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Abstract
This paper defines reduction on derivations (cut-elimination) in the Strict Intersection Type
Assignment System of [1] and shows a strong normalisation result for this reduction. Using
this result, new proofs are given for the approximation theorem and the characterisation of
normalisability of terms, using intersection types.
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Introduction

Strong normalisation of cut-elimination is a well established property in the area of logic that
has been studied profoundly in the past. In the area of type assignment for the Lambda
Calculus (lc), the corresponding property is that of strong normalisation of derivation reduc-
tion (also called cut-elimination in, for example, [10]), which mimics the normal reduction on
terms to which the types are assigned, and also this area has been well studied.

For intersection type assignment systems, proofs of strong normalisation of derivation re-
duction have at best been indirect, i.e. obtained through a mapping from the derivations into a
logic, where the property has been established before. Since in those logics the type-constant ω
cannot be adequately mapped, the intersection systems studied in that way are ω-free. (There
exists a logic that deals adequately with intersection and ω [17], but strong normalisation of
cut-elimination has not been shown yet for it.) This paper will use the Strict Type Assignment
System of [1] (which contains ω), and will present a proof for the property directly in the
system itself.

The Intersection Type Discipline (itd) as presented in [11] (a more enhanced system was
presented in [10]; for an overview of the various existing systems, see [2]), was introduced
mainly to overcome the limitations of Curry’s type assignment system [13, 14] and has been
used to characterise normalisation using types. It is an extension of Curry’s system in that
term variables (and terms) are allowed to have more than one type: in the context of a certain
term M, a term-variable x can play different, even non-unifiable, roles. This slight general-
isation of Curry’s system causes a great change in complexity; although type assignment in
Curry’s system is decidable, in itd it is not, which is illustrated by the fact that type assign-
ment is closed for β-equality:

M =β N ⇒ (B � M : σ ⇐⇒ B � N : σ).

The itd is most renown for providing proofs for the following characterisation of (head/ strong)
normalisation by assignable types (where ω is a type-constant, and stands for the universal
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type, i.e. all terms are typeable by ω):

M has a head normal form ⇐⇒ B � M : σ & σ �= ω
M has a normal form ⇐⇒ B � M : σ & ω does not occur in B,σ

M is strongly normalisable ⇐⇒ B � M : σ, where ω is not used at all.

These properties immediately show that type assignment, even in the system that does not
contain ω [1], is undecidable.

As many strong normalisation results in the context of types, also the strong normalisation
result of this paper is obtained using the technique of Computability Predicates [26, 20]. This
technique provides a means for proving termination of typeable terms using a predicate de-
fined by induction on the structure of types, and has been widely used to study normalisation
properties (or similar results), as for example in [22, 12, 15, 24, 21, 1, 2, 19, 7, 4, 18, 5] (this list
is by no means intended to be complete).

Also, as in [2], the technique proved to be sufficient to show a head-normalisation as well
as an approximation result, which will be shown again here (see Theorem 5.5 and 5.4, respec-
tively). In this paper these results –the three characterisation results and the approximation
result– are shown to be a direct consequence of the main result, in that all normal charac-
terisations of (strong/head) normalisation are consequences of the strong normalisation of
cut-elimination.

In the context of weak reduction, the approximation result is no longer obtained via a
straightforward application of the same computability technique as used in lc. Rather, as
argued and shown in [6, 8], to obtain this result in the context of Combinator Systems or Term
Rewriting Systems, a more general solution was needed: strong normalisation of cut-elimination.
Perhaps surprisingly, the machinery involved to prove this gives the characterisation results
for typeable terms as a corollary.

In this paper, we will show these results in the context of lc: we will show that cut-
elimination is strongly normalising, and that all characterisation results are direct conse-
quences of it. The added complexity of intersection types implies that, unlike for ordinary
systems of type assignment, there is a significant difference between derivation reduction and
ordinary reduction (see the beginning of Section 2); unlike normal typed- or type assignment
system, in � not every term-redex occurs with types in a derivation.

As far as cut-elimination in the context of intersection types is concerned, there exists but
few related results in the literature. As [23], where a strong normalisation result was proved
for derivation reduction in the setting of the notion of intersection type assignment known
as D [21], most papers consider the BCD-system [10] without the type-constant ω. Since we
consider the type ω here, together with a type inclusion relation ≤, that strong normalisation
result itself is a true special case of the results of this paper presented in Section 5.

The Approximation Theorem hinted at above is a (perhaps less known) fundamental result
for itd, and is more relevant in the context of semantics. Essentially following [27, 9], the set
of terms can be extended by adding the term-constant ⊥. Adding also the reduction rules
⊥N →β⊥ ⊥, and λx.⊥ →β⊥ ⊥ to the notion of reduction gives rise to the notion of approximate
normal forms that are in essence finite rooted segments of Böhm-trees [9], and a model for the
lc can be obtained by interpreting a term M by the set of approximants that can be associated
to it, A(M). The Approximation Theorem now states that there exists a very precise relation
between types assignable to a term and those assignable to its approximants and is formulated
as

B � M : σ ⇐⇒ ∃A ∈A(M) [B � A : σ]

(see [25, 1, 2]; for a uniform proof for many systems, see [16]). From this it also follows,
i.e. next to the direct proofs, that the set of intersection types assignable to a term can be used



Notre Dame, Journal of Formal Logic 45(1), pp. 35-63, 2004 3

to define a model for the lc (see [10, 1, 2]).
The kind of intersection type assignment considered in this paper is that of [1], i.e. the

strict intersection type assignment system, a restricted version of the BCD-system of [10], that
is equally powerful in terms of typeability and expressiveness. The major feature of this
restricted system, compared to the BCD-system, is a restricted version of the derivation rules
and the use of strict types (first introduced in [1]); notably, the strict system differs from the
BCD-system in terms of expressivity in that it is not closed for η-reduction.

This paper is the full, revised version of [3].

1 Strict intersection type assignment

In this section, we will present the Strict Intersection Type Assignment System as first pre-
sented in [1], which can be seen as a restricted version of the BCD-system as presented in [10].
The major feature of this restricted system, compared to the BCD-system, is that the ≤ rela-
tion on types is no longer contra-variant on the argument type in arrow-types, but restricted
to the one induced by σ∩τ ≤ σ and taking ω to be the maximal type.

We assume the reader to be familiar with the lc [9]; we just recall the definition of lambda
terms and β-equality. We will write n for {1, . . . ,n}, where n ≥ 0.

Definition 1.1 (Lambda terms and β-equality [9]) i) The set Λ of lambda terms is defined by
the syntax:

M ::= x | λx.M | M1M2

ii) The reduction relation →β is defined as the contextual (i.e. compatible [9]) closure of the
rule:

(λx.M)N →β M[N/x]
The relation →→β is the reflexive and transitive closure of →β , and the =β is the

equivalence relation generated by →→β .

Definition 1.2 (Types, statements, and bases) i) Let Φ be a countable (infinite) set of type-
variables, ranged over by ϕ. TS, the set of strict types, and the set T of intersection types,
both ranged over by Greek characters like σ,τ, . . ., are defined through:

– The set TS of strict types is inductively defined by:

σ ::= ϕ | ((σ1∩ . . .∩σn)→ σ), (n ≥ 0)

– The set T of intersection types is defined by:

{σ1∩ . . .∩σn | n ≥ 0 & ∀i ∈ n [σi is a strict type]}

We will write ω for the empty intersection type.
ii) A statement is an expression of the form M : σ, with M ∈Λ, and σ ∈ T . M is the subject

and σ the predicate of M : σ.
iii) A basis is a partial mapping from term variables to intersection types, and is represented

as a set of statements with only distinct variables as subjects.
iv) For bases B1, . . . , Bn, the basis ∩{B1, . . . , Bn} is defined by:

x:σ1∩ . . .∩σm ∈∩{B1, . . . , Bn} if and only if {x:σ1, . . . , x:σm} is the (non-empty) set of all
statements about x that occur in B1∪ . . . ∪Bn.

Notice that strict types are either type-variables, ϕ, or arrow types. In an arrow type, the
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type on the right of the arrow type constructor is always strict; the type on the left of the
arrow is an intersection type, but since TS is a proper subset of T , it can be strict.

We will write B, x:σ for the basis ∩{B,{x:σ}}, when x does not occur in B, and we will omit
the brackets ‘{’ and ‘}’ when writing a basis explicitly. Also, in the notation of types, as usual,
right-most outer-most brackets will be omitted.

In papers like [10, 1, 2], the type constant ω is introduced separately, and is used as the
universal type, i.e. all terms can be typed with ω. For succinctness of proofs and definitions,
ω is treated here as an intersection of zero strict types, which is justified by the following. The
semantics of a type σ, [[σ]] (see [10, 1, 2]), is defined as the set of terms that it can be assigned
to (see Definition 1.5). Notice that, if M can be assigned the type σ1∩ . . .∩σn, it can also be
assigned σ1∩ . . .∩σn−1, so we get

[[σ1∩ . . .∩σn]] ⊆ [[σ1∩ . . .∩σn−1]] ⊆ . . . ⊆ [[σ1∩σ2]] ⊆ [[σ1]].

It is natural to extend this sequence with [[σ1]] ⊆ [[ ]], and therefore to define that the semantics
of the empty intersection is Λ; since in [10, 1, 2] all terms are typeable by ω, also [[ ]] = [[ω]].

We will consider a pre-order on types which takes into account the idem-potence, commu-
tativity and associativity of the intersection type constructor, and defines ω to be the maximal
element.

Definition 1.3 (Relations on types) i) The relation ≤ is defined as the least pre-order (i.e.
reflexive and transitive relation) on T such that:

σ1∩ . . .∩σn ≤ σi, for all i ∈ n, n ≥ 1
τ ≤ σi, for all i ∈ n ⇒ τ ≤ σ1∩ . . .∩σn, n ≥ 0

ii) The equivalence relation ∼ on types is defined by: σ ∼ τ ⇐⇒ σ ≤ τ ≤ σ, and we will
consider types modulo ∼ .

iii) We write B ≤ B′ if and only if for every x:σ′ ∈ B′ there is an x:σ ∈ B such that σ ≤ σ′, and
B ∼ B′ ⇐⇒ B ≤ B′ ≤ B.

T may be considered modulo ∼; then ≤ becomes a partial order.

Notice that σ ≤ σ, and σ ≤ ω, for all σ; it is easy to show that both (σ∩τ)∩ρ ∼ τ∩(σ∩ρ) and
σ∩τ ∼ τ∩σ, so the type constructor ∩ is associative and commutative, and we will write σ∩τ∩ρ
rather than (σ∩τ)∩ρ. Moreover, we will, when appropriate, write ∩nσi for σ1∩ . . .∩σn (where
∩1σi = σ1) and we will then assume, unless stated explicitly otherwise, that each σi is a strict
type.

The definition of the ≤-relation as given in [10] (apart from dealing with intersection types
occurring on the right of the arrow type constructor) or [2] also contained the alternative:

ρ ≤ σ & τ ≤ µ ⇒ σ→τ ≤ ρ→µ

This was added mainly to obtain a notion of type assignment closed for η-reduction (i.e. β-
reduction extended with λx.Mx →η M, if x is not free in M), a feature that is not considered
here.

The following property is easy to show:

Property 1.4 (cf. [2]) For all σ,τ ∈ T , σ ≤ τ if and only if there are n,m ≥ 0, σi (∀i ∈ n), τj (∀j ∈ m)
such that σ = ∩nσi, τ = ∩mτi, and, for all j ∈ m there exists i ∈ n such that τj = σi.

Definition 1.5 (Strict type assignment and derivations) i) Strict intersection type assign-
ment and strict intersection derivations are defined by the following natural deduction sys-
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tem (where σ in rules (→E) and (→I) is in T ):

(Ax) : (n ≥ 1, i ∈ n)
B, x:∩nσi � x : σi

(→E) :
B � M : σ→τ B � N : σ

B � MN : τ

(∩I) :
B � M : σ1 . . . B � M : σn

(n ≥ 0)
B � M :∩nσi

(→I) :
B, x:σ � M : τ

B � λx.M : σ→τ

ii) We write B � M : σ if this statement is derivable using a strict intersection derivation, and
write D :: B � M : σ to specify that this result was obtained through the derivation D.

To illustrate that the strict system is not closed for η-reduction, notice that we can give a
derivation for � λxy.xy : (σ→τ)→(ρ∩σ)→τ, but not for � λx.x : (σ→τ)→(ρ∩σ)→τ.

Notice that, since ω is considered to be the empty intersection, the derivation rule

(ω) :
B � M : ω

is implicit in rule (∩I).
The following lemma shows a term-substitution result.

Lemma 1.6 ∃ρ[B, x:ρ � M : σ & B � N : ρ] ⇐⇒ B � M[N/x] : σ.

Proof: By induction on the structure of terms; only the case σ ∈ TS is considered.

(M ≡ x) : (⇒) : ∃ρ [B, x:ρ � x : σ & B � N : ρ] ⇒ (Ax)
∃σi (∀i ∈ n), i ∈ n [σ = σi & B � N :∩nσi] ⇒ (≤)
B � x[N/x] : σi.

(⇐) : B � x[N/x] : σ ⇒ B, x:σ � x : σ & B � N : σ.

(M ≡ y �= x) :(⇒) : ∃ρ [B, x:ρ � y : σ & B � N : ρ] ⇒ B � y[N/x] : σ.
(⇐) : B � y[N/x] : σ ⇒ B � y : σ & B � N : ω.

(M ≡ λy.M′) : ∃ρ [B, x:ρ � λy.M′ : σ & B � N : ρ] ⇐⇒ (→I)
∃ρ,α, β [B, x:ρ,y:α � M′ : β & σ = α→β & B � N : ρ] ⇐⇒ (IH)
∃α, β [B,y:α � M′[N/x] : β & σ = α→β] ⇐⇒ (→I)
B � λy.M′[N/x] : σ.

(M ≡ M1M2) : B � M1M2[N/x] : σ ⇐⇒ (→E)
∃τ [B � M1[N/x] : τ→σ & B � M2[N/x] : τ] ⇐⇒ (IH)
∃ρ1,ρ2,τ [B, x:ρi � M1 : τ→σ & B � N : ρ1 & B, x:ρ2 � M2 : τ

& B � N : ρ2] ⇐⇒ (ρ = ρ1∩ρ2) & (∩I) & (≤)
∃ρ [B, x:ρ � M1M2 : σ & B � N : ρ].

We will use the following notation for derivations, that aims to show the structure, in linear
notation, of the derivation in terms of rules applied.

Definition 1.7 i) If derivation D consists of an application of rule (Ax), then there are
n ≥ 1,σi (∀i ∈ n), and B such that D :: B, x:∩nσi � x : σj with j ∈ n; we then write

D = 〈Ax〉 :: B, x:∩nσi � x : σj.

ii) If derivation D finishes with rule (→I), there are M1,α, β such that

D :: B � λx.M1 : α→β,
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and there is a sub-derivation D1 :: B, x:α � M1 : β in D; we then write

D = 〈D1,→I〉 :: B � λx.M1 : α→β.

iii) If derivation D finishes with rule (→E), there are P, Q, such that D :: B � PQ : σ, and there
are τ and sub-derivations D1 :: B � P : τ→σ and D2 :: B � Q : τ in D; we then write

D = 〈D1,D2,→E〉 :: B � PQ : σ.

iv) If derivation D finishes with rule (∩I), there are n ≥ 0,σi (∀i ∈ n) such that

D :: B � M :∩nσi,

and, for all i ∈ n, there exists a Di :: B � M : σi that is a sub-derivation of D; we then write

D = 〈D1, . . . ,Dn,∩I〉 :: B � M :∩nσi.

We will often abbreviate the short-hand notation for derivations, and, for example, write
〈D1,D2,→E〉 instead of 〈D1,D2,→E〉 :: B � PQ : σ.

We will identify derivations that have the same structure in that they have the same rules
applied in the same order (so derivations involving the same term, apart from sub-terms typed
by ω) and say that these have the same structure; the types derived need not be the same.

As partially shown in [1], we have the following property.

Theorem 1.8 (cf. [1]) The following rules are admissible:

(≤) :
B � M : σ

(B′ ≤ B,σ ≤ τ)
B′ � M : τ

(=β) :
B � M : σ

(M =β N)
B � N : σ

(cut) :
B, x:σ � M : τ B � N : σ

B � M[N/x] : τ

Proof: (≤) : Easy; part B′ ≤ B follows from rule (Ax), and part σ ≤ τ follows by induction on
≤ , using rule (∩I).

(=β) : By induction on the definition of =β. The only part that needs attention is that of a re-
dex, B � (λx.M)N : σ ⇐⇒ B � M[N/x] : σ, where σ ∈ TS; all other cases follow by straight-
forward induction. To conclude, notice that, if B � (λx.M)N : σ, then, by (→E) and (→I),
there exists a ρ such that B, x:ρ � M : σ and B � N : ρ; the converse of this result holds,
obviously, as well. The result then follows by Lemma 1.6.

(cut) : By Lemma 1.6.

2 Derivation reduction

The notion of reduction on derivations D :: B � M : σ defined in this section will follow or-
dinary reduction (on terms), by contracting typed redexes that occur in D, i.e. redexes for
sub-terms of M of the shape (λx.P)Q, for which the following is a sub-derivation of D:

〈〈D1 :: B, x:ρ � P : τ,→I〉 :: B � λx.P : ρ→τ,D2 :: B � Q : ρ,→E〉 :: B � (λx.P)Q : τ,

A derivation of this structure will be called a redex.
We will prove in Section 3 that this notion of reduction is terminating, i.e. strongly normal-

isable.
The effect of this reduction will be that the derivation for the redex (λx.P)Q will be replaced

by a derivation for the contractum P[Q/x]; this has, because the system at hand uses inter-
section types, including ω, to be defined with care, since in D :: B � M : σ it is possible that M
contains a redex whereas D does not.
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Take the following derivation for B � (λx.x)N : σ.

(Ax)
B, x:σ∩τ � x : σ

(→I)
B � λx.x : σ∩τ→σ

D1

B � N : σ

D2

B � N : τ
(∩I)

B � N : σ∩τ
(→E)

B � (λx.x)(N) : σ

This derivation will reduce to D1 :: B � N : σ.
For the general case, consider a derivation for the redex (λx.P)Q:

〈〈D1 :: B, x:∩nρi � P : τ,→I〉 :: B � λx.P :∩nρi→τ,
D2 :: 〈D1

2, . . . ,Dn
2 ,∩I〉 :: B � Q :∩nρi, →E〉 :: B � (λx.P)Q : τ,

then the derivation is shaped like:

(Ax)
B, x:∩nρi � x : ρk1 · · ·

(Ax)
B, x:∩nρi � x : ρkm

D1

B, x:∩nρi � P : τ
(→I)

B � λx.P :∩nρi→τ

D1
2

B � Q : ρ1 · · ·
Dn

2

B � Q : ρn
(∩I)

B � Q :∩nρi
(→E)

B � (λx.P)Q : τ

Contracting this redex will construct a derivation for the term P[Q/x], and will be written as
D1[D2/x:∩nρi] :: B � P[Q/x] : τ.

Notice that the admissible rule (cut) can be applied directly to the derivations D1 and D2,
thus obtaining

D1

B, x:∩nρi � P : τ

D2

B � Q :∩nρi
(cut)

B � P[Q/x] : τ

Removing this occurrence of (cut), so to obtain a derivation for B � P[Q/x] : τ from the one
above in which this specific occurrence no longer appears, would require exactly the oper-
ations specified in this paper for derivation reduction, and therefore we also use the term
cut-elimination for derivation reduction.

When creating a derivation for P[Q/x], it is not the case that the derivation D2 will just
be inserted in the positions of D1 where a type for the variable x is derived: notice that
no sub-derivation for B � x :∩nρi need exist in D1. Instead, since each ρkj occurs in ∩nρi,
the approach used in this paper for derivation substitution will be to replace all derivations

〈Ax〉 :: B, x:∩nρi � x : ρkj by the derivation D
kj
2 :: B � Q : ρkj , and replace x by Q in P throughout

the derivation D1.
Before formally defining reduction on derivations, we will first define a notion of substitu-

tion on derivations.

Definition 2.1 (Derivation substitution) For D :: B, x:σ � M : τ, and D0 :: B � N : σ, the de-
rivation D [D0/x:σ] :: B � M[N/x] : τ, the result of substituting D0 for x:σ in D, is inductively
defined by:

i) D = 〈Ax〉 :: B, x:σ � x : τ. Let σ = ∩nσi, then τ = σj with j ∈ n. Then

D0 = 〈D1
0 :: B � N : σ1, . . . ,Dn

0 :: B � N : σn,∩I〉 :: B � N :∩nσi,

so, in particular, Dj
0 :: B � N : σj. Then D [D0/x:σ] = Dj

0.
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ii) D = 〈Ax〉 :: B, x:σ � y : τ with x �≡ y. Then

D [D0/x:σ] = 〈Ax〉 :: B � y : τ.

iii) D = 〈D1 :: B, x:σ,y:α � M1 : β,→I〉 :: B, x:σ � λy.M1 : α→β. Let

D′ = D1 [D0/x:σ] :: B,y:α � M1[N/x] : β.

Then 〈D1,→I〉 [D0/x:σ] = 〈D′,→I〉 :: B � (λy.M1)[N/x] : α→β .
iv) D = 〈D1 :: B, x:σ � P : ρ→τ,D2 :: B, x:σ � Q : ρ,→E〉 :: B, x:σ � PQ : τ. Let

D′
1 = D1 [D0/x:σ] :: B � P[N/x] : ρ→τ, and

D′
2 = D2 [D0/x:σ] :: B � Q[N/x] : ρ,

then 〈D1,D2,→E〉[D0/x:σ] = 〈D′
1,D′

2,→E〉 :: B � (PQ)[N/x] : τ .
v) D = 〈D1, . . . ,Dn,∩I〉 :: B, x:σ � M :∩nτi. Let, for all i ∈ n,

D′
i = Di [D0/x:σ] :: B � M[N/x] : τi,

then 〈D1, . . . ,Dn,∩I〉[D0/x:σ] = 〈D′
1, . . . , D′

n,∩I〉 :: B � M[N/x] :∩nτi .

Before coming to the definition of derivation-reduction, we need to define the notion of
‘position of a sub-derivation in a derivation’. This notion is needed in Definition 2.3, to make
sure that, when contracting a redex in one sub-derivation (branch) in a derivation ending with
rule (∩I), all its ‘siblings’ in neighbouring branches are contracted as well.

Definition 2.2 Let D be a derivation, and D′ be a sub-derivation of D. The position p of D′ in
D is defined by:

i) If D′ = D, then p = ε.
ii) If the position of D′ in D1 is q, and D = 〈D1,→I〉, or D = 〈D1,D2,→E〉, then p = 1q.

iii) If the position of D′ in D2 is q, and D = 〈D1,D2,→E〉, then p = 2q.
iv) If the position of D′ in Di (i ∈ n) is q, and D = 〈D1, . . . ,Dn,∩I〉, then p = q.

We can now define a notion of reduction on derivations; notice that this reduction corre-
sponds to contracting a redex in the term involved only if that redex appears in the derivation
in a sub-derivation with type different from ω.

Definition 2.3 (Derivation reduction) We say that the derivation D :: B � M : σ reduces to
D′ :: B � M′ : σ at position p with redex R, if and only if:

(σ ∈ TS) : a) D = 〈〈D1,→I〉,D2,→E〉 :: B � (λx.M)N : σ (a derivation of this
shape is called a redex); then D reduces to

D1 [D2/x:ρ] :: B � M[N/x] : σ

at position ε with redex (λx.M)N.
b) If D1 reduces to D′

1 at position p with redex R, then

∗ D = 〈D1,→I〉 :: B � λx.M1 : α→β reduces to D′ = 〈D′
1,→I〉 :: B � λx.M′

1 : α→β at po-
sition 1p with redex R.

∗ D = 〈D1,D2,→E〉 :: B � PQ : σ reduces to D′ = 〈D′
1,D2,→E〉 :: B � P′Q : σ at position

1p with redex R.
∗ D = 〈D2,D1,→E〉 :: B � PQ : σ reduces to D′ = 〈D2,D′

1,→E〉 :: B � PQ′ : σ at position
2p with redex R.
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(σ = ∩nσi) : If D :: B � M :∩nσi, then, for every i ∈ n, there are Di :: B � M : σi such that D =
〈D1, . . . ,Dn,∩I〉. If there is an i ∈ n such that Di reduces to D′

i at position p with redex R,
then, for all j �= i ∈ n, either
a) there is no redex at position p because there is no sub-derivation at that position. Since

R is a sub-term of M, it has to be part of a term that is typed with ω in Dj. Let R→β R’
and D′

j = Dj[R’/R] (i.e. Dj where each R is replaced by R’), or

b) Dj reduces to D′
j at position p with redex R.

Then D reduces to 〈D′
1, . . . ,D′

n,∩I〉 at position p with redex R.

We write D →D D′ if there exists a position p and redex R such that D reduces to D′ at position
p with redex R. We will use the symbol →D also for its transitive closure: if D1 →D D2 →D D3,
then D1 →D D3.

We say that D is normalisable is there exists a redex-free D′ such that D →D D′, and that D is
strongly normalisable if all reduction sequences starting in D are of finite length. We abbreviate
‘D is strongly normalisable’ by ‘SN (D)’.

It is worth noting that typeable terms need not be strongly normalising, even when we do
not allow the use of ω to type a redex, as clearly illustrated by the following example.

Example 2.4 Let D1 be the derivation (with B1 = x:(α→β→γ)∩α,y:(γ→δ)∩β, and Θ ≡ λxy.y(xxy)):

(Ax)
B1 � y : γ→δ

(Ax)
B1 � x : α→β→γ

(Ax)
B1 � x : α

(→E)
B1 � xx : β→γ

(Ax)
B1 � y : β

(→E)
B1 � xxy : γ

(→E)
B1 � y(xxy) : δ

(→I)
B1\y � λy.y(xxy) : (γ→δ)∩β → δ

(→I)
� Θ : (α→β→γ)∩α → (γ→δ)∩β → δ

Let B2 = x:τ,y:ω→ρ, and τ = (α→β→γ)∩α → (γ→δ)∩β → δ (the type derived in D1), then
we can construct D2:

(Ax)
B2 � y : ω→ρ

(∩I)
B2 � xxy : ω

(→E)
B2 � y(xxy) : ρ

(→I)
x:τ � λy.y(xxy) : (ω→ρ)→ρ

(→I)
� Θ : τ→(ω→ρ)→ρ

From D1 and D2 we can now construct:

D2

� Θ : τ→(ω→ρ)→ρ

D1

� Θ : τ
(→E)

� ΘΘ : (ω→ρ)→ρ

Notice that the term ΘΘ has only one redex, that is not typed with ω. Also, this derivation
has only one (derivation)-redex, and contracting it gives:

(Ax)
y:ω→ρ � y : ω→ρ

(∩I)
y:ω→ρ � ΘΘy : ω

(→E)
y:ω→ρ � y(ΘΘy) : ρ

(→I)
� λy.y(ΘΘy) : (ω→ρ)→ρ
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Notice that this last derivation is in normal form, although λy.y(ΘΘy) obviously is not.

For another, more involved example of derivation reduction, see Example A.3 in the ap-
pendix.

The following lemma formulates the relation between derivation reduction and β-reduction.

Lemma 2.5 Let D :: B � M : σ, and D →D D′ :: B � N : σ, then M →→β N.

Proof: By Definition 2.3.

The following states some standard properties of strong normalisation.

Lemma 2.6 i) If SN(〈D1,D2,→E〉), then SN(D1) and SN(D2).
ii) If SN (D1 :: B1 � xM1. . .Mn : σ→τ) and SN (D2 :: B2 � N : σ),

then SN(〈D1,D2,→E〉 :: ∩{B1, B2} � xM1. . .MnN : τ).
iii) ∀i ∈ n [SN (Di :: B � M : σi)] if and only if SN(〈D1, . . . ,Dn,∩I〉).
iv) If SN (〈. . . 〈D1[D2/y:ρ]〉 . . .〉 :: B � M[N/x]P : σ) and SN (D2 :: B � N : ρ),

then SN(〈. . . 〈〈D1,→I〉,D2,→E〉 . . .〉 :: B � (λy.M)QP : σ).

Proof: Easy, by Definition 2.3.

3 Strong normalisation of derivation reduction

In this subsection, we will prove a strong normalisation result for derivation reduction. In
order to prove that each derivation in � is strongly normalisable with respect to →D, a notion
of computable [26, 20] derivations will be introduced. We will show that all computable
derivations are strongly normalisable with respect to derivation reduction, and then that all
derivations in � are computable.

Definition 3.1 (Computability Predicate) Comp (D) is defined recursively on types by:

Comp (D :: B � M : ϕ) ⇐⇒ SN(D)
Comp (D :: B � M : α→β) ⇐⇒

∀D′ [Comp (D′ :: B � N : α) ⇒ Comp (〈D,D′,→E〉 :: B � MN : β)]
Comp (〈D1, . . . ,Dn,∩I〉 :: B � M :∩nσi) ⇐⇒ ∀i ∈ n [Comp (Di :: B � M : σi)]

Notice that, as a special case for the third rule, we get Comp (〈∩I〉 :: B � M : ω)

Lemma 3.2 If Comp (D :: B � M : σ), B′ ≤ B, σ ≤ σ′, then Comp (D′ :: B′ � M : σ′) for some D′.

Proof: By straightforward induction on the structure of types.

We will prove that Comp satisfies the standard properties of computability predicates, being
that computability implies strong normalisation, and that, for the so-called neutral objects,
also the converse holds.

Lemma 3.3 i) Comp (D :: B � M : σ) ⇒ SN (D).
ii) SN(D :: B � xM1. . .Mm : σ) ⇒ Comp (D).

Proof: By simultaneous induction on the structure of types.

(σ = ϕ) : Directly by Definition 3.1.
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(σ = α→β) : a) Let x be a variable not appearing in B and M, and let D′ = 〈Ax〉 :: B, x:α � x : α,
then, by induction ((ii)), Comp (D′).
Since Comp (D), by Lemma 3.2, also Comp (D′′ :: B, x:α � M : α→β) (notice that D and
D′′ are almost identical, but for the occurrences of x:α in the basis), so, by Defini-
tion 3.1, Comp (〈D′′,D′,→E〉 :: B, x:α� Mx : β). Then, by induction ((i)), SN (〈D′′,D′,→E〉),
and, by Lemma 2.6:(i), SN(D′′). Then also SN(D).

b) Assume Comp (D′ :: B′ � N : α), then by induction ((i)), SN(D′). Then, by Lemma 2.6:(ii),
SN (〈D,D′,→E〉 :: ∩{B, B′} � xM1. . .MmN : β). Then Comp (〈D,D′,→E〉) by induction
((ii)), so by Definition 3.1, Comp (D).

(σ = ∩nσi) : Easy, using Definition 3.1, Lemma 2.6:(iii), and induction.

The following theorem (3.5) shows that, in a derivation, replacing sub-derivations for term-
variables by computable derivations yields a computable derivation. Before coming to this
result, first an auxiliary lemma has to be proved, that formulates that the computability pred-
icate is closed for subject-expansion with respect to derivation reduction.

Lemma 3.4 Let D = 〈. . .D1[D2/y:ρ] . . . ,→E〉 :: B � M[Q/y]P : σ;
if Comp (D) and Comp (D2 :: B � Q : ρ), then

Comp (〈. . . 〈〈D1,→I〉,D2,→E〉 . . . ,→E〉 :: B � (λy.M)QP : σ).

Proof: By induction on the structure of types.
i) σ = ϕ.

Comp (D) & Comp (D2 :: B � Q : ρ) ⇒ (3.3:(i))
SN(D) & SN (D2) ⇒ (2.6:(iv))
SN(〈. . . 〈〈D1,→I〉,D2,→E〉 . . . ,→E〉 :: B � (λy.M)QP : ϕ) ⇒ (3.1)
Comp (〈. . . 〈〈D1,→I〉,D2,→E〉 . . . ,→E〉).

ii) σ = α→β.
Comp (D) & Comp (D2) & Comp (D′ :: B � N : α) ⇒ (3.1)
Comp (D2) & Comp (〈D,D′,→E〉 :: B � M[Q/y]PN : β) ⇒ (IH)
Comp (〈〈〈. . . 〈D1,→I〉,D2,→E〉 . . . ,→E〉,D′,→E〉 :: B � (λy.M)QPN : β) ⇒ (3.1)
Comp (〈. . . 〈〈D1,→I〉,D2,→E〉 . . . ,→E〉).

iii) σ = ∩nσi. By induction and Definition 3.1.

We now come to the Replacement Theorem, which states that, for every derivation in �,
if the assumptions in the derivation are to be replaced by computable derivations, then the
result itself will be computable. We will use an abbreviated notation, and write [N/x ] for
[N1/x1, . . . , Nn/xn], etc.

Theorem 3.5 (Replacement Theorem) Let B′ = x1:µ1, . . . , xm:µm, D0 :: B′ � M : σ, and assume,
for all i ∈ m, that there are Di, Ni such that Comp (Di :: B � Ni : µi). Then

Comp (D0 [D/x:µ ] :: B � M[N/x ] : σ).

Proof: By induction on the structure of derivations.

(Ax) : Then x:∩nσi ∈ B′, σ = σi for some i ∈ n, and Di :: B � Ni : σi. By Definition 3.1, Comp (Di),
and by Definition 2.1, D0 [D/x:µ ] = Di.

(∩I) : Then σ =∩nσi, and, for all i ∈ n, there exists Di :: B′ � M : σi such that D0 = 〈D1, . . . ,Dn,∩I〉.
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Then, by induction, for all i ∈ n,

Comp (Di[D/x:µ ] :: B � M[N/x ] : σi),

and, by Definition 3.1, Comp (D0[D/x:µ ] :: B � M[N/x ] :∩nσi).

(→I) : Then σ = ρ→τ, D0 = 〈D1 :: B′,y:ρ � M′ : τ,→I〉 :: B′ � λy.M′ : ρ→τ.
Assume Comp (D′ :: B � Q : ρ), then:

∀j ∈ m [Comp (Dj)] & Comp (D′) ⇒ (IH)
Comp (D1[D/x:µ ,D′/y:ρ] :: B � M[N/x , Q/y] : τ) ⇒ (3.4)
Comp (〈〈D1[D/x:µ ],→I〉,D′,→E〉 :: B � (λy.M[N/x ])Q : τ)

so, by Definition 3.1, Comp (〈D1[D/x:µ ],→I〉 :: B � λy.M[N/x ] : ρ→τ), so also

Comp (〈D1,→I〉[D/x:µ ] :: B � (λy.M)[N/x ] : ρ→τ).

(→E) : Then M ≡ M1M2, there are D1,D2, and τ such that D0 = 〈D1,D2,→E〉, D1 :: B′ �
M1 : τ→σ, and D2 :: B′ � M2 : τ. Then, by induction,

Comp (D1[D/x:µ ] :: B � M1[N/x ] : τ→σ), and
Comp (D2[D/x:µ ] :: B � M2[N/x ] : τ).

Then, by Definition 3.1,

Comp (〈D1[D/x:µ ],D2[D/x:µ ],→E〉 :: B � M1[N/x ]M2[N/x ] : σ)

so also Comp (〈D1,D2,→E〉[D/x:µ ] :: B � (M1M2)[N/x ] : σ).

Using this last result, we now prove a strong normalisation result for derivation reduction
in �.

Theorem 3.6 If D :: B � M : σ, then SN (D).

Proof: By Lemma 3.3:(ii), for every x:τ ∈ B, Comp (Dx :: B � x : τ), so Comp (D :: B � M : σ) by
Theorem 3.5. Then, by Lemma 3.3:(i), SN (D).

4 Approximation

In Sections 5 and 6 we will show two main results, that are both direct consequences of
the strong normalisation result proved in Section 3. Both results have been proven, at least
partially, in [1, 2]. In fact, some of the theorems and lemmas presented here were already
presented in those papers and are repeated here, for completeness, with their new proofs.
Before we come to those results, we will revise approximants.

The notion of approximant for lambda terms was first presented in [27], and is defined using
the notion of terms in λ⊥-normal form (as in [9], ⊥ is used, instead of Ω; also, the symbol �
is used as a relation on Λ⊥-terms, inspired by a similar relation defined on Böhm-trees in [9]).

Definition 4.1 (Approximate normal forms) i) The set of Λ⊥-terms is defined like the set
Λ of lambda terms, by:

M ::= x | ⊥ | λx.M | M1M2

The symbol ⊥ is called bottom.
ii) The notion of reduction →β⊥ is defined as →β , extended by: λx.⊥→β⊥ ⊥ and ⊥M →β⊥ ⊥.

iii) The set of normal forms for elements of Λ⊥ with respect to →β⊥ is the set N of λ⊥-normal
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forms or approximate normal forms, ranged over by A, inductively defined by:

A ::= ⊥ | λx.A (A �= ⊥) | xA1 . . . An (n ≥ 0)

The rules of the system � are generalised to terms containing ⊥ by allowing for the terms
to be elements of Λ⊥. Then, if ⊥ occurs in a term M and D :: B � M : σ, in D, ⊥ has to appear
in a position where the rule (∩I) is used with n = 0, i.e., in a sub-term typed with ω. Notice
that the terms λx.⊥ and ⊥M1 . . . Mn are typeable by ω only.

Definition 4.2 ( � , (direct) approximants) i) The partial order � ⊆ (Λ⊥)2 is defined as
the least pre-order such that:

⊥ � M
M � M′ ⇒ λx.M � λx.M′

M1 � M′
1 & M2 � M′

2 ⇒ M1M2 � M′
1M′

2.

If A ∈N , M ∈Λ, and A � M, then A is called a direct approximant of M.
ii) The relation �∼ ⊆ N × Λ is defined by:

A �∼ M ⇐⇒ ∃M′ =β M [A � M′].

iii) If A �∼ M, then A is called an approximant of M, and A(M) = {A ∈N | A �∼ M}.

Lemma 4.3 B � M : σ & M � M′ ⇒ B � M′ : σ.

Proof: By easy induction on the definition of � ; the base case, ⊥� M, follows from the fact
that then σ = ω.

The following definition introduces an operation of join on Λ⊥-terms.

Definition 4.4 (Join, compatible terms) i) On Λ⊥, the partial mapping join, � : Λ⊥ × Λ⊥→
Λ⊥, is defined by:

⊥�M ≡ M�⊥ ≡ M
x�x ≡ x

(λx.M)�(λx.N) ≡ λx.(M�N)
(M1M2)�(N1N2) ≡ (M1�N1) (M2�N2)

ii) If M�N is defined, then M and N are called compatible.
We will use �n Mi for the term M1� . . .�Mn. Note that ⊥ can be defined as the empty join,
i.e. if M ≡ �n Mi, and n = 0, then M ≡ ⊥.

The last alternative in the definition of � defines the join on applications in a more general
way than Scott’s, that would state that

(M1M2)�(N1N2) � (M1�N1)(M2�N2),

since it is not always sure if a join of two arbitrary terms exists. However, we will use our
more general definition only on terms that are compatible, so the conflict is only apparent.

The following lemma shows that the join acts as least upper bound of compatible terms.

Lemma 4.5 If M1 � M, and M2 � M, then M1�M2 is defined, and:

M1 � M1�M2, M2 � M1�M2, and M1�M2 � M.
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Proof: By induction on the definition of � .
i) If M1 ≡ ⊥, then M1�M2 ≡ M2, so M1 � M1�M2, M2 � M1�M2, and M1�M2 � M2 � M.

(The case M2 ≡ ⊥ goes similarly.)
ii) If M1 ≡ x, then M ≡ x, and either M2 = ⊥ or also M2 ≡ x. The first case has been

dealt with in part (i), and for the other: M1�M2 ≡ x. Obviously, x � x�x, x � x�x, and
x�x � x.

iii) If M1 ≡ λx.N1, then M ≡ λx.N, N1 � N, and either M2 = ⊥ or M2 ≡ λx.N2. The first
case has been dealt with in part (i), and for the other: then N2 � N. Then, by in-
duction, N1 � N1�N2, N2 � N1�N2, and N1�N2 � N. Then also λx.N1 � λx.N1�N2,
λx.N2 � λx.N1�N2, and λx.N1�N2 � λx.N. Notice that λx.N1�N2 ≡ (λx.N1)�(λx.N2).

iv) If M1 ≡ P1Q1, then M ≡ PQ, P1 � P, Q1 � Q, and either M2 = ⊥ or M2 ≡ P2Q2. The first
case has been dealt with in part (i), and for the other: then P2 � P, Q2 � Q. By induction,
we know P1 � P1�P2, P2 � P1�P2, and P1�P2 � P, as well as Q1 � Q1�Q2, Q2 � Q1�Q2,
and Q1�Q2 � Q. Then also P1Q1 � (P1�P2)(Q1�Q2), P2Q2 � (P1�P2)(Q1�Q2), and (P1�P2)(Q1�Q2)� PQ
Notice that (P1�P2)(Q1�Q2) ≡ (P1Q1)�(P2Q2).

5 Normalisation results

In what follows below, first an approximation result will be proved, i.e. for every M, B and σ
such that B � M : σ, there exists an A ∈A(M) such that B � A : σ. From this, the well-known
characterisation of (head-)normalisation of lambda terms using intersection types follows eas-
ily, i.e. all terms having a (head) normal form are typeable in � (with a type without ω-
occurrences). The second result is the well-known characterisation of strong normalisation of
typeable lambda terms, i.e. all terms, typeable in � without using the type-constant ω, are
strongly normalisable.

First we give some auxiliary definitions and results. The first is a notion of type assignment
similar to that of Definition 1.5, but differs in that it assigns ω only to the term ⊥.

Definition 5.1 ⊥-type assignment and ⊥-derivations are defined by the following natural de-
duction system (where σ in rules (→E) and (→I) is in T ):

(Ax) : (n ≥ 1, i ∈ n)
B, x:∩nσi �⊥ x : σi

(→E) :
B �⊥ M : σ→τ B �⊥ N : σ

B �⊥ MN : τ

(∩I) :
B �⊥ M1 : σ1 . . . B �⊥ Mn : σn

(n ≥ 0)
B �⊥ �nMi :∩nσi

(→I) :
B, x:σ �⊥ M : τ

B �⊥ λx.M : σ→τ

We write B �⊥ M : σ if this statement is derivable using a ⊥-derivation.

Notice that, by rule (∩I), ∅ �⊥ ⊥ : ω, and that this is the only way to assign ω to a term.
Moreover, in that rule, the terms Mj need to be compatible (otherwise their join would not be
defined).

Lemma 5.2 i) If D :: B �⊥ M : σ, then D :: B � M : σ.
ii) If D :: B � M : σ, then there exists M′ � M, such that D :: B �⊥ M′ : σ.

Proof: i) By induction on the structure of derivations in �⊥.
(Ax) : Immediate.
(∩I) : Then, there are n ≥ 0,σi, Mi (∀i ∈ n) such that σ = ∩nσi, M = �n Mi, and, for every

i ∈ n, B �⊥ Mi : σi. Then, by induction, for every i ∈ n, B � Mi : σi. Since, by Lemma 4.5,
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Mi � M for all i ∈ n, by Lemma 4.3, for every i ∈ n, B � M : σi, so by (∩I), B � M :∩nσi.
(→I) : Then M ≡ λx.M′, and σ = α→β, and B, x:α �⊥ M′ : β. Then, by induction, B, x:α �

M′ : β, so by (→I), B � λx.M′ : α→β.
(→E) : Then M ≡ M1M2, and there exists τ such that B �⊥ M1 : τ→σ, and B �⊥ M2 : τ. Then,

by induction, B � M1 : τ→σ, and B � M2 : τ, so by (→E), B � M1M2 : σ.
ii) By induction on the structure of derivations in �.
(Ax) : Immediate.
(∩I) : Then σ = ∩nσi and, for every i ∈ n, B � M : σi, and, by induction, for every i ∈ n there

exists Mi � M such that B �⊥ Mi : σi (notice that then these Mi are compatible). Then,
by rule (∩I), we have B �⊥ �n Mi : σi. Notice that, by Lemma 4.5, �n Mi � M.

(→I) : Then M ≡ λx.M1, and σ = α→β, and B, x:α � M1 : β. So, by induction, there exists
M′

1 � M1 such that B, x:α �⊥ M′
1 : β. Then, by rule (→I) we obtain B �⊥ λx.M′

1 : α→β.
Notice that λx.M′

1 � λx.M1.
(→E) : Then M ≡ M1M2, and there is a τ such that B � M1 : τ→σ, and B � M2 : τ. Then, by

induction, there are M′
1 � M1, and M′

2 � M2, such that B �⊥ M′
1 : τ→σ, and B �⊥ M′

2 : τ.
Then, by (→E), B �⊥ M′

1M′
2 : σ. Notice that M′

1M′
2 � M1M2.

Notice that the case σ = ω is present in the case (∩I) of the proof. Then n = 0, and �n Mi =⊥.
Moreover, since M′ need not be the same as M, the second derivation in part (ii) is not exactly
the same; however, it has the same structure in terms of applied derivation rules.

Example 5.3 Let D′
1 be the derivation D1 from Example 2.4, but built using the rules of �⊥

rather than � (notice that ω is not used in D1, so there is no difference); let B2 = {x:τ,y:ω→ρ},
and τ (as in Example 2.4) the type derived in D′

1, then the �⊥-variant of 〈D2,D1,→E〉 will be:

(Ax)
B2 �⊥ y : ω→ρ

(∩I)
B2 �⊥ ⊥ : ω

(→E)
B2 �⊥ y⊥ : ρ

(→I)
x:τ �⊥ λy.y⊥ : (ω→ρ)→ρ

(→I)
�⊥ λxy.y⊥ : τ→(ω→ρ)→ρ

D′
1

�⊥ Θ : τ
(→E)

�⊥ (λxy.y⊥)Θ : (ω→ρ)→ρ

Notice that λxy.y⊥�Θ. This derivation reduces to:

(Ax)
y:ω→ρ �⊥ y : ω→ρ

(∩I)
y:ω→ρ �⊥ ⊥ : ω

(→E)
y:ω→ρ �⊥ y⊥ : ρ

(→I)
�⊥ λy.y⊥ : (ω→ρ)→ρ

Notice that x does not appear in λy.y⊥, so the term in the derivation does not change. This
last derivation is in normal form, as is the term λy.y⊥.

One might think that, since in �⊥, only ⊥ can be typed with ω, all typeable terms would be
strongly normalisable. This is not the case, as argued in Example A.2, which can be found in
the appendix.

Using Theorem 3.6, as for the BCD-system (see [25]) and the system of [2], the relation
between types assignable to a lambda term and those assignable to its approximants can be
formulated as follows:
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Theorem 5.4 (Approximation) B � M : σ ⇐⇒ ∃A ∈A(M) [B � A : σ].

Proof: ⇒) If D :: B � M : σ, then, by Theorem 3.6, SN(D). Let D′ :: B � N : σ be a normal form
of D with respect to →D, then by Lemma 2.5, M →→β N and, by Lemma 5.2:(ii), there
exists P � N such that D′ :: B �⊥ P : σ. So, in particular, P contains no redexes (no typed
redexes since D′ is in normal form, and none untyped since only ⊥ can be typed with ω),
so P ∈N , and therefore P ∈A(M).

⇐) Since A ∈A(M), there is an M′ such that M′ =β M and A � M′. Then, by Lemma 4.3,
B � M′ : σ, and, by Theorem 1.8, also B � M : σ.

In [2], this result was obtained separately, using a computability predicate.
Using the previous theorem, the following becomes easy.

Theorem 5.5 (Head-normalisation [1]) There exists B,σ such that B � M : σ and σ ∈ TS, if and
only if M has a head normal form.

Proof: ⇒) If B � M : σ, then, by Theorem 5.4, there exists an A ∈A(M) such that B � A : σ.
Then, by Definition 4.2, there exists M′ =β M such that A � M′. Since σ ∈ TS, A �≡ ⊥, so
A is either x,λx.A′ or xA1. . .An. Since M′ matches A (A � M′), M′ is either x,λx.M1 or
xM1. . .Mn; so M′ is in head-normal from. Then M has a head-normal form.

⇐) If M has a head-normal form, then there exists M′ =β M such that M′ is either λx.M1
with M1 in head-normal form, or xM1. . .Mn, with n ≥ 0 and each Mi ∈Λ.
a) M′ ≡ λx.M1. Since M1 is in head-normal form, by induction there are B′,σ′ such that

B′ � M1 : σ′. If x:τ ∈ B′, take B = B′\x, and σ = τ→σ′, otherwise B = B′ and σ = ω→σ′.
b) M′ ≡ xM1. . .Mn. Take B = x:ω→ . . .→ω→ϕ and σ = ϕ.
Notice that, in all cases, B � M′ : σ, and σ ∈ TS. Then, by Theorem 1.8, B � M : σ.

6 ω-free type assignment

In this section we revisit the strong normalisation proof, for which we first define a notion of
derivability obtained from � by removing the type constant ω.

Definition 6.1 (ω-free types) i) The set of ω-free strict types is inductively defined by:

σ ::= ϕ | (∩nσi → σ), (n ≥ 1)

The set T−ω− of ω-free intersection types is defined by:

{∩nσi | n ≥ 1 & ∀i ∈ n [σi is an ω-free strict type]}

ii) The relation ≤ is defined in ω-free types as the least pre-order on T−ω− such that:

∩nσi ≤ σi, for all i ∈ n
τ ≤ σi, for all i ∈ n ⇒ τ ≤∩nσi (n ≥ 1)

This relation is extended onto bases as in Definition 1.3.
iii) The equivalence relation ∼ on types is defined by: σ ∼ τ ⇐⇒ σ ≤ τ ≤ σ, and we will

work with types modulo ∼ .

Definition 6.2 (ω-free type assignment) i) ω-free intersection type assignment and ω-free in-
tersection derivations are defined by the following natural deduction system (where σ in
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rules (→E) and (→I) is in T ):

(Ax) : (n ≥ 1, i ∈ n)
B, x:∩nσi �−ω− x : σi

(→E) :
B �−ω− M : σ→τ B �−ω− N : σ

B �−ω− MN : τ

(∩I) :
B �−ω− M : σ1 . . . B �−ω− M : σn

(n ≥ 1)
B �−ω− M :∩nσi

(→I) :
B, x:σ �−ω− M : τ

B �−ω− λx.M : σ→τ

ii) We will write B �−ω− M : σ if this statement is derivable using a ω-free intersection deriva-
tion, and write D :: B �−ω− M : σ to specify that this result was obtained through the deriva-
tion D.

The following properties hold:

Lemma 6.3 i) B �−ω− M : σ ⇒ {x:σ ∈ B | x ∈ fv(M)} �−ω− M : σ.
ii) B �−ω− M : σ & B′ ≤ B ⇒ B′ �−ω− M : σ.

iii) If D :: B �−ω− M : σ, then D :: B � M : σ.

Proof: Easy.

To prepare the characterisation of terms by their assignable types, first is proved that a term
in λ⊥-normal form is typeable without ω, if and only if it does not contain ⊥. This forms the
basis for the result that all normalisable terms are typeable without ω.

Lemma 6.4 ([2]) i) If B �−ω− A : σ, and B,σ are ω-free, then A is ⊥-free.
ii) If A is ⊥-free, then there are B, and σ, such that B �−ω− A : σ.

Proof: By induction on the structure of approximate normal forms.
i) As before, only the part that σ is strict is shown.
(A ≡ x) : Immediate.
(A ≡ ⊥) : Impossible, by inspecting the rules of �−ω−.
(A ≡ λx.A′) : By (→I) there are α, β such that σ = α→β, and B, x:α �−ω− A′ : β. Of course also

B, x:α, and β are ω-free, so by induction, A′ is ⊥-free, so also λx.A′ is ⊥-free.
(A ≡ xA1. . .An) : Then by (→E) and (Ax) there are m,σi (∀i ∈ n), τj (∀j ∈ m), such that for

every i ∈ n, B �−ω− Ai : σi, and x:∩mτi ∈ B, and, for some j ∈ m, σ1→. . .→σn→σ = τj. Since
each σi occurs in τj, which occurs in B, all are ω-free, so by induction each Ai is ⊥-free.
Then also xA1. . .An is ⊥-free.

ii)(A ≡ x) : x:ϕ �−ω− x : ϕ.
(A ≡ λx.A′) : By induction there are B,τ such that B �−ω− A′ : τ. If x does not occur in B,

take a σ ∈ T−ω−; otherwise, there exist x:σ ∈ B, and σ is ω-free. In either case, B\x �−ω−
λx.A′ : σ→τ.

(A ≡ xA1. . .An) : By induction there are σi (∀i ∈ n) such that B �−ω− Ai : σi for every i ∈ n.
Then ∩{B,{x:σ1→. . .→σn→ϕ}} �−ω− xA1. . .An : ϕ.

Now, as also shown in [1], it is possible to characterise normalisable terms.

Theorem 6.5 ([1, 2]) There exists B,σ such that B � M : σ and B,σ are ω-free, if and only if M has a
normal form.

Proof: ⇒) If B � M : σ, by Theorem 5.4, there exists A ∈A(M) such that B � A : σ. Since B,σ
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are ω-free, by Lemma 6.4:(i), this A is ⊥-free. By Definition 4.1 there exists M′ =β M such
that A � M′. Since A contains no ⊥, A ≡ M′, so M′ is a normal form, so, especially, M
has a normal form.

⇐) If M′ is the normal form of M, then it is a ⊥-free approximate normal form. Then by
Lemma 6.4:(ii) there are B,σ such that B �−ω− M′ : σ. Then, by Theorem 1.8, B � M : σ, and
B,σ are ω-free.

(Notice that, in the second part, in general, the property that ω is not used at all, is lost.)

The following lemma shows a subject expansion result for the ω-free system.

Lemma 6.6 If B �−ω− M[N/x] : σ and B �−ω− N : ρ, then B �−ω− (λx.M)N : σ.

Proof: We focus on the case that σ is strict; the case that σ is an intersection is just a generali-
sation. We can assume that x does not occur in B, and proceed by induction on the structure
of M.

(M ≡ x) : Then M[N/x] ≡ N. From B �−ω− N : σ we obtain B �−ω− (λx.x)N : σ.

(M ≡ y �= x) : If B �−ω− y : σ, then, by Lemma 6.3:(i) and (→I), B �−ω− λx.y : ρ→σ so also B �−ω−
(λx.y)N : σ.

(M ≡ λy.M′) : Then (λy.M′)[N/x] ≡ λy.(M′[N/x]), and σ = α→β. Notice that, by α-conversion,
we can assume that y �∈ fv(N). Then:

B �−ω− λy.(M′[N/x]) : α→β & B �−ω− N : ρ ⇒ (→I)
B,y:α �−ω− M′[N/x] : β & B �−ω− N : ρ ⇒ (IH)
B,y:α �−ω− (λx.M′)N : β ⇒ (β is strict) & (→E)
∃γ [B,y:α �−ω− λx.M′ : γ→β & B,y:α �−ω− N : γ] ⇒ (→I) & (y �∈ fv(N))
∃γ [B,y:α, x:γ �−ω− M′ : β & B �−ω− N : γ] ⇒ (→I)
∃γ [B �−ω− λxy.M′ : γ→α→β & B �−ω− N : γ] ⇒ (→E)
B �−ω− (λxy.M′)N : α→β

(M ≡ M1M2) : Then (M1M2)[N/x] ≡ M1[N/x]M2[N/x].

B �−ω− M1[N/x]M2[N/x] : σ & B �−ω− N : ρ ⇒ (→E)
∃τ [B �−ω− M1[N/x] : τ→σ & B �−ω− M2[N/x] : τ] & B �−ω− N : ρ ⇒ (IH)
∃τ [B �−ω− (λx.M1)N : τ→σ & B �−ω− (λx.M2)N : τ] ⇒ (→E), (→I) & (∩I)
∃ρ1,n,ρi

2,τ,τi (∀i ∈ n) [B, x:ρ1 �−ω− M1 : τ→σ & B �−ω− N : ρ1
& τ = ∩nτi & ∀i ∈ n [B, x:ρi

2 �−ω− M2 : τi & B �−ω− N : ρi
2]] ⇒ (∩I) & (6.3:(ii))

∃ρ1,ρ2,τ[B, x:ρ1∩ρ2 �−ω− M1 : τ→σ & B �−ω− N : ρ1∩ρ2
& B, x:ρ1∩ρ2 �−ω− M2 : τ] ⇒ (→E)

∃ρ′[B, x:ρ′ �−ω− M1M2 : σ & B �−ω− N : ρ′] ⇒ (→I)
∃ρ′ [B �−ω− λx.(M1M2) : ρ′→σ & B �−ω− N : ρ′] ⇒ (→E)
B �−ω− (λx.(M1M2))N : σ

This result extends by induction (easily) to all contexts:

if B �−ω− C[M[N/x]] : σ and B �−ω− N : ρ, then B �−ω− C[(λx.M)N ] : σ.

Notice that the condition B �−ω− N : ρ in the formulation of the lemma is essential. As counter
example, take the two lambda terms λyz.(λb.z)(yz) and λyz.z. Notice that the first strongly
reduces to the latter. We know that

z:σ,y:τ �−ω− z : σ
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but it is impossible to give a derivation for (λb.z)(yz) : σ from the same basis without using
ω. This is caused by the fact that we can only type (λb.z)(yz) in the system without ω from a
basis in which the predicate for y is an arrow type. We can, for example, derive

B,z:σ,y:σ→τ �−ω− (λb.z)(yz) : σ.

We can therefore only state that we can derive

B �−ω− λyz.(λb.z)(yz) : (σ→τ)→ρ and B �−ω− λyz.z : τ→ρ

but that we are not able to give a derivation without ω for the statement

λyz.(λb.z)(yz) : τ→ρ.

So the type assignment without ω is not closed for β-equality, but of course this is not
imperative. We only want to be able to derive a type for each strongly normalisable term, no
matter what basis or type is used.

Lemma 6.6 is also essentially the proof for the statement that each strongly normalisable
term can be typed in the system �−ω−, a property that we will now show.

Theorem 6.9 shows that the set of strongly normalisable terms is exactly the set of terms
typeable in the intersection system without using the type constant ω. The same result was
stated in [1] for the BCD-system, but the proof there was not complete. The proof of the
crucial lemma as presented below (Lemma 6.8) and part (⇐) of the proof of Theorem 6.9 are
essentially due to Betti Venneri, of the University of Florence, Italy, and goes by induction on
the left-most outer-most reduction path.

First we will introduce the notion of left-most, outer-most reduction.

Definition 6.7 An occurrence of a redex R = (λx.P)Q in a term M is called the left-most outer-
most redex of M (lor (M)), if:

i) There is no redex R′ in M such that R′ = C[R ] (outer-most).
ii) There is no redex R′ in M such that M = C0 [C1 [R′ ]C2 [R]] (left-most).

M →lor N is used to indicate that M reduces to N by contracting lor (M).

The following lemma formulates a subject expansion result for �−ω− with respect to left-most
outer-most reduction.

Lemma 6.8 Let M →lor N, lor (M) = (λx.P)Q, B �−ω− N : σ, and B′ �−ω− Q : τ, then there exists B0,ρ
such that B0 �−ω− M : ρ.

Proof: By induction on the structure of types, of which only the part σ ∈ TS will be shown, by
induction on the structure of terms; note that M ≡ λx1 . . . xk.VP1 . . . Pn (k,n ≥ 0), where either

i) V is a redex, so V ≡ (λy.P)Q, and N ≡ λx1 . . . xk.(P[Q/y])P1 . . . Pn, (notice that lor (M) =
V) or

ii) V ≡ y, so there is an j ∈ n such that lor (M) = lor (Pj), and Pj →lor P′, and
N ≡ λx1 . . . xk.yP1 . . . P′ . . . Pn.

In either case, we have, by Lemma 6.3, that there are αj (∀j ∈ k), γi (∀i ∈ n), and β such that
(where B1 = B, x1:α1, . . . , xk:αk, and V ′ is either P[Q/y] or y):

σ = α1→ . . .→αk→β, B1 �−ω− V ′ : γ1→ . . .→γn→β, and B1 �−ω− Pi : γi (∀i ∈ n).

We distinguish two cases:
i) V ′ ≡ P[Q/y]. Let B2 = B′, then ∩{B1, B2} �−ω− (λy.P)Q : γ1→ . . .→γn→β, by Lemma 6.6.
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ii) V ′ ≡ y. Then, by induction, there are B′,ρ such that B′ �−ω− Pj : ρ.
Take µ = γ1→ . . . ρ . . .→γn→β, B2 = B′,y:µ, then ∩{B1, B2} �−ω− y : µ.

In either case, ∩{B1, B2} �−ω− VP1 . . . Pn : β. Let, for all i ∈ k, xi:βi ∈∩{B1, B2}, then
∩{B1, B2}\x1, . . . , xk �−ω− λx1 . . . xk.VP1 . . . Pn : β1→ . . .→βk→β.

We can now show that all strongly normalisable terms are exactly those typeable in �−ω−.

Theorem 6.9 ∃B,σ [B �−ω− M : σ] ⇐⇒ M is strongly normalisable with respect to →β .

Proof: ⇒) If D :: B �−ω− M : σ, then by Lemma 6.3:(iii), also D :: B � M : σ. Then, by Theorem 3.6,
D is strongly normalisable with respect to →D. Since D contains no ω, all redexes in M
correspond to redexes in D, a property that is preserved by derivation reduction (it does
not introduce ω). So also M is strongly normalisable with respect to →β .

⇐) With induction on the maximum of the lengths of lor-reduction sequences for a strongly
normalisable term to its normal form (denoted by #(M)).
a) If #(M) = 0, then M is in normal form, and by Lemma 6.4:(ii), there exist B and σ ∈ T

such that B �−ω− M : σ.
b) If #(M)≥ 1, so M contains a redex, then let M →lor N by contracting the redex (λx.P)Q.

Then #(N)< #(M), and #(Q)< #(M) (since Q is a proper sub-term of a redex in M), so
by induction B �−ω− M : σ and B′ �−ω− Q : τ, for some B, B′, σ, and τ. Then, by Lemma 6.8,
there exist B1,ρ such that B1 �−ω− M : ρ.

Conclusions and future work

We have shown that cut-elimination is strongly normalising also for an intersection type as-
signment systems that contains ω, and that all standard characterisations of normalisation
are consequences of this result. A future extension of this result could be to consider a type-
inclusion relation that is contra-variant over the arrow, so to consider a system that is closed
for η-reduction.
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Appendix A Extended examples

We give an example of a non-strongly normalising term for which it is possible to find a
derivation such that no redex is covered with ω; moreover, for all the β-reducts of this term, the
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same property holds. We will show that this first derivation has a normal from, and construct
the reduction sequences. The derivation we will construct is similar to the one of Example 2.4,
but differs in the type derived for ΘΘ: (ρ→ρ)∩(ω→ρ)→ ρ rather than (ω→ρ)→ρ.

Example A.1 Take Θ = λxy.y(xxy), then ΘΘ is typeable in �, without covering a redex by
ω. Let τ = ((α→β→γ)∩α)→((γ→δ)∩β)→δ, and take the derivations D1 :: � Θ : τ and D2 :: �
Θ :τ→(ω→ρ)→ρ of Example 2.4. From these two, by applying (∩I), we get D3 :: �Θ : (τ→(ω→ρ)→ρ)∩ τ:

D2

� λxy.y(xxy) : τ→(ω→ρ)→ρ

D1

� λxy.y(xxy) : τ
(∩I)

� Θ : (τ→(ω→ρ)→ρ)∩ τ

Also, we can construct D4 (taking B′ = x:(τ→(ω→ρ)→ρ)∩τ,y:(ρ→ρ)∩ (ω→ρ)):

(Ax)
B′ � y : ρ→ρ

(Ax)
B′ � x : τ→(ω→ρ)→ρ

(Ax)
B′ � x : τ

(→E)
B′ � xx : (ω→ρ)→ρ

(Ax)
B′ � y : ω→ρ

(→E)
B′ � xxy : ρ

(→E)
B′ � y(xxy) : ρ

(→I)
B′\y � λy.y(xxy) : (ρ→ρ)∩(ω→ρ)→ ρ

(→I)
� Θ : (τ→(ω→ρ)→ρ)∩τ → (ρ→ρ)∩(ω→ρ)→ ρ

Then, by applying (→E), we get D5 :: � ΘΘ : (ρ→ρ)∩(ω→ρ)→ ρ:

D4

� Θ : (τ→(ω→ρ)→ρ)∩τ → (ρ→ρ)∩(ω→ρ)→ρ

D3

� Θ : (τ→(ω→ρ)→ρ)∩τ
(→E)

� ΘΘ : (ρ→ρ)∩(ω→ρ)→ ρ

Let D6 :: v:(ρ→ρ)∩(ω→ρ) � v : (ρ→ρ)∩(ω→ρ) be:

(Ax)
v:(ρ→ρ)∩(ω→ρ) � v : ρ→ρ

(Ax)
v:(ρ→ρ)∩(ω→ρ) � v : ω→ρ

(∩I)
v:(ρ→ρ)∩(ω→ρ) � v : (ρ→ρ)∩(ω→ρ)

then, adding a statement for v to the derivation D5, we get also D7:

D5

v:(ρ→ρ)∩(ω→ρ) � ΘΘ : (ρ→ρ)∩(ω→ρ)→ ρ

D6

v:(ρ→ρ)∩(ω→ρ) � v : (ρ→ρ)∩(ω→ρ)
(→E)

v:(ρ→ρ)∩(ω→ρ) � ΘΘv : ρ

Notice that ΘΘv is not strongly normalisable, since

ΘΘv →→β v(ΘΘv)→→β v(v(ΘΘv))→→β . . . .

Moreover, all these reducts are typeable in � such that no redex is typed with ω: since we can
derive both v:(ρ→ρ)∩(ω→ρ)� v : ρ→ρ, and v:(ρ→ρ)∩(ω→ρ)�ΘΘv : ρ, we get v:(ρ→ρ)∩(ω→ρ)�
v(ΘΘv) : ρ by rule (→E), and so on.

We will now show that, in �⊥, typeable terms need not be strongly normalisable.

Example A.2 As argued in Example 5.3, D′
1 and D′

2, the �−ω−-variants of the derivations D1 and
D2 of Example A.1, now consider different terms, namely Θ and λxy.y⊥. Notice that applying
rule (∩I) of �⊥ requires the terms to be compatible, which these are, and then types the join,
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which is Θ. So we get D′
3 = 〈D′

1,D′
2, (∩I)〉 :: �⊥ Θ : (τ→(ω→ρ)→ρ)∩ τ.

Notice, moreover, that rule (∩I) is not used to assign ω in the derivations D4, D5, D6,
and D7, so the �⊥ variants of these derivations would be identical, and we would obtain
D′

7 :: v:(ρ→ρ)∩(ω→ρ) �⊥ ΘΘv : ρ. The term ΘΘv is not strongly normalisable, as argued
above.

The next example show all the reduction sequences starting form the final derivation given
in Example A.1.

Example A.3 Take Θ, D1, . . . ,D7 as in Example A.1, then, using B = v:(ρ→ρ)∩(ω→ρ) (to save
space, we use α for (τ→(ω→ρ)→ρ)∩τ → (ρ→ρ)∩(ω→ρ)→ ρ), then the last derivation of the
previous example, D7, looks like:

D4

B � Θ : α

D2

B � Θ : τ→(ω→ρ)→ρ

D1

B � Θ : τ
(∩I)

B � Θ : (τ→(ω→ρ)→ρ)∩τ
(→E)

B � ΘΘ : (ρ→ρ)∩(ω→ρ)→ρ

D6

B � v : (ρ→ρ)∩(ω→ρ)
(→E)

B � ΘΘv : ρ

This derivation has only one redex 〈D4, 〈D2,D1,∩I〉,→E〉; remark that D4 finishes with an
application of rule (→I) (where B′ = B, x:(τ→(ω→ρ)→ρ)∩ τ,y:(ρ→ρ)∩(ω→ρ)):

D4 :

(Ax)
B′ � y : ρ→ρ

(Ax)
B′ � x : τ→(ω→ρ)→ρ

(Ax)
B′ � x : τ

(→E)
B′ � xx : (ω→ρ)→ρ

(Ax)
B′ � y : ω→ρ

(→E)
B′ � xxy : ρ

(→E)
B′ � y(xxy) : ρ

(→I)
B′\y � λy.y(xxy) : (ρ→ρ)∩(ω→ρ)→ ρ

(→I)
B � λxy.y(xxy) : α

D2

B � Θ : τ→(ω→ρ)→ρ

D1

B � Θ : τ
(∩I)

B � Θ : (τ→(ω→ρ)→ρ)∩τ
(→E)

B � ΘΘ : (ρ→ρ)∩(ω→ρ)→ρ

Contracting this redex makes D7 reduce to D8 (where B′′ = B,y:(ρ→ρ)∩(ω→ρ)):

(Ax)
B′′ � y : ρ→ρ

D2

B′′ � Θ : τ→(ω→ρ)→ρ

D1

B′′ � Θ : τ
(→E)

B′′ � ΘΘ : (ω→ρ)→ρ
(Ax)

B′′ � y : ω→ρ
(→E)

B′′ � ΘΘy : ρ
(→E)

B′′ � y(ΘΘy) : ρ
(→I)

B � λy.y(ΘΘy) : (ρ→ρ)∩(ω→ρ)→ρ

D6

B � v : (ρ→ρ)∩(ω→ρ)
(→E)

B � (λy.y(ΘΘy))v : ρ

Now D8 has two redexes (notice that D2 finishes with rule (→I)); contracting the outer-most
distributes (the two sub-derivations of) D6 and creates:
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D9 :
(Ax)

B � v : ρ→ρ

D2

B � Θ : τ→(ω→ρ)→ρ

D1

B � Θ : τ
(→E)

B � ΘΘ : (ω→ρ)→ρ
(Ax)

B � v : ω→ρ
(→E)

B � ΘΘv : ρ
(→E)

B � v(ΘΘv) : ρ

As illustrated by Example 2.4, contracting the remaining redex of D9 creates:

D10 :
(Ax)

B � v : ρ→ρ

(Ax)
B,z:ω→ρ � z : ω→ρ

(∩I)
B,z:ω→ρ � ΘΘz : ω

(→E)
B,z:ω→ρ � z(ΘΘz) : ρ

(→I)
B � λz.z(ΘΘz) : (ω→ρ)→ρ

(Ax)
B � v : ω→ρ

(→E)
B � (λz.z(ΘΘz))v : ρ

(→E)
B � v((λz.z(ΘΘz))v) : ρ

This derivation has again one redex: contracting it will generate the derivation D11:

D11 : (Ax)
B � v : ρ→ρ

(Ax)
B � v : ω→ρ

(∩I)
B � ΘΘv : ω

(→E)
B � v(ΘΘv) : ρ

(→E)
B � v(v(ΘΘv)) : ρ

This derivation now is in normal form; again, the term v(v(ΘΘv)) is not.
On the other hand, contracting first the inner-most redex of D8 creates D12:

(Ax)
B′′ � y : ρ→ρ

(Ax)
B′′,z:ω→ρ � z : ω→ρ

(∩I)
B′′,z:ω→ρ � ΘΘz : ω

(→E)
B′′,z:ω→ρ � z(ΘΘz) : ρ

(→I)
B′′ � λz.z(ΘΘz) : (ω→ρ)→ρ

(Ax)
B′′ � y : ω→ρ

(→E)
B′′ � (λz.z(ΘΘz))y : ρ

(→E)
B′′ � y((λz.z(ΘΘz))y) : ρ

(→I)
B � λy.y((λz.z(ΘΘz))y) : (ρ→ρ)∩(ω→ρ)→ρ

D6

B � v : (ρ→ρ)∩(ω→ρ)
(→E)

B � (λy.y((λz.z(ΘΘz))y))v: ρ

This derivation has again two redexes. Contracting the outer-most creates D10 which in turn
reduces to D11. Alternatively, contracting the inner-most redex creates D13:

(Ax)
B′′ � y : ρ→ρ

(Ax)
B′′ � y : ω→ρ

(∩I)
B′′ � ΘΘy : ω

(→E)
B′′ � y(ΘΘy) : ρ

(→E)
B′′ � y(y(ΘΘy)) : ρ

(→I)
B � λy.y(y(ΘΘy)) : (ρ→ρ)∩(ω→ρ)→ρ

D6

B � v : (ρ→ρ)∩(ω→ρ)
(→E)

B � (λy.y(y(ΘΘy)))v : ρ

This derivation has only one redex, and reduces to D11.


