
Note on a simple type system for non-interference
(Nordic Workshop on Programming Theory (NWPT’07), 2007)

Steffen van Bakel and Maria Grazia Vigliotti

Department of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2BZ, UK
svb@doc.ic.ac.uk,mgv98@doc.ic.ac.uk

Abstract
We consider CCS with value passing and elaborate a notion of noninterference for the process
calculi, which matches closely that of the programming language. The idea is to view channels
as information carriers rather than as “events”, so that emitting a secret on output channel
can be considered safe, while inputting a secret may lead to some kind of leakage. This is in
contrast with the standard notion of noninterference for the process calculi where any causal
dependency of low-level action from any high-level action is forbidden.

keywords: Process algebra, non-interference, type system, security policies.

Introduction

In recent years secure information flow has attracted a great deal of interest, spurred on by the
spreading of mobile devices and nomadic computation, and has been studied in some depth
for both programming languages and process calculi. In this paper we shall speak of the
“language-based approach” when referring to programming languages and of the “process-
algebraic approach” when referring to process calculi.

The language-based approach is concerned with the avoidance of secret information leakage
or corruption through the execution of programs, i.e. with the security properties of confiden-
tiality and integrity. The property of confidentiality, which appears to be the most studied,
is usually formalised via the notion of non-interference, meaning that secret inputs should not
have an effect on public outputs, since this could allow -in principle- a public user to recon-
struct sensitive information. Non-interference may be achieved in various ways: via program
analysis, type systems, using semantics equivalencies, the implementation of security policies,
etc. In most cases the languages are equipped with a type system or some other tool to enforce
the compliance of programs to the desired security property.

In the process-algebraic approach the focus is on the notion of external observer, who ideally
has nothing to do with the specification and implementation of a given system, and should not
be able to infer any secret by interacting with it. The process-algebraic approach is concerned
with secret events not being revealed while processes communicate, i.e. actions that involve
sensitive or confidential data should have no effect on public actions.

Also, in process algebra, many non-interference properties are formalised in a way sim-
ilar to programming languages, i.e. using program analysis, type systems, using semantics
equivalencies. In the last few years a variety of properties have been proposed for process
calculi, mostly based on trace equivalence or bisimulation, ranging from the simple property
of Non-deducibility on Composition to more complicated ones (see [3] for a review).

Methods for static detection of insecure processes have not been largely studied for process
calculi. In [6, 7] type systems which characterise a non-inference property have been proposed

Nordic Workshop on Programming Theory (NWPT’07), 2007 2

for the π-calculus. More sophisticated type systems have been extensively studied in [8, 9]
for variants of the π-calculus, which combine the control of security with other correctness
concerns. More recently, Crafa and Rossi proposed in [2] a simple security type system for
the π-calculus, which consists essentially of a simplification of that used by Hennessy [7],
ensuring the absence of explicit information flows. All those type systems include specific
analysis on the values passed on a channel.

Pottier [11] proposed a very simple view on non-interference via a type system for the π-
calculus which does not involve any extra typing information on the values passed over chan-
nels. The great appeal of this type system is its simplicity in characterising non-interference
only; in fact, Pottier calls this system ’simple’, and we will use his terminology in this paper.
The limitation of Pottier’s work, with respect to the ’simple type system’ is the lack of a robust
semantic notion of non-interference. In this paper we will address this issue specifically.

In process algebraic approach, differently from language based security, no distinction is
made between input events and output events, neither at the level of semantics definitions of
security not at the level of type systems. In this paper we aim to address two issues:

i) study the relationship between those type systems and the semantics-based approach in
process calculi [3, 5, 4];

ii) to define a notion of non-interference which matches closely the one in the language-based
approach. In other words, the basic idea is to view channels as information carriers, so
that emitting a secret on an output channel can be considered safe, while inputting a
secret may lead to some kind of leakage.

As for the first issue, the notion of Persistent Non-deducibility on Composition developed
for CCS [5, 4] has shown to be quite natural, also because it preserves the notion of non-
interference of the language-based approach in the process-algebraic approach [5]. In this
paper we will show that the ‘simple type system’ can be adapted to standard CCS and that it
characterises the semantic notion of Persistent Non-deducibility on Composition. This means
that any typeable process is persistently deducible on composition. We will show that there
exist processes that are considered secure according the notion of persistence, yet that are not
typeable. Therefore, the set of typeable processes according to Pottier’s type system is strictly
smaller than the class of processes included in Persistent Non-deducibility on Composition
relation.

We consider CCS here instead of the π-calculus because we wish to focus on the specific
issues of non-interference in the simplest model possible. It is clear that our work could
be easily extended to the π-calculus, with little extra effort. As for the second issue, we
modify the ‘simple type system’ so that the notion of non-interference matches closely that
of programming languages. That is to view channels as information carriers rather than as
“events”, so that the process ah(x). bl〈e〉, which emits on a low channel a value received on a
high channel, is considered insecure, while ah〈v〉. bl〈v〉, which emits successively a value v on
a high channel and on a low channel, is considered secure. The second example would not be
be typeable in the ‘simple type system’ nor would it be considered secure with the standard
semantic notions of non-interference.

The rest of the paper is organised as follows: in section 1 we introduce CCS; in section
2 we introduce the notion of equivalence-based security; in section 3 we adapt the simple
type system to CCS and we show that the every typeable process is secure according to the
Persistent Non-deducibility on Composition. Finally, in section 4 we introduce our refined
type system and elaborate on a semantics notion of non-interference based on the idea that
only high-level inputs are critical for the definition of non-interference. Conclusions follow.

Nordic Workshop on Programming Theory (NWPT’07), 2007 3

1 CCS

We will consider a variant of CCS with value passing, with two main differences from stan-
dard presentation:

i) We assume the existence of a lattice (L,≤), which expresses the security level of channels.
Greek letters σ,τ,ρ . . . and � range over L. The language CCS we consider is typed in the
sense that we explicitly incorporate the security level of the channel in the syntax of the
language.

ii) We consider the value passing CCS -though value passing could be encoded with infinite
choice operator [10]- without if-then-else operator as in [5]. We prefer to consider CCS
with value passing in order to emphasise the different role of input and output; yet the if-
then-else operator can be encoded in CCS [10] and therefore is not essential in the current
presentation.

Definition 1.1 Let N be a enumerable set of names and N an enumerable set of conames.
We use the usual conventions for input a(x) and output a〈e〉. The enumerable set of variables
is ranged over by x,y,z . . ., and the set of values V is ranged over by e; we will assume that
(N ∪N) ∩ V = ∅.

The syntax of (typed) process prefixes, ranged over by α, β,γ, is given by:

α ::= a�(x) | a�〈e〉
where � is taken from a lattice (L,≤)of security levels.

The set Pr of processes, ranged over by P, Q, is given by the grammar:

P, Q ::= 0 | ∑i∈I αi.Pi | P |Q | (νa�)P | A[e].

where I is a finite index set.

The informal meaning of process is standard: choice operator ∑i∈I αi.Pi represents the non-
deterministic choice among different processes; parallel composition P |Q represent processes
running together, possibly in an interleaving fashion; restriction (νa�)P makes the name a�
local to the process P.

Definition 1.2 (Notions and Conventions) • The notion of free and bound names in Pis
standard, taking into account that (νa)P is the only binding operator. With n(P) we mean
the set of names in P.

• For an Agent A[a] we assume the existence of identifier A such that a process P can be
associated to that identifier, written A[x]=∆ P when fn(P) ⊆ {x1, . . . xn }.

• We assume that prefixes with the same channel name have the same security level i.e. if
a�(x). P and a�′ 〈e〉. Q then � = �′.

• We write P{e/x} (P{a/x}) for the standard replacement of every occurrence of x in P by
the value e (the name a).

• An element of the set of actions Act is defined as Act=∆ {ae | a ∈N ∪N , e ∈ V } ∪ {τ}; the
Greek letters α, β . . . will range over Act.

• We define subj(a�(x)) = a� = subj(a�〈e〉) and subj(τ) = τ.

Definition 1.3 (Operational Semantics) The relation −→ ⊆Pr×Act×Pr, written P−→α P′,

Nordic Workshop on Programming Theory (NWPT’07), 2007 4

is defined by:

(Input) : (αj = a�(x))
∑i∈I αi.Pi−→ae Pj{e/x}

(Output) : (αj = a�〈e〉)
∑i∈I αi.Pi−→ae Pj

(Restr) :
P−→α P′

(b
= subj(α))
(νb)P−→α (νb)P′

(Rec) :
P{b/x} −→α P′

(P=
∆ A(x))

A[b]−→α P′

(Par Left) :
P−→α P′

P |Q−→α P′ |Q

(Par Right) :
P−→α P′

Q |P−→α Q |P′

(Par Comm1) :
P−→ae P′ Q−→ae Q′

P |Q−→τ P′ |Q′

(Par Comm2) :
P−→ae P′ Q−→ae Q′

P |Q−→τ P′ |Q′

We adopt the usual notational conventions. We write τ−→∗ for the reflexive and transitive

closure of −→τ . We define define P α⇒ P′ as P τ−→∗ −→α τ−→∗P′ and P α̂⇒ P′ as P α⇒ P′ if α
= τ

or P τ−→∗P′ otherwise. Thus P τ⇒ P′ requires at least one τ-transition while P τ̂⇒ P′ allows for
the empty move.

2 Equivalence-based security

In this section, we shall examine previous definitions of equivalence-based security that aim
to capture the notions of non-interference. There are many different definitions, based on
semantics equivalencies [3]. We consider in this paper only non-interference bisimilarity for
two reasons: (1) these equivalencies are very common in the literature [2, 11, 4, 5, 1], etc,
and (2) there are well-established proof-methods to show when processes are equivalent. We
shall first consider Bisimulation-based Non-Deducibility on Compositions (BNDC) followed
by Persistent Bisimulation-based Non-Deducibility on Compositions (P-BNDC).

Definition 2.1 (Weak Bisimulation) A symmetric binary relation S ⊆Pr×Pr is a weak bisim-
ulation if PSQ implies, for all a ∈ Act:

• whenever P−→α P′ then there exists a Q′ such that Q α̂⇒ Q′ and P′SQ′.

Two processes P and Q are weakly bisimilar, written P ≈ Q, if for some weak bisimulation S ,
PSQ.

It is well known that ≈ is both the largest bisimulation and an equivalence relation.
In this section, we will assume –without loss of generality– that the lattice of security levels

L will be simply {l,h}, with l ≤ h, where l stands for “low” or “public”, and h stands for
“high” or “secret” as also done in [4, 5, 1]. The current work could be extended to a more
general notion of lattice, however we argue that from a semantics and security point of view
a more general notion of lattice would not give more expressiveness. In fact, in the semantics
definition of non-interference we express the fact that public action cannot have any form of
casual dependency from secret actions. This means that in a general lattice, actions below a
certain security level are considered of public domain, and all the action above a given security
level must be protected. That means in actual fact that it is sufficient to consider a collapsed
lattice with two security levels only.

Before proceeding to the definition of the security relation we fix some notation.

Nordic Workshop on Programming Theory (NWPT’07), 2007 5

Definition 2.2 (Notation) • We write PrH for the subset of process that have prefixes with
type h only.

• We write (νA)P where A is a set of names for the restriction in P of all the names present
in A.

• We write (νH)P to to mean that we restrict all the names that have security level h in the
process P.

The first definition of equivalence-based non interference uses the definition of weak bisim-
ilarity directly.

Definition 2.3 (BNDC) Let P be a process. P is said to be secure, P ∈BNDC, if for every process
Π ∈ PrH , (νH)(P | Π) ≈ (νH)P.

The BNDC requires that high level actions present in the process Π have have no effect on the
execution of P.

Clearly any process P which does not contain high names is secure. In fact, we have on one
side (νH)(P | Π) ≈ P | (νH)(Π) where (νH)(Π) ≈ 0, and on the other side (νH)P ≈ P. Any
process P which contains only high names is secure, since all processes can only perform τ
actions. Insecurity may appear when a high name is sequentially followed by a low name in P,
because in this case the execution of (νH)P may block on the high name (if this is reachable),
making the low name unreachable, while it is always possible to find a high process Π that
makes the low name reachable in (νH)(P | Π). Typical examples of insecure processes of this
kind are ah(x). bl〈e〉 and ah(e). bl〈e〉. These examples show that the BNDC does not distinguish
whether a low level action comes after an input or an output. Quite surprisingly, insecurity
appears when a high name is in conflict with a low name in P, that is, when they occur in
different branches of a choice, as in the process ah(x) + bl〈e〉. It is disputable if this process
should be considered insecure since the low and high level actions are independent. Finally,
the process: ah(x). bl〈e〉+ bl〈e〉 is secure.

As argued in [4, 5], Bisimulation-based Non-Deducibility on Compositions is not strong
enough to deal with dynamic contexts. A strengthening of this notion, called Persistent
Bisimulation-based Non-Deducibility on Compositions (P-BNDC) was therefore proposed in [4].
We shall adopt this notion as the starting point for our study.

To define P-BNDC, a new kind of transition
α∼⇒ is introduced, defined as follows for any

α ∈ Act.

Definition 2.4 The relation a∼⇒ is defined as α̂⇒ ∪ τ−→∗ when subj(α) ∈ H, or in the usual
manner when a is a low level action.

The definition of weak bi-simulation up-to-high used the new relation in the definition.

Definition 2.5 (Weak bi-simulation up-to-high) A symmetric binary relation S ⊆ Pr × Pr
is a weak bisimulation up-to-high if an only if PSQ implies that, for all a ∈ Act:

• whenever P−→α P′ then there exists Q′ such that Q α∼⇒ Q′ and P′SQ′.

Two processes P, Q are weakly bisimilar up-to-high, written P ≈H Q, if PSQ for some weak
bisimulation up-to-high S .

In other words, when a process makes a high-level action, could be matched by any number
of τ-action. This definition abstracts away from high level actions.

Nordic Workshop on Programming Theory (NWPT’07), 2007 6

Definition 2.6 (P-BNDC) P is said persistently secure, P ∈ P-BNDC if (νH)P ≈H P.

It has been shown in [4, 5] that P-BNDC is strictly stronger than BNDC i.e.P-BNDC⊂BNDC. In
fact, if P is in the P-BNDC amounts to requiring BNDC for all reachable states of P; this explains
why it is called “persistent”. The example considered above for BNDC are also persistently
secure; however the process:

ah(v). ah(v). bl〈r〉+ bl〈r〉
is secure but not persistently secure.

3 A simple type system

In this section we will adapt the type system as developed by Pottier [11] for the π-calculus, to
CCS. That type system was devised with the idea of defining the simplest possible types that
would guarantee non-interference. In that paper, Pottier works mostly with the π-calculus
with replication and general choice. In particular, we simplify the original type system and
we adapt the rule of replication to recursion and eliminate the rule (Norm) used to guarantee
that all the prefixes in the choice have the same security level. Because the version of CCS
used here has only guarded choice, the rule (Norm) is not longer necessary.

We will now introduce the type system: it assigns security levels to channels in processes.
Security levels are elements σ,τ of a lattice (L,≤): a flow from level σ to level τ is authorised

if and only if σ ≤ τ. We use � and � for the operations of, respectively, meet and join on this
lattice.

Type judgements for processes have then the form Γ � P : � which informally means that the
process P can be inferred from the environment Γ at security level �, where � is a meta-variable
ranging over the security lattice.

Definition 3.1 (Type Assignment) A type environment Γ is a mapping from channel names
to security levels such that Γ(a) = Γ(a); we write a:� ∈ Γ whenever Γ(a) = �. We naturally
extend the mapping to prefixes α by Γ(α) = subj(α).

The assignment of (security) types to processes is defined via the following natural deduc-
tion system.

(Nil) :
Γ � 0 : �

(Sub) :
Γ � P : �

(�′ ≤ �)
Γ � P : �′

(Comp) :
Γ � P : � Γ � Q : �

Γ � P |Q : �

(Rec) :
Γ, x1:�1, . . . , xn:�n � P : �

(A[x] = P)
Γ,b1:�1, . . . ,bn:�n � A[b] : �

(Sum) :
Γ � αi.Pi : � Γ(αi) = � (∀i ∈ I)

Γ � ∑i∈I αi.Pi : �

(Restr) :
Γ, a:�′ � P : �

Γ � (νa�′)P : �

Definition 3.2 P is typeable if Γ � P : � for some Γ and �.

Clearly not all processes are typeable. For instance ah(x). bh〈e〉 is not typeable. Here the
difference between the type system and the general typed language as defined in this paper
is made clear. The type language does not impose any constraint on the construction of
processes. Thus, the process ah(x). bh〈e〉 is a legal term according to our syntax, but it is not
possible to find an environment Γ such that will assign to the process ah(x). bh〈e〉 a type �.

The following theorem states that no matter how the process behaves, there will be no
leakage of sensitive data, since types are preserved by reductions.

Nordic Workshop on Programming Theory (NWPT’07), 2007 7

Theorem 3.1 (Subject reduction) If Γ � P : � and P−→α P′ then Γ � P′ : �.

B
y induction on the inference of Γ � P : �.

In this section we analyse the relationship between the ’simple type system’ developed by
Pottier [11] and P-BNDC [5]. We shall see that every typeable process according to Pottier’s
type system is secure according to the P-BNDC.

B
y induction on the inference of Γ � P : �.

Theorem 3.2 If P is typeable, then P ∈ P-BNDC.

The reverse of the above theorem is not true. In fact, ah.bl + bl ∈ P-BNDC while this process
cannot be typed in the type system above. We conclude that if P is typeable then it is persis-
tently secure and secure. By the examples presented in this paper, not all secure processes are
typeable or persistently secure.

Also ≈H is not preserved by parallel composition on arbitrary programs, as shown by the
following example where Pi ≈H Qi for i = 1,2 but P1 | P2
≈H Q1 | Q2. Take

P1 = ah(x) Q1 = 0 P2 = Q2 = (νbh〈e〉 | bh(x))(cl〈e′〉. + ah〈e′′〉).
Clearly cl〈e′〉+ ah〈e′′〉 is not typeable since in the sum only prefixes at the same security level
are allowed. This means that for untyped processes the P-BNDC is not closed under arbitrary
contexts, which makes compositional reasoning quite difficult. It is an open question –which
we leave for future work– whether P-BNDC is closed under typed contexts.

In this section we have shown that the ’simple type system ’ has a natural correspondence
in the P-BNDC. A type system gives an automatic way to guarantee the bsence of leakage in
programs. This is the main advantage of the type system over semantics based notions of
non-interference.

4 Asymmetric type system for CCS

The ‘simple type system’ imposes as security discipline such after high level action only low-
level actions can follow. In other words, the type systems guarantees that there is not causal
dependency from high level action to low-level actions. We argue that there is a difference
between the action performed by an input and an output. Consider the example of two
systems, where the first one simply emits signals of acknowledgements to both high and low.

P(ack) = ackh〈e〉. ackl 〈e′〉. P

The second system is a system that first reads from a secret database and then outputs the
outcome.

Q(ack) = read(x). waitl 〈.e〉. writel〈x〉. P
Clearly for P is makes no difference in which order the high-level and the low-level actions
take place. In no way ackl can reveal anything about ackh since the value of the outputs
are independent. However, the situation is radically different for Q. After an high-level input,
information can be leaked to an insecure level via a low-level output as defined in Q. Therefore,
it is vital that after a high input, a low level output action is not permitted. The type system
we present in the next section is a refinement of the simple type system, and distinguishes
between input and output. It allows low-level actions after a high-level output under the
assumption that high level outputs are not sensitive actions. On the other end, it not possible

Nordic Workshop on Programming Theory (NWPT’07), 2007 8

to perform a low-level action after an input as in the simple type system.
The types developed in this section are inspired by those of [1]: they record both the reading

level of processes (as the maximal level of their input channels) and their writing level (the
minimal level of their output channels).

Type judgements for processes have the form Γ � P : (σ,τ), where σ is an upper bound for
the level of input channels of P, and τ is a lower bound for the level of its output channels.

Notice that we have a case of leakage whenever an output takes place of a level lower than the
level of one of the inputs. Therefore, a flow from level σ to level τ is authorised if and only if
σ ≤ τ. In line with this intuition, subtyping for processes is covariant in its second argument
and contra-variant in its third argument.

Definition 4.1 A type environment Γ is a mapping from channel names to security levels such
that Γ(a) = Γ(a): we write a:� ∈ Γ whenever Γ(a) = �.

Security type assignment on processes is defined by the following natural deduction system;

(Nil) : Γ � 0 : (⊥,�)

(Input) :
Γ � P : (σ,τ)

(a:ρ ∈ Γ,ρ ≤ τ)
Γ � aρ(v). P : (ρ � σ,τ)

(Output) :
Γ � P : (σ,τ)

(a:ρ ∈ Γ,σ ≤ ρ)
Γ � aρ〈e〉. P : (σ,ρ � τ)

(Par) :
Γ � P : (σ1,τ1) Γ � Q : (σ2,τ2)

(σ1 ≤ τ2 & σ2 ≤ τ1)
Γ � P |Q : (σ1 � σ2,τ1 � τ2)

(Sum) :
Γ � ai.Pi : (σ,τ)
Γ � ∑

i∈I
αi.Pi : (σ,τ)

(Restr) :
Γ, a:ρ � P : (σ,τ)

Γ � (νaρ)P : (σ,τ)

(Rec) :
Γ, x1:σ1, . . . , xn:σn � P : (σ,τ)

(A[x]=∆ P)
Γ, a1:σ1, . . . , an:σn � A[a] : (σ,τ)

(SubType) :
Γ � P : (σ1,τ1)

(σ1 ≤ σ2 ≤ τ2 ≤ τ1)
Γ � P : (σ2,τ2)

The side-conditions on levels guarantee than the input level never becomes bigger that the
output level. For instance, a program of type (⊥,�) is guaranteed to not perform any input
on a high channel nor any output on a low channel.

Our type system aims to capture the property that in the presence of an output, which is
the means for an observer to deduce implicit flows in the program, any previous input has
to be done at a lower level. Thus, a secure programs is one that for instance never emits
an output. A secure program is also one that after every input emits only output of higher
level, as expressed by the type (σ,τ) where σ ≤ τ. These property are preserved by subject
reduction as shown.

Proposition 4.1 (Subject Reduction) If Γ � P : (σ,τ) and P−→α P′ then Γ � P′ : (σ,τ)..

B
y induction on Γ � P : (σ,τ).

Nordic Workshop on Programming Theory (NWPT’07), 2007 9

We report in this section some examples of processes to show the power of discrimination of
our type system. Some examples are taken from [5].

Example 4.2 Consider ah(r). bl〈r〉, ah〈v〉. bl〈r〉, and ah(v). bl(r). None of these processes is con-
sidered secure under BNDC.

(νH)(ah〈v〉. bl〈r〉 | Π)
≈ (νH)(ah〈r〉. bl〈r〉)
This process is not secure because a high level action, either input or output, precedes a
low level action. Our type system distinguishes between either high-level input or high-level
output performed before a low-level action. We first consider ah〈v〉. bl〈r〉. 0.

Γ, a:h,b:l � 0 : (l,h)
Γ, a:h,b:l � bl〈r〉. 0 : (l, l)

Γ, a:h,b:l � ah〈v〉. bl〈r〉. 0 : (l, l)

We now consider ah(v). bl(r). 0.

Γ, a:h,b:l � 0 : (l,h)
Γ, a:h,b:l � bl〈r〉. 0 : (l, l)

(h
≤ l)
Γ, a:h,b:l � ah(v). bl〈r〉. 0 : (?, ?)

In our type system, this process is not secure.

Example 4.3 We consider now the process ah〈v〉. ah〈v〉. bl〈r〉+ bl〈r〉 is secure in BNDC but not
in P-BNDC:

Γ, a:h,b:l � ah〈v〉. bl〈r〉 : (l, l)
Γ, a:h,b:l � ah〈v〉. ah〈v〉. bl〈r〉 : (l, l) Γ, a:h,b:l � b〈r〉. 0 : (l, l)

Γ, a:h,b:l � ah〈v〉. ah〈v〉. bl〈r〉+ bl〈r〉 : (l, l)

The processes ah(v). ah(v). bl〈r〉 + bl〈r〉 would be still secure in BNDC but not in P-BNDC,
while clearly this process is not typeable in our type system.

Example 4.4 The process al(x) + bh〈e〉 which is not included in neither the BNDC nor in the
P-BNDC is secure according to the current type system.

Γ, a:l,b:h � al(x) : (l, l) Γ, a:l,b:h � bh〈r〉 : (l, l)
Γ, a:l,b:h � al(x) + bh〈e〉 : (l, l)

Clearly by the examples presented above, if Γ � P : (σ,τ) then P
∈ BNDC nor P
∈ P-BNDC. It
remains an interesting question what equivalence relation could be characterised by this type
system.

We propose here a candidate which is a variation on both the BNDC and P-BNDC and we
leave for future work to analyse the formal relationship with the type system.

Definition 4.2 (Refined Weak Bisimulation up-to-high) A symmetric binary relation S ⊆
Pr ×Pr is a refined weak bisimulation up-to-high if and only if PSQ implies that, for all a ∈ Act
either

Nordic Workshop on Programming Theory (NWPT’07), 2007 10

• if P−→α P′ and α = ae then there exists Q′ such that Q α∼⇒ Q′ and P′SQ′; or
• if P−→τ P′ then there exists Q′ and a channel name aρ and a value e such that α = ae and

Q α∼⇒ Q′ and subj(α) = aρ,ρ = h and P′SQ′ or Q τ∼⇒ Q′ and and P′SQ′; or

• f P−→α P′ and α = ae then there exists Q′ such that Q α⇒ Q′ and P′SQ′.

Two processes P, Q are refined weakly bisimilar up-to-high, written P ≈I
H Q, if PSQ for some

refined weak up-to-high bisimulation S .

The definition of Refined Weak bi-simulation up-to-high aims to distinguish between inputs
and outputs. It is designed with the principles described below.

• High-level outputs can be matched by weak transition of the same name or any sequence
of τ-actions.

• τ-actions can be matched either by any sequence of τ-actions. or by weak transitions of
high-level output.

• Input can be matched only by weak transitions of the same name regardless the security
level.

Definition 4.3 Let A ⊂H. We define ΦA = ∏a∈A ah(z) | ΦA.

Definition 4.4 (W-BNDC) P is said to be generally secure, P∈W-BNDC if (νH)(P | Φfn(P))≈I
H P.

The process ΦA generate high-level input of the channels contained in A.
According to this definition of the process ah(v). ah(v). bl〈r〉 + bl〈r〉 would not be consid-

ered generally secure. In fact, (νH)(ah(v). ah(v). bl〈r〉+ bl〈r〉 | Φa) the left-hand of the sum is
blocked. Let’s consider:

E = (νH)(ah(v). ah(v). bl〈r〉+ bl〈r〉 | Π) G = (ah(v). ah(v). bl〈r〉+ bl〈r〉
Assume that G−→ae G′ then E can only stay put. It is not difficult to show that G ≈I

H E does
not hold. If E−→br 0 then G cannot match it with any low-level action.

On the other hand ah〈v〉. ah〈v〉. bl〈r〉+ bl〈r〉 is generally secure.

Conclusions

In this paper we have considered two different approaches to non-interference, namely a static
approach via a simple type system and a semantic approach via P-BNDC. We have shown that
the ‘simple type system’ is correct with respect to P-BNDC, yet not complete. We have also
defined a new type system that distinguishes between information flows from inputs and
outputs. Information flow from high -level outputs to low-level channels is considered safe in
the new type system. We defined also the Refined Weak Bi-simulation up-to-high which aims
to characterise the refined type system.

As far as future work is concerned it would be interesting to relate typed language-based
notion of non-interference with a process algebraic approach similarly to the work done in [5]
for typed languages. In particular, it would be interesting to consider the type system of
Volpano [14] or Boudol and Castellani [1] to define a type system in the process language that
preserves that notion of non-interference.

Nordic Workshop on Programming Theory (NWPT’07), 2007 11

Acknowledgements

We gratefully acknowledge Ilaria Castellani for many useful discussions and for having pointed
out mistakes in the proof of Theorem 3.2 and for suggesting corrections. She also observed
that the P-BNDC is not closed under general contexts and provided the example reported in
this paper. We gratefully acknowledge the Group MIMOSA at INRIA Sophia-Antipolis where
this work was initially conceived for their hospitality during 2005-2006.

References

[1] G. Boudol and I. Castellani. Non-interference for Concurrent Programs and Thread Systems,
Theoretical Computer Science 281(1): 109-130, 2002.

[2] S. Crafa and S. Rossi. A Theory of Non-interference for the π-calculus. In Proceedings of Symposium
on Trustworthy Global Computing ’05, volume 3705 of LNCS, Springer-Verlag, 2005.

[3] R. Focardi and R. Gorrieri. Classification of Security Properties (Part I: Information Flow). In
Foundations of Security Analysis and Design - Tutorial Lectures (R. Focardi and R. Gorrieri, Eds.),
volume 2171 of LNCS, Springer, 2001.

[4] R. Focardi and S. Rossi Information Flow Security in Dynamic Contexts In Proceedings of of the
IEEE Computer Security Foundations Workshop, pages 307–319, EEE Computer Society Press, 2002.

[5] R. Focardi and S. Rossi and A. Sabelfeld. Bridging Language-Based and Process Calculi Security.
In Proceedings of FoSSaCs’05, volume 3441 of LNCS, Springer-Verlag, 2005.

[6] M. Hennessy and J. Riely. Information flow vs resource access in the asynchronous π-calculus.
ACM TOPLAS 24(5): 566-591, 2002.

[7] M. Hennessy. The security π-calculus and non-interference. Journal of Logic and Algebraic Program-
ming 63(1): 3-34, 2004.

[8] K. Honda and V. Vasconcelos and N. Yoshida. Secure information flow as typed process behavior.
In Proceedings of ESOP’00, volume 1782 of LNCS, pages 180-199. Springer-Verlag, 2000.

[9] K. Honda and N. Yoshida. A uniform type structure for secure information flow. In Proceedings of
P : (OP : (L’02, pages 81-92. January, 2002.

[10] R. Milner. Communication and Concurrency. Prentice-Hall International, 1989.
[11] F. Pottier, A Simple View of Type-Secure Information Flow in the π-Calculus. In Proceedings of the

15th IEEE Computer Security Foundations Workshop, pages 320–330, 2002.
[12] A. Sabelfeld and D. Sands. Probabilistic Non-interference for Multi-threaded Programs. In Pro-

ceedings of 13th Computer Security Foundations Workshop, IEEE, 2000.
[13] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cambridge University

Press, 2001.
[14] D. Volpano and G. Smith and C. Irvine. A Sound Type System for Secure Flow Analysis. Journal

of Computer Security 4(3):167–187, 1996.

