
Comparing Cubes
(Logical Foundations of Computer Science. LNCS 813, pages 353-365, 1994)

Steffen van Bakel1§, Luigi Liquori2¶, Simona Ronchi della Rocca2 , Paweł Urzyczyn3‖

1) 1 Afdeling Informatica, Universiteit Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, Nederland.
2) Dipartimento di Informatica, Università di Torino, Corso Svizzera 185, 10149 Torino, Italy,

4) Instytut Informatyki Uniwersytetu Warszawskiego, ul. Banacha 2, 02-097 Warszawa, Polska.
steffen@cs.kun.nl,{liquori, ronchi}@di.unito.it,urzy@mimuw.edu.pl

Abstract

We study the cube of type assignment systems, as introduced in [10]. This cube is obtained from
Barendregt’s typed λ-cube [1] via a natural type erasing function E, that erases type infor-
mation from terms. We prove that the systems in the former cube enjoy good computational
properties, like subject reduction and strong normalization. We study the relationship be-
tween the two cubes, which leads to some unexpected results in the field of systems with
dependent types.

Introduction

Types can be used as predicates for terms of λ-calculus in two different ways. Terms can be
directly decorated with types, and then every term comes directly with a unique, intrinsic type.
In this fully typed approach, a typed system is a set of rules for proving judgements of the shape
Γt �t Mt : φt, where Mt is a typed term, φt is a type, and Γt is a context. The meaning of such a
judgement is: the term Mt has type φt under the context Γt, that contains the types of the free
variables of Mt and φt. Alternatively, in the type assignment approach, types can be assigned to
terms of the untyped λ-calculus by applying type assignment rules. A type assignment system
is a set of rules for proving judgements of the shape Γ � M : φ, where M is a term of the
untyped λ-calculus, and Γ assigns types to the free variables of M and φ. The meaning of
such a judgement is: the term M has type φ under the context Γ, containing the types of free
variable of M and φ. In this approach, each term has infinitely many typings.

The typed approach, called à la Church by Barendregt, gives rise to different typed lan-
guages. In these languages terms are decorated with types in different ways. Examples of
typed λ-calculi are the simply typed one, the second order λ-calculus of Girard and Reynolds
[11, 15], and the calculus of constructions [5, 6]. Barendregt [1] gave a compact and appealing
presentation of a class of typed systems, arranging them in a cube. In this cube, every vertex
represents a different typed system. One vertex is the origin and represents the simply typed
λ-calculus of Church; the edges represent the introduction of some new rules of type forma-
tion, namely Polymorphism , Higher Order and Dependencies. This three-dimensional structure
allows for a deep comparative analysis of different typed λ-calculi.

§ Supported by the Netherlands Organisation for the Advancement of Pure Research (N.W.O.).
¶Partly supported by HCM project No. ERBCHRXCT920046 “Typed Lambda Calculus”
‖ Partly supported by grants NSF CCR–9113196, KBN 2 1192 91 01 and by a grant from the Commission of

The European Communities ERB–CIPA–CT92–2266(294).

Logical Foundations of Computer Science. LNCS 813, pages 353-365, 1994 2

It is well known (see [10, 12]) that some of the type assignment systems already known
in the literature can be also defined through an erasing function that erases type information
from terms in a typed system. For those systems, if Dt is a typed derivation of Γ�t Mt : φ,
and E is the erasing function, then by applying E to every judgement in Dt, a valid type
assignment derivation proving the judgement Γ � E (Mt) : φ is obtained, where E (Mt) is a
term of the untyped λ-calculus. Vice versa, every type assignment derivation can be viewed
as the result of the application of E to a typed one. In particular, the erasing function E induces
an isomorphism between every typed system on the dependency-free side of Barendregt’s cube
and a corresponding type assignment system. For instance, the simply typed λ-calculus is
isomorphic to the Curry type assignment system, the second order lambda calculus to the
polymorphic type assignment system, and the higher order λ-calculus to the higher order
type assignment system. These correspondences were independently defined by Curry [4],
Leivant [14], and Giannini and Ronchi [9], but the induced erasing function is the same in
all cases. In [10] the erasing function was extended in a natural way to all typed systems in
Barendregt’s cube, including the systems with dependent types, as studied in [3, 12]. The
essential difference is that the domain of E was extended to include types too, since terms can
occur in types.

This erasing function induces a cube of type assignment systems. Namely, for every typed sys-
tem St in Barendregt’s cube, there is a corresponding type assignment system S, whose rules
are obtained from the ones of St via the extended erasing function E. Note that, in this set-
ting, if Γt �t Mt : φt is a typed judgement, the corresponding type assignment judgement is
E (Γt)�t E (Mt) : E (φt), where now E (φt) can be different from φt (E (Γt) from Γt), in case φt
is a dependent type (Γt contains dependent types). This cube is a compact presentation of a
class of type assignment systems, which partially coincide with known ones (in the side of
the cube without dependencies) and partially represents the first attempt of defining type as-
signment systems with term-dependencies. It was also observed in [10] that, surprisingly, the
isomorphism between derivations in the corresponding vertices of typed and type assignment
cubes is no longer true in presence of dependencies. Then the natural question arises: what
is the relation between the two cubes? The authors of [10] conjectured that the relation is an
isomorphism between judgements rather than derivations, that is, a judgement Γ � M : φ is
true in one of the type assignment systems if and only if, in the corresponding typed system,
a judgement Γt �t Mt : φt can be proved such that E (Γt) = Γ, E (Mt) ≡ M and E (φt) ≡ φ.

In this paper we disprove this conjecture, showing that it is true only for the systems without
polymorphism. We also give a deep analysis of the type assignment cube, showing that the
systems represented in it enjoy all the good properties we expect, like subject reduction and
strong normalization of typable terms. Moreover, we define a new erasing function E′, that
coincides with E when dependencies are not present. The main difference between E and E′
is that, while E always erases type information in terms, E′ is context dependent and erases
type information from a term only if that term does not occur in a type; otherwise it leaves the
term unchanged. Clearly a new type assignment cube can be defined starting from E′. This
cube is isomorphic to the typed one, in the sense that every type assignment system defined
in it is isomorphic to the typed system in the corresponding vertex of Barendregt’s cube.

1 Two Cubes

We will present a stratified version of the systems in Barendregt’s cube, already presented in
[1], which will allow both the definition of the erasing function E and of the related cube of
type assignment systems.

Logical Foundations of Computer Science. LNCS 813, pages 353-365, 1994 3

1.1 The Cube of Typed Systems

Definition 1.1 The sets of typed λ-terms (Λt), typed constructors (Const) and typed kinds (Kindt)
are mutually defined by the following grammar, where M,φ and K are metavariables for
terms, constructors and kinds respectively:

M ::= x | λx:φ.M | MM | λα:K.M | Mφ

φ ::= α | Πx:φ.φ | Πα:K.φ | λx:φ.φ | λα:K.φ | φφ | φM

K ::= ∗ | Πx:φ.K | Πα:K.K

The set Tt of typed terms is the union of the sets Λt, Const and Kindt.

Notational conventions: In this paper, a term will be an (un)typed λ-term, a constructor, a kind,
or a sort. The symbols M, N, P, Q, . . . range over (un)typed λ-terms; φ, ψ, ξ, σ, τ, . . . range
over constructors; K ranges over kinds; s ranges over the set of sorts, that is {∗,�}; A, B, C, D,
. . . range over arbitrary terms; x, y, z, . . . range over λ-term-variables; α, β, γ, . . . range over
constructor-variables; a, b, c, . . . range over λ-term-variables and constructor-variables; and Γ
ranges over contexts. All symbols can appear indexed. The symbol ≡ denotes the syntactic
identity of terms.

The notions of free and bound variables and of a subterm of a term are defined as usual,
i.e. in Πa:A.B and λa:A.B the variable a is considered bound, and the scope of the binding
is B. Free variables of A remain free in Πa:A.B and λa:A.B, and the subterms of these terms
include all subterms of A and B. The set of subterms of A is denoted by ST(A), and the set
of free variables of A is denoted by FV(A). We will consider terms modulo α-conversion, i.e.
we identify terms that differ only in the names of bound variables. Let D[A1/a1, . . . , An/an]
denote the result of simultaneously substituting Ai to ai in D (1 ≤ i ≤ n). We normally assume
that no variable bound in D is free in any of the Ai’s, and that the set {a1, . . . , an} is disjoint
from the set of bound variables of D.

Definition 1.2 Beta-reduction (denoted as →→β) is defined as usual, i.e. as the contextual re-
flexive and transitive closure of the reduction rule (λa:A.B)C →β B[C/a]. The symbol =β

denotes beta-conversion, i.e. the least equivalence relation generated by →→β.

Definition 1.3 i) A statement is an expression of the form: M : φ, φ : K, or K : �, where M is a
typed λ-term, φ is a constructor, and K is a kind. The left part of the statement is called
the subject, while the right part is called the predicate . A declaration is a statement whose
subject is a variable.

ii) A context is a sequence of declarations, whose subjects are distinct. The empty con-
text is denoted by <>. We write a:A ∈ Γ, if a:A occurs in Γ. The domain of Γ, de-
noted by Dom (Γ), is the set {a | ∃A [a:A ∈ Γ]}. If Γ1 and Γ2 are contexts such that
Dom (Γ1)∩Dom (Γ2) = ∅, then Γ1, Γ2 is a context obtained by concatenating Γ1 to Γ2.
The set of free variables in a context is defined by: FV(Γ) =

⋃
a:A∈Γ FV(A).

Definition 1.4 (Barendregt’s general typed system.) The following rules are used to de-
rive judgements of the form Γ�t A : B, where Γ is a context and A : B is a statement. The type
assignment rules can be divided in four groups, depending of the subjects of the statements:

i) Common rules

(Proj)
Γ�t A : s a �∈ Dom (Γ)

Γ, a:A�t a : A
(Weak)

Γ�t A : B Γ�t C : s c �∈ Dom (Γ)

Γ, c:C�t A : B

Logical Foundations of Computer Science. LNCS 813, pages 353-365, 1994 4

(Conv)
Γ�t A : B Γ�t C : s B =β C

Γ�t A : C
ii) Typed term rules

(I)
Γ, x:φ�t M : ψ

Γ�t λx:φ.M : Πx:φ.ψ
(E)

Γ�t M : Πx:φ.ψ Γ�t N : φ

Γ�t MN : ψ[N/x]

(IK)
Γ,α:K�t M : φ

Γ�t λα:K.M : Πα:K.φ
(EK)

Γ�t M : Πα:K.φ Γ�t ψ : K

Γ�t Mψ : φ[ψ/α]

iii) Constructor rules

(C–IC)
Γ, x:φ�t ψ : K

Γ�t λx:φ.ψ : Πx:φ.K
(C–EC)

Γ�t ψ : Πx:φ.K Γ�t M : φ

Γ�t ψM : K[M/x]

(C–IK)
Γ,α:K1 �t ψ : K2

Γ�t λα:K1.ψ : Πα:K1.K2
(C–EK)

Γ�t φ : Πα:K1.K2 Γ�t ψ : K1

Γ�t φψ : K2[ψ/α]

(C–FC)
Γ, x:φ�t ψ : ∗

Γ�t Πx:φ.ψ : ∗ (C–FK)
Γ,α:K�t φ : ∗

Γ�t Πα:K.φ : ∗
iv) Kind rules

(Axiom) <> �t ∗ : � (K–FC)
Γ, x:φ�t K : �

Γ�t Πx:φ.K : �

(K–FK)
Γ,α:K1�t K2 : �

Γ�t Πα:K1.K2 : �

Lemma 1.5 Barendregt’s general typed system derives judgements of the following shapes:
Γ�t M : φ, Γ�t φ : K, or Γ�t K : �.

If Γ�t M : φ for a typed λ-term M, then Γ�t φ : ∗ (see [1]), and φ is called a type, or to
be more precise: a type with respect to the context Γ. We write D: Γ�t A : B when D is a
derivation for the judgement Γ�t A : B, and D′ ⊆ D means that D′ is a subderivation of D.

Definition 1.6 i) Let the following sets of rules be defined by:
Base Rules = {(Axiom), (Proj), (Weak), (I), (E), (C–FC)},
Polymorphism = {(IK), (EK), (C–FK)},
Dependencies = {(C–IC), (C–EC), (K–FC), (Conv)},
Higher Order = {(C–IK), (C–EK), (K–FK), (Conv)}.

ii) The eight typed systems in the Barendregt’s cube can be represented by the set of deriva-
tion rules used in each system; they can be represented as vertices of the following cube:

Logical Foundations of Computer Science. LNCS 813, pages 353-365, 1994 5

λ→ = Base Rules
λω = λ→∪Higher Order
λ2 = λ→∪Polymorphism

λω = λ2 ∪Higher Order
λP = λ→∪Dependencies

λPω = λω ∪Dependencies
λP2 = λ2 ∪Dependencies

λPω = λω ∪Dependencies
λ→

�

�
�
�
���

λω

�

�

λ2 �
�
�
���

λω �

λP
�
�
���

�

λPω

�

λP2
�
�
���

λPω

Let S be one of these eight systems. We write Γ �S A : B to indicate that Γ�t A : B can be
derived using only the rules for S.

The properties of this cube are studied in [1, 8].

1.2 The Cube of Type Assignment Systems

In this subsection we will present the cube of type assignment systems as was first presented
in [10]. The definition of the type assignment cube is based on the definition of an erasing
function E that erases all type information from the typed terms. In fact, both the syntax
of terms, and the rules of our type assignment systems are obtained directly from the corre-
sponding syntax and rules of the typed systems, by applying a type erasure operation E, to be
defined below. Note that, since terms can occur in both constructors and kinds, E can modify
all typed objects. From now on, we will reserve the name typed systems (TS) for the systems of
Barendregt’s cube and we reserve the expression type assignment systems (TAS) for the systems
to be defined below.

Definition 1.7 The sets of untyped λ-terms (Λ), constructors (Cons) and kinds (Kind) are mu-
tually defined by the following grammar, where M,φ, and K are metavariables for terms,
constructors and kinds respectively.

M ::= x | λx.M | MM

φ ::= α | Πx:φ.φ | Πα:K.φ | λx:φ.φ | λα:K.φ | φφ | φM

K ::= ∗ | Πx:φ.K | Πα:K.K

The set Tu of untyped terms is the union of the sets Λ, Cons and Kind.

Given the syntax of untyped terms, the following definition of E is natural: it erases all type
information from typed λ-terms, also when they occur inside constructors or kinds.

Definition 1.8 The erasing function E : Tt → Tu is defined as follows:

E (a) = a.
E (AB) = if B ∈ Const then E (A) else E (A)E (B).
E (Πa:A.B) = Πa:E (A).E (B).
E (λa:A.B) = if B ∈ Λt then if A ∈ Kindt then E (B) else λa.E (B)

else λa:E (A).E (B).

Logical Foundations of Computer Science. LNCS 813, pages 353-365, 1994 6

The erasing function is extended to contexts in the obvious way, and we write E (Γ). The
notions of free variable and subterm are similar to their ‘fully typed’ counterparts.

Definition 1.9 Beta reduction on untyped terms can no longer be defined using a single
generic rule as in Definition 1.2. Instead, we have the following three rules:

(λx:φ.ψ)M →β ψ[M/x], (λα:K.φ)ψ →β φ[ψ/α], and (λx.M)N →β M[N/x].

Definition 1.10 (General type assignment system (TAS)) The rules of the general type as-
signment system (TAS) are used to derive judgements of the form Γ � A : B, where Γ is a
context and A : B is a statement, and a statement is defined as in the typed case, using the
syntax for untyped terms. The rules are:

i) The common rules, and the constructor and kind rules of TS, where �t is replaced by � ,
taking into account both the difference in syntax, and that the rule (Conv) now refers to
the untyped reduction;

ii) The following term rules:

(I)
Γ, x:φ � M : ψ

Γ � λx.M : Πx:φ.ψ
(E)

Γ � M : Πx:φ.ψ Γ � N : φ

Γ � MN : ψ[N/x]

(IK)
Γ,α:K � M : φ

Γ � M : Πα:K.φ
(EK)

Γ � M : Πα:K.φ Γ � ψ : K

Γ � M : φ[ψ/α]

The notion of derivation and subderivation for a judgement are the same as for TS and an
analogue of Lemma 1.5 also holds. As before, a type is a constructor of kind ∗ (and again
this is a context-dependent property). A λ-term M is typable if there are a context Γ, and a
constructor φ such that Γ � M : φ. (We prove in Section 2 that then φ is a type.)

As in [10], we can distinguish eight different type assignment systems, defined using the
same collection of rules given in Definition 1.6 (i) for the TS cube. These systems can be
represented as vertices of the following cube:

F1 = Base Rules
F′ = F1 ∪Higher Order
F2 = F1 ∪Polymorphism

Fω = F2 ∪Higher Order
DF1 = F1 ∪Dependencies
DF′ = F′ ∪Dependencies
DF2 = F2 ∪Dependencies

DFω = Fω ∪Dependencies
F1

�

�
�
�
���

F′

�

�

F2 �
�
�
���

Fω �

DF1
�
�
���

�

DF′

�

DF2
�
�
���

DFω

Let S denote one of the eight systems in this cube. Like for the TS we will write Γ �S A : B to
indicate that Γ � A : B can be derived using only the rules for S. Notice that in the left-hand
side of the cube, both constructors and kinds coincide with the typed one, because there they
cannot depend on terms. This is no longer true in the right-hand side: for example, we can
build constructors like (λx:φ.ψ)N, where N is an untyped λ-term. The system F1 corresponds
to the well-known Curry type assignment system, whereas F2 is the type assignment version
of λ2, which is essentially Girard’s system F [11].

Logical Foundations of Computer Science. LNCS 813, pages 353-365, 1994 7

2 Basic properties of TAS

In this section, we will prove that all the systems in TAS cube have good computational prop-
erties; the subject reduction property, the Church-Rosser property and strong normalization
of typable terms will be shown. To prove these results we need more definitions and technical
lemmas, stating properties of the systems, some of which are of interest in their own.

The following proposition states that every term, typable by ∗ or �, can not be typable by
both, and guarantees consistency of the system.

Proposition 2.1 For every context Γ term A, and sorts s1, s2: if Γ � A : s1 and Γ � A : s2, then
s1 ≡ s2.

Definition 2.2 We define the following relations on contexts:
i) Γ � Γ′ ⇐⇒ Γ is a prefix of Γ′.

ii) The relation �· is inductively defined as follows:
a) <> �· Γ,
b) If Γ �· Γ′, then Γ, a:A �· Γ′, a:A.
c) If Γ �· Γ′, then Γ �· Γ′, a:A.

Theorem 2.3 (Church-Rosser.) If A →→β A′ and B →→β B′, then there exists C such that A′ →→β

C and B′ →→β C.
Proof: In the terminology of Klop [13], our beta reduction is a regular combinatory reduction system,
and thus the Church-Rosser property follows from Theorem II.3.11 in [13].

The following lemmas can be proved by easy induction on the structure of derivations.

Lemma 2.4 i) If Γ �· Γ′, and Γ � A : B, then FV(A) ∪ FV(B) ⊆ Dom (Γ), and Γ′ � A : B.
ii) Let B ∈ ST(A). If D: Γ � A : C, then there exist Γ′, E and D′ ⊆ D, such that D′: Γ′ � B : E.

iii) If Γ1, c:C, Γ2 � A : B, and Γ1 � D : C, then Γ1, Γ2[D/c] � A[D/c] : B[D/c].

The following lemma formulates a basic property of judgements: all predicates in derivable
statements are typable.

Lemma 2.5 i) If Γ � E : F, then F ≡ � or Γ � F : s.
ii) If Γ � M : φ then Γ � φ : ∗, i.e. φ is a type with respect to the context Γ.

The following lemma is the key lemma for the proof of the subject reduction theorem. It
states that contexts can be considered modulo β-conversion of predicates, and that a type for
a term λx.M can always be obtained using a derivation that ends with the rule (I).

Lemma 2.6 i) Let Γ1, a:A,Γ2 � B : C. Then Γ1, a:A′,Γ2 � B : C, for all A′ such that Γ1 � A′ : s and
A=βA′.

ii) If Γ � λx.M : Πx:φ.ψ, then Γ, x:φ � M : ψ.
Proof: i) By induction on the structure of the derivation.

ii) A judgement Γ � (λx.M) : θ can be provable only if θ =β ∏k
i=1 αi:Ki.Πx:φ′.ψ′, for some K1, . . . ,

Kk,φ′,ψ′, such that Γ,α1:K1, . . . ,αk:Kk, x:φ′ � M : ψ′. (This can be proved by induction on deriva-
tions, using Lemma 2.4(iii).) Thus, Πx:φ.ψ =β ∏k

i=1 αi:Ki.Πx:φ′.ψ′, and since these two ex-
pressions have a common reduct, it must be that k = 0 and that φ =β φ′ and ψ =β ψ′. So

Logical Foundations of Computer Science. LNCS 813, pages 353-365, 1994 8

Γ, x:φ′ � M : ψ′, and thus Γ, x:φ � M : ψ follows from part (i) and rule (Conv).

Theorem 2.7 (Subject Reduction for Terms.) If Γ � M : ψ and M →β N then Γ � N : ψ.
Proof: By induction on the definition of →β. The main case is M ≡ (λx.P)Q and N ≡ P[Q/x], the
others follow by induction. Let D be a derivation for Γ � M : ψ. It is not difficult to see that D has the
following structure:

...
Γ′ � (λx.P) : Πx:φ′.ψ′

...
Γ′ � Q : φ′

D1: (E)
Γ′ � (λx.P)Q : ψ′[Q/x]

...
D:

Γ � (λx.P)Q : ψ

That is, there is a subderivation D1, ending with an application of rule (E), which is followed by a
(possibly empty) sequence of applications of the not syntax-directed rules (Proj), (Weak), (Conv), (IK)
and (EK). By Lemma 2.6(ii) we obtain: Γ′, x:φ′ � P : ψ′. Since also Γ′ � Q : φ′, by Lemma 2.4(iii)
we obtain Γ′ � P[Q/x] : ψ′[Q/x]. Apply the same rules as used to go from D1 to D to obtain
Γ � P[Q/x] : ψ.

An important property of the type assignment systems is strong normalization of typable
terms; this is already known to hold for the systems Fω, F1, F2, and F′ (see [10]). Using this
result, we will show that it also holds for the other four systems of the cube of type assignment
systems. To achieve this, we use the function ED that ‘erases dependencies’ as defined in [10].
For the behaviour of the function ED on beta redexes, there are the following possibilities:

i) ED ((λx.M)N) = (λx.ED (M))(ED (N))

ii) ED (M[N/x]) = ED (M)[ED (N)/x];
iii) ED ((λα:K.φ)ψ) = (λα:ED (K).ED (φ))(ED (ψ))

iv) ED (φ[ψ/α]) =ED (φ)[ED (ψ)/α];
v) ED ((λx:φ.ψ)M) = ED (ψ);

vi) ED (ψ[M/x]) = ED (ψ).

That is, A →β B implies either ED (A) →β ED (B) or ED (A) ≡ ED (B).

Theorem 2.8 (Termination) If Γ � A : B then A is strongly normalizing.
Proof: In [10], Theorem 2.2.1 states that if Γ � A : B is a derived judgement in DFω (DF1, DF2,
DF′), then ED (Γ) � ED (A) : ED (B) is derivable in Fω (F1, F2, F′). Suppose now that A ≡ A0 →β

A1 →β A2 →β . . . is a sequence of beta reductions. By the property mentioned above, for every i ≥ 1,
either ED (Ai) →β ED (Ai+1), or ED (Ai) ≡ ED (Ai+1). Suppose the sequence A0 →β A1 →β A2 →β

. . . is infinite. Since beta reduction in Fω (F1, F2, F′) is strongly normalizing, there is an n such
that ED (Aj) ≡ ED (Aj+1), for every j ≥ n. So from step n, every step in the infinite sequence A0 →β

A1 →β A2 →β . . . corresponds to a reduction of a ‘bad’ redex of the form (λx:φ.ψ)M. However, since
M is an untyped term, such a reduction cannot create new ‘bad’ redexes. Thus the number of redexes
must decrease after every step, and our reduction can not be infinite.

Logical Foundations of Computer Science. LNCS 813, pages 353-365, 1994 9

3 The relation between TS and TAS

In this section we will focus on the relation between Barendregt’s cube and the cube of type
assignment systems. First we introduce the notions of consistency, similarity, and isomorphism
between typed systems and type assignment systems.

Definition 3.1 Let St and Su be systems in corresponding vertices of TS and TAS cube.
i) St and Su are consistent if Γt �St At : Bt implies E (Γt) �Su E (At) : E (Bt).

ii) St and Su are similar if they are consistent and, moreover, Γ �Su A : B implies that there
exists Γt, At, and Bt satisfying Γt �St At : Bt and E (Γt) = Γ, E (At) ≡ A, and E (Bt) ≡ B.

iii) Let Dert and Deru be the set of all the derivations in St and Su . St and Su are isomorphic if
and only if there are : F : Dert→Deru and G: Deru→Dert such that:
a) If Dt: Γ �St A : B then F (Dt) : E (Γ) �Su E (A) : E (B).
b) F◦G and G◦F are the identity on Dert and Deru respectively.
c) Both F and G preserve the structure of the derivations, (i.e. the tree obtained from the

derivation by erasing all the judgements but not the names of the rules).

The definition of isomorphism between two systems was already given in [10], but in a
less general way. Two systems are isomorphic according to the definition in [10], if they are
isomorphic in the sense of the preceding Definition, and moreover, the function F is such that
F (Dt) is obtained from Dt by applying the erasing function to all terms in Dt; by abuse of
notation, we denote F (Dt) by E (Dt). The following Proposition proves that the two notions
of isomorphism coincide, in case of the TAS cube:

Proposition 3.2 Let St and Su be systems in corresponding vertices of TS and TAS cube respectively,
and suppose they are isomorphic through the functions F and G. Then for every typed derivation Dt,
F (Dt) = E (Dt).

The following results are taken from [10]:

Theorem 3.3 Let St and Su be systems in corresponding vertices of TS and TAS cube.
i) St and Su are consistent.

ii) If St and Su do not contain Dependencies as subset of their sets of rules, then St and Su are
isomorphic.

iii) If the assumption of (ii) is not satisfied, then St and Su are not isomorphic.
Proof: See [10]. The proof uses the following properties of the erasing function:

i) E (A[B/a]) ≡ E (A)[E (B)/a];
ii) If A →→β C, then E (A) →→β E (C).

After the negative result of Theorem 3.3(iii), it is natural to ask if the corresponding systems
in the TS and TAS cubes are at least similar. Such a conjecture was already stated in [10]. This
property holds only for the systems without polymorphism, as will be shown in Theorem 3.7,
namely, for DF1 versus λP, and for F′ versus λω. Adding polymorphism makes a difference:
the systems with both polymorphism and dependencies are not similar.

Theorem 3.4 Let St be either λP2 or λPω, and let Su be respectively DF2 and DFω. Then St and Su
are not similar.
Proof: As a counterexample, we show a derivable judgement of DF2, that cannot be obtained as an

Logical Foundations of Computer Science. LNCS 813, pages 353-365, 1994 10

erasure of any derivable judgement in λPω. In this proof, for reasons of readability, we will use the
notation A→B for Πa:A.B, when a does not occur in B. Let Γ0 denotes a context consisting of the
following declarations:

(type variables) α:∗, β:∗, γ:∗, δ:∗,
(constructor variable) ε:(β→∗),
(term variables) u:(Πη:∗.((η→η)→α)→β), x:α, y:γ, z:δ,

and let M, M0, M1 denote respectively the following untyped λ-terms:
M ≡ u(λ f .x), M0 ≡ u(λ f .Kx(f y)), and M1 ≡ u(λ f .Kx(f z))

where the symbol K denotes the term (λxy.x). Clearly, both M0 and M1 beta-reduce to M, and all
these terms can correctly be assigned the type β in the context Γ0. Thus, one can derive:

Γ0 � εM0→α : ∗ and Γ0 � εM1 : ∗
and this means that the context Γ= Γ0, p:εM0→α,q:εM1 is legal. With help of rules (Proj) and (Conv),
one can easily derive:

Γ � pq : α.
The above judgement cannot be obtained as an erasure of any judgement Γ′ � N : φ derivable in λP2

or λPω, (i.e. one cannot have E (Γ′) = Γ, E (N) ≡ pq, and E (φ) ≡ α). Assume the opposite. First
note that φ ≡ α, since no terms occur in α. (The erasing function can only modify types containing
occurrences of terms, in which case the results must also contain terms.) Similarly, Γ′ may differ from
Γ only in the declarations of p and q, which must be of the form:

p:εM′
0→α and q:εM′

1

where E (M′
0) ≡ M0 and E (M′

1) ≡ M1. Without loss of generality (see Theorem 2.8), we can assume
that M′

0 and M′
1 are normal forms. We can also assume that N is of the form PQ, where E (P) ≡ p

and E (Q) ≡ q (otherwise we consider an appropriate subterm of N instead). Since P is applied to Q,
and the type of PQ is α, P must have a type of the form εM′′

0 → α, where E (M′′
0) ≡ M0, and Q must

have a type of the form εM′′
1 , where E (M′′

1) ≡ M1. In order to make the application well-typed (after a
possible series of applications of rule (Conv)), it must be the case that M′′

0 =β M′′
1 .

It follows that we have beta-convertible terms M′′
0 , M′′

1 , which erase to M0 and M1, respectively, and
both are of type β. Without loss of generality, we can assume that these terms have no beta-redexes
involving polymorphic abstraction/application, and thus we may write:

M′′
0 ≡ uγ(λ f :γ→γ.K0x(f y)) M′′

1 ≡ uδ(λ f :δ→δ.K1x(f z))

where K0 and K1 are such that E (K0) ≡ K and E (K1) ≡ K. The types of f used in the above are forced
by the applications f y and f z. Note that the type of f may not be externally quantified, because of
the type of the polymorphic variable u. The normal forms of these terms are as follows: M′′

0 reduces to
uγ(λ f :γ→γ.x), while M′′

1 reduces to uδ(λ f :δ→δ.x). But these normal forms are different, and this
contradicts the previous claim that M′′

0 =β M′′
1 .

The cause of the phenomenon demonstrated in the last proof, is the polymorphic variable. If
polymorphism is not permitted, we can prove that the corresponding TS and TAS are similar.
This requires a sequence of lemmas. In what follows, the symbol � denotes �S , for S ∈ {F1,
F′, DF1, DF′}, while �t refers to the corresponding TS systems, i.e. we consider only systems
without polymorphism.

Lemma 3.5 i) Suppose Γ�t B1 : A and Γ�t B2 : A, and let both B1 and B2 be normal forms. If
E (B1) ≡ E (B2) then B1 ≡ B2.

Logical Foundations of Computer Science. LNCS 813, pages 353-365, 1994 11

ii) Let Γ�t B1 : A and Γ�t B2 : A. If E (B1) =β E (B2), then B1 =β B2.
Proof: i) By induction on the structure of B1.

ii) Easy, using part (i).

Lemma 3.6 Suppose that Γ � A : B. Then the following conditions hold:
i) There exists a typed context Γt, and typed terms At, Bt satisfying E (Γt) = Γ, E (At) ≡ A and

E (Bt) ≡ B, and such that Γt�t At : Bt.
ii) For every typed context Γt, and every typed term Bt satisfying E (Γt) = Γ, E (Bt) ≡ B and

Γt�t Bt : s, there exists a typed term At, such that Γt�t At : Bt, and E (At) ≡ A.
Proof: Parts (i) and (ii) can be proven by mutual induction on the structure of derivations.

Theorem 3.7 Let St be a TS system whose set of rules does not contain Polymorphism as subset, and
let Su be the corresponding TAS system. Then St and Su are similar.
Proof: By Lemma 3.6.

4 How to obtain an isomorphism

In this section we show that it is possible to define another erasing function (which looks less
natural), named E′, that gives rise to a second type assignment cube TAS′ which is isomorphic
to the TS cube. The main difference between E and E ′ is that, while E always erases type
information in terms, E ′ is context dependent and erases type information from a term only if
that term does not occur in a type; otherwise it leaves the term unchanged. So the difference
between TAS′ and TAS is that dependent types of TAS′ contain occurrences of typed λ-terms
rather than untyped λ-terms. The systems without Dependencies coincide exactly with the cor-
responding systems in the TAS cube. Also, either with Dependencies or without, the provable
judgements are the same as long as their subjects are either constructors or kinds.

Definition 4.1 (The TAS ′ Cube.) i) The untyped and typed terms, typed constructors and
typed kinds are defined as before (Definitions 1.1 and 1.7). Let T ′

u be the union of the sets
Λ,Const and Kindt.

ii) The new erasing function E′: Tt→T ′
u is defined as follows:

a) E′(M) = E (M).
b) E′(φ) = φ.
c) E′(K) = K.

iii) Let M range over Λ, and A, B, and φ range over Tt. The general type assignment system
induced by E′ (TAS′) proves judgements of the following form:

Γ �′ M : φ and Γ�t A : B, where A �∈ Λt.

iv) The type assignment rules are:
a) All the rules used for TS.
b) The rules (I), (IK), and (EK) of TAS (where � should be replaced by �′).
c) The rules:

(Proj ′)
Γ�t φ : ∗ x �∈ Dom (Γ)

Γ, x:φ �′ x : φ
(Weak ′)

Γ �′ M : φ Γ�t A : s a �∈ Dom (Γ)

Γ, a:A �′ M : φ

(Conv ′)
Γ �′ M : φ Γ�t ψ : ∗ φ =β ψ

Γ �′ M : ψ
(E′)

Γ �′ M : Πx:φ.ψ Γ�t N : φ

Γ �′ M(E′(N)) : ψ[N/x]

Logical Foundations of Computer Science. LNCS 813, pages 353-365, 1994 12

v) As in Definition 1.6(i), the rules can be grouped in sets. All the collections are as before,
with the exception of (with abuse of notation): Base Rules = {(Axiom), (Proj), (Weak), (I),
(E), (C–FC), (Proj ′), (Weak ′), (E′)}, Again eight type assignment systems can be defined,
whose relationships can be represented as before by drawing a cube. A system in this
cube and one in the TS-cube are corresponding if the names for the set of rules allowed for
these systems are exactly the same.

The main result on the relationship between the TS cube and the TAS′ cube is:

Theorem 4.2 Let St be any typed system in the TS cube, and let Su be the corresponding system in
the TAS′ cube. Then St and Su are isomorphic.
Proof: The function F : Dert→Deru can be defined by induction on the structure of D ∈ Dert in the
following way:

i) If Dt: Γ�t A : B and A �∈ Λt, then F (Dt) = Dt.
ii) If the last rule of Dt is (E), i.e.:

Dt:
D1 : Γ�t M : Πx:φ.ψ Γ�t N : φ

Γ�t MN : ψ[N/x]
(E)

then F (D1): E′(Γ) �′ E ′(M) : E′(Πx:φ.ψ). Since E′(Γ) = Γ and E′(Πx:φ.ψ) ≡ Πx:φ.ψ, we
can define:

F (D):
Γ �′ E′(M) : Πx:φ.ψ Γ�t N : φ

Γ �′ E′(M)E′(N) : ψ[N/x]
(E′)

iii) if the last rule is one of the other not mentioned, the definition of F is given by straightforward
induction.

The definition of G is left to the reader. It is easy to verify that these two functions realize an
isomorphism between the corresponding systems in the two cubes.

While the definition of the erasing function E′ is (relatively) easy, the definition of the related
cube is very involved. This is a consequence of the fact that, for systems with dependencies,
the derivations are not compositional. Namely if Dt is a derivation and D′

t is a subderivation
of Dt that ends with a judgement of the form Γ�t M : φ, for M ∈ Λt, then D′

t need not be a
valid derivation; this is because E′ has a context dependent behaviour. This is the price we
paid for reaching the isomorphism with the typed systems.

5 Conclusions

This paper, together with [10], can be seen as the first attempt to study type assignment
systems with dependent types. In fact all the systems in the dependencies free part of the
cubes TAS and TAS′ have been extensively studied in the literature. The only type assign-
ment system with dependent types already defined in the literature is the system λΠ of
Dowek [7]. Strictly speaking, this is not a type assignment system in the usual sense. There
are no derived judgements, instead, a valid judgement of λΠ is defined as one of the form
E ′(Γ) �′ E′(A) : E′(B), where Γ�t A : B is a valid judgement of λP. So Dowek’s system is
equivalent to the system corresponding to λP in the TAS′ cube. For this system, the type
checking problem was shown to be undecidable in [7]. The method of proof of the undecid-
ability is however applicable for all our systems with dependencies. We showed that all the
systems with dependencies we defined enjoy good computational properties, and we focused

Logical Foundations of Computer Science. LNCS 813, pages 353-365, 1994 13

our attention in particular on the relationship between typed and type assignment systems.
A further step can be made by looking for a type assignment counterpart to the Generalised
Type Systems, as defined in [1, 2, 3].

References

[1] Barendregt, H.P., Lambda Calculi with Types, Handbook of Logic in Computer Science, Abramsky,
Gabbai, Maibaum eds., Oxford University Press, 1991.

[2] Barendregt, H.P., Introduction to Generalised Type Systems, Journal of Functional Programming, vol-
ume 1(2), 125–154, 1991.

[3] Berardi, S., Towards a Mathematical Analysis of Type Dependence in Coquand–Huet Calculus of Construc-
tions and the Other Systems in Barendregt’s Cube, Department of Computer Science, CMU, and Di-
partimento di Matematica, Torino, 1988.

[4] Curry, H.B., Modified Basic Functionality in Combinatory Logic, Dialectica, 1969.

[5] Coquand, T., Metamathematical Investigations of a Calculus of Constructions,
Logic and Computer Science, Odifreddi ed., Academic Press, 91–122, 1990.

[6] Coquand, T. and Huet, G., The Calculus of Constructions, Information and Computation, 76(2,3),
95–120, 1988.

[7] Dowek, G., The Undecidability of Typability in the Lambda-Pi-Calculus,
Proc. Typed Lambda Calculi and Applications, LNCS 664, 139–145, 1993.

[8] Geuvers, H. and Nederhof, M., Modular Proof of Strong Normalization for the Calculus of Con-
structions, Journal of Functional Programming, 1(2), 155–189, 1991.

[9] Giannini, P. and Ronchi Della Rocca, S., Characterization of Typings in Polymorphic Type Disci-
pline, Proc. Logic in Computer Science, IEEE, 61–70, 1988.

[10] Giannini, P., Honsell, F. and Ronchi Della Rocca, S., Type Inference: Some Results, Some Problems,
Fundamenta Informaticae, 19(1,2), pp.87–126, 1993.

[11] Girard, J.Y., The System F of Variable Types, Fifteen Years Later, Theoretical Computer Science, 45,
159–192, 1987.

[12] Harper, B., Honsell, F. and Plotkin, G., A Framework for Defining Logics, Journal of the ACM, 40,
1993.

[13] Klop, J. W., Combinatory Reduction Systems, PhD-thesis, Rijksuniversiteit Utrecht, 1980.

[14] Leivant, D., Polymorphic Type Inference, In Symposium on Principles of Programming Languages,
ACM, 88–98, 1983.

[15] Reynolds, J.C., Towards a Theory of Type Structures, Proc. Paris Colloquium on Programming,
Springer Verlag, 408–425, 1974.

