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Abstract

We show characterisation results for normalisation, head-normalisation, and strong normal-
isation for λµ using intersection types. We reach these results for a strict notion of type
assignment for λµ that is the natural restriction of the domain-based system of [10] for λµ by
limiting the type inclusion relation to just intersection elimination. We show that this system
respects βµ-equality, by showing both soundness and completeness results. We then define a
notion of reduction on derivations that corresponds to cut-elimination, and show that this is
strongly normalisable.
We use this strong normalisation result to show an approximation result, and through that a
characterisation of head-normalisation. Using the approximation result, we show that there
is a very strong relation between the system of [10] and ours.
We then introduce a notion of type assignment that eliminates ω as an assignable type, and
show, using the strong normalisation result for derivation reduction, that all terms typeable in
this system are strongly normalisable as well, and show that all strongly normalisable terms
are typeable.
We conclude by adding type variables to our system, and show that system essentially is that
of [6].

keywords: lambda-mu calculus, intersection types, semantics, normalisation

Introduction

The Intersection Type Discipline [18] has proven to be an expressive tool for studying termina-
tion and semantics for Church’s λ-calculus [20] (see also [17]). Intersection type assignment is
defined as an extension of the standard, implicative type assignment known as Curry’s system
[24] (see also [28]), which expresses function composition and application; the extension made
consists of relaxing the requirement that a parameter for a function should have a single type,
adding the type constructor ‘∩’ next to ‘→’. This simple extension allows for a great leap in
complexity: not only can a (filter) model be built for the λ-calculus using intersection types,
also strong normalisation (termination) can be characterised via assignable types; naturally,
type assignment becomes undecidable. The literature on intersection types is vast; it was first
defined by Coppo and Dezani [21] and its development took place over a number of years,
culminating in the paper by Barendregt, Coppo, and Dezani-Ciancaglini [18], and has been
explored by many since.

Semantics using intersection types cannot be defined for all calculi. In [8], the author inves-
tigated the possibility of defining semantics using intersection (and union) types in the context
of the sequent calculus X , as defined by Lengrand [30], and later studied with Lescanne and
the author [13, 14]; X is a sequent calculus that enjoys the Curry-Howard isomorphism with
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respect to the implicative fragment of Gentzen’s lk [25]. Later, in [5] the same was done for
the calculus λµµ̃ defined by Curien and Herbelin [23]. The main conclusion of those papers
is that, in symmetric calculi (like λµµ̃ and X ) it is inevitable that intersection and union are
truly dual, and that the very nature of those calculi makes a sound and complete system
unachievable, so there intersection (and union) types do not induce a semantics.

With those negative results in mind, the author investigated the question if these would
also hold for less extensive systems based on classical logic, and explored the possibility
of defining a notion of type assignment for Parigot’s λµ [33] that uses intersection types;
λµ is an extension of the untyped λ-calculus obtained by adding named terms and a name-
abstraction operator µ. In [6] the author showed that (surprisingly, in view of the negative
results mentioned above) it is indeed possible to define a notion of type assignment for λµ

that is closed under conversion. Since the point of departure was the work on X and λµµ̃, the
system of that paper uses intersection types for term variables, and union types for names.
As a direct consequence of this result, it is possible to define a filter model for λµ, and
this was presented together with Barbanera and de’Liguoro [10]; the intersection type theory
of that paper is developed with Streicher and Reus’s [38] domain construction for λµ as
departure point. This later was followed by the proof that, as for the λ-calculus, the underlying
intersection type system for λµ allows for the full characterisation of strongly normalisable
terms [11]. These papers were later combined (and revised) into [12].

One of the perhaps surprising aspects of the system defined in those papers is that union
is no longer used, just intersection. Inspired by Streicher and Reus’s domain, λµ-terms are
separated into terms and streams (or stacks); then names act as the destination of streams,
as variables are the destination of terms. Terms can be typed with types δ, which express
functionality, and streams by types κ, essentially a sequence of δs, and intersection becomes
the natural tool to group types for streams as well. Another difference with traditional notions
of type assignment is that terms are assigned types that express what streams they can operate
on; so, rather than stating λxy.xy : (A→B)→A→B, for example, the system uses λxy.xy :
(δ×ω→ρ)× δ×ω→ρ, expressing that it can take a stream containing at least two arguments,
the first of type δ×ω→ρ (stating it is a function that takes a stream as argument of which the
first element is of type δ) and the second of type δ; the final ω in the product type here acts as
an ‘end of typed input’ symbol. A direct consequence of taking the domain-directed approach
to type assignment is that, naturally1, intersection becomes a ‘top level’ type constructor, that
lives at the same level as arrow, for example. This gives readable types and easy to understand
type assignment rules, but also induces a type inclusion relation ‘≤’ and type assignment
rule (≤) that complicate proofs and give a rather intricate and frankly rather unworkable
generation lemma (see [12] for details and Section 10 below).

So, in view of what has been accomplished for the λ-calculus [2, 7], the natural question
to ask is: is it possible to define a strict version of this notion, that is closed for conversion
as well, and does without the contra-variant character of ≤, and hopefully would allow for
more easily constructed proofs? We show here that this is the case: we will define such a
strict version and show that it is closed for both subject reduction and expansion. The main
restriction with respect to the system of [12] is limiting ‘≤’ on types to a relation that is no
longer contra-variant, and allows only for the selection of a component of an intersection type.

Using this system, we will then focus on various characterisations of normalisation results,

1 It is indeed tempting to see set intersection on the domain directly linked with the intersection type construc-
tor, but, in fact, the similarity is, in the opinion of this author, misleading as it does not hold for the other set
operators. For example, set-inclusion ‘⊆’ is not as strongly linked to type inclusion ≤: not every subset of a set
interpreted as a type will yield a subtype, but only those created through intersection.
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as already shown for the λ-calculus in a collection of papers. For example, Barendregt, Coppo
and Dezani-Ciancaglini [18] have shown that cut-elimination is normalising, which leads to
characterisation of (head)-normalisation through assignable types; Ronchi and Venneri [36]
have shown the approximation result, and Pottinger [34] showed a characterisation of the
strongly normalisable terms. The author has shown these results for the strict intersection
system [2] in a series of papers, summarised in [7]. Here we will show all these results for the
notion of strict negated intersection type assignment for λµ that is defined in this paper.

Outline of this paper:

In Section 1 we will give a quick overview of Parigot’s λµ-calculus [33], for which in Section 2
we will present the notion of intersection type assignment of Bakel-Barbanera-Liguoro-LMCS
[12], and state some of the properties of that system that are relevant to this paper. This
notion is non-standard in that it contains no type-variables and is directly based on Streicher
and Reus’s [38] ‘negated’ domain construction. In Section 3 we then will present a strict
variant of the notion of Section 2 where we essentially simplify the type language and remove
the contra-variant ≤-relation, and in Section 4 will show that this system is closed under
conversion and gives a semantics for λµ in Theorem 4.5. Then in Section 5 we will define
a formal notion of derivation reduction, which follows term reduction and is a kind of cut-
elimination; in Section 6, Theorem 6.6, we will show that this notion of reduction is strongly
normalisable.

In Section 7 we will define a notion of approximation for λµ-terms, and show that these
can be used to define a semantics for λµ as stated in Theorem 7.5. In Section 8, Theorem 8.4,
we will show that, for every λµ-term that is typeable in the strict system, there exists an
approximant that can be assigned the same type; this result follows directly from the fact that
derivation reduction is strongly normalisable, as stated in Theorem 6.6. This result then leads
to a characterisation of head normalisation using assignable types in Theorem 8.5.

In Section 9 we will remove the type constant ω from our system, essentially no longer
permitting untyped terms; using this system, we will give a characterisation of normalisation
in Theorem 9.8. In Theorem 9.12 we will show that in this restricted system, all terms are
typeable if and only if they are strongly normalisable; also this result follows directly from
Theorem 6.6. In Section 10 we then will compare the notions of type assignment we define
here and that of [12].

One particular property of the system of [12], and the one we present here, is that both are
type-variable free. In Section 11 we will investigate what the effect is of adding type variables
to the type language; we will show that this in fact brings a notion of strict type assignment
that is almost identical to that of [6], but for the fact that here negated types are used, and
intersection of continuation types is there expressed through union.

Note: The results presented in sections 7, 8, and 9 are based on results presented in [9],
although that paper dealt with a slightly different notion of type assignment. We will write n
for the set {1, . . . ,n} and use a vector notation for the abbreviation of sequences, so write Xn

for the sequence X1, . . . , Xn, and X if the number of elements in the sequence is not important.

1 The λµ-calculus

In this section we will present Parigot’s pure λµ-calculus as introduced by Parigot [33]. It
is an extension of the untyped λ-calculus obtained by adding names and a name-abstraction
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operator µ and was intended as a proof calculus for a fragment of classical logic. Logical
formulas of the implicational fragment of the propositional calculus can be assigned as types
to λµ-terms much in the formulae-as-types paradigm of the Curry-Howard correspondence
between typed λ-calculus and intuitionistic logic.

Derivable statements have the shape Γ � M : A | ∆, where A is the main (active) conclusion
of the statement of which M is the witness, and ∆ contains the alternative conclusions, con-
sisting of pairs of names and types; the left-hand context Γ, as usual, is a mapping from term
variables to types, and represents the assumptions about free variables of M.

Definition 1.1 (Term Syntax [33]) The terms of λµ are defined by the grammar (where x,y, . . .
range over term variables, and α, β, . . . over names):

M, N ::= x | λy.M | MN | µα.C (terms)
C ::= [α]M (commands)

As usual, we consider λ and µ to be binders; the sets fv (M) and fn(M) of, respectively,
free variables and free names in a term M are defined in the usual way. We adopt Barendregt’s
convention on terms, so will assume that free and bound variables and names are different.

To explain the difference between variables and names, λµ inherits from the λ-calculus
the fact that term variables act as destinations of operands during reduction, in that in the
contraction of a β-redex (λx.M)N, the term N will take the place of all occurrences of x in
M. Names on the other hand act as pointers to sub-terms, and the contraction of the µ-redex
(µα.[β]M)N will result in placing N behind every sub-term P in M that is named α (so µγ.[α]P
is a sub-term of M, for some γ), making N an operand to P. So β-reduction is the normal
functional computational step, whereas µ-reduction essentially is a re-distribution of terms.

Definition 1.2 (Substitution [33]) Substitution takes two forms:

term substitution: M{N/x} (N is substituted for x in M)
structural substitution: 2 M{L·γ/α} (every command of the shape [α]N in M

is replaced by [γ]NL)

More precisely, M{L·γ/α} is defined by:

([α]P){L·γ/α} =∆ [γ]P{L·γ/α}L
([δ]P){L·γ/α} =∆ [δ]P{L·γ/α} (α �= δ)

(µβ.C){L·γ/α} =∆ µβ.C{L·γ/α}

x{L·γ/α} =∆ x
(λx.P){L·γ/α} =∆ λx.P{L·γ/α}
(PQ){L·γ/α} =∆ (P{L·γ/α}) (Q{L·γ/α})

Both substitutions are capture avoiding, using renaming of bound variable or names (α-
conversion) when necessary.

Notice that, in the third alternative, since our intention is to substitute the free occurrences of
α in µβ.C, by Barendregt’s convention we can assume β �= α.

We will write M{Nn·γ/α} for M{N1·γ1/α}{N2·γ2/γ1}· · ·{Nn·γ/γn−1}.

Definition 1.3 (λµ-reduction [33]) i) Reduction in λµ is based on the following rules:

(β) : (λx.M)N → M{N/x} (logical reduction)
(µ) : (µβ.C)Q → µγ.C{Q·γ/β}Q (structural reduction)3

(Ren) : [β]µγ.C → C{β/γ} (renaming)

2 Since this operation does not substitute one syntactic structure by another but rather inserts a term in a precise
manner, the name ‘substitution’ is perhaps misleading here, and ‘insertion’ would be better. We will use the latter
terminology later in Definition 5.3.
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ii) We write ‘→βµ’ for the reduction relation that is the compatible closure of these rules,
‘→∗

βµ’ for its transitive closure, and ‘=βµ’ for the equivalence relation generated by it.
iii) We can also consider the two extensional rules:

(η) : λx.Mx → M (x ∈/ fv (M))

(µη) : µα.[α]M → M (α ∈/ fn(M))

It is possible to formulate more extensional rules, but we will not consider those in this paper;
the equivalent of Theorem 4.5 could not be shown to hold for those rules. Confluence for this
notion of reduction has been shown by Py [35].

Below we will need the concept of head-normal form for λµ, which is defined as follows:

Definition 1.4 (Head-normal forms) The λµ head-normal forms (with respect to →βµ) are
defined through the grammar:

H ::= xM1· · ·Mn (n ≥ 0)
| λx.H
| µα.[β]H (H �= µγ.[δ]H ′)

Standard type assignment for λµ is defined by:

Definition 1.5 (Classical Typing for λµ) i) The types for λµ are defined through:

A, B ::= ϕ | A→B

ii) A variable context Γ is a partial mapping from term variables to types, denoted as a finite
set of statements x:A, such that the subject of the statements (x) are distinct.

iii) We write Γ, x:A for the context defined by:

Γ, x:A =∆ Γ ∪ {x:A}, if Γ is not defined on x
=∆ Γ, if x:A ∈ Γ

We write x ∈/ Γ when there exists no type A such that x:A ∈ Γ.
iv) Name contexts ∆ as partial mappings from names to types and the notions α:κ,∆ and α ∈/ ∆

are defined in a similar way.
v) The type assignment rules are:

(Ax) : Γ, x:A � x : A | ∆ (µ) :
Γ � M : B | α:A, β:B,∆

(α ∈/ ∆)
Γ � µα.[β]M : A | β:B,∆

Γ � M : A | α:A,∆
(α ∈/ ∆)

Γ � µα.[α]M : A | ∆

(→I) :
Γ, x:A � M : B | ∆

(x ∈/ Γ)
Γ � λx.M : A→B | ∆

(→E) :
Γ � M : A→B | ∆ Γ � N : A | ∆

Γ � MN : B | ∆

We write Γ �λµ M : A | ∆ for judgements derivable in this system.

We can think of µα.[β]M as a context switch or redirection; it stores the type of M amongst
the alternative conclusions by giving it the name β, and redirects the operands to the terms
called α in M.

Throughout this paper, we will extend Barendregt’s convention to judgements Γ �λµ M : δ |∆

by seeing the variables that occur in Γ and names in ∆ as binding occurrences over M as well,

3 A more common notation for this rule would be (µα.[δ]M)N → µα.[δ]M{N/α}, using the fact that α dis-
appears during reduction, and can be picked as name for the newly created applications instead of γ. But, in
fact, this is not the same α (as the named term has changed), as reflected in the fact that its type changes during
reduction; see also Example 2.6, where before the reduction (µα.[α]x)x → µγ.[γ]xx, α has type δ×κ, and after γ
has type κ.
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(Ax)
x:(A→B)→A � x : (A→B)→ A | α:A

(Ax)
x:(A→B)→ A,y:A � y : A | α:A, β:B

(µ)
x:(A→B)→ A,y:A � µβ.[α]y : B | α:A

(→I )
x:(A→B)→A � λy.µβ.[α]y : A→B | α:A

(→E)
x:(A→B)→A � x(λy.µβ.[α]y) : A | α:A

(µ)
x:(A→B)→ A � µα.[α](x(λy.µβ.[α]y)) : A | ∅

(→I )
� λx.µα.[α](x(λy.µβ.[α]y)) : ((A→B)→A)→A | ∅

Figure 1: A derivation for a term representing Peirce’s Law in �λµ

for all notions of type assignment; in particular, we can assume that no variable in Γ nor name
in ∆ is bound in M.

Example 1.6 As an example illustrating the fact that this system is more powerful than the
system for the λ-calculus, Figure 1 shows that it is possible to inhabit Peirce’s Law (due to
Ong-Stewart [32] ); the underlying logic of the system of Definition 1.5 corresponds to minimal
classical logic [1].

2 The intersection type assignment system for λµ

In [12], a filter model was presented for λµ; but instead of defining a suitable type system
for λµ and then proving that it actually induces a filter model, as was done in [18, 2], that
paper followed the opposite route. As mentioned in [12]: “It emerged in [22] that models
constructed as set of filters of intersection types are exactly the ω-algebraic lattices, a category
of complete lattices, but with Scott-continuous maps as morphisms. ω-algebraic lattices are
posets whose structure is fully determined by a countable subset of elements, called ‘compact
points’ for topological reasons. Now the crucial fact is that given an ω-algebraic lattice D, the
set Compact(D) of its compact points can be described by putting its elements into a one-to-
one correspondence with a suitable set of intersection types, in such a way that the order over
Compact(D) is reflected by the inverse of the ≤ pre-order over types. Then one can show that
the filter structure FD obtained from the type pre-order is isomorphic with the original D.”
Starting from Streicher and Reus’s [38] models of continuations of the λµ-calculus , the authors
extracted the type syntax and the corresponding type theory out of the construction of the
model, a solution of the ‘negated’ domain equations D = C → R and C = D × C, where R is
an arbitrary domain of ‘results’. Here C is a set of what are called ‘continuations’, which are
infinite tuples of elements in D, which is the domain of continuous functions from C to R
and is the set of ‘denotations’ of terms. The syntax of types follows this construction closely:
λµ-terms are separated into terms of type δ and sequences of terms (streams, or stacks, of the
shape L1 :: L2 :: · · · :: Ln). Streams are not syntactical entities themselves, but are considered
to be the semantics for continuation types κ = δ1× · · · ×δn ×ω, where ω acts as an ‘end of
sequence’ symbol; the types δ1, . . . ,δn are types for the first n relevant terms in the stream, and
ω is that for the non-relevant tail.

Definition 2.1 ([12]) i) TD and TC are the sets of intersection types defined by the grammar:

TR : ρ ::= υa | ω | ρ ∧ ρ (a ∈ Compact(R))
TD : δ ::= κ→ρ | ω | δ ∧ δ (term types)
TC : κ ::= δ×κ | ω | κ ∧ κ (continuation types)
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We let σ,τ range over TD ∪ TC and assume ‘∧’ to bind more strongly than ‘×’, and ‘×’
more strongly than ‘→’.

ii) The type inclusion relations ‘≤∧’ and ‘∼∧’ are defined as the smallest pre-orders satisfy-
ing:

σ ∧ τ ≤∧ σ σ ∧ τ ≤∧ τ ω ≤∧ ω→ω υ ≤∧ ω→υ σ ≤∧ ω ω→υ ≤∧ υ ω ≤∧ ω×ω

(κ→δ1) ∧ (κ→δ2) ≤∧ κ→(δ1 ∧ δ2) (δ1 ×κ1) ∧ (δ2 ×κ2) ≤∧ (δ1 ∧ δ2)×(κ1 ∧ κ2)

ρ ≤∧ σ ρ ≤∧ τ

ρ ≤∧ σ ∧ τ

κ2 ≤∧ κ1 ρ1 ≤∧ ρ2

κ1→ρ1 ≤∧ κ2→ρ2

δ1 ≤∧ δ2 κ1 ≤∧ κ2

δ1 ×κ1 ≤∧ δ2 ×κ2

σ ≤∧ τ τ ≤∧ σ

σ ∼∧ τ

iii) Much as in Definition 1.5, a variable context Γ is a mapping from term variables to types
in TD, presented as a set, and we define Γ, x:δ and x ∈ Γ as before.

iv) We extend the relation ‘≤∧’ to variable contexts by:

Γ1 ≤∧ Γ2 =∆ ∀x:δ2 ∈ Γ2 ∃x:δ1 ∈ Γ1 [δ1 ≤∧ δ2 ]

v) Name contexts ∆ and the notions α:κ,∆, α ∈ ∆, and ∆1 ≤∧ ∆2 are defined in a similar way.

As the domains the type theory is based on are ‘negated’, so are the types; we will come
back to that in Section 3. Notice that ω is used in two different ways: to mark the end of a
stream-type, and as the type used for terms that are ignored; we consider ω in the second use
a ‘proper’ type.

The ‘≤∧’-relation as defined above is the usual one on arrow types, contra-variant in the
first argument and co-variant in the second. It is straightforward to show that ω ∼∧ ω→ω,
ω ∼∧ ω×ω, (κ→ρ1)∧ (κ→ρ2)∼∧ κ→(ρ1 ∧ ρ2), and (δ1×κ1)∧ (δ2×κ2)∼∧ (δ1 ∧ δ2)×(κ1 ∧ κ2).

Definition 2.2 ([12]) Intersection type assignment for λµ is defined through the following
rules (where T ranges over both terms and commands):

(Ax) : Γ, x:δ � x : δ | ∆ (ω) : Γ � T : ω | ∆

(Abs) :
Γ, x:δ � M : κ→ρ | ∆

(x ∈/ Γ)
Γ � λx.M : δ×κ→ρ | ∆

(Cmd) :
Γ � M : δ | α:κ,∆

Γ � [α]M : δ×κ | α:κ,∆

(App) :
Γ � M : δ×κ→ρ | ∆ Γ � N : δ | ∆

Γ � MN : κ→ρ | ∆
(µ) :

Γ � C : (κ′→ρ)×κ′ | α:κ,∆
(α ∈/ ∆)

Γ � µα.C : κ→ρ | ∆

(∧) :
Γ � T : σ | ∆ Γ � T : τ | ∆

Γ � T : σ ∧ τ | ∆
(≤∧) :

Γ � T : σ | ∆ σ ≤∧ τ

Γ � T : τ | ∆

We write Γ �∧ T : σ | ∆ for judgements derivable in this system.

Notice that, in (Abs), the type κ→ρ is not a subtype of δ×κ→ρ.
These typing rules are direct interpretations from the clauses that define a term interpre-

tation into the filter model FD (see [12] for details). An earlier version of the system, as
presented in [10], allowed υ as a term type as well; as this created unwanted effects (it is
possible to derive x:υ �∧ x : υ | , but (Abs) cannot be applied to this), this was abolished in [12].

Example 2.3 To illustrate the interaction between the rules, take δ′ = δ ∧ (δ×κ→ρ) and κ′′ =
κ ∧ (δ′ ×κ′). We can derive ∅ �s µγ.[γ]λx.µα.[γ]xx : κ′′→ρ | ∅, as shown in Figure 2.

There is one feature of this system that is perhaps worth pointing out. Continuation types
all end in ω, allowing for a feature that is not present in other notions of type assignment.
The philosophy of the system is that continuation types δ1× · · ·δn×ω are types of (possible
infinite) streams of terms, of which at most the types of the first n are relevant for the type
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(Ax)
x:δ′ � x : δ′ | α:κ′,γ:κ′′

(≤∧)
x:δ′ � x : δ×κ→ρ | α:κ′ ,γ:κ′′

(Ax)
x:δ′ � x : δ′ | α:κ′,γ:κ′′

(≤∧)
x:δ′ � x : δ | α:κ′,γ:κ′′

(App)
x:δ′ � xx : κ→ρ | α:κ′,γ:κ′′

(Cmd)
x:δ′ � [γ]xx : κ→ρ×κ′′ | α:κ′ ,γ:κ′′

(≤∧)
x:δ′ � [γ]xx : κ→ρ×κ | α:κ′,γ:κ′′

(µ)
x:δ′ � µα.[γ]xx : κ′→ρ | γ:κ′′

(Abs)
∅ � λx.µα.[γ]xx : δ′ ×κ′→ρ | γ:κ′′

(Cmd)
∅ � [γ]λx.µα.[γ]xx : (δ′ ×κ′→ρ)×(κ′′) | γ:κ′′

(≤∧)
∅ � [γ]λx.µα.[γ]xx : (δ′ ×κ′→ρ)× δ′ ×κ′ | γ:κ′′

(µ)
∅ � µγ.[γ]λx.µα.[γ]xx : κ′′→ρ | ∅

Figure 2: A derivation for ∅ �s µγ.[γ]λx.µα.[γ]xx : κ′′→ρ | ∅

assignment of the term under consideration, and ω is used to cover the remainder.

Example 2.4 Assume we have derivations for Γ � M : (δ1×ω)→ρ | α:δ1×ω,∆, and Γ � Ni : δi |∆,
for i ∈ 2. Then we can construct (in ‘�∧’):

Γ � M : (δ1 ×ω)→ρ | α:δ1 ×ω,∆

Γ � [α]M : ((δ1 ×ω)→ρ)×(δ1 ×ω) | α:δ1 ×ω,∆

Γ � µα.[α]M : (δ1 ×ω)→ρ | ∆ Γ � N1 : δ1 | ∆

Γ � (µα.[α]M)N1 : ω→ρ | ∆
(≤∧)

Γ � (µα.[α]M)N1 : (δ2 ×δ3 ×ω)→ρ | ∆ Γ � N2 : δ2 | ∆

Γ � (µα.[α]M)N1N2 : (δ3 ×ω)→ρ | ∆

Notice that the type for α only expresses that terms named α can take one argument (of type
δ1), and that, through (≤∧), we can ‘pump that up’ to more terms.

This feature is convenient below, since it allows us to not have to formally define intersec-
tions of continuations types, and only use those as short-hand notation for the ‘zipping up’ of
continuation types (see the remark after Definition 3.1). It is rather obsolete, however, when
trying to type a term in ‘�∧’, since we could have started the derivation with α:δ1×δ2×δ3×ω

from the beginning; notice that the only characteristic of the type δ1×ω needed for α when
typing M is that it starts with δ1, which is of course also true for δ1×δ2×δ3×ω. So we can
construct:

Γ � M : δ1 ×ω→ρ | α:δ1 ×δ2 × δ3 ×ω,∆

Γ � [α]M : (δ1 ×ω→ρ)×(α:δ1 × δ2 × δ3 ×ω) | α:δ1 ×δ2 × δ3 ×ω,∆
(≤∧)

Γ � [α]M : (δ1 ×ω→ρ)×(δ1 ×ω) | α:δ1 × δ2 × δ3 ×ω,∆

Γ � µα.[α]M : δ1 × δ2 × δ3 ×ω→ρ | ∆ Γ � N1 : δ1 | ∆

Γ � (µα.[α]M)N1 : δ2 ×δ3 ×ω→ρ | ∆ Γ � N2 : δ2 | ∆

Γ � (µα.[α]M)N1N2 : δ3 ×ω→ρ | ∆

For this system, [12] shows a series of results that confirm the validity of the construction,
like that assignable types are invariant under conversion (both under reduction and expan-
sion, but only with respect to β and µ reduction, so not for renaming), both directly and
through the filter model and semantics. It also gives a characterisation of strong normalisa-
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tion for a subsystem that limits the use of the type constant ω.

Theorem 2.5 ([12]) i) Let M be a λµ-model, and |=M stand for semantic satisfiability in M. Then:
Γ � T : σ | ∆, if and only if Γ |=M T : σ | ∆.

ii) Let M →β N. Then: Γ �∧ M : δ | ∆ if and only if Γ �∧ N : δ | ∆.
iii) Let M →µ N. Then: Γ �∧ M : δ | ∆ if and only if Γ �∧ N : δ | ∆.
iv) There exist Γ, ∆ and δ such that Γ �∧ M : δ | ∆ without using rule (ω) at all in the derivation, if

and only if M is strongly normalising.

Some of the proofs in [12] are complicated through the fact that type assignment is defined
also via type assignment to named terms, and that the ‘≤’-relation is contra-variant. In partic-
ular, analysing the structure of a derivation through the generation lemma (see Lemma 10.3),
is intricate (see also the proof of Lemma 10.4).

Example 2.6 ([12]) Take the reduction (µα.[α]x)x → µγ.[γ]xx. The latter term contains self
application which we can type using intersection types. Let δ′ = δ ∧ (δ×κ→ρ), then in ‘�∧’
we have both:

(Ax)
x:δ′ � x : δ′ | α:δ×κ

(≤)
x:δ′ � x : δ×κ→ρ | α:δ×κ

(Cmd)
x:δ′ � [α]x : (δ×κ→ρ)×(δ×κ) | α:δ×κ

(µ)
x:δ′ � µα.[α]x : δ×κ→ρ |

(Ax)
x:δ′ � x : δ′ | α:δ×κ

(≤)
x:δ′ � x : δ | α:δ×κ

..

..

..

..

(App)
x:δ′ � (µα.[α]x)x : κ→ρ |

(Ax)
x:δ′ � x : δ′ | γ:κ

(≤)
x:δ′ � x : δ×κ→ρ | γ:κ

(Ax)
x:δ′ � x : δ′ | γ:κ

(≤)
x:δ′ � x : δ | γ:κ

(App)
x:δ′ � xx : κ→ρ | γ:κ

(Cmd)
x:δ′ � [γ]xx : (κ→ρ)×κ | γ:κ

(µ)
x:δ′ � µγ.[γ]xx : κ→ρ |

Observe that the ‘cut type’ in the first derivation, δ×κ (appearing twice in the type (δ×κ→ρ)

×(δ×κ) of the premise of (µ)), differs from the cut type κ in (κ→ρ)×κ occurring in the
premise of (µ) of the second derivation; indeed, the latter is of a smaller size than the former.

Although formally defined on the variant Λµ defined by de Groote [26], where naming and
µ-binding are separated, many of the results in [12] are only shown for λµ. In fact, commands
are pseudo terms, and other than having their origin in the filter model, it is not easy to give
an intuitive explanation for rules (Cmd) and (µ). However, it is possible to show that the rules

Γ � M : κ′→ρ | α:κ, β:κ′,∆

Γ � µα.[β]M : κ→ρ | β:κ′,∆

Γ � M : κ→ρ | α:κ,∆

Γ � µα.[α]M : κ→ρ | ∆

are admissible, which more closely correspond to rules (µ) of �λµ, and effectively express
the redirection behaviour. Since more related to the definitions that follow, we show the
admissibility of more generalised versions of these rules instead:

Lemma 2.7 The following two rules are admissible in ‘�∧’:

(µ1) :
Γ � M : κ′→ρ | α:κ′′, β:κ,∆

(κ ≤∧ κ′)
Γ � µα.[β]M : κ′′→ρ | β:κ,∆

(µ2) :
Γ � M : κ′→ρ | α:κ,∆

(κ ≤∧ κ′)
Γ � µα.[α]M : κ→ρ | ∆

Proof : Γ � M : κ′→ρ | α:κ′′, β:κ,∆
(κ ≤∧ κ′)

Γ � M : κ→ρ | α:κ′′, β:κ,∆
(Cmd)

Γ � [β]M : (κ→ρ)×κ | α:κ′′, β:κ,∆
(µ)

Γ � µα.[β]M : κ′′→ρ | β:κ,∆

Γ � M : κ′→ρ | α:κ,∆
(κ ≤∧ κ′)

Γ � M : κ→ρ | α:κ,∆
(Cmd)

Γ � [α]M : (κ→ρ)×κ | α:κ,∆
(µ)

Γ � µα.[α]M : κ→ρ | ∆

Notice that these rules include the two mentioned above, taking κ′ = κ.
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3 Strict type assignment with negated intersection types

In this section we will define ‘�s’, a notion of type assignment that corresponds to a restric-
tion of the system of Bakel-Barbanera-Liguoro-LMCS [12], where we limit the occurrence of
intersections to only appear as components of continuation types (so do not allow intersec-
tions of continuation types), and do not allow the right-hand part of an arrow type to be an
intersection. We will also no longer use ω both to mark the end of a continuation type, and
for untyped terms as is traditional, but rather use Ω for the first, and ω for the latter. But,
more importantly, we remove the general inference rule (≤), and change the rules to explicitly
state when a ‘≤’-step is allowed, as in (Ax). We also limit ‘≤’, essentially, to only allow the
selection of a component in an intersection type and remove the contra-variant character. This
will greatly facilitate proofs, and allow for a more comprehensible presentation and treatment.
We will investigate the relation between ‘�∧’ and ‘�s’ in Section 10.

Moreover, as indicated above, we can see the types as negated by restricting the domain
of results to one element υ,4 and from now on will write ¬κ for κ→υ. Note that, using this
notation, the notion ‘�∧’ could be defined using the (perhaps more intuitive) rules

(Abs) :
Γ, x:δ � M : ¬κ | ∆

(x ∈/ Γ)
Γ � λx.M : δ→¬κ | ∆

(App) :
Γ � M : δ→¬κ | ∆ Γ � N : δ | ∆

Γ � MN : ¬κ | ∆

However, notice that the conclusion type in (App) is now a negated type; in order to be able
to use these rules again, we would then have to add the conversion rules

Γ � M : δ→¬κ | ∆

Γ � M : ¬(δ×κ) | ∆

Γ � M : ¬(δ×κ) |∆

Γ � M : δ→¬κ | ∆

which would unnecessarily complicate reasoning over the structure of derivations.
As already implicitly used in the rules above, as a logical formula, the type A→¬B corre-

sponds in classical logic to ¬(A&B). However, since logically A&B is the same as B&A, but
A→¬B as a type does not correspond to B→¬A, the order of the components is important; it
would therefore be better to use a non-commutative conjunction type constructor rather than
‘&’. The operator ‘×’, traditionally linked to pairing, serves this property nicely.

Irrespective of the changes mentioned above, we will show that it is still possible to show
that type assignment is closed for conversion on terms, underlining that also for λµ a contra-
variant type inclusion relation is not needed to gain a sufficiently expressive notion of inter-
section type assignment.

Definition 3.1 (Strict Negated Types) We define strict negated intersection types (strict types
for short) by the grammar:

A, B ::= ¬C (basic types)
R, S , T ::= ω | A1∩ · · · ∩ An (n ≥ 1) (intersection types)

C, D ::= Ω | S ×C (continuation types)

We let ‘∩’ bind more strongly than ‘×’, and ‘¬’ more than ‘∩’.5

Reading ¬C as C→υ and Ω as ω, the set of types defined by the above grammar is a subset
of that defined in Definition 2.1. Notice that, for any continuation type C there are n ≥ 0,
S i (i ∈ n) such that C = S1× · · · × Sn×Ω. For convenience, we will write ∩I A i for A i1 ∩ · · · ∩ A in

where I = { i1, . . . , in }, ∩∅ A i for ω, and ∩n A i for A1∩ . . .∩ An.

4 In fact, as can be expected, the results of [12] are indifferent to the number of compact elements in R.
5 Observe that implication, ‘→’, is no longer a type constructor here.
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Definition 3.2 (Strict Type Inclusion) We define ‘≤s’ as the smallest partial order and ‘∼s’
as the smallest equivalence relation satisfying the rules below.

(j ∈ I)
∩I A i ≤ A j

S ≤ A i (∀i ∈ I)

S ≤ ∩I A i
C ≤ Ω

S ≤ T C ≤ D

S ×C ≤ T ×D

S ≤s T T ≤s S

S ∼s T

C ≤s D D ≤s C

C ∼s D

C ∼s D

¬C ∼s ¬D

We consider types modulo ‘∼s’.

By abuse of notation, we will also write S ∩ T, where S = ∩n A i and T = ∩mB j, which represents
the intersection type A1 ∩ · · · ∩ An ∩ B1 ∩ · · · ∩ Bm. Moreover, below we will use intersections of
continuation types (notice that these are not allowed under the formal definition of types) as a
short-hand notation: let C = S1× · · · × Sn ×Ω, and D = T1× · · · × Tm×Ω, and assume, without
loss of generality, that m > n; then we define

C ∩D =∆ S1∩ T1× · · · × Sn ∩ Tn× Tn+1× · · · × Tm ×Ω.

(this operation is only really needed in sections 8 and 9). Notice that then C ∩D ≤ D and
C ∩D ≤ C.

The following properties over ‘≤s’ hold directly by definition:

Proposition 3.3 i) For all S , S ≤s ω.
ii) If S ≤s T, then S = ∩I A i, T = ∩J B j, and for every j ∈ J there exists i ∈ I such that A i = B j.

iii) If C ≤s D, then D = Ω, or C = S ×C ′, D = T ×D′, and S ≤s T and C ′ ≤s D′.

We now come to the definition of strict type assignment. It essentially follows the approach
of Definition 2.2, but for the fact that: i) strict types are used; ii) (≤∧) has been removed; iii) ‘≤s’
is part of rules (Ax), (µ2), and (µ1); and iv) rules (ω) and (∩) are joined, using the fact that we
see ω as an empty intersection. Moreover, we only assign types to terms, so drop the separate
treatment of commands.

Definition 3.4 (Strict Type Assignment) i) A variable context Γ is a partial mapping from
term variables to strict types; the notion Γ, x:S is defined as before. Name contexts ∆ as
partial mappings from names to continuation types and the notion α:C,∆ are defined as
before.

ii) As above, the relation ‘≤s’ is naturally extended to variable contexts as follows:

Γ′ ≤s Γ =∆ ∀x:S ∈ Γ ∃x:T ∈ Γ′ [T ≤s S ];

∆′ ≤s ∆ is defined similarly.
iii) Strict type assignment for λµ-terms is defined by the following natural deduction system:

(Ax) : (S ≤s A)
Γ, x:S � x : A | ∆ (∩) :

Γ � M : A i | ∆ (∀ i ∈ I)
(I = ∅ ∨ |I| ≥ 2)

Γ � M : ∩I A i | ∆

(Abs) :
Γ, x:S � M : ¬C | ∆

(x ∈/ Γ)
Γ � λx.M : ¬(S ×C) | ∆

(µ1) :
Γ � M : ¬D | α:C , β:C ′,∆

(β �= α ∈/ ∆, C ′ ≤s D)
Γ � µα.[β]M : ¬C | β:C ′,∆

(App) :
Γ � M : ¬(S ×C) | ∆ Γ � N : S | ∆

Γ � MN : ¬C | ∆
(µ2) :

Γ � M : ¬D | α:C,∆
(α ∈/ ∆, C ≤s D)

Γ � µα.[α]M : ¬C | ∆

We write Γ �s M : S | ∆ for judgements derivable using these rules, and prefix this with
‘D :: ’ if we want to name the derivation.

Notice that a continuation type C is never a derivable type for a term, and that we cannot
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derive Γ, x:ω �s x : ω | ∆ using (Ax), but only through (∩).
It is possible to define this system using the following rules:

(App′) :
Γ � M : ¬(S ×C) | ∆ Γ � N : S | ∆

(S �= ω)
Γ � MN : ¬C |∆

Γ � M : ¬(ω×C) | ∆

Γ � MN : ¬C | ∆

which would express that ω is a ‘don’t care’ type; we view terms that are assigned the type
constant ω as untyped.

Example 3.5 Take S = A ∩¬(A ×C), and let C ′′ ≤s C and C ′′ ≤s S ×C ′ (we can always take C ′′ =
C ∩ S ×C ′); notice that S ≤s A and S ≤s ¬(A ×C). Mirroring Example 2.3, we can derive ∅ �s
µγ.[γ]λx.µα.[γ]xx : ¬C ′′ | ∅.

(Ax)
x:S � x : ¬(A ×C) | α:C ′,γ:C ′′ (Ax)

x:S � x : A | α:C ′,γ:C ′′
(App)

x:S � xx : ¬C | α:C ′,γ:C ′′
(µ1)

x:S � µα.[γ]xx : ¬C ′ | γ:C ′′
(Abs)

∅ � λx.µα.[γ]xx : ¬(S ×C ′) | γ:C ′′
(µ2)

∅ � µγ.[γ]λx.µα.[γ]xx : ¬C ′′ | ∅

Notice that, for ‘�s’, we can reformulate (Ax) as:

(Ax) : (j ∈ I)
Γ, x:∩I A i � x : A j | ∆

(but cannot reformulate rules (µ1) and (µ2) in a similar way) and that rule

(Ax′) : (S ≤s T)
Γ, x:S � x : T | ∆

is admissible. In fact, we can show:

Lemma 3.6 The type assignment rule (Ax′) is derivable.

Proof : If S ≤s T, then by Lemma 3.3, there are n,m ≥ 0, and A i (i ∈ n), B j (j ∈ m), such that
S = ∩n A i, T = ∩m B j, and {B1, . . . , Bm } ⊆ {A1, . . . , An }; but then ∩n A i ≤s B j, for every j ∈ m. So,
in particular, we can construct:

(Ax)
Γ, x:∩n A i �s x : B1 | ∆ · · ·

(Ax)
Γ, x:∩n A i �s x : Bm | ∆

(∩)
Γ, x:∩n A i �s x : ∩m B j | ∆

The following properties are standard and of use in many of the proofs of this paper.

Lemma 3.7 (Thinning & Weakening) i) Let Γ �s M : A |∆; take ΓM = { x:S ∈ Γ | x ∈ fv (M)} and
∆ M = {α:C ∈ ∆ | α ∈ fn(M)}, then ΓM �s M : A | ∆ M.

ii) a) Let Γ �s M : A | ∆, and y ∈/ Γ and y ∈/ bv(M), then Γ,y:B �s M : A | ∆.
b) Let Γ �s M : A | ∆, and α ∈/ ∆ and α ∈/ bn(M), then Γ �s M : A | α:C,∆.

Proof : By easy induction.

We can show:

Lemma 3.8 i) Γ �s M : ∩I A i | ∆, if and only if Γ �s M : A i | ∆, for all i ∈ I.
ii) If Γi �s M : A i | ∆ i for all i ∈ I, then ∩I Γi �s M : ∩I A i | ∩I ∆ i.

iii) Γ �s M : S ∩ T | ∆, if and only if Γ �s M : S | ∆ and Γ �s M : T | ∆.
iv) Γ, x:S �s x : T | ∆, if and only if S ≤s T.
v) Γ �s M : S | α:C, β:C,∆ if and only if Γ �s M{α/β} : S | α:C,∆.

Proof : Easy.
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Although ‘≤s’ is restricted to just three rules in ‘�s’ , we can show that a generic (≤s) rule
(as the (≤∧) rule of ‘�∧’) is admissible.

Lemma 3.9 If Γ �s M : S | ∆, Γ′ ≤s Γ, ∆′ ≤s ∆, and S ≤s T, then Γ′ �s M : T | ∆′.

Proof : By induction on the structure of derivations.

(Ax) : Then M ≡ x, S = A, and there exists x:R ∈ Γ such that R ≤s A. Since Γ′ ≤s Γ, there
exists x:R ′ ∈ Γ′ such that R ′ ≤s R. Notice that then R ′ ≤s T, and by (Ax′), Γ′ �s x : T | ∆′.

(Abs) : Then M = λx.N, S = ¬(R ×C) and Γ, x:R �s N : ¬C | ∆. Since ¬(R ×C) ≤s T, we have
S = T. Then by induction Γ′, x:R �s N : ¬C | ∆′, and we get Γ′ �s λx.N : ¬(R ×C) | ∆′ by
(Abs).

(App) : Then M ≡ PQ, S = ¬C , and there exists R such that Γ �s M : ¬(R ×C) | ∆ and Γ �s
N : R | ∆. Since ¬C ≤s T, we have T = ¬C , so by induction Γ′ �s P : ¬(R ×C) | ∆′ and by
(App) we get Γ′ �s PQ : ¬C | ∆′.

(µ1 ) : Then M = µα.[β]N, S = ¬C, ∆ = β:C0,∆0 and Γ �s N : ¬D | α:C, β:C0,∆0 with C0 ≤s D.
Since ¬C ≤s T, in fact T = ¬C . Since ∆′ ≤s ∆, there exist C ′

0 ≤s C0 and ∆′
0 ≤s ∆0 such that

∆′ = β:C ′
0,∆′

0 and α:C, β:C ′
0,∆′

0 ≤s α:C, β:C0,∆0. Then by induction we have Γ′ �s N : ¬D |
α:C, β:C ′

0,∆′
0. Since C ′

0 ≤s C0 ≤s D, we have Γ′ �s µα.[β]N : ¬C | ∆′ by (µ1).
(µ2 ) : Then M = µα.[α]N, S = ¬C , and Γ �s N : ¬D | α:C,∆ with C ≤s D. Since ¬C ≤s T, in fact

T = ¬C, so by induction Γ′ �s N : ¬D | α:C,∆′. Then also Γ′ �s µα.[α]N : ¬C | ∆′ by (µ2).
(∩) : Then S = ∩I A i, and Γ �s M : A i |∆, for all i ∈ I. Also, by Lemma 3.3 T = ∩J A j with J ⊆ I,

and Γ′ �s M : A j | ∆′, for all j ∈ J, so by (∩), Γ′ �s M : T | ∆′.

4 Subject reduction and expansion

We will now show the first of our main results, by showing that our notion of type assignment
is sound and complete, i.e. closed under conversion between terms. We start by showing two
variants of the substitution lemma.

Lemma 4.1 (Structural substitution lemma) Γ �s M{N·γ/α} : T | γ:C,∆ if and only if there
exists S such that Γ �s N : S | ∆, and Γ �s M : T | α:S ×C,∆.

Proof : By nested induction; the outermost is on the structure of types, and the innermost on
the structure of terms.

(T = ω) : (⇒) : Take S = ω; by (∩) we have both Γ �s N : ω |∆ and Γ �s M : ω | α:ω×C,∆.
(⇐) : By (∩) we have Γ �s M{N·γ/α} : ω | γ:C,∆.

(T = ∩I A i ) : (⇒) : If Γ �s M{N·γ/α} : ∩I A i | γ:C,∆, then by Lemma 3.8 we have that Γ �s
M{N·γ/α} : A i | γ:C,∆, for every i ∈ I; then by induction, there exists S i such that
Γ �s M : A i | α:S i×C,∆ and Γ �s N : S i |∆. Take S = ∩I S i; then S ≤s S i and by Lemma 3.9,
Γ �s M : A i | α:S ×C,∆, for every i ∈ I. By (∩) we get both Γ �s N : S | ∆ and Γ �s M : T |
α:S ×C,∆.

(⇐) : If Γ �s M : ∩I A i | α:S ×C,∆, then by (∩), Γ �s M : A i | α:S ×C,∆, for every i ∈ I. If
also Γ �s N : S | ∆, then by induction Γ �s M{N·γ/α} : A i | γ:C,∆, and by (∩), Γ �s
M{N·γ/α} : T | γ:C,∆.

(T = ¬C ′ ) : By induction on the structure of terms (we only show the interesting cases in
detail).

(M ≡ x) : Then x{N·γ/α} = x.
(⇒ ) : Take S = ω. If Γ �s x : ¬C ′ | γ:C,∆ then by Lemma 3.7 (both (ii) and (i)), also
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Γ �s x : ¬C ′ | α:ω×C,∆, and by (∩) we have Γ �s N : ω | ∆.
(⇐) : If Γ �s x : ¬C ′ | α:S ×C,∆, then by Lemma 3.7 also Γ �s x : ¬C ′ | γ:C,∆

(M ≡ λy.P) : Notice that (λy.P){N·γ/α} = λy.P{N·γ/α}.
∃S [Γ �s λy.P : ¬C ′ | α:S × C,∆×Γ �s N : S | ∆] ⇐⇒ (Abs)
∃S , R, D [Γ,y:R �s P : ¬D | α:S × C,∆ & C ′ = R ×D & Γ �s N : S | ∆] ⇐⇒ (IH)

∃R, D [Γ,y:R �s P{N·γ/α} : ¬D | γ:C,∆ & C ′ = R ×D ] ⇐⇒ (Abs)
Γ �s (λy.P){N·γ/α} : ¬C ′ | ∆

(M = PQ) : Notice that (PQ){N·γ/α} = P{N·γ/α}Q{N·γ/α}.
(⇒) : Then there exists R such that both Γ �s P{N·γ/α} : ¬(R × C ′) | γ:C,∆ and Γ �s

Q{N·γ/α} : R |γ:C,∆. Then by induction, there are S1, S2 such that Γ�s P :¬(R ×C ′) |
α:S1×C,∆ and Γ �s N : S1 |∆, as well as Γ �s Q : R | α:S2×C,∆ and Γ �s N : S2 |∆. Take
S = S1 ∩S2; notice that then S ×C ≤s S i×C, so α:S ×C,∆ ≤s α:S i×C,∆, for i = 1,2.
Then by Lemma 3.9 both Γ �s P : ¬(R ×C ′) | α:S ×C,∆ and Γ �s Q : R | α:S ×C,∆,
and by (App) we get Γ �s PQ : A | α:S ×C,∆. Notice that Γ �s N : S | ∆ follows by
Lemma 3.8.

(⇐) : Then there exists R such that Γ�s P :¬(R ×C ′) | α:S ×C,∆ and Γ�s Q : R | α:S ×C,∆.
Then by induction Γ �s P{N·γ/α} : ¬(R × C ′) | γ:C,∆ and Γ �s Q{N·γ/α} : R | γ:C,∆
and the result follows by (App).

(M ≡ µδ.[β]P, δ �= β, α �= β) : Notice that then (µδ.[β]P){N·γ/α} = µδ.[β]P{N·γ/α}.
∃S [Γ �s µδ.[β]P : ¬C ′ | α:S ×C,∆ & Γ �s N : S | ∆] ⇐⇒ (µ1)

∃S, D, C ′′ [Γ �s P : ¬D | δ:C ′, β:C ′′,α:S ×C,∆′ & Γ �s N : S | ∆ &
∆ = β:C ′′,∆′ & C ′′ ≤s D ] ⇐⇒ (IH)

∃D, C ′′ [Γ �s P{N·γ/α} : ¬D | δ:C ′, β:C ′′,γ:C,∆′ & ∆ = β:C ′′,∆′ & C ′′ ≤s D ] ⇐⇒ (µ1)

Γ �s (µδ.[β]P){N·γ/α} : ¬C ′ | γ:C,∆
Again, for ⇐, if α ∈/ fn(P), then S = ω.

(M ≡ µδ.[α]P, δ �= α) : Notice that then (µδ.[α]P){N·γ/α} = µδ.[γ]P{N·γ/α}N.
(⇒) : If Γ �s (µδ.[α]P){N·γ/α} : ¬C ′ | γ:C,∆, then Γ �s µδ.[γ]P{N·γ/α}N : ¬C ′ | γ:C,∆.

By (µ1) there exists D such that Γ �s P{N·γ/α}N :¬D | δ:C ′,γ:C,∆, and C ≤s D. Then,
by (App), there exists R such that Γ �s P{N·γ/α} : ¬(R ×D) | δ:C ′,γ:C,∆ and Γ �s N :
R |∆. By induction, there exists T such that Γ �s P : ¬(R ×D) | δ:C ′,α:T × C,∆ and Γ �s
N : T |∆. Take S = R ∩ T, then S ×C ≤s T ×C; so by Lemma 3.9 also Γ �s P : ¬(R ×D) |
δ:C ′,α:S ×C,∆. Since also S ×C ≤s R ×C, we get Γ �s µδ.[α]P : ¬C ′ | α:S ×C,∆ by (µ1)

and Γ �s N : S | ∆ by (∩).
(⇐) : If Γ �s µδ.[α]P : ¬C ′ | α:S ×C,∆, then by (µ1) there exists D such that Γ �s P : ¬D |

δ:C ′,α:S ×C,∆ and S ×C ≤s D. If D �= Ω, then D = S ′ ×D′ with S ≤s S ′ and C ≤s
D′; if D = Ω, take S ′ = S, and D′ = Ω. Since Γ �s N : S | ∆, by Lemma 3.9 also
Γ �s N : S ′ | ∆; since δ is bound, by Lemma 3.7:(ii) also Γ �s N : S ′ | δ:C ′,∆. Then by
induction Γ �s P{N·γ/α} :¬(S ′ ×D′) | δ:C ′,γ:C,∆. Since γ is fresh, by Lemma 3.7:(ii)
also Γ �s N : S ′ | δ:C ′,γ:C,∆, and by (App) we get Γ �s P{N·γ/α}N : ¬D′ | δ:C ′,γ:C,∆.
From C ≤s D′, by applying (µ1) we get Γ �s µδ.[γ]P{N·γ/α}N : ¬C ′ | γ:C,∆.

(M ≡ µδ.[β]P with δ �= β and α �= β, M ≡ µδ.[δ]P, M ≡ λy.P) : By induction.

Naturally, the type inclusion relation plays a role in this proof, but nowhere in the proof do
we need that to be contra-variant, so it only depends on ‘≤s’.

Likewise, we can show a similar result for term substitution:

Lemma 4.2 (Term substitution lemma) Γ �s M{N/x} : T |∆ if and only if there exists S such that
Γ, x:S �s M : T | ∆ and Γ �s N : S | ∆.
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Proof : As in the previous proof, the proof is by nested induction on the structure of types and
the structure of terms. Here we just show the case T = ¬C .

(M ≡ x) : (⇒) : Take S = ¬C ; notice that Γ, x:¬C �s x :¬C |∆ by (Ax), and that Γ�s N :¬C |∆

follows from Γ �s x{N/x} : ¬C | ∆.
(⇐) : If Γ, x:S �s x : ¬C | ∆, then S ≤s ¬C . From Γ �s N : S | ∆ and Lemma 3.9, we have

Γ �s N : ¬C | ∆, so Γ �s x{N/x} : ¬C | ∆.
(M ≡ y �= x) : (⇒) : We have y{N/x} ≡ y and x ∈/ fv (y); take S = ω, then by Lemma 3.7:(i),

Γ, x:ω �s y : ¬C | ∆ and by (∩) we have Γ �s N : ω | ∆.
(⇐) : If Γ, x:S �s y : ¬C | ∆, then by Lemma 3.7:(i) also Γ �s y : ¬C | ∆.

(M ≡ λy.P) : ∃S [Γ, x:S �s λy.P : ¬C | ∆ & Γ �s N : S | ∆] ⇐⇒ (Abs)
∃S, C ′, R [Γ, x:S,y:R �s P : ¬C ′ | ∆ & C = R × C ′ & Γ �s N : S | ∆] ⇐⇒ (Weakening)
∃S, C ′, R [Γ, x:S,y:R �s P : ¬C ′ | ∆ & C = R × C ′ & Γ,y:R �s N : S | ∆] ⇐⇒ (IH)

∃C ′, R [Γ,y:R �s P{N/x} : ¬C ′ | ∆ & C = R ×C ′ ] ⇐⇒ (Abs)
Γ �s (λy.P){N/x} : ¬C | ∆

(M = PQ) : (⇒) : Then there exists R such that both Γ �s P{N/x} : ¬(R × C) | ∆ and Γ �s
Q{N/x} : R | ∆. Then by induction, there are S1, S2 such that Γ, x:S1 �s P : ¬(R ×C) | ∆

and Γ �s N : S1 | ∆, as well as Γ, x:S2 �s Q : R | ∆ and Γ �s N : S2 | ∆. Take S = S1∩ S2,
then S ≤s S i for i = 1,2. Then by Lemma 3.7:(ii) we get Γ, x:S �s P : ¬(R ×C) | ∆ and
Γ, x:S �s Q : R | ∆, and by (App) we get Γ, x:S �s PQ : ¬C | ∆; notice that Γ �s N : S | ∆ by
Lemma 3.3.

(⇐) : If Γ, x:S �s PQ : ¬C | ∆, then there exists R such that Γ, x:S �s P : ¬(R ×C) | ∆ and
Γ, x:S �s Q : R | ∆. Then, by induction, we have Γ �s P{N/x} : ¬(R ×C) | ∆ and Γ �s
Q{N/x} : R | ∆; the result follows by (App).

(M ≡ µα.[β]P with α �= β), (M ≡ µα.[α]P) : By induction.

We can now show a soundness result for ‘�s’, that states that assignable types are preserved
under reduction.

Theorem 4.3 (Subject reduction) If M →βµ N and Γ �s M : S | ∆, then Γ �s N : S | ∆.

Proof : By induction on the definition of the one-step reduction relation; as above, we restrict
the proof to the case that S = A, and just show the base cases of reduction.

((µβ.[δ]P)Q → µγ.[δ]P{Q·γ/β}, δ �= β) : If Γ �s (µβ.[δ]P)Q : A | ∆, then by (App) there ex-
ist S, C, C ′,∆ such that A = ¬C, ∆ = δ:C ′,∆′, and both Γ �s µβ.[δ]P : ¬(S ×C) | δ:C ′,∆′ and
Γ �s Q : S | δ:C ′,∆′. Moreover, by (µ1) there exist D such that Γ �s P : ¬D | β:S ×C,δ:C ′,∆′

with C ′ ≤s D. Then by Lemma 4.1 Γ �s P{Q·γ/β} : ¬D | γ:C,δ:C ′,∆′. By (µ1) we get
Γ �s µγ.[δ]P{Q·γ/β} : ¬C | δ:C ′,∆′.

((µβ.[β]P)Q → µγ.[γ]P{Q·γ/β}Q) : If Γ �s (µβ.[β]P)Q : A |∆, then by (App) there exist S , C
such that A = ¬C, Γ �s µβ.[β]P : ¬(S ×C) | ∆ and Γ �s Q : S | ∆. Moreover, by (µ2) there
exist D such that Γ �s P : ¬D | β:S ×C,∆′ with S ×C ≤s D. If D �= Ω, then there are S , C ′ such
that D = S ′ ×D′ with S ≤s S ′ and C ≤s D′; if D = Ω, take S ′ = S, and D′ = Ω. Then we get
Γ �s P{Q·γ/β} : ¬(S ′ ×C ′) | γ:C,∆′ by Lemma 4.1. By Lemma 3.9 we have Γ �s Q : S ′ | ∆,
and by (App) we get Γ �s P{Q·γ/β}Q :¬C ′ | γ:C,∆′. Then by (µ2) Γ �s µγ.[γ]P{Q·γ/β}Q :
¬C | ∆′.

((λx.P)Q → P{Q/x}) : If Γ �s (λx.P)Q : A | ∆, then there exists S , C such that A = ¬C and
both Γ, x:S �s P : ¬C | ∆ and Γ �s Q : S | ∆. The result follows by Lemma 4.2.

(µα.[β]µγ.[δ]P → µα.([δ]P){β/γ} ) : If Γ �s µα.[β]µγ.[δ]P : A | ∆, then there exist ∆1, C1, C2, D1

such that A = ¬C1, ∆ = β:C2,∆1, C2 ≤s D1, and Γ �s µγ.[δ]P : ¬D1 | β:C2,α:C1,∆1, where
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(Ax)
Γ �s x : ¬(S ×ω×C) | ∅

(Ax′)
Γ �s z : S | ∅

(App)
Γ �s xz : ¬(ω×C) | ∅

(∩)
Γ �s yz : ω | ∅

(App)
Γ �s xz(yz) : ¬C | ∅

(Abs)
x:¬(S ×ω×C),y:T �s λz.xz(yz) : ¬(S ×C) | ∅

(Abs)
x:¬(S ×ω×C) �s λyz.xz(yz) : ¬(T ×S ×C) | ∅

(Abs)
∅ �s λxyz.xz(yz) : ¬(¬(S ×ω×C)× T ×S ×C) | ∅

(Ax)
a:S ,b:ω �s a : ¬C | ∅

(Abs)
a:S �s λb.a : ¬(ω×C) | ∅

(Abs)
∅ �s λab.a : ¬(S ×ω×C) | ∅

(App)
∅ �s (λxyz.xz(yz))(λab.a) : ¬(T ×S ×C) | ∅

Figure 3: A derivation for ∅ �s (λxyz.xz(yz))(λab.a) : ¬(T ×S ×C) | ∅

perhaps α = β and then C1 = C2. Likewise, there exist ∆2, C3, D2 such that ∆1 = δ:C3,∆2,
C3 ≤s D2, and Γ �s P : ¬D2 | γ:D1,δ:C3, β:C2,α:C1,∆2. Since C2 ≤s D1, by Lemma 3.9, we have
also Γ �s P : ¬D2 | γ:C2,δ:C3, β:C2,α:C1,∆2. We now distinguish two cases:

(δ = γ) : Then C2 = C3 and by Lemma 3.8 we have Γ �s P{β/γ} : ¬D2 | δ:C3, β:C3,α:C1,∆2.
Then µα.([δ]P){β/γ} = µα.[β]P{β/γ}, so Γ �s µα.[β]P{β/γ} : ¬C1 | δ:C3, β:C2,∆2 fol-
lows by (µ1). We apply (µ2) in case α = β; then C1 = C3.

(δ �= γ) : Then by Lemma 3.8 we have Γ �s P{β/γ} : ¬D2 | δ:C3, β:C2,α:C1,∆2. Since now
µα.([δ]P){β/γ} = µα.[δ]P{β/γ}, then Γ �s µα.[δ]P{β/γ} : ¬C1 | δ:C3, β:C2,∆2 follows
by (µ1), and apply (µ2) when α = δ.

We can also show the reverse of the previous soundness result, that assignable types are
preserved under expansion.

Theorem 4.4 (Subject expansion) If M →βµ N and Γ �s N : S | ∆, then Γ �s M : S | ∆.

Proof : By induction on the definition of the one-step reduction relation; as above, we restrict
the proof to the case that S = A, and just show the base cases.

((µβ.[δ]P)Q → µγ.[δ]P{Q·γ/β}, δ �= β) : By construction, γ �= δ; if Γ �s µγ.[δ]P{Q·γ/β} :
A | ∆, by (µ1) there are ∆′, C, C ′, and D such that A = ¬C, Γ �s P{Q·γ/β} : ¬D | γ:C,δ:C ′,∆′,
∆= δ:C ′,∆′, and C ′ ≤s D. By Lemma 4.1, there exists S such that Γ �s P :¬D | β:S ×C,δ:C ′,∆′

and Γ �s Q : S | δ:C ′,∆′. By (µ1), we get Γ �s µβ.[δ]P : ¬(S ×C) | δ:C ′,∆′ and by (App) we
get Γ �s (µβ.[δ]P)Q : A | ∆.

((µβ.[β]P)Q → µγ.[γ]P{Q·γ/β}Q) : If Γ �s µγ.[γ]P{Q·γ/β}Q : A |∆, then by (µ2) there are
C and D such that A = ¬C , C ≤s D and Γ �s P{Q·γ/β}Q : ¬D | γ:C,∆. Then by (App)
there exists S1 such that Γ �s P{Q·γ/β} : ¬(S1×D) | γ:C,∆. and Γ �s Q : S1 | γ:C,∆. By
Lemma 4.1, there exists S2 such that Γ �s P : ¬(S1×D) | β:S2×C,∆ and Γ �s Q : S2 | ∆.
Take S = S1 ∩ S2, then Γ �s Q : S | ∆ by Lemma 3.8, and Γ �s P : ¬(S1×D) | β:S ×C,∆ by
Lemma 3.9. Then S ×C ≤s S1×D, so by (µ2), Γ �s µβ.[β]P : ¬(S ×C) | ∆; then, by (App),
we get Γ �s (µβ.[δ]P)Q : A | ∆.

((λx.M)N → M{N/x}) : If Γ �s M{N/x} : A | ∆, then by Lemma 4.2, there exists S, C such
that A = ¬C , and both Γ, x:S �s M :¬C |∆ and Γ �s N : S |∆. Then, by both (Abs) and (App)
we get Γ �s (λx.M)N : A | ∆.

(M → N through renaming) : Then N is of the shape µα.[δ]P{β/γ}. We distinguish the
following cases (where we assume that distinct identifiers are not equal):

(N = µα.[α]P{α/γ}) : If Γ �s µα.[α]P{α/γ} : A |∆, then by (µ2), there are ∆′, C, and D such
that Γ �s M{α/γ} : ¬D | α:C,∆, A = ¬C, and C ≤s D. Then also Γ �s P : ¬D | α:C,γ:C,∆.
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Then either:
(M = µα.[α]µγ.[γ]P) : By (µ2), Γ �s µγ.[γ]P : ¬C | α:C,∆, and Γ �s µα.[α]µγ.[γ]P : ¬C |∆

by (µ2).
(M = µα.[α]µγ.[α]P) : By (µ1), Γ �s µγ.[α]P : ¬C | α:C,∆, and Γ �s µα.[α]µγ.[α]P : ¬C | ∆

follows by (µ2).
(N = µα.[α]P{β/γ} ) : Then M = µα.[β]µγ.[α]P. If Γ �s µα.[α]P{β/γ} : A | ∆, then by (µ),

there are ∆′, C, C ′, and D such that A = ¬C , ∆ = β:C ′,∆′, Γ �s P{β/γ} : ¬D | α:C, β:C ′,∆′,
and C ≤s D; then also Γ �s P : ¬D | α:C,γ:C ′, β:C ′,∆′. Then by (µ1) we have Γ �s µγ.[α]P :
¬C ′ | α:C, β:C ′,∆′, and Γ �s µα.[β]µγ.[α]P : ¬C | β:C ′,∆′ again by (µ1).

(N = µα.[β]P{β/γ} ) : If Γ �s µα.[β]P{β/γ} : A | ∆, then by (µ1) there are ∆′, C, C ′, and
D such that A = ¬C, ∆ = β:C ′,∆′, Γ �s P{β/γ} : ¬D | α:C, β:C ′,∆′, and C ′ ≤s D. Then
Γ �s P : ¬C | α:C,γ:C ′, β:C ′,∆′, and either:
(M = µα.[β]µγ.[γ]P ) : By (µ) we get Γ �s µγ.[γ]P :¬C ′ | α:C, β:C ′,∆′, and by (µ1) we get

Γ �s µα.[β]µγ.[γ]P : ¬C | β:C ′,∆′.
(M = µα.[β]µγ.[β]P ) : By (µ1) we get Γ �s µγ.[β]P : ¬C ′ | α:C, β:C ′,∆′ and again by (µ1)

we get Γ �s µα.[β]µγ.[β]P : ¬C | β:C ′,∆′.
(N = µα.[δ]P{α/γ}) : Then M = µα.[α]µγ.[δ]P. If Γ �s µα.[δ]P{α/γ} : A | ∆, then by (µ1)

there are ∆′, C, C ′, and D such that ∆ = δ:C ′,∆′, A = ¬C, C ′ ≤s D, and Γ �s P{α/γ} : ¬D |
α:C,δ:C ′,∆′. Then also Γ �s P : ¬D | α:C, γ:C,δ:C ′,∆′. By (µ1), we get Γ �s µγ.[δ]P : ¬C |
α:C,δ:C ′,∆′, and Γ �s µα.[α]µγ.[δ]P : ¬C | δ:C ′,∆′ by (µ2).

(N = µα.[δ]P{β/γ}) : Then M = µα.[β]µγ.[δ]P.
If Γ �s µα.[δ]P{β/γ} : A |∆, then by (µ1), there are ∆′, C, C ′, C ′′, and D such that A = ¬C ,
∆= β:C ′,δ:C ′′,∆′, C ′′ ≤s D, and Γ �s P{β/γ} :¬D | α:C, β:C ′,δ:C ′′,∆′; then also Γ �s P :¬D |
α:C, β:C ′,γ:C ′,δ:C ′′,∆′. By (µ1) we get Γ �s µγ.[δ]P : ¬C ′ | α:C, β:C ′,δ:C ′′,∆′ and we get
Γ �s µα.[β]µγ.[δ]P : ¬C | β:C ′,δ:C ′′,∆′ by (µ1).

The following result is now immediate:

Theorem 4.5 (Semantics) If Γ �s M : A | ∆ and M =βµ N, then Γ �s N : A | ∆.

Proof : By induction on the definition of ‘=βµ’, using the previous two results.

Example 4.6 As a consequence of the last result, observing that (λxyz.xz(yz))(λab.a) →∗
βµ

λyz.z, we can assign to (λxyz.xz(yz))(λab.a) any type that is assignable to λyz.z. Let S ≤s ¬C ,
then we can derive

(Ax′)
y:T ,z:S �s z : ¬C | ∅

(Abs)
y:T �s λz.z : ¬(S ×C) | ∅

(Abs)
∅ �s λyz.z : ¬(T ×S ×C) | ∅

Let Γ = x:¬(S ×ω×C),y:T,z:S , then we can derive:

(Ax)
Γ �s x : ¬(S ×ω×C) | ∅

(Ax′)
Γ �s z : S | ∅

(App)
Γ �s xz : ¬(ω×C) | ∅

(∩)
Γ �s yz : ω | ∅

(App)
Γ �s xz(yz) : ¬C | ∅

(Abs)
x:¬(S ×ω×C),y:T �s λz.xz(yz) : ¬(S ×C) | ∅

(Abs)
x:¬(S ×ω×C) �s λyz.xz(yz) : ¬(T ×S ×C) | ∅

(Abs)
∅ �s λxyz.xz(yz) : ¬(¬(S ×ω×C)×T ×S ×C) | ∅

(Ax)
a:S ,b:ω �s a : ¬C | ∅

(Abs)
a:S �s λb.a : ¬(ω×C) | ∅

(Abs)
∅ �s λab.a : ¬(S ×ω×C) | ∅

(App)
∅ �s (λxyz.xz(yz))(λab.a) : ¬(T ×S ×C) | ∅
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Based on the result of Theorem 4.5, we could follow the path of [2] and the approach of [12]
and continue to define a strict filter semantics, but forego that here for the moment.

As to the two η-reduction rules (η) and (µη), we cannot show both similar soundness and
completeness results.

Remark 4.7 As is also the case for the strict type assignment system for the pure λ-calculus
[2], we cannot show that assignable types are preserved by (η) in ‘�s’. For example, in ‘�s’ we
can derive (where C �= D):

(Ax)
x:¬C ∩¬D,y:¬(¬C ×C) �λµ y : ¬(¬C ×C) | ∅

(Ax)
x:¬C ∩¬D,y:¬(¬C ×C) �λµ x : ¬C | ∅

(App)
x:¬C ∩¬D,y:¬(¬C ×C) �λµ yx : ¬C | ∅

(Abs)
y:¬(¬C ×C) �λµ λx.yx : ¬(¬C ∩¬D×C) | ∅

but can derive y:¬(¬C ×C) �λµ y : ¬(¬C ∩¬D×C) | ∅ only through contra-variance.
As to preservation under expansion for µη, we can show:

(µα.[α]P → P with α ∈/ fn(M)) : Assume Γ �s P : A | ∆, then there exists C such that A = ¬C ;
since α ∈/ fn(M), by Lemma 3.7:(i) we can assume α does not occur in ∆; then also Γ �s P :
¬C | α:C,∆ by Lemma 3.7:(ii). Then by (µ2), we get Γ �s µα.[α]P : ¬C | ∆.

but for η this is not possible. For example, x:¬Ω �s x : ¬Ω | ∅, but x:¬Ω ��s λy.xy : ¬Ω | ∅.

5 Derivation reduction

In this section, we will define a notion of reduction on derivations in ‘�s’, and show this to be
strongly normalisable. As in [4, 7], this property will lead naturally to the characterisation of
strong normalisation, approximation, head-normalisation, and normalisation. We will show
this property using the proof technique of computability predicates as defined by Tait [39] ; it
can be used to show the characterisation properties separately, but is only needed here for the
one main result.

Strong normalisation of cut-elimination is a well-established property in the area of logic
and has been studied profoundly in the past. In the area of type assignment for the λ-
calculus (and the λµ-calculus), the corresponding property is that of strong normalisation
of derivation reduction (also called cut-elimination in, for example, [18]), which mimics the
normal reduction on terms to which the types are assigned.

The added complexity of intersection types implies that, unlike for ordinary systems of
type assignment, there is a significant difference between derivation reduction and ordinary
reduction; because of the presence of the type-constant ω, unlike ‘normal’ typed or type
assignment system, not every term-redex occurs with types in a derivation.

Fore reasons of brevity, to save space, and for easy of definition, we will use the following
notation for derivations, that aims to show the structure, in linear notation, in terms of rules
applied.

Definition 5.1 i) If derivation D consists of an application of (Ax), then there are n≥1, A1,
. . . , An, such that D :: Γ, x:∩n A i �s x : A j | ∆ with j ∈ n; we then write

D = 〈Ax〉 :: Γ, x:∩n A i �s x : A j | ∆.

ii) If derivation D ends with (Abs), there are x, M, S, and C such that D :: Γ �s λx.M :
¬(S ×C) | ∆, and there is a sub-derivation D′ :: Γ, x:S �s M : ¬C | ∆ in D; we then write

D = 〈D′ ;Abs〉 :: Γ �s λx.M : ¬(S ×C) | ∆.
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iii) If derivation D ends with (App), there are P, Q, such that D :: Γ �s PQ : ¬C | ∆, and there
are S and sub-derivations D1 :: Γ �s P : ¬(S ×C) | ∆ and D2 :: Γ �s Q : S | ∆ in D; we then
write

D = 〈D1 ; D2 ;App〉 :: Γ �s PQ : ¬C | ∆.

iv) If derivation D ends with (µ1), there are C and C ′ such that D :: Γ �s µα.[β]M :¬C | β:C ′,∆,
and there exists D ≥s C ′ and a sub-derivation D′ :: Γ �s M : ¬D | α:C, β:C ′,∆; we then write

D = 〈D′ ;µ1〉 :: Γ �s µα.[β]M : ¬C | β:C ′,∆

v) If derivation D ends with (µ2), there are C and S such that D :: Γ �s µα.[α]M : ¬C | ∆, and
there exists D ≥s C and a sub-derivation D′ :: Γ �s M : ¬D | α:C,∆; we then write

D = 〈D′ ;µ2〉 :: Γ �s µα.[α]M : ¬C | ∆

vi) If derivation D ends with (∩), there are n≥0, A1, . . . , An such that D :: Γ �s M : ∩n A i | ∆,
and, for all i ∈ n, there exists a Di :: Γ �s M : A i | ∆ that is a sub-derivation of D; we then
write

D = 〈D1 ; . . . ; Dn ;∩〉 :: Γ �s M : ∩n A i | ∆.

We will often abbreviate this short-hand notation further, and simply write 〈D1 ; D2 ;App〉
instead of

〈D1 :: Γ �s P : ¬(S ×C) | ∆; D2 :: Γ �s Q : S | ∆;App〉 :: Γ �s PQ : ¬C | ∆,

for example, when the actual term and types are known or of no concern.
We write D ≤s D′ when D = 〈D1 ; . . . ; Dn ;∩〉 :: Γ �s M : S |∆, D′ = 〈D′

1 ; . . . ; D′
m ;∩〉 :: Γ �s M :

T | ∆, and { D′
j | j ∈ m} ⊆ { Di | i ∈ n}; notice that then S ≤s T.

We identify derivations that have the same structure in that they have the same rules applied
in the same order (so derivations involving the same term, apart from sub-terms that are typed
by ω) and say that these have the same structure; the types derived need not be the same. The
notion of reduction on derivations D :: Γ �s M : A |∆ defined in this section will follow ordinary
reduction (on terms), by contracting typed redexes that occur in D, i.e. redexes for sub-terms
of M of the shape (λx.P)Q, (µα.[β]P)Q, or µα.[β]µγ.[δ]P that are typed with types different
from ω.

For the first, the following is a sub-derivation of D:

〈〈D1 :: Γ, x:∩nA i �s P : ¬C | ∆;Abs〉 :: Γ �s λx.P : ¬(∩n A i ×C) | ∆;
D2 :: 〈D1

2 ; . . . ; Dn
2 ;∩〉 :: Γ �s Q : ∩n A i | ∆;App〉 :: Γ �s (λx.P)Q : ¬C | ∆,

For the second, we have

〈〈D1 :: Γ �s P : ¬D | α:S ×C, β:C ′,∆;µ1〉 ::
Γ �s µα.[β]P : ¬(S ×C) | β:C ′,∆;

D2 :: Γ �s Q : S | β:C ′,∆;App〉 :: Γ �s (µα.[β]P)Q : ¬C | β:C ′,∆

with C ′ ≤s D, and for the third

〈〈D :: Γ �s P : ¬D | α:C, β:C ′,γ:C ′′,δ:D′,∆;r1〉 :: Γ �s µγ.[δ]P : ¬C | β:C ′,δ:D′,∆;r2〉 ::
Γ �s µα.[β]µγ.[δ]P : ¬C | β:C ′,δ:D′,∆

where C ′ ≤s D and C ≤s C ′′, and ri ∈ {µ1,µ2 } for i ∈ 2, depending on if α = β, etc. A derivation
of either of these structures will be called a derivation redex. We will define reduction on
derivations by replacing the derivation for a term redex by a derivation for its contractum;
this has, because the system at hand uses intersection types, including ω, to be defined with



ACM Transactions on Computational Logic, Volume 19 (1), 2018, Article No. 3 20

care, since in D :: Γ �s M : A | ∆ it is possible that M contains a redex whereas D does not.
Consider a derivation for the redex (λx.P)Q, which we can assume to be shaped like:

(Ax)
Γ, x:∩n A i �s x : Aq1 | ∆ · · ·

(Ax)
Γ, x:∩n A i �s x : Aqm | ∆

D1

Γ, x:∩n A i �s P : ¬C | ∆
(Abs)

Γ �s λx.P : ¬(∩n A i ×C) | ∆

D1
2

Γ �s Q : A1 | ∆ · · ·
Dn

2

Γ �s Q : An | ∆
(∩)

Γ �s Q : ∩n A i | ∆
(App)

Γ �s (λx.P)Q : ¬C | ∆

with n ≥ 2; note that Aqj ∈ {A1, . . . , An }, for all j ∈ m, and that this derivation directly corre-
sponds to the linear notation we presented above, so D2 :: 〈D1

2 ; . . . ; Dn
2 ;∩〉.

Contracting this derivation redex will construct a derivation for the term P{Q/x}, and will
be written as

D1{D2/x:∩n A i} :: Γ �s P{Q/x} : ¬C | ∆.

However, when creating a derivation for P{Q/x}, it is not the case that the derivation D2

will just be inserted in the positions of D1 where a type for the variable x is derived: notice
that no sub-derivation for Γ �s x : ∩n A i | ∆ need exist in D1, and that the system lacks an (∩E)
rule. Instead, since each Aqj occurs in ∩n A i, the approach used in this paper for derivation
substitution will be to replace all derivations Dj = 〈Ax〉 :: Γ, x:∩n A i �s x : Aqj | ∆ by the deriva-
tion Dqj

2 :: Γ �s Q : Aqj | ∆, and replace x by Q throughout the derivation D1 (notice that, by
Barendregt’s convention, this substitution is capture avoiding) to obtain:

Dq1
2

Γ �s Q : Aq1 | ∆ · · ·
Dqm

2

Γ �s Q : Aqm | ∆

D1

Γ �s P{Q/x} : ¬C | ∆

Based on that intuition, first we formally define the notion of derivation substitution that
deals with the derivation equivalent of (normal) term substitution.

Definition 5.2 (Derivation substitution) Give the derivations D :: Γ, x:S �s M : T | ∆, and
D0 :: Γ �s N : S | ∆, the derivation D{D0/x:S} :: Γ �s M{N/x} : T | ∆, the result of substitut-
ing D0 for x:S in D, is defined by induction on the structure of derivations by:

(〈Ax〉 :: Γ, x:S �s x : T | ∆) : Then S = ∩n A i and T = A j with j ∈ n. Then D0 is shaped like:

〈D1
0 :: Γ �s N : A1 | ∆; . . . ; Dn

0 :: Γ �s N : An | ∆;∩〉 :: Γ �s N : ∩nA i | ∆,

so, in particular, D j
0 :: Γ �s N : A j | ∆. Then D{D0/x:S} =∆ D j

0.
(〈Ax〉 :: Γ, x:S �s y : T | ∆ with x �≡ y) : Then D{D0/x:S} =∆ 〈Ax〉 :: Γ �s y : T | ∆.
(〈D1 :: Γ, x:S ,y:R �s P : ¬C | ∆;Abs〉 :: Γ, x:S �s λy.P : ¬(R ×C) | ∆) : Notice that x �= y and y ∈/

fv (N). Let

D′
1 = D1 {D0/x:S} :: Γ,y:R �s P{N/x} : ¬C | ∆.

Then D{D0/x:A} =∆ 〈D′
1 ;Abs〉 :: Γ �s (λy.P){N/x} : ¬(R ×C) | ∆.

(〈D1 :: Γ, x:S �s P : ¬(R ×C) | ∆; D2 :: Γ, x:S �s Q : R | ∆;App〉 :: Γ, x:S �s PQ : ¬C | ∆) : Let

D′
1 = D1 {D0/x:S} :: Γ �s P{N/x} : ¬(R ×C) | ∆, and

D′
2 = D2 {D0/x:S} :: Γ �s Q{N/x} : R | ∆,

then D{D0/x:S} =∆ 〈D′
1, D′

2 ;App〉 :: Γ �s (PQ){N/x} : ¬C | ∆.
(〈D1 :: Γ, x:S �s P : ¬D | α:C, β:C ′,∆;µ1〉 :: Γ, x:S �s µα.[β]P : ¬C | β:C ′,∆) : Let
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D′
1 = D1{D0/x:S} :: Γ �s P{N/x} : ¬D | α:C, β:C ′,∆.

Then D{D0/x:S} =∆ 〈D′
1 ;µ1〉 :: Γ �s (µα.[β]P){N/x} : ¬C | β:C ′,∆.

(〈D1 :: Γ, x:S �s P : ¬D | α:C,∆;µ2〉 :: Γ, x:S �s µα.[α]P : ¬C | ∆) : Let

D′
1 = D1 {D0/x:S} :: Γ �s P{N/x} : ¬C | α:C,∆.

Then D{D0/x:S} =∆ 〈D′
1 ;µ2〉 :: Γ �s (µα.[α]P){N/x} : ¬C | ∆.

(〈D1 ; . . . ; Dn ;∩〉 :: Γ, x:S �s M : ∩n A i | ∆) : Let, for all i ∈ n,

D′
i = Di {D0/x:S} :: Γ �s M{N/x} : A i | ∆,

then D{D0/x:S} =∆ 〈D′
1 ; . . . ; D′

n ;∩〉 :: Γ �s M{N/x} : ∩n A i | ∆.

Notice that, by the last case,

(〈∩〉 :: Γ, x:S �s M : ω | ∆){D0/x:S} = 〈∩〉 :: Γ �s M{N/x} : ω | ∆.

Similarly, consider a derivation for the redex (µα.[β]P)Q, shaped like (where S = ∩m A j, and
∆′ = α:S ×C, β:C ′,∆):

D1
1

Γ′ �s R1 : ¬(T1×D1) | δ1:C ′
1,∆′

(µ1)
Γ′ �s µδ1.[α]R1 : ¬C ′

1 | ∆′ · · ·

Dn
1

Γ′ �s Rn : ¬(Tn ×Dn) | δn :C ′
n,∆′

(µ1)
Γ′ �s µδn.[α]Rn : ¬C ′

n | ∆′

D1

Γ �s P : ¬D | α:S ×C , β:C ′,∆
(µ1)

Γ �s µα.[β]P : ¬(S ×C) | β:C ′,∆

Di
2

Γ �s Q : A i | β:C ′,∆ (∀ i ∈ m)
(∩)

Γ �s Q : ∩m A j | β:C ′,∆
(App)

Γ �s (µα.[β]P)Q : ¬C | β:C ′,∆

Then C ′ ≤s D, and S ×C ≤s T i ×Di for all i ∈ n; so C ≤s Di and also ∩mA j = S ≤s T i, for all
i ∈ n, so there are B i

1, . . . , B i
k such that T i = ∩k B i

l , and {B i
1, . . . , B i

k } ⊆ {A1, . . . , An }; in particular,
by (∩), Γ �s Q : T i | β:C ′,∆′, for all i ∈ n, so by weakening also Γ �s Q : T i | δi:C ′

i,γ:C, β:C ′,∆. Let
D2 = 〈D1

2 ; · · · ; Dm
2 ;∩〉 :: Γ �s Q : S | β:C ′,∆. Derivation reduction will insert D2 into D1 :: Γ �s

P : ¬D | α:S ×C, β:C ′,∆, and construct (where now ∆′ = γ:C, β:C ′,∆):

D1
1

Γ �s R1 : ¬(T1×D1) | δ1:C ′
1,∆′ Γ �s Q : T1 | δ1:C ′

1,∆′
(App)

Γ �s R1Q : ¬D1 | δ1:C ′
1,∆′

(µ1)
Γ �s µδ1.[γ]R1Q : ¬C ′

1 | ∆′ · · ·

Dn
1

Γ �s Rn : ¬(Tn ×Dn) | δn :C ′
n,∆′ Γ �s Q : Tn | δn :C ′

n,∆′
(App)

Γ �s RnQ : ¬Dn | δn :C ′
n,∆′

(µ1)
Γ �s µδn.[γ]RnQ : ¬C ′

n | ∆′

..

D1

Γ �s P{Q·γ/α} : ¬D | γ:C, β:C ′,∆
(µ1)

Γ �s µγ.[β]P{Q·γ/α} : ¬C | β:C ′,∆

This leads to the notion of derivation substitution that deals with structural substitution;
since this does not actually replace existing structure but rather reorganises it, following what
we suggested above, we call it insertion.

Definition 5.3 (Derivation insertion) For D :: Γ �s M : T | α:S ×C,∆, and D0 :: Γ �s N : S | ∆,
the derivation

D{D0·γ/α:S} :: Γ �s M{N·γ/α} : T | γ:C,∆,

the result of inserting D0 at α:S in D, is defined by induction on the structure of derivations
by:

(〈Ax〉 :: Γ �s x : T | α:S ×C,∆) : Then D{D0·γ/α:S} =∆ 〈Ax〉 :: Γ �s x : T | γ:C,∆.
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(〈D1 :: Γ,y:R �s P : ¬D | α:S ×C,∆;Abs〉 :: Γ �s λy.P : ¬(R ×D) | α:S ×C,∆) : Let

D′ = D1 {D0·γ/α:S} :: Γ,y:R �s P{N·γ/α} : ¬D | γ:C,∆.

Then D{D0/x:A} =∆ 〈D′ ;Abs〉 :: Γ �s (λy.P){N·γ/α} : ¬(R ×D) | γ:C,∆.
(〈D1 :: Γ �s P : ¬(R ×D) | α:S ×C,∆; D2 :: Γ �s Q : R | α:S ×C,∆;App〉 :: Γ �s PQ : ¬D | α:S ×C,∆) :

Let
D′

1 = D1 {D0·γ/α:S} :: Γ �s P{N·γ/α} : ¬(R ×D) | γ:C,∆, and
D′

2 = D2 {D0·γ/α:S} :: Γ �s Q{N·γ/α} : R | γ:C,∆,

then D{D0·γ/α:S} =∆ 〈D′
1, D′

2 ;App〉 :: Γ �s (PQ){N·γ/α} : ¬D | γ:C,∆.
(〈D1 :: Γ �s P : ¬D | α:S ×C, β:C ′,δ:C ′′,∆;µ1〉 :: Γ �s µβ.[δ]P : ¬C ′ | α:S ×C,δ:C ′′,∆ with δ �= α, δ �= β) :

Let

D′
1 = D1 {D0·γ/α:S} :: Γ �s P{N·γ/α} : ¬D | γ:C, β:C ′,δ:C ′′,∆.

Then D{D0·γ/α:S} =∆ 〈D′
1 ;µ1〉 :: Γ �s (µβ.[δ]P){N·γ/α} : ¬C ′ | γ:C,δ:C ′′,∆.

(〈D1 :: Γ �s P : ¬(R ×D) | α:S ×C, β:C ′,δ:C ′′,∆;µ1〉 :: Γ �s µβ.[α]P : ¬C ′ | α:S ×C,δ:C ′′,∆) : Let

D′
1 = D1 {D0·γ/α:S} :: Γ �s P{N·γ/α} : ¬(R ×D) | γ:C, β:C ′,δ:C ′′,∆.

Since S ≤s R, by Lemma 3.9 there exists D′
0 :: Γ �s N : R | γ:C, β:C ′,δ:C ′′,∆. Then

D{D0·γ/α:S} =∆ 〈〈D′, D′
0 ;App〉 :: Γ �s P{N·γ/α}N : ¬D | γ:C, β:C ′,δ:C ′′,∆;µ1〉 ::

Γ �s µβ.[γ]P{N·γ/α}N : ¬C ′ | γ:C,δ:C ′′,∆.

(〈D1 :: Γ �s P : ¬D | α:S ×C, β:C ′,∆;µ2〉 :: Γ �s µβ.[β]P : ¬C ′ | α:S ×C,∆) : Let

D′
1 = D1 {D0·γ/α:S} :: Γ �s P{N·γ/α} : ¬D | γ:C, β:C ′,∆.

Then D{D0·γ/α:S} =∆ 〈D′
1 ;µ2〉 :: Γ �s (µβ.[β]P){N·γ/α} : ¬C ′ | γ:C,∆.

(〈D1 ; . . . ; Dn ;∩〉 :: Γ �s M : ∩n A i | α:S ×C,∆) : Let, for all i ∈ n,

D′
i = Di {D0·γ/α:S} :: Γ �s M{N·γ/α} : A i | γ:C,∆,

then D{D0·γ/α:S} =∆ 〈D′
1 ; . . . ; D′

n ;∩〉 :: Γ �s M{N·γ/α} : ∩n A i | γ:C,∆.

Below we will allow ourselves the notation D{D·γ/α:C}, with C = S1× · · · × Sn ×Ω, which
stands for

D{D1·γ1/α:S1}{D2·γ2/γ1:S2}· · ·{Dn·γ/γn−1:Sn}.

Before coming to the definition of derivation reduction, we need to define the notion of
‘position of a sub-derivation in a derivation’. This is needed in Definition 5.5 to make sure
that, when contracting a redex in one sub-derivation (branch) in a derivation ending with (∩),
all its ‘siblings’ in neighbouring branches are contracted as well.

Definition 5.4 Let D be a derivation, and D′ be a sub-derivation of D. The position p of D′

in D, an element of the set of strings over {1,2}, is defined by:
i) If D′ = D, then p = ε, the empty string.

ii) If the position of D′ in D1 is q, and D = 〈D1 ;Abs〉, D = 〈D1, D2 ;App〉, D = 〈D1 ;µ1〉, or
D = 〈D1 ;µ2〉, then p = 1q.

iii) If the position of D′ in D2 is q, and D = 〈D1, D2 ;App〉, then p = 2q.
iv) If the position of D′ in Di (i ∈ n) is q, and D = 〈D1 ; . . . ; Dn ;∩〉, then p = q.

We can now define a notion of reduction on derivations; notice that this reduction corre-
sponds to contracting a redex in the term involved only if that redex appears in the derivation
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in a sub-derivation with type different from ω.

Definition 5.5 (Derivation reduction) We say that the derivation D :: Γ �s M : S | ∆ reduces
at position p with redex R to D′ :: Γ �s N : S | ∆, if and only if:

(S = ¬C ) : (M = (λx.P)Q) : Let D1 :: Γ, x:T �s P : ¬C | ∆ and D2 :: Γ �s Q : T | ∆, then

D = 〈〈D1 ;Abs〉 :: Γ �s λx.P : ¬(S ×C) | ∆; D2 ;App〉 :: Γ �s (λx.P)Q : ¬C | ∆

reduces at position ε with redex (λx.P)Q to D1 {D2/x:S} :: Γ �s P{Q/x} : ¬C | ∆.
(M = (µα.[α]P)Q) : Let D1 :: Γ �s P :¬(T ×D) | α:R × C,∆ and D2 :: Γ �s Q : R |∆ with R ≤s T

(notice that then there exists D′
2 :: Γ �s Q : T | γ:C,∆ with D2 ≤s D′

2) and C ≤s D, then

D = 〈〈D1 ;µ2〉 :: Γ �s µα.[α]P : ¬(R ×C) | ∆; D2 ;App〉 :: Γ �s (µα.[α]P)Q : ¬C | ∆

reduces at position ε with redex (µα.[α]P)Q to

〈〈D1 {D2·γ/α:S} :: Γ �s P{Q·γ/α} : ¬(T ×D) | γ:C,∆; D′
2 :: Γ �s Q : T | γ:C,∆;App〉 ::

Γ �s P{Q·γ/α}Q : ¬D | γ:C,∆;µ2〉 :: Γ �s µγ.[γ]P{Q·γ/α}Q : ¬C | ∆

(M = (µα.[β]P)Q, with α �= β) : Let D1 :: Γ �s P : ¬D | α:R ×C, β:C ′,∆ and D2 :: Γ �s Q : R |
β:C ′,∆ with C ′ ≤s D, then

D = 〈〈D1 ;µ1〉 :: Γ �s µα.[β]P : ¬(R ×C) | β:C ′,∆; D2 ;App〉 :: Γ �s (µα.[β]P)Q : ¬C | β:C ′,∆

reduces to at position ε with redex (µα.[β]P)Q to

〈D1 {D2·γ/α:S} :: Γ �s P{Q·γ/α} : ¬D | γ:C, β:C ′,∆;µ1〉 :: Γ �s µγ.[β]P{Q·γ/α} : ¬C | β:C ′,∆

(M = µα.[α]µγ.[γ]P) : Let D :: Γ �s P : ¬D | α:C,γ:C ′′,∆, with C ≤s C ′′ ≤s D, then

〈〈D ;µ2〉 :: Γ �s µγ.[γ]P : ¬C ′′ | α:C,∆;µ2〉 :: Γ �s µα.[α]µγ.[γ]P : ¬C | ∆

reduces at position ε with redex µα.[α]µγ.[γ]P to

〈D{α/γ} ; µ2〉 :: Γ �s µα.[α]P{α/γ} : ¬C | ∆.

(M = µα.[α]µγ.[α]P) : Let D :: Γ �s P : ¬D | α:C,γ:C ′′,∆, with C ≤s D and C ≤s C ′, then

〈〈D ;µ1〉 :: Γ �s µγ.[α]P : ¬C ′′ | α:C,∆;µ2〉 :: Γ �s µα.[α]µγ.[α]P : ¬C | ∆

reduces at position ε with redex µα.[α]µγ.[α]P to

〈D{α/γ} ; µ2〉 :: Γ �s µα.[α]P{α/γ} : ¬C | ∆.

(M = µα.[α]µγ.[δ]P, with δ �= α and δ �= γ) : Let D :: Γ�s P :¬D | α:C,γ:C ′′,δ:D′,∆, with D′ ≤s
D and C ≤s C ′, then

〈〈D ;µ1〉 :: Γ �s µγ.[δ]P : ¬C ′′ | α:C,δ:D′,∆;µ2〉 :: Γ �s µα.[α]µγ.[δ]P : ¬C | δ:D′,∆

reduces at position ε with redex µα.[α]µγ.[δ]P to

〈D{α/γ} ; µ2〉 :: Γ �s µα.[δ]P{α/γ} : ¬C | δ:D′,∆.

(M = µα.[β]µγ.[γ]P, with β �= α) : Let D :: Γ�s P :¬D | α:C, β:C ′,γ:C ′′,∆, with C ′ ≤s C ′′ ≤s D,
then

〈〈D ;µ2〉 :: Γ �s µγ.[γ]P : ¬C ′′ | α:C, β:C ′,∆;µ1〉 :: Γ �s µα.[β]µγ.[γ]P : ¬C | β:C ′,∆

reduces at position ε with redex µα.[β]µγ.[γ]P to

〈D{α/γ} ; µ2〉 :: Γ �s µα.[γ]P{β/γ} : ¬C | β:C ′,∆.

(M = µα.[β]µγ.[α]P, with β �= α) : Let D :: Γ �s P : ¬D | α:C, β:C ′,γ:C ′′,∆, with C ′ ≤s D and
C ≤s C ′′, then
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〈〈D ;µ1〉 :: Γ �s µγ.[α]P : ¬C ′′ | α:C, β:C ′,∆;µ1〉 :: Γ �s µα.[β]µγ.[α]P : ¬C | β:C ′,∆

reduces at position ε with redex µα.[β]µγ.[α]P to

〈D{α/γ} ; µ2〉 :: Γ �s µα.[β]P{β/γ} : ¬C | β:C ′,∆.

(M = µα.[β]µγ.[β]P, with β �= α) : Let D :: Γ �s P : ¬D | α:C, β:C ′,γ:C ′′,∆, with C ′ ≤s D and
C ≤s C ′′, then

〈〈D ;µ1〉 :: Γ �s µγ.[β]P : ¬C ′′ | α:C, β:C ′,∆;µ1〉 :: Γ �s µα.[β]µγ.[β]P : ¬C | β:C ′,∆

reduces at position ε with redex µα.[β]µγ.[β]P to

〈D{α/γ} ; µ2〉 :: Γ �s µα.[β]P{β/γ} : ¬C | β:C ′,∆.

(M = µα.[β]µγ.[δ]P, with α, β,γ,δ all different) : Let D :: Γ �s P : ¬D | α:C, β:C ′,γ:C ′′,δ:D′,∆,
with C ′ ≤s D and C ≤s C ′′, then

〈〈D ;µ1〉 :: Γ �s µγ.[δ]P : ¬C ′′ | α:C, β:C ′,δ:D′,∆;µ1〉 ::
Γ �s µα.[β]µγ.[δ]P : ¬C | β:C ′,δ:D′,∆

reduces at position ε with redex µα.[β]µγ.[δ]P to

〈D{β/γ} ; µ2〉 :: Γ �s µα.[δ]P{β/γ} : ¬C | β:C ′,δ:D′,∆.

(S = ∩nA i ) : If D :: Γ �s M : ∩n A i |∆, then, for every i ∈ n, there exists Di :: Γ �s M : A i |∆ such
that D = 〈D1 ; . . . ; Dn ;∩〉. If there is an i ∈ n such that Di reduces to D′

i at position p with
redex R, then, for all 1 ≤ i �= j ≤ n, either:
a) there is no redex at position p because there is no sub-derivation at that position. Since

R is a sub-term of M, it has to be part of a term that is typed with ω in Dj. Let R→βµ R′

and D′
j = Dj{R′/R} (i.e. Dj where each R is replaced by R’), or

b) Dj reduces to D′
j at position p with redex R.

Then D reduces to 〈D′
1 ; . . . ; D′

n ;∩〉 at position p with redex R.
(Inductive cases) : If D1 :: Γ �s M : S | ∆ reduces at position p with redex R to D′

1 :: Γ �s N :
S | ∆, and

– S = ¬C , Γ = Γ′, x:T; then D = 〈D1 ;Abs〉 :: Γ′ �s λx.M : ¬(T ×C) | ∆ reduces at position
1p with redex R to D′ = 〈D′

1 ;Abs〉 :: Γ′ �s λx.N : ¬(T ×C) | ∆.
– S = ¬(T ×C) and D2 :: Γ �s Q : T |∆; then D = 〈D1, D2 ;App〉 :: Γ �s MQ :¬C |∆ reduces

at position 1p with redex R to D′ = 〈D′
1 ; D2 ;App〉 :: Γ �s NQ : ¬C | ∆.

– Let D2 :: Γ �s P : ¬(S ×C) | ∆; then D = 〈D2, D1 ;App〉 :: Γ �s PM : ¬C | ∆ reduces at
position 2p with redex R to D′ = 〈D2 ; D′

1 ;App〉 :: Γ �s PN : ¬C | ∆.
– S = ¬C ; then D = 〈D1 ;µi〉 :: Γ �s µα.[β]M : ¬C | β:D,∆ (with perhaps α = β) reduces at

position 1p with redex R to D′ = 〈D′
1 ;µi〉 :: Γ �s µα.[β]N : ¬C | β:D,∆.

We write D →Der D′ if there exists a position p and redex R such that D reduces to D′ at
position p with redex R and use →∗

Der for its transitive closure.

Example 5.6 • Let M = λx. f (xx) and A = ¬(ω×Ω); for λ f .MM we can construct:
(Ax)

f :A , x:ω �s f : ¬(ω×Ω) | ∅
(∩)

f :A , x:ω �s xx : ω | ∅
(App)

f :A , x:ω �s f (xx) : ¬Ω | ∅
(Abs)

f :A �s M : ¬(ω×Ω) | ∅
(∩)

f :A �s M : ω | ∅
(App)

f :A �s MM : ¬Ω | ∅
(Abs)

∅ �s λ f .MM : ¬(A ×Ω) | ∅
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Notice that this derivation has a cut and reduces to a derivation for λ f .( f (xx){M/x} ) =
λ f . f (MM). Also, the derivation substitution {〈∩〉 :: f :A �s M : ω | ∅ / x:ω } that is applied
to D :: f :A , x:ω �s f (xx) : ¬Ω | ∅ has no effect, other than replacing x by M = λx. f (xx),
and creates:

(Ax)
f :A �s f : ¬(ω×Ω) | ∅

(∩)
f :A �s MM : ω | ∅

(App)
f :A �s f (MM) : ¬Ω | ∅

(Abs)
∅ �s λ f . f (MM) : ¬(A ×Ω) | ∅

• Take A =¬(ω×Ω), B = ¬(¬Ω×Ω), and Γ = f :A ∩ B , then we can construct the derivation

(Ax)
Γ, x:A �s f : ¬(¬Ω×Ω) | ∅

(Ax)
Γ, x:A �s x : ¬(ω×Ω) | ∅

(∩)
Γ, x:A �s x : ω | ∅

(App)
Γ, x:A �s xx : ¬Ω | ∅

..
(App)

Γ, x:A �s f (xx) : ¬Ω | ∅
(Abs)

Γ �s M : ¬(¬(ω×Ω)×Ω) | ∅

(Ax)
Γ, x:ω �s f : ¬(ω×Ω) | ∅

(∩)
Γ, x:ω �s xx : ω | ∅

(App)
Γ, x:ω �s f (xx) : ¬Ω | ∅

(Abs)
Γ �s M : ¬(ω×Ω) | ∅

(App)
Γ �s MM : ¬Ω | ∅

(Abs)
∅ �s λ f .MM : ¬(A ∩B ×Ω) | ∅

Again, there is one cut, and contracting it creates:

(Ax)
Γ �s f : ¬(¬Ω×Ω) | ∅

(Ax)
Γ, x:ω �s f : ¬(ω×Ω) | ∅

(∩)
Γ, x:ω �s xx : ω | ∅

(App)
Γ, x:ω �s f (xx) : ¬Ω | ∅

(Abs)
Γ �s M : ¬(ω×Ω) | ∅

(∩)
Γ �s M : ω | ∅

(App)
Γ �s MM : ¬Ω | ∅

(App)
Γ �s f (MM) : ¬Ω | ∅

(Abs)
∅ �s λ f . f (MM) : ¬(A ∩B ×Ω) | ∅

Notice that x gets replaced by M = λx. f (xx), and that the right-hand subderivation for
Γ �s λx. f (xx) : A | ∅ takes the place of the sub-derivation 〈Ax〉 :: Γ, x:A �s x : A | ∅.

The following lemma states that derivation reduction follows term reduction.

Lemma 5.7 Let D :: Γ �s M : S | ∆, and D →∗
Der D′ :: Γ �s N : S | ∆, then M →∗

βµ N.

Proof : Implied by Definition 5.5.

We say that D is normalisable if there exists a redex-free D′ such that D →∗
Der D′, and that

D is strongly normalisable (SN(D)) if all reduction sequences starting in D are of finite length.
The following states some standard properties of strong normalisation.

Lemma 5.8 i) If SN(〈D1 ; D2 ;App〉), then SN(D1) and SN(D2).
ii) If SN(D1 :: Γ1 �s xM1· · ·Mn : ¬(S ×C) | ∆) and SN(D2 :: Γ2 �s N : S | ∆), then

SN(〈D1 ; D2 ;App〉 :: Γ1, Γ2 �s xM1 · · ·MnN : ¬C | ∆).
iii) ∀ i ∈ n [SN(Di :: Γ �s M : A i | ∆) ] if and only if SN(〈D1 ; . . . ; Dn ;∩〉 :: Γ �s M : ∩n A i | ∆).
iv) If SN(〈· · ·〈D1{D2/y:T}〉· · · ;App〉 :: Γ �s M{N/x}P : S |∆) and SN(D2 :: Γ �s N : T |∆), then

SN(〈· · ·〈〈D1 ;Abs〉 ; D2 ;App〉· · · ;App〉 :: Γ �s (λy.M)NP : S | ∆).
v) If SN(D :: Γ �s P : ¬D | δ:C,∆), and C ≤s D, then SN(D :: Γ �s µδ.[δ]P : ¬C | ∆).

vi) If SN(D :: Γ �s P : ¬D | δ:C,γ:C ′,∆) and C ≤s D, then SN(D :: Γ �s µγ.[δ]P : ¬C ′ | δ:C,∆).
vii) If SN(〈· · ·〈〈D1{D2·γ/α:T} ; D′

2 ;App〉 ;µ2〉· · · ;App〉 :: Γ �s µγ.[γ]M{N·γ/α}NP : S |∆) such
that D2 ≤s D′

2 and SN(D2 :: Γ �s N : T | ∆), then SN(〈· · ·〈〈D1 ;µ2〉 ; D2 ;App〉· · · ;App〉 :: Γ �s
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(µα.[α]M)NP : S | ∆).
viii) If SN(〈· · ·〈D1{D2·γ/α:C} ; µ2〉· · · ;App〉 :: Γ �s µγ.[β]M{N·γ/α}P : S | ∆) with

C = T1× · · · × Tn×Ω, and SN(Di
2 :: Γ �s Ni : T i | ∆) for all i ∈ n, then

SN(〈· · ·〈· · ·〈〈D1 ;µ2〉 ; D1
2 ;App〉· · · ; Dn

2 ;App〉· · · ;App〉 :: Γ �s (µα.[β]M)N P : S | ∆).

ix) If SN(D :: Γ �s P : ¬D | α:C, β:C ′,γ:C ′′,δ:D′,∆), with C ′ ≤s D and C ≤s C ′′, then
SN(〈〈D ;r1〉 ;r2〉 :: Γ �s µα.[β]µγ.[δ]P : ¬C | β:C ′,δ:D′,∆), where ri ∈ {µ1,µ2 } for i ∈ 2.

Proof : Easy, by Definition 5.5.

6 Strong normalisation of derivation reduction

In this subsection, we will prove a strong normalisation result for derivation reduction. In
order to prove that each derivation in ‘�s’ is strongly normalisable with respect to →Der, a
notion of computable derivation will be introduced. We will show that all computable deriva-
tions are strongly normalisable with respect to derivation reduction, and that all derivations
in ‘�s’ are computable.

Definition 6.1 (Computability Predicate) Comp (D) is defined inductively over the struc-
ture of types by:

Comp(D :: Γ �s M : ¬Ω | ∆) ⇐⇒ SN(D)

Comp(D :: Γ �s M : ¬(S ×C) | ∆) ⇐⇒
∀D′ [Comp (D′ :: Γ �s N : S | ∆) ⇒ Comp (〈D ; D′ ;App〉 :: Γ �s MN : ¬C | ∆) ]

Comp(〈D1 ; . . . ; Dn ;∩〉 :: Γ �s M : ∩nA i | ∆) ⇐⇒ ∀ i ∈ n [Comp (Di :: Γ �s M : A i | ∆) ]

By abuse of notation we will use the abbreviation Γ�s Qn : C |∆, which stands for Γ�s Q1 : S1 |
∆, . . . , Γ �s Qn : Sn | ∆, if C = S1× · · · × Sn ×Ω; we will also write Comp(Dn :: Γ �s Qn : C | ∆) to
denote the sequence of statements Comp(D1 :: Γ �s Q1 : S1 |∆), . . . , Comp(Dn :: Γ �s Qn : Sn |∆).

Notice that, as a special case for the third rule, we get Comp(〈∩〉 :: Γ �s M : ω | ∆). Moreover,
we did not define computability for derivations for context switches µα.[β]M, since the types
involved in that step are not related by syntactic sub-typing. Rather, computability of context
switches is an indirectly inferred property in the proof of the Replacement Theorem 6.5.

We can show that computability is closed for weakening and ‘≤s’:

Lemma 6.2 i) If Comp(D :: Γ �s M : S | ∆), and Γ′ ⊇ Γ, ∆′ ⊇ ∆, then Comp (D :: Γ′ �s M : S | ∆′).
ii) If Comp (D :: Γ �s M : S | ∆), Γ′ ≤s Γ, ∆′ ≤s ∆, S ≤s S ′, then Comp(D :: Γ′ �s M : S ′ | ∆′).

Proof : By straightforward induction on the structure of types.

We will now prove that Comp satisfies the standard properties of computability predicates,
being that computability implies strong normalisation, and that, for the so-called neutral ob-
jects, also the converse holds.

Lemma 6.3 i) If Comp(D :: Γ �s M : S | ∆), then SN(D).
ii) If SN(D :: Γ �s xM1 · · ·Mm : S | ∆), then Comp(D).

Proof : By simultaneous induction on the structure of types.

(S = ¬Ω) : Directly by Definition 6.1.
(S = ¬(T ×C)) : i) Let x be a variable not appearing in Γ and M, and D′ = 〈Di ;∩〉 :: Γ, x:T �s

x : T | ∆, then, by induction (ii), Comp(D′). Since Comp(D), by Lemma 6.2, also
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Comp(D :: Γ, x:T �s M : ¬(T ×C) | ∆); then Comp(〈D ; D′ ;App〉 :: Γ, x:T �s Mx : ¬C | ∆)

by Definition 6.1. Then, by induction (i), SN(〈D ; D′ ;App〉), and SN(D) follows by
Lemma 5.8:(i).

ii) Assume Comp (D′ :: Γ �s N : T |∆), then by induction (i), SN(D′). By Lemma 5.8:(ii) we
have SN(〈D ; D′ ;App〉 :: Γ∩Γ′ �s xM1 · · ·MmN : ¬C |∆). Then by induction (ii) we have
Comp(〈D ; D′ ;App〉), so by Definition 6.1, Comp (D).

(S = ∩nA i ) : Easy, using Definition 6.1, Lemma 5.8:(iii), and induction.

The Replacement Theorem (6.5) shows that replacing sub-derivations for term variables by
computable derivations, and supplying names with computable derivations through adding
applications in a derivation, yields a computable derivation. Before coming to this result,
first an auxiliary lemma has to be proved, that formulates that Comp(·) is closed for subject-
expansion with respect to derivation reduction for β-redexes.

Lemma 6.4 If Comp (D1[D′/x:T] :: Γ �s M{N/x}P : A | ∆) and Comp(D2 :: Γ �s N : S | ∆), then
Comp(D3 :: Γ �s (λx.M)NP : A | ∆).

Proof : By induction on the structure of types.

(A = ¬Ω) : From Comp(D1 :: Γ �s M{N/x}P : ¬Ω | ∆) by Definition 6.1 we have SN(D1).
Since also Comp (D2 :: Γ �s N : S | ∆), also SN(D2). Then by Lemma 5.8:(iv) there exists
D3 :: Γ �s (λx.M)NP : ¬Ω | ∆ such that SN(D3), so by Definition 6.1 Comp (D3).

(A = ¬(S ×C)) : Assume Comp(D4 :: Γ �s Q : S | ∆); since we have Comp(D1), by Defini-
tion 6.1 we get Comp(〈D1 ; D4 ;App〉 :: Γ �s M{N/x}PQ : ¬C | ∆). Then by induction we
have also Comp(〈D3 ; D4 ;App〉 :: Γ �s (λx.M)NPQ : ¬C | ∆), so by Definition 6.1 we get
Comp(D3 :: Γ �s (λx.M)NP : ¬(S ×C) | ∆).

(A = ∩nA i ) : By induction.

We will not need the counterpart of this result for µ-reduction.
We now come to the Replacement Theorem.

Theorem 6.5 (Replacement Theorem) Let Γ0 = x1:R1, . . . , xm:Rm, ∆0 = α1:C1, . . . ,αk:Ck, and take
D0 :: Γ0 �s M : S |∆0. Assume that for all i∈m there exist Di, Ni such that Comp(Di :: Γ�s Ni : R i |∆),
and that for all l ∈ k there exists D′

l , Ql such that Comp (D′
l :: Γ �s Ql : C l | ∆). Then

Comp(D0 {D/x:Rm}{D′·γ/α:Ck} :: Γ �s M{N/xm}{Q·γ/αk} : S | γ:Ωk,∆).

Proof : By induction on the structure of derivations. For readability, we will write DS for

{D/x:Rm}{D′·γ/α:Ck}, and S for {N/xm}{Q·γ/αk}.

(Ax) : Then M = xj for some j ∈m, and R j ≤s S, so R j = ∩n A i and S = A i for some i∈ n. Since
we have Dj :: Γ �s Nj : ∩n A i |∆, we know Dj = 〈D1

j ; . . . ; Dn
j ;∩〉, and Di

j :: Γ �s Nj : A i |∆, and
D0DS = Di

j by Definition 5.2 and 5.3. Since Comp(Dj :: Γ �s Nj : R j | ∆), by Definition 6.1,
Comp(Di

j).
(Abs) : Then M = λy.M′, S = ¬(T ×C), and

D0 = 〈D1 :: Γ′,y:T �s M′ : ¬C | ∆;Abs〉 :: Γ′ �s λy.M′ : ¬(T ×C) | ∆.

Assume Comp(D′ :: Γ �s Q : T | ∆), then, by induction,

Comp(D1 DS [D′/y:T] :: Γ �s MS{Q/y} : ¬C | γ:Ω,∆).

Then by Lemma 6.4,

Comp (〈〈D1 DS ;Abs〉, D′ ;App〉 :: Γ �s (λy.MS)Q : ¬C | γ:Ω,∆),
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so, by Definition 6.1, 5.2 and 5.3,

Comp(〈D1 ;Abs〉DS :: Γ �s (λy.M)S : ¬(S × C) | γ:Ω,∆).

(App) : Then M ≡ PQ, S = ¬C, and there are D1, D2, and S such that

D0 = 〈D1 :: Γ′ �s P : ¬(S ×C) | ∆; D2 :: Γ′ �s Q : S | ∆;App〉.

Then, by induction,

Comp (D1DS :: Γ �s PS : ¬(S ×C) | γ:Ω,∆), and Comp(D2DS :: Γ �s QS : S | γ:Ω,∆).

Then, by Definition 6.1, 5.2 and 5.3,

Comp(〈D1, D2 ;App〉DS :: Γ �s (PQ)S : ¬C | γ:Ω,∆).

(µ1 ) : Then M ≡ µβ.[ρ]P. If D0 :: Γ0 �s µβ.[ρ]P : ¬C | ∆0, then there exists D1 and C ′, D,∆′
0

such that C ′ ≤s D, ∆0 = ρ:C ′,∆′
0, and

D0 = 〈D1 :: Γ0 �s P : ¬D | β:C,ρ:C ′,∆′
0 ;µ1〉 :: Γ0 �s µβ.[ρ]P : ¬C | ρ:C ′,∆′

0.

Assume Comp(Dβ :: Γ �s R : C | ∆) (notice that ρ = αl, for some l ∈ k), then by induction

Comp(D1 DS {Dβ·δ/β:C} :: Γ �s PS{R·δ/β} : ¬D | δ:Ω, γ:Ω,∆).

Let (Dk :: Γ �s Qk : C ′ |∆) · γj/ρ:C ∈ DS, then by Lemma 6.2 also Comp (Dk :: Γ �s Qk : D |
∆). Then by Definition 6.1 (k times)

Comp(〈· · ·〈D1 DS {Dβ·δ/β:C} ; D1 ;App〉· · · ; Dk ;App〉 ::
Γ �s PS{R·δ/β}Q : ¬Ω | δ:Ω, γ:Ω,∆).

Then by Definition 6.1, this derivation is strongly normalising:

SN(〈· · ·〈D1 DS {Dβ·δ/β:C} ; D1 ;App〉· · · ; Dk ;App〉 ::
Γ �s PS{R·δ/β}Q : ¬Ω | δ:Ω, γ:Ω,∆).

By Barendregt’s convention, we can assume that S{R·δ/β} does not affect D :: Γ �s Q : D |
∆, so also

SN(〈· · ·〈D1 ; D1 ;App〉· · · ; Dk ;App〉 DS {Dβ·δ/β:C} ::
Γ �s PQS{R·δ/β} : ¬Ω | δ:Ω, γ:Ω,∆).

but then by Lemma 5.8, also

SN(〈〈· · ·〈D1 ; D1 ;App〉· · · ; Dk ;App〉 DS {Dβ·δ/β:C} ; µ1〉 ::
Γ �s µδ.[γj]PQS{R·δ/β} : ¬Ω | γ:Ω,∆).

and again by Lemma 5.8 (k times), also

SN(〈· · ·〈〈· · ·〈〈D1 ; D1 ;App〉· · · ; Dk ;App〉 ;µ1〉 DS ; D1
β ;App〉· · · ; Dk′

β ;App〉 ::
Γ �s (µβ.[γj]PQS)R : ¬Ω | γ:Ω,∆).

Since Q·γj/ρ:C ∈ S, also

SN(〈· · ·〈〈D1 ;µ1〉 DS ; D1
β ;App〉· · · ; Dk′

β ;App〉 :: Γ �s (µβ.[ρ]PS)R : ¬Ω | γ:Ω,∆).

Then by Definition 6.1

Comp (〈· · ·〈〈D1 ;µ1〉 DS ; D1
β ;App〉· · · ; Dk′

β ;App〉 :: Γ �s (µβ.[ρ]PS)R : ¬Ω | γ:Ω,∆).

and again by Definition 6.1

Comp(〈D1 ;µ1〉DS :: Γ �s (µβ.[ρ]P)S : ¬C | γ:Ω,∆).

so
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Comp(D0DS :: Γ �s (µβ.[ρ]P)S : ¬C | γ:Ω,∆)

(µ2 ) : Then M ≡ µβ.[β]P. If D0 :: Γ0 �s µβ.[β]P : ¬C | ∆0, then there exists D1, and C ′ such
that C ≤s C ′, and

D0 = 〈D1 :: Γ0 �s P : ¬C ′ | β:C,∆0 ;µ2〉 :: Γ0 �s µβ.[β]P : ¬C | ∆0.

Assume Comp(Dβ :: Γ �s R : C | ∆), then by induction

Comp(D1 DS [Dβ·δ/β:C] :: Γ �s PS{R·δ/β} : ¬C ′ | δ:Ω, γ:Ω,∆).

Let C = ¬(T1× · · · × Tk ×Ω), then C ′ = ¬(T ′
1× · · · × T ′k′ ×Ω) and T i ≤s T ′i for all i ∈ k. By

definition of the notation, from Comp(Dβ :: Γ�s R : C |∆) we get Comp(Di
β :: Γ�s Ri : T i |∆),

and by Lemma 6.2, also Comp (Di
β :: Γ �s Ri : T ′i | ∆), for all i ∈ k. Then by Definition 6.1 (k

times), we get

Comp(〈· · ·〈D1 DS [Dβ·δ/β:C] ; D1
β ;App〉· · · ; Dk′

β ;App〉 :: Γ �s PS{R·δ/β}R : ¬Ω | δ:Ω, γ:Ω,∆)

so by Definition 6.1, this derivation is strongly normalisable:

SN(〈· · ·〈D1 DS {Dβ·δ/β:C} ; D1
β ;App〉· · · ; Dk′

β ;App〉).

Then by Lemma 5.8 also is the following:

SN(〈〈· · ·〈D1 DS {Dβ·δ/β:C} ; D1
β ;App〉· · · ; Dk′

β ;App〉 ;µ2〉 ::
Γ �s µδ.[δ](PS{R·δ/β} )R : ¬Ω | γ:Ω,∆)

Then again by Lemma 5.8, we get

SN(〈· · ·〈〈D1 DS ;µ2〉 ; D1
β ;App〉· · · ; Dk′

β ;App〉 :: Γ �s (µβ.[β]PS)R : ¬Ω | γ:Ω,∆)

and by Definition 6.1, we get Comp(〈· · ·〈〈D1 DS ;µ2〉 ; D1
β ;App〉· · · ; Dk′

β ;App〉). Then by
Definition 6.1 (k′ times)

Comp (〈D1 DS ;µ2〉 :: Γ �s µβ.[β]PS : ¬C | γ:Ω,∆).

(∩) : Then S = ∩n A i, and, for all i ∈ n, there exists Di :: Γ′ �s M : A i | ∆ such that D0 =

〈D1 ; . . . ; Dn,∩〉. Then, by induction, for all i ∈ n, Comp(DiDS :: Γ �s MS : A i | γ:Ω,∆), and,
by Definition 6.1, Comp (D0DS :: Γ �s MS : ∩n A i | γ:Ω,∆).

Using this last result, we can now prove a strong normalisation result for derivation reduc-
tion in ‘�s’.

Theorem 6.6 If D :: Γ �s M : S | ∆, then SN(D).

Proof : Let Γ = x1:T1, . . . , xn:Tn, and ∆ = α1:C1, . . . ,αm:Cm, Let, for xi:T i ∈ Γ, Di :: Γ �s xi : T i | ∆,
and for αj:C j ∈ ∆, D′

j :: Γ �s yj : C j | ∆. Then by Lemma 6.3:(ii), for all i ∈ n, Comp(Di), and for
all j ∈ m, Comp (D′

j). Then

Comp(D{Di/xi:T i}{D′
j·γ/α:C} :: Γ �s M{x/x}{y ·γ/α} : S | γ:Ω,∆).

so also Comp(D{Dy·γ/α:C} :: Γ �s M{y ·γ/α} : S | γ:Ω,∆). Then SN(D{Dy·γ/α:C}) follows
by Lemma 6.3:(i). By Lemma 5.8:(viii), also

SN(〈. . . 〈〈· · ·〈D ;µ1〉· · · ;µ1〉; D′
1 ;App〉· · · ; D′

k ;App〉 ::
Γ �s (µα1.[β1]· · ·µαk.[βk]M)y1 · · ·yk : S | γ:Ω,∆).

Then also SN(D).

We will show below how this result leads to all the characterisation properties; we first
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prepare the characterisation of approximation by introducing the notion of approximation
semantics.

7 Approximation semantics for λµ

Following the approach of Wadsworth [40], we now define an approximation semantics for λµ

with respect to →βµ. We will use this notion in the next section to show an approximation
result for ‘�s’. Approximation for Λµ has been studied by Saurin [37] and de’Liguoro [31];
weak approximants for λµ are studied by [15].

Essentially, approximants are partially evaluated expressions in which the locations of in-
complete evaluation (i.e. where reduction may still take place) are explicitly marked by the
element ⊥; thus, they approximate the result of computations; intuitively, an approximant can
be seen as a ‘snapshot’ of a computation, where we focus on that part of the resulting term
which will no longer change.

Definition 7.1 (Approximation for λµ) i) We define λµ⊥ as an extension of λµ by adding
the term constant ⊥.

M, N ::= x | λy.M | MN | µα.[β]M | ⊥

ii) The set of λµ’s approximants A with respect to →βµ is defined through the grammar:

A ::= ⊥ | xA1 · · ·An (n ≥ 0)
| λx.A (A �= ⊥)

| µα.[β]A (A �= µγ[δ]A′, A �= ⊥)

iii) The relation � ⊆ λµ⊥2 is defined as the smallest pre-order that is the compatible exten-
sion of ⊥ � M.

iv) The set of approximants of M, A(M), is defined as:

A(M) =∆ {A ∈A | ∃N ∈ λµ [M →∗
βµ N & A � N ]}.

v) Approximation equivalence, ∼A, between terms is defined through:

M ∼A N =∆ A(M) =A(N).

Note that all λµ-terms that are in normal form are approximants and coincide with ⊥-free
approximants.

Approximants are also the normal forms with respect to the notion of reduction on λµ⊥-
terms that is the extension of ‘→βµ’ by adding the reduction rules:

λx.⊥ → ⊥
⊥M → ⊥

µα.[β]⊥ → ⊥

but this will play no role in this paper.
The relationship between the approximation relation and reduction is characterised by the

following result.

Lemma 7.2 i) If A � M and M →∗
βµ N, then A � N.

ii) H is a head-normal form if and only if there exists A ∈A such that A � H and A �= ⊥.

Proof : i) By induction on the structure of approximants.

(A = ⊥) : Trivial, since ⊥ � N.
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(A = xA1 · · ·An ) : If xA1· · ·An � M, then M ≡ xM1 · · ·Mn, with Ai � Mi for all i ∈ n. If
M →∗

βµ N, then N = xN1 · · ·Nn with Mi →∗
βµ Ni, for all i ∈ n (notice that the reduction

can take place in many sub-terms, and need not take place in all). Then, by induction,
Ai � Ni for all i ∈ n, so A � N.

(A = λx.A′, A′ �= ⊥) : If λx.A′ � M, then M ≡ λx.M′, with A′ � M′. If M →∗
βµ N, then

N = λx.N′ with M′ →∗
βµ N′. Then, by induction, A′ � N′, so A � N.

(A = µα.[β]A′ , A′ �= µγ[δ]A′′, A′ �= ⊥) : If µα.[β]A′ � M, then M ≡ µα.[β]M′ , with A′ �
M′. Since A′ �= µγ[δ]A′′, M �= µα.[β]µγ[δ]M′′ , so any reduction in M takes place inside
M′. So if M →∗

βµ N, then N = µα.[β]N′ with M′ →∗
βµ N′. Then, by induction, A′ � N′,

so A � N.

ii) (only if ) : By induction on the structure of head-normal forms:
(H = xM1 · · ·Mn ) : Take A = x⊥· · ·⊥.
(H = λx.H ′ ) : By induction, there exists A �= ⊥ such that A � H ′. Then λx.A � λx.H ′;

notice that, since A �= ⊥, also λx.A ∈A.
(H = µα.[β]H ′, H ′ �= µγ.[δ]H ′ ′ ) : By induction, there exists A �= ⊥ such that A � H ′.

Then µα.[β]A � µα.[β]H ′; notice that, since A �= µγ.[δ]A′ and A �=⊥, also µα.[β]A ∈
A.

(if ) : If there exists A ∈A such that A � M and A �= ⊥, then either:
(A = xA1· · ·An ) : If xA1· · ·An � M, then M ≡ xM1· · ·Mn, so M is in head-normal

form.
(A = λx.A′, A′ �= ⊥) : If λx.A′ � M, then M ≡ λx.M′, with A′ � M′. Since A′ �= ⊥, by

induction M′ is in head-normal form, so also λx.M′ is in head-normal form.
(A = µα.[β]A′, A′ �= µγ[δ]A′′, A′ �= ⊥) : If µα.[β]A′ � M, then M ≡ µα.[β]M′ , with A′ �

M′. Since A′ �= ⊥, by induction M′ is in head-normal form; since A′ �= µγ[δ]A′′,
also M′ �= µγ[δ]M′′, so also µα.[β]M′ is in head-normal form.

The following definition introduces the notion of compatibility between terms through an
operation of join on λµ⊥-terms. Terms are compatible when they are syntactically equal,
except for positions where ⊥ occurs.

Definition 7.3 (Join, compatible terms) i) On λµ⊥, the partial mapping join, � : λµ⊥2 →
λµ⊥, is defined by:

⊥�M ≡ M�⊥ ≡ M
x� x ≡ x

(λx.M)� (λx.N) ≡ λx.(M�N)

(µα.[β]M)� (µα.[β]N) ≡ µα.[β](M�N)

(M1M2)� (N1N2) ≡ (M1�N1) (M2�N2)

ii) If M�N is defined, then M and N are called compatible.

It is easy to show that � is associative and commutative; we will use � n Mi for the term
M1� · · · �Mn. Note that ⊥ can be defined as the empty join: � 0Mi =

∆ ⊥.
The last alternative in the definition of � defines the join on applications in a more general

way than Scott’s [27], that would state that

(M1M2)� (N1N2) � (M1�N1) (M2�N2),

since it is not always certain if a join of two arbitrary terms exists. Since we will use our more
general definition only on terms that are compatible, there is no real conflict.

The following lemma shows that the join acts as least upper bound of compatible terms.
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Lemma 7.4 i) If P � M, and Q � M, then P�Q is defined, and: P � P�Q, Q � P�Q, and P�Q �
M.

ii) If A1, A2 ∈A(M), then A1 and A2 are compatible.

Proof : i) By easy induction on the definition of ‘�’.
a) If P ≡ ⊥, then P�Q ≡ Q, so P � P�Q, Q � P�Q, and P�Q � Q � M. (The case

Q ≡ ⊥ goes similarly.)
b) If P ≡ x, then M ≡ x, and either Q = ⊥ or also Q ≡ x. The first case has been dealt

with in part (i.a), and for the other: P�Q ≡ x. Obviously, x � x� x, x � x� x, and
x� x � x.

c) If P ≡ λx.N1, then M ≡ λx.N, N1 � N, and either Q = ⊥ or Q ≡ λx.N2. The first case
has been dealt with in part (i.a), and for the other: then N2 � N. Then, by induction,
N1 � N1�N2, N2 � N1�N2, and N1�N2 � N. Then also λx.N1 � λx.N1�N2, λx.N2 �
λx.N1�N2, and λx.N1 �N2 � λx.N. Notice that λx.N1�N2 ≡ (λx.N1)� (λx.N2).

d) If P ≡ P1Q1, then M ≡ PQ, P1 � P, Q1 � Q, and either Q = ⊥ or Q ≡ P2Q2. The
first case has been dealt with in part (i.a), and for the other: then P2 � P, Q2 � Q.
By induction, we know P1 � P1�P2, P2 � P1�P2, and P1�P2 � P, as well as Q1 �
Q1�Q2, Q2 � Q1�Q2, and Q1�Q2 � Q. Then also P1Q1 � (P1�P2)(Q1�Q2), P2Q2 �
(P1�P2)(Q1�Q2), and (P1�P2)(Q1�Q2) � PQ. Notice that (P1�P2)(Q1�Q2) ≡
(P1Q1)� (P2Q2).

ii) If A1, A2 ∈ A(M), then there exist N1, N2 such that M →∗
βµ Ni and Ai � Ni, for i = 1,2.

Since ‘→βµ’ is confluent, there exists P such that Ni →∗
βµ P; then by Lemma 7.2, also

Ai � P, for i = 1,2. Then, by part (i), A1 and A2 are compatible.

We can also define M = �{A | A ∈ A(M)} (which by the previous lemma is well defined);
then · corresponds to (a λµ-variant of) Böhm trees [19, 17].

As is standard in other settings, interpreting a λµ-term M through its set of approximants
A(M) gives a semantics.

Theorem 7.5 (Approximation semantics for λµ) If M =βµ N, then M ∼A N.

Proof : By induction on the definition of ‘=βµ’, of which we only show the case M →∗
βµ N.

(A(M) ⊆ A(N)) : If A ∈ A(M), then there exists L such that M →∗
βµ L and A � L. Since

‘→βµ’ is confluent, there exists R such that L →∗
βµ R and N →∗

βµ R, so also M →∗
βµ R. Then

by Lemma 7.2, A � R, and since N →∗
βµ R, we have A ∈A(N).

(A(N) ⊆ A(M)) : If A ∈A(N), then there exists L such that N →∗
βµ L and A � L. But then

also M →∗
βµ L, so A ∈A(M).

The reverse implication of this result does not hold, since terms without head-normal form
(which have only ⊥ as approximant) are not all related by reduction; so approximation se-
mantics is not fully abstract.

8 The approximation and head normalisation results for �s

In this section we will show an approximation result that states that every derivation for a
term M characterises one of its approximants, i.e. for every M, Γ, S, and ∆ such that Γ �s
M : S | ∆, there exists an A ∈ A(M) such that Γ �s A : S | ∆. From this result, the well-known
characterisation of (head-)normalisation of λµ-terms using intersection types follows easily,
i.e. all terms having a head-normal form are typeable in ‘�s’ and all terms that have a normal
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form are typeable with a type without ω-occurrences.
First we give some auxiliary definitions and results.
The rules of the system ‘�s’ are generalised to terms containing ⊥; therefore, if ⊥ occurs in

a term M and there exists Γ, S and ∆ such that D :: Γ �s M : S | ∆, in that derivation ⊥ has to
appear in a position where the rule (∩) is used with n = 0, i.e. in a sub-term typed with ω.
Notice that the terms λx.⊥, ⊥M1· · ·Mn, and µα.[β]⊥ are typeable by ω only.

We show that ‘�s’ is closed for �.

Lemma 8.1 Γ �s M : S | ∆ and M � N then Γ �s N : S | ∆.

Proof : By easy induction on the definition of �; the base case, ⊥ � N, follows from the fact
that then S = ω.

Next we define a notion of type assignment that is similar to that of Definition 3.4, but
differs in that it assigns ω only to the term ⊥. It is defined as ‘�s’ in Definition 3.4, but for
rule (∩) that gets replaced by rule (∩⊥).

Definition 8.2 ⊥-type assignment and ⊥-derivations are defined by the following natural de-
duction system:

(Ax) : (S ≤s A)
Γ, x:S � x : A | ∆ (∩⊥) :

Γ � Mi : A i | ∆ (∀ i ∈ n)
(n = 0 ∨ n ≥ 2)

Γ � � n Mi : ∩n A i | ∆

(Abs) :
Γ, x:S � M : ¬C | ∆

(x ∈/ Γ)
Γ � λx.M : ¬(S ×C) | ∆

(µ1) :
Γ � M : ¬D | α:C , β:C ′,∆

(β �= α ∈/ ∆, C ′ ≤s D)
Γ � µα.[β]M : ¬C | β:C ′,∆

(App) :
Γ � M : ¬(S ×C) | ∆ Γ � N : S | ∆

Γ � MN : ¬C | ∆
(µ2) :

Γ � M : ¬D | α:C ,∆
(α ∈/ ∆, C ≤s D)

Γ � µα.[α]M : ¬C | ∆

We write Γ �⊥ M : S | ∆ if this statement is derivable using a ⊥-derivation.

Notice that, by (∩⊥), Γ �⊥ ⊥ : ω | ∆, and that this is the only way to assign ω to a term.
Moreover, in that rule, the terms Mj need to be compatible (otherwise their join would not be
defined).

Lemma 8.3 i) If D :: Γ �⊥ M : S | ∆, then D :: Γ �s M : S | ∆.
ii) If D :: Γ �s M : S | ∆, then there exists M′ � M such that D :: Γ �⊥ M′ : S | ∆.

Proof : i) By induction on the structure of derivations in �⊥.

(Ax) : Immediate.
(∩⊥ ) : Then S = ∩nA i, M = � n Mi, and, for every i ∈ n, Γ �⊥ Mi : A i |∆. Then, by induction,

for every i ∈ n, Γ �s Mi : A i |∆. Since, by Lemma 7.4, Mi � M for all i ∈ n, by Lemma 8.1,
for every i ∈ n, Γ �s M : A i | ∆, so by (∩), Γ �s M : ∩n A i | ∆.

(Abs) : Then M ≡ λx.N, and S = ¬(T ×C), and Γ, x:T �⊥ N : ¬C | ∆. Then, by induction,
Γ, x:T �s N : ¬C | ∆, so by (Abs), Γ �s λx.N : ¬(T ×C) | ∆.

(App) : Then M ≡ PQ, S = ¬C, and there exists T such that Γ �⊥ P : ¬(T ×C) | ∆, and
Γ �⊥ Q : T | ∆. Then, by induction, Γ �s P : ¬(T ×C) | ∆, and Γ �s Q : T | ∆, so by (App),
Γ �s PQ : S | ∆.

(µ1 ) : Then M ≡ µα.[β]N, S = ¬C , ∆ = β:C ′,∆′, and Γ �⊥ N : ¬D | α:C, β:C ′,∆′ with C ′ ≤s D.
By induction, Γ �s N : ¬D | α:C, β:C ′,∆′, so by (µ1), also Γ �s µα.[β]N : ¬C | β:C ′,∆′.

(µ2 ) : Then M ≡ µα.[α]N, S = ¬C , and Γ �⊥ N : ¬D | α:C,∆ with C ≤s D. By induction,
Γ �s N : ¬D | α:C,∆, so by (µ2), also Γ �s µα.[α]N : ¬C | ∆.

ii) By induction on the structure of derivations in ‘�s’.



ACM Transactions on Computational Logic, Volume 19 (1), 2018, Article No. 3 34

(Ax) : Immediate.
(∩) : Then S = ∩nA i and, for every i ∈ n, Γ �s M : A i | ∆; by induction, for every i ∈ n there

exists Mi � M such that Γ �⊥ Mi : A i | ∆ (notice that then these Mi are compatible).
Then, by (∩⊥), we have Γ �⊥ � nMi : A i | ∆. Notice that, by Lemma 7.4, � n Mi � M.

(Abs) : Then M ≡ λx.P, and S = ¬(T ×C), and Γ, x:T �s P : ¬C | ∆. So, by induction,
there exists P′ � P such that Γ, x:T �⊥ P′ : ¬C | ∆. Then, by (Abs) we obtain Γ �⊥
λx.P′ : ¬(T ×C) | ∆. Notice that λx.P′ � λx.P.

(App) : Then M ≡ PQ, S = ¬C , and there is a T such that Γ �s P : ¬(T ×C) | ∆, and Γ �s Q :
T |∆. Then, by induction, there are P′ � P, and Q′ � Q, such that Γ �⊥ P′ : ¬(T ×C) |∆,
and Γ �⊥ Q′ : T | ∆. Then, by (App), Γ �⊥ P′Q′ : S | ∆. Notice that P′Q′ � PQ.

(µ1 ) : Then M ≡ µα.[β]N, S = ¬C , ∆ = β:C ′,∆′, and Γ �s N : ¬D | α:C, β:C ′,∆′ with C ′ ≤s
D. By induction, there exists N′ � N, and Γ �⊥ N′ : ¬D | α:C, β:C ′,∆′ , so by (µ1), also
Γ �⊥ µα.[β]N′ : ¬C | β:C ′,∆′ . Notice that µα.[β]N′ � µα.[β]N.

(µ2 ) : Then M ≡ µα.[α]N, S = ¬C , and Γ �s N : ¬D | α:C,∆ with C ≤s D. By induction, there
exists N′ � N, and Γ �⊥ N′ : ¬D | α:C,∆, so by (µ2), also Γ �⊥ µα.[α]N′ : ¬C | ∆. Notice
that µα.[α]N′ � µα.[α]N.

Notice that the case S = ω is present in the case (∩⊥) of the proof. Then n = 0, and � nMi =⊥.
Moreover, since M′ need not be the same as M, the second derivation in part (ii) is not exactly
the same; however, it has the same structure in terms of applied derivation rules.

Using Theorem 6.6 and Lemma 8.3, as for the system of [18] (see [36]) and the system of [3],
the relation between types assignable to a λµ-term and those assignable to its approximants
can be formulated as follows:

Theorem 8.4 (Approximation) Γ �s M : S | ∆ ⇐⇒ ∃A ∈A(M) [Γ �s A : S | ∆].

Proof : (⇒) : If D :: Γ �s M : S | ∆, then, by Theorem 6.6, SN(D). Let D′ :: Γ �s N : S | ∆

be a normal form of D with respect to →Der, then by Lemma 5.7, M →∗
βµ N and, by

Lemma 8.3:(ii), there exists N′ � N such that D′ :: Γ �⊥ N′ : S | ∆. So, in particular, N′

contains no redexes (no derivation redexes since D′ is in normal form, and none untyped
since only ⊥ can be typed with ω), so N′ ∈ A, and therefore N′ ∈ A(M).

(⇐) : Let A ∈ A(M) be such that Γ �s A : S | ∆. Since A ∈ A(M), there exists an M′ such
that M →∗

βµ M′ and A � M′. Then, by Lemma 8.1, Γ �s M′ : S | ∆, and, by Theorem 4.5,
also Γ �s M : S | ∆.

Using this last result, the characterisation of head-normalisation becomes easy to show.
Using this last result, the characterisation of head-normalisation becomes easy to show.

Theorem 8.5 (Head-normalisation) There exists Γ, A, and ∆ such that Γ �s M : A |∆, if and only
if M has a head normal form.

Proof : (only if ) : If Γ �s M : A | ∆, then, by Theorem 8.4, there exists an A ∈ A(M) such that
Γ �⊥ A : A | ∆. Then, by Definition 7.1, there exists N such that M →∗

βµ N and A � N.
Since A �= ω, A �≡ ⊥, so we know that A is either x, λx.A′, xA1· · ·An, or µα.[β]A′ with
A′ �= µγ.[δ]A′′. Since A � N, N is either xM1· · ·Mn (n ≥ 0), λx.P, or µα.[β]P with P �=
µγ.[δ]Q. Then N is in head-normal from and M has a head-normal form.

(if ) : If M has a head-normal form, then there exists N such that M →∗
βµ N and either:

(N ≡ xM1 · · ·Mn ) : Take Γ = x:¬(ω× · · · ×ω×Ω) (with n times ω) and A = ¬Ω.
(N ≡ λx.P) : Since P is in head-normal form, by induction there are Γ′, C, and ∆′ such

that Γ′ �s P : ¬C |∆′. If x:S ∈ Γ′, take Γ = Γ′\x, and A = ¬(S ×C); otherwise take Γ = Γ′
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and A = ¬(ω× C). In either case, by (Abs), Γ �s λx.P : A | ∆′

(N = µα.[α]P) : Since P is in head-normal form, by induction there are Γ′, C, D, and ∆′ such
that Γ′ �s P : ¬D | α:C,∆′. Take C ′ = C ∩D6, then by Lemma 3.9 also Γ′ �s P : ¬D | α:C ′,∆′,
and since C ′ ≤s D, by (µ2) we get Γ′ �s µα.[α]P : ¬C ′ | ∆′.

(N = µα.[β]P, with α �= β) : Since P is in head-normal form, by induction there are C, C ′,
D such that Γ′ �s P : ¬D | α:C, β:C ′,∆ and C ′ ≤s D. Take C ′′ = C ′ ∩D, then by Lemma 3.9
also Γ′ �s P : ¬D | α:C, β:C ′′,∆, and since C ′′ ≤s D, we get Γ′ �s µα.[β]P :¬C ′ | β:C ′′,∆′ from
(µ1).

Notice that in all cases, Γ �s N : A | ∆, for some A, and by Theorem 4.5, Γ �s M : A | ∆.

9 Type assignment for (strong) normalisation

In this section we show the characterisation of strong normalisation, for which we first define
a notion of derivability obtained from ‘�s’ by restricting the use of the type assignment rule
(∩) to at least two sub-derivations, thereby eliminating the possibility to assign ω to a term.
Apart from the elimination of ω in the type language, as with ‘�⊥’, the only change lies in rule
(∩).

Definition 9.1 (SN type assignment) i) We define the ω-free types by the grammar:

A, B ::= ¬C
R, S, T ::= A1∩ · · · ∩ An (n ≥ 1)

C, D ::= Ω | S ×C

ii) SN type assignment is defined by the following natural deduction system (where all types
are ω-free):

(Ax) : (S ≤s A)
Γ, x:S � x : A | ∆ (∩) :

Γ � M : A i | ∆ (∀ i ∈ n)
(n ≥ 2)

Γ � M : ∩n A i | ∆

(Abs) :
Γ, x:S � M : ¬C | ∆

(x ∈/ Γ)
Γ � λx.M : ¬(S ×C) | ∆

(µ1) :
Γ � M : ¬D | α:C , β:C ′,∆

Γ � µα.[β]M : ¬C | β:C ′,∆

(App) :
Γ � M : ¬(S ×C) | ∆ Γ � N : S | ∆

Γ � MN : ¬C | ∆
(µ2) :

Γ � M : ¬D | α:C ,∆
(α ∈/ ∆, C ≤s D)

Γ � µα.[α]M : ¬C | ∆

We write Γ �sn M : S | ∆ if this judgement is derivable using these rules.

Notice that the only real change in the system compared to ‘�s’ is that ω is no longer an
intersection type, so in (∩) the empty intersection ω is excluded.7

In the proofs of Lemma 9.7 and 9.11 we will use the following notation.

Definition 9.2 Given two contexts Γ1 and Γ2, we define the context Γ1 ∩Γ2 as follows:

Γ1 ∩Γ2 =∆ {x:S1∩ S2 | x:S1 ∈ Γ1 & x:S2 ∈ Γ2 } ∪
{ x:S | x:S ∈ Γ1 & x ∈/ Γ2 } ∪
{ x:S | x:S ∈ Γ2 & x ∈/ Γ1 }

and write ∩n Γi for Γ1 ∩ · · · ∩Γn. The notions ∆1∩∆2 and ∩n∆ i are defined similarly.

The following properties hold:

6 This is the first time we need the operation of intersection on continuation types.
7 In terms of the characterisation of strong normalisation, it would have sufficed to only restrict (∩); we restrict

the set of types as well in order to be able to characterise normalisation as well.
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Lemma 9.3 i) If S ≤s T, then S = ∩I A i, T = ∩J B j, and for every j ∈ J there exists i ∈ I such that
A i = B j.

ii) Γ �sn M : S ∩ T | ∆, if and only if Γ �sn M : S | ∆ and Γ �sn M : T | ∆.
iii) Γ, x:S �sn x : T | ∆, if and only if S ≤s T.
iv) Γ �sn M : S | α:C, β:C,∆ if and only if Γ �sn M{α/β} : S | α:C,∆.
v) If Γ �sn M : S | ∆, then {x:T ∈ Γ | x ∈ fv (M)} �sn M : S | {α:C ∈ ∆ | α ∈ fn(M)} .

vi) If Γ �sn M : S | ∆ & Γ′ ⊆ Γ & ∆′ ⊆ ∆, then Γ′ �sn M : S | ∆′ .
vii) If D :: Γ �sn M : S | ∆, then D :: Γ �s M : S | ∆.

Proof : Straightforward.

As for ‘�s’, we can show that (≤s) is an admissible rule in ‘�sn’.

Lemma 9.4 If Γ �sn M : S |∆, and Γ′, T, and ∆′ are all ω-free and satisfy Γ′ ≤s Γ, ∆′ ≤s ∆, and S ≤s T,
then Γ′ �sn M : T | ∆′ .

Proof : Much the same as the proof for Theorem 3.9.

The following lemma shows a (limited) subject expansion result for ‘�sn’: it states that if
a contraction of a redex is typeable, then so is the redex, provided that the operand N is
typeable in its own right; since N might not appear in the contractum, and ω is missing, we
need to assume that separately. Notice that we demand that N is typeable in the same contexts
as the contractum itself; this property would not hold once we consider contextual closure (in
particular, when the reduction takes place under an abstraction); it might be that free names
or variables in N get bound.

Lemma 9.5 (Term substitution lemma for ‘�sn’) If Γ �sn M{N/x} : T | ∆ and Γ �sn N : B | ∆,
then there exists S such that Γ, x:S �sn M : T | ∆ and Γ �sn N : S | ∆.

Proof : As the proof for Lemma 4.2, with the exception of:

(M ≡ y �= x) : We have y{N/x} ≡ y and x ∈/ fv (y); by Lemma 9.3 we have Γ, x:B �sn y : ¬C.

Lemma 9.6 (Structural substitution lemma for ‘�sn’) If Γ�sn M{N·γ/α} : T |γ:C,∆ and Γ�sn

N : B | ∆, then there exists S such that Γ �sn M : T | α:S ×C,∆ and Γ �sn N : S | ∆.

Proof : As the proof for Lemma 4.1, with the exception of:

(M ≡ x) : Then x{N·γ/α}= x. Take S = B, then by Lemma 9.3, also Γ �sn x :¬C ′ | α:S ×C,∆.

To prepare the characterisation of terms by their assignable types, we first prove that an
approximant is typeable in �sn, if and only if it does not contain ⊥. This forms the basis for
the result that all normalisable terms are typeable without ω. Notice that the first result is
stated for ‘�s’.

Lemma 9.7 i) If Γ �s A : A | ∆, and Γ, A, and ∆ are ω-free, then A is ⊥-free.
ii) If A is ⊥-free, then there are Γ, A, and ∆, such that Γ �sn A : A | ∆.

Proof : By induction on the structure of approximate normal forms.
i) (A ≡ x) : Immediate.
(A ≡ ⊥) : Impossible, by inspecting the rules of ‘�s’.
(A ≡ λx.A′ ) : By (Abs), A = ¬(T ×C), and Γ, x:T �s A′ : ¬C | ∆. Of course also Γ, x:T, and

¬C are ω-free, so by induction, A′ is ⊥-free, so also λx.A′ is ⊥-free.
(A ≡ xA1 · · ·An ) : Then by (App) and (Ax), Γ �s Ai : S i | ∆, and x:∩m B i ∈ Γ, and, for some

j ∈ m, B j = ¬(S1× S2× · · · × Sn ×C) and A = ¬C . Since each S i occurs in B j, which



ACM Transactions on Computational Logic, Volume 19 (1), 2018, Article No. 3 37

occurs in Γ, all are ω-free, so by induction each Ai is ⊥-free. Then also xA1· · ·An is
⊥-free.

(A ≡ µα.[β]A′ , with α �= β and A′ �= µγ.[δ]A′′ ) : Then A = ¬C , and by (µ1) there exists D, D′

such that ∆ = β:D′,∆′, D′ ≤s D, and Γ �s A′ : ¬D | α:C, β:D′,∆′. Since D′ ≤s D, and D′ is
ω-free, so is D; then, by induction, A′ is ⊥-free, so so is µα.[β]A′ .

(A ≡ µα.[α]A′, with A′ �= µγ.[δ]A′′ ) : Then A = ¬C , and by (µ2) there exists D such that
C ≤s D, and Γ �s A′ :¬D | α:C,∆. Since C ≤s D, and C is ω-free, so is D; then, by induction,
A′ is ⊥-free, so so is µα.[α]A′.

ii) (A ≡ x) : Take x:¬Ω �sn x : ¬Ω | .
(A ≡ λx.A′ ) : By induction there exists Γ, ∆, and C such that Γ �sn A′ : ¬C | ∆. If x does

not occur in Γ, take an ω-free T; otherwise, there exist x:T ∈ Γ and T is ω-free. In either
case, by (Abs) we obtain Γ\x �sn λx.A′ : ¬(T ×C) | ∆.

(A ≡ xA1 · · ·An ) : By induction, for every i ∈ n there are A i, Γi, and ∆ i such that Γi �sn Ai :
A i | ∆ i ; take Γ = ∩n Γi and ∆ = ∩n∆ i, then by weakening also Γ �sn Ai : A i | ∆, for every
i ∈ n. Then Γ∩{x:¬(A1× · · · × An ×Ω)} �sn xA1· · ·An : ¬Ω | ∆.

(A ≡ µα.[β]A′ , with α �= β and A′ �= µγ.[δ]A′′ ) : By induction there exists Γ, ∆, C, C ′, and D
such that Γ �sn A′ : ¬C | α:C ′, β:D,∆. Then by weakening Γ �sn A′ : ¬C | α:C ′, β:D∩C,∆,
and by (µ1) we have Γ �sn µα.[β]A′ : ¬C ′ | β:D∩C,∆.

(A ≡ µα.[α]A′, with A′ �= µγ.[δ]A′′ ) : By induction Γ �sn A′ : ¬C | α:D,∆ for some Γ, ∆, C,
and D. Then by weakening Γ �sn A′ :¬C | β:D∩C,∆, so by (µ2), Γ�sn µα.[α]A′ : D∩¬C |∆.

We are now in the position to characterise normalisable terms.

Theorem 9.8 (Characterisation of Normalisation) There exists ω-free Γ, ∆, and A such that
Γ �s M : A | ∆, if and only if M has a normal form.

Proof : (⇒) : If Γ �s M : A | ∆, by Theorem 8.4, there exists A ∈ A(M) such that Γ �s A : A | ∆.
Since Γ, A are ω-free, by Lemma 9.7:(i), this A is ⊥-free. By Definition 7.1 there exists
M′ =βµ M such that A � M′. Since A contains no ⊥, A ≡ M′, so M′ is a normal form, so,
especially, M has a normal form.

(⇐) : If M′ is the normal form of M, then it is a ⊥-free approximate normal form. Then
by Lemma 9.7:(ii) there are Γ, A, and ∆ such that Γ �sn M′ : S | ∆. Then, by Theorem 4.5,
Γ �s M : A | ∆, and Γ, A, and ∆ are ω-free.

(Notice that, in the second part, in general, the property that ω is not used at all, is lost.)
The following lemma shows that type assignment is preserved in the ω-free system for the

expansion of redexes (notice that the result is not stated for arbitrary reduction steps, but only
for terms that are proper redexes).

Lemma 9.9 i) If Γ �sn M{N/x} : A | ∆ and Γ �sn N : B | ∆, then Γ �sn (λx.M)N : A | ∆.
ii) If Γ �sn µγ.[γ]M{N·γ/α}N : A | ∆ and Γ �sn N : B | ∆, then Γ �sn (µα.[α]M)N : A | ∆.

iii) If Γ �sn µγ.[β]M{N·γ/α} : A |∆ (with γ �= β) and Γ �sn N : B |∆, then Γ �sn (µα.[β]M)N : A |∆.
iv) If Γ �sn µα.([δ]M){β/γ} : A | ∆, then Γ �sn µα.[β]µγ.[δ]M : A | ∆.

Proof : i) Like that for Theorem 4.4, but using Lemma 9.5.
ii) - iii) Like that for Lemma 4.1 and Theorem 4.4, but for the fact that the additional

assumption Γ �sn N : B | ∆ is used when α ∈/ fn(M).
iv) As in the proof of Theorem 4.4, but using Lemma 9.6.
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Theorem 9.12 below shows that the set of strongly normalisable terms is exactly the set of
terms typeable in ‘�sn’. The proof goes by induction on the leftmost outermost reduction path.
First we will introduce the notion of leftmost, outermost reduction.

Definition 9.10 An occurrence of a redex R in a term M is called the leftmost outermost redex
of M (lor(M)), if:

i) There is no redex R′ in M such that R′ = C [R ] with C [− ] �= [−] (outermost) ;
ii) There is no redex R′ in M such that M = C0 [C1 [R′ ]C2 [R ] ] (leftmost).

We write M →lor N is used to indicate that M reduces to N by contracting lor(M).

The following lemma formulates a subject expansion result for ‘�sn’ with respect to leftmost
outermost reduction.

Lemma 9.11 Assume M →lor N, and Γ �sn N : ¬C |∆; if lor(M) = PQ also assume that Γ0 �sn Q : B |
∆0 . Then there exists Γ′,∆′, C ′ such that Γ′ �sn M : ¬C ′ | ∆′ .

Proof : We reason by induction on the structure of terms:

(M ≡ VP1· · ·Pn ) : We distinguish two cases:
a) V is a →βµ-redex, and N ≡ V ′P1· · ·Pn, where V ′ is the result of contracting V. From

the fact that Γ �sn V ′P1· · ·Pn : ¬C | ∆, we know there are S1, . . . , Sn such that Γ �sn V ′ :
¬(S1× · · · × Sn ×C) | ∆, and Γ �sn Pi : S i | ∆ for all i ∈ n. By weakening we have both
Γ∩Γ0 �sn V ′ : ¬(S1× · · · × Sn ×C) |∆∩∆0 and Γ∩Γ0 �sn Q : B |∆∩∆0 , and also Γ∩Γ0 �sn

Pi : S i |∆∩∆0 for all i∈ n. Then by Lemma 9.9, Γ∩Γ0 �sn V :¬(S1× · · · × Sn ×C) |∆∩∆0 ,
so also Γ∩Γ0 �sn VP1· · ·Pn : ¬C | ∆∩∆0.

b) V ≡ y, so there exists j∈ n such that lor(M) = lor(Pj), Pj →lor P′
j , and N ≡ yP1 · · ·P′ · · ·Pn.

From Γ �sn yP1 · · ·P′
j · · ·Pn : ¬C | ∆, we know there are S1, . . . , Sn such that Γ �sn Pi : S i | ∆

for all i �= j ∈ n and Γ �sn P′
j : S j | ∆, and Γ �sn y : ¬(S1× · · · × Sn ×C) | ∆. Notice that

then there exists y:T ∈ Γ such that T ≤s ¬(S1× · · · × Sn ×C). Then, by induction, there
are Γj, ∆ j, and B such that Γj �sn Pj : B | ∆ j . Then

Γ∩Γj ∩{y:¬(S1× · · ·B · · · × Sn ×C)} �sn yP1 · · ·Pj · · ·Pn : ¬C | ∆ j ∩∆.

(M ≡ λy.M′ ) : If M →lor N, then N = λy.N′ and M′ →lor N′. Then there exists S, D such that
Γ,y:S �sn N′ : ¬D | ∆ and C = S ×D. By induction, there exists Γ′, ∆′, S ′, and D′ such that
Γ′,y:S ′ �sn M′ : ¬D′ | ∆′ . Then, by (Abs), Γ′ �sn λy.M′ : ¬(S ′ ×D′) | ∆′ .

(M ≡ µα.[β]M′ with α �= β) : Then N = µα.[β]N′ and M′ →lor N′. Since Γ �sn µα.[β]N′ : ¬C |
∆, there are ∆1, E, D such that ∆ = β:E,∆1, E ≤s D, and Γ �sn N′ : ¬D | α:C, β:E,∆1 . Then
by induction there exist Γ′, C ′, E′, D′, and ∆′ such that Γ′ �sn N′ : ¬D′ | α:C ′, β:E′,∆′ . By
Lemma 9.4 we have Γ′ �sn N′ : ¬D′ | α:C ′, β:E′ ∩D′,∆′ and Γ′ �sn µα.[β]N′ : ¬C ′ | β:E′ ∩D′,∆′

follows by (µ1).
(M ≡ µα.[α]M′ ) : Then N = µα.[α]N′ and M′ →lor N′. Since Γ �sn µα.[α]N′ : ¬C | ∆, there

exists D such that C ≤s D, and Γ �sn N′ : ¬D | α:C,∆0 . Then by induction there exist Γ′, C ′,
D′, and ∆′ such that Γ′ �sn N′ : ¬D′ | α:C ′,∆′ . By Lemma 9.4 Γ′ �sn N′ : ¬D′ | α:C ′ ∩D′,∆′ and
then by (µ2) we get Γ′ �sn µα.[α]N′ : ¬(C ′ ∩D′) | ∆′ .

We can now show that all strongly normalisable terms are exactly those typeable in ‘�sn’.

Theorem 9.12 (Characterisation of strong normalisation) There exists Γ, ∆, and A such
that Γ �sn M : A | ∆ if and only if M is strongly normalisable with respect to →βµ.

Proof : (⇒) : If D :: Γ �sn M : A | ∆, then by Lemma 9.3:(vii) also D :: Γ �s M : A | ∆. Then, by
Theorem 6.6, D is strongly normalisable with respect to →Der. Since D contains no ω,
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all redexes in M correspond to redexes in D, a property that is preserved by derivation
reduction (it does not introduce ω). So also M is strongly normalisable with respect to
→βµ.

(⇐) : By induction on the maximum of the lengths of reduction sequences for a strongly
normalisable term M to its normal form (denoted by # M).
a) If # M = 0, then M is in normal form, and by Lemma 9.7:(ii), there exist Γ, ∆ and A

such that Γ �sn M : A | ∆.
b) If # M≥1, so M contains a redex, then let M →lor N by contracting the redex PQ.

Then # N < # M, and # Q < # M (since Q is a proper sub-term of a redex in M), so by
induction, for some Γ, Γ′, ∆, ∆′, A, and B, we have Γ �sn N : A | ∆ and Γ′ �sn Q : B | ∆′ .
Then, by Lemma 9.11, there exist Γ1, ∆1, C such that Γ1 �sn M : C | ∆1 . If the redex
is µα.[β]µγ.[δ]M, then #µα.[β]µγ.[δ]M > #µα.([δ]M){β/γ}, so the result follows by
induction.

10 The relation between �s and �∧

We will now establish a direct relation between the notion of strict negated intersection type
assignment ‘�s’ and that of intersection type assignment ‘�∧’ as defined in [12].

To be able to express the relation between ‘�∧’ and ‘�s’, we need to reason through approx-
imants. In Theorem 8.4 we have shown the approximation result for ‘�s’; a similar result has
been shown for ‘�∧’ by de’Liguoro [31].

Theorem 10.1 ([31]) Γ �∧ M : δ | ∆ ⇐⇒ ∃A ∈A(M) [Γ �∧ M : δ | ∆ ].

Using these two results, we will now establish the relation between ‘�∧’ and ‘�s’. We first
state some properties of ‘�∧’, as shown in [12].

Lemma 10.2 ([12]) If Γ′ ≤∧ Γ, ∆′ ≤∧ ∆, σ ≤∧ τ, and Γ �∧ T : σ | ∆, then Γ′ �∧ T : τ | ∆′ .

Lemma 10.3 (Generation Lemma for ‘�∧’ [12]) Let δ ∼/∧ ω and κ ∼/∧ ω:

Γ �∧ x : δ | ∆ ⇐⇒ ∃x:δ ∈ Γ [δ′ ≤∧ δ ]

Γ �∧ λx.M : δ | ∆ ⇐⇒ ∃ I∀ i ∈ I ∃δi,κi,ρi [Γ, x:δi �∧ M : κi →ρi | ∆ & ∧I δi×κi →ρi ≤∧ δ ]

Γ �∧ MN : δ | ∆ ⇐⇒
∃ I∀ i ∈ I ∃δi,κi,ρi [Γ �∧ M : δi×κi →ρi | ∆ & Γ �∧ N : δi | ∆ & ∧Iκi →ρi ≤∧ δ ]

Γ �∧ [α]M : κ | ∆ ⇐⇒ ∃κ′, I∀ i ∈ I ∃δi [Γ �∧ M : δi | ∆ & α:κ′ ∈ ∆ & ∧I δi×κ′ ≤∧ κ ]

Γ �∧ µα.C : δ | ∆ ⇐⇒ ∃ I∀ i ∈ I ∃κi,ρi,κ′i [Γ �∧ C : (κi →ρi)×κi | α:κ′i ∈ ∆ & ∧Iκ
′
i →ρi ≤∧ δ ]

We can show that when restricting ‘�∧’ to λµ, the equivalent of rules (µ2) and (µ1) of ‘�s’
are inherently present.

Lemma 10.4 i) If Γ �∧ µα.[α]P : κ→ρ | ∆, then there exists κ′ such that κ ≤∧ κ′ and Γ �∧ P : κ′→ρ |
α:κ,∆.

ii) If Γ �∧ µα.[β]P : κ→ρ | β:κ′,∆, then there exists κ′′ such that κ′ ≤∧ κ′′ and Γ �∧ P : κ′′→ρ |
α:κ, β:κ′,∆.

Proof : i) By Lemma 10.3, there exists I such that for all i ∈ I there are κi, κ′i , ρi, and Mi such
that for every m ∈ Mi there is a δm

i , such that:

∀ i ∈ I [∀m ∈ Mi [Γ �∧ A′ : δm
i | α:κ′i ,∆ ] &

∧Mi δm
i ×κ′i ≤∧ (κi →ρi)×κi ] & ∧I κ′i →ρi ≤∧ κ→ρ.
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Γ � P : ∧Nm
i
(ηm

i,n→ρm
i,n) | α:κ′i ,∆

(Cmd)
Γ � [α]P : ∧Nm

i
(ηm

i,n→ρm
i,n)×κ′i | α:κ′i ,∆ (∀m ∈ Mi)

(∧)
Γ � [α]P : ∧Mi ∧Nm

i
(ηm

i,n→ρm
i,n)×κ′i | α:κ′i ,∆

(≤∧) (†)
Γ � [α]P : (κi →ρi)×κi | α:κ′i ,∆

(µ)
Γ � µα.[α]P : κ′i →ρi | ∆ (∀i ∈ I)

(∧)
Γ � µα.[α]P : ∧I(κ

′
i →ρi) | ∆

(≤∧) (‡)
Γ � µα.[α]P : κ→ρ | ∆

Γ �∧ A′ : ∧Nm
i
(ηm

i,n→ρm
i,n) | α:κi, β:κ′,∆

(Cmd)
Γ �∧ [β]A′ : ∧Nm

i
(ηm

i,n→ρm
i,n)×κ′ | α:κi , β:κ′ ,∆ (∀m ∈ Mi)

(∧)
Γ �∧ [β]A′ : ∧Mi ∧Nm

i
(ηm

i,n→ρm
i,n)×κ′ | α:κi , β:κ′ ,∆

(≤∧) (†)
Γ �∧ [β]A′ : (κ′i →ρi)×κ′i | α:κi , β:κ′,∆

(µ)
Γ �∧ µα.[β]A′ : κi →ρi | β:κ′,∆ (∀i ∈ I)

(∧)
Γ �∧ µα.[β]A′ : ∧Iκi →ρi | β:κ′ ,∆

(≤∧) (‡)
Γ �∧ µα.[β]A′ : κ→ρ | β:κ′ ,∆

Figure 4: Two derivations for the proof of Lemma 10.4

Let δm
i = ∧Nm

i
(ηm

i,n→ρm
i,n), then (without loss of generality) by Lemma 10.3 the derivation

for Γ �∧ µα.[α]P : κ→ρ | ∆ is shaped as the left-hand derivation in Figure 4.
Notice that there exists some a ∈ I such that κ ≤∧ κ′a and ρa ≤∧ ρ by step (‡), and

κ′a ≤∧ κa, κa ≤∧ ηb
a,c and ρb

a,c ≤∧ ρa, for some b ∈ Ma and c ∈ Nb
a by step (†). Then, by

Lemma 10.2, Γ �∧ P : ηb
a,c→ρb

a,c | α:κ,∆. Take κ′ = ηb
a,c; notice that ρb

a,c ≤∧ ρa ≤∧ ρ, so by
applying (≤∧) we get Γ �∧ P : κ′→ρ | α:κ,∆.

ii) Then by Lemma 10.3 there exists I such that for all i ∈ I there are κi, κ′i , ρi, and Mi such
that for every m ∈ Mi there are δm

i such that:

∀ i ∈ I [∀m ∈ Mi [Γ �∧ A′ : δm
i | α:κi, β:κ′,∆ ] &

∧Ji δm
i ×κ′ ≤∧ (κi →ρi)×κi ] & ∧I κ′i →ρi ≤∧ δ.

Let δm
i = ∧Nm

i
(ηm

i,n→ρm
i,n), then the derivation for Γ �∧ µα.[β]P : κ→ρ | β:κ′,∆ is shaped

(without loss of generality) as the right-hand derivation in Figure 4.
Notice that, by step (‡), there exists some a ∈ I such that κ ≤∧ κa and ρa ≤∧ ρ and

κ′ ≤∧ κ′a, κ′a ≤∧ ηb
a,c, by step (†), and ρb

a,c ≤∧ ρa, for some b ∈ Ma and c ∈ Nb
a . Then, by

Lemma 10.2, Γ �∧ P : ηb
a,c→ρb

a,c | α:κ, β:κ′,∆. Take κ′′ = ηb
a,c; notice that ρb

a,c ≤∧ ρa ≤∧ ρ, and
by applying (≤∧) we get Γ �∧ P : κ′′→ρ | α:κ, β:κ′,∆.

A direct result of this lemma, in combination with Lemma 2.7, is that the type assignment
system for ‘�∧’, restricted to λµ, can be defined as follows (replacing rules (Cmd) and (µ) of
‘�∧’):

(Ax) : Γ, x:δ � x : δ | ∆ (ω) : Γ � M : ω | ∆

(Abs) :
Γ, x:δ � M : κ→ρ | ∆

(x ∈/ Γ)
Γ � λx.M : δ×κ→ρ | ∆

(µ1) :
Γ � M : κ′′→ρ | α:κ, β:κ′ ,∆

(α ∈/ ∆,κ′ ≤∧ κ′′)
Γ � µα.[β]M : κ→ρ | β:κ′ ,∆

(App) :
Γ � M : δ×κ→ρ | ∆ Γ � N : δ | ∆

Γ � MN : κ→ρ | ∆
(µ2) :

Γ � M : κ′→ρ | α:κ,∆
(α ∈/ ∆,κ ≤∧ κ′)

Γ � µα.[α]M : κ→ρ | ∆

(∧) :
Γ � M : δ1 | ∆ · · · Γ � M : δn | ∆

Γ � M : δ1 ∩ · · · ∩ δn | ∆
(≤∧) :

Γ � M : δ | ∆ δ ≤∧ δ′

Γ � M : δ′ | ∆

bringing it closer to ‘�s’.
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We will also need the following result, which states that strict types are representatives of
equivalence classes of types in ‘�∧’ under ∼∧. Remember that our strict negated types are a
subset of the full intersection types, ¬C = C→υ, and that we read Ω as ω. Also, to simplify
the following proof, we will assume that all υ ∈ TR are equivalent under ∼∧.

Lemma 10.5 For every δ there exists S (called δ∗) such that δ ∼∧ S, and for every κ there exists C
(called κ∗) such that κ ∼∧ C.

Proof : By simultaneous induction on the structure of types.

(δ = κ→ρ) : (ρ = υ) : By induction, there exists C such that κ ∼∧ C; then ¬C ∼∧ κ→υ.
(ρ = ω) : Notice that ω ≤∧ ω→ω ≤∧ κ→ω ≤∧ ω, so κ→ω ∼∧ ω; take S = ω.
(ρ = ρ1 ∧ ρ2 ) : Notice that κ→ρ1 ∧ ρ2 ∼∧ (κ→ρ1)∧ (κ→ρ2); by induction, there exist S1, S2

such that S1 ∼∧ κ→ρ1 and S2 ∼∧ κ→ρ2, so S1 ∩ S2 ∼∧ (κ→ρ1) ∧ (κ→ρ2) ∼∧ κ→ρ1 ∧ ρ2.
(δ = ω) : Take S = ω.
(δ = δ1 ∧ δ2 ) : By induction, there exists S1, S2 such that S1 ∼∧ δ1 and S2 ∼∧ δ2. Take S =

S1 ∩S2.
(κ = δ×κ ) : By induction, there exist S, D such that S ∼∧ δ and D ∼∧ κ. Take C = S ×D.
(κ = ω) : Take C = Ω.
(κ = κ1 ∧ κ2 ) : By induction, there exists C1, C2 such that κ1 ∼∧ C1 and κ2 ∼∧ C2. Take

C = C1∩C2.

We will also use the notation Γ∗ and ∆∗; their intended meaning should be clear.
We now show that we can relate the systems ‘�∧’ and ‘�s’ for approximants.

Lemma 10.6 Γ �∧ A : δ | ∆ if and only if there exists S , Γ′, ∆′ such that Γ ≤∧ Γ′, ∆ ≤∧ ∆′, S ≤∧ δ,
and Γ′ �s A : S | ∆′.

Proof : (⇒) : By induction on the height of derivations; notice that whenever a result is de-
rived in a proper sub-derivation, its height is strictly smaller.

(Ax) : Then A= x and x:δ∈ Γ. By Lemma 3.8 we can derive Γ∗ �s x : δ∗ |∆∗. By Lemma 10.5
we have δ∗ ∼∧ δ, so also δ∗ ≤∧ δ; since Γ∗ ∼∧ Γ and ∆∗ ∼∧ ∆, we also have Γ ≤∧ Γ∗ and
∆ ≤∧ ∆∗.

(Abs) : Then A = λx.A′, δ = δ0×κ→ρ and Γ, x:δ0 �∧ A′ : κ→ρ | ∆ in a sub-derivation. By
induction, there exists S ′, Γ′, δ′0, and ∆′ such that Γ, x:δ0 ≤∧ Γ′, x:δ′0, ∆≤∧ ∆′, S ′ ≤∧ κ→ρ

and Γ′, x:δ′0 �s A′ : S ′ | ∆′.
Since S ′ ≤∧ κ→ρ, by Proposition 3.3:(ii) we can assume S ′ = A = ¬C = C→υ ≤∧ κ→ρ.
Then Γ′, x:δ′0 �s A′ : ¬C | ∆′ and by (Abs) also Γ′ �s λx.A′ : ¬(δ′0×C) | ∆′. Observe that
from Γ, x:δ0 ≤∧ Γ′, x:δ′0 we have Γ ≤∧ Γ′ and δ0 ≤∧ δ′0, so also ¬(δ′0×C) = δ′0×C→υ ≤∧
δ0×κ→ρ ≤∧ δ.

(App) : Then A = xA1 · · ·An, δ = κ→ρ. By Lemma 10.3 there are δ1, . . . , δn such that
Γ �∧ Ai : δi | ∆ in a sub-derivation, for all i ∈ n, and Γ ≤∧ {x:δ1× · · · ×δn ×κ→ρ}.
By induction, for all i ∈ n there exists S i, Γi, ∆ i such that Γ ≤∧ Γi, ∆ ≤∧ ∆ i, S i ≤∧
δi and Γi �s Aj : S i | ∆ i. By Lemma 10.5 there exist C such that ¬C ∼∧ κ→ρ. By
Lemma 3.8 we can derive ∩i∈n Γi ∩ {x:¬(S1× · · · × Sn ×C)} �s xA1 · · ·An : ¬C | ∩i∈n∆ i.
Since δ1× · · · ×δn ×κ→ρ≤∧ ¬(S1× · · · × Sn ×C) and Γ ≤∧ Γi, we also have Γ ≤∧ ∩n Γi ∩
{ x:¬(S1× · · · × Sn ×C)}; also, ¬C ≤∧ κ→ρ = δ, and ∆ ≤∧ ∩n∆ i.

(∩I) : Then δ = δ1∩ · · · ∩δn, and, for every i ∈ n, Γ �∧ A : δi |∆ in a sub-derivation. Then by
induction there are S i, Γi, ∆ i such that Γ ≤∧ Γi, ∆ ≤∧ ∆ i, S i ≤∧ δi, and Γi �s A : S i | ∆ i.
But by Lemma 3.8 then also ∩n Γi �s A : ∩n S i | ∩n∆ i; notice that Γ ≤∧ ∩n Γi, ∆ ≤∧ ∩n∆ i,
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and ∩n S i ≤∩nδi = δ.
(ω ) : Take Γ′ = ∅ = ∆′, and S = ω; notice that ∅ �s A : ω | ∅ and that Γ ≤∧ ∅ and ∆ ≤∧ ∅.
(µ1 ) : Then A = µα.[β]A′, with α �= β, δ = κ→ρ and there exists κ′, κ′′ such that κ′ ≤∧ κ′′

and Γ �∧ A′ : κ′′→ρ | α:κ, β:κ′,∆ in a sub-derivation. Then, by induction, there exist
S ′, Γ′, C, C′, and ∆′ such that Γ ≤∧ Γ′, ∆ ≤∧ ∆′, κ ≤∧ C, κ′ ≤∧ C′, S ′ ≤∧ κ′′→ρ, and
Γ′ �s A′ : S ′ | α:C, β:C′,∆′.
Since S ′ ≤∧ κ′′→ρ, we can assume S ′ = A = ¬D = D→υ ≤∧ κ′′→ρ, so κ′′ ≤∧ D, and
υ ≤∧ ρ. By Lemma 3.9 Γ′ �s A′ : ¬D | α:C, β:C′ ∩D,∆′, so by (µ1) we obtain Γ′ �s µα.[β]A′ :
¬C | β:C′ ∩D,∆′. Notice that Γ ≤∧ Γ′, β:κ′,∆ ≤∧ β:C′ ∩D,∆′, since both κ′ ≤∧ C′ and
κ′ ≤∧ κ′′ ≤∧ D, and ¬C ≤∧ κ→ρ, since κ ≤∧ C and υ ≤∧ ρ.

(µ2 ) : Then A = µα.[α]A′ and δ = κ→ρ and there exists κ′ such that κ ≤∧ κ′ and Γ �∧ A′ :
κ′→ρ | α:κ,∆ in a sub-derivation. Then, by induction, there exist S ′, Γ′, C, and ∆′ such
that Γ ≤∧ Γ′, ∆ ≤∧ ∆′, κ ≤∧ C, S ′ ≤∧ κ′→ρ, and Γ′ �s A′ : S ′ | α:C,∆′. As above, since
S ′ ≤∧ κ′→ρ, we can assume S ′ = A =¬D≤∧ κ′→ρ, so κ′ ≤∧ D, and υ ≤∧ ρ. By Lemma 3.9
we also have Γ′ �s A′ : ¬D | α:C∩D,∆′, so by (µ2) we get Γ′ �s µα.[α]A′ : ¬(C∩D) | ∆′.
Notice that Γ ≤∧ Γ′, ∆≤∧ ∆′, and ¬(C∩D)≤∧ κ→ρ, since κ ≤∧ C and κ ≤∧ κ′ ≤∧ D, and
υ ≤∧ ρ.

(≤∧ ) : Then there exists δ′ such that δ′ ≤∧ δ and Γ � A : δ′ | ∆ in a sub-derivation. Then,
by induction, there exist S ′, Γ′, and ∆′ such that Γ ≤∧ Γ′, ∆ ≤∧ ∆′, S ′ ≤∧ δ′, and Γ′ �s
A : S ′ | ∆′. Since δ′ ≤∧ δ, also S ′ ≤∧ δ.

(⇐) : Immediate, since ‘�s’ is a subsystem of ‘�∧’, and Lemma 10.2.

We can now state the exact relation between ‘�∧’ and ‘�s’.

Theorem 10.7 Γ �∧ M : δ | ∆ ⇐⇒ ∃S, Γ′,∆′ [Γ ≤∧ Γ′ & ∆ ≤∧ ∆′ & S ≤∧ δ & Γ′ �s M : S | ∆].

Proof : Γ �∧ M : δ | ∆ ⇐⇒ (10.1)
∃A ∈A(M) [Γ �∧ A : δ | ∆ ] ⇐⇒ (10.6)
∃S, Γ′,∆′, A ∈ A(M) [Γ ≤∧ Γ′ & ∆ ≤∧ ∆′ & S ≤∧ δ & Γ′ �s A : S | ∆′ ] ⇐⇒ (8.4)
∃S, Γ′,∆′ [Γ ≤∧ Γ′ & ∆ ≤∧ ∆′ & S ≤∧ δ & Γ′ �s M : S | ∆′ ]

Notice that this result states that a derivation in ‘�∧’ can be represented by one in ‘�s’ (which
is a derivation in ‘�∧’ as well), with the rule (≤∧) applied only to term variables or as the last
step. So in a sense, ‘�s’ is the ‘kernel’ of ‘�∧’.

It is now straightforward to show the following characterisation results for ‘�∧’ as well.

Theorem 10.8 i) If Γ �∧ M : δ | ∆ and M =βµ N, then Γ �∧ N : δ | ∆.
ii) There exists Γ, δ �= ω, and ∆ such that Γ �∧ M : δ | ∆, if and only if M has a head normal form.

iii) There exists ω-free Γ, ∆, and δ such that Γ �∧ M : δ | ∆, if and only if M has a normal form.

Proof : i) By Theorem 10.7 and the corresponding result for ‘�s’, Theorem 4.5 and 8.4, respec-
tively.

ii)(only if ) : If Γ �∧ M : δ | ∆, then, by Theorem 10.7, there exists S, Γ′, ∆′ such that Γ ≤∧ Γ′,
∆ ≤∧ ∆′, S ≤∧ δ, and Γ′ �s M : S | ∆′. Since δ �= ω, there exist A1, . . . , An with n > 0 such
that S = ∩n A i and Γ′ �s M : A i | ∆′ for all i ∈ n. Then by Theorem 8.5, M has a head
normal form.

(if ) : If M has a head normal form then by Theorem 8.5 there exist Γ, ∆, and A such
that Γ �s M : A | ∆. Since every derivation in ‘�s’ corresponds to one in ‘�∧’, the result
follows directly.

iii) Much the same as the previous point. Notice that, by construction of the proofs of
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Lemma 10.5 and 10.6, ω is never selected as a type to construct Γ′, ∆ or S , and there-
fore for any T and δ used in either, if T ≤∧ δ or δ ≤∧ T and δ is ω-free, then so is T.
Observe that, as already remarked after the proof of Theorem 9.8, ω might appear inside
the derivation.

The equivalent of the approximation result for ‘�∧’ was already shown by deLiguoro [31]
(cited above in Definition 10.1), and is needed to show Theorem 10.7. The equivalent of the
characterisation of strong normalisation, Theorem 9.12, for ‘�∧’ was shown in [12]. Since ω

might be introduced inside a derivation constructed in the proof of Theorem 4.5 (that is used
in the proof of Theorem 8.4, which is used in the proof of Theorem 10.7), this result does not
follow directly from Theorem 10.7.

11 On type variables

We should point out that, since reflecting directly the structure of the domain, the notion of
type in this paper (and that of [12]) is rather non-standard, in that types are defined with-
out type variables. As far as the construction of a filter model is concerned, this creates no
problems, but it is now impossible to define a notion of principal types in the traditional way,
i.e. based around the operation of type-substitution, that replaces type variables by types.
Moreover, it is now not clear how to relate this notion of type assignment to the more familiar
ones as appeared in [18, 2, 33].

When adding type variables to the negated types we have considered so far, we would aim
to derive, for example,

x:¬(¬ϕ× ϕ′)∩¬ϕ � x : ¬(¬ϕ× ϕ′) | ∅ x:¬(¬ϕ× ϕ′)∩¬ϕ � x : ¬ϕ | ∅

x:¬(¬ϕ× ϕ′)∩¬ϕ � xx : ¬ϕ′ | ∅

∅ � λx.xx : ¬((¬(¬ϕ× ϕ′)∩¬ϕ)× ϕ′) | ∅

(notice the absence of Ω). This example suggests that a (non-negated) type variable should
be a continuation type, and comes at the end. So adding type variables seems to lead to the
following definition of types:

A, B ::= ¬C
R, S , T ::= ω | A1∩ · · · ∩ An (n ≥ 1)

C, D ::= ϕ | S ×C

Now the problem is that we can no longer see C ∩D as a short hand of the ‘zipped up’
version of C and D that we considered above. Take for example:

(Ax)
x:¬ϕ � x : ¬ϕ | α:ϕ′,γ:(¬ϕ∩ ϕ′)× ϕ

(Abs)
∅ � λx.x : ¬(¬ϕ× ϕ) | α:ϕ′,γ:(¬ϕ∩ ϕ′)× ϕ

(µ1) ((¬ϕ∩ ϕ′)× ϕ ≤s ¬ϕ× ϕ)
∅ � µα.[γ]λx.x : ¬ϕ′ | γ:(¬ϕ∩ ϕ′)× ϕ

(µ2) ((¬ϕ∩ ϕ′)× ϕ ≤s ϕ′)
∅ � µγ.[γ]µα.[γ]λx.x : ¬((¬ϕ∩ ϕ′)× ϕ) | ∅

Notice that the ‘zipped’ version of the two types for γ, ¬ϕ× ϕ and ϕ′, i.e. (¬ϕ∩ ϕ′)× ϕ as
used in the derivation above, is not a continuation type: the intersection of ¬ϕ and ϕ′ is not
an intersection of negated continuation types.

This forces us to add the intersection of continuation types explicitly and has an impact
on the inference rules: since a continuation type can be an intersection, a basic type can
be of the shape ¬(C ∩D), so we no longer have that a term in the left-hand side of an ap-
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plication has a type of the shape ¬(S ×C). In fact, it will now have a type of the shape
¬((S1×C1)∩ · · · ∩ (Sn× Cn)), and we can safely apply this only to a term that has all the types
S i (i ∈ n). This yields:

Definition 11.1 i) We define strict negated intersection types with type variables through the
grammar:

A , B ::= ¬C (negated types)
R, S, T ::= ω | A1∩ · · · ∩ An (n ≥ 1) (intersection types)

C, D ::= ϕ | S ×C (strict continuation types)
C, D ::= C1 ∩ · · · ∩Cn (n ≥ 1) (continuation types)

ii) The type inclusion relation is defined by:

(J ⊆ I)
∩I A i ≤ ∩J A j

S ≤ A i (∀i ∈ I)

S ≤ ∩I A i

ϕ ≤ ϕ
(J ⊆ I)

∩I C i ≤ ∩J C j

C ≤ C i (∀i ∈ I)
(I �= ∅)

C ≤ ∩I C i

S i ≤s T i (∀i ∈ m)
(n ≥ m)

S1× · · · ×Sn ≤s T1× · · · × Tm

iii) Type assignment is defined through the rules:

(Ax) : (S ≤s A)
Γ, x:S � x : A | ∆ (∩) :

Γ � M : A i | ∆ (∀ i ∈ I)
(I = ∅ ∨ |I| ≥ 2)

Γ � M : ∩I A i | ∆

(Abs) :
Γ, x:S � M : ¬C | ∆

(x ∈/ Γ)
Γ � λx.M : ¬(S ×C) | ∆

(µ1) :
Γ � M : ¬D | α:C, β:C′,∆ (β �= α ∈/ ∆,

C′ ≤s D)Γ � µα.[β]M : ¬C | β:C′,∆

(App) :
Γ � M : ¬(∩n(S i ×C i)) | ∆ Γ � N : S i | ∆ (∀i ∈ n)

Γ � MN : ¬(∩n C i) | ∆
(µ2) :

Γ � M : ¬D | α:C,∆
(α ∈/ ∆,C ≤s D)

Γ � µα.[α]M : ¬C | ∆

We use ‘�s
ϕ’ for derivable judgements in this system.

Apart from the fact that negated types are used, and intersection is used to group continuation
types, we can show that this system is actually that one defined in [6], which we will now
quickly review.

In [6] a notion of intersection and union type assignment was presented for λµ, inspired
by similar notions for X [8] and λµµ̃ [5]. The main result shown there is that this system is
closed for conversion.

The point of view of [6] is to see λµ’s context variables α as names for possible continuations
that in the philosophy of intersection types need not all be typed with the same type; therefore
multiple types are allowed for context variables in the environment ∆. As in [5, 8], these types
are grouped using a new type constructor, called union mainly for historical reasons. This
union type constructor is not the standard one, since the system has no ‘normal’ rules for for
union, traditionally formulated (as in [16], for example) via

(∪I) :
Γ � M : A | ∆

Γ � M : A∪B | ∆
(∪E) :

Γ � N : A∪B | ∆ Γ, x:A � M : C | ∆ Γ, x:B � M : C | ∆

Γ � M{N/x} : C | ∆

These create the subject-reduction problem dealt with in that paper by considering parallel
reduction.

Binding a context variable as in µα.[β]M then naturally has a union type ∪n Ai; reduction of
the term (µα.[β]M)N will bring the operand N to each of the (pseudo) sub-terms in M of the
shape [α]Q, where Q has type Ai; since N gets placed behind Q, this implies that Ai = Ci→Bi

and that therefore the type for α should be ∪n(Ci→Bi); this then also implies that N should
have all the types Ci (∀i ∈ n); (→E) as below (Definition 11.3) expresses exactly that. The only
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‘functionality’ we need for union types therefore is the ability to choose a collection of types
for α amongst those stored in ∆; this is represented by (∪E).

Definition 11.2 (The system �∩∪) i) The set of types for intersection-union type assignment
is defined by the grammar:

A, B ::= ϕ | B1∪· · ·∪Bm | σ→B (m ≥ 0) (strict types)
σ ::= A1∩ · · · ∩ An (n ≥ 0)

As above, we call A1∩ · · · ∩ An (with n ≥ 0) an intersection type, and call B1∪· · ·∪Bm (with
m ≥ 0) a union type; we use � for the empty intersection type, and ⊥ for the empty union
type.

ii) The relation ‘≤’ is defined as:

A1∩ · · · ∩An ≤ Ai, (for all i ∈ n, n ≥ 1)
σ ≤ Ai, for all i ∈ n ⇒ σ ≤ A1∩ · · · ∩ An, (n ≥ 0)

Bj ≤ B1∪· · ·∪Bm, (for all j ∈ m, m ≥ 1)
Bj ≤ σ, for all j ∈ m ⇒ B1∪· · ·∪Bm ≤ σ, (m ≥ 0)

iii) A left environment Γ is a partial mapping from term variables to intersections of strict
types, and we write x:σ ∈ Γ if Γ (x) = σ. Similarly, a right environment ∆ contains only
strict types, which can be union types.

Notice that we consider union types to be strict as well; this implies that we allow an intersec-
tion of union types, a union of union types, but not a union of intersection types.

Definition 11.3 (The system ‘�∩∪’) Intersection-union type assignment for λµ is defined via
the inference rules:

(∩E) : (i ∈ n)
Γ, x:∩n Ai � x : Ai | ∆ (∩I) :

Γ � M : Ai | ∆ (∀i ∈ n)
(n ≥ 0,n �= 1)

Γ � M : ∩n Ai | ∆

(→I) :
Γ, x:σ � M : B | ∆

(x ∈/ Γ)
Γ � λx.M : σ→B | ∆

(→E) :
Γ � M : ∪ J(σj→Bj) | ∆ Γ � N : σj | ∆ (∀j ∈ J)

(n ≥ 1)
Γ � MN : ∪ J Bj | ∆

(∪E) :
Γ � M : ∪m Bj | β:∪n Ai,α:B,∆

(∪m Bj ≤ ∪n Ai)
Γ � µα.[β]M : B | β:∪n Ai,∆

Γ � M : ∪m Bj | β:∪n Ai,∆
(∪m Bj ≤ ∪n Ai)

Γ � µβ.[β]M : ∪n Ai | ∆

We write Γ �∩∪ M : A | ∆ if this statement is derivable using these rules.

Notice that the traditional (→E) is obtained by taking n = 1 in the corresponding rule
above. Moreover, all σj can be intersection types, so each can be �; this is why that rule is not
formulated using Γ �∩∪ N : ∩J σj | ∆. Moreover, if x:∪m Bj ∈ Γ, then it is only possible to derive
Γ �∩∪ x : ∪mBj | ∆, i.e. we have no way of eliminating a union assigned to a term variable.
Since in ‘�s’ we do not allow real intersections of continuation types, our approach differs
significantly from that of ‘�∩∪’; in a certain sense, in ‘�s’ we use streams of intersection types,
whereas in ‘�∩∪’ intersections of stream types (modelled using union) are used.

The main result shown in [6] is:

Theorem 11.4 (Subject reduction and expansion) If M →βµ N, then Γ �∩∪ M : σ | ∆ if and
only if Γ �∩∪ N : σ | ∆.

We can map ‘�∩∪’ into ‘�s
ϕ’, for which we define an interpretation of types.

Definition 11.5 (cf. [29]) The interpretation of types of ‘�∩∪’ to those of ‘�s
ϕ’ is defined by:
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A− =∆ ¬(A+)

(A1∩ · · · ∩ An)− =∆ A−
1 ∩ · · · ∩A−

n (n ≥ 2)
�− =∆ ω

ϕ+
i =∆ ϕi

(A→B)+ = A−×B+

(A1∪· · ·∪An)+ =∆ A+
1 ∩ · · · ∩ A+

n (n ≥ 2)
⊥+ =∆ ω

and define Γ− =∆ {x:A− | x:A ∈ Γ} and ∆+ =∆ {α:A+ | α:A ∈ ∆}.

We can now show:

Theorem 11.6 If Γ �∩∪ M : A | ∆, then Γ− �s
ϕ M : A− | ∆+.

Proof : By induction on the structure of derivations.

(∩E) : Then M ≡ x, Γ = Γ′, x:A1∩ · · · ∩An with n ≥ 1, and A = Ai, for some i ∈ n. Then
Γ− = Γ′−, x:A−

1 ∩ · · · ∩A−
n ; notice that A−

1 ∩ · · · ∩ A−
n ≤s A−

i , so Γ− �s
ϕ x : A− | ∆+.

(∩I) : Then A = A1∩ · · · ∩ An with n ≥ 2, and Γ �λ∩ M : Ai , for all i ∈ n. Then by induction
Γ− �s

ϕ M : A−
i | ∆+, and Γ− �s

ϕ M : A− | ∆+ follows by (∩).
(→I ) : Then M = λx.N, A = B→C, and Γ, x:B �λ∩ N : C ; by induction, Γ−, x:B− �s

ϕ N : C− |
∆+. Since (B→C)− = ¬(B−×C+), and C− = ¬(C+), by applying (Abs) we get Γ− �s

ϕ

λx.N : B−×¬(C+) | ∆+, so Γ− �s
ϕ λx.N : A− | ∆+.

(→E) : Then M = PQ, and there exists B such that Γ �λ∩ P : B→A and Γ �λ∩ Q : B . Then by
induction Γ− �s

ϕ P : (B→A)− | ∆+ and Γ− �s
ϕ Q : B− | ∆+. Since (B→A)− = ¬(B−×A+),

by (App) we get Γ− �s
ϕ PQ : ¬(A+) | ∆+, so Γ− �s

ϕ PQ : A− | ∆+.
(∪E) : We have two cases:

(M = µα.[β]N, with α �= β) : Then ∆ = β:∪n Ai,∆′, and Γ �∩∪ N : ∪m Bj | β:∪n Ai,α:A,∆′ and
∪m Bj ≤ ∪n Ai. Then, by induction, Γ− �s

ϕ N : (∪mBj)
− | β:(∪n Ai)

+,∆′+, so

Γ− �s
ϕ N : ¬(B+

1 ∩ · · · ∩B+
m) | β:A+

1 ∩ · · · ∩ A+
n ,α:A+,∆′+.

Notice that ∩mB+
j ≤s ∩n A+

i , so by (µ1) we get

Γ− �s
ϕ

µα.[β]N : ¬(A+) | β:A+
1 ∩ · · · ∩A+

n ,∆′+

so Γ− �∩∪ µα.[β]N : A− | β:(∪n Ai)
+,∆′+ .

(M = µβ.[β]N ) : Then A = ∪n Ai, Γ �∩∪ N : ∪m Bj | β:∪n Ai,∆ and ∪m Bj ≤ ∪n Ai. Then, by
induction, Γ− �s

ϕ N : (∪mBj)
− | β:(∪n Ai)

+,∆+, so Γ− �s
ϕ N : ¬(∩mB+

j ) | β:∩n A+
i ,∆+. No-

tice that ∩m B+
j ≤s ∩n A+

i , so by (µ2) we get Γ− �s
ϕ

µβ.[β]N : ¬(∩n A+
i ) | ∆+ so Γ− �∩∪

µβ.[β]N : A− | ∆+ .

So the version of ‘�s’ extended with type variables corresponds to ‘�∩∪’; it seems obvious
that it is possible to show all the characterisation results of this paper for ‘�s

ϕ’ as well, but will
skip those results here.

Conclusions and future work

We have shown that a strict version of the intersection type system for λµ of [12] is as expres-
sive as the full version, by showing that it is closed under conversion. We have shown that
derivation reduction (a kind of cut-elimination) is strongly normalisable, and that a number
of characterisation properties follow from that as a direct consequence. We have shown that
the system without the type constant ω characterises the strongly normalisable terms and that
we can characterise normalisation as well. We have also shown an approximation theorem,
and from that a characterisation of head normalisation.
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We have investigated the relation between the full system of [12] and the one presented here,
and shown, through the approximation result, that a derivation in the full system essentially
contains a derivation in the strict system, with the rule (≤∧) applied only on the outside. We
also compared the strict system with that of [6], and found that the latter corresponds to the
strict system, extended with type variables.

We will investigate the definition of a strict filter semantics for λµ, as well as the structure
of the domain, if any, that corresponds to the intersection type theory defined here.
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