
Computation with Classical Sequents

(Mathematical Structures in Computer Science, 18:555-609, 2008)

Steffen van Bakel* and Pierre Lescanne

Department of Computing, Imperial College London, 180 Queen’s Gate London SW7 2BZ, U.K.
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Abstract

X is an untyped continuation-style formal language with a typed subset which provides a
Curry-Howard isomorphism for a sequent calculus for implicative classical logic. X can also
be viewed as a language for describing nets by composition of basic components connected
by wires. These features make X an expressive platform on which many different (applica-
tive) programming paradigms can be mapped. In this paper we will present the syntax
and reduction rules for X ; in order to demonstrate its expressive power, we will show how
elaborate calculi can be embedded, like the λ-calculus, Bloo and Rose’s calculus of explicit
substitutions λx, Parigot’s λµ and Curien and Herbelin’s λµµ̃.
X was first presented in [35] where it was called the λξ-calculus. It can be seen as the pure
untyped computational content of the reduction system for implicative classical sequent
calculus of [45].

1 Introduction

There exists a number of systems in the literature that link Classical Logic with a notion of

computation. In the past, say before Herbelin’s PhD [31] and Urban’s PhD [45], the study of

the relation between computation, programming languages and logic has concentrated mainly on

natural deduction systems. In fact, these carry the predicate ‘natural’ deservedly; in comparison

with, for example, sequent style systems, natural deduction systems are easy to understand and

reason about. This holds most strongly in the context of non-classical logics; for example, the

relation between Intuitionistic Logic and the Lambda Calculus (with types) is well studied and

understood, and has resulted in a vast and well investigated area of research, resulting in,

amongst others, functional programming languages and much further to system F [26] and

the Calculus of Constructions [18].

An example of an approach for representing classical proofs, Parigot’s λµ-calculus [40] is

a natural deduction system in which there is one main conclusion that is being manipulated

and possibly several alternative ones. Adding conflict, ⊥, as pseudo-type (only negation, or

A→⊥, is expressed; ⊥→A is not a type), the λµ-calculus corresponds to minimal classical

logic [4]. The link between Classical Logic and continuations and control was first established

for the λC-Calculus [29] (where C stands for Felleisen’s C operator).

The sequent calculus, introduced by Gentzen in [24], is a logical system in which the rules

only introduce connectives (but on both sides of a sequent), in contrast to natural deduc-

tion which uses introduction and elimination rules. The only way to eliminate a connective

is to eliminate the whole formula in which it appears, via an application of the (cut)-rule.

* Partially supported by École Normale Supérieure de Lyon, France
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Gentzen’s calculus for classical logic LK allows sequents of the form A1, . . . , An ⊢ B1, . . . , Bm,

where A1, . . . , An is to be understood as A1∧ . . .∧An and B1, . . . , Bm is to be understood as

B1∨ . . .∨Bm. Thus, lk appears as a very symmetrical system.

A symmetrical lambda calculus was defined in [10], essentially allowing an application to

be interpreted in two ways, thus encapsulating the non-determinism of cut-elimination in

Gentzen’s lk. On the other hand, the implicational sequent calculus leads to the necessity of

the left-introduction rules to manipulate hypotheses, as studied by Herbelin in [31, 19, 32].

The relation between call-by-name and call-by-value in the fragment of lk with negation and

conjunction in Wadler’s Dual Calculus is studied in [48]; as in calculi like λµ and λµµ̃, the

Dual Calculus considers a logic with active formulae.

The (cut)-rule does not increase the expressive power of the system since a cut-elimination

procedure has been defined that eliminates all applications of the (cut)-rule from the proof of

a sequent, generating a proof in normal form of the same sequent, that is, without a cut. It

is defined via rewriting steps, i.e., local reductions of the proof-tree, which has –with some

discrepancies– the flavour of the evaluation of explicit substitutions [15, 1]. Indeed, the typing

rule of an explicit substitution, say in λx [14], is nothing else but a variant of the (cut)-rule, and

a lot of work has been done to better understand the connection between explicit substitutions

and local cut-reduction procedures.

This paper, which is a continuation of [35], presents a correspondence à la Curry-Howard

for lk, bringing together the various features of two different approaches that we compare:

that of Urban [45, 47, 46] and that of Curien and Herbelin [19]. Whereas Curien and Herbelin

insist on the duality of the calculus, in [45], Urban analyses thoroughly, among other things,

Gentzen-like cut-elimination procedures, and defines a very general reduction system for

proofs in lk which is strongly normalising, and in which proofs are represented by a syntax

of terms. X is actually the implicative part of his calculus with a new syntax.

In this paper, we will try and break a spear for the sequent-style approach, and make some

further steps towards the development of a programming language based on cut-elimination

for the sequent calculus for classical logic. We will present a language called X that describes

nets, and its reduction rules that join nets. The logic we will consider contains only implica-

tion, but that is mainly because we, in this initial phase, aim for simplicity; cut-elimination in

sequent calculi is notorious for the great number of rules, which will only increase manifold

when considering more logical connectors.

To break with the natural deduction paradigm comes with a price, in that no longer ab-

straction and application (corresponding to introduction of implication and modus ponens) are the

basic tools of the extracted language. In fact, the language we obtain is more of a continuation

style, that models both the parameter as well as the context call. However, abstraction and

application can be faithfully implemented, and we will show how X can be used to describe

the behaviour of functional programming languages at a very low level of granularity.

X as a language for describing nets

The basic pieces of X can be understood as components with entrance and exit wires and

ways to describe how to connect them to build larger nets. Those components will be quickly

surveyed in the introduction and receive a more detailed treatment in Section 2. We call “nets”

the structures we build, because they are made of components connected by wires.

X as a syntax for the sequent calculus

The origins of the work presented in this paper lie, first of all, in [34], where Lengrand defined

a first approach to the definition of a calculus there called λξ that would enjoy the Curry-
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Howard property for Gentzen’s Sequent Calculus. This became the starting point for the

results presented here. During discussions in 2002 between Lengrand and the authors of

this paper, it became clear that λξ was similar to the notations for the sequent calculus as

presented first by Urban in his PhD thesis [45]. This was then studied in relation with λµµ̃

[19] by Lengrand [35] via the calculus λξ. The study of the connection between λξ and λµµ̃ as

reported on in [35] was not fortuitous, and was taken as starting point for our investigations.

We changed the name of the calculus from λξ to X in order to avoid a clash with the (ξ)-rule

of the λ-calculus, and because the use of λ unjustifiably suggests that abstraction is part of

the syntax. In this paper, we will show in detail the interplay between X and λµµ̃.

The natural context in which to study X is its role within the context of cut-elimination; for

this, X is naturally typed. From this, it is but a natural, straightforward step to extend the

research to an untyped X . This opens the possibility to not only study the relation between

X and other untyped calculi, but also to express recursion via a fixed-point construction, as

well as studying normalisation and normalising reduction strategies, and semantics.

As we strongly believe in the importance of the syntax for a better grasping of the concepts,

some of the contributions of this paper are to make the notation more intuitive and readable

by moving to an infix notation, and to insist on the computational aspect1. This is achieved by

studying X in the context of the normal functional programming languages paradigms, but,

more importantly, to cut the link between X and Classical Logic. We achieve this by studying

our language without types; this way, we also consider nets that do not correspond to proofs.

In particular, we consider also non-termination nets. In fact, we aim to study X outside the

context of Classical Logic in much the same way as the λ-calculus is studied outside the

context of Intuitionistic Logic.

X as a fine grained operational model of computation

When taking the λ-calculus as a model for programming languages, the operational behaviour

is provided by β-contraction. As is well known, β-contraction expresses how to calculate

the value of a function applied to a parameter. In this, the parameter is used to instantiate

occurrences of the bound variable in the body via the process of substitution. This description

is rather basic as it says nothing on the actual cost of the substitution, which is quite high at

run-time. Usually, a calculus of explicit substitutions [14, 1, 38, 37] is considered better suited

for an accurate account of the substitution process and its implementation. When we refer

to the calculus of explicit substitution we rather intend λx, the calculus of explicit substitution

with explicit names, due to Bloo and Rose [14]. λx gives a better account of substitution as it

integrates substitutions as first class citizens, decomposes the process of inserting a term into

atomic actions, and explains in detail how substitutions are distributed through terms to be

eventually evaluated at the variable level.

In this paper, we will show that the level of description reached by explicit substitutions

can in fact be greatly refined. In X , we reach a ‘subatomic’ level by decomposing explicit

substitutions into smaller components. At this level, the calculus X explains how substitutions

and terms interact.

The calculus is actually symmetric [10] and, unlike λx where a substitution is applied to a

term, a term in X can also be applied to a substitution. Their interaction percolates subtly

and gently through the term or substitution according to the direction that has been chosen.

We will see that the these two kinds of interaction have a direct connection with call-by-value

and call-by-name strategies, that both have a natural description in X .

1 The relation of X with its predecessors is the same as this of, say, mini-ML [17] with the lambda-calculus.
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The ingredients of the syntax

It is important to note that X does not have variables2 –like the LC or λµµ̃– as possible places

where terms might be inserted; instead, X has wires, also called connectors, that can occur

free or bound in a term. As for the λ-calculus, the binding of a wire indicates that it is active

in the computation; other than in the λ-calculus, however, the binding is not part of a term

that is involved in the interaction, but is part of the interaction itself. There are two kinds of

wires: sockets (that are reminiscent of values) and plugs (that are reminiscent of continuations),

that correspond to variables and co-variables, respectively, in [48], or, alternatively, to Parigot’s

lambda-variables and mu-variables [40] (see also [19]). Wires are not supposed to denote a

location in a term like variables in the λ-calculus. Rather, wires are seen a bit like ropes that

can be knotted or tightened (like chemical bonds) with ropes of other components.

This, in fact, corresponds in a way to the practice of sailing. Sailors give a name to each

rope (main sail halyard, port jib sheet, etc.), and on a modern competition sailboat every rope

has its own colour to be sure that one tightens (or loosens) a rope to (or from) its appropriate

place or with (or from) the appropriate rope; loosening the wrong rope can be catastrophic.

In X , those colours naturally become kinds, and like a rope has a colour, a wire has a kind.

One specificity of X is that syntactic constructors bind two wires, one of each kind3. In

X , bound wires receive a hat, so to show that x is bound we write x̂; note that using the

“hat”-notation, we are keeping in line with the old tradition of Principia Mathematica [49, 50].

That a wire is bound in a net implies, naturally, that this wire is unknown outside that

net, but also that it ‘interacts’ with another ‘opposite’ wire that is bound in another net.

The interaction differs from one constructor to another, and is ruled by basic reductions (see

Section 2). In addition to bound wires an introduction rule exhibits a free wire, that is exposed

and connectable. Often this exhibition corresponds to the creation of the wire.

Contents of this paper

In this paper we will present the formal definitions for X , via syntax and reduction rules, and

will show that the system is well-behaved by stating a number of essential properties. We

will define a notion of simple type assignment for terms in X , in that we will define a system

of derivable judgements for which the terms of X are witnesses; we will show a soundness

result for this system by showing that a subject-reduction result holds.

We will also compare X with a number of its predecessors. In fact, we will show that a

number of well-known calculi are easily, elegantly and surprisingly effectively implementable

in X . For anyone familiar with the problem of expressiveness, in view of the fact that X is

substitution-free, these result are truly novel. Except for λµµ̃, it is not possible to easily and

naturally embed X in those calculi in such a way that the major properties are preserved. This

can easily be understood from the fact that the vast majority of calculi in our area is confluent

(Church-Rosser), whereas X is not.

A tool (which can be downloaded from http://www.doc.ic.ac.uk/˜jr200/X) was developed

using the term graph rewriting technology, that allows users to not only input nets from X ,

but also terms from λ-calculus, using the interpretation of the latter into X as specified in this

paper. Details of the implementation can be found in [8, 9].

This paper presents an extended version of results that have appeared first in [35] and [7],

themselves deeply inspired by the work of Urban and Bierman [45, 47, 46].

2 We encourage the reader to not become confused by the use of names like x for the class of connectors that
are called plugs; these names are, in fact, inherited from λµµ̃.

3 This is also the case in [45, 47, 46], but this fact is made very explicit in X by the use of Principia’s notations.

http://www.doc.ic.ac.uk/~jr200/X


5

2 The X -calculus

The nets that are the objects of X are built with three kinds of building stones, or constructors,

called capsule, export and import. In addition there is an operator we call cut, which is handy

for describing net construction, and which will be eliminated eventually by rules.

2.1 The operators

Nets are connected through wires that are named. In our description wires are oriented. This

means we know in which direction the ‘ether running through our nets’ moves, and can say

when a wire provides an entrance to a net or when a wire provides an exit. Thus we make

the distinction between exit wires which we call plugs or outputs and enter wires which we

call sockets or inputs. Plugs are named with Greek letters α, β,γ,δ, etc., and sockets are named

with Latin letters x,y,z, etc.

When connecting two nets P and Q by an operator, say †, we may suppose that P has a

plug α and Q has a socket x which we want to bind together to create a flow from P to Q.

After the link has been established, the wires are plugged, and the name of the plug and the

name of the socket are forgotten. To be more precise, in P α̂ † x̂ Q the name α is not reachable

outside P and the name x is not reachable outside Q. This reminds of construction like ∀x.P

or λx.M in logic where the name x is not known outside the expressions. Those names are

said to be bound. Likewise, in X , in a construction like P α̂ † x̂ Q where α is a plug of P and x is

a socket of Q, there are two bound names, namely α and x, that are bound in the interaction.

Definition 2.1 (Syntax) The nets of the X -calculus are defined by the following grammar,

where x,y, . . . range over the infinite set of sockets, and α, β, . . . over the infinite set of plugs.

P, Q ::= 〈y·β〉 | ŷ P α̂ ·β | P α̂ [y] x̂ Q | P α̂ † x̂ Q

As an illustration, we represent the basic nets diagrammatically as:

✲
y β

✲ ✲̂x P ✲̂α ✲
β

P ✲̂α [ ] x̂✲ Q✲
y

P ✲̂α x̂ Q

Notice that, using the intuition sketched above, for example, the connector α is supposed to

not occur outside P; this is formalised below by Definition 2.2 and Barendregt’s Convention

(see also below).

We see sockets as points where nets input, and plugs where they output, and write inputs

on the left and output on the right, as is done also in [48].

We could justify the constructions of X through the example of the “translations” in a huge

international organisation4. The arguments below will be better established and formalised

in Section 3 when we will speak about types which are the correct framework. But of course

X is basically an untyped language.

Suppose wires carry words in a language like Estonian, or Portuguese, etc, but also trans-

lators from language to language like “French to Dutch.” A capsule 〈y·β〉 connects inside the

socket y with the plug β. Everything entering the capsule on y in one language will leave it

in the same language on β. An export (x̂ P α̂ ·β) can be seen as follows: P provides a device

that transforms words in a language received on x to words in a(nother) language returned

on α, therefore (ŷ Pα̂ ·β) is a translator, which can be seen as a ‘higher-order’ language, that

is returned on a specific wire β which can be connected later on. An export can also be seen

as T-diagrams like those used in compiling technology for bootstrapping (see [2], Section 11.2).

An import (P α̂ [y] x̂ Q) is required when one tries to connect two wires α and x to carry words

4 see http://europa.eu.int/comm/translation/index_en.htm

http://europa.eu.int/comm/translation/index_en.htm
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from different languages. To be able to have P and Q communicate a translator is needed,

that will be received on the wire y, a socket.

The operator † is called a cut and a term (net) of the form (P α̂ † x̂ Q) is called a cut net, and

corresponds to an operation on the switch board. A cut is specific in that it connects two nets,

connecting the socket x of Q to the plug α of P; this assumes that the language expected on

x agrees with the language delivered by α. The cut expresses the need for a rewiring of the

switch board: a language is on offer on a plug, and demanded on a socket, and “dealing”

with the cut, which expresses the need for the connection to be established, will cause the cut

to be eventually eliminated by building the connection. The calculus, defined by the reduction

rules (Section 2.2) explains in detail how cuts are distributed through nets to be eventually

erased at the level of capsules.

The following table gives the correspondence between the notations of X and those Urban

uses. Urban uses the first letters of the Latin alphabet for plugs, and the last for sockets;

he expresses input and output behaviour by using a π-calculus-like notation, putting sockets

between parentheses and plugs between angles.

〈x·α〉 Ax(x, a)

x̂ P β̂ ·α ImpR((x)(b)P, a)

P α̂ [x] ŷQ ImpL((a)P, (y)Q, x)

P α̂ † x̂ Q Cut((a)P, (x)Q)

It should be noted that, in the π-calculus, input a(x) and output a(c) are actions, that are

consumed in the communication, and written pre-fix because computation runs ‘left-to-right’:

a(x).P | a(c).Q→ P[c/x] | Q. In Urban’s notation, the brackets have a different meaning: for

example, in ImpR((x)(b)P, a), P inputs on x and outputs on b, but (x) and (b) are not actions,

but descriptions. Notice that Urban’s notation is pre-fix, which distorts the notion of ‘flow’ X

expresses; also, in ImpL((a)P, (y)Q, x), it is not clear that x will interface between P and Q.

Above we spoke about bound names; we will introduce now formally those notions with

that of free sockets and plugs into X .

Definition 2.2 The free sockets and free plugs in a net are:

fs(〈x·α〉) = {x}

fs(x̂ P α̂ · β) = fs(P)\{x}

fs(P α̂ [y] x̂ Q) = fs(P) ∪ {y} ∪ (fs(Q)\{x})

fs(P α̂ † x̂ Q) = fs(P) ∪ (fs(Q)\{x})

fp(〈x·α〉) = {α}

fp(x̂ P α̂ ·β) = (fp(P)\{α}) ∪ {β}

fp(P α̂ [y] x̂ Q) = (fp(P)\{α}) ∪ fp(Q)

fp(P α̂ † x̂ Q) = (fp(P)\{α}) ∪ fp(Q)

A socket x or plug α occurring in P which is not free is called bound, written x ∈ bs(P) and α∈ bp(P).
We will write x 6∈ fs(P, Q) for x 6∈ fs(P)∧ x 6∈ fs(Q).

We will normally adopt Barendregt’s convention (called convention on variables by Baren-

dregt, but here it will be a convention on names).

Convention on names.: In a net or in a statement, a name is never both bound and free in

the same context.

We will consider also, for example, x bound in P[y/x] and P ··· Γ, x:A ⊢X ∆ (this notion will be

introduced in Section 3).

As the main concept is that of a name, we define only renaming, i.e., replacement of a

name by another name. Indeed it would make no sense to substitute a name by a net. The

definition of renaming relies on Barendregt’s convention on names; if a binding, say x̂P of
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x in P violates Barendregt’s convention, one can get it back by renaming, i.e., ŷP[y/x]; as is

common in calculi with (some form of) explicit substitution, this renaming can be internalised

(see Section 2.5).

Definition 2.3 (Renaming of sockets and plugs)

〈x·α〉[y/x] = 〈y·α〉

〈z·α〉[y/x] = 〈z·α〉 (x 6= z)

(ẑ P α̂ · β)[y/x] = ẑ (P[y/x])α̂ · β

(P α̂ [x] ẑQ)[y/x] = (P[y/x]) α̂ [y] ẑ (Q[y/x])

(P α̂ [u] ẑQ)[y/x] = (P[y/x]) α̂ [u] ẑ (Q[y/x]) (x 6= u)

(P α̂ † ẑQ)[y/x] = (P[y/x]) α̂ † ẑ (Q[y/x])

〈x·α〉[β/α] = 〈x·β〉

〈x·γ〉[β/α] = 〈x·γ〉 (α 6= γ)

(ẑ P δ̂ ·α)[β/α] = ẑ (P[β/α]) δ̂ ·β

(ẑ P δ̂ ·γ)[β/α] = ẑ (P[β/α]) δ̂ ·β (α 6= γ)

(P δ̂ [x] ẑ Q)[β/α] = (P[β/α]) δ̂ [x] ẑ (Q[β/α])

(P δ̂ † ẑ Q)[β/α] = (P[β/α]) δ̂ † ẑ (Q[β/α])

Renaming will play an important part in dealing with α-conversion, a problem we will

discuss in Subsection 2.5.

2.2 The rules

We will now come to the definition of reduction via the elimination of cuts; the intuition in the

reduction is that the cut P α̂ † x̂Q expresses the intention to connect all αs in P and xs in Q, and

that reduction will realise this, by either connecting all αs to all xs, or all xs to all αs (notice

that this will not necessarily have the same effect; consider the cases when either α or x does

not occur). The base cases occurs when a socket or a plug is exposed and unique (is introduced,

or connectable), since then building the connection is straightforward, as is expressed by the

first set of rules. Informally, a net P introduces a socket x if P is constructed from sub-nets

which do not contain x as free socket, so x only occurs at the “top level.” This means that

P is either an import with a middle connector [x] or a capsule with left part x. Similarly, a

net introduces a plug α if it is an export that “creates” ·α or a capsule with right part α. We

say now formally what it means for a nets to introduce a socket or a plug (Urban uses the

terminology “freshly introduce” [45]).

Definition 2.4 (Introduction)(P introduces x) : P = 〈x·β〉 or P = R α̂ [x] ŷQ, with x 6∈ fs(R, Q).

(P introduces β) : P = 〈y·β〉 or P = x̂ Q α̂ ·β with β 6∈ fp(Q).

We first present a simple family of reduction rules. They specify how to reduce a net that

cuts sub-nets which introduce connectors. These rules are naturally divided in four categories;

when a capsule is cut with a capsule, an export with a capsule, a capsule with an import or

an export with an import. There is no other pattern in which a plug is introduced on the left

of a † and a socket is introduced on the right.

Definition 2.5 (Logical Reduction) The logical rules are (assume that the nets of the left-

hand sides of the rules introduce the socket x and the plug α)

(cap) : 〈y·α〉 α̂ † x̂ 〈x·β〉 → 〈y·β〉

(exp) : (ŷ P β̂ ·α) α̂ † x̂ 〈x·γ〉 → ŷ P β̂ ·γ

(imp) : 〈y·α〉 α̂ † x̂ (P β̂ [x] ẑQ) → P β̂ [y] ẑQ

(exp-imp) : (ŷ P β̂ ·α) α̂ † x̂ (Q γ̂ [x] ẑ R) →

{
(Q γ̂ † ŷ P) β̂ † ẑ R

Q γ̂ † ŷ (P β̂ † ẑ R)

As an illustration, we give their diagrammatical representation in Figure 1.

Notice that, in rule (exp-imp), in addition to the conditions for introduction of the connectors

that are active in the cut (α 6∈ fp(P) and x 6∈ fs(Q, R)) we can also state that β 6∈ fp(Q)\{γ}, as

well as that y 6∈ fs(R)\{z}, due to Barendregt’s convention.
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✲
y α

✲ ✲̂α x̂ ✲
x β

✲ → ✲
y β

✲

✲̂
y P ✲̂β ✲

α
✲̂α x̂ ✲

x γ
✲ → ✲̂

y P ✲̂β ✲
γ

✲
y α

✲ ✲̂α x̂ Q ✲̂β [ ] ẑ✲ R✲
x → Q ✲̂β [ ] ẑ✲ R✲

y

✲̂
y P ✲̂β ✲

α
✲̂α x̂ Q ✲̂

γ [ ] ẑ✲ R✲
x →





Q ✲̂
γ ŷ P ✲̂β ẑ R

Q ✲̂
γ ŷ P ✲̂β ẑ R

Figure 1: The reduction rules for X is a diagrammatical representation

Still in rule (exp-imp) the reader may have noticed that there are two right-hand sides. These

two right-hand sides are a first appearance of the non-determinism in X which, as noticed by

Lafont, is an intrinsic part of cut elimination in classical logic.

We now need to define how to reduce a cut in case when one of its sub-nets does not

introduce a socket or a plug. This requires to extend the syntax with two new operators that

we call activated cuts:

P ::= . . . | P α̂ † x̂ Q | P α̂ † x̂ Q

Intuitively P α̂ † x̂ Q represents the intention to connect the xs in Q to the αs in P, moving Q

inside P to those places where α is connectable, i.e. is introduced, and P α̂ † x̂Q represents

the intention to connect the αs to the xs. Nets where cuts are not activated are called pure.

Activated cuts are propagated through the nets, moving towards occurrences of the connectors

mentioned in the cut up to the point that that they are connectable, and a logical rule can be

applied.

Definition 2.6 (Activating the cuts)

(a† ) : P α̂ † x̂ Q → P α̂ † x̂ Q (P does not introduce α)

( †a) : P α̂ † x̂ Q → P α̂ † x̂ Q (Q does not introduce x)

Notice that both side-conditions can be valid simultaneously, thereby validating both rewrite

rules at the same moment. This gives, in fact, a critical pair or superposition for our notion of

reduction, and is a cause for the loss of confluence.

We will now define how to propagate an activated cut through sub-nets. The direction of

the activating shows in which direction the cut should be propagated, hence the two sets of

reduction rules.

Definition 2.7 (Propagation Reduction) The rules of propagation are:

Left propagation

(d† ) : 〈y·α〉 α̂ † x̂ P → 〈y·α〉 α̂ † x̂ P

(cap† ) : 〈y·β〉 α̂ † x̂ P → 〈y·β〉 (β 6= α)

(exp-out† ) : (ŷQ β̂ ·α) α̂ † x̂ P → (ŷ (Q α̂ † x̂ P) β̂ ·γ) γ̂ † x̂ P (γ fresh)

(exp-in† ) : (ŷQ β̂ ·γ) α̂ † x̂ P → ŷ (Q α̂ † x̂ P) β̂ ·γ (γ 6= α)

(imp† ) : (Q β̂ [z] ŷ R) α̂ † x̂ P → (Q α̂ † x̂ P) β̂ [z] ŷ (R α̂ † x̂ P)

(cut† ) : (Q β̂ † ŷ R) α̂ † x̂ P → (Q α̂ † x̂ P) β̂ † ŷ (R α̂ † x̂ P)
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Right propagation

( †d) : P α̂ † x̂ 〈x·β〉 → P α̂ † x̂ 〈x·β〉

( †cap) : P α̂ † x̂ 〈y·β〉 → 〈y·β〉 (y 6= x)

( †exp) : P α̂ † x̂ (ŷ Q β̂ ·γ) → ŷ (P α̂ † x̂Q) β̂ ·γ

( †imp-out) : P α̂ † x̂ (Q β̂ [x] ŷ R) → P α̂ † ẑ ((P α̂ † x̂ Q) β̂ [z] ŷ (P α̂ † x̂ R)) (z fresh)

( †imp-in) : P α̂ † x̂ (Q β̂ [z] ŷ R) → (P α̂ † x̂ Q) β̂ [z] ŷ (P α̂ † x̂ R) (z 6= x)

( †cut) : P α̂ † x̂ (Q β̂ † ŷ R) → (P α̂ † x̂ Q) β̂ † ŷ (P α̂ † x̂ R)

Definition 2.8 We will write P→ Q for the compatible closure of the one-step term rewriting

induced by the above rules, and write P→→ Q for its transitive closure (we will often write

simply P→ Q for P→→ Q, indicating that P reduces to Q, and reserve→→ for a number of steps).

We will subscript the arrow that represents our reduction to indicate certain sub-systems,

defined by a reduction strategy: for example, we will write →a for the reduction that uses

only Left propagation or Right propagation rules. In fact,→a is the reduction that pushes † and †
inward. We will also write P ↓X Q if there exists an R such that P→→ R and Q→→ R, i.e. when

P and Q have a common reduct.

The rules (exp-out† ) and ( †imp-out) deserve some attention. Notice that in rule (exp-out† )
we create a new name γ and that in rule ( †imp-out) we create a new name z. This is done

because a cut is duplicated, one of which is distributed inside and the other is left outside

as an inactive cut. A new name is created to respect Barendregt’s hygiene convention; for

instance, in the left-hand side of (exp-out† ), α may occur more than once in ŷ Q β̂ ·α, that is

once after the dot and again in Q. The occurrence after the dot is dealt with separately by

creating a new name γ. Note that the cut associated with that γ is then inactivated; this is

because, although we know that now γ is introduced, we do not know if x in Q is.

The same thing happens with x in ( †imp-out) and a new name z is created and the external

cut is inactivated.

The Renaming Lemma (2.11, stated and proved in Section 2.4 on page 12) shows that in the

right-hand side of rule (d† ) we could have written P[y/x] and in the right-hand side of rule

( †d) we could have written P[β/α] instead of the terms we have chosen. We made that choice

for three reasons. Firstly, we like to make all the operations explicit and we do not want to

rely on operations defined in the meta-theory. Internalising name substitutions would have

required to put as rules in the theory all the identities of Definition 2.3. Secondly, this small-

step approach is closer to our philosophy of X that tends to decompose operations as fine

grained as possible. Thirdly, notice that if α is introduced in ŷ Q β̂ ·α then (exp-out† ) gives,

with the Cancellation Lemma (2.10, see page 11),

(ŷQ β̂ ·α) α̂ † x̂ P→→ (ŷ Q β̂ ·α) α̂ † x̂ P

and (d† ) and this reduction play similar roles, namely that of “deactivating” cuts.

2.3 Strong normalisation

We should point out that, using the rules above, not all typeable nets are strongly normalis-

able. This is caused by the fact that arbitrary cut-elimination is too liberal; for example, al-

lowing (inactivated) cuts to propagate over cuts immediately leads to non-termination, since

we can always choose the outermost cut as the one to contract. Although the notion of cut-

elimination as proposed here has no rule that would allow this behaviour, it can be mimicked,

which can lead to non-termination for typeable nets, as already observed in [45].

Assume x 6∈ fs(Q), β 6∈ fp(P), and P, Q both pure, then:
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P α̂ † x̂ (〈x·β〉 β̂ † ẑQ) → ( †a)

P α̂ † x̂ (〈x·β〉 β̂ † ẑQ) → ( †cut)

(P α̂ † x̂ 〈x·β〉) β̂ † ẑ (P α̂ † x̂ Q) → ( †d), ( †gc)

(P α̂ † x̂ 〈x·β〉) β̂ † ẑQ → (a† )

(P α̂ † x̂ 〈x·β〉) β̂ † ẑQ → (cut† )

(P β̂ † ẑQ) α̂ † x̂ (〈x·β〉 β̂ † ẑQ) → (d† ), (gc† )

P α̂ † x̂ (〈x·β〉 β̂ † ẑQ)

Moreover, assuming P ··· Γ ⊢X α:A,∆ and Q ··· Γ, x:A ⊢X ∆ (see Section 3), we can construct

P ··· Γ ⊢ α:A,∆

(Ax)
〈x·β〉 ··· Γ, x:A ⊢ β:A,∆

Q ··· Γ, x:A ⊢ ∆
(Wk)

Q ··· Γ, x:A,z:A ⊢ ∆
(cut)

〈x·β〉 β̂ † ẑ Q ··· Γ, x:A ⊢ ∆
(cut)

P α̂ † x̂ (〈x·β〉 β̂ † ẑ Q) ··· Γ ⊢ ∆

and all the intermediate nets in the reduction above are typeable by the Witness Reduction

result (Theorem 3.6; example communicated by Alexander J. Summers).

Urban gives a solution for this unwanted reduction behaviour, and shows it sufficient to

obtain strong-normalisation of typeable nets. He adds the rules

(P α̂ † x̂ 〈x·β〉) β̂ † ŷQ → (P β̂ † ŷ Q) α̂ † ŷQ

P α̂ † x̂ (〈x·β〉 β̂ † ŷQ) → P α̂ † ŷ (P α̂ † x̂Q)

and gives them priority over the rules (cut† ) and ( †cut) by changing those to

(P α̂ † x̂Q) β̂ † ŷ R → (P β̂ † ŷ R) α̂ † x̂ (Q β̂ † û R), Q 6= 〈x·β〉

P α̂ † x̂ (Q β̂ † ŷ R) → (P α̂ † x̂ Q) β̂ † ŷ (P α̂ † x̂ R), Q 6= 〈x·β〉

thereby blocking the reduction of P α̂ † x̂ (〈x·β〉 β̂ † ẑQ) to (P α̂ † x̂ 〈x·β〉) β̂ † ẑQ.

Notice that the side-condition Q 6= 〈x·β〉 is quite different in character from the rules for

X we presented above, in that now equality between circuits is tested, rather than just the

occurrence of a connector within a circuit. In fact, it corresponds to replacing, for example,

rule (cut† ) by the rules:

(P α̂ † x̂ 〈x·β〉) β̂ † ŷQ → (P β̂ † ŷQ) α̂ † ŷ Q

(P α̂ † x̂ 〈y·γ〉) β̂ † ŷ R → (P β̂ † ŷ R) α̂ † x̂ (〈y·γ〉 β̂ † ŷ R) (x 6= y ∨ γ 6= β)

(P α̂ † x̂ (ẑQγ̂ ·δ)) β̂ † ŷ R → (P β̂ † ŷ R) α̂ † x̂ ((ẑQγ̂ · δ) β̂ † ŷ R)

(P α̂ † x̂ (Q1 γ̂ [z] v̂ Q2)) β̂ † ŷ R → (P β̂ † ŷ R) α̂ † x̂ ((Q1 γ̂ [z] v̂ Q2) β̂ † ŷ R)

(P α̂ † x̂ (Q1 γ̂ † v̂ Q2)) β̂ † ŷ R → (P β̂ † ŷ R) α̂ † x̂ ((Q1 γ̂ † v̂ Q2) β̂ † ŷ R)

as well as replacing rule ( †cut) by four similar rules, effectively adding eight rules. Although

these rules are fine as far as term rewriting is concerned, rewriting is no longer local as they

match against sub-nets of the nets involved in the cut. Remark that the last two rules might

as well be replaced by:

(P α̂ † x̂ (Q1 γ̂ [z] v̂ Q2)) β̂ † ŷ R → (P β̂ † ŷ R) α̂ † x̂ ((Q1 β̂ † ŷ R) γ̂ [z] v̂ (Q2 β̂ † ŷ R))

(P α̂ † x̂ (Q1 γ̂ † v̂ Q2)) β̂ † ŷ R → (P β̂ † ŷ R) α̂ † x̂ ((Q1 β̂ † ŷ R) γ̂ † v̂ (Q2 β̂ † ŷ R))

etc.
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2.4 Call-by-name and call-by-value

In this section we will define two sub-systems of reduction (i.e. restrictions of the full reduction

we defined above), that correspond roughly to call-by-name (cbn) and call-by-value (cbv)

reduction. Notice that this is essentially different from the approach of [48], where only two

dual notions of reduction are defined, and no overall notion of reduction.

As for λµµ̃ also in X only one notion of reduction is defined. When interpreting the λ-

calculus or λµ in λµµ̃, however, different interpretation functions are defined for the cbn and

cbv sub-calculi. Here, we will define one interpretation function for each calculus, and show

that both cbn- and cbv-reduction are respected.

As mentioned above, when P does not introduce α and Q does not introduce x, P α̂ † x̂ Q is a

superposition, meaning that two rules, namely (a† ) and ( †a), can both be fired. The critical pair

〈P α̂ † x̂ Q, P α̂ † x̂ Q〉 may lead to different irreducible nets. This is to say that the reduction

relation → is not confluent. Non-determinism is a key feature of both classical logic and

rewriting logic.

We introduce two sub-reduction systems which favour one kind of activating whenever the

above critical pair occurs.

Definition 2.9 • If a cut can be activated in two ways, the cbv strategy only allows to activate

it via (a† ) ; we write P→v Q in that case. We can reformulate this as the reduction system

obtained by replacing rule ( †a) by:

( †a) : P α̂ † x̂ Q → P α̂ † x̂Q (P introduces α and Q does not introduce x)

We also choose to only allow one variant of the (exp-imp) rule:

(exp-imp)v (ŷ P β̂ ·α) α̂ † x̂ (Q γ̂ [x] ẑ R) → Q γ̂ † ŷ (P β̂ † ẑ R)

• The cbn strategy can only activate such a cut via ( †a); like above, we write P→n Q.

Likewise, we can reformulate this as the reduction system obtained by replacing rule

(a† ) by:

(a† ) : P α̂ † x̂Q → P α̂ † x̂ Q (P does not introduce α and Q introduces x)

We also choose to only allow the other variant of the (exp-imp) rule:

(exp-imp)n (ŷ P β̂ ·α) α̂ † x̂ (Q γ̂ [x] ẑ R) → (Q γ̂ † ŷ P) β̂ † ẑ R

Notice that, in cbv, a right cut like P α̂ † x̂ Q implies that α is introduced in P (i.e. P is a value),

and that, in cbn, a left cut like P α̂ † x̂ Q implies that x is introduced in Q (i.e. Q is a name).

We will now show some basic properties, which essentially show that the calculus is well

behaved; to give the reader an opportunity to see reduction in X at work, we give the full

proof. Recall that a net is pure if it contains no activated cuts.

Lemma 2.10 (Cancellation) i) P α̂ † x̂Q→aP if α 6∈ fp(P) and P is pure.

ii) P α̂ † x̂ Q→ P if α 6∈ fp(P) and P is pure.

iii) P α̂ † x̂ Q→aQ if x 6∈ fs(Q) and Q is pure.

iv) P α̂ † x̂ Q→ Q if x 6∈ fs(Q) and Q is pure.

Proof : i) By induction on the structure of nets.

(P = 〈y·β〉) : 〈y·β〉 α̂ † x̂Q→a(cap† ) 〈y·β〉

(P = ŷ R β̂ ·γ) : (ŷ R β̂ ·γ) α̂ † x̂ Q →a (exp-in† ) ŷ (R α̂ † x̂ Q) β̂ ·γ →a (IH) ŷ R β̂ ·γ

(P = R β̂ [z] ŷS) : (R β̂ [z] ŷS) α̂ † x̂ Q →a (imp† )

(R α̂ † x̂ Q) β̂ [z] ŷ (S α̂ † x̂Q) →a (IH) R β̂ [z] ŷS
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(P = R β̂ † ŷS) : (R β̂ † ŷS) α̂ † x̂Q →a (cut† )

(R α̂ † x̂ Q) β̂ † ŷ (S α̂ † x̂ Q) →a (IH) R β̂ † ŷS

ii) (P introduces α) : Then α ∈ fp(P), so this is impossible.

(P does not introduce α) : Then P α̂ † x̂ Q→a(a† ) P α̂ † x̂ Q, and the result follows from part (i).

iii) By induction on the structure of nets.

(Q = 〈y·β〉) : P α̂ † x̂ 〈y·β〉→a( †cap) 〈y·β〉

(Q = ŷ R β̂ ·γ) : P α̂ † x̂ (ŷ R β̂ ·γ) →a ( †exp) ŷ (P α̂ † x̂ R) β̂ ·γ →a (IH) ŷ R β̂ ·γ

(Q = R β̂ [z] ŷS) : P α̂ † x̂ (R β̂ [z] ŷS) →a ( †imp-in)

(P α̂ † x̂ R) β̂ [z] ŷ (P α̂ † x̂S) →a (IH) R β̂ [z] ŷS

(Q = R β̂ † ŷS) : P α̂ † x̂ (R β̂ † ŷS) →a ( †cut)

(P α̂ † x̂ R) β̂ † ŷ (P α̂ † x̂S) →a (IH) R β̂ † ŷS

iv) (Q introduces x) : Then x ∈ fs(Q), so this is impossible.

(Q does not introduce x) : Then P α̂ † x̂Q→a( †a) P α̂ † x̂ Q, and the result follows from

part (iii).

We will now show that a cut with a capsule leads to renaming.

Lemma 2.11 (Renaming) i) P δ̂ † ẑ 〈z·α〉→ P[α/δ], if P is pure.

ii) P δ̂ † ẑ 〈z·α〉→ P[α/δ], if P is pure.

iii) 〈z·α〉 α̂ † x̂ P→ P[z/x], if P is pure.

iv) 〈z·α〉 α̂ † x̂ P→ P[z/x], if P is pure.

Proof : i) By induction on the structure of nets.

(P = 〈x·δ〉) : 〈x·δ〉 δ̂ † ẑ 〈z·α〉→a(d† ) 〈x·δ〉 δ̂ † ẑ 〈z·α〉→(cap) 〈x·α〉 =
∆ 〈x·δ〉[α/δ]

(P = 〈x·β〉, β 6= δ) : 〈x·β〉 δ̂ † ẑ 〈z·α〉→a(cap† ) 〈x·β〉 =
∆ 〈x·β〉[α/δ]

(P = ŷQγ̂ ·δ) : (ŷQγ̂ · δ) δ̂ † ẑ 〈z·α〉 →a (exp-out† ), β fresh

(ŷ (Q δ̂ † ẑ 〈z·α〉)γ̂ ·β) β̂ † ẑ 〈z·α〉 → (exp)

ŷ (Q δ̂ † ẑ 〈z·α〉)γ̂ ·α → (IH)

ŷ Q[α/δ]γ̂ ·α =
∆ (ŷ Qγ̂ · δ)[α/δ]

(P = ŷQγ̂ ·β, β 6= δ) : (ŷQγ̂ ·β) δ̂ † ẑ 〈z·α〉 →a (exp-in† )

ŷ (Q δ̂ † ẑ 〈z·α〉)γ̂ ·β → (IH)

ŷ Q[α/δ]γ̂ ·β =
∆ (ŷQγ̂ ·β)[α/δ]

(P = Q β̂ [x] ŷ R) : (Q β̂ [x] ŷ R) δ̂ † ẑ 〈z·α〉 →a (imp† )

(Q δ̂ † ẑ 〈z·α〉) β̂ [x] ŷ (R δ̂ † ẑ 〈z·α〉) → (IH)

Q[α/δ] β̂ [x] ŷ R[α/δ] =
∆ (Q β̂ [x] ŷ R)[α/δ]

(P = Q β̂ † x̂ R) : (Q β̂ † x̂ R) δ̂ † ẑ 〈z·α〉 →a (cut† )

(Q δ̂ † ẑ 〈z·α〉) β̂ † x̂ (R δ̂ † ẑ 〈z·α〉) → (IH)

Q[α/δ] β̂ † x̂ R[α/δ] =
∆ (Q β̂ † x̂ R)[α/δ]

ii) If P δ̂ † ẑ 〈z·α〉, then either:

(P introduces δ) : Then either:

(P = x̂ Q β̂ ·δ, and δ 6∈ fp(Q)) : (x̂ Q β̂ ·δ) δ̂ † ẑ 〈z·α〉 →(exp) x̂ Q β̂ ·α =
∆ (x̂ Q β̂ · δ)[α/δ]

(P = 〈x·δ〉) : Then: 〈x·δ〉 δ̂ † ẑ 〈z·α〉→(cap) 〈x·α〉 =
∆ 〈x·δ〉[α/δ].

(P does not introduce δ) : Then P δ̂ † ẑ 〈z·α〉→aP δ̂ † ẑ 〈z·α〉, and the result follows from (i).

iii) By induction on the structure of nets.



2.5 α-conversion 13

(P = 〈x·δ〉) : 〈z·α〉 α̂ † x̂ 〈x·δ〉→a( †d) 〈z·α〉 α̂ † x̂ 〈x·δ〉→(cap) 〈z·δ〉 =
∆ 〈x·δ〉[z/x]

(P = 〈y·δ〉,y 6= x) : 〈z·α〉 α̂ † x̂ 〈y·δ〉→a( †cap) 〈y·δ〉 =
∆ 〈y·δ〉[z/x]

(P = ŷQγ̂ ·δ) : 〈z·α〉 α̂ † x̂ (ŷQγ̂ · δ) →a ( †exp)

ŷ (〈z·α〉 α̂ † x̂Q)γ̂ · δ → (IH)

ŷ Q[z/x] γ̂ ·δ =
∆ (ŷQγ̂ · δ)[z/x]

(P = Q β̂ [x] ŷ R) : 〈z·α〉 α̂ † x̂ (Q β̂ [x] ŷ R) →a ( †imp-out)

〈z·α〉 α̂ † v̂ ((〈z·α〉 α̂ † x̂ Q) β̂ [v] ŷ (〈z·α〉 α̂ † x̂ R)) → (IH)

〈z·α〉 α̂ † v̂ (Q[z/x] β̂ [v] ŷ R[z/x]) → (imp)

Q[z/x] β̂ [v] ŷ R[z/x] =
∆ (Q β̂ [x] ŷ R)[z/x]

(P = Q β̂ [v] ŷ R, v 6= x) : 〈z·α〉 α̂ † x̂ (Q β̂ [v] ŷ R) →a ( †imp-in)

(〈z·α〉 α̂ † x̂Q) β̂ [v] ŷ (〈z·α〉 α̂ † x̂ R) → (IH)

Q[z/x] β̂ [v] ŷ R[z/x] =
∆ (Q β̂ [v] ŷ R)[z/x]

(P = Q β̂ † ŷ R) : 〈z·α〉 α̂ † x̂ (Q β̂ † ŷ R) →a ( †cut)

(〈z·α〉 α̂ † x̂ Q) β̂ † ŷ (〈z·α〉 α̂ † x̂ R) → (IH)

Q[z/x] β̂ † ŷ R[z/x] =
∆ (Q β̂ † ŷ R)[z/x]

iv) If 〈z·α〉 α̂ † x̂ P then either:

(P introduces x) : Then either:

(P = Q β̂ [x] ŷ R, and x does not occur free in Q, R) : Then:

〈z·α〉 α̂ † x̂ (Q β̂ [x] ŷ R)→(imp) Q β̂ [z] ŷ R =
∆ (Q β̂ [x] ŷ R)[z/x]

(P = 〈x·β〉) : Then: 〈z·α〉 α̂ † x̂ 〈x·β〉→(cap) 〈z·β〉 =
∆ 〈x·β〉[z/x]

(P does not introduce x) : Then 〈z·α〉 α̂ † x̂ P→a〈z·α〉 α̂ † x̂ P and the result follows from part

(iii).

These results motivate the extension (in both sub-systems) of the reduction rules, formulat-

ing new rules in the shape of the above results.

(gc† ) : P α̂ † x̂Q → P (if α 6∈ fp(P), P pure)

( †gc) : P α̂ † x̂Q → Q (if x 6∈ fs(Q), Q pure)

( †ren) : P δ̂ † ẑ 〈z·α〉 → P[α/δ] (P pure)

(ren† ) : 〈z·α〉 α̂ † x̂ P → P[z/x] (P pure)

Admissibility of these rules for nets that are not pure is shown in [9].

2.5 α-conversion

Normally, renaming is an essential part of α-conversion, the process of renaming bound objects

in a language to avoid clashes during computation. The most familiar context in which this

occurs is of course the λ-calculus, where, when reducing a net like (λxy.xy)(λxy.xy), α-

conversion is essential. In this section, we will briefly discuss the solution of [9], that deals

accurately with this problem in X .

Example 2.12 Take the following reduction:
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(ŷ 〈y·ρ〉ρ̂ ·γ) γ̂ † x̂ (〈x·δ〉 δ̂ [x] ŵ 〈w·α〉) → ( †a), ( †imp-out)

(ŷ 〈y·ρ〉ρ̂ ·γ) γ̂ † ẑ (((ŷ 〈y·ρ〉ρ̂ ·γ) γ̂ † x̂ 〈x·δ〉) δ̂ [z] ŵ ((ŷ 〈y·ρ〉ρ̂ ·γ) γ̂ † x̂ 〈w·α〉))

→ ( †d), (exp), ( †cap)

(ŷ 〈y·ρ〉ρ̂ ·γ) γ̂ † ẑ ((ŷ 〈y·ρ〉ρ̂ · δ) δ̂ [z] ŵ 〈w·α〉) → (exp-imp)

((ŷ 〈y·ρ〉ρ̂ ·δ) δ̂ † ŷ 〈y·ρ〉) ρ̂ † ŵ 〈w·α〉

In the last term, it is clear that we are in breach with Barendregt’s convention: ρ is both free

and bound in (ŷ 〈y·ρ〉ρ̂ ·δ) δ̂ † ŷ 〈y·ρ〉. If we were to continue the reduction, we obtain:

((ŷ 〈y·ρ〉ρ̂ · δ) δ̂ † ŷ 〈y·ρ〉) ρ̂ † ŵ 〈w·α〉 → (exp)

(ŷ 〈y·ρ〉ρ̂ ·ρ) ρ̂ † ŵ 〈w·α〉

Notice that ρ is not introduced in ŷ 〈y·ρ〉ρ̂ ·ρ, since ρ∈ fp(〈y·ρ〉). So the cut is propagated, and

we obtain:
→ (a† ), (exp-out† ), (d† )

(ŷ (〈y·ρ〉 ρ̂ † ŵ 〈w·α〉) ρ̂ · θ) θ̂ † ŵ 〈w·α〉 → (cap), (exp)

ŷ 〈y·α〉ρ̂ ·α.

This is not correct: (ŷ 〈y·ρ〉ρ̂ ·ρ) ρ̂ † ŵ 〈w·α〉 α-converges to (ŷ 〈y·σ〉σ̂ ·ρ) ρ̂ † ŵ 〈w·α〉, where the

ρ is introduced, and we should have obtained ŷ 〈y·ρ〉ρ̂ ·α.

It is clear from this example that α-conversion is needed to some extent in any implemen-

tation of X . Three5 solutions to this problem are proposed in [8, 9], that are compared in

terms of efficiency. The first uses a lazy-copying strategy to avoid sharing of bound connectors;

the second enforces Barendregt’s convention, by renaming bound connectors when nesting is

created; the third avoids capture of names, but allows breaches of Barendregt’s convention.

This is achieved by changing, for example, the rule (exp-imp)

(ŷ P β̂ ·α) α̂ † x̂ (Q γ̂ [x] ẑ R) →

{
Q γ̂ † ŷ (P β̂ † ẑ R)

(Q γ̂ † ŷ P) β̂ † ẑ R

A conflict with Barendregt’s convention is generated in this rule by the fact that perhaps

β = γ or y = z, or β occurs in Q, or y in R. Or, when striving for capture avoidance, it might

be that y occurs free in R, or β in Q. In either case, these connectors need to be renamed; one

of the great plus points of X is that this can be done within the language itself, unlike for the

λ-calculus. In fact, using Lemma 2.11, we can give an α-conflict free version of X (see below).

In contrast, notice that this is not possible for the λ-calculus. There the only reduction

rule is (λx.M)N→M[N/x], and α-conversion is essential when reducing (λxy.xy)(λxy.xy).

Without it, one would get

(λxy.xy)(λxy.xy) → λy.(λxy.xy)y → λyy.yy

The conflict is caused by the fact that, in the second step, the right-most y is brought under the

inner-most binder, which causes variables bound by the outer-most binding to ‘swap scope’

while reducing.

A particular problem in dealing with α-conversion is that in the β-reduction rule (λx.M)N→

M[N/x], the substitution in the right-hand side is supposed to be immediate; since the struc-

ture of M and N is anonymous, it is impossible to detect an α-conflict here that typically

depends on bindings occurring inside M and N. For example, in the first step of the reduction

above, the latter term is identical to λy.xy[(λxy.xy)/x]; the actual performance of the substi-

tution, which brings the right-most binder under the left-most is not part of the reduction

5 NB: De Bruijn indices are not discussed in [9].
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system itself, but specified in the auxiliary definition of substitution. This makes α-conversion

difficult to tackle in the context of the pure λ-calculus.

To consider substitution as a separate syntactic construct implies moving from the λ-

calculus to λx. There the situation is slightly different, in that we can now say that

(λy.M)〈x=N〉 → λz.(M 〈y= z〉〈x=N〉),

thereby preventing a conflict on a possibly free y in N. This is expensive though, as it is

performed on all substitutions on abstractions, and does not actually detect the conflict, but

just prevents it.

In X , not only is the α-conflict solved, but also detected, all within the reduction system of

X itself, by essentially expressing

(λy.M)〈x=N〉 → λz.(M 〈y= z〉〈x=N〉), if y free in N

As shown in [9], to accurately deal with α-conversion for the case of capture-avoidance, the

rule (exp-imp) needs to be replaced by (assume that α, x are introduced, and that v,δ are fresh):

(ŷ P β̂ ·α) α̂ † x̂ (Q γ̂ [x] ẑ R) → Q γ̂ † ŷ (P β̂ † ẑ R) (y 6∈ fs(R))

(ŷ P β̂ ·α) α̂ † x̂ (Q γ̂ [x] ẑ R) → Q γ̂ † v̂ ((〈v·δ〉 δ̂ † ŷ P) β̂ † ẑ R) (y ∈ fs(R))

(ŷ P β̂ ·α) α̂ † x̂ (Q γ̂ [x] ẑ R) → (Q γ̂ † ŷ P) β̂ † ẑ R (β 6∈ fp(Q))

(ŷ P β̂ ·α) α̂ † x̂ (Q γ̂ [x] ẑ R) → (Q γ̂ † ŷ (P β̂ † b̂ 〈v·δ〉)) δ̂ † ẑ R (β ∈ fp(Q))

Almost all propagation rules (exceptions are (d† ), (cap† ), ( †d), and ( †cap)) need dealing with

as well.

3 Typing for X : from sequent calculus to X

As mentioned in the introduction, X is inspired by the sequent calculus, so it is worthwhile

to recall some of the principles. The sequent calculus we consider has only implication, no

structural rules and a changed axiom. It offers an extremely natural presentation of the clas-

sical propositional calculus with implication, and is a variant of system lk. It has four rules:

axiom, right introduction of the arrow, left introduction and cut.

(ax) :
Γ, A ⊢lk A,∆

(⇒L) :
Γ ⊢lk A,∆ Γ, B ⊢lk ∆

Γ, A⇒ B ⊢lk ∆

(⇒R) :
Γ, A ⊢lk B,∆

Γ ⊢lk A⇒ B,∆
(cut) :

Γ ⊢lk A,∆ Γ, A ⊢lk ∆

Γ ⊢lk ∆

The elimination of rule (cut) plays a major role in lk, since for proof theoreticians, cut-

free proofs enjoy nice properties. Proof reductions by cut-elimination have been proposed by

Gentzen; those reductions become the fundamental principle of computation in X .

Another nice property of proof systems is known as the Curry-Howard correspondence:

Definition 3.1 (Curry-Howard isomorphism) “Terms as Proofs, Types as Propositions.” Let M

be a (closed) term, and A a type, then M is of type A if and only if A, read as a logical formula,

is provable in the corresponding logic, using a proof which structure corresponds to M.

This isomorphism expresses the fact that one can associate a term with a proof such that

propositions become types and proof reductions become term reductions (or computations in

X ). This phenomenon was first discovered for Combinatory Logic [20], and later the connec-

tion between the λ-calculus and intuitionistic logic was put in evidence. The Curry-Howard

correspondence for X is with the classical propositional calculus and is given through the
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sequent calculus described above. Propositions receive names; those that appear in the left

part of a sequent receive names like x,y,z, etc, and those that appear in the right part of a

sequent receive names like α, β,γ, etc.

Definition 3.2 (Types and Contexts) i) The set of types is defined by the grammar:

A, B ::= ϕ | A→B.

where ϕ is a basic type. The types considered in this paper are normally known as simple

(or Curry) types.

ii) A context of sockets Γ is a mapping from sockets to types, denoted as a finite set of state-

ments x:A, such that the subject of the statements (x) are distinct. We write Γ, x:A for the

context defined by:

Γ, x:A = Γ ∪ {x:A} (Γ is not defined on x)

= Γ (otherwise)

(Notice that the second case implies that x:A ∈ Γ.) So, when writing a context as Γ, x:A,

this implies that x:A ∈ Γ, or Γ is not defined on x. When we write Γ1, Γ2 we mean the

union of Γ1 and Γ2 when Γ1 and Γ2 are coherent (if Γ1 contains x:A1 and Γ2 contains x:A2

then A1 = A2).

iii) Contexts of plugs ∆ are defined in a similar way.

The notion of type assignment on X that we present in this section is the basic implica-

tive system for Classical Logic (Gentzen system LK) as described above. The Curry-Howard

property is easily achieved by erasing all term-information.

Definition 3.3 (Typing for X ) i) Type judgements are expressed via a ternary relation P ··· Γ ⊢X
∆, where Γ is a context of sockets and ∆ is a context of plugs, and P is a net. We say that

P is the witness of this judgement.

ii) Type assignment for X is defined by the following sequent calculus:

(cap) : 〈y·α〉 ··· Γ,y:A ⊢ α:A,∆ (imp) :
P ··· Γ ⊢ α:A,∆ Q ··· Γ, x:B ⊢ ∆

P α̂ [y] x̂ Q ··· Γ,y:A→B ⊢ ∆

(exp) :
P ··· Γ, x:A ⊢ α:B,∆

x̂ P α̂ · β ··· Γ ⊢ β:A→B,∆
(cut) :

P ··· Γ ⊢ α:A,∆ Q ··· Γ, x:A ⊢ ∆

P α̂ † x̂ Q ··· Γ ⊢ ∆

We write P ··· Γ ⊢X ∆ if there exists a derivation that has this judgement in the bottom line,

and write D :: P ··· Γ ⊢X ∆ if we want to name that derivation.

Γ and ∆ carry the types of the free connectors in P, as unordered sets. There is no notion of

type for P itself, instead the derivable statement shows how P is connectable.

Lemma 3.4 (Weakening) The following rule is admissible:

P ··· Γ ⊢X ∆
(Wk)

P ··· Γ′ ⊢X ∆′

for any Γ′ ⊇ Γ and ∆′ ⊇ ∆.

Proof : The proof is by induction on the proof tree for P ··· Γ ⊢X ∆. We will only consider two

cases, the two other work the same way.

(cap) : Then P ≡ 〈y·α〉. Then Γ′ ⊇ Γ ⊇ {y:A} and ∆′ ⊇ ∆⊇ {α:A}, hence 〈y·α〉 ··· Γ′ ⊢X ∆′.

(imp) : Then P≡ Q α̂ [y] x̂ R, Γ ≡ Γ1,y:A→B and
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P ··· Γ ⊢X ∆ ≡ Q α̂ [y] x̂ R ··· Γ1,y:A→B ⊢X ∆.

We have Q ··· Γ1 ⊢X α:A,∆ and R ··· Γ1, x:B ⊢X ∆. If y:A→B ∈ Γ1, i.e., Γ ≡ Γ1 then we

write Γ′1 ≡ Γ′ else we write Γ′1 ≡ Γ′\y:A→B. Notice that Γ′1 ⊇ Γ1. By induction, we have

Q ··· Γ′1 ⊢X α:A,∆′ and R ··· Γ′1, x:B ⊢X ∆′ and Q α̂ [y] x̂ R ··· Γ′1,y:A→B ⊢X ∆′ follows by (imp).

Example 3.5 (A proof of Peirce’s Law) The following is a proof for Peirce’s Law in Classical

Logic:

(Ax)
A ⊢ A, B

(⇒R)
⊢ A⇒ B, A

(Ax)
A ⊢ A

(⇒L)
(A⇒ B)⇒ A ⊢ A

(⇒R)
⊢ ((A⇒ B)⇒ A)⇒ A

Inhabiting this proof in X gives the derivation:

(cap)
〈y·δ〉 ··· y:A ⊢ δ:A,η:B

(exp)
ŷ 〈y·δ〉η̂ ·φ ··· ⊢ φ:A→B,δ:A

(cap)
〈w·δ〉 ··· w:A ⊢ δ:A

(imp)
(ŷ 〈y·δ〉η̂ ·φ) φ̂ [z] ŵ 〈w·δ〉 ··· z:(A→B)→A ⊢ δ:A

(exp)
ẑ ((ŷ 〈y·δ〉η̂ ·φ) φ̂ [z] ŵ 〈w·δ〉) δ̂ ·γ ··· ⊢ γ:((A→B)→A)→A

The soundness result of simple type assignment with respect to reduction is stated as usual:

Theorem 3.6 (Witness reduction) If P ··· Γ ⊢X ∆, and P→Q, then Q ··· Γ ⊢X ∆.

Proof : By induction on the length of reduction sequences, of which we only show the interest-

ing base cases; notice that, occasionally, weakening will be used.

(Logical rules) : (cap) : 〈y·α〉 α̂ † x̂ 〈x·β〉→ 〈y·β〉

〈y·α〉 ··· Γ,y:A ⊢ α:A,∆ 〈x·β〉 ··· Γ, x:A ⊢ β:A,∆

〈y·α〉 α̂ † x̂ 〈x·β〉 ··· Γ,y:A ⊢ β:A,∆
〈y·β〉 ··· Γ,y:A ⊢ β:A,∆

(exp) : (ŷ P β̂ ·α) α̂ † x̂ 〈x·γ〉→ ŷ P β̂ ·γ

D

P ··· Γ,y:A ⊢ β:B,γ:A→B,∆

ŷ P β̂ ·α ··· Γ ⊢ α:A→B,γ:A→B,∆ 〈x·γ〉 ··· Γ, x:A→B ⊢ γ:A→B,∆

(ŷ P β̂ ·α) α̂ † x̂ 〈x·γ〉 ··· Γ ⊢ γ:A→B,∆

D

P ··· Γ,y:A ⊢ β:B,γ:A→B,∆

ŷ P β̂ ·γ ··· Γ ⊢ γ:A→B,∆

(imp) : 〈y·α〉 α̂ † x̂ (Q β̂ [x] ẑ R)→Q β̂ [y] ẑ R

〈y·α〉 ··· Γ,y:A→B ⊢ α:A→B,∆

D1

Q ··· Γ,y:A→B ⊢ β:A,∆

D2

R ··· Γ,y:A→B,z:B ⊢ ∆

Q β̂ [x] ẑ R ··· Γ,y:A→B, x:A→B ⊢ ∆

〈y·α〉 α̂ † x̂ (Q β̂ [x] ẑ R) ··· Γ,y:A→B ⊢ ∆
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D1

Q ··· Γ,y:A→B ⊢ β:A,∆

D2

R ··· Γ,y:A→B,z:B ⊢ ∆

Q β̂ [y] ẑ R ··· Γ,y:A→B ⊢ ∆

(exp-imp) : (ŷ P β̂ ·α) α̂ † x̂ (Q γ̂ [x] ẑ R)→Q γ̂ † ŷ (P β̂ † ẑ R)

D1

P ··· Γ,y:A ⊢ β:B,∆

ŷ P β̂ ·α ··· Γ ⊢ α:A→B,∆

D2

Q ··· Γ ⊢ γ:A,∆

D3

R ··· Γ,z:B ⊢ ∆

Q γ̂ [x] ẑ R ··· Γ, x:A→B ⊢ ∆

(ŷ P β̂ ·α) α̂ † x̂ (Q γ̂ [x] ẑ R) ··· Γ ⊢ ∆

D2

Q ··· Γ ⊢ γ:A,∆

Q ··· Γ ⊢ β:B,γ:A,∆

D1

P ··· Γ,y:A ⊢ β:B,∆

Q γ̂ † ŷ P ··· Γ ⊢ β:B,∆

D3

R ··· Γ,z:B ⊢ ∆

(Q γ̂ † ŷ P) β̂ † ẑ R ··· Γ ⊢ ∆

(exp-imp) : (ŷ P β̂ ·α) α̂ † x̂ (Q γ̂ [x] ẑ R)→Q γ̂ † ŷ (P β̂ † ẑ R)

D2

Q ··· Γ ⊢ γ:A,∆

D1

P ··· Γ,y:A ⊢ β:B,∆

D3

R ··· Γ,z:B ⊢ ∆

R ··· Γ,y:A,z:B ⊢ ∆

P β̂ † ẑ R ··· Γ,y:A ⊢ ∆

Q γ̂ † ŷ (P β̂ † ẑ R) ··· Γ ⊢ ∆

(† propagation) : (exp-out† ) : (ŷQ β̂ ·α) α̂ † x̂ P→ (ŷ (Q α̂ † x̂ P) β̂ ·γ) γ̂ † x̂ P

D1

Q ··· Γ,y:A ⊢ β:B,∆

ŷ Q β̂ ·α ··· Γ ⊢ α:A→B,∆

D2

P ··· Γ, x:A→B ⊢ ∆

(ŷ Q β̂ ·α) α̂† x̂ P ··· Γ ⊢ ∆

D1

Q ··· Γ,y:A ⊢ β:B,∆

Q ··· Γ,y:A ⊢ α:A→B, β:B,∆

D2

P ··· Γ, x:A→B ⊢ ∆

P ··· Γ, x:A→B ⊢ β:B,∆

Q α̂† x̂ P ··· Γ,y:A ⊢ β:B,∆

ŷ (Q α̂† x̂ P) β̂ ·γ ··· Γ ⊢ γ:A→B,∆

D2

P ··· Γ, x:A→B ⊢ ∆

(ŷ (Q α̂† x̂ P) β̂ ·γ) γ̂† x̂ P ··· Γ ⊢ ∆

(imp† ) : (Q β̂ [z] ŷ R) α̂ † x̂ P→ (Q α̂ † x̂ P) β̂ [z] ŷ (R α̂ † x̂ P)

D1

Q ··· Γ ⊢ α:C, β:A,∆

D2

R ··· Γ,y:B ⊢ α:C,∆

Q β̂ [z] ŷ R ··· Γ,z:A→B ⊢ α:C,∆

D3

P ··· Γ,z:A→B, x:C ⊢ ∆

(Q β̂ [z] ŷ R) α̂† x̂ P ··· Γ,z:A→B ⊢ ∆
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D1

Q ··· Γ ⊢ α:C, β:A,∆

Q ··· Γ,z:A→B ⊢ α:C, β:A,∆

D3

P ··· Γ,z:A→B, x:C ⊢ ∆

P ··· Γ,z:A→B, x:C ⊢ β:A,∆

Q α̂† x̂ P ··· Γ,z:A→B ⊢ β:A,∆ .
.
.
.
.
.
.
.

D2

R ··· Γ,y:B ⊢ α:C,∆

R ··· Γ,z:A→B,y:B ⊢ α:C,∆

D3

P ··· Γ,z:A→B, x:C ⊢ ∆

P ··· Γ,z:A→B, x:C,y:B ⊢ ∆

R α̂† x̂ P ··· Γ,z:A→B,y:B ⊢ ∆

(Q α̂† x̂ P) β̂ [z] ŷ (R α̂† x̂ P) ··· Γ,z:A→B ⊢ ∆

(cut† ) : (Q β̂ † ŷ R) α̂ † x̂ P→ (Q α̂ † x̂ P) β̂ † ŷ (R α̂ † x̂ P)

D1

Q ··· Γ ⊢ α:C, β:B,∆

D2

R ··· Γ,y:B ⊢ α:C,∆

Q β̂ † ŷ R ··· Γ ⊢ α:C,∆

D3

P ··· Γ, x:C ⊢ ∆

(Q β̂ † ŷ R) α̂† x̂ P ··· Γ ⊢ ∆

D1

Q ··· Γ ⊢ α:C, β:B,∆

D3

P ··· Γ, x:C ⊢ ∆

P ··· Γ, x:C ⊢ β:B,∆

Q α̂† x̂ P ··· Γ ⊢ β:B,∆

D2

R ··· Γ,y:B ⊢ α:C,∆

D3

P ··· Γ, x:C ⊢ ∆

P ··· Γ,y:B, x:C ⊢ ∆

R α̂† x̂ P ··· Γ,y:B ⊢ ∆

(Q α̂† x̂ P) β̂ † ŷ (R α̂† x̂ P) ··· Γ ⊢ ∆

( † propagation) : ( †imp-out) : P α̂ † x̂ (Q β̂ [x] ŷ R)→ P α̂ † ẑ ((P α̂ † x̂ Q) β̂ [z] ŷ (P α̂ † x̂ R))

D1

P ··· Γ ⊢ α:A→B,∆

D2

Q ··· Γ ⊢ β:A,∆

D3

R ··· Γ,y:B ⊢ ∆

Q β̂ [x] ŷ R ··· Γ, x:A→B ⊢ ∆

P α̂ † x̂ (Q β̂ [x] ŷ R) ··· Γ ⊢ ∆

D1

P ··· Γ ⊢ α:A→B,∆

D1

P ··· Γ ⊢ α:A→B,∆

P ··· Γ ⊢ α:A→B, β:A,∆

D2

Q ··· Γ ⊢ β:A,∆

Q ··· Γ, x:A→B ⊢ β:A,∆

P α̂ † x̂ Q ··· Γ ⊢ β:A,∆

D1

P ··· Γ ⊢ α:A→B,∆

P ··· Γ,y:B ⊢ α:A→B,∆

D3

R ··· Γ,y:B ⊢ ∆

R ··· Γ, x:A→B,y:B ⊢ ∆

P α̂ † x̂ R ··· Γ,y:B ⊢ ∆

(P α̂ † x̂ Q) β̂ [v] ŷ (P α̂ † x̂ R) ··· Γ,v:A→B ⊢ ∆

.

.

.

P α̂ † v̂ ((P α̂ † x̂ Q) β̂ [v] ŷ (P α̂ † x̂ R)) ··· Γ ⊢ ∆

( †cut) : P α̂ † x̂ (Q β̂ † ŷ R)→ (P α̂ † x̂ Q) β̂ † ŷ (P α̂ † x̂ R)

D1

P ··· Γ ⊢ α:A,∆

D2

Q ··· Γ, x:A ⊢ β:B,∆

D3

R ··· Γ, x:A,y:B ⊢ ∆

Q β̂ † ŷ R ··· Γ, x:A ⊢ ∆

P α̂ † x̂ (Q β̂ † ŷ R) ··· Γ ⊢ ∆
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D1

P ··· Γ ⊢ α:A,∆

P ··· Γ ⊢ α:A, β:B,∆

D2

Q ··· Γ, x:A ⊢ β:B,∆

P α̂ † x̂ Q ··· Γ ⊢ β:B,∆

D1

P ··· Γ ⊢ α:A,∆

R ··· Γ,y:B ⊢ α:A,∆

D3

P ··· Γ, x:A,y:B ⊢ ∆

P α̂ † x̂ R ··· Γ,y:B ⊢ ∆

(P α̂ † x̂ Q) β̂ † ŷ (P α̂ † x̂ R) ··· Γ ⊢ ∆

4 Interpreting the λ-calculus

In this section, we will illustrate the expressive power of X by showing that we can faithfully

interpret the λ-calculus [16, 11] (a similar result was shown in [45]), and in the following

sections we will show a comparable result for λx, λµ, and λµµ̃. Using the notion of Curry

type assignment, we will show that assignable types are preserved by the interpretation.

In part, the interpretation results could be seen as variants of similar results obtained by

Curien and Herbelin in [19]. Indeed, we could have defined our mappings using the mappings

of λ-calculus and λµ into λµµ̃, and concatenating those to the mapping from λµµ̃ to X , but

our encoding is more detailed and precise than that and deals with explicit substitution as

well.

One should notice that for [19] the preservation of the cbv-evaluation and cbn-evaluation

relies on two distinct translations of terms. For instance, the cbv- and cbn-λ-calculus can both

be encoded into CPS [3], and there it is clear that what accounts for the distinction between

cbv and cbn is the encodings themselves, and not the way CPS reduces the encoded terms.

In contrast, in X we have no need of two separate interpretation functions, but will define

only one. Combining this with the two sub-reduction systems→v and →n we can encode the

cbv- and cbn-λ-calculus.

We assume the reader to be familiar with the λ-calculus [11]; we just recall the definition of

lambda terms and β-contraction.

Definition 4.1 (Lambda terms and β-contraction [11]) i) The set λ of lambda terms is de-

fined by the syntax‘:

M, N ::= x | λx.M | MN

Terms x and λx.M are called values.

ii) The reduction relation→β is defined as the contextual (i.e. compatible [11]) closure of the

rule:

(λx.M)N →β M[N/x]

iii) If the contraction (λx.M)N →β M[N/x] is fired only when N is a value, then the re-

duction is called call-by-value (or cbv for short) and written→v. No confusion is possible

with the reduction with the same name in X , since the nets on which both reductions

apply are not in the same syntactic category.

This calculus has a notion of type assignment that corresponds nicely to implicational

propositional logic, in the framework of natural deduction.

The rules of natural deduction define how to manipulate logical objects called sequents

that have the form: S ⊢ A, where A is a formula of propositional logic, and S is a set of such

formulae. The sequent means that A can be proved from the axioms S. The rules of natural

deduction either introduce or eliminate connectives in the right-hand side proposition of the

sequent.

For instance the implication is introduced by the rule
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Γ, A ⊢lk B
(⇒I)

Γ ⊢lk A⇒ B

and eliminated by Modus Ponens

Γ ⊢lk A⇒ B Γ ⊢lk A
(⇒E)

Γ ⊢lk B

We add to that the rule that allows us to use an axiom:

(A ∈ Γ)
Γ ⊢lk A

These three rules form the intuitionistic implicative logic. Notice that this logic is less

expressive than classical logic: for instance, from those rules Peirce’s law (Example 3.5) cannot

be proved.

We can simulate (⇒I) easily in sequent calculus; the Modus Ponens rule of natural deduc-

tion is simulated by a short reasoning:

Γ ⊢ A⇒ B,∆
(W)

Γ ⊢ A⇒ B, B,∆

Γ ⊢ A,∆
(W)

Γ ⊢ A, B,∆
(ax)

Γ, B ⊢ B,∆
(L⇒)

Γ, A⇒ B ⊢ B,∆
(cut)

Γ ⊢ B,∆

(cf [24]). Now the situation where the introduction rule of a connective is followed directly by

the elimination rule is traditionally called a cut in natural deduction [21]. In that case the proof

can be easily transformed into a simpler one, by the process of cut-elimination. For instance,

D1

Γ, A ⊢lk B

Γ ⊢lk A⇒ B

D2

Γ ⊢lk A

Γ ⊢lk B

can be transformed into a simpler proof: the one of Γ, A ⊢ B in which every time the axiom A

is used we replace the use of the axiom by the proof of Γ ⊢ A.

D2

Γ ⊢lk A

D1

Γ ⊢lk B

Hence the conclusion is Γ ⊢ B as required.

Now, formulae of propositional logic can be seen as types of functional programming (es-

pecially the simply typed λ-calculus) and vice-versa. The implication A⇒ B corresponds to

a functional type A→B. And further, the inference rules of intuitionistic propositional logic

are isomorphic to the typing rules of simply typed λ-calculus:

Definition 4.2 (Type assignment for the λ-calculus)

(Ax) :
Γ, x:A ⊢ x : A

(→I) :
Γ, x:A ⊢ M : B

Γ ⊢ λx.M : A→B
(→E) :

Γ ⊢ M : A→B Γ ⊢ N : A

Γ ⊢ MN : B

We first define the direct encoding of the λ-calculus into X :

Definition 4.3 (Interpretation of the λ-calculus in X )
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Jx λ(α) =
∆ 〈x·α〉

Jλx.M λ(α) =
∆ x̂ JM λ(β) β̂ ·α β fresh

JMN λ(α) =
∆ JM λ(γ) γ̂ † x̂ (JN λ(β) β̂ [x] ŷ 〈y·α〉) γ, β, x,y fresh

Observe that every sub-net of JM λ(α) has exactly one free plug, and that this is precisely

α. Moreover, notice that, in the λ-calculus, the output (i.e. result) is anonymous; where an

operand ‘moves’ to carries a name via a variable, but where it comes from is not mentioned,

since it is implicit. Since in X , a net is allowed to return a result in more than one way, in

order to be able to connect outputs to inputs we have to name the outputs; this forces a name

on the output of an interpreted λ-term M as well, carried in the sub-script of JM λ(α); this

name α is also the name of the current continuation, i.e. the name of the hole in the context in

which M occurs.

In [45], a similar interpretation is defined that differs in the last case, where it states:

JMN λ(α) =
∆ JM λ(γ) [ γ := (x)(JN λ(β) β̂ [x] ŷ 〈y·α〉) ]

This definition depends on an additional notion of substitution P [γ := (x)Q], defined as a

recursive transformation of P using cuts. Since this substitution is defined in the manner of

left propagation, essentially stating

JMN λ(α) =
∆ JM λ(γ) γ̂ † x̂ (JN λ(β) β̂ [x] ŷ 〈y·α〉) γ, β, x,y fresh,

Urban’s interpretation actually ignores certain reduction paths that are accessible from our

interpretation by right-activating the cut, and using Urban’s not all our results shown below

would be achievable; in fact, it is not possible to show that cbn reduction is modelled using

Urban’s interpretation.

Also, because of this substitution, reasoning over this interpretation in our proofs below

would be much more complicated, and those proofs would lose their elegance. For example,

to prove that type assignment is preserved for this interpretation, a substitution lemma needs

to be shown, giving a much more involved proof than the one we achieve in Theorem 4.8.

Moreover, it is possible to show that

JM λ(γ) γ̂ † x̂ (JN λ(β) β̂ [x] ŷ 〈y·α〉) →→ JM λ(γ) [ γ := (x)(JN λ(β) β̂ [x] ŷ 〈y·α〉) ].

In all, we feel our choice is justified.

It is worthwhile to notice that the interpretation function J·λ(α) does not generate a conflu-

ent sub-calculus. We illustrate this by the following:

Example 4.4 First notice that

Jxx λ(α) =
∆ Jx λ(γ) γ̂ † ẑ (Jx λ(β) β̂ [z] ŷ 〈y·α〉) =

∆

〈x·γ〉 γ̂ † ẑ (〈x·β〉 β̂ [z] ŷ 〈y·α〉) → (imp)

〈x·β〉 β̂ [x] ŷ 〈y·α〉

Moreover notice that the above (imp) reduction is the only possible one, making the reduction

deterministic. So we can write Jxx λ(α) → 〈x·β〉 β̂ [x] ŷ 〈y·α〉 . Now

J(λx.xx)(yy) λ(α) =
∆

Jλx.xx λ(β) β̂ † v̂ (Jyy λ(γ) γ̂ [v] ŵ 〈w·α〉) =
∆

(x̂ Jxx λ(δ)δ̂ ·β) β̂ † v̂ (Jyy λ(γ) γ̂ [v] ŵ 〈w·α〉) → (exp-imp)

Jyy λ(γ) γ̂ † x̂ (Jxx λ(δ) δ̂ † ŵ 〈w·α〉) → ( †ren)

Jyy λ(γ) γ̂ † x̂ Jxx λ(α)
2
→ (imp)

(〈y·σ〉 σ̂ [y] ẑ 〈z·γ〉) γ̂ † x̂ (〈x·τ〉 τ̂ [x] û 〈u·α〉)
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This net now has one cut only, that can be activated in two ways (notice that neither γ nor

x is introduced here). This results in either:

Jyy λ(γ) γ̂ † x̂ Jxx λ(α) → (a† )

Jyy λ(γ) γ̂ † x̂ Jxx λ(α) =
∆

(〈y·σ〉 σ̂ [y] ẑ 〈z·γ〉) γ̂ † x̂ Jxx λ(α) → (imp† )

(〈y·σ〉 γ̂ † x̂ Jxx λ(α)) σ̂ [y] ẑ (〈z·γ〉 γ̂ † x̂ Jxx λ(α)) → (cap† ), (d† ), ( †a)

〈y·σ〉 σ̂ [y] ẑ (〈z·γ〉 γ̂ † x̂ Jxx λ(α)) =
∆

〈y·σ〉 σ̂ [y] ẑ (〈z·γ〉 γ̂ † x̂ (〈x·τ〉 τ̂ [x] û 〈u·α〉)) → ( †imp-out)

〈y·σ〉 σ̂ [y] ẑ (〈z·γ〉 γ̂ † v̂ ((〈z·γ〉 γ̂ † x̂ 〈x·τ〉) τ̂ [v] û (〈z·γ〉 γ̂ † x̂ 〈u·α〉)))

→ ( †d), ( †cap), (cap)

〈y·σ〉 σ̂ [y] ẑ (〈z·γ〉 γ̂ † v̂ (〈z·τ〉 τ̂ [v] û 〈u·α〉)) → (imp)

〈y·σ〉 σ̂ [y] ẑ (〈z·τ〉 τ̂ [z] û 〈u·α〉)

or

Jyy λ(γ) γ̂ † x̂ Jxx λ(α) → ( †a), =
∆

Jyy λ(γ) γ̂ † x̂ (〈x·τ〉 τ̂ [x] û 〈u·α〉) → ( †imp-out)

Jyy λ(γ) γ̂ † ŵ ((Jyy λ(γ) γ̂ † x̂ 〈x·τ〉) τ̂ [w] û (Jyy λ(γ) γ̂ † x̂ 〈u·α〉)) → ( †d), (a† ), ( †cap)

Jyy λ(γ) γ̂ † ŵ ((Jyy λ(γ) γ̂ † x̂ 〈x·τ〉) τ̂ [w] û 〈u·α〉) =
∆

Jyy λ(γ) γ̂ † ŵ (((〈y·σ〉 σ̂ [y] ẑ 〈z·γ〉) γ̂ † x̂ 〈x·τ〉) τ̂ [w] û 〈u·α〉) → (imp† )

Jyy λ(γ) γ̂ † ŵ (((〈y·σ〉 γ̂ † x̂ 〈x·τ〉) σ̂ [y] ẑ (〈z·γ〉 γ̂ † x̂ 〈x·τ〉)) τ̂ [w] û 〈u·α〉)

→ (cap† ), (d† ), (cap), (a† )

Jyy λ(γ) γ̂ † ŵ ((〈y·σ〉 σ̂ [y] ẑ 〈z·τ〉) τ̂ [w] û 〈u·α〉) =
∆

(〈y·σ〉 σ̂ [y] ẑ 〈z·γ〉) γ̂ † ŵ ((〈y·σ〉 σ̂ [y] ẑ 〈z·τ〉) τ̂ [w] û 〈u·α〉) → (imp† )

(〈y·σ〉 γ̂ † ŵ ((〈y·σ〉 σ̂ [y] ẑ 〈z·τ〉) τ̂ [w] û 〈u·α〉)) σ̂ [y]

ẑ (〈z·γ〉 γ̂ † ŵ ((〈y·σ〉 σ̂ [y] ẑ 〈z·τ〉) τ̂ [w] û 〈u·α〉)) → (cap† ), (d† ),

〈y·σ〉 σ̂ [y] ẑ (〈z·γ〉 γ̂ † ŵ ((〈y·σ〉 σ̂ [y] ẑ 〈z·τ〉) τ̂ [w] û 〈u·α〉)) → (imp)

〈y·σ〉 σ̂ [y] ẑ ((〈y·σ〉 σ̂ [y] ẑ 〈z·τ〉) τ̂ [w] û 〈u·α〉)

Notice that both reductions return normal forms, and that these are different.

We will show that the cbn-reduction on the λ-calculus is respected by the interpretation

J λ( ). First we show a substitution result.

Lemma 4.5 i) JN λ(δ) δ̂ † x̂ JM λ(α)→ JM[N/x] λ(α).

ii) JN λ(δ) δ̂ † x̂ JM λ(α)→ JM[N/x] λ(α).

Proof : i) By induction on the structure of lambda terms.

(M = x) : JN λ(δ) δ̂ † x̂ Jx λ(α) =
∆ JN λ(δ) δ̂ † x̂ 〈x·α〉 →(ren† ) JN λ(δ)[α/δ] =

∆ JN λ(α) =
∆

Jx[N/x] λ(α)

(M = y 6= x) : JN λ(δ) δ̂ † x̂ Jy λ(α) =
∆ JN λ(δ) δ̂ † x̂ 〈y·α〉 →( †cap) 〈y·α〉 =

∆ Jy λ(α) =
∆

Jy[N/x] λ(α)

(M = λy.M′) : JN λ(δ) δ̂ † x̂ Jλy.M′ λ(α) =
∆

JN λ(δ) δ̂ † x̂ (ŷ JM′ λ(β) β̂ ·α) → ( †exp)

ŷ (JN λ(δ) δ̂ † x̂ JM′ λ(β)) β̂ ·α → (IH)

ŷ JM λ(′)[N/x]ββ̂ ·α =
∆ J(λy.M′)[N/x] λ(α)
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(M = PQ) : JN λ(δ) δ̂ † x̂ JPQ λ(α) =
∆

JN λ(δ) δ̂ † x̂ (JP λ(γ) γ̂ † ẑ (JQ λ(β) β̂ [z] ŷ 〈y·α〉)) → ( †cut)

(JN λ(δ) δ̂ † x̂ JP λ(γ)) γ̂ † ẑ (JN λ(δ) δ̂ † x̂ (JQ λ(β) β̂ [z] ŷ 〈y·α〉)) → ( †imp-in)

(JN λ(δ) δ̂ † x̂ JP λ(γ)) γ̂ † ẑ ((JN λ(δ) δ̂ † x̂ JQ λ(β)) β̂ [z] ŷ (JN λ(δ) δ̂ † x̂ 〈y·α〉))

→ ( †cap)

(JN λ(δ) δ̂ † x̂ JP λ(γ)) γ̂ † ẑ ((JN λ(δ) δ̂ † x̂ JQ λ(β)) β̂ [z] ŷ 〈y·α〉) → (IH)

JP[N/x] λ(γ) γ̂ † ẑ (JQ[N/x] λ(β) β̂ [z] ŷ 〈y·α〉) =
∆

JP[N/x]Q[N/x] λ(α) =
∆ J(PQ)[N/x] λ(α)

ii) We have two cases:

(JM λ(α) introduces x) : By Definition 4.3, this is only possible if M = x (and then JM λ(α) =

〈x·α〉). Then JN λ(δ) δ̂ † x̂ 〈x·α〉→ JN λ(α) by ( †ren); notice that JN λ(α) = Jx[N/x] λ(α).

(JM λ(α) does not introduce x) : Then JN λ(δ) δ̂ † x̂ JM λ(α)→( †a) JN λ(δ) δ̂ † x̂ JM λ(α) and the

result follows from the first part.

Theorem 4.6 (Simulation of cbn for the λ-calculus) If M→n N then JM λ(γ)→n JN λ(γ).

Proof : By induction on the number of steps, of which we show only the base case. This in

turn is proven by induction on the structure of terms, of which we again show the base case,

namely M = (λx.P)Q. In that case, (λx.P)Q→ P[Q/x], hence we have to prove:

J(λx.P)Q λ(α) =
∆ Jλx.P λ(γ) γ̂ † ŷ (JQ λ(β) β̂ [y] ẑ 〈z·α〉) =

∆

(x̂ JP λ(δ) δ̂ ·γ) γ̂ † ŷ (JQ λ(β) β̂ [y] ẑ 〈z·α〉) → (exp-imp)

JQ λ(β) β̂ † x̂ (JP λ(δ) δ̂ † ẑ 〈z·α〉) → ( †ren)

JQ λ(β) β̂ † x̂ JP λ(α) → (4.5) JP[Q/x]λ(α)

Notice that if in the above reduction we would have used the other version of exp-imp we

would have got the same result namely

(x̂ JP λ(δ) δ̂ ·γ) γ̂ † ŷ (JQ λ(β) β̂ [y] ẑ 〈z·α〉) → (exp-imp)

(JQ λ(β) β̂ † x̂ JP λ(δ)) δ̂ † ẑ 〈z·α〉 → ( †ren) JQ λ(β) β̂ † x̂ JP λ(α)

Notice that, in this reduction, all reduction steps are allowed in→n.

Notice also that 〈z·α〉 introduces z; if JP λ(δ) introduces δ, then either rule (cap) or (exp) can

be applied. When JP λ(δ) does not introduce δ, the cut needs to be activated, leading to

JP λ(δ) δ̂ † ẑ 〈z·α〉 → JP λ(δ) δ̂ † ẑ 〈z·α〉

This is allowed by rule (a† ) in→n, since both side-conditions are satisfied.

When encoding the cbv-λ-calculus, we also use the J·λ(α) interpretation. Notice that a term

like (λx.M)(PQ) is not a redex in the cbv-λ-calculus. As above, we get

J(λx.M)(PQ)λ(α) =
∆ Jλx.M λ(β) β̂ † b̂ (JPQ λ(γ) γ̂ [v] ŵ 〈w·α〉)

=
∆ (x̂ JM λ(δ) δ̂ ·β) β̂ † b̂ (JPQ λ(γ) γ̂ [v] ŵ 〈w·α〉)

→ JPQ λ(γ) γ̂ † x̂ (JM λ(δ) δ̂ † ŵ 〈w·α〉)

→ JPQ λ(γ) γ̂ † x̂ JM λ(α)

=
∆ (JP λ(σ) σ̂ † t̂ (JQ λ(τ) τ̂ [t] û 〈u·γ〉)) γ̂ † x̂ JM λ(α)

In particular, γ is not introduced in the outer-most cut, so (a† ) can be applied. What the

cbv reduction should guarantee, however, is that ( †a) cannot be applied; then the prop-

agation of JP λ(σ) σ̂ † t̂ (JQ λ(τ) τ̂ [t] û 〈u·γ〉) into JM λ(α) is blocked (which would produce

JM[(PQ)/x]λ(α), by Lemma 4.5). Notice that we can only apply rule ( †a) if both JM λ(α)

does not introduce x and JP λ(σ) σ̂ † t̂ (JQ λ(τ) τ̂ [t] û 〈u·γ〉) introduces γ. This is not the case,



25

since the second test fails.

On the other hand, if N is a λ-value (i.e. either a variable or an abstraction) then JN λ(γ) in-

troduces γ (in fact, N is a value if and only if JN λ(γ) introduces γ). Then JN λ(γ) γ̂ † x̂ JM λ(α)

cannot be reduced by rule (a† ), but by either rule ( †a) or a logical rule. As in the proof of

Theorem 4.6, this enables the reduction

JN λ(γ) γ̂ † x̂ JM λ(α) →v JM[N/x] λ(α).

So cbv-reduction for the λ-calculus is respected by the interpretation function, using→v.

Theorem 4.7 (Simulation of cbv for the λ-calculus) If M→v N then JM λ(γ)→v JN λ(γ).

Proof : As in the proof of Theorem 4.6, we only show the case M = (λx.P)Q. Notice that

then also J(λx.P)Q λ(δ) →v JQ λ(β) β̂ † x̂ JP λ(δ) (so this is true for both strategies). In this

reduction, all reduction steps are allowed in →v; as above, the only activation of a cut that

might be required is in the application of ( †ren), when perhaps

JP λ(δ) δ̂ † ẑ 〈z·α〉 → JP λ(δ) δ̂ † ẑ 〈z·α〉

when δ is not introduced in P. This is allowed by rule (a† ) in→v.

Now we show that JQ λ(β) β̂ † x̂ JP λ(δ)→v JP[Q/x] α if and only if Q is a value:

(if) : Let Q be a value, so JQ λ(β) introduces β.

As in the proof of Theorem 4.6, we now have two cases:

(JP λ(α) introduces x) : By Definition 4.3, this is only possible if P = x (and then JP λ(α) =

〈x·α〉). Then JQ λ(β) β̂ † x̂ 〈x·α〉→v JQ λ(α) by ( †ren), and JQ λ(α) = Jx[Q/x] λ(α).

(JP λ(α) does not introduce x) : Since the side-conditions for rule ( †a) are satisfied, we get

JQ λ(β) β̂ † x̂ JP λ(δ)→v ( †a) JQ λ(β) β̂ † x̂ JP λ(δ), as noticed above.

(only if) : Let Q = RS. Then

JRS λ(γ) γ̂ † x̂ JP λ(α) → (JR λ(δ) δ̂ † ẑ (JS λ(β) β̂ [z] v̂ 〈v·γ〉)) γ̂ † x̂ JP λ(α)

Now there are two cuts that can be activated, and we get either:

(JR λ(δ) δ̂ † ẑ (JS λ(β) β̂ [z] v̂ 〈v·γ〉)) γ̂ † x̂ JP λ(α) →

(JR λ(δ) δ̂ † ẑ (JS λ(β) β̂ [z] v̂ 〈v·γ〉)) γ̂ † x̂ JP λ(α) →

(JR λ(δ) γ̂ † x̂ JP λ(α)) δ̂ † ẑ ((JS λ(β) β̂ [z] v̂ 〈v·γ〉) γ̂ † x̂ JP λ(α)) → . . .

or:

(JR λ(δ) δ̂ † ẑ (JS λ(β) β̂ [z] v̂ 〈v·γ〉)) γ̂ † x̂ JP λ(α) →

T γ̂ † x̂ JP λ(α)

where T is JR λ(δ) δ̂ † ẑ (JS λ(β) β̂ [z] v̂ 〈v·γ〉) if JR λ(δ) does not introduce δ, and the re-

sult of applying the appropriate logical rule to JR λ(δ) δ̂ † ẑ (JS λ(β) β̂ [z] v̂ 〈v·γ〉) if it does;

notice that z is introduced in JS λ(β) β̂ [z] v̂ 〈v·γ〉.

In both cases, the reduction will continue inside the left-hand side of the outermost

(non-active) cut. The cbv-reduction will only allow right-activation of the outer-most cut

when the reduction of R returns a net that introduces γ, i.e. is a capsule or an export. In

any case, the reduction will not lead to JP[(RS)/x]λ(α).

Notice that we need to show both implications in the proof above. Proving just “If Q is a

value, then . . . ” does not guarantee that the contraction will not take place if Q is not a value.

Also, we need to show that the contraction has the desired result; the reduction we have in

Theorem 4.6 is not necessarily a reduction in cbv, and Lemma 4.5 shows only a result for right

activated cuts.

Using the last two results, the significance of Example 4.4 becomes clearer. Remember that
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J(λx.xx)(yy) λ(α) →v 〈y·σ〉 σ̂ [y] ẑ (〈z·τ〉 τ̂ [z] û 〈u·α〉)

J(λx.xx)(yy) λ(α) →n 〈y·σ〉 σ̂ [y] ẑ ((〈y·σ〉 σ̂ [y] ẑ 〈z·τ〉) τ̂ [z] û 〈u·α〉)

In the λ-calculus, (λx.xx)(yy) has different normal forms with respect to cbv and cbn λ-

reduction (respectively (λx.xx)(yy) and yy(yy)), which are both interpreted in X . The net

J(λx.xx)(yy) λ(α) is not a normal form in X for →v; it contains cuts. But, true to its nature,

the cbv-reduction will not return Jyy(yy) λ(α), but, instead, returns the net Jyy λ with the

duplication Jzz λ(α) ‘waiting to be applied’ in the continuation.

We can now show that typeability is preserved by J·λ(α):

Theorem 4.8 If Γ ⊢λ M : A, then JM λ(α) ··· Γ ⊢X α:A.

Proof : By induction on the structure of derivations in ⊢λ; notice that we use weakening.

(ax) : Then M = x, and Γ = Γ′, x:A. Notice that

(cap)
Jx

λ(α) ··· Γ′, x:A ⊢ α:A

(→I) : Then M = λx.N, A = C→D, and Γ, x:C ⊢λ N : D. Then, by induction, a derivation

D :: JN λ(β) ··· Γ, x:C ⊢X β:D exists, and we can construct:

D

JN
λ(β) ··· Γ, x:C ⊢ β:D

(exp)
x̂ JN

λ(β) β̂ ·α ··· Γ ⊢ α:C→D

Notice that x̂ JN λ(β) β̂ ·α = Jλx.N λ(α).

(→E) : Then M = PQ, and there exists B such that Γ ⊢λ P : B→A and Γ ⊢λ Q : B. By induction,

there exist derivations D1 :: JP λ(γ) ··· Γ ⊢X γ:B→A and D2 :: JQ λ(β) ··· Γ ⊢X β:B, and we

can construct:

D1

JP
λ(γ) ··· Γ ⊢ γ:B→A

JP
λ(γ) ··· Γ ⊢ α:A,γ:B→A

D2

JQ
λ(β) ··· Γ ⊢ β:B

JQ
λ(β) ··· Γ ⊢ β:B,α:A 〈y·α〉 ··· Γ,y:A ⊢ α:A

JQ
λ(β) β̂ [x] ŷ 〈y·α〉 ··· Γ, x:B→A ⊢ α:A

JP
λ(γ) γ̂ † x̂ (JQ

λ(β) β̂ [x] ŷ 〈y·α〉) ··· Γ ⊢ α:A

Notice that JPQ λ(α) = JP λ(γ) γ̂ † x̂ (JQ λ(β) β̂ [x] ŷ 〈y·α〉), and that this derivation corre-

sponds (of course) to the simulation of the Modus Ponens rule as discussed above.

As already suggested in Section 4, this theorem is in fact a reformulation of Gentzen’s correct-

ness result on the embedding of natural deduction in the sequent calculus.

To strengthen the fact that we consider more than just those nets that represent proofs, we

will show an example of a non-terminating reduction sequence.

Example 4.9 (Reducing J∆∆
λ(β)) Remember that Jxx λ(β) → 〈x·δ〉 δ̂ [x] ŷ 〈y·β〉. Now J∆∆

λ(β)

reduces as follows:

J∆∆λ(β) =
∆ Jλx.xx λ(γ) γ̂ † ẑ (J∆λ(γ) γ̂ [z] ŷ 〈y·β〉)

=
∆ (x̂ Jxx λ(α) α̂ · δ) δ̂ † ẑ (J∆λ(γ) γ̂ [z] ŷ 〈y·β〉)

→(exp-imp) J∆λ(γ) γ̂ † x̂ (Jxx λ(α) α̂ † ŷ 〈y·β〉)

→( †ren) J∆λ(γ) γ̂ † x̂ Jxx λ(β) =
∆ J∆λ(γ) γ̂ † x̂ (〈x·δ〉 δ̂ [x] ŷ 〈y·β〉)

→( †a) ∧( †imp-out) J∆λ(γ) γ̂ † ẑ ((J∆λ(γ) γ̂ † x̂ 〈x·δ〉) δ̂ [z] ŷ (J∆λ(γ) γ̂ † x̂ 〈y·β〉))

→ ( †cap) J∆λ(γ) γ̂ † ẑ ((J∆λ(γ) γ̂ † x̂ 〈x·δ〉) δ̂ [z] ŷ 〈y·β〉)

→( †d) ∧( †ren) J∆
λ(γ) γ̂ † ẑ (J∆

λ(δ) δ̂ [z] ŷ 〈y·β〉) =
∆ J∆∆

λ(β)
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5 Interpreting λx

In this section we will interpret a calculus of explicit substitutions, λx, introduced by Bloo

and Rose [14], where a β-reduction of the λ-calculus is split into several more atomic steps of

computation. We will show that X has a fine level of atomicity as it simulates each reduction

step of λx by describing how the explicit substitutions interact with nets.

Bloo and Rose introduce the concept of substitution within the syntax of the calculus, mak-

ing it explicit, by adding the operator M 〈x=N〉:

Definition 5.1 (Bloo &Rose 1995) The syntax of λx is an extension of that of the λ-calculus:

M, N ::= x | λx.M | MN | M 〈x=N〉

Type assignment on λx is defined as for the λ-calculus; the added syntactic construct is dealt

with by the (cut)-rule:

(Ax) :
Γ, x:A ⊢ x : A

(cut) :
Γ, x:A ⊢ M : B Γ ⊢ N : A

Γ ⊢ M 〈x=N〉 : B

(→I) :
Γ, x:A ⊢ M : B

Γ ⊢ λx.M : A→B
(→E) :

Γ ⊢ M : A→B Γ ⊢ N : A

Γ ⊢ MN : B

Notice that the (cut)-rule does not enable us to prove sequents that were not provable

beforehand in ⊢λ. We can derive from Γ, x:A ⊢λ M : B and Γ ⊢λ N : A also Γ ⊢λ (λx.M)N : B;

also, the Substitution Lemma shows that the (cut)-rule is admissible in ⊢λ, replacing the

explicit substitution by the implicit: if Γ, x:A ⊢λ M : B and Γ ⊢λ N : A, then also Γ ⊢λ M[N/x] : B.

Explicit substitution describes explicitly the process of executing a β-reduction, i.e. ex-

presses syntactically the details of the computation as a succession of atomic, constant-time

steps (like in a first-order rewriting system), where the β-reduction is split into several steps.

Definition 5.2 (Bloo & Rose 1995) The reduction relation is defined by the following rules

(B) : (λx.M)P → M 〈x :=P〉

(App) : (MN) 〈x :=P〉 → M 〈x :=P〉N 〈x :=P〉

(Abs) : (λy.M) 〈x :=P〉 → λy.(M 〈x :=P〉)

(Var) : x 〈x :=P〉 → P

(VarK) : y〈x :=P〉 → y

(gc) : M 〈x :=P〉 → M, (x 6∈ fv(M))

The notion of reduction λx is obtained by deleting rule (gc), and the notion of reduction

λxgc is obtained by deleting rule (VarK). The rule (gc) is called ‘garbage collection’, as it

removes useless substitutions.

Our notion of cbv-λx is naturally inspired by that of the λ-calculus.

Definition 5.3 (Call by value in λx) Just as in the λ-calculus, a term in λx is a value if it is a

variable or an abstraction. In a cbv-β-reduction, the argument must be a value, so that means

that when it is simulated by cbv-λx, all the substitutions created are of the form M 〈x :=N〉

where N is a value, that is, either a variable or an abstraction.

Hence, we build the cbv-λx by a syntactic restriction:

M ::= x | λx.M | M1M2 | M 〈x :=λx.N〉 | M 〈x :=y〉.

The cbv-β-reduction is the reduction generated by the rules of Definition 5.2, when rule (B) is

applied only when P is value.

The Subject Reduction still holds as we can still see the computation in λx as cut-elimination:

now this process consists in discarding the situations where the elimination of a connective

follows its introduction, by using the (cut)-rule and moving it towards the applications of the

axiom-rule until it disappears.



28

Definition 5.4 (Interpretation of λx in X ) We define J· λx(α) as the interpretation J·λ(α), by

adding a case for the explicit substitution:

Jx λx(α) =
∆ 〈x·α〉

Jλx.M λx(α) =
∆ x̂ JM λx(β) β̂ ·α

JMN λx(α) =
∆ JM λx(γ) γ̂ † x̂ (JN λx(β) β̂ [x] ŷ 〈y·α〉)

JM 〈x=N〉 λx(α) =
∆ JN λx(β) β̂ † x̂ JM λx(α)

Notice that the interpretation of the λ-calculus is just made out of the first three rules.

Moreover, notice that the cut is activated in the last alternative; this might seem in contrast

with Lemma 4.5, where we justify that the cut JN λx(β) β̂ † x̂ JM λx(α) reduces to JM[N/x] λx(α),

but, using the inactivated cut, we cannot not prove that

J(PQ)〈x=N〉 λx(α)→ J(P〈x=N〉)(Q〈x=N〉) λx(α)

as in Theorem 5.7 below, but would only be able to manage

J(PQ)〈x=N〉 λx(α) ↓X J(P〈x=N〉)(Q〈x=N〉) λx(α).

Now notice that, again, N is a value if and only if JN λx(α) introduces α.

Theorem 5.5 If Γ ⊢λx M : A, then JM λx(α) ··· Γ ⊢X α:A.

The proof is a straightforward extension of that for Theorem 4.8.

We will now show that the reductions can be simulated, preserving the evaluation strate-

gies.

Theorem 5.6 (Simulation of rule (B)) (cbn) : J(λx.M)N λx(α)→n JM 〈x :=N〉 λx(α)

(cbv) : J(λx.M)N λx(α)→v JM 〈x :=N〉 λx(α) iff N is a value.

Proof : J(λx.M)N λx(α) =
∆

Jλx.M λx(γ) γ̂ † ŷ (JN λx(β) β̂ [y] ẑ 〈z·α〉) =
∆

(x̂ JM λx(δ) δ̂ ·γ) γ̂ † ŷ (JN λx(β) β̂ [y] ẑ 〈z·α〉) → (exp-imp)

JN λx(β) β̂ † x̂ (JM λx(δ) δ̂ † ẑ 〈z·α〉) → ( †a)

JN λx(β) β̂ † x̂ (JM λx(δ) δ̂ † ẑ 〈z·α〉) → ( †ren)

JN λx(β) β̂ † x̂ JM λx(α) =
∆ JM 〈x=N〉 λx(α)

Notice that this reduction sequence is valid in the cbn-evaluation, which proves the first

point. As for the cbv-evaluation, the step †a is possible if and only if JN λx(β) introduces β,

that is, if and only if N is a value. The proof concludes by Lemma 4.5.

Notice that we could also show J(λx.M)N λx(α)→n JN λ(β) β̂ † x̂ JM α, but that using the

definition JM 〈x=N〉 λx(α) =
∆ JN λ(β) β̂ † x̂ JM α would give problems for the next proof.

Theorem 5.7 (Simulation of the other rules) Let M→ N by any of the rules (App), (Abs),

(Var), (VarK), (gc), then JM λx(γ)→v JN λx(γ) and JM λx(γ)→n JN λx(γ).

Proof : We only show the interesting cases. In what follows we activate the cut to the right

which corresponds to both cbv and cbn if N is a value and corresponds to cbn otherwise.

(J(λy.M)〈x=N〉 λx(α)→ Jλy.M 〈x=N〉 λx(α)) : J(λy.M)〈x=N〉 λx(α) =
∆

JN λx(β) β̂ † x̂ Jλy.M λx(α) =
∆ JN λx(β) β̂ † x̂ (ŷ JM λx(γ)γ̂ ·α) → ( †exp)

ŷ (JN λx(β) β̂ † x̂ JM λx(γ))γ̂ ·α =
∆ ŷ JM 〈x=N〉 λx(γ)γ̂ ·α =

∆

Jλy.M 〈x=N〉 λx(α).
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(J(PQ)〈x=N〉 λx(α)→ J(P〈x=N〉)(Q〈x=N〉) λx(α)) : J(PQ)〈x=N〉 λx(α) =
∆

JN λx(β) β̂ † x̂ JPQ λx(α) =
∆

JN λx(β) β̂ † x̂ (JP λx(γ) γ̂ † ŷ (JQ λx(β) β̂ [y] ẑ 〈z·α〉)) → ( †cut)

(JN λx(β) β̂ † x̂ JP λx(γ)) γ̂ † ŷ (JN λx(β) β̂ † x̂ (JQ λx(β) β̂ [y] ẑ 〈z·α〉)) → ( †imp-in)

(JN λx(β) β̂ † x̂ JP λx(γ)) γ̂ † ŷ ((JN λx(β) β̂ † x̂ JQ λx(β)) β̂ [y] ẑ (JN λx(β) β̂ † x̂ 〈z·α〉)) =
∆

JP〈x=N〉 λx(γ) γ̂ † ŷ (JQ〈x=N〉 λx(β) β̂ [y] ẑ (JN λx(β) β̂ † x̂ 〈z·α〉)) → ( †cap)

JP〈x=N〉 λx(γ) γ̂ † ŷ (JQ〈x=N〉 λx(β) β̂ [y] ẑ 〈z·α〉) =
∆

J(P〈x=N〉)(Q〈x=N〉) λx(α)

(Jx 〈x :=N〉 λx(α)→ JN λx(α)) : Jx 〈x :=N〉 λx(α) =
∆ JN λx(β) β̂ † x̂ Jx λx(α) =

∆

JN λx(β) β̂ † x̂ 〈x·α〉 → ( †d) JN λx(β) β̂ † x̂ 〈x·α〉 → ( †ren) JN λx(α)

(Jy〈x :=N〉 λx(α)→ Jy λx(α)) : Jy〈x :=N〉 λx(α) =
∆ JN λx(β) β̂ † x̂ Jy λx(α) =

∆

JN λx(β) β̂ † x̂ 〈y·α〉 → ( †cap) 〈y·α〉 =
∆ Jy λx(α)

(JM 〈x :=N〉 λx(α)→ JM λx(α), if x 6∈ fv(M)) : JM 〈x :=N〉 λx(α) =
∆

JN λx(β) β̂ † x̂ JM λx(α) →( †gc) JM λx(α)

We can now state that λx-reduction is preserved by interpretation of terms into X .

Theorem 5.8 (Simulation of λx) i) If M→v N then JM λx(γ)→v JN λx(γ)

ii) If M→n N then JM λx(γ)→n JN λx(γ)

We can add the following composition rule to the reduction system of λx:

M 〈x=P〉〈y=Q〉→M 〈y=Q〉〈x=P〈y=Q〉〉

This rule trivially breaks the Strong Normalisation property for typed terms [13] and cannot

be simulated. But it can be useful for reasoning by equivalence. If we abandon Strong Nor-

malisation, then we can merge the three kinds of cuts. It can be done for instance by setting

the equivalence:

P α̂ † x̂ Q ∼ P α̂ † x̂Q ∼ P α̂ † x̂ Q.

In that case the composition rule can be simulated (in both strategies cbv and cbn) as follows:

JM 〈x=P〉〈y=Q〉 λx(α) =
∆

JQ λx(β) β̂ † ŷ (JP λx(δ) δ̂ † x̂ JM λx(α))

(JQ λx(β) β̂ † ŷ JP λx(δ)) δ̂ † x̂ (JQ λx(β) β̂ † ŷ JM λx(α)) =
∆

JM 〈y=Q〉〈x=P〈y=Q〉〉 λx(α).

There are interesting issues which deserves to be explored.

6 Interpreting λµ

Parigot’s λµ-calculus [40] is a proof-term syntax for classical logic, but expressed in the setting

of Natural Deduction. Let us extend the syntax of formulae with the constant⊥ (false). Natural

deduction deals with classical logic by allowing the logical rule:

Γ, A⇒⊥ ⊢lk ⊥

Γ ⊢lk A

An assumption can now be discharged by either the introduction of ‘⇒’ or by this rule (if

the assumption has the form A⇒⊥). This leads to the splitting of the set of axioms into

two parts: the first where the assumptions might be discharged only by the introduction
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of ‘⇒’, and the second where the assumptions might be discharged only by reasoning by

contradiction. Since the latter part is of the form (A1⇒⊥, . . . , An⇒⊥) where the comma is

to be thought as a conjunction, the sequent

Γ, A1⇒⊥, . . . , An⇒⊥ ⊢lk B

is logically equivalent to the multi-conclusion sequent

Γ ⊢lk B | A1, . . . , An,

since in classical logic (A⇒⊥)⇒ B is logically equivalent to A ∨ B; ‘both |’ and ‘,’ are to be

thought as a disjunction. The reasoning by contradiction becomes:

Γ ⊢ ⊥ | A,∆

Γ ⊢ A | ∆

which exhibits the neutrality of ⊥ for the disjunction; notice that here we implicitly assume

the truly classical ((A⇒⊥)⇒⊥)⇒A.

However, when we assumed A⇒⊥, we may have liked to use it not only in a reasoning by

contradiction, but also as an implication as such:

Γ, A⇒⊥ ⊢lk A⇒⊥ Γ, A⇒⊥ ⊢lk A

Γ, A⇒⊥ ⊢lk ⊥

and hence in the multi-conclusion style sequent, we have to add the rule:

Γ ⊢ A | A,∆

Γ ⊢ ⊥ | A,∆

where again the neutrality of ⊥ for the disjunction is exhibited.

In [40], Parigot created the λµ-calculus, the typing system of which is isomorphic to this

multi-conclusion logical system; this is achieved by extending the syntax with two new con-

structs that act as witness to the two rules discussed above. It uses two disjoint sets of vari-

ables (Roman letters and Greek letters). The sequents typing terms are of the form Γ ⊢lk A | ∆,

marking the conclusion A as active.

Definition 6.1 (Terms of λµ, version 1) The terms of λµ, version 1, are:

M, N ::= x | λx.M | MN | [α]M | µα.M

Definition 6.2 (Typing rules for λµ) Type assignment for λµ is defined by the following

natural deduction system; there is a main, or active, conclusion, labelled by a term of this

calculus, and the alternative conclusions are labelled by the set of Greek variables α, β, . . ..

(x:A ∈ Γ)
Γ ⊢ x : A |∆

Γ, x:A ⊢ M : B |∆

Γ ⊢ λx.M : A→B |∆

Γ ⊢ M : A→B |∆ Γ ⊢ N : A |∆

Γ ⊢ MN : B |∆

Γ ⊢ M : A | α:A,∆

Γ ⊢ [α]M :⊥ | α:A,∆

Γ ⊢ M :⊥ | α:A,∆

Γ ⊢ µα.M : A |∆

We can think of [α]M as storing the type of M amongst the alternative conclusions by giving

it the name α - the set of Greek variables is called the set of name variables. Also, µα.M binds

α in M; the notion of α-conversion extends naturally to bound names.

Note that we have the Weakening Property: If Γ ⊢λµ M : A | ∆ and Γ ⊆ Γ′ and ∆⊆ ∆′, then

Γ′ ⊢λµ M : A |∆′.

It is interesting to note that even if⊥ is not included in the language (and hence (A→⊥)→⊥

is not even a type), we stay in classical logic by collapsing the last two rules into:
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Γ ⊢ M : B | α:A, β:B,∆

Γ ⊢ µα.[β]M : A | β:B,∆

Γ ⊢ M : B | α:B,∆

Γ ⊢ µα.[α]M : B |∆

That is, we force the naming to be followed by a µ-abstraction. Thus:

Definition 6.3 (Terms of λµ, version 2) The terms of λµ, version 2, are defined by the fol-

lowing grammar:

M, N ::= x | λx.M | MN | µβ.[α]M

The syntax of Definition 6.1 is the original definition of [40]; that in the above definition was

introduced later in [41] and [30].

Since ⊥ is not a type in the system we consider here for X , this last variant of λµ is the

system for which we will study the relation with X .

As an example illustrating the fact that this system still is more powerful than the system

for the λ-calculus, here is a proof of Peirce’s Law (due to Ong and Stewart [39]):

x:((A→B)→A) ⊢ x : (A→B)→A | α:A

x:((A→B)→A),y:A ⊢ y : A | α:A, β:B

x:((A→B)→A),y:A ⊢ µβ.[α]y : B | α:A

x:((A→B)→A) ⊢ λy.µβ.[α]y : A→B | α:A

x:((A→B)→A) ⊢ x(λy.µβ.[α]y) : A | α:A

x:((A→B)→A) ⊢ µα.[α](x(λy.µβ.[α]y)) : A |

⊢ λx.µα.[α](x(λy.µβ.[α]y)) : ((A→B)→A)→A |

Now as the system is still in a natural deduction style, we still have cut-situations that we

might want to eliminate. Hence, we have the rules of computation in λµ:

Definition 6.4 (λµ reduction) Reduction on λµ-terms is defined as the compatible closure

of the rules:

logical (β) : (λx.M)N → M[N/x]

structural (µ) : (µα.[β]M)N → µγ.([β]M)[N·γ/α]

renaming : µα.[β](µγ.[δ]M) → µα.[δ]M[β/γ]

erasing : µα.[α]M → M (α does not occur in M)

where M[N·γ/α] stands for the term obtained from M in which every (pseudo) sub-term of

the form [α]M′ is substituted by [γ](M′N) (γ is a fresh variable).

Note that in this calculus, the computation of substitutions is implicit.

Definition 6.5 (Interpretation of λµ in X ) We define J· λµ(α) as the interpretation J·λ(α),

by adding an alternative for µ-terms:

Jx λµ(α) =
∆ 〈x·α〉

Jλx.M λµ(α) =
∆ x̂ JM λµ(β) β̂ ·α

JMN λµ(α) =
∆ JM λµ(γ) γ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·α〉)

Jµδ.[γ]M λµ(α) =
∆ JM λµ(γ) δ̂ † x̂ 〈x·α〉

Similarly to the previous sections, we can prove (see Lemma 4.5):

JN λµ(β) β̂ † x̂ JM λµ(α) → JM[N/x] λµ(α)

JM λµ(γ) δ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·α〉) → Jµτ.([γ]M)[N·τ/δ] λµ(α)

This result will prove convenient below.

Notice that the last alternative is justified, since we can show:
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Lemma 6.6 The following rule is admissible:

J(µδ.[γ]M)N λµ(α) → JM λµ(γ) δ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·α〉)

Proof : J(µδ.[γ]M)N λµ(α) =
∆

Jµδ.[γ]M λµ(ν) ν̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·α〉) =
∆

(JM λµ(γ) δ̂ † ẑ 〈z·ν〉) ν̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·α〉) → ( †ren)

JM λµ(γ)[ν/δ] ν̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·α〉) → (=α)

JM λµ(γ) δ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·α〉)

Notice the similarity between the net JMN λµ(α) and the result of running J(µδ.[γ]M)N λµ(α);

the difference lies only in a bound plug. This implies that, for the λ-calculus, we can only con-

nect to the plug that corresponds to the name of the term itself, whereas for the λµ-calculus,

we can also connect to plugs inside that occur inside, i.e., to named sub-terms.

We will now show that the above definition of the encoding of µ-substitution is correct;

notice that, unlike for the λ-calculus, we can only show that the interpretation is preserved

modulo equivalence, not modulo reduction; a similar restriction holds also for the interpreta-

tion of λµ in λµµ̃ achieved in [19]6.

Lemma 6.7 i) JM λµ(δ) δ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·γ〉) ↓X JM[N·γ/δ]N λµ(γ).

ii) JM λµ(ν) δ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·γ〉) ↓X JM[N·γ/δ] λµ(ν), if δ 6= ν.

Proof : By simultaneous induction on the structure of terms; we only show the interesting

cases.

i)(M = λz.M′) : Jλz.M′ λµ(δ) δ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·γ〉) =
∆

(ẑ JM′ λµ(σ)σ̂ ·δ) δ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·γ〉) →

(ẑ (JM′ λµ(σ) δ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·γ〉))σ̂ ·τ) τ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·γ〉) ↓X (IH.2)

(ẑ JM′[N·γ/δ] λµ(σ)σ̂ ·τ) τ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·γ〉) =
∆

Jλz.M′[N·γ/δ] λµ(τ) τ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·γ〉) =
∆

J(λz.M′)[N·γ/δ]N λµ(γ)

(M = M1M2) : JM1M2
λµ(δ) δ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·γ〉) =

∆

(JM1
λµ(σ) σ̂ † ẑ (JM2

λµ(τ) τ̂ [z] v̂ 〈v·δ〉)) δ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·γ〉) ↓X (IH.2)

JM1[N·γ/δ] λµ(σ) σ̂ † ẑ (JM2[N·γ/δ] λµ(τ) τ̂ [z] v̂ (JN λµ(β) β̂ [v] ŷ 〈y·γ〉)) ←

(JM1[N·γ/δ] λµ(σ) σ̂ † ẑ (JM2[N·γ/δ] λµ(τ) τ̂ [z] v̂ 〈v·τ〉)) τ̂ † x̂(JN λµ(β) β̂ [x] ŷ 〈y·γ〉) ←

JM1[N·γ/δ]M2[N·γ/δ] λµ(τ) τ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·γ〉) =
∆

J(M1M2)[N·γ/δ]N λµ(γ)

(M = µσ.[δ]M′) : Jµσ.[δ]M′ λµ(δ) δ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·γ〉) =
∆

(JM′ λµ(δ) σ̂ † ẑ 〈z·δ〉) δ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·γ〉) →

(JM′ λµ(δ) δ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·γ〉)) σ̂ † ẑ (〈z·δ〉 δ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·γ〉)) →

(JM′ λµ(δ) δ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·γ〉)) σ̂ † ẑ (JN λµ(β) β̂ [z] ŷ 〈y·γ〉) ↓X (IH.1)

JM′[N·γ/δ]N λµ(γ) σ̂ † ẑ (JN λµ(β) β̂ [z] ŷ 〈y·γ〉) ← (=α)

(JM′[N·γ/δ]N λµ(γ) σ̂ † ŵ 〈w·ν〉) ν̂ † ẑ (JN λµ(β) β̂ [z] ŷ 〈y·γ〉) =
∆

Jµσ.[γ]M′[N·γ/δ]N λµ(ν) ν̂ † ẑ (JN λµ(β) β̂ [z] ŷ 〈y·γ〉) =
∆

J(µσ.[γ]M′[N·γ/δ]N)N λµ(γ) =

J(µσ.[δ]M′)[N·γ/δ]N λµ(γ)

6 A corrected version of this paper is available from Herbelin’s home page.
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ii)(M = µσ.[δ]M′) : Jµσ.[δ]M′ λµ(ν) δ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·γ〉) =
∆

(JM′ λµ(δ) σ̂ † ẑ 〈z·ν〉) δ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·γ〉) →

(JM′ λµ(δ) δ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·γ〉)) σ̂ † ẑ (〈z·ν〉 δ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·γ〉)) →

(JM′ λµ(δ) δ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·γ〉)) σ̂ † ẑ 〈z·ν〉 ↓X (IH.1)

JM′[N·γ/δ]N λµ(γ) σ̂ † ẑ 〈z·ν〉 ← (=α)

(JM′[N·γ/δ]N λµ(γ) σ̂ † ŵ 〈w·τ〉) τ̂ † ẑ 〈z·ν〉 =
∆

Jµσ.[γ]M′[N·γ/δ]N λµ(τ) τ̂ † ẑ 〈z·ν〉 →

J(µσ.[γ]M′[N·γ/δ]N) λµ(ν) =

J(µσ.[δ]M′)[N·γ/δ] λµ(ν).

(M = µσ.[τ]M′) : Jµσ.[τ]M′ λµ(ν) δ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·γ〉) =
∆

(JM′ λµ(τ) σ̂ † ẑ 〈z·ν〉) δ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·γ〉) →

(JM′ λµ(τ) δ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·γ〉)) σ̂ † ẑ (〈z·ν〉 δ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·γ〉)) ↓X (IH.2)

JM′[N·γ/δ] λµ(τ) σ̂ † ẑ 〈z·ν〉 →

J(µσ.[τ]M′)[N·γ/δ] λµ(ν).

Remark that a number of the ‘reverse’ reduction steps in this proof could have been avoided

by defining Jµα.[β]M λµ(γ) =
∆ JM λµ(β)[γ/α]. But, as is evident from case M = M1M2 in the

proof of part (i), this would not give a proof that the interpretation is preserved by reduction.

Notice that, for the (renaming) and (erasure) rules, we have:

Jµα.[β](µγ.[δ]M) λµ(σ) =
∆

Jµγ.[δ]M λµ(β) α̂ † x̂ 〈x·σ〉 =

(JM λµ(δ) γ̂ † x̂ 〈x·β〉) α̂ † x̂ 〈x·σ〉 →

JM[β/γ] λµ(δ) α̂ † x̂ 〈x·σ〉 =

Jµα.[δ]M[β/γ] λµ(σ)

and

Jµα.[α]M λµ(σ) =
∆

JM λµ(α) α̂ † x̂ 〈x·σ〉 →

JM λµ(σ)

We can now show that λµ’s reduction is preserved by our interpretation.

Theorem 6.8 (Simulation of cbn for λµ) If M→n N then JM λµ(α) ↓n

X JN λµ(α).

Proof : As before, the proof is by induction on the length of the reductions sequence, of which

we show the base case; by the above, we need only focus on rules (β) and (µ). The proof for

case (β) is as for Theorem 4.6, and for case (µ), we separate:

((µδ.[δ]M)N→ µα.([δ]M)[N·α/δ]) : By Lemma 6.6, we already know that

J(µδ.[δ]M)N λµ(α) → JM λµ(δ) δ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·α〉)

(notice that x is introduced). Again, we separate two cases:

(δ is introduced) : Then either

(JM λµ(δ) = 〈z·δ〉) : Notice that

〈z·δ〉 δ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·α〉) → JN λµ(β) β̂ [z] ŷ 〈y·α〉.

and that

Jµα.[α]zN λµ(α) =
∆ JzN λµ(α) α̂ † v̂ 〈v·α〉

=
∆ (Jz λµ(γ) γ̂ † ŵ (JN λµ(β) β̂ [w] â 〈a·α〉)) α̂ † v̂ 〈v·α〉

→ JN λµ(β)β[z]y〈y·α〉

(JM λµ(δ) = ẑ JM′ λµ(β) β̂ · δ) : Then M = λz.M′, and δ does not occur in M′. Notice that
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Jµα.([δ](λx.M′))[N·α/δ] λµ(α) =

Jµα.[α](λx.M′)N λµ(α) =
∆

((ẑ JM′ λµ(β) β̂ · δ) δ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·α〉)) α̂ † v̂ 〈v·α〉 →

(ẑ JM′ λµ(β) β̂ · δ) δ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·α〉).

(δ is not introduced) : Then the latter reduces to JM λµ(δ) δ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·α〉).

By Lemma 6.7, JM λµ(δ) δ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·α〉) ↓X JM[N·α/δ]N λµ(α). Notice

that

JM[N·α/δ]N λµ(α) ← JM[N·α/δ]N λµ(α) α̂ † v̂ 〈v·α〉 =
∆ Jµα.[α]M[N·α/δ]N λµ(α).

((µδ.[ν]M)N→ µα.[ν](M[N·α/δ])) : Again by Lemma 6.6, we know that

J(µδ.[ν]M)N λµ(α) → JM λµ(ν) δ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·α〉).

Since δ is not introduced, the latter reduces to JM λµ(ν) δ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·α〉).

By Lemma 6.7, JM λµ(ν) δ̂ † x̂ (JN λµ(β) β̂ [x] ŷ 〈y·α〉) ↓X JM[N·α/δ] λµ(ν). Notice that

JM[N·α/δ] λµ(ν) ← JM[N·α/δ] λµ(ν) α̂ † v̂ 〈v·α〉 =
∆ Jµα.[ν]M[N·α/δ] λµ(α).

We can also show that types are preserved by the interpretation:

Theorem 6.9 If Γ ⊢λµ M : A |∆, then JM λµ(α) ··· Γ ⊢ α:A,∆.

Proof : As the proof of Theorem 4.8; we only need to focus here on the two rules dealing

with µ-abstractions. First, let M = µδ.[γ]N. Then JM λµ(α) =
∆ JN λµ(γ) δ̂ † x̂ 〈x·α〉. Assume

Γ ⊢λµ M : A | γ:B,∆, then also Γ ⊢λµ N : B | δ:A,γ:B,∆, and JN λµ(γ) ··· Γ ⊢ δ:A,γ:B follows by

induction. Then:

JN
λµ(γ) ··· Γ ⊢ δ:A,γ:B,∆ 〈x·α〉 ··· Γ, x:A ⊢ α:A,γ:B,∆

JN
λµ(γ) δ̂ † x̂ 〈x·α〉 ··· Γ ⊢ α:A,γ:B,∆

The alternative M = µδ.[δ]N is similar.

7 Interpreting λµµ̃

In its typed version, X is a proof-term syntax for a classical sequent calculus. Another proof-

system has been proposed for (a variant of) classical sequent calculus in Curien and Herbelin’s

λµµ̃-calculus [19]. It is interesting to relate those two formalisms and realise that λµµ̃ can be

interpreted in X as well.

For the λµµ̃-calculus as presented in [19], there are two sets of variables: x,y,z, etc., la-

bel the types of the hypotheses and α, β,γ, etc., label the types of the conclusions. More-

over, the syntax of λµµ̃ has three different categories: commands, terms, and contexts or co-

terms. Correspondingly, they are typed by three kinds of sequents: the usual sequents Γ ⊢lk ∆

type commands, while the sequents typing terms (resp. contexts) are of the form Γ ⊢lk A | ∆

(resp. Γ | A ⊢lk ∆), marking the conclusion (resp. hypothesis) A as active.

Definition 7.1 (Commands, Terms and Contexts)

c ::= 〈v | e〉 (commands)

e ::= α | v·e | µ̃x.c (contexts)

v ::= x | λx.v | µβ.c (terms)

Here µα.c, µ̃x.c′ and λy.v respectively bind α in c, x in c′ and y in v; as usual, we will

consider terms, contexts and commands up to α-conversion, writing them in a way satisfying
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Barendregt’s convention.

A context can be a variable but can also be more complex (so as to have a typing rule

introducing ‘→’ on the left-hand side of a sequent), and commands fill the hole of a context

with a term.

Definition 7.2 (Typing for λµµ̃)

(cut) :
Γ ⊢λ v : A |∆ Γ | e : A ⊢λ ∆

〈v|e〉 : Γ ⊢λ ∆

(AxL) : Γ | α : A ⊢λ α:A,∆

(→L) :
Γ ⊢λ v : A |∆ Γ | e : B ⊢λ ∆

Γ | v·e : A→B ⊢λ ∆

(µ̃) :
c : Γ, x:A ⊢λ ∆

Γ | µ̃x.c : A ⊢λ ∆

(AxR) : Γ, x:A ⊢λ x : A |∆

(→R) :
Γ, x:A ⊢λ v : B |∆

Γ ⊢λ λx.v : A→B |∆

(µ) :
c : Γ ⊢λ α:A,∆

Γ ⊢λ µα.c : A |∆

Note that the type of a context is the type that a term is expected to have in order to fill

the hole, much like the import circuit in X . With conventional notations about contexts, v·e

is to be thought of as e[[ ] v]. We see here how a term (context) is built either by introducing

‘→’ on the right-hand side (left-hand side) of a sequent, or just by activating one conclusion

(hypothesis) from a sequent typing a command: µα.c is inherited from λµ, and µ̃x.c is to be

thought as let x = [ ] in c.

Proofs can often be simplified, that is, commands can be computed by eliminating the cuts:

Definition 7.3 (Reduction in λµµ̃)

(→) : 〈λx.v1 | v2·e〉 → 〈v2 | µ̃x.〈v1 | e〉〉

(µ) : 〈µβ.c | e〉 → c[e/β]

(µ̃) : 〈v | µ̃x.c〉 → c[v/x]

The system has a critical pair 〈µα.c1 | µ̃x.c2〉 and applying in this case rule (µ) gives a call-

by-value evaluation, whereas applying rule (µ̃) gives a call-by-name evaluation. As can be

expected, the system with both rules is not confluent, as neither is the cut-elimination of the

classical sequent calculus.

Herbelin’s λµµ̃-calculus expresses elegantly the duality of lk’s left- and right introduction

in a very symmetrical syntax. But the duality goes beyond that: for instance, the symme-

try of the reduction rules display syntactically the duality between the cbv and cbn eval-

uations (see also [48]). Indeed, the call-by-value reduction →v is obtained by forbidding a

µ̃-reduction when the redex is also a µ-redex, whereas the call-by-name reduction→n forbids

a µ-reduction when the redex is also a µ̃-redex. We show here how X accounts for this duality.

However, this duality notwithstanding, λµµ̃ does not fully represent lk. The lk proof

Γ, A ⊢ B,∆
(→R)

Γ ⊢ A→B,∆

Γ ⊢ A,∆ Γ, B ⊢ ∆
(→L)

Γ, A→B ⊢ ∆
(cut)

Γ ⊢ ∆

(inhabited in X by the left-hand side of rule (exp-imp)) reduces to both
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Γ ⊢ A,∆

Γ, A ⊢ B,∆

Γ, B ⊢ ∆

Γ, A, B ⊢ ∆

Γ, A ⊢ ∆

Γ ⊢ ∆

and

Γ ⊢ A,∆

Γ ⊢ A,B,∆ Γ, A ⊢ B,∆

Γ ⊢ B,∆ Γ, B ⊢ ∆

Γ ⊢ ∆

The first result is represented in the normal reduction system of λµµ̃, but the second is not,

whereas both are represented in X , by the two right-hand sides of rule (exp-imp). This implies

of course that there does not exist a full reduction preserving interpretation of X into λµµ̃.

We can show that there exists an obvious translation from X into λµµ̃:

Definition 7.4 (Translation of X into λµµ̃ [35])

J〈x·α〉KX =
∆ 〈x | α〉

Jx̂ Pα̂ ·βKX =
∆ 〈λx.µα.JPKX | β〉

JP α̂ [x] ŷQKX =
∆ 〈x | (µα.JPKX )·(µ̃y.JQKX )〉

JP α̂ † x̂QKX =
∆ 〈µα.JPKX | µ̃x.JQKX 〉

In fact, this is the origin of X : in Remark 4.1 of [19], Curien and Herbelin give a hint on

a way to connect LKµµ̃ and lk. The proofs of lk embed in LKµµ̃ by considering the following

sub-syntax of λµµ̃:

c ::= 〈x | α〉 | 〈λx.µα.c | β〉 | 〈y | µα.c·µ̃x.c〉 | 〈µα.c | µ̃x.c〉

where the typing rules correspond respectively to the axiom rule, the right introduction of

‘⇒’, the left introduction of ‘⇒’, and the rule for a cut. Later it was discovered that this corre-

sponded closely to Urban’s approach in [45]; however, as discussed above after Definition 4.3

on page 21 and following, the approaches differ.

Although X is in fact a sub-syntax of λµµ̃, it is not less expressive. On the contrary, on

the logical side, two proofs of the same sequent might be considered differently in LKµµ̃ just

because the naming of formulae, or the activation/deactivation of formulae, has not been

done the same way.

We can consider proofs up to such differences with equivalence classes, and moreover there

is a unique proof of each class in X : the one eagerly naming all formulae it deals with.

In concrete terms, here is a translation of λµµ̃ into X which preserves the typing:

Definition 7.5 (Translation of λµµ̃ into X [35])

J〈v | e〉 λ
=
∆ Jv λ

α α̂ † x̂ Je λ
x

Jx λ
α =

∆ 〈x·α〉

Jλx.v λ
α =

∆ x̂ Jv λ
β β̂ ·α

Jµβ.c λ
α =

∆ Jc λ β̂ † x̂ 〈x·α〉

Jα λ
x =

∆ 〈x·α〉

Jv·e λ
x =

∆ Jv λ
α α̂ [x] ŷ Je λ

y

Jµ̃y.c λ
x =

∆ 〈x·β〉 β̂ † ŷ Jc λ

Example 7.6 In [25] it was shown that Peirce’s Law ((A→B)→A)→A can be inhabited in λµµ̃

by the term

λz.µα.〈z | (λy.µβ.〈y | α〉)·α〉,

a term in normal form which is itself the reduction of the translation of the λµ-term given by

[39] (see Section 6) and that is typeable as follows (where ⊢ = ⊢λ):
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(AxL)
z:(A→B)→A ⊢λ z : (A→B)→A | α:A

(AxR)
z:(A→B)→A,y:A ⊢λ y : A | α:A, β:B

(AxL)
z:(A→B)→A,y:A | α : A ⊢λ α:A, β:B

(cut)
〈y|α〉 : z:(A→B)→A,y:A ⊢λ β:B,α:A

(µ)
z:(A→B)→A,y:A ⊢λ µβ.〈y|α〉 : B | α:A

(RI)
z:(A→B)→A ⊢λ λy.µβ.〈y|α〉 : A→B | α:A

(AxL)
z:(A→B)→A | α : A ⊢λ α:A

(LI)
z:(A→B)→A | (λy.µβ.〈y|α〉)·α : (A→B)→A ⊢λ α:A

.

.

.

.

(cut)
〈z | (λy.µβ.〈y|α〉)·α〉 : z:(A→B)→A ⊢λ α:A

(µ)
z:(A→B)→A ⊢λ µα.〈z | (λy.µβ.〈y|α〉)·α〉 : A |

⊢λ λz.µα.〈z | (λy.µβ.〈y|α〉)·α〉 : ((A→B)→A)→A |

When we remove all term information from this derivation, we obtain a semi-proof (with

focus) for Peirce’s Law in Classical Logic.

(A→B)→A ⊢ (A→B)→A | A

(A→B)→A, A ⊢ A | A, B (A→B)→A, A | A ⊢ A, B

(A→B)→A, A ⊢ B, A

(A→B)→A, A ⊢ B | A

(A→B)→A ⊢ A→B | A (A→B)→A | A ⊢ A

(A→B)→A | (A→B)→A ⊢ A

(A→B)→A ⊢ A

(A→B)→A ⊢ A |

⊢ ((A→B)→A)→A |

Notice that the term λz.µα.〈z | (λy.µβ.〈y | α〉)·α〉 is in normal form, whereas the proof has

two cuts that can be eliminated.

Moreover, the two (activation) steps, i.e. the µ-abstractions, in this derivation do not corre-

spond to a logical rule. This means that all provable judgements can be inhabited, but not all

derivations correspond to proofs.

Using the translation function J· λ on the λµµ̃-term, we obtain

Jλz.µα.〈z | (λy.µβ.〈y | α〉)·α〉 λ
γ =

∆

ẑ Jµα.〈z | (λy.µβ.〈y | α〉)·α〉 λ
δ δ̂ ·γ =

∆

ẑ (J〈z | (λy.µβ.〈y | α〉)·α〉 λ α̂ † x̂ 〈x·δ〉) δ̂ ·γ =
∆

ẑ ((Jz λ
ǫ ǫ̂ † x̂ J(λy.µβ.〈y | α〉)·α λ

x) α̂ † x̂ 〈x·δ〉) δ̂ ·γ =
∆

ẑ ((〈z·ǫ〉 ǫ̂ † x̂ (Jλy.µβ.〈y | α〉 λ
φ φ̂ [x] ŵ Jα λ

w)) α̂ † x̂ 〈x·δ〉) δ̂ ·γ =
∆

ẑ ((〈z·ǫ〉 ǫ̂ † x̂ ((ŷ (J〈y | α〉 λ
β̂ † b̂ 〈v·η〉) η̂ ·φ) φ̂ [x] ŵ 〈w·α〉)) α̂ † x̂ 〈x·δ〉) δ̂ ·γ =

∆

ẑ ((〈z·ǫ〉 ǫ̂ † x̂ ((ŷ ((Jy λ
ρ ρ̂ † û Ju λ

α) β̂ † b̂ 〈v·η〉)η̂ ·φ) φ̂ [x] ŵ 〈w·α〉)) α̂ † x̂ 〈x·δ〉) δ̂ ·γ =
∆

ẑ ((〈z·ǫ〉 ǫ̂ † x̂ ((ŷ ((〈y·ρ〉 ρ̂ † û 〈u·α〉) β̂ † b̂ 〈v·η〉) η̂ ·φ) φ̂ [x] ŵ 〈w·α〉)) α̂ † x̂ 〈x·δ〉) δ̂ ·γ

Notice that the process obtained via translation has four cuts: removing these produces the

following (in-side out) reduction sequence.

ẑ ((〈z·ǫ〉 ǫ̂ † x̂ ((ŷ ((〈y·ρ〉 ρ̂ † û 〈u·α〉) β̂ † b̂ 〈v·η〉)η̂ ·φ) φ̂ [x] ŵ 〈w·α〉)) α̂ † x̂ 〈x·δ〉) δ̂ ·γ →

ẑ ((〈z·ǫ〉 ǫ̂ † x̂ ((ŷ (〈y·α〉 β̂ † b̂ 〈v·η〉)η̂ ·φ) φ̂ [x] ŵ 〈w·α〉)) α̂ † x̂ 〈x·δ〉) δ̂ ·γ →

ẑ ((〈z·ǫ〉 ǫ̂ † x̂ ((ŷ 〈y·α〉η̂ ·φ) φ̂ [x] ŵ 〈w·α〉)) α̂ † x̂ 〈x·δ〉) δ̂ ·γ →

ẑ (((ŷ 〈y·α〉η̂ ·φ) φ̂ [z] ŵ 〈w·α〉) α̂ † x̂ 〈x·δ〉) δ̂ ·γ →

ẑ ((ŷ 〈y·δ〉η̂ ·φ) φ̂ [z] ŵ 〈w·δ〉) δ̂ ·γ.
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The last term is exactly that of Example 3.5.

The interpretation function preserves typeability:

Lemma 7.7 i) If Γ ⊢λ v : A | ∆, then Jv λ
α ··· Γ ⊢ α:A,∆.

ii) If Γ | e : A ⊢λ ∆, then Je λ
x ··· Γ, x:A ⊢ ∆.

iii) If c : Γ ⊢λ ∆, then Jc λ
··· Γ ⊢ ∆.

Proof : Straightforward, by simultaneous induction on the structure of derivations.

In [35] it is shown that we can simulate the implicit substitution of λµµ̃ in X .

Lemma 7.8 i) Jc λ α̂ † x̂ Je λ
x→ Jc[e/α λ].

ii) Jv λ
β α̂ † x̂ Je λ

x→ Jv[e/α λ]β.

iii) Je′ λz α̂ † x̂ Je λ
x→ Je′[e/α λ]z.

Proof : By simultaneous induction on the structure of nets.

Likewise, we can show:

Lemma 7.9 i) Jv λ
α α̂ † x̂ Jc λ→ Jc[v/x λ].

ii) Jv λ
α α̂ † x̂ Jv′ λβ→ Jv′[v/x λ]β.

iii) Jv λ
α α̂ † x̂ Je λ

y→ Je[v/x λ]y.

We now strengthen these results by stating that this simulation preserves evaluations:

Theorem 7.10 (Simulation of λµµ̃) If c→ c′ then Jc λ ↓X Jc′ λ.

Proof : By induction of the length of the reduction sequence, of which we only show the base

cases:

(→) : Then c = 〈λx.v1 | v2·e〉, and c′ = 〈v2 | µ̃x.〈v1 | e〉〉. Then:

J〈λx.v1 | v2·e〉
λ = Jλx.v1

λ
α α̂ † ŷ Jv2·e

λ
y

= (x̂ Jv1
λ

β β̂ ·α) α̂ † ŷ (Jv2
λ
γ γ̂ [y] ẑ Je λ

z)

→ Jv2
λ
γ γ̂ † x̂ (Jv1

λ
β β̂ † ẑ Je λ

z)

(= α) ← Jv2
λ
γ γ̂ † ŷ (〈y·δ〉 δ̂ † x̂ (Jv1

λ
β β̂ † ẑ Je λ

z))

= Jv2
λ
γ γ̂ † ŷ (〈y·δ〉 δ̂ † x̂ J〈v1 | e〉

λ)

= Jv2
λ
γ γ̂ † ŷ Jµ̃x.〈v1 | e〉

λ
y = J〈v2 | µ̃x.〈v1 | e〉〉

λ

(µ) : By Lemma 7.8.

(µ̃) : By Lemma 7.9.

Notice that, had we defined Jµβ.c λ
α = Jc λ[α/β] and Jµ̃y.c λ

x = Jc λ[x/y], we could have

shown that c→ c′ implies Jc λ→ Jc′ λ.

In fact, we can even show

Theorem 7.11 i) If c→n c′ then Jc λ ↓n

X Jc′ λ.

ii) If c→v c′ then Jc λ ↓v

X Jc′ λ.

Curien and Herbelin define two encodings:

Definition 7.12 (Curien & Herbelin 2000) The interpretation ·v and interpretation ·n of λµ

into λµµ̃ are defined as follows:
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xv

=
∆ x

(λx.M)v

=
∆ λx.Mv

(MN)v

=
∆ µα.〈Nv | µ̃x.〈Mv | x·α〉〉

(µβ.c)v

=
∆ µβ.cv

([α]M)v

=
∆ 〈Mv | α〉

xn

=
∆ x

(λx.M)n

=
∆ λx.Mn

(MN)n

=
∆ µα.〈Mn | Nn·α〉

(µβ.c)n

=
∆ µβ.cn

([α]M)n

=
∆ 〈Mn | α〉

·v corresponds to right-to-left call-by-value, and ·n relates to left-to-right call-by-value.

Curien and Herbelin’s result is:

Theorem 7.13 (Simulation of λµ in λµµ̃ [19]) i) If M→v N then Mv→v Nv up to µ-expansion.

ii) If M→n N then Mn→n Nn up to µ-expansion.

Theorem 7.13 also holds for the restriction of λµ to the traditional λ-calculus (but without

the restriction of ‘up to µ-expansion’). However, one might be disappointed that the preser-

vation of the cbv-evaluation and cbn-evaluation relies on two distinct translations of terms.

As above, what accounts for the distinction cbv/cbn is the encodings themselves, and

the distinction between cbv and cbn mostly relies on Curien and Herbelin’s two distinct

encodings rather than the features of λµµ̃. The same holds for [48]. Whereas their cbn-

translation seems intuitive, they apparently need to twist it in a more complex way than us, in

order to give an accurate interpretation of the cbv-λ-calculus, since we can show the following:

Lemma 7.14 Mv→Mn.

Proof : By induction on the structure of terms, the interesting case being:

(NP)v

=
∆ µα.〈Nv | µ̃x.〈Mv | x·α〉〉 → (IH)

µα.〈Nn | µ̃x.〈Mn | x·α〉〉 →µ̃ µα.〈Mn | Nn·α〉 =
∆ (NP)n

This result is a bit disappointing since the cbn-encoding turns out to be more refined than

the cbv-encoding.

Of course, by Theorem 7.10, we also have

Lemma 7.15 JMv λ
β ↓X JMn λ

β.

But we now show that we can take the simplest translation (i.e. J·n λ
β) for both cbv and cbn

and that the evaluation strategies of X reflects the distinction between them, in showing that

the interpretation J·λ(α) is more refined that the composition of ·n and J· λα.

Lemma 7.16 JMn λ
β→ JM λ(β).

Proof : By induction on the structure of terms:

(M = x) : Jxn λ
β =

∆ Jx λ
β =

∆ 〈x·β〉 =
∆ Jx λ(β)

(M = λx.M′) : J(λx.M′)n λ
β =

∆ Jλx.M′n λ
β =

∆ x̂ JM′n λ
α α̂ ·β → (IH)

x̂ JM′ λ(α) α̂ ·β =
∆ Jλx.M′ λ(β)

(M = PQ) : J(PQ)n λ
β =

∆ Jµα〈Pn |Qn·α〉 λ
β =

∆

J〈Pn |Qn·α〉 λ α̂ † x̂ 〈x·β〉 → ( †ren)

J〈Pn |Qn·β〉 λ
=
∆

JPn λ
γ γ̂ † x̂ JQn·β λ

x =
∆

JPn λ
γ γ̂ † x̂ (JQn λ

α α̂ [x] ŷ Jβ
λ
y) =

∆

JPn λ
γ γ̂ † x̂ (JQn λ

α α̂ [x] ŷ 〈y·β〉) → (IH)

JP λ(γ) γ̂ † x̂ (JQ λ(α) α̂ [x] ŷ 〈y·β〉) =
∆ JPQ λ(β)
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8 Conclusions and future work

We have seen that X is an application- and substitution-free formal language that provides

a Curry-Howard isomorphism for a sequent calculus for implicative classical logic. But, of

more interest, we have seen X is very well suited as generic abstract machine for the running

of (applicative) programming languages, by building not only an interpretation for λ, λµ, and

λµµ̃, but also for λx.

A wealth of research lies in the future, of which this paper is but the first step, the seed.

We intend to study (strong) normalisation, confluence of the cbn and cbv strategies, to extend

X in order to represent the other logical connectives, study the relation with linear logic,

proofnets (both typed and untyped), how to express recursion, functions, etc, etc.

Details of the implementation of the tool for X can be found in [8, 9]. Polymorphism is

introduced in [43], the encoding of other connectors in [42], and the interpretation of X in λµ

in [6]. The relation between X and Π is currently under investigation.
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