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Abstract

We study the expressivity of Parigot’s λµ-calculus, and show that each statement Γ �lk ∆ that
is provable in Gentzen’s LK has a proof in λµ. This result is obtained through defining an
interpretation from nets from the X -calculus into both the λ-calculus and λµ; X enjoys the
full Curry-Howard isomorphism for (the implicative fragment of) LK, and cut-elimination
in LK is fully represented by reduction in X .
This interpretation will be shown to preserve reduction in X via equality in the target calculi,
and to preserve typeability using the standard double negation translation of types. Using
the fact that, in λµ, we can inhabit ¬¬A→A for all types A, it is then shown that if P : Γ �X ∆
for the X-net P, then the translation of this proof into λµ gives a valid derivation, and
provides a witness for the sequent.

1 Introduction

The sequent calculus lk, introduced by Gentzen [6], is a logical system in which the rules
only introduce connectives (but on both sides of a sequent), on the contrary to natural deduc-
tion which uses introduction and elimination rules. The only way to eliminate a connective
is to eliminate the whole formula in which it appears, with an application of the (cut)-rule.
Gentzen’s calculus for classical logic LK allows sequents of the form A1, . . . , An � B1, . . . , Bm,
where A1, . . . , An is to be understood as A1∧ . . .∧An and B1, . . . , Bm is to be understood as
B1∨ . . .∨Bm. Thus, lk appears as a very symmetrical system.

For this calculus, a cut-elimination procedure has been defined that eliminates all applica-
tions of the (cut)-rule from the proof of a sequent, generating a proof in normal form of the
same sequent, that is, with no cut. It is defined via local rewriting steps, reductions of the
proof-tree, which has the flavour of the evaluation of explicit substitutions [4], now a wide
area of interest in programming theory.

The calculus X , as presented in [1, 10] represents a correspondence à la Curry-Howard-de
Bruijn for lk(→), the implicational fragment of lk, bringing together the various features of
two diffeent approaches: that of Urban [14] and that of Curien and Herbelin [5]. The aim
of this paper is to relate X to the standard presentation of λµ, as we target the analysis of
two subreduction systems, both designed to avoid unrecoverable critical pairs. We will show
that there exist faithful mappings from X to both the λ-calculus and the λµ-calculus, which
establishes a strong link between provable sequents in lk(→) and the λµ-calculus.

The relevance of this result can be understood from observing that the X -calculus is sym-
metric for lk, while the λµ-calculus is not. However, we will show that the latter is expressive
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enough to reflect the propagation rules of X , exhibiting that the actual loss is due to natural
deduction presentation of the calculus, which forces for the choice of a distinguished con-
clusion. The symmetric nature of the X -calculus reveals itself from the fact that reduction
is not confluencent; as the target calculus is confluent, the price to pay is, as for the pure
λ-calculus case, to restrict ourselves to particular subsystems of the full reduction, that do
not cause unrecoverable critical pairs to occur.

From the logical point of view, the natural deduction presentation introduces a lack of
symmetry which is going to require more work for the translation of X -terms into λµ]-
terms. Our translation therefore will consist of first applying a CPS-like transformation,
followed by a recovery of the type information for the global derivation tree:

X → λµcps → λµ

This will allow us to prove:

Theorem If Γ �lk ∆ in lk(→), then there exists a type T, λµ-term M, and contexts Γ′,∆′ such
that Γ′ �λµ MP : T | ∆′ such that Γ,∆ can be obtained from Γ′,∆′ by erasure of names.

This result is obtained via the interpretation of X circuits into pure λ-terms, which requires
double-negation translation on types and loses syntactical distinction between inputs and
outputs. As we deal with a fragment of classical logic, a minimum requirement is to extend
the pure λ-calculus is this direction. So λC-Calculus (where C stands for Griffin’s C operator)
[7, 9] or Parigot’s λµ-Calculus [12] come in mind. Since we want sockets and plugs being
kept distinct from each other, we favour the second solution.

Limiting ourselves to the implicative fragment of lk might seem to be too much of a
restriction, but this not so. In fact, extending the calculus with (rules and constructs for)
the logical connectives ∧,∨,∀,∃,¬ is straightforward, and brings no added complexity for
achievable results. Also, arrow types are the natural types for the λ-calculus and λµ.

2 The X -calculus

2.1 From LK to a calculus

As mentioned in the introduction, X is inspired by the sequent calculus, so it is worthwhile
to recall some of the principles.

Definition 2.1 (lk(→)) The sequent calculus we consider has only implication, no struc-
tural rules and a changed axiom. It offers an extremely natural presentation of the classical
propositional calculus with implication, and is a variant of system lk.

It has four rules: axiom, right introduction of the arrow, left introduction and cut.

(ax) :
Γ, A � A,∆ (cut) :

Γ � A,∆ Γ, A � ∆

Γ � ∆

(⇒R) :
Γ, A � B,∆

Γ � A⇒B,∆
(⇒L) :

Γ � A,∆ Γ, B � ∆

Γ, A⇒B � ∆

As one knows, the rule (cut) plays a major role in proofs, since for proof theoreticians, cut-
free proofs enjoy nice properties; proof reductions by cut-elimination have been proposed by
Gentzen. Those reductions become the fundamental principle of computation in X .

The Curry-Howard correspondence for X with classical propositional calculus is achieved
by giving propositions names; those that appear in the left part of a sequent receive names
like x,y,z, . . . and those that appear in the right part of a sequent receive name like α, β,γ, . . .,
and to associate formulae with types.
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�y α� �̂α x̂ �x β� → �y β�

�̂y P �̂β �α �̂α x̂ �x γ� → �̂y P �̂β �γ

�y α� �̂α x̂ Q �̂β [ ] ẑ� R�x → Q �̂β [ ] ẑ� R�y

�̂y P �̂β �α �̂α x̂ Q �̂γ [ ] ẑ� R�x → Q �̂γ ŷ P �̂β ẑ R

Figure 1: Diagrammatical representation of the logical rules

2.2 Syntax

The circuits that are the objects of X are built with three kinds of building stones, or con-
structors, called capsule, export and import. In addition there is an operator we call cut, which
is handy for describing circuit construction, and which will be eliminated eventually by rules.
These four will be the natural representatives for the four logical rules given above.

Circuits are connected through wires that are named. In our description wires are oriented.
This means we know in which direction the ‘ether running through our circuits’ moves, and
can say when a wire provides an entrance to a circuit or when a wire provides an exit. Thus
we make the distinction between exit wires which we call plugs and enter wires which we
call sockets. Plugs are named with Greek letters α, β,γ,δ, . . . and sockets are named with Latin
letters x,y,z, . . ..

When connecting two circuits P and Q, we may suppose that P has a plug α and Q has a
socket x which we want to connect together to create a flow from P to Q. After the link has
been established, the wires have been plugged, and the name of the plug and the name of
the socket are forgotten. To be more precise, in P α̂ † x̂Q, the name α is bound over P and
the name x is bound over Q, bound in the interaction. We use the “hat”-notation, keeping in
line with the old tradition of Principia Mathematica [16], writing x̂ to say that x is bound.

Definition 2.2 (Syntax) The circuits of the X -calculus are defined by the following gram-
mar, where x,y, . . . range over the infinite set of sockets, and α, β over the infinite set of plugs.

P, Q ::= 〈x·α〉 | ŷP β̂·α | P β̂ [y] x̂ Q | P α̂ † x̂Q
capsule export import cut

Diagrammatically, we represent the basic circuits as:

�x α� �̂y P �̂α �β P �̂α [ ] x̂� Q�y P �̂α x̂ Q

Notice that, using the intuition sketched above, for example, the connector β is supposed not
to occur outside of P; this is formalised below by Definition 2.3 and Barendregt’s Convention
(see also below).

The calculus, defined by the reduction rules (Section 2.3) explains in detail how cuts are
distributed through circuits to be eventually erased at the level of capsules.

We spoke above about bound names; we will introduce now formally those notions with
that of free sockets and plugs into X .

Definition 2.3 The free sockets and free plugs in a circuit are:
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fs(〈x·α〉) = {x}
fs(x̂P β̂·α) = fs(P) \ {x}
fs(P α̂ [y] x̂ Q) = fs(P)∪{y}∪(fs(Q) \ {x})
fs(P α̂ † x̂Q) = fs(P)∪(fs(Q) \ {x})

fp(〈x·α〉) = {α}
fp(x̂ P β̂·α) = (fp(P) \ {β})∪{α}
fp(P α̂ [y] x̂ Q) = (fp(P) \ {α})∪ fp(Q)
fp(P α̂ † x̂Q) = (fp(P) \ {α})∪ fp(Q)

A socket x or plug α which is not free is called bound, written x ∈ bs(P) and α ∈ bp(P). We
will write x ∈ fs(P, Q) for x ∈ fs(P) & x ∈ fs(Q).

We will normally adopt Barendregt’s convention (called convention on variables by Baren-
dregt, but here it will be a convention on names).

Convention on names. In a term or in a statement, a name is never both bound and free in
the same context.

As the main concept is that of a name, we define only renaming, i.e., substitution of a
name by another name as it makes no sense to define the substitution of a name by a term.
The definition of renaming relies on Barendregt’s convention on names; if a binding, say x̂P
of x in P violates Barendregt’s convention, one can get it back by renaming, i.e., ŷP[y/x];
this renaming can be internalised (see [2]).

2.3 The rules

For reduction, it is important to know when a socket or a plug is introduced, i.e. is con-
nectable, i.e. is exposed and unique. Informally, a circuit P introduces a socket x if P is
constructed from subcircuits which do not contain x as free socket, so x only occurs at the
“top level.” This means that P is either a mediator with a middle connector [x] or a capsule
with left part x. Similarly, a circuit introduces a plug α if it is an export that “creates” α or a
capsule with right part α (Urban [14] uses the terminology “freshly introduce”).

Definition 2.4 (Introduction [1]) (P introduces x) : P = 〈x·β〉 or P = R α̂ [x] ŷ Q, with x ∈
fs(R, Q).

(P introduces α) : P = 〈y·α〉 or P = x̂Q β̂·α with α ∈ fp(Q).

We first present a simple family of reduction rules. They say how to reduce a circuit that
cuts subcircuits that both introduce connectors.

Definition 2.5 (Logical Reduction [1]) The logical rules are (assume that the terms of the
left-hand sides of the rules introduce the socket x and the plug α)

(cap) : 〈y·α〉 α̂ † x̂〈x·β〉 → 〈y·β〉
(exp) : (ŷP β̂·α) α̂ † x̂〈x·γ〉 → ŷP β̂·γ
(med) : 〈y·α〉 α̂ † x̂(P β̂ [x] ẑQ) → P β̂ [y] ẑQ

(exp-imp) : (ŷP β̂·α) α̂ † x̂(Q γ̂ [x] ẑ R) →
{

(Q γ̂ † ŷP) β̂ † ẑR
Q γ̂ † ŷ(P β̂ † ẑR)

Their diagrammatical representation is given in Figure 1.

Notice that, in rule (exp-imp), in addition to the conditions for introduction of the connec-
tors that are active in the cut (α ∈ fp(P) and x ∈ fs(Q, R)) we can also state that β ∈ fp(Q)\{γ},
as well as that y ∈ fs(R)\{z}, due to Barendregt’s convention.

We now need to define how to reduce a cut circuit in case when one of its sub-circuits does
not introduce a socket or a plug. This requires to extend the syntax with two new operators
that we call activated cuts:
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P ::= . . . | P α̂ † x̂Q | P α̂ † x̂Q
Reduction on terms with activated cuts will make sure these are propagated through the
terms.
Definition 2.6 (Activating the cuts [1])

(a† ) : P α̂ † x̂Q → P α̂ † x̂Q, if P does not introduce α
( †a) : P α̂ † x̂Q → P α̂ † x̂Q, if Q does not introduce x

Notice that both side-conditions can be valid simultaneously, thereby validating both rewrite
rules at the same moment. This gives, in fact, a critical pair or superposition for our notion of
reduction, and is the cause for the loss of confluence.

We will now define how to propagate a activated cut through sub-circuits. The direction
of the activating shows in which direction the cut should be propagated, hence the two sets
of reduction rules.

Definition 2.7 (Propagation Reduction [1]) The rules of propagation are:

Left propagation

(d† ) : 〈y·α〉 α̂ † x̂P → 〈y·α〉 α̂ † x̂P
(cap† ) : 〈y·β〉 α̂ † x̂P → 〈y·β〉, β = α

(exp-out† ) : (ŷQ β̂·α) α̂ † x̂P → (ŷ(Q α̂ † x̂ P) β̂·γ) γ̂ † x̂ P,γ fresh
(exp-in† ) : (ŷQ β̂·γ) α̂ † x̂P → ŷ(Q α̂ † x̂ P) β̂·γ,γ = α

(imp† ) : (Q β̂ [z] ŷ R) α̂ † x̂P → (Q α̂ † x̂ P) β̂ [z] ŷ(R α̂ † x̂P)
(cut† ) : (Q β̂ † ŷR) α̂ † x̂P → (Q α̂ † x̂ P) β̂ † ŷ(R α̂ † x̂P)

Right propagation

( †d) : P α̂ † x̂〈x·β〉 → P α̂ † x̂〈x·β〉
( †cap) : P α̂ † x̂〈y·β〉 → 〈y·β〉, y = x
( †exp) : P α̂ † x̂(ŷQ β̂·γ) → ŷ(P α̂ † x̂Q) β̂·γ

( †imp-out) : P α̂ † x̂(Q β̂ [x] ŷ R) → P α̂ † ẑ((P α̂ † x̂Q) β̂ [z] ŷ(P α̂ † x̂ R)), z fresh
( †imp-in) : P α̂ † x̂(Q β̂ [z] ŷ R) → (P α̂ † x̂Q) β̂ [z] ŷ(P α̂ † x̂R),z = x

( †cut) : P α̂ † x̂(Q β̂ † ŷR) → (P α̂ † x̂Q) β̂ † ŷ(P α̂ † x̂ R)

The rules (exp-out† ) and ( †imp-out) deserve some attention. For instance, in the left-hand
side of (exp-out† ), α is not introduced, hence α occurs more than once in ŷQ β̂·α, that is
once after the dot and again in Q. The occurrence after the dot is dealt with separately by
creating a new name γ. Note that the cut associated with that γ is then unactivated; this
is because, after the cut has been pushed through ŷ(Q α̂ † x̂P) β̂·γ (so leaves a circuit with
no activated cut), the resulting term (ŷR β̂·γ) γ̂ † x̂P needs to be considered in its entirety:
although we now that now γ is introduced, we know not if x is. A similar reasoning holds
for x in ( †imp-out) and a new name z is created and the external cut is not active.

2.4 Call-by-name and call-by-value

In this section we will define two sub-systems of reduction, that correspond to call-by-name
(cbn) and call-by-value (cbv) reduction. Notice that this is essentially different from the
approach of [15], where, as in λµµ̃, only one notion of reduction is defined.

As mentioned above, when P does not introduce α and Q does not introduce x, P α̂ † x̂Q
is a superposition, meaning that two rules, namely (a† ) and ( †a), can both be fired.
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The critical pair 〈P α̂ † x̂Q, P α̂ † x̂Q〉. may lead to different irreducible terms. This is to say
that the reduction relation → is not confluent. Non-determinism is a a key feature of both
classical logic and rewriting logic.

We introduce two strategies which explicitly favour one kind of activating whenever the
above critical pair occurs. Consider a term P α̂ † x̂Q where P does not introduce α and Q
does not introduce x, intuitively cbv tends to push Q through P and cbn tends to do the
other way around.

Definition 2.8 • The cbv strategy only activates a cut via (a† ) when it could be activated
in two ways; we write P →v Q in that case. We can reformulate this as the reduction
system obtained by replacing rule ( †a) by:

( †a) : P α̂ † x̂Q → P α̂ † x̂Q, if P introduces α
and Q does not introduce x.

• The cbn strategy only activates such a cut via ( †a); like above, we write P →n Q. Like-
wise, we can reformulate this as the reduction system obtained by replacing rule (a† )
by:

(a† ) : P α̂ † x̂Q → P α̂ † x̂Q, if Q introduces x
and P does not introduce α.

3 Typing for X
We will now formally define a notion of type assignment on X , which will establish the
Curry-Howard-de Bruijn isomorphism between X and lk(→).

Definition 3.1 (Types and Contexts) i) The set of types is defined by the grammar:

A, B ::= ϕ | A→B.
The types considered in this paper are normally known as simple (or Curry) types.

ii) A context of sockets Γ is a mapping from sockets to types, denoted as a finite set of
statements x : A, such that the subject of the statements (x) are distinct. We write Γ, x : A
for the context defined by:

Γ, x : A = Γ ∪ {x : A}, if Γ is not defined on x
= Γ, otherwise

So, when writing a context as Γ, x : A, this implies that x : A ∈ Γ, or Γ is not defined on
x. When we write Γ1, Γ2 we mean the union of Γ1 and Γ2 when Γ1 and Γ2 are coherent (if
Γ1 contains x : A1 and Γ2 contains x : A2 then A1 = A2).

iii) Contexts of plugs ∆ are defined in a similar way.

Definition 3.2 (Typing for X ) i) Type judgements are expressed via a ternary relation P :
Γ � ∆, where Γ is a context of sockets and ∆ is a context of plugs, and P is a circuit. We
say that P is the witness of this judgement.

ii) Type assignment for X is defined by the following sequent calculus:

(cap) : 〈y·α〉 : Γ,y:A � α:A,∆ (imp) :
P : Γ � α:A,∆ Q : Γ, x:B � ∆

P α̂ [y] x̂ Q : Γ,y:A→B � ∆

(exp) :
P : Γ, x:A � α:B,∆

x̂ P α̂ ·β : Γ � β:A→B,∆
(cut) :

P : Γ � α:A,∆ Q : Γ, x:A � ∆

P α̂ † x̂ Q : Γ � ∆

We write P : Γ � ∆ if there exists a derivation that has this judgement in the bottom line.
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Γ and ∆ carry the types of the free connectors in P, as unordered sets. There is no notion
of type for P itself, instead the derivable statement shows how P is connectable.

The Curry-Howard property for the implicative fragment of LK is easily achieved by eras-
ing all term-information.

The soundness result of simple type assignment with respect to reduction is stated as
usual:

Theorem 3.3 (Witness reduction [1]) If P : Γ � ∆, and P → Q, then Q : Γ � ∆.

4 Interpreting the λ-calculus

The expressive power of X is illustrated in [1] by showing that the λ-calculus [3], λx, λµ,
and λµµ̃ can be faithfully interpreted. Using the notion of Curry type assignment, assignable
types are preserved by the interpretation.

In part, the interpretation results are detailed and precise, and deal with explicit substi-
tution as well. In fact, the interpretation encompasses cbv and cbn reduction. However, in
X we have no need of two separate interpretation functions, but will define only one. Com-
bining this with the two sub-reduction systems →v and →n we can encode the the cbv- and
cbn-λ-calculus.

We assume the reader to be familiar with the λ-calculus [3]; we just recall the definition of
lambda terms and β-contraction.

Definition 4.1 (Lambda terms and reduction [3])

i) The set Λ of lambda terms is defined by the syntax:

M ::= x | λx.M | M1M2

ii) The reduction relation →β⊆ Λ × Λ is defined as the contextual, reflexive, symmetric,
and transitive (i.e. compatible [3]) closure of the rule:

(λx.M)N →β M[N/x]
iii) The notion of reduction →β can be restricted to Call by Value reduction by: the set of

values ⊆ Λ is defined by the syntax:

V ::= x | λx.M
Then the Call by Value reduction relation →v is defined as the compatible closure of the
rule:

(λx.M)V →β M[V/x]
The full reduction system is then called Call by Name, and we will write →n when
necessary.

This calculus has a notion of type assignment that corresponds nicely to implicative propo-
sitional logic, in the framework of natural deduction.

Definition 4.2 (Type assignment for the λ-calculus)

(Ax) :
Γ, x:A �λ x : A

(→I) :
Γ, x:A �λ M : B

Γ �λ λx.M : A→B

(→E) :
Γ �λ M : A→B Γ �λ N : A

Γ �λ MN : B

The direct encoding of the λ-calculus into X is defined by:
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Definition 4.3 (Interpreting Λ in X [1] )

x α
λ = 〈x·α〉

λx.M α
λ = x̂ M β

λ β̂·α
MN α

λ = M γ
λγ̂ † x̂( N β

λ β̂ [x] ŷ〈y·α〉)
Observe that every sub-term of M α

λ has exactly one free plug. It is worthwhile to notice
that the interpretation function · α

λ does not generate a confluent sub-calculus. We illustrate
this by the following:

Example 4.4 ([1]) We have

(λx.xx)(yy) α
λ → (〈y·σ〉 σ̂ [y] ẑ〈z·γ〉) γ̂ † x̂(〈x·τ〉 τ̂ [x] û〈u·α〉)

This circuit now has one cut only, that can be activated in two ways (notice that neither γ
nor x is introduced here). This reduces to both:

〈y·σ〉 σ̂ [y] ẑ(〈z·τ〉 τ̂ [z] û〈u·α〉)
and

〈y·σ〉 σ̂ [y] ẑ((〈y·σ〉 σ̂ [y] ẑ〈z·τ〉) τ̂ [z] û〈u·α〉)
Notice that both reductions return normal forms, and that these are different.

[1] shows the following result.

Theorem 4.5 (Simulation of cbn and cbv [1])
i) If M →n N then M γ

λ →n N γ
λ.

ii) If M →v N then M γ
λ →v N γ

λ.

Using these two results, the significance of Example 4.4 becomes clearer. Notice that

(λx.xx)(yy) α
λ →v 〈y·σ〉 σ̂ [y] ẑ(〈z·τ〉 τ̂ [z] û〈u·α〉)

(λx.xx)(yy) α
λ →n 〈y·σ〉 σ̂ [y] ẑ((〈y·σ〉 σ̂ [y] ẑ〈z·τ〉) τ̂ [z] û〈u·α〉)

In the λ-calculus, (λx.xx)(yy) has different normal forms with respect to cbv and cbn λ-
reduction (respectively (λx.xx)(yy) and yy(yy)), which are both interpreted in X . Both,
different from the λ-calculus, the term (λx.xx)(yy) α

λ in X is not a normal form for →v; it
contains cuts. But, true to its nature, the cbv-reduction will not return yy(yy) α

λ, but, instead,
returns the term yy with the duplication zz ‘waiting to be applied’ in the continuation.

[1] also shows that typeability is preserved by · α
λ:

Theorem 4.6 ([1]) If Γ �λ M : A, then M α
λ : Γ � α : A.

5 The λµ-calculus

Parigot [12] presented the λµ-calculus as a calculus which extends the proofs-as-programs
paradigm to classical logic. The λµ-calculus gives a natural deduction system, which allows
to deal with multi conclusions by choosing at most one active formula at once. This is
achieved by introducing two kinds of variables, as found in more recent calculus like X
itself, λµµ̃ [5], and others.

Definition 5.1 (λµ terms) Terms of the λµ–calculus are generated by the grammar

(terms) : M, N ::= x | λx.M | M N | µα.C
(commands) : C ::= [α]M
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where x ranges over (ordinary) term variables, and α over formula names (also called µ-
variables).

The set of values is defined by:

(values) : V ::= x | λx.M | µα.[β]V

We emphasise the clear distinction made above between regular terms and the so called
commands; we use this separation for convenience only as our interpretations rely on it. The
original presentation of the calculus would have the case µα.[β]M in the syntax for terms.

Definition 5.2 (λµ reduction) Reduction is defined as the compatible closure of the fol-
lowing reduction rules:

logical(β) : λx.M N → M〈N/x〉
structural(µ) : (µα.C)M → µα.C[[α]�M/[α]�]
renaming(ν) : [β]µα.C → C〈α/β〉

erasing : µα.[α]M → M if α does not occur in M.
As usual, the substitution mechanism C[[α]�M/[α]�] used in the µ-reduction rule consists

of replacing recursively every occurrence in the command C of a command [α]N labelled with
α, by the command [α]N M.

Call-by-Value reduction is defined by restricting the rules as follows:

λx.M V → M〈V/x〉
(µα.C)V → µα.C[[α]�V/[α]�]

Equipped with these reductions, the λµ-calculus is well known to be confluent.
In this paper, strictly speaking, we do not need to deal with µ-reduction, but, instead, with

the compounded reduction defined by:

(ν ◦ µ) : [α](µβ.C) (λx.M) → C〈λx.M · α/β〉
where the substitution mechanism consists of replacing recursively in C every occurrence of
a command of the shape [β]N by the command [α]N λx.M.

In this paper, we shall assign types to λµ-terms much along the same lines as for the
λ-calculus. Actually, we will use more general judgements such as Γ �λµ M : T | ∆ where
∆ holds types for µ-variables, and is void as far as pure λ-calculus-terms are concerned.
Formally:

Definition 5.3 (Type assignment for λµ) Type assignment for λµ is defined by the follow-
ing natural deduction system:

(Ax) : Γ, x:A � x : A | ∆

(→I) :
Γ, x:A � M : B | ∆

Γ � λx.M : A→B | ∆

(→E) :
Γ � M : A→B | ∆ Γ � N : A | ∆

Γ � MN : B | ∆

(µ) :
Γ � C :Cmd | α:A, Γ

Γ � µα.C : A | Γ

(Cmd) :
Γ � M : A | α:A, Γ

Γ � [α]M :Cmd | α:A, Γ

9



6 Interpreting X into the λ-calculus

As can be expected, the interpretation of X ’s circuits into pure λ-terms requires a double-
negation translation on types and loses syntactical distinction between inputs and outputs.
As we deal with a fragment of classical logic, a minimum requirement is to extend the pure
λ-calculus is this direction.

However, in this section we will show that we can still faithfully interpret X into the
λ-calculus, and obtain a type-preservation result using the ’double negation’ technique. A
similar result was obtained in [10]; the main difference between that result and the one
obtained here is that we interpret left- and right-cuts differently.

6.1 Call by Name

We will now show that we can interpret the cbn-subreduction system of X in the cbn-
λ-calculus. It should be noted that, in the cbn reduction system, a left-cut P α̂ † x̂Q is only
generated if Q introduces x, so if Q = 〈x·β〉, or Q = R β̂ [x] ŷS, and y not free in R,S; this
observation will prove important when dealing with activation and deactivation rules.

The cbn-interpretation of circuits in X as terms in Λ is defined as follows:

Definition 6.1 (cbn Interpretation)

〈x·α〉 n
λ

=∆ xλu.αu
x̂ P α̂·β n

λ
=∆ β λxα. P n

λ

P α̂ [y] x̂ Q n
λ

=∆ y λu.(λx. Q n
λ)(u λα. P n

λ)

P α̂ † x̂Q n
λ = P α̂ † x̂Q n

λ
=∆ (λx. Q n

λ)(λα. P n
λ)

P α̂ † x̂〈x·β〉 n
λ

=∆ (λα. P n
λ)(λx.βx)

P α̂ † x̂(Q β̂ [x] ŷ R) n
λ

=∆ (λα. P n
λ)(λx.(λy. R n

λ)(x λβ. Q n
λ))

Notice that, defining

〈x·β〉 a = βx
Q β̂ [x] ŷ R a = (λy. R n

λ)(x λβ. Q n
λ)

for the Q that appears in P α̂ † x̂Q, we have

Q n
λ = xλu. Q a[u/x]

and could have defined

P α̂ † x̂Q n
λ

=∆ (λα. P n
λ)(λx. Q a)

This will be used in the cases dealing with propagation of left-cuts.
In order to show that typeability is preserved by the interpretation, we need first to define

a cbn-translation of types:

Definition 6.2 Give a type constant Ω, we define a cbn-interpretation of types, that is split
in two independent parts, inductively defined by

〈φ〉ln = φoo

〈A→B〉ln = 〈A〉ln→〈B〉ln
oo

〈φ〉rn = φo

〈A→B〉rn = (〈A〉rno)→〈B〉rnoo

We define 〈Γ, x:A〉ln = 〈Γ〉ln, x:〈A〉ln, and 〈α:A, D〉rn = α:〈A〉rn, 〈∆〉rn.

The following result links the two interpretations.
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Lemma 6.3 〈A〉ln = 〈A〉rno

Using these interpretations, we can show:

Theorem 6.4 If P : Γ �X ∆, then 〈Γ〉ln, 〈∆〉rn �λ P n
λ : Ω.

We can show that reduction in X is modeled by equality after interpretation:

Theorem 6.5 If P →n Q, then P n
λ =n Q n

λ.

Proof: By induction on the length of the reduction path. We just check the rules, of which
we show the interesting cases.

(exp-imp) : (ŷP β̂·α) α̂ † x̂(Q γ̂ [x] ẑ R)→ (Q γ̂ † ŷP) β̂ † ẑR

(ŷP β̂·α) α̂ † x̂(Q γ̂ [x] ẑ R) n
λ

=∆ (λx.x λu.(λz. R n
λ)(u λγ. Q n

λ))(λα.α λyβ. P n
λ)

=n (λα.α λyβ. P n
λ)(λu.(λz. R n

λ)(u λγ. Q n
λ))

(α ∈ P n
λ) =n (λu.(λz. R n

λ)(u λγ. Q n
λ))(λyβ. P n

λ)

=n (λz. R n
λ)((λyβ. P n

λ)(λγ. Q n
λ))

=n (λz. R n
λ)(λβ. P n

λ〈λγ. Q n
λ/y〉)

=n (λz. R n
λ)(λβ.(λy. P n

λ)(λγ. Q n
λ))

=∆ (Q γ̂ † ŷP) β̂ † ẑR n
λ

Also: (λz. R n
λ)(λβ. P n

λ〈λγ. Q n
λ/y〉)

=n R n
λ〈λβ. P n

λ〈λγ. Q n
λ/y〉/z〉

(y ∈ R, β ∈ Q) = R n
λ〈λβ. P n

λ/z〉〈λγ. Q n
λ/y〉

=n (λy. R n
λ〈λβ. P n

λ/z〉)(λγ. Q n
λ)

=n (λy.(λz. R n
λ)(λβ. P n

λ))(λγ. Q n
λ)

=∆ Q γ̂ † ŷ(P β̂ † ẑR) n
λ

(a† ) : Notice that either Q = 〈x·β〉, or Q = Q1 β̂ [x] ŷQ2, with x ∈ fs(Q1, Q2), so we can use
Q n

λ
=∆ x λu. Q a[u/x], in all cases below.

P α̂ † x̂Q n
λ

=∆ (λx. Q n
λ)(λα. P n

λ)

=n Q n
λ〈λα. P n

λ/x〉
=∆ (x λu. Q a[u/x])〈λα. P n

λ/x〉
= (λα. P n

λ)(λu. Q a[u/x])
(α) =n (λα. P n

λ)(λx. Q a)

=∆ (λα. P n
λ)(λx. Q a)

=∆ P α̂ † x̂Q n
λ

(d† ) : 〈y·α〉 α̂ † x̂P → 〈y·α〉 α̂ † x̂P.

〈y·α〉 α̂ † x̂P n
λ

=∆ (λα.yλu.αu)(λx. P a)
=n yλu.(λx. P a)u
=n (λα.yλu.αu)(λx. P a)
=n (λv.vλx. P a)(λα.yλu.αu)

(α) =n (λx.xλv. P a[v/x])(λα.yλu.αu)
=∆ (λx. P n

λ)(λα.yλu.αu)
=∆ 〈y·α〉 α̂ † x̂P n

λ

(exp-out† ) : (ŷQ β̂·α) α̂ † x̂P → (ŷ(Q α̂ † x̂P) β̂·δ) δ̂ † x̂ P, γ fresh
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(ŷQ β̂·α) α̂ † x̂P n
λ

=∆ (λα.α λyβ. Q n
λ)(λx. P a)

=n (α λyβ. Q n
λ)〈λx. P a/α〉

= (λx. P a)(λyβ. Q n
λ〈λx. P a/α〉)

=n (λx. P a)(λyβ.(λα. Q n
λ)(λx. P a))

=n (λδ.δ λyβ.(λα. Q n
λ)(λx. P a))(λx. P a)

=n (λu.u λx. P a)(λδ.δ λyβ.(λα. Q n
λ)(λx. P a))

(α) =n (λx.xλu. P a[u/x])(λδ.δ λyβ.(λα. Q n
λ)(λx. P a))

=n (λx. P n
λ)(λδ.δ λyβ.(λα. Q n

λ)(λx. P a))

=∆ (ŷ(Q α̂ † x̂P) β̂·δ) δ̂ † x̂ P n
λ

6.2 Call by Value

The results obtained above can be repeated for the cbv-subreduction. Again, note that, in the
cbv reduction system, a right-cut P α̂ † x̂Q is only generated if P introduces α, so if P = 〈y·α〉,
or P = ŷR β̂·α, and α not free in R.

The cbv-interpretation of nets in X as terms in λ is defined as follows:

Definition 6.6 (CBV Interpretation)

〈x·α〉 v
λ

=∆ α x
x̂P α̂·β v

λ
=∆ β λαx. P v

λ

P α̂ [y] x̂ Q v
λ

=∆ (λα. P v
λ)(y λx. Q v

λ)

P α̂ † x̂Q v
λ = P α̂ † x̂Q v

λ
=∆ (λα. P v

λ)(λx. Q v
λ)

〈y·α〉 α̂ † x̂Q v
λ

=∆ (λx. Q v
λ)y

(ŷP β̂·α) α̂ † x̂Q v
λ

=∆ (λx. Q v
λ)(λβy. P v

λ)

Again, defining

〈x·β〉 a = x
ŷR β̂·α a = λβy. R v

λ

for the P that appears in P α̂ † x̂Q, we have

P v
λ = α P a where P introduces α

Notice that P a is a value in those cases, which is important below to make sure that the
reduction is call-by-value. We could have defined

P α̂ † x̂Q v
λ

=∆ (λx. Q v
λ) P a

This will be used in the proofs below for the cases dealing with propagation of right-cuts.
In order to show that typeability is preserved by the interpretation, we need first to define

a cbv-translation of types:

Definition 6.7 Give again a type constant Ω, we now define a cbn-interpretation of types,
that is also split in two independent parts, inductively by

〈φ〉lv = φ

〈A→B〉lv = (〈B〉lv
o
)→〈A〉lv

o

〈φ〉rv = φo

〈A→B〉rv = 〈B〉rv→〈A〉rvo

Again, we define 〈Γ, x:A〉lv = 〈Γ〉lv, x:〈A〉lv, and 〈α:A, D〉rv = α:〈A〉lv, 〈∆〉lv.
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The following result links the two interpretations.

Lemma 6.8 〈A〉rv = 〈A〉lv
o.

Using these interpretations, we can show:

Theorem 6.9 If P : Γ �X ∆, then 〈Γ〉lv, 〈∆〉rv �λ P v
λ : Ω.

We can show that, also for the cbv-interpretation, reduction in X is modeled by equality
after interpretation:

Theorem 6.10 If P →v Q, then P v
λ =v Q v

λ.

Proof: By induction on the length of the reduction path. We just check the rules.
(exp-imp) :

(ŷP β̂·α) α̂ † x̂(Q γ̂ [x] ẑ R) v
λ

=∆ (λα.α λβy. P v
λ)(λx.(λγ. Q v

λ)(x λz. R v
λ))

(α ∈ P v
λ) =v (λx.(λγ. Q v

λ)(x λz. R v
λ))(λβ.λy. P v

λ)

=v (λγ. Q v
λ)((λβy. P v

λ)(λz. R v
λ))

=v (λγ. Q v
λ)(λy.( P v

λ〈λz. R v
λ/β〉))

=v (λγ. Q v
λ)(λy.(λβ. P v

λ)(λz. R v
λ))

=∆ Q γ̂ † ŷ(P β̂ † ẑR) v
λ

Also: (λγ. Q v
λ)(λy. P v

λ〈λz. R v
λ/β〉)

=v Q v
λ〈λy. P v

λ〈λz. R v
λ/β〉/γ〉

(y ∈ R, β ∈ Q) = Q v
λ〈λy. P v

λ/γ〉〈λz. R v
λ/β〉

=v (λβ. Q v
λ〈λy. P v

λ/γ〉)(λz. R v
λ)

=v (λβ.(λγ. Q v
λ)(λy. P v

λ))(λz. R v
λ)

=∆ (λβ. Q γ̂ † ŷP v
λ)(λz. R v

λ)

=∆ (Q γ̂ † ŷP) β̂ † ẑR v
λ

( †a) : P α̂ † x̂Q → P α̂ † x̂Q, x not introduced.
Notice that either P = 〈y·α〉, or P = ŷR β̂·α, with α ∈ fp(R), so we can use P v

λ
=∆ α P a,

in all cases below.

〈y·α〉 α̂ † x̂Q v
λ

=∆ (λα. 〈y·α〉 v
λ)(λx. Q v

λ)

=∆ (λα. P v
λ)(λx. Q v

λ)

=∆ (λα.α P a)(λx. Q v
λ)

=v (λx. Q v
λ) P a

=∆ P α̂ † x̂Q v
λ

( †d) :

P α̂ † x̂〈x·β〉 v
λ

=∆ (λx. 〈x·β〉 v
λ) P a

=v (λα.α P a)(λx. 〈x·β〉 v
λ)

= (λα. P v
λ)(λx. 〈x·β〉 v

λ)

=∆ P α̂ † x̂〈x·β〉 v
λ
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( †imp-out) :

P α̂ † x̂(Q ν̂ [x] ŷ R) v
λ

=∆ (λx. Q ν̂ [x] ŷ R v
λ) P a

=∆ (λx.(λν. Q v
λ)(x λy. R v

λ)) P a

=v (λν.( Q v
λ〈 P a/x〉))( P a λy.( R v

λ〈 P a/x〉))
=v (λν.((λx. Q v

λ) P a))( P a λy.((λx. R v
λ) P a))

=v (λz.(λν.((λx. Q v
λ) P a))(z λy.((λx. R v

λ) P a))) P a

=v (λα.α P a)(λz.(λν. P α̂ † x̂Q v
λ)(z λy. P α̂ † x̂R v

λ))

= (λα. P v
λ)(λz.(λν. P α̂ † x̂Q v

λ)(z λy. P α̂ † x̂ R v
λ))

=∆ (λα. P v
λ)(λz. (P α̂ † x̂Q) ν̂ [z] ŷ(P α̂ † x̂ R) v

λ)

=∆ P α̂ † ẑ((P α̂ † x̂Q) ν̂ [z] ŷ(P α̂ † x̂R)) v
λ

(exp-out† ) :

(ŷQ β̂·α) α̂ † x̂ P v
λ

=∆ (λα.α λβy. Q v
λ)(λx. P v

λ)

=v (α λβy. Q v
λ)〈λx. P v

λ/α〉
=v (λx. P v

λ)λβy.( Q v
λ〈λx. P v

λ/α〉)
=v (λδ.δ λβy.(λα. Q v

λ)(λx. P v
λ))(λx. P v

λ)

=∆ (ŷ(Q α̂ † x̂P) β̂·δ) δ̂ † x̂P v
λ

7 From X to λµ

We have seen above, for the pure λ-calculus, that besides the fact that we translate a symmet-
ric calculus to a strongly right-oriented one, reflecting the orientation of propagation rules
requires some particular attention in the translation. In this section, we will show that the
results achieved above are obtainable for λµ as well, first for Call by Name, and then for Call
by Value. However, the details of the interpretations will differ significantly.

The λµ-calculus is expressive enough to allow for the preservation of types. Its asym-
metric nature will prove to be no obstacle; it is overcome by splitting the interpretation into
two steps. We perform first a compositional translation into λµ which mimics the double
negation translation in the sense of Plotkin’s CBN, and thus alter the types as well. The
second step consists in recovering the types, which can only be done globally. This first
result implies that we can faithfully interpret X into λµ, the second that typeability is fully
preserved.

A natural idea would be to start from our former λ-calculus interpretations (see previous
section) to build this interpretation. However, this is not going to help much, as there the
two kinds of variables have been merged. Instead, we need to handle circuits directly, which
means we are actually working out a genuine new interpretation.

Let us focus on the cbn-interpretation; the cbv one comes along very similar guidelines.
Towards our main theorem, sockets are translated into ordinary λ-variables, and plugs are
embedded into µ-variables; for both, we keep the same name, to ease the reading. We in-
terpret both ordinary and right cuts the same way, while the left cut still requires switching
the position of the sub-terms, as the reduction rules in the (standard) λµ-calculus are intrin-
sically call-by-name. Therefore, the flipping mechanism, used above to left-activate a cut or
to de-activate a left-cut, is still required for the interpretation to hold along the bi-directional
propagation rules from X .

The formal definitions given below should be self-explanatory, except from the observation
that a double-negation step is still used. This point deserves an explanation. The circuit
P α̂ † x̂Q for which we know

P α̂ † x̂Q : Γ �X ∆
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is translated into a command [ω](λx.M) (µα.C) for some λµ-term M and command C and
some µ-variable ω. The translation cannot be an ordinary term for both a syntactic reason
and a semantic one. Since we target the standard λµ-calculus, the interpretation of the
sub-circuit P has to be a command, otherwise the µ-binding cannot be defined; as a matter
of consequence, the translation of Q is going to be of the shape [ω′]M′, which means that
M = µη.[ω′]M′ for some µ-variables η,ω′.

From the λµ-calculus perspective, this observation means we are switching contexts inten-
sively. This provides actually a semantic view on the way the X -calculus manages deriva-
tions trees. The cut shows no privileged assumption nor conclusion, just connecting P and
Q circuits. The lack of a selected assumption is reflected by the interpretation not to be an
abstraction; also, the lack of any particular conclusion has the consequence we cannot use
a µ binder at this point. Therefore, cuts in X correspond to proofs handled at the level of
commands in λµ.

At this stage, we could have choose to treat commands as proofs for the ⊥ negation type
[11, 8]. This would have been a fair choice, since λµ allows us to build a proof in any type
from such a proof. However, the translation itself can carry out a more elegant and precise
information. The definition that we propose shows that, given an arbitrary, initial choice of
a named conclusion ω : Ω, building circuits into X can be read as syntax rules for dealing
with judgments, by switching over the targeted conclusion Ω as a pivot. (So we have ω = ω′
in the previous informal analysis, and the formal definition.)

As a matter of consequence, we get that the interpretation of any given proof net can be
built by targeting one conclusion α:A among its non-empty set of conclusions, leading to a
λµ-term M which expresses the view that the proof for A is done by switching back and
forth with the conclusion.

Paradigmatic examples of such proofs are provided by Peirce’s law or the ex falso quodlibet
formula ¬¬T → T. Our interpretation shows that this mechanism is general, at least as far
as the restricted fragment of sequent calculus X deals with can tell.

7.1 Call by Name

As for the case of the λ-calculus, our results will depend not only on an interpretation of
terms, but also on one for types. Let Ω be, as before, any (fixed) type and denote ¬T ≡ T→Ω
for convenience. The following lemma will provide the necessary trick.

Take

force F =∆ µτ.[ω]F λt.µ!.[τ]t =v F−
delay t =∆ λ f . f t =∆ (t)�

Lemma 7.1 For every type T, there exists

force : ¬¬T→T
delay : T→¬¬T

such that force ◦ delay is the identity on T (up to equality).

Proof: Given t:T, we get force (t)� = µτ.[ω](t)� λx.µ!.[τ]x = µτ.[τ]t = t. In short ((t)�)− = t.

Definition 7.2 (Plotkin’s CBN) The cbn interpretation of type T, denoted T n
µ
=∆ T n

µ
=∆

¬¬ T n
µ′

is defined inductively by

X n
µ′

=∆ X, X type variable
A→B n

µ′
=∆ A n

µ→ B n
µ
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Also Γ, x:T n
µ
=∆ Γ n

µ, x: T n
µ.

Type recovery is possible, owing to the following result.

Lemma 7.3 For any type T, there exist ϕT : T n
µ→T and ψT : T→ T n

µ.

Proof: Simple induction on T:
(T =∆ X) : Take

ϕX F =∆ µτ.[ω]F λt.µ!.[τ]t
ψX t =∆ λF.F t

(T =∆ A→B) : Define

ϕA→B F =∆ λa.F λ f .ϕB f ψA a
ψA→B t =∆ λF.F λa.ψB t ϕA a

The first step of the interpretation is type-free, athough our definition aims at complying
with types later.

The notation µ!.C is a shortcut for µη.C where η is a fresh µ-variable wrt C.

Definition 7.4 (Call by name) Let

〈x·α〉 n
µ′

=∆ λv.µ!.[α](v)�

P β̂ [x] ŷQ n
µ′

=∆ λv.µ!.[ω]λy.µ!. Q n
µ v µβ. P n

µ

For P any X -term, we define P n
µ by structural induction

〈x·α〉 n
µ

=∆ [ω]x 〈x·α〉 n
µ′

ŷP β̂·α n
µ

=∆ [α](λy.µβ. P n
µ)�

P β̂ [x] ŷQ n
µ

=∆ [ω]x P β̂ [x] ŷQ n
µ′

P α̂ † x̂Q n
µ
=∆ P α̂ † x̂Q n

µ
=∆ [ω]λx.µ!. Q n

µ µα. P n
µ

P α̂ † x̂Q n
µ

=∆ [ω]µα. P n
µ Q n

µ′

Proposition 7.5 (Conservation of types in cbn) If P : Γ �X ∆, then Γ n
µ �λµ P n

µ : cmd | ω:Ω, ∆ n
µ.

Proof: By induction on the structure of nets.

(〈x·α〉) : Then there exists T type such that x:T and α:T. Thus λv.µ!.[α](v)� : ¬ A n
µ′

and
x λv.µ!.[α](v)� :Ωas required.

(ŷP β̂·α) : By induction

Γ n
µ,y: A n

µ �λµ P n
µ : cmd | β: B n

µ,α: A→B n
µ,ω:Ω, ∆ n

µ

Then also

Γ n
µ �λµ λy.µβ. P n

µ : A n
µ→ B n

µ | α: A→B n
µ,ω:Ω, ∆ n

µ

Since (M)� =v λ f . f M for any term M, we get

Γ n
µ �λµ (λy.µβ. P n

µ)� : A→B n
µ | α: A→B n

µ,ω:Ω, ∆ n
µ

as expected.
(P β̂ [x] ŷQ) : By induction

Γ n
µ, x: A→B n

µ �λµ µβ. P n
µ : A n

µ | ω:Ω, ∆ n
µ

and

Γ n
µ, x: A→B n

µ �λµ λy.µ!. Q n
µ : B n

µ→Ω | ω:Ω, ∆ n
µ
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Taking v: A n
µ→ B n

µ, we get

Γ n
µ, x: A→B n

µ �λµ P β̂ [x] ŷ Q n
µ : cmd | ω:Ω, ∆ n

µ

(P α̂ † x̂Q, P α̂ † x̂Q) : By induction

Γ n
µ �λµ λx.µ!. Q n

µ : T n
µ→Ω | ω:Ω, ∆ n

µ

and

Γ n
µ �λµ µα. P n

µ : T n
µ | ω:Ω, ∆ n

µ

Then

Γ n
µ �λµ P α̂ † x̂Q n

µ : cmd | ω:Ω, ∆ n
µ

(P α̂ † x̂Q) : The induction hypotheses are the same as for the previous part. We know x is
introduced in Q, but whatever x, we get

Γ �λµ λv.λx.µ!. Q n
µ (v)� :¬ T n

µ′

Since T n
µ = ¬¬ T n

µ′
, we are done.

Theorem 7.6 For any P : Γ �X ∆ in X , and type Ω there exists a λµ-term P n
Ω such that Γ �λµ

P n
Ω : Ω | ∆.

Proof: Let ω a fresh µ-variable. The previous proposition provides Γ n
µ �λµ P n

µ : cmd | ω:Ω, ∆ n
µ,

hence Γ n
µ �λµ µ!.[ω] P n

µ : Ω | ∆ n
µ. We still need to take care of free variables. Assume the

notation ṽ: T n
µ for each v:T in whatever context.

Since ψT :T→ T n
µ, the case of λ-variables is easy: substitute each occurrence of x̃ by ψT x,

which is simply the thunk (x)� when T is atomic.
For α:T, P n

µ may contains occurrences of commands such as [α̃]M. We expect the com-
mand [α]ϕT M in turn: this is not possible through the substitution mechanism provided
by µ-reduction. The term P n

µ′
Ω is thus obtained by make the replacements have been the

meta-level.

Our goal is that of Theorem 7.8. for which we first show a lemma.

Lemma 7.7 If x is introduced in P, then

λu.λx.µ!. P n
µ (u)� =n P n

µ′

Proof: By hypothesis, P is either a capsule or an import, in which case x does not appear
free in P n

µ′
. Therefore,

(P ≡ 〈x·α〉) : λu.λx.µ!. P n
µ (u)� =n λu.λx.µ!.[ω]x P n

µ′
(u)�

=n λu.µ!.[ω](u)� P n
µ′

=n λu.µ!.[ω](u)� λv.µ!.[α](v)�

=n λu.µ!.[ω]λv.µ!.[α](v)� u
=n λu.µ!.[α](u)�

=v P n
µ′

(P ≡ Q β̂ [x] ẑ R) : λu.λx.µ!. P n
µ (u)�

=n λu.λx.µ!.[ω]x P n
µ′
(u)�

=n λu.µ!.[ω](u)� P n
µ′

=n λu.µ!.[ω](u)� λv.µ!.[ω]λz.µ!. R n
µ v µβ. Q n

µ

=n λu.µ!.[ω]λv.µ!.[ω]λz.µ!. R n
µ v µβ. Q n

µ u
=n λu.µ!.[ω]λz.µ!. R n

µ u µβ. Q n
µ

=v P n
µ′
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Theorem 7.8 For all X -terms P, P′, if P →n
∗P′, then P n

Ω =n P′
n

Ω.

7.2 Call by Value

We will now show we can achieve similar results for cbv-reduction.

Definition 7.9 (Call by value) For P any X -term, we define P v
µ

by structural induction:

〈x·α〉 v
µ

=∆ [α](x)�

ŷP β̂·α v
µ

=∆ [α](λy.µβ. P v
µ
)�

P β̂ [x] ŷQ v
µ

=∆ [ω]µβ. P v
µ

λv.µ!.[ω]x v λy.µ!. Q v
µ

P α̂ † x̂Q v
µ
=∆ P α̂ † x̂Q v

µ
=∆ [ω]µα. P v

µ
λx.µ!. Q v

µ

P α̂ † x̂Q v
µ

=∆ [ω]λx.µ!. Q v
µ

µα. P v
µ−

Contrary to the results obtained for the λ-calculus, we can achieve preservation of types
via the cbv-interpretation using the type-interpretation defined above for the cbn-case.

Proposition 7.10 (Conservation of types in cbv) If P : ∆�X Γ, then Γ v
µ′ �λµ P v

µ
: cmd | ω:Ω, ∆ v

µ
.

Proof: By induction on the structure of derivations:

(cap) : Then P =∆ 〈x·α〉, and there exists T such that x:T and α:T. As x: T v
µ′

and α: T v
µ

in
the translation, the command [α](x)� is well formed.

(exp) : By induction

Γ v
µ′

,y: A v
µ′ �λµ P v

µ
: cmd | β: B v

µ
,α: A→B v

µ
,ω:Ω, ∆ v

µ

As A→B v
µ′

=∆ A v
µ′→ B v

µ
, we get

Γ v
µ′ �λµ λy.µβ. P v

µ
: A→B v

µ′ | α: A→B v
µ
,ω:Ω, ∆ v

µ

as expected and we conclude as for the previous case.
(med) : By induction

Γ v
µ′

, x: A v
µ′→ B v

µ �λµ µβ. P v
µ

: A v
µ | ω:Ω, ∆ v

µ

and

Γ v
µ′

, x: A v
µ′→ B v

µ �λµ λy.µ!. Q v
µ

: B v
µ′→Ω | ω:Ω, ∆ v

µ

Therefore we get

Γ v
µ′

, x: A v
µ′→ B v

µ �λµ λv.µ!.[ω]x v λy.µ!. Q v
µ

: A v
µ′→Ω | ∆ v

µ

The result is clear.
(left cut) : By induction hypothesis

Γ v
µ �λµ λx.µ!. Q v

µ
: T v

µ′→Ω | ω:Ω, ∆ v
µ

and

Γ v
µ �λµ µα. P v

µ
: T v

µ | ω:Ω, ∆ v
µ

Then

Γ v
µ �λµ P α̂ † x̂Q v

µ
: cmd | ω:Ω, ∆ v

µ

(right cut) : The induction hypotheses are the same. We know α is introduced in P, but
whatever α, the application is well formed since µα. P v

µ−
:[T].
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Lemma 7.11 If α is introduced in P and V any value, then

µα. P v
µ

V =v V (µα. P v
µ
)−

Proof: By hypothesis, P v
µ
= =∆ [α](U)� where U is either a variable or an abstraction.

Therefore

(µα. P v
µ
)− =∆ µτ.[ω]µα.[α](U)� λt.µ!.[τ]t

=v µτ.[ω]µα.[α](U)� λt.µ!.[τ]t
=v µτ.[ω]µα.[α]λt.µ!.[τ]t U
=v µτ.[ω]µα.[α]µ!.[τ]U
=v U

Then

µα.[α](U)� V =v µα.[α](U)� V
=v V U
=v V (µα. P v

µ
)−

The last result of this section is:

Theorem 7.12 For all X -terms P, P′, if P →v P′, then P v
Ω =v P′

v
Ω.

8 Main result

Using the results achieved above, we can now link provability in lk(→) typability in λµ,
and formulate the main result of this paper:

Theorem 8.1 Let S denotes any of the cbn or cbv strategy. For all circuits P in X such that
P : Γ �X ∆, and for each type T occurring as τ:T in the conclusions ∆, there exists a λµ-term MP such
that Γ �λµ MP : T | ∆ \ {τ:T}. Moreover, if P → SP′ with respect to the strategy, then MP =S MP′ .
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