y)) is not a
principal one. To illustrate this, consider the following derivation:

x:(1→2)→4→3 y:(1→2)→4

S2 (x,y):(1→2)→3

H (S2 (x,y)):(1→2)→2

The pair 〈{x:(1→2)→4→3,y:(1→2)→4}, (1→2)→2〉 cannot be obtained from 〈{x:(1→2)→1→3,
y:(1→2)→1}, (1→2)→2〉 by a chain of operations; in the opposite direction, the operation needed
is that of (4 �→1).

We should emphasize that, when defining type assignment in a naive way, the loss of the
subject reduction property is not caused by the fact that intersection types are used. The en-
vironment E0 maps function symbols to Curry-types, so even for a notion of type assignment
based on Curry-types, types are not preserved under rewriting.

To illustrate the fact that, when assigning types in a naive way, also the relation with the

Information and Computation, 133(2):73-116, 1997 20

essential intersection type assignment system for LC is lost, we give another example.

Example 4.27 Take the rewrite rule

E (x,y) → Ap (x,y).

Let E (E) = 3→1→4. Take B = {x:3∩(1→4), y:1}, then we can derive B �E E (x,y):4 and B �E Ap (x,y):4.
This rewrite rule for E corresponds to the λ-term λxy.xy, but 3→1→4 is not a correct type for
this term in the type assignment system of Section 3.

Therefore, a minimal requirement for subject reduction is to demand that all types used for
variables in the derivation for the right-hand side of a rewrite rule are those actually needed
in the derivation for the left-hand side. This is accomplished by restricting the possible bases
to those that are principal for the left-hand side.

5 Normalization Properties of Typeable CuTRS

In this section we study normalization properties of CuTRS, using the type assignment system
defined above. As in LC, the type ω plays an important role in this study.

As mentioned in the introduction, in the rewriting framework typeability alone does not
ensure any normalization property (for example, consider a typeable term t and a one-rule
recursive CuTRS of the form t → t). This means that the characterization of normalizability of
terms in CuTRS cannot be based on type conditions only, as is possible for LC, but that also
syntactic restrictions on the rules have to be imposed. For this reason, we will introduce a
general scheme of recursion, inspired by [27], that restricts the use of recursion to ensure strong
normalization of all terms typeable without using ω. Moreover, by restricting the scheme a
little further, we will show that when ω is used, all typeable terms have a head-normal form.
More precisely, we will prove the following three results:

Theorem Let (Σ,R) be a CuTRS that satisfies certain conditions to be formulated below, and
let t ∈ T(F,X). Then:

• If B �E t:σ and σ �= ω, then t has a head-normal form.
• If B �E t:σ, t is a non-Curryfied term, and ω does not occur in B and σ, then t has a

normal form.
• If B �E t:σ and ω is not used at all, then t is strongly normalizable.

To prove this theorem we will use the method of Computability Predicates of Tait’67, adapted
to the rewriting framework. In contrast with LC, the structure of the rewrite rules in CuTRS is
not fixed, and hence the general scheme plays a crucial role in the proof.

As a consequence of the previous theorem, we can deduce that in the intersection system
without ω the class of typeable non-recursive CuTRS is strongly normalizing. To appreciate the
non-triviality of this condition, remember Example 2.8: a non-recursive CuTRS may be non-
terminating, or worse, not even head-normalizing. In fact, the main result of Subsection 5.2
(every typeable term is head-normalizable) shows that the only type that can be assigned to
the term D (D0) is ω.

The converse of these results does not hold, due to the fact that arbitrary patterns are
allowed, as shown below:

Information and Computation, 133(2):73-116, 1997 21

Example 5.1 Take the strongly normalizing rewrite system

I (x) → x
K (x,y) → x
F (I0) → I0
F (K0) → K0.

It is not possible to give an environment such that these rules can be typed, since there is
no type σ that is a type for both I and K.

5.1 Strong Normalization

In the following we will define the general scheme and the class of safe recursive systems, and
prove that, using the type assignment system without ω, typeable safe systems are strongly
normalizing.

Definition 5.1 Let Σ be a signature with a set of function symbols Fn = C ∪ {F1, . . . , Fn},
where F1, . . . , Fn will be the defined symbols that are not Curryfied-versions, and C the
set of constructors and Curryfied versions of symbols. Assume that F1, . . . , Fn are defined
incrementally, by rules that satisfy the general scheme:

Fi (C[x],y) → C′[Fi (C1[x],y), . . . , Fi (Cm[x],y),y],

where x, yare sequences of variables such that x ⊆ y; C[], C′[], C1[], . . . , Cm[] are sequences of
contexts in T(Fi−1,X); and for every 1≤ j≤m, C[x]>mul Cj[x], where � is the strict subterm
ordering (i.e. > denotes strict superterm) and mul denotes multiset extension.

Then the hierarchical CuTRS that contains the rules defining F1, . . . , Fn is a safe recursive system.

This general scheme is a generalization of primitive recursion. It imposes two main restric-
tions on the definition of functions: the terms in the multisets Cj[x] are subterms of terms in
C(this is the ‘primitive recursive’ aspect of the scheme), and the variables xmust also appear
as arguments in the left-hand side of the rule. Both restrictions are essential to prove the
Strong Normalization Theorem (Theorem 5.12 below). The last one can be replaced by a typ-
ing condition, requiring that the variables in x that are not included in y can only be assigned
base types. Also, instead of the multiset extension of the subterm ordering, a lexicographic
extension can be used, or even a combination of lexicographic and multiset (see [23] for details
about these variants of the scheme).

Example 5.2 The following rewrite system on natural numbers and lists of natural numbers
is safe: it is a hierarchical system, the variables that do not appear as arguments in the left-
hand sides can only have base types, and the recursive calls in the right-hand sides satisfy the
required subterm condition. The signature contains the constructors Succ, Zero, Nil, and Cons,
and the defined symbols Add, Mul, Con, Len, and Rev.

Add (Zero,y) → y
Add (Succ (x),y) → Succ (Add (x,y))
Mul (Zero,y) → Zero
Mul (Succ (x),y) → Add (Mul (x,y),y)
Con (Nil, l) → l
Con (Cons (a,b), l) → Cons (a,Con (b, l))

Information and Computation, 133(2):73-116, 1997 22

Len (Nil) → Zero
Len (Cons (x,y)) → Succ (Len (y))
Len (Con (x,y)) → Add (Len (x),Len (y))
Rev (Nil) → Nil
Rev (Cons (a,b)) → Con (Rev (b),Cons (a,Nil))

If we extend the definition of Add with the rule that expresses associativity,

Add (Add (x,y),z) →Add (x,Add (y,z))

the rewrite system is no longer safe.

Note that although the general scheme has a primitive recursive aspect, it allows the def-
inition of non-primitive functions thanks to the higher-order features available in CuTRS: for
example, Ackermann’s function can be represented. Moreover, the rewrite rules of CCL (Ex-
ample 2.5) are not recursive, so, in particular, satisfy the scheme. Therefore, even with the
severe restrictions imposed on rewrite rules by the general scheme, the class of safe CuTRS is
Turing-complete, a property that systems without Ap would not possess.

5.1.1 Type Assignment without ω

We will consider environments that map function symbols to types without ω. Such envi-
ronments will be called ω-free, and in general we will use the expression ω-free as prefix to
indicate that ω does not appear in an object.

The sets T −ω−
s , T −ω−

S of ω-free strict types and ω-free strict intersection types, that will be used in
this subsection, are subsets of the ones used in Definition 3.1: we will not consider types
containing the type constant ω. These types are, in fact, the types used by Coppo-Dezani’80.

Notice that T −ω−
s is a proper subset of T −ω−

S , and that now in σ1∩· · ·∩σn, n cannot be zero.
The ω-free type assignment system is defined as above, i.e. using three operations on pairs

of 〈basis,type〉, namely ω-free substitution, ω-free expansion, and ω-free lifting, that are ω-free
variants of similar definitions given in Subsection 4.1. ω-free chains are obtained by composing
operations of ω-free substitution, ω-free expansion, or ω-free lifting.

Type assignment on terms is defined in a way similar to that of Subsection 4.2, using a
natural deduction system with (≤), (∩I), and (→E) rules. Apart from the fact that in those
rules now only types in T −ω−

S are considered, the only difference is that in rule (∩I), n ≥ 1.

Definition 5.3 ω-free type assignment and ω-free derivations are defined by the following natu-
ral deduction system:

x:σ σ ≤ τ
(≤):

x:τ
t:σ1 . . . t:σn

(∩I): (n ≥ 1)
t:σ1∩· · ·∩σn

t1:σ1 . . . tn:σn
(→E): (a)

F(t1, . . . , tn):σ

(a) : If there exists C ∈ Ch such that C (E (F)) = σ1→·· ·→σn→σ.

We will use the symbol �−ω−
E for this type assignment system.

Example 5.4 As for the system �E , also for �−ω−
E the term S (K0,S0, I0) can be typed with the

Information and Computation, 133(2):73-116, 1997 23

type σ→σ, under the assumption that:

E (S) = (1→2→3)→(4→2)→1∩4→3,
E (K) = 5→6→5,
E (I) = 7→7.

K0:(σ→σ)→((τ→ρ)→(ρ→µ)∩τ→µ)→σ→σ

... S0:((ρ→µ)→ρ→µ)→(τ→ρ)→(ρ→µ)∩τ→µ
... I0:(σ→σ)∩((ρ→µ)→ρ→µ)

S (K0,S0, I0):σ→σ

Notice that, to obtain the type

((σ→σ)→((τ→ρ)→(ρ→µ)∩τ→µ)→σ→σ) → (((ρ→µ)→ρ→µ)→(τ→ρ)→(ρ→µ)∩τ→µ) →
(σ→σ)∩((ρ→µ)→ρ→µ) → σ→σ,

for S, we have used the chain

(1 �→ σ→σ)◦ (2 �→ ((τ→ρ)→(ρ→µ)∩τ→µ))◦ (3 �→ σ→σ)◦ (4 �→ (ρ→µ)→ρ→µ).

The following properties, where bases and types are ω-free, are needed further on:

Lemma 5.5 i) If B �−ω−
E t:σ and B′ ≤ B, then B′ �−ω−

E t:σ.
ii) If B �−ω−

E t:σ and σ ≤ τ, then B �−ω−
E t:τ.

iii) If B, x:α �−ω−
E Ap (t, x):β, β ∈ Ts, and x does not occur in t, then B �−ω−

E t:α→β.
iv) B �−ω−

E t:σ1∩· · ·∩σn ⇐⇒ ∀ 1≤ i≤n [B �−ω−
E t:σi].

v) B �−ω−
E Fn(t1, . . . , tn):σ & σ ∈ Ts ⇒ ∃ α ∈ TS, β ∈ Ts [σ = α→β].

Proof: By induction on the length of the derivations.

This lemma is just an ω-free variant of Lemma 4.12; however, none of the results formulated
there imply those mentioned here.

To ensure the subject reduction property, as in Subsection 4.4, type assignment on rewrite
rules is defined using the notion of principal pair for a typeable term.

Let E be an ω-free environment. As in Subsection 4.4, it is possible to show that the op-
erations on pairs are sound on typed terms and are sound on rewrite rules in the following
sense: if there is an operation O – either a substitution or an expansion – such that O (E (F)) =
σ1∩· · ·∩σn, then for every 1≤ i≤n, the rewrite rules that define F are typeable with respect to
the changed ω-free environment E [F:σi].

Then, using the same technique as in Subsection 4.4, it is possible to show that subject
reduction holds.

Theorem 5.6 If B �−ω−
E t:σ and t →R t′, then B �−ω−

E t′:σ.

5.1.2 The Strong Normalization Theorem

We will prove now that the CuTRS that are typeable in the ω-free system and satisfy the
general scheme are strongly normalizing. The proof has two parts; in the first one we define a
computability predicate Comp on bases, terms, and types, and prove some properties of Comp.
The most important one states that if for a term t there are a basis B and type σ such that

Information and Computation, 133(2):73-116, 1997 24

Comp (B, t,σ), then t is strongly normalizable. In the second part Comp is shown to hold for
each typeable term.

From now on, we will abbreviate ‘t is strongly normalizable’ by SN (t) and we will assume
that E is a given ω-free environment.

Definition 5.7 i) Let B be a basis, t a term, and σ a type, such that B �−ω−
E t:σ. We define the

Computability Predicate Comp (B, t,σ) recursively on σ by:
a) Comp (B, t, ϕ) ⇐⇒ SN (t).
b) Comp (B, t, s) ⇐⇒ SN (t).
c) Comp (B, t,σ→τ) ⇐⇒ ∀ u ∈ T(F,X) [

Comp (B′,u,σ) ⇒ Comp (Π{B, B′}, Ap (t,u),τ)].
d) Comp (B, t,σ1∩· · ·∩σn) (n ≥ 1) ⇐⇒ ∀ 1≤ i≤n [

Comp (B, t,σi)].
ii) We say that a term t is computable in type σ if there exists B such that Comp (B, t,σ).

iii) We say that a term-substitution R is computable in a basis B if there is a basis B′ such that
for every x:σ ∈ B, Comp (B′, xR,σ) holds.

Notice that because we use intersection types and because of Definition 3.2(iv), in part (iii) we
need not consider the existence of different bases for each x:σ ∈ B.

Comp is closed under ≤ :

Lemma 5.8 Comp (B, t,σ) & σ ≤ τ ⇒ Comp (B, t,τ).

Proof: By induction on the definition of ≤ .

Comp satisfies the standard properties of computability predicates (see [25]). C1 and C3 are
actually proved by mutual induction:

Property 5.9 (C1) : If Comp (B, t,σ), then SN (t).

(C2) : If Comp (B, t,σ) and t → t′, then Comp (B, t′,σ).

(C3) : If t is neutral, B �−ω−
E t:σ for some B, σ, and, for all v such that t →R v, Comp (B,v,σ), then also

Comp (B, t,σ).

Proof: By simultaneous induction on the structure of types.
i) σ = ϕ, or σ = s ∈ S.
(C1) : By 5.7 (i.a) and (i.b).
(C2) : By 5.7 (i.a) and (i.b), B �−ω−

E t:σ, and SN (t). Certainly SN (t′), and by Theorem 5.6 also
B �−ω−

E t′:σ, so by 5.7 (i.a) and (i.b) we obtain Comp (B, t′,σ).
(C3) : By 5.7 (i.a) and (i.b), SN (v). Obviously, also SN (t) and, again by 5.7 (i.a) and (i.b),

Comp (B, t,σ) holds.
ii) σ = α→β.
(C1) : Let u ≡ x (a new variable). By Property C3, since x is a neutral term in normal form,

and trivially {x:α} �−ω−
E x:α, also Comp ({x:α}, x,α). Then Comp (B∪ {x:α}, Ap (t, x), β) by

5.7 (i.c). Then, by induction, SN (Ap (t, x)), which implies SN (t).
(C2) : Take u such that Comp (B′,u,α), then, by 5.7 (i.c), Comp (Π{B, B′}, Ap (t,u), β). Since

Ap (t,u) →∗ Ap (t′,u), by induction we get Comp (Π{B, B′}, Ap (t′,u), β). Then, by
5.7 (i.c), Comp (B, t′,α→β).

Information and Computation, 133(2):73-116, 1997 25

(C3) : We have to prove that
∀ u ∈ T(F,X) [Comp (B′,u,α) ⇒ Comp (Π{B, B′}, Ap (t,u), β)].

Since Ap (t,u) is neutral of type β, by induction, it is sufficient to prove that Comp (Π{B, B′},v′, β)
holds for all v′ such that Ap (t,u) →R v′. For this we apply induction on the length
of the maximal derivation from u to its normal form (by Property C1 we know that
SN (u)).

(Base) : If u is a normal form, then Ap (t,u) reduces only inside t (because t is neutral),
so Ap (t,u)→R Ap (v,u) and Comp (B,v,σ) holds by assumption. So, by 5.7 (i.c), we
have Comp (Π{B, B′}, Ap (v,u), β).

(Induction step) : Consider all possible one-step reductions from Ap (t,u): For Ap (t,u)→R

Ap (v,u) we proceed as before. For the case Ap (t,u) →R Ap (t,u′), by induction
the result Comp (Π{B, B′}, Ap (t,u′), β) follows. And these are all possible cases,
because Ap (t,u) cannot be a redex itself since t is neutral and the rewrite system
is safe.

iii) σ = σ1∩· · ·∩σn.
(C1) : By 5.7 (i.d), Comp (B, t,σ) implies Comp (B, t,σi), for 1≤ i≤n, and by induction SN (t).
(C2) : By 5.7 (i.d), Comp (B, t,σ) implies Comp (B, t,σi), for 1≤ i≤n. By induction, for 1≤ i≤n,

Comp (B, t′,σi), so, by 5.7 (i.d), also Comp (B, t′,σ).
(C3) : By Lemma 5.5(iv), B �−ω−

E t:σi for 1≤ i≤n, and by Theorem 5.6, B �−ω−
E v:σi. More-

over, Comp (B,v,σ) implies Comp (B,v,σi), for every 1≤ i≤n. Then, by induction, for
1≤ i≤n, Comp (B, t,σi) and by 5.7 (i.d), Comp (B, t,σ).

Terms can, as usual, be seen as trees; the subterm of t at position p will be denoted by t|p,
and t[u]p will denote the result of replacing in t the subterm at position p by u.

In order to prove that every typeable term is computable we shall prove a stronger property,
for which we will need the following ordering.

Definition 5.10 i) Let >IIN denote the standard ordering on natural numbers, and lex, mul de-
note respectively the lexicographic and multiset extension of an ordering. Let >· stand
for the well-founded encompassment ordering, i.e. u>· v if u �= v modulo renaming of
variables, and u|p = vR for some position p ∈ u and term-substitution R. Note that encom-
passment contains strict superterm (>).

ii) We define the ordering �SN on triples – consisting of a pair of natural numbers, a term,
and a multiset of terms – as the object

((>IIN,>IIN)lex ,>· , (→R ∪>)mul)lex .
iii) We will interpret the term uR by the triple 〈(i, j),u,{R}〉 = I(uR), where

a) i is the maximal super-index of the function symbols belonging to u,
b) j is the minimum of the differences arity(Fi) - arity(Fi

k) such that Fi
k occurs in u, and

c) {R} is the multiset {xR | x ∈Var (u)}.
These triples are compared in the ordering �SN .

When R is computable, then by Property C1 every t in the image of R is strongly normaliz-
able, so →R is well-founded on the image of R. Also, because the union of the relation> with
a terminating rewrite relation is well-founded [21], the relation (→R ∪>)mul is well-founded
on {R}. Hence, when restricted to computable term-substitutions, �SN is a well-founded
ordering.

We will use �SN
n when we want to indicate that the nth element of the triple has decreased

Information and Computation, 133(2):73-116, 1997 26

and the n-1 first ones have not increased.
We would like to stress that we do not just interpret terms, but pairs of terms and term-

substitutions. This implies that although it can be that the terms tR and t′R′ are equal, their
interpretations need not be equal as well.

We now come to the main theorem of this section, in which we will show that for any
typeable term and computable term-substitution R also the term tR is computable. The strong
normalization result then follows, using Property C1, for any typeable term t, taking for R the
identity.

In the proof, the main idea is to write a term tR like t′R′ (so they are equal as terms), where
t>· t′, and R′ is a computable extension of R. This is accomplished by taking a computable
subterm v of t, to put a new variable z in its place and to define R′ = R∪ {z �→v}.

Property 5.11 Let t be such that B �−ω−
E t:σ, and R be computable in B. Then there is a B′ such that

Comp (B′, tR,σ).

Proof: By noetherian induction on �SN .
If σ = σ1∩· · ·∩σn, then, by Definition 5.7 (i.d), we have to prove that for every 1≤ i≤n,

Comp (B′, tR,σi). So, without loss of generality, we can consider σ ∈ T −ω−
s .

Let B = {x1:σ1, . . . , xn:σn}, and R = {x1 �→u1, . . . , xn �→un}. We distinguish the cases:
i) t is a neutral term. If t is a variable x, then, by derivation rule (≤), there is a τ such that

x:τ ∈ B, and τ ≤ σ. Since xR is computable of type τ, by Lemma 5.8 it is also computable
of type σ. So, without loss of generality we assume that t is not a variable and then also
tR is neutral. If tR is irreducible, then Comp (B′, tR,σ) holds by Property C3. Otherwise, let
tR →R w at position p. We will prove either Comp (B′, tR,σ) itself, or prove Comp (B′,w,σ)
and apply Property C3.
a) p = qp′, t|q = xi ∈ X , so the rewriting takes place in a subterm of tR that is introduced

by the term-substitution Let z be a new variable.
Take R′ = R∪ {z �→w|q} and note that tR|q →R w|q at position p′. Since tR|q ∈ {R} and
R is assumed to be computable, also Comp (B, tR|q,σi) holds. So Comp (B,w|q,σi) holds
by Property C2, hence R′ is computable in B∪ {zi:σi}.
Now, if the variable xi (= t|q) has exactly one occurrence in t, then t = t[z]q modulo
renaming of variables, and otherwise t>· t[z]q. In the first case (since R contains a term
that is rewritten to get R′) we have I(tR) �SN

3 I([z]qR′), and I(tR) �SN
2 I(t[z]qR′) in the

second case. Both cases yield, by induction, Comp (B′, t[z]qR′,σ). Note that t[z]qR′ ≡ w.
b) Now assume that p is a non-variable position in t. We analyze separately the cases:

1) p is not the root position. Then t>· t|p, hence I(tR) �SN
2 I(t|pR), and note that

t|pR = tR|p. Let τ be the type assigned to t|p in the derivation of B �−ω−
E t:σ, then

Comp (B, tR|p,τ) holds by induction.
Let z be a new variable, and R′ = R∪ {z �→ tR|p}, then R′ is computable in B∪{z:τ},
and B∪{z:τ} �−ω−

E t[z]p:σ. Now t>· t[z]p, hence I(tR)�SN
2 I(t[z]pR′), hence Comp (B, tR,σ).

2) p is the root position. Then the possible cases for t are:
A) t ≡ F(t1, . . . , tn), where at least one of the ti is not a variable, and F is either

a defined symbol of arity n, or F ≡ Ap and n = 2. Take R′ = {z1 �→ t1R, . . . ,
zn �→ tnR}. Since t>· ti, I(tR) �SN

2 I(tiR). Then if B �−ω−
E ti:σi, Comp (B, tiR,σi) holds

by induction. Hence, R′ is computable in B∪ {z1:σ1, . . . , zn:σn}. But I(tR) �SN
2

I(F (z1, . . . ,zn)R′), and note that F (z1, . . . ,zn)R′ = tR and
B∪ {z1:σ1, . . . , zn:σn} �−ω−

E F (z1, . . . ,zn):σ.
Hence Comp (B, tR,σ).

Information and Computation, 133(2):73-116, 1997 27

B) t ≡ Fk (z1, . . . ,zn) where z1, . . . ,zn are different variables. (If zi = zj for some i �= j,
we can reason as in part (i.a).) Then tR must be an instance of the left-hand side
of a rule defining Fk:

tR = Fk (z1, . . . ,zn)R = Fk (C[M], N) →R

C′[Fk (C1[M], N), . . . , Fk (Cm[M], N), N] = w,
where C[M], Nare all terms in {R}, so are computable by hypothesis.
Now we will deduce Comp (B,w,σ) in three steps:

(Step I) : Let R′ be the term-substitution that maps the left-hand side of the rewrite
rule into tR, so xR′= M. Since M ⊆ Nand all Nare computable, also R′ is
computable2. For every 1≤ j≤m, Fk does not occur in Cj(by definition of the
general scheme), hence I(Fk (z1, . . . ,zn)R) �SN

1 I(CjR
′), so also the term CjR

′

is computable.
(Step II) : Let, for 1≤ j≤m, Rj be the computable term-substitution such that tRj =

Fk (Cj[M], N) = Fk (Cj[x],y)R′. Since C>mul Cj, and > is closed under term-
substitution also CR′>mul CjR

′, so I(Fk (z1, . . . ,zn)R) �SN
3 I(Fk (z1, . . . ,zn)

Rj),
and therefore Fk (z1, . . . ,zn)

Rj is computable.
(Step III) : Let v be the term obtained by replacing, in the right-hand side of the

rule, the terms Fk (C1[M], N), . . . , Fk (Cm[M], N), Nby fresh variables. Let R′′

be the term-substitution such that
vR′′ = C′[Fk (C1[M], N), . . . , Fk (Cm[M], N), N],

then tR →R vR′′. Notice that above we have shown that R′′ is computable.
When an Fj occurs in v, then by definition of the general scheme j < k and
therefore I(tR) �SN

1 I(vR′′), hence vR′′ is computable. Since w = vR′′, we get
Comp (B,w,σ).

C) t = Ap (z1,z2) where z1,z2 ∈ X . By assumption, z1R and z2R are computable and
since t is well-typed, z1 must have an arrow type. Then, by 5.7, Ap (z1R,z2R) is
computable. But Ap (z1R,z2R) is the same as Ap (z1,z2)R.

ii) t is not neutral. Let t ≡ Fi
n (t1, . . . , tn), where Fi

n is some Curryfied version of the symbol
Fi. Again we distinguish two cases:
a) Assume that at least one of the ti is not a variable. Since t>· ti for 1≤ i≤n, by induction

there exist B′, σi such that Comp (B′, ti,σi). Therefore, also the term-substitution R′ =
{z1 �→ t1, . . . ,zn �→ tn} is computable. We have I(tR) �SN I(tR′) since t>· Fi

n (z1, . . . ,zn),
and computability of tR′ by induction. Note that tR′ = tR.

b) All ti are variables. Since B �−ω−
E t:σ, by Lemma 5.5(v) there exist α ∈ T −ω−

S , β ∈ T −ω−
s

such that σ = α→β. We have to prove Comp (B′, tR,α→β), that is, for all u such
that Comp (B′′,u,α), we have to prove Comp (Π{B′, B′′}, Ap (tR,u), β). Since the term
Ap (tR,u) is neutral, by Property 5.9, it is sufficient to prove Comp (Π{B′, B′′}, t′, β) for
all t′ such that Ap (tR,u) →R t′. This will be proved by induction on the sum of the
length of the rewrite sequences out of u and out of R. Note that since u and R are
computable, by Property C1, SN (u) and SN (R).

(Base) : If u and R are in normal form, the only reduction step out of Ap (tR,u) could be:
Ap (Fi

n (z1, . . . ,zn)R,u)→R t′ ≡ Fi
n+1 (z1R, . . . ,znR,u);

then I(tR) �SN
1 I(Fi

n+1 (z1R, . . . ,znR,u)), so t′ is computable.
(Induction step) : If the reduction step out of Ap (tR,u) takes place inside u or tR (in the

2 With the version of the scheme that does not require M ⊆ Nbut assumes that the terms in Mthat do not
appear in Nare assigned base types, we can deduce that R′ is computable because SN (M).

Information and Computation, 133(2):73-116, 1997 28

last case it must be inside R since the rewrite system is safe), then t′ is computable
by induction. If Ap (tR,u) →R Fi

n+1 (z1R, . . . ,znR,u), so Fi
n (z1, . . . ,zn)R ≡ t, then we

proceed as in the base case.

Theorem 5.12 (Strong Normalization Theorem) If (Σ,R) is typeable in �−ω−
E and safe, then

any typeable term is strongly normalizable with respect to R.

Proof: Let R be such that xR = x, then by Property C3, R is computable. The result then follows
from Properties 5.11 and Property C1.

5.2 Head-normalization

As shown in the previous subsection, in a type assignment system without ω the conditions
imposed by the general scheme are sufficient to ensure strong normalization of typeable terms.
Unfortunately, the general scheme is not enough to ensure head-normalization of typeable
terms in a type system with ω: take the rewrite system

F (G (x)) → F (x),
A (x,y) → Ap (y, Ap (Ap (x, x),y))

that is typeable with respect to the environment

E(F) = ω→σ,
E(G) = ω→σ,
E(A) = ((α→µ→β)∩α)→((β→ρ)∩µ)→ρ,

then B �E F (A (A0, G0)):σ, but

F (A (A0, G0))→∗
R F (G (A (A0, G0)))→R F (A (A0, G0)).

The underlying problem is that, using ω, there are two kinds of typeable recursion in
CuTRS: the one explicitly present in the syntax, as well as the one obtained by the so-called
fixed-point combinators; for every H that has type ω→σ, the term A (A0, H0) has type σ, and
A (A0, H0)→∗

R H (A (A0, H0)). In fact, the term A1 (A0) corresponds to Θ = (λxy.y(xxy))(λxy.y(xxy)),
Turing’s fixed-point combinator for LC.

So, to obtain a head-normalization theorem in a type system with ω, we will have to impose
stronger conditions than just those imposed by the general scheme. In this subsection we will
only consider environments that map constructors to types without type variables and ω. In
other words, we will consider those CuTRS having an alphabet with a set C of constructors,
such that, for every environment E , if H ∈C then E(H) = s1→ . . .→sn→s, where n is the arity of
H and s1, . . . , sn, s are sorts, i.e. type constants. In the following, E will denote an environment
satisfying this condition.

Definition 5.13 (HNF-scheme) A rewrite rule

Fi (C[x],y) → C′[Fi (C1[x],y), . . . , Fi (Cm[x],y),y]

satisfies the HNF-scheme in the environment E , if it satisfies the conditions of the general
scheme, where we replace the condition of Definition 5.1:

‘for 1≤ j≤m, C[x]>mul Cj[x]’

by the condition:

Information and Computation, 133(2):73-116, 1997 29

‘for 1≤ j≤m, C[x]>mul Cj[x], C[x], Cj[x] ∈ T(C,X), and the patterns (see Definition
2.4(i)) appear at positions where E (Fi) requires arguments of sort type’

The systems that satisfy the HNF-scheme will be called HNF-safe.

Actually, the condition x ⊆ yis not needed in this case, since the only types that can be
assigned to the variables in xare sorts; but in order to simplify the proofs we will keep it. Also
in this case a lexicographic extension of the ordering > can be used.

The rest of this section will be devoted to the proof of the Head Normalization Theorem. We
will prove, simultaneously, that every typeable term is head-normalizable and constructor-hat
normalizable in a typeable and HNF-safe CuTRS. Again we will use the method of Computabil-
ity Predicates. The proof has two parts; in the first we will define a new predicate Comp on
bases, terms, and types, and prove some properties of Comp. The most important states that,
if for a term t there are a basis B and type σ �= ω such that Comp (B, t,σ) holds, then HN (t)
and CHN (t) (see notations at the end of Section 2). In the second part Comp is shown to hold
for each typeable term.

In the following we will assume that (Σ,R) is a typeable and HNF-safe CuTRS in the envi-
ronment E .

Definition 5.14 i) Let B be a basis, t a term, and σ a type such that B �E t:σ. We define the
Computability Predicate Comp (B, t,σ) recursively on σ by:

a) Comp (B, t, ϕ) ⇐⇒ HN (t) & CHN (t).
b) Comp (B, t, s) ⇐⇒ HN (t) & CHN (t).
c) Comp (B, t,α→β) ⇐⇒ ∀ u ∈ T(F,X) [Comp (B′,u,α) ⇒ Comp (Π{B, B′}, Ap (t,u), β)]
d) Comp (B, t,σ1∩· · ·∩σn) (n ≥ 0) ⇐⇒ ∀ 1≤ i≤n [Comp (B, t,σi)].

ii) We say that a term t is computable of type σ, if there is a basis B such that Comp (B, t,σ).
iii) We say that a term-substitution R is computable in basis B if there is a basis B′ such that for

every x:σ ∈ B, Comp (B′, xR,σ) holds.

Notice that Comp (B, t,ω) holds as special case of part (i.d). Also, since we use intersection
types, and because of Definition 3.2, in part (iii) we need not consider the existence of different
bases for each x:σ ∈ B.

We are going to prove that Comp satisfies the Properties C1, which now states head-normalization
of computable terms, and C3, which will be divided in two parts to gain readability. Notice
that with the notion of computability we are using here we do not need to prove Property C2.

Property 5.15 (C1) : Comp (B, t,σ) & σ �= ω ⇒ HN (t) & CHN (t).

(C3) : Let t be neutral. If B �E t:σ, and there is a v such that Comp (B,v,σ) and t →∗
R v, then

Comp (B, t,σ).

(C3’) : Let t be neutral. If B �E t:σ, In-Hnf (t), and In-Chnf (t), then Comp (B, t,σ).

Proof: By simultaneous induction on the structure of types.
i) σ = ϕ, or σ = s ∈ S. By Definition 5.14 (i.a) and (i.b), and Theorem 4.25 for Property C3.

For Property C3’, notice that In-Hnf (t) implies HN (t), and In-Chnf (t) implies CHN (t).
ii) σ = α→β.
(C1) : Comp (B, t,α→β) & x not in B ⇒ (IHC3’)

Comp (B, t,α→β) & Comp ({x:α}, x,α) ⇒ (5.14 (i.c))
Comp (B ∪ {x:α}, Ap (t, x), β) ⇒ (IHC1)

Information and Computation, 133(2):73-116, 1997 30

HN (Ap (t, x)) & CHN (Ap (t, x)) ⇒ (2.11(i) & (ii))
HN (t) & CHN (t).

(C3) : t is neutral & B �E t:α→β & ∃ v [t →∗
R v & Comp (B,v,α→β)] ⇒ (5.14 (i.c))

(Comp (B′,u,α) ⇒ ∃ v [t →∗
R v & Comp (Π{B, B′}, Ap (v,u), β)]) ⇒ (2.11(v))

(Comp (B′,u,α) ⇒ ∃ v [Ap (t,u)→∗
R v & Comp (Π{B, B′},v, β)]) ⇒ (IHC3)

(Comp (B′,u,α) ⇒ Comp (Π{B, B′}, Ap (t,u), β)) ⇒ (5.14 (i.c))
Comp (B, t,α→β).

(C3’) : t is neutral & B �E t:α→β & In-Hnf (t) & In-Chnf (t) ⇒ (2.11(iii))
(Comp (B′,u,α) ⇒ Ap (t,u) neutral & Π{B, B′} �E Ap (t,u):β &

In-Hnf (Ap (t,u)) & In-Chnf (Ap (t,u))) ⇒ (IHC3’)
(Comp (B′,u,α) ⇒ Comp (Π{B, B′}, Ap (t,u), β)) ⇒ (5.14 (i.c))
Comp (B, t,α→β).

iii) σ = σ1∩· · ·∩σn.
(C1) : Comp (B, t,σ1∩· · ·∩σn) ⇒ (5.14 (i.d))

∀ 1≤ i≤n [Comp (B, t,σi)] ⇒ (IHC1 & n �= 0)
HN (t) & CHN (t).

(C3) : t is neutral & B �E t:σ1∩· · ·∩σn & ∃ v [t →R v & Comp (B,v,σ1∩· · ·∩σn)] ⇒
(4.12(iv) & 5.14 (i.d))

∃ v [t →R v & ∀ 1≤ i≤n [Comp (B,v,σi) & B �E t:σi]] ⇒ (IHC3)
∀ 1≤ i≤n [Comp (B, t,σi)] ⇒ (5.14 (i.d))
Comp (B, t,σ1∩· · ·∩σn).

(C3’) : t is neutral & B �E t:σ1∩· · ·∩σn & In-Hnf (t) & In-Chnf (t) ⇒ (4.12(iv))
t is neutral & ∀ 1≤ i≤n [B �E t:σi & In-Hnf (t) & In-Chnf (t)] ⇒ (IHC3’)
∀ 1≤ i≤n [Comp (B, t,σi)] ⇒ (5.14 (i.d))
Comp (B, t,σ1∩· · ·∩σn).

In order to prove that typeable terms are computable we shall prove a stronger property, for
which we will need the following ordering and lemma.

Definition 5.16 Let (Σ,R) be a CuTRS.
i) We define the ordering �HNF on triples – consisting of a pair of a natural number and a

multiset of natural numbers, a term, and a multiset of terms – as the object
((>IIN, (>IIN)mul)lex ,>· , (→Chnf ∪>Chnf)mul)lex ,

where
a) t →Chnf t′ if t →∗

R t′, ¬In-Chnf (t) and In-Chnf (t′),

b) t>Chnf t′ if t> t′, In-Chnf (t), and In-Chnf (t′).

ii) Let t be such that B �E t:σ, and R a term-substitution, computable in B. We interpret the
term tR by the triple I(tR) = 〈(i, M), t,{R}〉, where
a) i is the maximal super-index of the function symbols belonging to t,

b) M is the multiset of the differences arity(Fj) - arity(Fj
k) such that Fj

k occurs in t,
c) {R} is the multiset {xR | x ∈Var (t) & ∃ ρ [x:ρ ∈ B]}.
These triples are compared in the ordering �HNF , which is well-founded.

Lemma 5.17 Comp (B, t,σ) & σ ≤ ρ ⇒ Comp (B, t,ρ).

Proof: By induction on the definition of ≤ .

Information and Computation, 133(2):73-116, 1997 31

We now come to the main theorem of this section, in which we will show that, for any term
typeable with σ and computable term-substitution R such that the term tR is typeable, tR is
computable in σ. The technique used in this proof is the same as in the proof of Property 5.11.

Property 5.18 Let t be a term such that B �E t:σ, and R a term-substitution computable in B. Then
there exists B′ such that Comp (B′, tR,σ).

Proof: By noetherian induction on �HNF (which is well-founded), using I(tR).
If σ = ω then tR is trivially computable of type ω. If σ = σ1∩· · ·∩σn, then by Definition

5.14 (i.d), we have to prove that, for every 1≤ i≤n, B �E t:σi and Comp (B, tR,σi). So, without
loss of generality we can assume that σ ∈ Ts.

If t is a variable then, by (≤) there is a τ, such that x:τ ∈ B, and τ ≤ σ. Since tR is computable
of type τ, by Lemma 5.17, it is also computable of type σ. We will now consider the case that
t is not a variable (so neither is tR). We will prove that tR is computable of type σ.

We consider separately the cases:
i) tR is neutral.
(In-Hnf (tR) & In-Chnf (tR)) : Then, by Property C3’, tR is computable of type σ.
(In-Hnf (tR) & ¬In-Chnf (tR)) : Then tR = Q (t1, . . . , tn), for Q a constructor or tR = Ap (t1, t2)

(otherwise In-Chnf (tR)). For 1≤ i≤n, ti is computable, either because it is in R or by
induction.
1) In case tR = Q (t1, . . . , tn), because a constructor can only have a ‘sort’-type, each

term ti (1≤ i≤n) is computable of a type different from ω. Then by Property C1
they have a constructor-hat normal form, which implies CHN (tR).

2) In case tR = Ap (t1, t2), t1 is computable of type α→β, for some α, β (so in particular,
α→β �= ω), then, by Property C1, CHN (t1) which implies CHN (tR).

In both cases, tR reduces to a neutral term t′ such that In-Chnf (t′) and In-Hnf (t′), and
by Theorem 4.25, B �E t′:σ. By Property C3’, t′ is computable of type σ, and tR is
computable of type σ by Property C3.

(¬In-Hnf (tR)) : Then two cases are possible for tR.
1) t = Ap (t1, t2). In this case, again t1R and t2R are computable either because they are

in {R}, or by induction (since the second component of the interpretation is strictly
smaller). By assumption, B �E t:σ and σ �= ω, so t1R′ must have an arrow type, and
since it is computable, tR is computable by Definition 5.14 (i.c).

2) t = Fk (t1, . . . , tn), with Fk a defined symbol.
If t �= Fk (z1, . . . ,zn) = u modulo renaming of variables, where z1, . . . ,zn are differ-
ent variables, then tR = uR′, where R′ is the term-substitution that assigns tiR to
each zi. By induction, R′ is computable since I (tiR) �HNF

2 I (tR). And since
I (tR) �HNF

2 I (uR′), again by induction we obtain that uR′ (which is the same as
tR) is computable.
If t = Fk (z1, . . . ,zn) modulo renaming of variables, where z1, . . . ,zn are different
variables (without loss of generality we can assume t = u), then we distinguish the
cases:
A) tR is not itself a redex. For 1 ≤ i ≤ n, ziR is computable because it is in {R}.

Moreover, each ziR that appears in a pattern position of a rule defining Fk

must be typed with a sort, since the system is HNF-safe. Then these terms
are constructor-hat normalizable by Property C1. For each ziR in a pattern po-
sition we can compute its constructor-hat normal form t′i (and we know that at
least one tiR can be reduced in this way, because we are assuming ¬In-Hnf (tR)).

Information and Computation, 133(2):73-116, 1997 32

Let R′ be the term-substitution that assigns to each zi its corresponding t′i. Then
I (tR) �HNF

3 I (tR′), and tR′ is computable by induction. Then tR is computable
by Property C3.

B) tR is a redex, that is, t = Fk (z1, . . . ,zn), and tR is reducible at the root position.
Then there is a rewrite rule

Fk (C[x], y) → C′[Fk (C1[x], y), . . . , Fk (Cm[x], y), y]
such that tR = Fk (C[M], N). By definition of HNF-safe CuTRS, the patterns
C[x] are constructor terms with sorts as types, hence, since R is computable,
CHN (C[M]). Let R′ be the computable term-substitution obtained from R by
reducing all C[M] to constructor-hat normal form (note that R′ is computable by
Definition 5.14 (i.b) since the C[M] are typed with sorts). There are two possible
cases: either I (tR) �HNF

3 I (tR′), and then tR′ is computable by induction, and
so is tR by Property C3, or the terms Mare already in constructor-hat normal
form, and

tR = Fk (C[M], N) →R C′[Fk (C1[M],N),. . . ,Fk (Cm[M],N), N].
In the latter case, since Nand M are computable (because M ⊆ Nand Nis in
R), the terms Ci[M] are computable by induction. Also, by definition of the
scheme and because In-Chnf (M), C[M] (>Chnf)mul Ci[M], then Fk (Ci[M], N) is
computable by induction. Again, by definition of the scheme and induction,

C′[Fk (C1[M], N), . . . , Fk (Cm[M], N), N]
is computable, since C′[x] does not contain Fk. Then, by Property C3, tR is
computable since it is neutral.

ii) tR is not neutral. Then t = Fk
i (t1, . . . , ti), where Fk

i is a Curryfied version of some function
symbol Fk. Then, by Lemma 4.12(v), t must have an arrow type α→β. We have to prove
that Ap (Fk

i (t1, . . . , ti),z)R′ is computable for any term-substitution R′ = R∪ {z �→u} such
that u is computable of type α. But since Ap (Fk

i (t1, . . . , ti),z)R′ is a neutral term, it is
sufficient to prove that it reduces to a computable term and then to use Property C3.
Now, by definition of CuTRS, Ap (Fk

i (t1, . . . , ti),z)R′ →R Fk
i+1 (t1, . . . , ti,z)R′ and since

I (Ap (Fk
i (t1, . . . , ti),z)R′) �HNF

1 I (Fk
i+1 (t1, . . . , ti,z)R′),

we have that Fk
i+1 (t1, . . . , ti,z)R′ is computable by induction, and we are finished.

Theorem 5.19 (Head Normalization Theorem) If (Σ,R) is typeable in �E and HNF-safe, then
for every term t such that B �E t:σ and σ �= ω, HN (t).

Proof: The theorem follows from Properties 5.18 and C1, taking R such that xR = x, which is
computable by Property C3’.

5.3 Normalization

In the intersection system for LC it is well-known that terms that are typeable without ω in
basis and type are normalizable. This is not true in the rewriting framework, even if one
considers safe recursive systems only. Take for instance the safe system:

Z (x,y) → y
D (x) → Ap (x, x).

The term Z1 (D (D0)) has type ϕ→ϕ in an environment where Z is typed with ϕ1→ϕ2→ϕ2 and
D with (ϕ3→ϕ4)∩ϕ3→ϕ4, but is not normalizable. The characterization of normalization can
therefore only be obtained for a restricted class of terms. We will consider only non-Curryfied

Information and Computation, 133(2):73-116, 1997 33

terms and CuTRS where reduction is closed on non-Curryfied terms (the latter will be called
non-Curryfied CuTRS). Actually, to get a normalization result similar to that of LC we will also
need to impose the following condition on CuTRS:

Definition 5.20 A CuTRS is complete if whenever a typeable non-Curryfied term t of which the
type does not contain ω has a reducible subterm t|p that is typeable with a type containing
ω, there exists q < p such that t|q is typeable with a type without ω and t|q[x]p (where x is a
fresh variable) is not in head-normal form.

Intuitively, in a complete CuTRS, a term F (t1, . . . , tn) that can be assigned a type that does not
contain ω, and where a ti typeable with a type that contains ω is a redex, will be reducible
either at the root or in some tj, typeable with a type that does not contain ω. This means that
the rules defining F cannot have patterns that have types with ω, and also that constructors
cannot accept arguments having a type that contains ω. Moreover, if a defined function
accepts arguments having types with ω, then its definition must be exhaustive.

Constructors and defined functions of HNF-safe systems satisfy the two first conditions.
So, a HNF-safe recursive system is complete whenever for all defined function F that accepts
arguments with types that contain ω, the patterns of the rules defining F cover all possible
cases.

From now on, we will consider only non-Curryfied CuTRS that are HNF-safe and complete.
We will call this class of systems NF-safe. This section will be devoted to the proof of the
Normalization Theorem:

Let t be a non-Curryfied term in a typeable, NF-safe CuTRS.
If B �E t:σ and σ does not contain ω, then t is normalizable.

We could use the method of Computability Predicates, as in the previous section, but since
only non-Curryfied terms are considered, a direct proof is simpler. We will prove the theorem
by noetherian induction, for which we will use the following ordering:

Definition 5.21 Let (Σ,R) be a CuTRS. Let � denote the following well-founded ordering
between terms: t�t′ if t � t′ or t′ is obtained from t by replacing the subterm t|p = F (t1, . . . , tn)
by the term F (s1, . . . , sn) where {t1, . . . , tn}>mul {s1, . . . , sn}. We define the ordering �NF on
triples composed of a natural number and two terms, as the object (>IIN,>· ,�)lex .

Theorem 5.22 (Normalization Theorem) Let t be a non-Curryfied term in a typeable, and NF-
safe CuTRS. If B �E t:σ and ω does not appear in σ, then t is normalizable.

Proof: By noetherian induction on �NF . We will interpret the term u by the triple I(u) =
〈i,u′,u〉 where i is the maximum of the super-indexes of the function symbols belonging to
u that do not appear only in subterms in normal form or having a type with ω, and u′ is
the term obtained from u by replacing subterms in normal form with fresh variables. These
triples are compared using �NF .

Assume that t is not in normal form. For every strict subterm u of t that has a type without
ω, either In-Nf (u), or u is smaller than t with respect to �NF and then N (u) by induction.
Let v be the term obtained from t by reducing these subterms to normal form.

If v �= t then I(t)�NF
2 I(v), N (v) by induction, and so N (t).

If v = t and it is a normal form, we are done. Otherwise, since the system is complete, t
must be reducible at the root, and since it is a non-Curryfied term, the only possible reduction
is:

Information and Computation, 133(2):73-116, 1997 34

t = Fi (C[M], N) →R C′[Fi (C1[M], N), . . . , Fi (Cm[M], N), N]

Now the subterms of the right-hand side of the form:

Fi (C1[M], N), . . . , Fi (Cm[M], N), N
that have a type without ω are normalizable by induction. Let C′′[u] be the term obtained
after normalizing those subterms, and including in the context the subterms that have a type
with ω. By the Subject Reduction Theorem, this term has a type without ω, and by definition
of the general scheme, it is smaller than t. Then N (C′′[u]) by induction.

6 Conclusions and Final Remarks

Intersection type assignment systems for LC have two nice properties: they are closed under
β-equality (whereas Curry’s system is only closed under β-reduction) and the sets of head-
normalizable, normalizable, and strongly normalizable λ-terms can be characterized by the
sets of assignable types.

We have shown that also in the world of term rewriting, intersection type systems are a
useful tool to study normalization properties. But typeability alone is not enough in this
setting. Our normalization results take also the way in which recursion is used in the rewrite
system into account and that is where the general scheme plays an important role. The general
scheme of recursion has been used in many different contexts to ensure strong normalization
of rewriting. It is interesting to notice that in the context of CuTRS, neither the general scheme
nor the type system alone can guarantee any normalization property, as the examples given
in this paper show. It is their combination that provides the right framework for the study of
normalization properties of CuTRS. This is in contrast with first-order term rewriting systems
(without Ap), where the general scheme alone ensures strong normalization (and since strong
normalization is preserved under Curryfication, also the system PP(R) obtained by Currying
a first-order system R, is strongly normalizing in this case).

Combinator Systems can be seen as a particular case of CuTRS (see for instance the CuTRS for
Combinatory Logic in Example 2.5). Moreover, Combinator Systems are trivially safe (since
all left-hand sides of rules have the form C(x1, . . . , xn), where x1, . . . , xn are different variables,
and right-hand sides contain only variables and Ap), hence all the results presented in this
paper hold in particular for these systems. Dezani and Hindley presented a type assignment
system for Combinator Systems that are combinatory complete [22]: in order to assign a type
to a term, it is assumed that there is a basic type for each combinator, which coincides with
the principal type of the corresponding λ-term. Our system can be seen as an extension of this
one, since we do not require the systems to be combinatory complete. The results we showed
also apply to the type assignment system of Dezani and Hindley.

The type systems presented in this paper (with and without ω) are undecidable in general,
so they cannot be directly included in the interpreter of a programming language. However, if
we restrict the set of types by considering only intersection types of rank 2 (as in [7]), then the
system becomes decidable, and the same normalization results hold in the restricted system.

The relation between typeability and normalization properties of terms can be studied di-
rectly, as was done in this paper, or through the notion of approximant. Approximants have
been defined both for LC and TRS, and used mainly to study reduction properties and se-
mantic properties of these systems. Intuitively, approximants can be seen as descriptions of
the normal forms of terms, and they are meaningful for terms having at least a head normal
form. In the future we will study the relation between approximation, normalization, and
typeability in the essential intersection system for CuTRS.

Information and Computation, 133(2):73-116, 1997 35

References

[1] Abramsky, S. (1990). The Lazy Lambda Calculus. In D. Turner, editor, Research Topics in Functional
Programming. pages 65–117. Addison Wesley.

[2] Ariola, Z., Kennaway, R., Klop, J.W., Sleep, R., and de Vries, F-J. (1994). Syntactic definitions of
undefined: on defining the undefined. In Hagiya, M. and Mitchell, J.C., editors, Proceedings of TACS
’94. International Symposium on Theoretical Aspects of Computer Software, Sendai, Japan, volume 789 of
Lecture Notes in Computer Science, pages 543–554. Springer-Verlag.

[3] van Bakel, S. (1992). Complete restrictions of the Intersection Type Discipline. Theoretical Computer
Science, 102:135–163.

[4] van Bakel, S. (1993a). Partial Intersection Type Assignment in Applicative Term Rewriting Systems.
In Bezem, M. and Groote, J.F., editors, Proceedings of TLCA ’93. International Conference on Typed Lambda
Calculi and Applications, Utrecht, the Netherlands, volume 664 of Lecture Notes in Computer Science,
pages 29–44. Springer-Verlag.

[5] van Bakel, S. (1993b). Principal type schemes for the Strict Type Assignment System. Logic and
Computation, 3(6):643–670.

[6] van Bakel, S. (1995). Intersection Type Assignment Systems. Theoretical Computer Science, 151(2):385–
435.

[7] van Bakel, S. (1996). Rank 2 Intersection Type Assignment in Term Rewriting Systems. Fundamenta
Informaticae. To appear.

[8] van Bakel, S. and Fernández, M. (1994). Strong Normalization of Typeable Rewrite Systems. In
Heering, J., Meinke, K., Möller, B., and Nipkow, T., editors, Proceedings of HOA ’93. First International
Workshop on Higher Order Algebra, Logic and Term Rewriting, Amsterdam, the Netherlands. Selected
Papers, volume 816 of Lecture Notes in Computer Science, pages 20–39. Springer-Verlag.

[9] van Bakel, S. and Fernández, M. (1995). (Head-)Normalization of Typeable Rewrite Systems. In
Hsiang, J, editor, Proceedings of RTA ’95. 6th International Conference on Rewriting Techniques and Ap-
plications, Kaiserslautern, Germany, volume 914 of Lecture Notes in Computer Science, pages 279–293.
Springer-Verlag.

[10] van Bakel, S., Smetsers, S., and Brock, S. (1992). Partial Type Assignment in Left Linear Applicative
Term Rewriting Systems. In Raoult, J.-C., editor, Proceedings of CAAP ’92. 17th Colloquium on Trees
in Algebra and Programming, Rennes, France, volume 581 of Lecture Notes in Computer Science, pages
300–321. Springer-Verlag.

[11] Barbanera, F. and Fernández, M. (1993). Combining first and higher order rewrite systems with
type assignment systems. In Bezem, M. and Groote, J.F., editors, Proceedings of TLCA ’93. International
Conference on Typed Lambda Calculi and Applications, Utrecht, the Netherlands, volume 664 of Lecture
Notes in Computer Science, pages 60–74. Springer-Verlag.

[12] Barbanera, F., Fernández, M., and Geuvers, H. (1994). Modularity of Strong Normalization and
Confluence in the Algebraic λ-cube. In Proceedings of the ninth Annual IEEE Symposium on Logic in
Computer Science, Paris, France.

[13] Barendregt, H. (1984). The Lambda Calculus: its Syntax and Semantics. North-Holland, Amsterdam,
revised edition.

[14] Barendregt, H., Coppo, M., and Dezani-Ciancaglini, M. (1983). A filter lambda model and the
completeness of type assignment. Journal of Symbolic Logic, 48(4):931–940.

[15] Barendregt, H.P., van Eekelen, M.C.J.D., Glauert, J.R.W., Kennaway, J.R., Plasmeijer, M.J., and
Sleep, M.R. (1987). Term graph rewriting. In Proceedings of PARLE, Parallel Architectures and Languages
Europe, Eindhoven, The Netherlands, volume 259-II of Lecture Notes in Computer Science, pages 141–
158. Springer-Verlag.

[16] Barendsen, E. and Smetsers, S. (1993). Conventional and Uniqueness Typing in Graph Rewrite
Systems. In Shyamasunda, R.K., editor, Proceedings of FST&TCS ’93. 13th Conference on Foundations
of Software Technology and Theoretical Computer Science, Bombay, India, volume 761 of Lecture Notes in
Computer Science, pages 41–52. Springer-Verlag.

Information and Computation, 133(2):73-116, 1997 36

[17] Brus, T., van Eekelen, M.C.J.D., van Leer, M.O., and Plasmeijer, M.J. (1987). Clean - A Language
for Functional Graph Rewriting. In Proceedings of the Third International Conference on Functional Pro-
gramming Languages and Computer Architecture, Portland, Oregon, USA, volume 274 of Lecture Notes
in Computer Science, pages 364–368. Springer-Verlag.

[18] Coppo, M. and Dezani-Ciancaglini, M. (1980). An Extension of the Basic Functionality Theory for
the λ-Calculus. Notre Dame Journal of Formal Logic, 21(4):685–693.

[19] Coppo, M., Dezani-Ciancaglini, M., and Venneri, B. (1980). Principal type schemes and λ-calculus
semantics. In Hindley, J.R. and Seldin, J.P., editors, To H.B. Curry, Essays in combinatory logic, lambda-
calculus and formalism, pages 535–560. Academic press, New York.

[20] Curry, H.B. and Feys, R. (1958). Combinatory Logic, volume 1. North-Holland, Amsterdam.
[21] Dershowitz, N. and Jouannaud, J.P. (1990). Rewrite systems. In van Leeuwen, J., editor, Handbook

of Theoretical Computer Science, volume B, chapter 6, pages 245–320. North-Holland.
[22] Dezani-Ciancaglini, M. and Hindley, J.R. (1992). Intersection types for combinatory logic. Theoret-

ical Computer Science, 100:303–324.
[23] Fernández, M. and Jouannaud, J.P. (1994). Modular termination of term rewriting systems revis-

ited. In Astesiano, E. and Tarlecki, A., editors, Recent Trends in Data Type Specification. 10th Workshop
on Specification of Abstract Data Types, S. Margherita, Italy, volume 906 of Lecture Notes in Computer
Science, pages 255–272. Springer-Verlag.

[24] Futatsugi, K., Goguen, J., Jouannaud, J.P., and Meseguer, J. (1985). Principles of OBJ2. In Proceedings
12th ACM Symposium on Principles of Programming Languages, pages 52–66.

[25] Girard, J.-Y., Lafont, Y., and Taylor, P. (1989). Proofs and Types. Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press.

[26] Hindley, J.R. (1969). The principal type scheme of an object in combinatory logic. Transactions of
the American Mathematical Society, 146:29–60.

[27] Jouannaud, J.P. and Okada, M. (1991). Executable higher-order algebraic specification languages.
In Proceedings of the Sixth Annual IEEE Symposium on Logic in Computer Science, pages 350–361.

[28] Kahrs, S. (1996). Confluence of Curried Term-Rewriting Systems. Journal of Symbolic Computation,
19(6):601–623.

[29] Kennaway, R., Klop, J.W., Sleep, R., and de Vries, F.J. (1996). Comparing curried and uncurried
rewriting. Journal of Symbolic Computation. To appear.

[30] Klop, J.W. (1987). Term Rewriting Systems: a tutorial. EATCS Bulletin, 32:143–182.
[31] Klop, J.W. (1992). Term Rewriting Systems. In Abramsky, S., Gabbay, Dov.M., and Maibaum, T.S.E.,

editors, Handbook of Logic in Computer Science, volume 2, chapter 1, pages 1–116. Clarendon Press.
[32] Milner, R. (1978). A theory of type polymorphism in programming. Journal of Computer and System

Sciences, 17:348–375.
[33] Pfenning, F. (1988). Partial Polymorphic Type Inference and Higher-Order Unification. In Proceed-

ings of the 1988 ACM conference on LISP and Functional Programming Languages, pages 153–163.
[34] Pierce, B.C. (1991). Programming with Intersection Types and Bounded Polymorphism. PhD thesis,

Carnegie Mellon University, School of Computer Science, Pittsburgh. CMU-CS-91-205.
[35] Tait, W.W. (1967). Intensional interpretation of functionals of finite type I. Journal of Symbolic Logic,

32(2):198–223.
[36] Turner, D.A. (1985). Miranda: A non-strict functional language with polymorphic types. In Pro-

ceedings of the conference on Functional Programming Languages and Computer Architecture, volume 201
of Lecture Notes in Computer Science, pages 1–16. Springer-Verlag.

