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Abstract

We present L, an extension of Parigot’s λµ-calculus by adding negation as a type constructor,
together with syntactic constructs that represent negation introduction and elimination.
We will define a notion of reduction that extends λµ’s reduction system with two new reduc-
tion rules, and show that the system satisfies subject reduction. Using Aczel’s generalisation
of Tait and Martin-Löf’s notion of parallel reduction, we show that this extended reduction
is confluent.
Although the notion of type assignment has its limitations with respect to representation
of proofs in natural deduction with implication and negation, ⊢ni, we will show that all
propositions that can be shown in ⊢ni have a witness in L.
Using Girard’s approach of reducibility candidates, we show that all typeable terms are
strongly normalisable, and conclude the paper by showing that type assignment for L enjoys
the principal typing property.
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Introduction

Intuitionistic Logic (il) [10, 11, 12] plays an important role in Computer Science, given its

strong relation with types in functional programming and the λ-calculus [14, 8] through the

Curry-Howard isomorphism [24], i.e. through the fact that typeable functions in a functional

programming language correspond to proofs in il, and provable properties to inhabitable

types. Its importance is most prominent in the context of proof assistants, that all seem to be

rooted in il. Proof assistants or theorem provers can also be seen as programming languages

for which the type system corresponds to a formal logic and ensure proof correctness by

capitalising on the Curry-Howard correspondence through their type system. Under this

correspondence, checking that a term has a type is operationally equivalent to checking a

proof of a proposition [43].

There are currently many different proof assistants in use, that come in different shapes

and forms, each with their own characteristic: Coq [13] has a particular focus on the theorem

proving aspect where proofs can be written with intuitive tactics, whereas Agda [28] and Idris

[9] are more deeply connected to functional programming languages like Haskell.

The more widely used proof assistants are all founded on intuitionistic type theory [25]. How-

ever, the use of il inescapably limits these languages to the fact that they are unable to prove

a simple notion, which use is widespread in normal, everyday mathematics: a proposition

is either true or false. This is known as the law of the excluded middle (lem), and is the

distinguishing feature of Classical Logic (cl) [18, 41].

It can be argued that il very rightly rejects this notion and there are many that do exactly

that: they stress the value of il, where a proof of ‘A or B’ must be constructive, i.e. constructed

from a proof of either A or from a proof of B, so stating ‘A or not A’, without justifying either
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first, is unacceptable. Likewise, a proof for the statement ∃ x ∈ C (Q(x)) is only acceptable if

first Q(c) is shown, for some object c ∈ C (i.e. a witness for Q has been produced). Therefore

¬∀ x ∈ C (P(x)) ⇒ ∃ x ∈ C (¬P(x)) cannot be shown in il, since knowing that there has to

be an element in C for which P does not hold is not the same as knowing which element that

is. Accepting il as the basis for mathematical reasoning, which for many is the only right

thing to do for philosophical reasons, severely limits the collection of provable results, and

is therefore not a popular choice amongst mathematicians. Some theorem provers, perhaps

begrudgingly, allow for the addition of the axiom ‘A or not A’, witnessed through a term

constant; although it allows for provability of mathematical statements, this approach does

not lend computational context to proofs, as theorem provers for il do, and is more of a hack

than a solution.

In fact, the popularity of il, constructive logic and constructive mathematics in computer

science can be explained through its strong ties with computability through the Curry-Howard

correspondence and the relation between the il, the λ-calculus and functional programming.

This link was so strong that until fairly recently it was believed that a proof had a correspon-

dence with a function only if the proof were constructive, and that classical logic did not have

a computational counterpart.

That situation changed when Griffin [20] observed that the C-operator of Felleisen’s λC-

calculus [17], similar to the call/cc function in Scheme, can be typed with ¬¬A→A (or rather

((A→⊥)→⊥)→A), double negation elimination, another property that only holds in cl, thus

highlighting the first link between cl and sequential control in computer science. This soon

led to the definition of λµ by Parigot [30, 31], a calculus that represents minimal classical

logic [3], followed by an impressive body of work in the area of cl and computer science,

with many contributions from various authors.

Looking to investigate the possibility and suitability of developing theorem provers for

cl base on λµ, in [16] the case was made that in terms of implementability, expressiveness,

and elegance, proof assistants based on cl have much to contribute. It presented Candid, a

theorem prover based on λµ, but enriched with dependent types, as an extension of ECCK [27]

adding co-products and dependent algebraic data types. It treated a system of classical natural

deduction that uses the logical connectors implication, negation, conjunction, and disjunction.

As seen in that paper, the link between first order classical logic and computation is tricky.

Theorem provers are based in a dependently typed systems, but [22] showed that by naively

combining dependent types and λµ’s control operators, all types have only one inhabitant.

Fortunately, [23] shows a way to restrict how dependent types and control operators can in-

teract, which regains a logically consistent type theory. An important notion to address this

problem is the use of negative elimination free (nef) terms that cannot contain a negation elim-

ination. Since in λµ negation elimination gets represented through application, as well as

through naming (see Example 1.13), this restriction is quite drastic. Although it is unavoidable

for a nef term to not contain sub-terms of the form µα.[β]N as the subterm [β]N corresponds

with an application of (¬E), it also cannot contain an application MN, as this could corre-

spond with (¬E) when M has type A→⊥ and N has type A. Introducing separate syntax

for negation, as we do here, strongly expands the set of nef-terms to those really not dealing

with negation, and will strengthen the implementation of Candid.

Another reason to deal with negation explicitly is the fact that λµ does not really represent

cl, in that tautologies are not necessarily represented by closed terms. This is in part due to

the fact the system only has implicit negation and (pbc) to express dealing with conflict, so

negation ¬A is expressed through A→⊥ (where ⊥ is not a type in the original presentation),

negation introduction through abstraction and negation elimination through application. For

example, in Example 1.13 we will show Parigot’s proof for double negation elimination in λµ;

the witness λy.µα.[γ]y(λx.µδ.[α]x) contains a free name γ of type ⊥. It is needed because the

2



subterm y(λx.µδ.[α]x) has type ⊥, and the only way to deal with that in λµ is applying the

rule for (pbc), which forces the prefix µα.[γ] to the term. We will see that, dealing explicitly

with negation, this problem disappears.

This paper presents L and shows all the necessary properties for it, like soundness, conflu-

ence, expressiveness, termination, and principal typing.

Overview

This paper introduces the calculus L, which expands on λµ by adding negation. We will

start in Section 1 with an overview of two of the common representations of cl, where we

will focus on natural deduction and proof contraction, and why double negation elimination

poses a particular problem for the latter. We will define ⊢ni, a restriction to natural deduction

of cl that uses negation and implication, and plays a central role in this paper. We will

revisit Parigot’s λµ also through its underlying logic, and explain how it deals with negation,

implicitly through assumptions stored in the co-context, and explicitly through ·→⊥. We in

particular highlight that λµ is not fully equipped to deal with the latter kind of negation,

as witnesses to tautologies not necessarily are closed terms. We also revisit Summer’s νλµ-

calculus that fully represents ⊢ni, together with its non-confluent notion of reduction.

In Section 2 we define the calculus L as an extension of λµ by adding syntax and inference

rules that express negation; it can also be seen as a restriction of νλµ. This calculus comes

with four elementary notions of reduction, and we will show soundness results for all of

them. This is followed in Section 3 by the proof that reduction is confluent, and in Section 4

by the proof that, although a restriction of νλµ, L can still inhabit all provable judgements of

⊢ni. Then in Section 5, we will show that reduction is strongly normalisable, and conclude in

Section 6 by showing that type assignment enjoys the principal typing property.

1 Natural Deduction for Classical Logic

Natural Deduction for cl, defined by Gentzen in [18] is a way of describing the structure of

formal proofs in mathematics that follow the intuitive, human, lines of reasoning as much as

possible. It is defined through inference rules that are generically of the shape

Premisses
(Rule)

Conclusion

and describes a step allowed in this formal system, where, assuming that all the statements

in the premisses hold, then after applying this step named (Rule) we can accept that the

conclusion holds as well. Statements, also called judgements, are of the shape Γ ⊢ A, where A

is a formula and Γ is a context, a collection of formulas that form the assumptions needed for

A to hold, and express that ‘if all formulas in the collection Γ hold, then so does A’. A number

of these can together form the premisses; there is only one judgement in the conclusion.1

Proofs are constructed by applying rules to each other, in the sense that the conclusion of

one rule can be a premise of another. The premises on the initial rules (that are not the con-

clusion of other rules) are called the assumptions of the proof; these are usually not extended

while the construction of the proof progresses, but only decrease as the proof evolves; the

1 An different notation can be found in the literature, where inference rules express the relation between the
inferred formulas, without stating the context, and the assumptions are the formulas occurring in the leaves of
the derivation tree. Assumptions can be cancelled through steps like (�i), and are then placed between square
brackets or struck through. Since the latter is a non-local operation on the inference tree that is not easily defined
or treated formally, here we prefer the ‘sequent’ notation, since it neatly collects in the derived statement the
assumptions on which it depends in the context Γ.
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(single) conclusion occurs at the bottom. Judgements that are considered to be proven are

those that appear at the bottom of the derivation tree.

The inference rules of natural deduction systems almost all come in two varieties for each

logical operator: introduction and elimination rules, each for any particular logical connective.

For example, for the logical operator ∧ (conjuction) and ∨ (disjuction), these rules look like:

Γ ⊢ A Γ ⊢ B
(∧i)

Γ ⊢ A ∧ B

Γ ⊢ A ∧ B

Γ ⊢ A

Γ ⊢ A ∧ B
(∧e)

Γ ⊢ B

Γ ⊢ A

Γ ⊢ A ∨ B

Γ ⊢ B
(∨I)

Γ ⊢ A ∨ B

Γ ⊢ A ∨ B Γ, A ⊢ C Γ, B ⊢ C
(∨E)

Γ ⊢ C

To deal with conclusions that need no premisses since they hold by themselves, an axiom rule

is added; these form the ‘leaves’ of the proof tree.

(ax)
Γ, A ⊢ A

(if we assume that A holds, then it does.)

In his paper, Gentzen also presents the Sequent Calculus, which differs from Natural De-

duction in that it derives sequences of the shape

A1, . . . , An ⊢lk B1, . . . , Bm

with the intended meaning ‘if all of the properties A1, . . . , An hold, then at least one of the

B1, . . . , Bm does as well.’ For each connector, there is a left and right introduction rule, as in

Γ, A ⊢ ∆

Γ, A ∧ B ⊢ ∆

Γ, B ⊢ ∆
(∧l)

Γ, A ∧ B ⊢ ∆

Γ ⊢ A,∆ Γ ⊢ B,∆
(∧r)

Γ ⊢ A ∧ B,∆

There are no elimination rules for connectors, just a generic (cut)-rule:

Γ ⊢ C,∆ Γ,C ⊢ ∆
(cut)

Γ ⊢ ∆

where C of course can be A ∧ B.

For this logical system, Gentzen defines a notion of (proof) contraction that removes occur-

rences of (cut), and shows that this is terminating: for every proof that shows Γ ⊢lk ∆, there

exists a (cut)-free proof that shows the same result. He does not show that result for Nat-

ural Deduction, which would eliminate all introduction-elimination pairs, and we can guess

that that is because this notion of contraction is harder to define.2 Prawitz [35] presented an

extensive study of proof contraction for Natural Deduction.

The main difficulty is that in the Sequent Calculus, all logical connectors come with a

left and a right introduction rule, whereas in Natural Deduction, not all proof-constructions

follow the introduction-elimination pattern of the inference rules. For those that do, proof

contraction consists of the removal from a proof of an introduction step followed immediately

by an elimination step for the same logical connector; for ‘∧’ that looks like:

D1

Γ ⊢ A

D2

Γ ⊢ B
(∧i)

Γ ⊢ A ∧ B
(∧e)

Γ ⊢ A

⇒

D1

Γ ⊢ A

D1

Γ ⊢ A

D2

Γ ⊢ B
(∧i)

Γ ⊢ A ∧ B
(∧e)

Γ ⊢ B

⇒

D2

Γ ⊢ B

or, for implication:

2 One particular difficulty with defining proof contractions on either the Sequent Calculus or Natural Deduction
is that this notion is not confluent, in that proof contraction not always leads to the same result.
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Γ, A ⊢ B
(�i)

Γ ⊢ A→B

Γ ⊢ A→B Γ ⊢ A
(�e)

Γ ⊢ B

(ax)
Γ, A ⊢ A

D1

Γ, A ⊢ B
(�i)

Γ ⊢ A→B

D2

Γ ⊢ A
(�e)

Γ ⊢ B

⇒

D2

Γ ⊢ A

D1

Γ ⊢ B

Notice that, in the rule (�i), the formula A ceases to be an assumption, and that, in the

composed proof on the right, A is no longer an assumption needed to reach the conclusion,

since it has been shown to hold by D2.

This is not possible for all logical connectors: the way negation is dealt with is, for example,

not straightforward. Negation comes of course with introduction and elimination rules:

Γ, A ⊢ ⊥
(¬i)

Γ ⊢ ¬A

Γ ⊢ ¬A Γ ⊢ A
(¬e)

Γ ⊢ ⊥

(ax)
Γ, A ⊢ A

D1

Γ, A ⊢ ⊥
(¬i)

Γ ⊢ ¬A

D2

Γ ⊢ A
(¬e)

Γ ⊢ ⊥

⇒

D2

Γ ⊢ A

D1

Γ ⊢ ⊥

but, in Classical Logic, negation plays a more intricate role, in that the law of excluded middle

‘A ∨ ¬A is true for all A’ (or something similar, like ‘there is no distinction between the

formulas ¬¬A and A’) holds. This is a property that cannot be shown, but has to forced onto

the system, and can cause havoc for proof contraction.

There are many different rules that express this to a different degree, like:

Γ,¬A ⊢ ⊥
(pbc)

Γ ⊢ A

Γ ⊢ ¬¬A
(dne)

Γ ⊢ A
(lem)

⊢ A ∨ ¬A
(pl)

⊢ ((A→B)→A)→A
(raa)

⊢ (¬A→A)→A

(called ‘proof by contradiction’, ‘double negation elimination’, ‘law of excluded middle’, ‘Peirce’s law’,

and reductio ad absurdum, respectively.) These rules have different expressive power, and

adding one rather than another can change the set of derivable properties (see [2]).

The variant of Classical Natural Deduction we will consider in this paper uses the logical

connectors ¬ (negation) and → (implication).

Definition 1.1 (Natural deduction with negation and implication) The formulas we use

for our system of natural deduction with negation and implication are:

A, B ::= ϕ | A→B | ¬A

where ‘→’ associates to the right and ‘¬’ binds stronger than ‘→’. A context Γ is a set of

formulas, where Γ, A = Γ ∪{A} and the inference rules are:

(ax) :
Γ, A ⊢ A (�i) :

Γ, A ⊢ B

Γ ⊢ A→B
(�e) :

Γ ⊢ A→B Γ ⊢ A

Γ ⊢ B

(pbc) :
Γ,¬A ⊢ ⊥

Γ ⊢ A
(¬i) :

Γ, A ⊢ ⊥

Γ ⊢ ¬A
(¬e) :

Γ ⊢ ¬A Γ ⊢ A

Γ ⊢ ⊥

We write Γ ⊢ni A for judgements derivable in this system, and ⊢ni as name for the system.

Notice that ⊥ is not a formula in ⊢ni, but only represents conflict; it could be omitted from

the system, by deriving also Γ ⊢ .

As suggested above, in the presence of (pbc) defining proof contraction is not straightfor-

ward.

Example 1.2 Take the following proof:
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D1

Γ,¬(A→B) ⊢ ¬¬(A→B)
(ax)

¬(A→B) ⊢ ¬(A→B)
(¬e)

Γ,¬(A→B) ⊢ ⊥
(pbc)

Γ ⊢ A→B

D2

Γ ⊢ A
(�e)

Γ ⊢ B

It is a priori not clear how to contract this proof. We would like to use the sub-derivations

to be the building stones for the proof for Γ ⊢ B without the (pbc)-(�e) pair, but it is not

immediately clear how to do that: there is no sub-derivation above the step (pbc) that has

A as an assumption (so does not contain Γ, A ⊢ A as the result of rule (ax)), or that derives

Γ ⊢ A→B.

There are many ways around this problem presented in the literature, but at this point we just

want to highlight the problem. We will see in Section 1.3 a term calculus that directly repre-

sents proofs in ⊢ni, and presents a solution by presenting a different kind of term substitution.

To better be able to reason about the structure of proofs and the technicalities of proof

contraction, we need to represent the structure of proofs via term information from an ap-

propriate calculus, and inhabit the inference rules with terms, such that proof contractions

will come to correspond to term reduction. This employs the Curry-Howard principle, which

expresses a correspondence between terms and their types on one side, and proofs for propo-

sitions on the other. We will see below that associating a term calculus to an inference system

unlocks the subtle differences between the variants of Classical Logic we consider here.

The natural way to inhabit ⊢ni is using Summer’s νλµ [40]; we will first present Parigot’s

calculus λµ [32], as this historically came first, and gives a very elegant solution to the proof-

contraction problem of Example 1.2.

1.1 A classical logic with focus

Parigot’s λµ-calculus is a proof-term syntax for classical logic, expressed in Natural Deduc-

tion, defined as an extension of the Curry type assignment system for the λ-calculus. With λµ

Parigot created a multi-conclusion typing system which corresponds to a classical logic with

focus; there derivable statements have the shape Γ ⊢ A | ∆, where A is the main conclusion of

the statement, expressed as the active conclusion, Γ is the set of assumptions and ∆ is the set

of alternative conclusions, or have the shape Γ ⊢ ⊥ | ∆ if there is no formula under focus.

Before discussing λµ, in order to better compare it with the other calculi we discuss in this

paper, we first revise its underlying logic, which corresponds to the following:

Definition 1.3 (A classical logic with focus) The formulas for this system are:

A, B ::= ϕ | A→B

and a context Γ is a set of formulas, where Γ, A = Γ ∪{A} and the inference rules are defined

through:

(ax) : Γ, A ⊢ A | ∆ (�i) :
Γ, A ⊢ B | ∆

Γ ⊢ A→B | ∆
(�e) :

Γ ⊢ A→B | ∆ Γ ⊢ A | ∆

Γ ⊢ B | ∆

(act) :
Γ ⊢ ⊥ | A,∆

Γ ⊢ A | ∆
(pass) :

Γ ⊢ A | A,∆

Γ ⊢ ⊥ | A,∆

We write Γ ⊢f M : A | ∆ for judgements derivable in this system.

Example 1.4 Notice that negation is not part of the type language, so does not occur in Γ nor

in ∆. It is therefore not possible to show (dne) in this logic (not without first extending the

syntax of formulas, see Example 1.13); however, it is possible to show Peirce’s law:
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(ax)
(A→B)→A ⊢f (A→B)→A | A

(ax)
(A→B)→A, A ⊢f A | A, B

(pass)
(A→B)→A, A ⊢f ⊥ | A, B

(act)
(A→B)→A, A ⊢f B | A

(�i)
(A→B)→A ⊢f A→B | A

(�e)
(A→B)→A ⊢f A | A

(pass)
(A→B)→A ⊢f ⊥ | A

(act)
(A→B)→A ⊢f A |

(�i)
⊢f ((A→B)→A)→A |

The intention of this system is to express classical logic, and for this it encapsulates the rule

(pbc). To see this, we need first to emphasise that the formulas in ∆ are seen as negated. In

fact, any statement Γ ⊢f A | ∆ can be seen as Γ,¬∆ ⊢ni A (where ¬∆ lists the negated versions

of all types in ∆). With that view, the rules (act) and (pass) corresponds to allowing the

following variants of rule (pbc) and (¬e)

Γ,¬∆,¬A ⊢ ⊥
(pbc)

Γ ⊢ A

(ax)
Γ,¬∆,¬A ⊢ ¬A Γ,¬∆,¬A ⊢ A

(¬e)
Γ,¬∆,¬A ⊢ ⊥

but in a version of Natural Deduction where formulas have at most a negation at the front.

Note that it therefore solves the problem of Example 1.2 by not allowing the rule (pbc) to be

applied to assumptions on the right in (¬e): A cannot be a negated type, so the premises in

the right-hand proof cannot occur swapped.

Example 1.5 We can construct in ⊢f and ⊢ni, respectively:

Γ ⊢ A→B | A→B,∆
(pass)

Γ ⊢ ⊥ | A→B,∆
(act)

Γ ⊢ A→B | ∆ Γ ⊢ A | ∆
(�e)

Γ ⊢ B | ∆

(ax)
Γ,¬∆,¬A→B ⊢ ¬A→B Γ,¬∆,¬A→B ⊢ A→B

(¬e)
Γ,¬∆,¬A→B ⊢ ⊥

(pbc)
Γ,¬∆ ⊢ A→B Γ,¬∆⊢ A

(�e)
Γ,¬∆ ⊢ B

(notice that there now is a subderivation for A→B) which can be contracted to, respectively:

Γ ⊢ A→B | B,∆ Γ ⊢ A | B,∆
(�e)

Γ ⊢ B | B,∆
(pass)

Γ ⊢ ⊥ | B,∆
(act)

Γ ⊢ B |∆

(ax)
Γ,¬∆,¬B ⊢ ¬B

Γ,¬∆,¬B ⊢ A→B Γ,¬∆,¬B ⊢ A
(�e)

Γ,¬∆,¬B ⊢ B
(¬e)

Γ,¬∆ ⊢ ⊥
(pbc)

Γ,¬∆⊢ B

(Notice that weakening is permitted in that we can always add formulas to the context without

affecting the result.) This forms the basis of structural reduction in λµ.

1.2 The λµ-calculus

We now present the variant of λµ we consider in this paper, as defined by Parigot in [31] and

that gives a Curry-Howard interpretation to the above inference rules:

Definition 1.6 (Syntax of λµ) The λµ-terms we consider are defined by the grammar:

M, N ::= V | MN | µα.[β]M

V ::= x | λx.M (values)

We will use C for the pseudo terms [β]M.
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Recognising both λ and µ as binders, the notion of free and bound names and variables is

defined as usual, and we accept Barendregt’s convention to keep free and bound names and

variables distinct, using (silent) α-conversion whenever necessary.

We write x ∈ M (α ∈ M) if x (α) occurs in M, either free of bound, and call a term closed if

it has no free names or variables. We will call the pseudo-terms of the shape [α]M commands,

and write C, and treat them as terms for reasons of brevity, whenever convenient.

As with Implicative Intuitionistic Logic, the reduction rules for the terms that represent the

proofs correspond to proof contractions, but in ⊢f. The reduction rules for the λ-calculus are

the logical reductions, i.e. deal with the removal of a introduction-elimination pair for a type

construct and in addition to these, Parigot expresses also the structural rules that change the

focus of a proof, where elimination essentially deals with negation and takes place for a type

constructor that appears in one of the alternative conclusions (the Greek variable is the name

given to a subterm). Parigot therefore needs to express that the focus of the derivation (proof)

changes (see the rules in Definition 1.9), and this is achieved by extending the syntax with two

new constructs [α]M and µα.M 3 that act as witness to passivation and activation of ⊢f, which

together move the focus of the derivation, and together are called a context switch.

In λµ, reduction of terms is expressed via implicit substitution, and as usual, M{N x}
stands for the (instantaneous) substitution of all occurrences of x in M by N. Two kinds of

structural substitution are defined: the first is the standard one, where M{N·γ α} stands for

the term obtained from M in which every command of the form [α]P is replaced by [γ]PN

(here γ is a fresh name). The second will be of use for cbv reduction, were {N·γ α}M stands

for the term obtained from M in which every [α]P is replaced by [γ]NP.

They are formally defined by:

Definition 1.7 (Structural substitution) Right-structural substitution, M{N·γ α}, and left-

structural substitution, {N·γ α}M, are defined inductively over (pseudo) terms. The important

cases are:

[α]M{N·γ α} =∆ [γ](M{N·γ α}N)

[β]M{N·γ α} =∆ [β](M{N·γ α}) (β 6= α)

{N·γ α} [α]M =∆ [γ]N({N·γ α}M)

{N·γ α} [β]M =∆ [β]{N·γ α}M (β 6= α)

Parigot’92 only defines the first variant of these notions of structural substitutions (so does

not use the prefix ‘right’); the two notions are defined together, but rather informally, using a

notion of contexts in [29].

We have the following notions of reduction on λµ. For the third, call by value, different

variants exists in the literature; we adopt the one from [29].

Definition 1.8 (λµ reduction) i) The reduction rules of λµ are:

logical (β) : (λx.M)N → M{N x}

structural (µ) : (µα.C)N → µγ.C{N·γ α} (γ fresh)

erasing (θ) : µα.[α]M → M (α 6∈ M)

renaming (ρ) : [β]µγ.C → C{β γ}

ii) Evaluation contexts are defined as terms with a single hole ⌈⌋ by:

C ::= ⌈⌋ | CM | MC | λx.C | µα.[β]C

We write C⌈M⌋ for the term obtained by replacing the hole with the term M.

(Free, unconstrained) reduction →βµ on λµ-terms is defined through C⌈M⌋ →n C⌈N⌋
if M → N using either the β, µ, θ, or ρ-reductions rule.

3 Notice that these constructs are pseudo terms in that they always occur together in terms.
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iii) cbn evaluation contexts are defined as:

Cn ::= ⌈⌋ | Cn M | µα.[β]Cn

cbn reduction →n is defined through: Cn⌈M⌋ →n Cn⌈N⌋ if M → N using either the β, µ,

θ, or ρ-reduction rule.

iv) cbv evaluation contexts are defined through:

Cv ::= ⌈⌋ | Cv M | V Cv | µα.[β]Cv

cbv reduction →v is defined through: Cv⌈M⌋ →v Cv⌈N⌋ if M → N using either µ, θ, ρ,

or:

(βv) : (λx.M)V →n M{V x}

(µv) : V (µα.C) →n µγ.{V·γ α}C (γ fresh)

Remark that, for rule (µv), µα.[β]N is not a value. Also, unlike for the λ-calculus, cbv

reduction is not a sub-reduction system of →βµ: the rule (µv) (and left-structural substitution)

are not part of →βµ. Both cbn and cbv constitute reduction strategies in that they pick ex-

actly one βµ-redex to contract; notice that a term might be in either cbn or cbv-normal form

(i.e. reduction has stopped), but not need be that for →βµ.

Type assignment for λµ is defined below through inhabiting the inference rules of ⊢f with

syntax; there is a main, or active, conclusion, labelled by a term, and the alternative conclusions

are labelled by names α, β, etc. Judgements in λµ are of the shape Γ ⊢λµ M : A | ∆, where ∆

consists of pairs of Greek characters (the names) and types; the left-hand context Γ, as for the

λ-calculus, contains pairs of Roman characters and types, and represents the types of the free

term variables of M.

Definition 1.9 (Typing rules for λµ) i) Let ϕ range over a countable (infinite) set of type-

variables. The set of types is defined by the grammar:

A, B ::= ϕ | A→B

ii) A context (of term variables) Γ is a partial mapping from term variables to types, denoted

as a finite set of statements x:A, such that the subjects of the statements (x) are distinct. We

write Γ1, Γ2 for the compatible union of Γ1 and Γ2 (if x:A1 ∈ Γ1 and x:A2 ∈ Γ2, then A1 = A2),

and write Γ, x:A for Γ,{x:A}, x 6∈ Γ if there exists no A such that x:A ∈ Γ, and Γ x for

Γ {x:A}.

iii) A context of names ∆ (or co-context) is a partial mapping from names to types, denoted as a

finite set of statements α:A, such that the subjects of the statements (α) are distinct. Notions

∆1,∆2, as well as ∆,α:A and α 6∈ ∆ are defined as for Γ.

iv) The type assignment rules for λµ, adapted to our notation, are:

(ax) : Γ, x:A ⊢ x : A | ∆ (�i) :
Γ, x:A ⊢ M : B | ∆

(x 6∈Γ)
Γ ⊢ λx.M : A→B | ∆

(�e) :
Γ ⊢ M : A→B | ∆ Γ ⊢ N : A | ∆

Γ ⊢ MN : B | ∆

(µ) :
Γ ⊢ M : B | α:A, β:B,∆

(α 6∈∆)
Γ ⊢ µα.[β]M : A | β:B,∆

Γ ⊢ M : A | α:A,∆
(α 6∈ ∆)

Γ ⊢ µα.[α]M : A | ∆

We will write Γ ⊢λµ M : A | ∆ for statements derivable in this system.

v) We extend Barendregt’s convention on free and bound variables and names to judge-

ments (for all the notions of type assignment we define here), so in Γ, x:A ⊢λµ M : B | α:C,∆,

both x and α cannot appear bound in M.

We can think of [α]M as storing the type of M amongst the alternative conclusions by giving

it the name α.
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D1

Γ ⊢ M : A→B | α:A→B,γ:D,∆
(µ)

Γ ⊢ µγ.[α]M : D | α:A→B,∆

D2

Γ ⊢ C⌈µγ.[α]M⌋ : C | α:A→B,∆
(µ)

Γ ⊢ µα.[β]C⌈µγ.[α]M⌋ : A→B |∆

D3

Γ ⊢ N : A | ∆
(�e)

Γ ⊢ (µα.[β]C⌈µγ.[α]M⌋)N : B | ∆

D1

Γ ⊢ M : A→B | δ:B,γ:D,∆

D3

Γ ⊢ N : A | ∆
(Wk)

Γ ⊢ N : A | δ:B,γ:D,∆
(�e)

Γ ⊢ M N : B | δ:B,γ:D,∆
(µ)

Γ ⊢ µγ.[δ]M N : D | δ:B,∆

D′
2

Γ ⊢ C⌈µγ.[δ]MN⌋ : C | δ:B,∆
(µ)

Γ ⊢ µδ.[β]C⌈µγ.[δ]M N⌋ : B | ∆

Figure 1. An example of structural reduction in λµ.

Notice that, if we erase all term information from the inference rules, we get the rules from

⊢f, but for the variants of (µ); these we can infer, however, so they are admissible.

Γ ⊢ B | A, B,∆
(pass)

Γ ⊢ ⊥ | A, B,∆
(act)

Γ ⊢ A | B,∆

Γ ⊢ A | A,∆
(pass)

Γ ⊢ ⊥ | A,∆
(act)

Γ ⊢ A | ∆

The following result is standard and of use in the proofs below.

Lemma 1.10 (Weakening and thinning for ⊢λµ) The following rules for weakening and thin-

ning are admissible for ⊢λµ:

(Wk) :
Γ ⊢ M : A | ∆

(Γ ⊆ Γ′,∆ ⊆ ∆′)
Γ′ ⊢ M : A | ∆′

(Th) :
Γ ⊢ M : A | ∆ (Γ′ = {x:B ∈ Γ | x ∈ fv(M)},

∆′ = {α:B ∈ ∆ | α ∈ fn(M)})Γ′ ⊢ M : A | ∆′

Proof : Standard.

The following soundness result hold.

Theorem 1.11 ([6]) If M →βµ N, and Γ ⊢λµ M : A | ∆, then Γ ⊢λµ N : A | ∆.

This result is in that paper also shown for cbv and cbn-reduction.

Example 1.12 We can represent the proof contraction in ⊢f of Example 1.5 through:

Γ ⊢ M : A→B | α:A→B,∆
(µ)

Γ ⊢ µα.[α]M : A→B |∆ Γ ⊢ N : A | ∆
(�e)

Γ ⊢ (µα.[α]M)N : B | ∆

Γ ⊢ M : A→B | α:B,∆ Γ ⊢ N : A | α:B,∆
(�e)

Γ ⊢ M N : B | α:B,∆
(µ)

Γ ⊢ µα.[α]M N : B | ∆

The general case for this kind of proof contraction can be illustrated by the derivations for

the reduction

(µα.[β]C⌈µγ.[α]M⌋)N →βµ µδ.[β]C⌈µγ.[δ]MN⌋

(where β:C ∈∆) in Figure 1; the derivation D′
2 is in structure equal to D2, since that is decided

by the syntactic structure of the context C⌈·⌋ but contains µγ.[δ]MN rather than µγ.[α]M.

The intuition behind the structural rule is given by de Groote [21]: “in a λµ-term µα.M of type

A→B, only the subterms named by α are really of type A→B (. . . ); hence, when such a µ-abstraction

is applied to an argument, this argument must be passed over to the sub-terms named by α.” Remark

that this is accurate, but hides the fact that the naming construction [α]M is actually a (hidden)

instance of rule (¬e), so ‘naming’ is actually a kind of application.

Inhabiting the proof of Example 1.4 gives the term λx.µα.[α](x(λy.µβ.[α]y)). In [30], Parigot

shows that ‘double negation elimination’ can be represented in λµ; as suggested above, ⊥ is
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added as a pseudo-type to express negation ¬A through A→⊥, as well as contradiction.

Example 1.13 (Double negation elimination in λµ) Double negation elimination is shown

in ⊢ni by the proof on the left (where Γ = ¬¬C,¬C); we can also show this in ⊢f, as in the

proof on the right, but since ⊢f has no rules for negation, we need to add ⊥ to express it, so

write C→⊥ for ¬C. Let Γ′ = (C→⊥)→⊥:

(ax)
Γ ⊢ ¬¬C

(ax)
Γ ⊢ ¬C

(¬e)
Γ ⊢ ⊥

(pbc)
¬¬C ⊢ C

(�i)
⊢ ¬¬C ⇒ C

(ax)
Γ′ ⊢ (C→⊥)→⊥ | C

(ax)
Γ′,C ⊢ C | C

(pass)
Γ′,C ⊢ ⊥ | C

(�i)
Γ′ ⊢ C→⊥ | C

(�e)
Γ′ ⊢ ⊥ | C

(act)
Γ′ ⊢ C |

(�i)
⊢ ((C→⊥)→⊥)→C | ⊥

Notice that the rules (pass) and (act) are not paired, while they are in λµ, and that the

assumption Γ ⊢ni ¬C gets replaced by the proof for Γ′ ⊢f C→⊥ | C. Moreover, (¬e) is repre-

sented through (�i) and (�e).

Double negation elimination can be represented in λµ through λy.µα.[γ]y(λx.µδ.[α]x) [30].

(ax)
y:(C→⊥)→⊥ ⊢ y : (C→⊥)→⊥ |

(ax)
x:C ⊢ x : C | δ:⊥,α:C,γ:⊥

(µ)
x:C ⊢ µδ.[α]x : ⊥ | α:C,γ:⊥

(�i)
⊢ λx.µδ.[α]x : C→⊥ | α:C,γ:⊥

(�e)
y:(C→⊥)→⊥ ⊢ y (λx.µδ.[α]x) : ⊥ | α:C,γ:⊥

(µ)
y:(C→⊥)→⊥ ⊢ µα.[γ]y (λx.µδ.[α]x) : C | γ:⊥

(�i)
⊢ λy.µα.[γ]y (λx.µδ.[α]x) : ((C→⊥)→⊥)→C | γ:⊥

This corresponds to the proof in ⊢f above, but for the fact that extra calls to (pass) and (act)

are added inside the calls to (µ), as well as additional names of type ⊥; notice that because of

these extra rules this term is not closed as it has a free name γ.

The proof transformation we hinted at above translates to the following (where ¬C ∈ Γ):

Γ ⊢ ¬¬C
(ax)

Γ ⊢ ¬C
(¬e)

Γ ⊢ ⊥

Γ′,¬C ⊢ ⊥
(pbc)

Γ′ ⊢ C

Γ ⊢ M : (C→⊥)→⊥ | α:C,γ:⊥,∆

(ax)
Γ,y:C ⊢ y : C | δ:⊥,α:C,γ:⊥,∆

(µ)
Γ,y:C ⊢ µδ.[α]y : ⊥ | α:C,γ:⊥,∆

(�i)
Γ ⊢ λy.µδ.[α]y : C→⊥ | α:C,γ:⊥,∆

(�e)
Γ ⊢ M (λy.µδ.[α]y) : ⊥ | α:C,γ:⊥,∆

Γ′ ⊢ C⌈M (λy.µδ.[α]y)⌋ : ⊥ | α:C,γ:⊥,∆
(µ)

Γ′ ⊢ µα.[γ]C⌈M (λy.µδ.[α]y)⌋ : C | γ:⊥,∆

so Parigot essentially replaces here an instance of the (ax) rule for Γ,y:¬C ⊢ni y : ¬C by a

derivation for Γ ⊢λµ λy.µδ.[α]y : C→⊥ | α:C,∆.4 It is this what allows for the successful encod-

ing of ⊢ni in λµ.

We will see this kind of transformation play an important role later in the paper.

It is important to point out that the use of γ in the previous example creates an anomaly.

Although it is a logical tautology, the λµ-term that is the witness for ((C→⊥)→⊥)→C is not

a closed term so the proof has an uncanceled assumption. Moreover, terms can have type ⊥
without being typed with the equivalent of rule (¬i), but using (�e).

Several attempts have been made to rectify this. Parigot not only adds ⊥ to the language

of types in a side remark, but also allows for statements like γ:⊥ to be used without adding

4 Summers [40] uses νz.[y] (zN).
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them explicitly to the co-context, so does not consider them ‘real’ assumptions. Ariola and

Herbelin [2] define an extension of λµ, adding a special syntax construct [tp]M, where tp acts

as a ‘continuation constant’ and represent the outermost context of the term. In their system,

the witness to ((C→⊥)→⊥)→C is the term λy.µα.[tp]y(λx.µδ.[α]x).

Another solution would be to detach, syntactically, passivation from activation, so to no

longer insist that they strictly follow each other. That is the approach in de Groote and

Saurin’s Λµ-calculus [21, 38]; there the witness would be λy.µα.y(λx.[α]x) which directly

inhabits the proof in ⊢f above. That variant of λµ better expresses the logic of ⊢f, but one

problem with Λµ is that is not clear if (denotational) semantics can be defined for it, which

is possible for λµ [39, 7]. This is directly related to the fact that a µ-abstraction can now be

applied to a term of type ⊥ that is an application, rather than a term typed (implicitly) with

rule (¬e).

1.3 The νλµ-calculus

In [40], Summers makes a strong case for inhabiting the rules of ⊢ni directly and in full, and

defines the calculus νλµ by adding the rules for negation and their syntactic representation

to a generalisation of λµ. He thereby extends the syntax with the construct [M]N which is

used to represent negation elimination, not just when M is a name, but also when the negated

statement on the left is the result of a proof, and allows (µ) to be applied to assumption used

on the right in (�e). He also removes the distinction between names and variables, and brings

all assumptions together in one context.

Definition 1.14 (Syntax of νλµ) The νλµ-terms we consider are defined over variables (Ro-

man characters) by the grammar:

M, N ::= x | λx.M | MN | νx.M | [M]N | µx.M

Type assignment (see Definition 1.16 below) will naturally allow µ-binding to terms of the

shape [P]Q, but since ⊥ is a type, variables and applications can have type ⊥, allowing

µα.y(λx.[α]x) to be typed; a term like µx.λy.P will not be typeable.

The reduction rules for νλµ in [40] are largely defined, as can be expected, through term

substitution as far as the constructors λ and ν are concerned, but contracting a µ redex now

becomes more involved than in λµ, for the reasons we discussed in Example 1.2.

Definition 1.15 (Reduction in νλµ [40]) i) The auxiliary notion of substitution {z·N x}5 is

defined inductively over the structure of terms, using the base cases

x{z·N x} = νz.N (y 6= x)

y{z·N x} = y (y 6= x)

([x]M){z·N x} = N{M{z·N x} z}

ii) The reduction rules of νλµ are:

λ′ : (λx.M)N → µy.[νx.[y]M]N

ν : [νx.M]N → M{N x}

µ→1 : (µx.M)N → µy.M{z·[y] (zN) x}

µ→2 : N (µx.M) → µy.M{z·[y] (Nz) x}

µ¬1 : [µx.M]N → M{z·[z]N x}

µ¬2 : [N]µx.M → M{z·[N]z x}

µν : νy.µx.M → νy.M{z·z x}

µµ : µy.[µx.M] → µy.M{z·z x}

µη : µx.[x]M → M (x 6∈ M)

Evaluation contexts are defined by:

C ::= ⌈⌋ | λx.C | CM | MC | νx.C | [C]M | [M]C | µx.C

5 [40] uses a slightly different notation.
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(Free, unconstrained) reduction →βµ on L-terms is defined through C⌈M⌋ →n C⌈N⌋ if

M → N using either of the nine rules above.

It is clear that these reduction rules contain the cbv-rules as well in (µ→2) and (µ¬2).

Thereby reduction is not confluent; we have a critical pair in the rules (µ→1) and (µ→2): the

term (µx.M) (µy.N) is reducible using both, and these reduction steps will (normally) result

in different outcomes.

Definition 1.16 (Type assignment for νλµ) i) The set of types is defined by the grammar:

A, B ::= ⊥ | ϕ | A→B | ¬A

A context (of term variables) Γ is defined as before.

ii) The type assignment rules for νλµ are:

(ax) :
Γ, x:A ⊢ x : A

(�i) :
Γ, x:A ⊢ M : B

Γ ⊢ λx.M : A→B
(�e) :

Γ ⊢ M : A→B Γ ⊢ N : A

Γ ⊢ MN : B

(µ) :
Γ, x:¬A ⊢ M : ⊥

Γ ⊢ µx.M : A
(¬i) :

Γ, x:A ⊢ M : ⊥

Γ ⊢ νx.M : ¬A
(¬e) :

Γ ⊢ M : ¬A Γ ⊢ N : A

Γ ⊢ [M]N : ⊥

We will write Γ ⊢νλµ M : A for statements derivable in this system.

Because all inference rules of ⊢ni are inhabited by term information ‘as is’, it is immediately

clear that all proofs in ⊢ni have a term representation in νλµ.

Example 1.17 In this calculus, the witness for double negation elimination becomes:

(ax)
y:¬¬C, x:¬C ⊢ y : ¬¬C

(ax)
y:¬¬C, x:¬C ⊢ x : ¬C

(¬e)
y:¬¬C, x:¬C ⊢ [y]x : ⊥

(µ)
y:¬¬C ⊢ µx.[y]x : C

(�i)
⊢ λy.µx.[y]x : (¬¬C)→C

The presence of reduction rules µν and µµ in Definition 1.15 is remarkable, since they do

not correspond to proof contractions in a proof system that uses ⊥ only to represent conflict.

Both rule (µ) and (¬i) are only applicable to a statement of the shape Γ ⊢νλµ M : ⊥; the rule

(µ) above them implies an assumption of the shape ¬⊥, which is allowed since in [40], ⊥ is a

type, so the following are valid derivations.

Γ,y:A, x:¬⊥ ⊢ M : ⊥
(µ)

Γ,y:A ⊢ µx.M : ⊥
(¬i)

Γ ⊢ νy.µx.M : ¬A

Γ,y:¬A, x:¬⊥ ⊢ M : ⊥
(µ)

Γ,y:¬A ⊢ µx.M : ⊥
(µ)

Γ ⊢ µy.µx.M : A

Moreover, treating ⊥ as a type gives that negation is represented in two different ways in νλµ.

In all, after the choices made by Summers, the calculus is rather too permissive.

Below, we will choose to not treat ⊥ as a type.

Example 1.18 We can inhabit the proof for (A→B)→¬B→¬A in both ⊢νλµ and ⊢λµ. Let

Γ = x:A→B,y:¬B,z:A, and Γ′ = x:A→B,y:B→⊥,z:A, then we can construct:
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(ax)
Γ⊢y : ¬B

(ax)
Γ⊢x : A→B

(ax)
Γ⊢ z : A

(�e)
Γ⊢xz : B

(¬e)
Γ⊢ [y] (xz) : ⊥

(¬i)
Γ\z⊢νz.[y] (xz) : ¬A

(�i)
x:A→B⊢λy.νz.[y] (xz) : ¬B→¬A

(�i)
⊢λxy.νz.[y] (xz) : (A→B)→¬B→¬A

Γ′⊢y : B→⊥ |

Γ′⊢x : A→B | Γ′⊢ z : A |
(�e)

Γ′⊢ xz : B |
(�e)

Γ′⊢y(xz) : ⊥ |
(�i)

Γ′\z⊢λz.y(xz) : A→⊥ |
(�i)

x:A→B⊢λyz.y(xz) : (B→⊥)→A→⊥ |
(�i)

⊢λxyz.y(xz) : (A→B)→(B→⊥)→A→⊥ |

Since this property holds in intuitionistic logic, it is no surprise that the co-context is not

needed in ⊢λµ.

We can also show the counterpart for ⊢ni (¬B→¬A)→A→B. Let Γ = x:¬B→¬A,y:A,z:¬B.

(ax)
Γ ⊢ x : ¬B→¬A

(ax)
Γ ⊢ z : ¬B

(�e)
Γ ⊢ xz : ¬A

(ax)
Γ ⊢ y : A

(¬e)
Γ ⊢ [xz]y : ⊥

(µ)
x:¬B→¬A,y:A ⊢ µz.[xz]y : B

(�i)
x:¬B→¬A ⊢ λy.µz.[xz]y : A→B

(�i)
⊢ λxy.µz.[xz]y : (¬B→¬A)→A→B

We can do a similar thing in ⊢λµ (with Γ = x:(B→⊥)→A→⊥,y:A) :

(ax)
Γ ⊢ x : (B→⊥)→A→⊥ |

(ax)
Γ,z:B ⊢ z : B | δ:⊥,α:B,γ:⊥

(µ)
Γ,z:B ⊢ µδ.[α]z : ⊥ | α:B,γ:⊥

(�i)
Γ ⊢ λz.µδ.[α]z : B→⊥ | α:B,γ:⊥

(�e)
Γ ⊢ x(λz.µδ.[α]z) : A→⊥ | α:B,γ:⊥

(ax)
Γ ⊢ y : A | α:B,γ:⊥

(�e)
Γ ⊢ x (λz.µδ.[α]z)y : ⊥ | α:B,γ:⊥

(µ)
Γ ⊢ µα.[γ]x (λz.µδ.[α]z)y : B | γ:⊥

(�i)
Γ\y ⊢ λy.µα.[γ]x (λz.µδ.[α]z)y : A→B | γ:⊥

(�i)
⊢ λxy.µα.[γ]x (λz.µδ.[α]z)y : ((B→⊥)→A→⊥)→ A→B | γ:⊥

Notice that the same kind of transformation has been applied to replace the negated assump-

tion Γ ⊢L z : ¬B on the right, and that again the witness for the property is not a closed term

in λµ (γ is free).

2 The L-calculus

We now present the calculus L we introduce in this paper, which can be seen as a variant of λµ

that gives a Curry-Howard interpretation to the logical system below, which corresponds to

⊢f, extended with negation by treating it as a first-class citizen. Our aim is to fully represent

proofs in ⊢ni in a natural way, but defining a calculus with a notion of reduction that is

confluent.

We call this calculus L in honour of Mendelson’s formal axiomatic theory L for the propo-

sitional calculus [26]. Adapted to our notation, L is defined through:

Definition 2.1 (L cf. [26]) i) (Well formed) formulas are defined through the grammar:

A, B ::= p | ¬A | A→B

ii) If A, B and C are formulas of L, then the following are axioms of L:

(A1) : A→B→A.
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(A2) : (A→B→C)→(A→B)→A→C.

(A3) : (¬B→¬A)→(¬B→A)→B.

iii) The only rule of inference of L is modus ponens (�e): B is a direct consequence of A and

A→B.

The first two rules form the axiom-schemes for intuitionistic implicational logic; the third

rule renders the system classical. For example, using these three rules it is possible to show

¬¬C→C (for details, see [26], Lemma 1.11).

The attentive reader will recognise the types of the combinators K and S of Curry’s Com-

binatory Logic [14, 15] in the first two axioms; this is the origin of the Curry-Howard isomor-

phism [14]. Of course here we follow Church’s approach, by defining an extended λ-calculus.

We will base L on a variant of the system ⊢f defined below; notice that, because we use

negation explicitly, as in νλµ we no longer have to separate the negated formulas from the

non-negated ones.

(ax) :
Γ, A ⊢ A

(�i) :
Γ, A ⊢ B

Γ ⊢ A→B
(�e) :

Γ ⊢ A→B Γ ⊢ A

Γ ⊢ B

(¬i) :
Γ, A ⊢ M

Γ ⊢ ¬A
(¬e) :

Γ ⊢ ¬A Γ ⊢ A

Γ ⊢ ⊥
(act) :

Γ,¬A ⊢ ⊥

Γ ⊢ A
(pass) :

Γ,¬A ⊢ A

Γ ⊢ ⊥

Notice that A in rules (act) and (pass) can be a negated formula. The rule (pass) could

be omitted, since, as before, we can derive:

(ax)
Γ,¬A ⊢ ¬A Γ,¬A ⊢ A

(¬e)
Γ ⊢ ⊥

We keep the rule, however, since we want to preserve the fact that in rule (act) we only

cancel a negated assumption that was used on the left in (¬e); notice that that characteristic

is not expressed in the logic, but will be once we represent the structure of proofs through

syntax.

Notation: We write Vf for the set of all finite sequences of elements of V, with ǫ representing

the empty sequence, and use the notation v for elements of Vf.

Definition 2.2 (Syntax of L) i) The set of L-terms we consider is defined over variables (Ro-

man characters) and names (Greek characters) by the grammar:

M, N ::= x | λx.M | MN | νx.M | [M]N | µα.M | [α]N

ii) Recognising ν, λ, and µ as binders, the notion of free and bound variables and names is

defined as usual, and we accept Barendregt’s convention to keep free and bound variables

and names distinct, using (silent) α-conversion whenever necessary. We write x ∈ M or

α ∈ M if x or α occurs in M, either free of bound, and call a term closed if it has no free

variables or names.

iii) We write MN for the term MN1 · · ·Nn when N = N1 · · ·Nn (so not for M (N1 · · ·Nn) as the

notation might suggest), and Mǫ = M.

Notice that α is not a term. Since ⊥ is not a type, type assignment (see Definition 2.5 below)

will only allow µ-binding to terms of the shape [α]Q or [P]Q, so staying close to λµ.

We will use L for the set of terms defined above, as well as for the system based on that,

including the reduction and type assignment rules. In L, reduction of terms is expressed

via three types of implicit substitution. As usual, M{N x} stands for the (instantaneous)

substitution of all occurrences of x in M by N. The definition of structural substitution for L
is defined as for λµ (Definition 1.7), but with small modifications.
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Definition 2.3 (Structural substitution in L) Structural substitution, M{N·γ α} and inser-

tion M{N α} are defined inductively over terms. We give the main cases:

([α]M){N·γ α} =∆ [γ](M{N·γ α}N)

([β]M){N·γ α} =∆ [β](M{N·γ α}) (β 6= α)

([α]M){N α} =∆ [M]N

([β]M){N α} =∆ [β](M{N α}) (β 6= α)

We will write M{N·γ α} for M{N1·γ1 α}{N2·γ2 γ1}· · · {Nn·γ γn−1}.

We have the following notion of reduction on L.

Definition 2.4 (L reduction) i) The reduction rules of L are:

β : (λx.M)N → M{N x}

ν : [νx.M]N → M{N x}

µ : (µα.M)N → µγ.M{N·γ α} (γ fresh)

δ : [µα.M]N → M{N α}

θ : µα.[α]M → M (α 6∈ M)

ρ : [β]µγ.M → M{β γ}

Evaluation contexts are defined by:

C ::= ⌈⌋ | λx.C | CM | MC | νx.C | [C]M | [M]C | µx.C | [α]C

Reduction →L on L-terms is defined through C⌈M⌋ →n C⌈N⌋ if M → N using either

the β, ν, µ, δ, θ, or ρ-reduction rule. As usual, we will use →=
L for the reflexive closure,

and →∗
L for the reflexive, transitive closure of →L.

Judgements in L are of the shape Γ ⊢L M : A, where Γ consists of pairs of Greek or Roman

characters (the variables and names) and their types. Type assignment is defined through:

Definition 2.5 (Type assignment for L) i) The set of types TL is defined by the grammar:

A, B ::= ϕ | A→B | ¬A

where ‘→’ associates to the right and ‘¬’ binds stronger than ‘→’. Notice that ⊥ is not a

type. If A = ¬B, we call A a negated type, and if A = ¬B, but B 6= ¬C, we call A a single

negated type. If A = ¬¬B, we call A a double negated type, where B could be a negated

type as well.

ii) A context (of term variables) Γ is defined as a partial mapping from term variables to

types (which can be negated) and names to negated types, denoted as a finite set of

statements x:A and α:¬B, such that the subjects of the statements are distinct.

We define Γ through:

∅ = ∅

Γ, x:A = Γ, A

Γ,α:¬A = Γ,¬A

iii) The type assignment rules for L are:

(ax) :
Γ, x:A ⊢ x : A (�i) :

Γ, x:A ⊢ M : B

Γ ⊢ λx.M : A→B
(�e) :

Γ ⊢ M : A→B Γ ⊢ N : A

Γ ⊢ MN : B

(¬i) :
Γ, x:A ⊢ M : ⊥

Γ ⊢ νx.M : ¬A
(¬e) :

Γ ⊢ M : ¬A Γ ⊢ N : A

Γ ⊢ [M]N : ⊥
(µ) :

Γ,α:¬A ⊢ M : ⊥

Γ ⊢ µα.M : A
(n) :

Γ ⊢ N : A

Γ,α:¬A ⊢ [α]N : ⊥

We will write Γ ⊢L M : A for statements derivable in this system.

Notice that, in rule (n), α:¬A is added to the context; this allows for that statement to already

occur there. In all the rules where a variable or name is bound, by our variable convention it

does not occur in the context in the conclusion. The notation Γ will be used in Corollary 4.3.

Example 2.6 In this calculus, λy.µα.[] [y](νx.[α]x) is the witness for double negation elimina-
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tion:

(ax)
y:¬¬C,α:¬C ⊢ y : ¬¬C

(ax)
y:¬¬C, x:C ⊢ x : C

(n)
y:¬¬C, x:C,α:¬C ⊢ [α]x : ⊥

(¬i)
y:¬¬C,α:¬C ⊢ νx.[α]x : ¬C

(¬e)
y:¬¬C,α:¬C ⊢ [y] (νx.[α]x) : ⊥

(µ)
y:¬¬C ⊢ µα.[y] (νx.[α]x) : C

(�i)
⊢ λy.µα.[y] (νx.[α]x) : (¬¬C)→C

Observe that λy.µα.[y] (νx.[α]x) is a closed term.

It is also straightforward to find untypeable terms. For example, we cannot type a term like

[λx.M]N since type assignment would require a negated type for λx.M, nor µα.λx.M since

that would require ⊥ for λx.M, nor νy.λx.M, µα.MN, µα.νx.M, etc.

It will be clear that, once allowing Greek characters for variables as well, the rule (n) is

admissible in ⊢νλµ, as was the case above for rule (pass). Observe that, if Γ,α:¬A ⊢L M : ⊥, in

order for the derivation for Γ ⊢L µα.M : A to be used as a subderivation, either A = B→C, or

A = ¬B, for some B and C.

We will now show that types are preserved under reduction. For this we need a weakening

result.

Lemma 2.7 (Weakening and thinning for ⊢L ) The following rules are admissible for ⊢L:

(Wk) :
Γ ⊢ M : A

(Γ ⊆ Γ′)
Γ′ ⊢ M : A

(Th) :
Γ ⊢ M : A

(Γ′ = {x:B ∈ Γ | x ∈ fv(M)})
Γ′ ⊢ M : A

Proof : Standard.

Notice that, by our extension of Barendregt’s convention in Definition 1.9, Γ′ cannot contain

statements for the bound names and variables in M.

Example 2.8 We illustrate the reduction rule δ:

Γ, x:A ⊢ P : ⊥
(¬i)

Γ ⊢ νx.P : ¬A
(n)

Γ,α:¬¬A ⊢ [α]νx.P : ⊥

Γ,α:¬¬A ⊢ M : ⊥
(µ)

Γ ⊢ µα.M : ¬A Γ ⊢ N : A
(¬e)

Γ ⊢ [µα.M]N : ⊥

Γ, x:A ⊢ P : ⊥
(¬i)

Γ ⊢ νx.P : ¬A Γ ⊢ N : A
(¬e)

Γ ⊢ [νx.P]N : ⊥

Γ ⊢ M{N α} : ⊥

It might have been more natural, similar to the approach of [40], to define

([α]M){N α} =∆ [νz.[z]N ]M

which would have created the subterm [νz.[z]N ]P in the derivation above; however, notice

that [νz.[z]N ]P →L [P]N and that {νz.[z]N α} only ever gets applied ‘to the left’.

We will now show that type assignment is closed under reduction. First we show results

for the three notions of term substitution.

Lemma 2.9 (Substitution lemma) i) If Γ, x:B ⊢L M : A and Γ ⊢L L : B, then Γ ⊢L M{L x} : A.

ii) If Γ,α:¬(B→C) ⊢L M : A and Γ ⊢L L : B, then Γ,γ:¬C ⊢L M{L·γ α} : A.

iii) If Γ,α:¬¬B ⊢L M : A and Γ ⊢L L : B, then Γ ⊢L M{N α} : A.

Proof : i) Standard, by induction on the definition of term substitution.
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ii) By induction on the definition of structural substitution. All cases follow straightfor-

wardly, except for:

(([α]N){L·γ α} =∆ [γ]N{L·γ α}) : Then by rule (n), A =⊥ and Γ,α:¬(B→C) ⊢L N : B→C.

Then, by induction, we have Γ,γ:¬C ⊢L N{L·γ α} : B→C. Since we know that Γ ⊢L L : B,

we can construct:

Γ,γ:¬C ⊢ N{L·γ α} : B→C

Γ ⊢ L : B
(Wk)

Γ,γ:¬C ⊢ L : B
(�e)

Γ,γ:¬C ⊢ (N{L·γ α}) L : C
(n)

Γ,γ:¬C ⊢ [γ](N{L·γ α}) L : ⊥

iii) By induction on the definition of insertion. All cases follow straightforwardly, except for:

(([α]M){N α} =∆ [M]N) : Then A = ⊥, and the derivation is of the shape:

Γ,α:¬¬B ⊢ P : ¬B
(n)

Γ,α:¬¬A ⊢ [α]P : ⊥

By induction we have Γ ⊢L P{N α} : ¬B, and we can construct:

Γ ⊢ P{N α} : ¬B Γ ⊢ N : B
(¬e)

Γ ⊢ [P{N α}]N : ⊥

Notice that, the structural substitution {N·γ α} gets performed by building an application

with any subterm P that is named α, resulting in [γ]PN of type B. Moreover, the insertion

{N α} gets performed for typed terms towards a name that has a double negated type, which

disappears.

We will now show that type assignment respects reduction:

Theorem 2.10 (Soundness) If Γ ⊢L M : A, and M →L N, then Γ ⊢L N : A.

Proof : By induction on the definition of →L, where we focus on the basic reduction rules.

(β) : Then M ≡ (λx.P)Q →n P{Q x} ≡ N. The derivation for Γ ⊢L (λx.P)Q : A is shaped like

Γ, x:B ⊢ P : A
(�i)

Γ ⊢ λx.P : B→A Γ ⊢ Q : B
(�e)

Γ ⊢ (λx.P)Q : A

In particular, we have Γ, x:B ⊢L P : A and Γ ⊢L Q : B. Then we have Γ ⊢L P{Q x} : A by

Lemma 2.9.

(ν) : Then M ≡ [νx.P]Q →n P{Q x} ≡ N. Then A = ⊥ and derivation for Γ ⊢L [νx.P]Q : ⊥
is shaped like

Γ, x:B ⊢ P : ⊥
(¬i)

Γ ⊢ νx.P : ¬B Γ ⊢ Q : B
(¬e)

Γ ⊢ [νx.P]Q : ⊥

In particular, we have Γ, x:B ⊢L P : ⊥ and Γ ⊢L Q : B. Then, by Lemma 2.9, we have

Γ ⊢L P{Q x} : ⊥.

(µ) : Then M ≡ (µα.P)Q →n µγ.P{Q·γ α} ≡ N. The derivation for (µα.P)Q is shaped like
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Γ,α:¬(B→A) ⊢ P : ⊥
(µ)

Γ ⊢ µα.P : B→A Γ ⊢ Q : B
(�e)

Γ ⊢ (µα.P)Q : A

In particular, we have Γ,α:¬(B→ A) ⊢L P : ⊥ and Γ ⊢L Q : B. Then by Lemma 2.9, we have

Γ,γ:¬A ⊢L P{Q·γ α} : ⊥, and applying rule (µ) gives the result.

(δ) : Then M ≡ [µα.P]Q →n P{Q α} ≡ N. Then A = ⊥ and derivation for Γ ⊢L [µα.P]Q : ⊥
is shaped like

Γ,α:¬¬B ⊢ P : ⊥
(¬i)

Γ ⊢ µα.P : ¬B Γ ⊢ Q : B
(¬e)

Γ ⊢ [µα.P]Q : ⊥

In particular, we have Γ,α:¬¬B ⊢L P : ⊥ and Γ ⊢L Q : B. Then, by Lemma 2.9, we have

Γ ⊢L P{Q α} : ⊥.

(θ) : Then M ≡ µα.[α]P →n P ≡ N with α 6∈ M. The derivation for µα.[α]P is shaped like

Γ ⊢ P : A
(n)

Γ,α:¬A ⊢ [α]P : ⊥
(µ)

Γ ⊢ µα.[α]P : A

We have Γ ⊢L P : A through a sub-derivation.

(ρ) : Then M ≡ [β]µγ.M →n M{β γ} ≡ N. The derivation for [β]µγ.P is shaped like

Γ, β:¬B,γ:¬B ⊢ P : ⊥
(µ)

Γ, β:¬B ⊢ µγ.P : B
(n)

Γ, β:¬B ⊢ [β]µγ.P : ⊥

So in particular, replacing all occurrences of γ by β, we obtain Γ, β:¬B ⊢L P{β γ} : ⊥.

3 Confluence

In this section we will show that reduction in L satisfies the Church-Rosser property, i.e. is

confluent. This property is defined as follows:

Definition 3.1 (Diamond and Church-Rosser Properties [8]) Let R be binary relation on a

set V.

i) R satisfies the diamond property if for all t,u,v∈V, if t R u and t R v, then there exists w∈V

such that u R w and v R w.

ii) R satisfies the Church-Rosser property (is confluent) if its reflexive, transitive closure R∗

satisfies the diamond property.

This immediately implies that if a relation is confluent, then so is its transitive closure.

The standard approach to showing confluence is that of Tait and Martin-Löf (see [8, 34])

by defining a notion of parallel reduction that is based on the standard reduction, which is a

reflexive relation defined (in the case of β-reduction) through the rules:

x ⇒ x

M ⇒ M′

λx.M ⇒ λx.M′

M ⇒ M′ N ⇒ N′

M N ⇒ M ′N′

M ⇒ M′ N ⇒ N′

(λx.M)N ⇒ M′{N′ x}

By the last rule, ‘⇒’ encompasses ‘→β’; also, if N reduces to N′, then (λx.M)N reduces
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to M{N′ x}, so all contractions in the various copies of N inside M{N x} are contracted

simultaneously when contracting the redex (λx.M)N; we are even allowed to contract a redex

in M, and contracting all these together is considered a single step in ‘⇒’. The proof of

confluence for β-reduction then contains of showing that ⇒ satisfies the diamond property,

and that ⇒ =→∗
β.

Using this technique, confluence has been claimed for λµ in [30], but, as noticed in [36, 4],

that proof was not complete. The main reason is that the proof overlooks the fact that, perhaps

unexpectedly, reduction of one redex can remove another.

Example 3.2 Take the term (µα.[α]µβ.[α]M)N; contracting the outermost µ-redex (µα. . . .)N

destroys the innermost ρ-redex µα.[α]µβ.[α]M. The latter is contractable because the sub-term

µβ.[α]M is a µ-abstraction:

(µα.[α]µβ.[α]M)N ⇒(ρ) (µα.[α]M)N

This is no longer true after the contraction of the outermost redex:

(µα.[α]µβ.[α]M)N ⇒(µ) µγ.[γ](µβ.[γ]MN)N

where N gets (also) placed as an argument to µβ.[γ]MN, creating an application (µβ.[γ]MN)N

which means that the result is no longer a µ-abstraction, thus destroying the ρ-redex. The re-

sulting terms can be joined, but not through a single parallel reduction step, as would be

required. So the diamond property does not hold for the standard notion of parallel reduc-

tion.

This problem was successfully addressed by Py [36] and later in [4] using a slightly different

approach. We will follow the solution of the first here, using the modification of the definition

of ‘⇒’ as suggested by Aczel [1].

As in [4, 5, 7], we will not consider the extensional erasure reduction rule

θ : µα.[α]M → M (α 6∈ M)

Below we will need the property that we can change the order in which the four implicit

substitution operations are performed. Notice that we can consider the substitution a binding

operation for the variable or name involved, so for example the variable x in M{N x}{P y}
can be assumed to not occur in P.

Proposition 3.3 i) a) M{N x}{P y} = M{P y}{N{P y} x}.

b) M{N x}{P·δ α} = M{P·δ α}{N{P·δ α} x}.

c) M{N x}{P α} = M{P α}{N{P α} x}.

d) M{N x}{δ α} = M{δ α}{N{δ α} x}.

ii) a) M{N·γ β}{P y} = M{P y}{N{P y}·γ β}.

b) M{N·γ β}{P·δ α} = M{P·δ α}{N{P·δ α}·δ β}.

c) M{N·γ β}{P α} = M{P α}{N{P α}·γ β}.

d) M{N·γ β}{δ α} = M{δ α}{N{δ α}·γ β}.

iii) a) M{N β}{P y} = M{P y}{N{P y} β}.

b) M{N β}{P·δ α} = M{P·δ α}{N{P·δ α} β}.

c) M{N β}{P α} = M{P α}{N{P α} β}.

d) M{N β}{δ α} = M{δ α}{N{δ α} β}.

iv) a) M{γ β}{P y} = M{P y}{γ β}.

b) M{γ β}{P·δ α} = M{P·δ α}{γ β}{P·δ α}.

c) M{γ β}{P α} = M{P α}{γ β}{P α}.

d) M{γ β}{δ α} = M{δ α}{γ β}{δ α}.

20



Proof : Straightforward by induction on the definition of the four substitutions.

We now define a notion of parallel reduction for L.

Definition 3.4 (Generalised Parallel reduction for L (cf. [1, 36])) We define parallel reduc-

tion on terms in L inductively by the rules:

(1)
x ⇒ x

x

(2)
M ⇒ M′

λx.M ⇒ λx.M′

(3)
M ⇒ M′

µα.M ⇒ µα.M′

(4)
M ⇒ M′

νx.M ⇒ νx.M′

(5)
M ⇒ M′ N ⇒ N′

M N ⇒ M ′N′

(6)
M ⇒ M′ N ⇒ N′

[M]N ⇒ [M′]N′

(7)
M ⇒ M′

[α]M ⇒ [α]M′

(8)
M ⇒ µα.M′

[β]M ⇒ M′ {β α}

(9)
M ⇒ λx.M′ N ⇒ N′

M N ⇒ M′ {N′ x}

(10)
M ⇒ µα.M′ N ⇒ N′

(γ fresh)
M N ⇒ µγ.M′{N′·γ α}

(11)
M ⇒ νx.M′ N ⇒ N′

[M]N ⇒ M′{N′ x}

(12)
M ⇒ µα.M′ N ⇒ N′

[M]N ⇒ M{N′ α}

We write M ⇒L N if the statement M ⇒ N is derivable using these rules.

It is easy to check that a term parallel reduces to itself, and under parallel reduction a term is

considered to be in normal form if it only reduces to itself.

Notice, in particular, the change in the rule based on β-reduction, which changes from

M ⇒ M′ N ⇒ N′

(λx.M)N ⇒ M′{N′ x}
to

M ⇒ λx.M′ N ⇒ N′

M N ⇒ M′{N′ x}

It is this change that solves the problem mentioned.

Example 3.5 The problem signalled in Example 3.2 does not occur, since the diverging reduc-

tion steps

µα.[α]µβ.P ⇒ µα.[α]µβ.P N ⇒ N
(10)

(µα.[α]µβ.P)N ⇒ µγ.[γ](µβ.P{N·γ α})N

µβ.P ⇒ µβ.P
(7)

[α]µβ.P ⇒ P{α β}
(3)

µα.[α]µβ.P ⇒ µα.P{α β} N ⇒ N
(5)

(µα.[α]µβ.P)N ⇒ (µα.P{α β})N

can be joined:

µβ.P{N·γ α} ⇒ µβ.P{N·γ α} N ⇒ N
(10)

(µβ.P{N·γ α})N ⇒ µδ.P{N·γ α}{N·δ β}
(7)

[γ](µβ.P{N·γ α})N ⇒ P{N·γ α}{N·δ β}{γ δ}
(3)

µγ.[γ](µβ.P{N·γ α})N ⇒ µγ.P{N·γ α}{N·δ β}{γ δ}

µα.P{α β} ⇒ µα.P{α β} N ⇒ N
(10)

(µα.P{α β})N ⇒ µγ.P{α β}{N·γ α}

(notice that µγ.P{α β}{N·γ α} = µγ.P{N·γ α}{N·δ β}{γ δ}).

It is straightforward to show that →∗
L is the transitive closure of ⇒L.

Lemma 3.6 →∗
L =⇒∗

L.

Proof : First, since M ⇒L M, for all M, by the presence of rules (9), (10), (11), and (12), we have

→=
L ⊆ ⇒L, so also →∗

L ⊆ ⇒∗
L. Since in ⇒L we essentially contract any number of →L-redexes

in parallel (including zero or just one) we also have that ⇒L ⊆ →∗
L. So in particular, ⇒L is a

subset of a relation that is transitive, so its transitive closure is that as well, so ⇒∗
L ⊆ →∗

L. So

→∗
L =⇒∗

L.

The following property expresses that the four kinds of substitution are respected by ⇒L.
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Lemma 3.7 (Substitution Lemma) If P ⇒L P′ and Q ⇒L Q′, then: 1) P{Q z} ⇒L P′{Q′ z}, 2)

P{Q·γ z} ⇒L P′{Q′·γ z}, 3) P{Q α} ⇒L P′{Q′ α}, and 4) P{β α} ⇒L P′{β α}.

Proof : i) By induction on the definition of ⇒L, where we focus on the first parallel reduction.

(1) : P{Q z} = z{Q z} = Q ⇒L Q′ = z{Q′ z} = P′{Q′ z}, and

P{Q z} = y{Q z} = y ⇒L y = y{Q′ z} = P′{Q′ z} if y 6= z.

(9) : Then MN ⇒L M′{N′ x} follows from M ⇒L λx.M′ and N ⇒L N′. By induction, we

have M{Q z} ⇒L (λx.M′){Q′ z} and N{Q z} ⇒L N′{Q′ z}. So we can infer:

M{Q z} ⇒L (λx.M′){Q′ z} N{Q z} ⇒L N′{Q′ z}
(9)

M {Q z}N{Q z} ⇒L M′{Q′ z}{N′{Q′ z} x}

By Lemma 3.3, we have M′{Q′ z}{N′ {Q′ z} x}= M′{N′ x}{Q′ z}.

(10) : Then MN ⇒L µγ.M′{N′ ·γ α} follows from M ⇒L µα.M′ and N ⇒L N′. By induction,

M{Q z} ⇒L (µα.M′){Q′ z} and N{Q z} ⇒L N′{Q′ z}. So we can infer:

M{Q z} ⇒L (µα.M′){Q′ z} N{Q z} ⇒L N′ {Q′ z}
(10)

M {Q z}N{Q z} ⇒L µγ.M′{Q′ z}{N′{Q′ z}·γ α}

By Lemma 3.3, we have µγ.M′{Q′ z}{N′ {Q′ z}·γ α} = µγ.M′{N′ ·γ α}{Q′ z}.

(11) : Then [M]N ⇒L M′{N′ x} follows from M ⇒L νx.M′ and N ⇒L N′. By induction,

M{Q z} ⇒L (νx.M′){Q′ z} and N{Q z} ⇒L N′{Q′ z}. So we can infer:

M{Q z} ⇒L (νx.M′){Q′ z} N{Q z} ⇒L N′{Q′ z}
(9)

[M{Q z}]N{Q z} ⇒L M′ {Q′ z}{N′{Q′ z} x}

By Lemma 3.3, we have M′{Q′ z}{N′ {Q′ z} x}= M′{N′ x}{Q′ z}.

(12) : Then [M]N ⇒L M′{N′ α} follows from M ⇒L µα.M′ and N ⇒L N′. By induction,

M{Q z} ⇒L (µα.M′){Q′ z} and N{Q z} ⇒L N′{Q′ z}. So we can infer:

M{Q z} ⇒L (µα.M′){Q′ z} N{Q z} ⇒L N′ {Q′ z}
(12)

[M{Q z}]N{Q z} ⇒L M′ {Q′ z}{N′{Q′ z} α}

By Lemma 3.3, we have M′{Q′ z}{N′ {Q′ z} α} = M′{N′ α}{Q′ z}.

The other cases all follow by induction.

ii) , (3) and (4) Very similar.

The following property expresses the interaction between the syntactic structure of terms

and ⇒L.

Proposition 3.8 i) If λx.M ⇒L L, then L ≡ λx.N and M ⇒L N.

ii) If µα.M ⇒L L, then L ≡ µα.N and M ⇒L N.

iii) If νx.M ⇒L L, then L ≡ νx.N and M ⇒L N.

iv) If MN ⇒L L, then either:

a) L ≡ PQ with M ⇒L P and N ⇒L Q, or

b) M ⇒L λx.P, and L = P{Q x} with N ⇒L Q, or

c) M ⇒L µα.P, and L = µγ.P{Q·γ α} with N ⇒L Q.

v) If [M]N ⇒L L, then either:

a) L ≡ [P]Q with M ⇒L P and N ⇒L Q, or

b) M ⇒L νx.P, and L = P{Q x} with N ⇒L Q, or

c) M ⇒L µα.P, and L = P{Q α} with N ⇒L Q.

vi) If [α]M ⇒L L, then either:

a) L ≡ [α]P with M ⇒L P, or

b) L ≡ P{α β} with M ⇒L µβ.P.
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Proof : Straightforward by the definition of ⇒L.

We now show that ⇒L satisfies the diamond property. We will write ‘P1
⇒ P3

⇒
P2’ for

‘P1 ⇒L P3 and P2 ⇒L P3’.

Theorem 3.9 If P0 ⇒L P1 and P0 ⇒L P2 then there exists a P3 such that P1
⇒ P3

⇒
P2.

Proof : By induction on the definition of ⇒, where we focus on the first parallel reduction. We

only show the interesting cases.

(1) : Then P0 ≡ x ⇒ x ≡ P1, and P2 = x; take P3 = x as well.

(2), (3), (4) : By induction.

(5) : Then P0 ≡ M0N0 ⇒ M1N1 ≡ P1 because M0 ⇒ M1 and N0 ⇒ N1. By Proposition 3.8(iv),

either:

(P2 = M2N2, with M0 ⇒ M2 and N0 ⇒ N2) : By induction there exists M3, N3 such that M1
⇒

M3

⇒
M2 and N1

⇒ N3

⇒
N2. Take P3 = M3N3.

(P2 ≡ M2{N2 x} with M0 ⇒ λx.M2 and N0 ⇒ N2) : By induction there exists M3, N3 such

that M1
⇒ M3

⇒
λx.M2, and N1

⇒ N3

⇒
N2; by Proposition 3.8(i), M3 = λx.M′

3, and

M2 ⇒ M′
3. By Rule 9, we have M1N1 ⇒ M′

3{N3 x}, and by Lemma 3.7, we have

M2{N2 x} ⇒ M′
3{N3 x}.

(P2 ≡ µγ.M2{N2.γ α} with M0 ⇒ µα.M2 and N0 ⇒ N2) : By induction there exists M3, N3

such that M1
⇒ M3

⇒
µα.M2, and N1

⇒ N3

⇒
N2; by Proposition 3.8(ii), M3 = µα.M′

3,

and M2 ⇒ M′
3. By Rule 10, we have M1N1 ⇒ µγ.M′

3{N3·γ α}, and by Lemma 3.7, we

have µγ.M2{N2·γ α} ⇒ µγ.M′
3{N3·γ α}.

(6) : Then P0 ≡ [M0]N0 ⇒ [M1]N1 ≡ P1 because M0 ⇒ M1 and N0 ⇒ N1. By Proposition 3.8(v),

either:

(P2 ≡ [M2]N2 with M0 ⇒ M2 and N0 ⇒ N2) : By induction there exists M3, N3 such that M1
⇒

M3

⇒
M2 and N1

⇒ N3

⇒
N2. Take P3 = [M3]N3.

(P2 ≡ M2{N2 x} with M0 ⇒ νx.M2 and N0 ⇒ N2) : By induction there exists M3, N3 such

that M1
⇒ M3

⇒
νx.M2, and N1

⇒ N3

⇒
N2; by Proposition 3.8(i), M3 = νx.M′

3, and

M2 ⇒ M′
3. By Rule (11), we have [M1]N1 ⇒ M′

3{N3 x} and by Lemma 3.7, we have

M2{N2 x} ⇒ M′
3{N3 x}.

(P2 = M2{N2 α} with M0 ⇒ µα.M2 and N0 ⇒ N2) : By induction there exists M3, N3 such

that M1
⇒ M3

⇒
µα.M2, and N1

⇒ N3

⇒
N2; by Proposition 3.8(ii), M3 = µα.M′

3, and

M2 ⇒ M′
3. By Rule (12), we have [M1]N1 ⇒ M′

3{N3 α}. By Lemma 3.7, we have

M2{N2 α} ⇒ M′
3{N3·γ α}.

(7) : Then P0 ≡ [β]M0 ⇒ [β]M1 ≡ P1 because M0 ⇒ M1. By Proposition 3.8(vi), either:

(P2 ≡ [β]M2 with M0 ⇒ M2) : By induction, there exists M3 such that M1
⇒ M3

⇒
M2; then

by Rule (7) also [β]M1
⇒ [β]M3

⇒
[β]M2.

(P2 ≡ M2{β α} with M0 ⇒ µα.M2) : By induction, there exists M3 such that M1
⇒ M3

⇒

µα.M2; then by Proposition 3.8(ii), M3 ≡ µα.M′
3, M1 ≡ µα.M′

1. By Lemma 3.7 we

have that M2{β α} ⇒ M′
3{β α}. Since µα.M′

1 ⇒ µα.M′
3, by Rule (7) also [β]µα.M′

1 ⇒
M′

3{β α}.

(8) : Then P0 ≡ [β]M0 ⇒ M1{β α} ≡ P1 because M0 ⇒ µα.M1. By Proposition 3.8(vi), either:

(P2 ≡ [β]M2 with M0 ⇒ M2) : By induction, there exists M3 such that µα.M1
⇒ M3

⇒
M2;

then by Proposition 3.8(ii), M3 ≡ µα.M′
3 and M2 ≡ µα.M′

2. By Lemma 3.7 we have that

M1{β α} ⇒ M′
3{β α}. Since µα.M′

2 ⇒ µα.M′
3, by Rule (7) also [β]µα.M′

2 ⇒ M′
3{β α}.

(P2 ≡ M2{β α} with M0 ⇒ µα.M2) : By induction, there exists M3 such that µα.M1
⇒ M3

⇒

µα.M2; then by Proposition 3.8(ii), M3 ≡ µα.M′
3, and M1

⇒ M′
3

⇒
M2. Then by Lemma 3.7,

also M1{β α}⇒ M′
3{β α}

⇒
M2{β α}.
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(9) : Then P0 ≡ M0N0 ⇒ M1{N1 x} ≡ P1 because M0 ⇒ λx.M1 and N0 ⇒ N1. By Proposi-

tion 3.8(iv), either:

(P2 ≡ M2N2 with M0 ⇒ M2 and N0 ⇒ N2) : By induction there exists M3, N3 such that λx.M1
⇒

M3

⇒
M2, and N1

⇒ N3

⇒
N2; then by Proposition 3.8(i), M2 ≡ λx.M′

2 and M3 ≡ λx.M′
3

and M1
⇒ M′

3

⇒
M′

2. Since M2 ⇒ λx.M′
3 and N2 ⇒ N3, by Rule (9), M2N2 ⇒ M′

3{N3 x}.

We have M1{N1 x} ⇒ M′
3{N3 x} by Lemma 3.7.

(P2 = M2{N2 x} with M0 ⇒ λx.M2 and N0 ⇒ N2) : By induction there exists M3, N3 such

that λx.M1
⇒ M3

⇒
λx.M2, and N1

⇒ N3

⇒
N2; then by Proposition 3.8(i), M3 = λx.M′

3,

and M1
⇒ M′

3

⇒
M2. We have M1{N1 x}⇒ M′

3{N3 x}
⇒

M2{N2 x} by Lemma 3.7.

(P2 = µγ.M2{N2·γ α} with M0 ⇒ µα.M2 and N0 ⇒ N2) : By induction there exists M3 such

that λx.M1
⇒ M3

⇒
µα.M2; this is impossible.

(10) : Then P0 ≡ M0N0 ⇒ µγ.M1{N1·γ α} ≡ P1 because M0 ⇒ µα.M1 and N0 ⇒ N1. By

Proposition 3.8(iv), either:

(P2 ≡ M2N2 with M0 ⇒ M2 and N0 ⇒ N2) : By induction there exists M3, N3 such that µα.M1
⇒

M3

⇒
M2, and N1

⇒ N3

⇒
N2; then by Proposition 3.8(ii), M2 ≡ µα.M′

2 and M3 ≡
µα.M′

3 and M1
⇒ M′

3

⇒
M′

2. Since M2 ⇒ µα.M′
3 and N2 ⇒ N3, by Rule (10), M2N2 ⇒

µγ.M′
3{N3·γ α}. We have µγ.M1{N1·γ α} ⇒ µγ.M′

3{N3·γ α} by Lemma 3.7.

(P2 = M2{N2 x} with M0 ⇒ λx.M2 and N0 ⇒ N2) : By induction there exists M3 such that

µα.M1
⇒ M3

⇒
λx.M2; this is impossible.

(P2 = µγ.M2{N2·γ α} with M0 ⇒ µα.M2 and N0 ⇒ N2) : By induction there exists M3, N3

such that µα..M1
⇒ M3

⇒
µα..M2, and N1

⇒ N3

⇒
N2; then by Proposition 3.8(i), M3 =

µα..M′
3, and M1

⇒ M′
3

⇒
M2. We have M1{N1·γ α}⇒ M′

3{N3·γ α}
⇒

M2{N3·γ α} by

Lemma 3.7.

(11) : Then P0 ≡ [M0]N0 ⇒ M1{N1 x} ≡ P1 because M0 ⇒ νx.M1 and N0 ⇒ N1. By Proposi-

tion 3.8(v), either:

(P2 ≡ [M2]N2 with M0 ⇒ M2 and N0 ⇒ N2) : Then by induction there exists M3, N3 such

that νx.M1
⇒ M3

⇒
M2, and N1

⇒ N3

⇒
N2; then by Proposition 3.8(iii), M2 ≡ νx.M′

2

and M3 ≡ νx.M′
3 and M1

⇒ M′
3

⇒
M′

2. Since M2 ⇒ νx.M′
3 and N2 ⇒ N3, by Rule (11),

[M2]N2 ⇒ M′
3{N3 x}. We have M1{N1 x} ⇒ M′

3{N3 x} by Lemma 3.7.

(P2 = M2{N2 x} with M0 ⇒ νx.M2 and N0 ⇒ N2) : By induction there exists M3, N3 such

that νx.M1
⇒ M3

⇒
νx.M2, and N1

⇒ N3

⇒
N2; then by Proposition 3.8(iii), M3 = νx.M′

3,

and M1
⇒ M′

3

⇒
M2. We have M1{N1 x}⇒ M′

3{N3 x}
⇒

M2{N2 x} by Lemma 3.7.

(P2 = µγ.M2{N2·γ α} with M0 ⇒ µα.M2 and N0 ⇒ N2) : By induction there exists M3 such

that νx.M1
⇒ M3

⇒
µα.M2; this is impossible.

(12) : Then P0 ≡ [M0]N0 ⇒ M1{N1 α} ≡ P1 because M0 ⇒ µα.M1 and N0 ⇒ N1. By Proposi-

tion 3.8(v), either:

(P2 ≡ [M2]N2 with M0 ⇒ M2 and N0 ⇒ N2) : Then by induction there exists M3, N3 such

that µα.M1
⇒ M3

⇒
M2, and N1

⇒ N3

⇒
N2; then by Proposition 3.8(iii), M2 ≡ µα.M′

2

and M3 ≡ µα.M′
3 and M1

⇒ M′
3

⇒
M′

2. Since M2 ⇒ µα.M′
3 and N2 ⇒ N3, by Rule (11),

[M2]N2 ⇒ M′
3{N3 α}. We have M1{N1 α} ⇒ M′

3{N3 α} by Lemma 3.7.

(P2 = M2{N2 x} with M0 ⇒ νx.M2 and N0 ⇒ N2) : By induction there exists M3 such that

µα.M1
⇒ M3

⇒
νx.M2; this is impossible.

(P2 = M2{N2 α} with M0 ⇒ µα.M2 and N0 ⇒ N2) : By induction there exists M3, N3 such

that µα.M1
⇒ M3

⇒
µα.M2, and N1

⇒ N3

⇒
N2; then by Proposition 3.8(iii), M3 = µα.M′

3,

and M1
⇒ M′

3

⇒
M2. We have M1{N1 α}⇒ M′

3{N3 α}
⇒

M2{N2 α} by Lemma 3.7.

We can now state our main result.

Theorem 3.10 (Confluence) Reduction in →L is confluent.
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Proof : By Theorem 3.9, we have that ⇒L satisfies the diamond property, and by Lemma 3.6

that →∗
L is the transitive closure of ⇒L. Then by Definition 3.1, →L is confluent.

4 Representing ⊢
ni

in ⊢L

In this section we will show that all statements provable in ⊢ni have a witness in ⊢L. We

achieve this result by first defining a mapping for terms from νλµ to L; this will deal with

a necessary transformation of derivations when establishing a relation between typeability in

νλµ and L. What we use here is the transformation:

Γ ⊢νλµ M : ¬¬C
(ax)

y:¬C ⊢νλµ y : ¬C
(¬e)

Γ ⊢νλµ [M]y : ⊥

Γ ⊢νλµ C⌈[M]y⌋ : ⊥
(µ)

Γ ⊢νλµ µy.C⌈[M]y⌋ : C

into
Γ ⊢L M : ¬¬C

(ax)
y:C ⊢L y : C

(n)
y:C,α:¬C ⊢L [α]y : ⊥

(¬i)
α:¬C ⊢L νy.[α]y : ¬C

(¬e)
Γ ⊢L [M] (νy.[α]y) : ⊥

Γ ⊢L C⌈[M] (νy.[α]y)⌋ : ⊥
(µ)

Γ ⊢L µα.C⌈[M] (νy.[α]y)⌋ : C

Remark that in the first, there is no subterm that has type C, whereas in the second, there is.

So we can deal with (pbc) towards an assumption that is not on the left.

Definition 4.1 We define a mapping · V : νλµ→L inductively over terms.

x V = νx.[α]x (α x ∈ V)

x V = x (x 6∈ V)

µx.M V = µα. M V,α x

λx.M V = λx. M V

MN V = M V N V

νx.M V = νx. M V

[M]N V = [ M V ] N V

and define

x = ∅

λx.M = νx.M = M

MN = [M]N = M ∪ N

µx.M = M ∪ {α x} (α fresh)

Γ, x:A V = Γ V ,α:A (α x ∈ V)

Γ, x:A V = Γ V , x:A (α x 6∈ V)

∅ V = ∅

Remark that, if α x ∈V then x was bound under µ, so in a derivation will have a negated type.

Notice that all occurrences of term variables that occur in V are replaced by · V , even if they

appear on the left in (¬e): that this is not problematic, can be illustrated by the following:

µy.[y]M ǫ = µα.[ y α/y] M α/y = µα.[νy.[α]y] M α/y →L µα.[α] M α/y

so the substitutions on the left-hand side do not affect the result, but just create a slightly

more complicated proof than would be necessary.

We can now show a representation result, which essentially shows that, although the in-

ference rules of ⊢νλµ and ⊢L differ significantly in their applicability of the rule (µ), which

represents the proof rule (pbc), they can witness the same results in ⊢ni. This result does not

establish a rule-to-rule mapping of the correspondence between the systems, but states that

logical judgements that are provable in one system are also provable in the other. We know

that every provable judgement in ⊢νλµ corresponds directly to a provable statement in ⊢ni, and

vice versa, and with the correspondence we show here, we get that this also holds between ⊢L
and ⊢ni.

We first establish a relation between typeability in νλµ and L.
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Theorem 4.2 i) If Γ ⊢L M : A, then Γ ⊢νλµ M : A.

ii) If Γ ⊢νλµ M : A, and V = M, then Γ V ⊢L M V : A.

Proof : i) Since, once allowing Greek characters for variables as well, rule (n) can be omitted

and ⊢L is a sub-inference system of ⊢νλµ.

ii) By induction on the definition of ⊢νλµ.

(ax) : Then Γ = Γ′, x:A; we have two cases:

(α x ∈ V) : Then A = ¬B, Γ = Γ′, x:¬B, so Γ V = Γ′
V ,α:¬B and x V = νx.[α]x. We can

derive:

(ax)
Γ′

V , x:B ⊢ x : B
(n)

Γ′
V ,α:¬B, x:B ⊢ [α]x : ⊥

(¬i)
Γ′

V ,α:¬B ⊢ νx.[α]x : ¬B

(x 6∈ V) : Then Γ = Γ′, x:A, so x:A ∈ Γ V and x V = x; the result follows by rule (ax).

(µ) : Then M = µx.N, M V = µα. N V,α/x and the derivation for Γ ⊢νλµ M : A is shaped like:

Γ, x:¬A ⊢ N : ⊥
(µ)

Γ ⊢ µx.N : A

By induction we have Γ V ,α:¬A ⊢L N V,α/x : ⊥; the result follows by rule (µ).

(�i), (�e), (¬i), and (¬e) : Straightforward by induction.

Moreover, we now have have that every provable judgement in ⊢ni can be inhabited in ⊢L.

Corollary 4.3 If Γ ⊢ni A, if and only if there exist Γ′ and M ∈ L such that Γ′ = Γ and Γ′ ⊢L M : A.

We will illustrate the expressiveness of ⊢L.

Example 4.4 We can witness (¬B→¬A)→A→B in ⊢L (where Γ = x:¬B→¬A,y:A,α:¬B):

(ax)
Γ ⊢ x : ¬B→¬A

(ax)
Γ,z:B ⊢ z : B

(n)
Γ,z:B ⊢ [α]z : ⊥

(¬i)
Γ ⊢ νz.[α]z : ¬B

(�e)
Γ ⊢ x (νz.[α]z) : ¬A

(ax)
Γ ⊢ y : A

(¬e)
Γ ⊢ [x (νz.[α]z)]y : ⊥

(µ)
x:¬B→¬A,y:A ⊢ µα.[x (νz.[α]z)]y : B

(�i)
x:¬B→¬A ⊢ λy.µα.[x (νz.[α]z)]y : A→B

(�i)
⊢ λxy.µα.[x (νz.[α]z)]y : (¬B→¬A)→A→B

We can show Mendelson’s Axiom 3 in ⊢ni. Let Γ = ¬B→¬A,¬B→A

(ax)
Γ,¬B ⊢ ¬B→¬A

(ax)
Γ,¬B ⊢ ¬B

(�e)
Γ,¬B ⊢ ¬A

(ax)
Γ,¬B ⊢ ¬B→A

(ax)
Γ,¬B ⊢ ¬B

(�e)
Γ,¬B ⊢ A

(¬e)
Γ,¬B ⊢ ⊥

(pbc)
Γ ⊢ B

(�i)
¬B→¬A ⊢ (¬B→A)→B

(�i)
⊢ (¬B→¬A)→(¬B→A)→B

This proof gets represented in νλµ by the term λxy.µz.[xz] (yz).

Interpreting this into L gives (where Γ = x:¬B→¬A,y:¬B→A,α:¬B):
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(ax)
Γ ⊢ x : ¬B→¬A

(ax)
Γ,z:B ⊢ z : B

(n)
Γ,z:B ⊢ [α]z : ⊥

(¬i)
Γ ⊢ νz.[α]z : ¬B

(�e)
Γ ⊢ x (νz.[α]z) : ¬A

(ax)
Γ ⊢ y : ¬B→A

(ax)
Γ,z:B ⊢ z : B

(n)
Γ,z:B ⊢ [α]z : ⊥

(¬i)
Γ ⊢ νz.[α]z : ¬B

(�e)
Γ ⊢ y (νz.[α]z) : A

(¬e)
Γ ⊢ [x (νz.[α]z)] (y (νz.[α]z)) : ⊥

(µ)
Γ\α ⊢ µα.[x (νz.[α]z)] (y (νz.[α]z)) : B

(�i)
x:¬B→¬A ⊢ λy.µα.[x (νz.[α]z)] (y (νz.[α]z)) : (¬B→A)→B

(�i)
⊢ λxy.µα.[x (νz.[α]z)] (y (νz.[α]z)) : (¬B→¬A)→(¬B→A)→B

5 Strong normalisation

In this section we shall prove that every term typeable in ⊢L is strongly normalisable; this will

be done using the technique of reducibility candidates, as first defined by Girard [19], based on

work by Tait [42]. We will follow Parigot’s application [33] of the reducibility method, but

adapted to negation and applications like [M]N.

Definition 5.1 i) We use SN (M) to express that M is strongly normalisable (all reduction

paths starting from M are of finite length), and SN = {M ∈ L | SN (M)}.

ii) As in [33], we write Vf for the set of all finite sequences of elements of V, with ǫ repre-

senting the empty sequence, and use the notation v for elements of Vf.

Proposition 5.2 The following properties hold of SN :

i) SN (xM1 · · ·Mn) (with n ≥ 0) and SN (M′) if and only if SN (xM1· · ·Mn M′).

ii) If SN (M), then SN (λx.M).

iii) If SN (M), then SN (νx.M).

iv) If SN (M) then SN (µα.M).

v) If SN (Mx) then SN (M).

vi) If SN (M{N x}P) and SN (N), then

vii) If SN (M{N x}P) and SN (N), then SN ([νx.M]NP).

viii) If SN (M{N·γ α}P) and SN (N), then SN ((µα.M)NP).

ix) If SN (M{N α}P) and SN (N), then SN ([µα.M]NP).

x) If SN (M[β/α]), then SN ([β] (µα.M)).

The idea is to assign to each type A a set of strongly normalisable terms Red(A), and

to show that every term typeable with A is an element of Red(A), and thereby strongly

normalisable. Central to the predicate is the notion of functional construction, which states

that a set is in Red(A→B), if it is contained of terms that return terms in Red(B) when applied

to terms in Red(A).

The latter is expressed through the following:

Definition 5.3 ([33]) i) The functional construction ⇁⇀: ℘L× ℘L→℘L is defined through:

A ⇁⇀ B =∆ {M ∈ L | ∀N ∈ A (MN ∈ B)}

ii) ⇁⇀ is generalised to ⇁⇀f through:

A ⇁⇀f B =∆ {M ∈ L | ∀N ∈ Af (MN ∈ B)}

Using functional construction, reducibility candidates can be easily defined.

Definition 5.4 ([33]) The set Red⊆ ℘L of reducibility candidates is inductively defined through:
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i) SN ∈ Red;

ii) If A ∈ Red and B ∈ Red, then A ⇁⇀ B ∈ Red.

We write Red(A) for A ∈ Red.

The next result states that all terms that are reducible in A are also strongly normalisable,

and that all variables are reducible in any type.

Lemma 5.5 ([33]) If Red(A), then A ⊆ SN and A contains the λ-variables.

Proof : We prove 1) A ⊆ SN and 2) for all N ∈ SN f, xN ∈ A by induction on the definition of

Red.

i) (A = SN ) : Immediate.

(A = B ⇁⇀ C) : Take M∈ A, then ∀N ∈ A (MN∈ B), so by induction (1), ∀N∈ A (SN (MN)).

Take the λ-variable x, then by induction (2), x ∈ B and therefore Mx ∈ C, so by induc-

tion SN (Mx), and therefore by Proposition 5.2(v) SN (M).

ii) (A = SN ) : By Proposition 5.2(i).

(A = B ⇁⇀ C) : Let N′ ∈ B, then SN (N′) by induction (1). Take SN (Ni), then by Proposi-

tion 5.2(i) SN (xNN′), and xNN′ ∈ C by induction (2). So xN ∈ A.

Lemma 5.6 ([33]) If Red(A), then there exists B ⊆ SN f such that A = B ⇁⇀f SN .

Proof : By induction on the definition of Red.

(A = SN ) : Notice that SN =∆ {ǫ}⇁⇀f SN .

(A = C ⇁⇀ D) : By induction we have D = E ⇁⇀f SN for some E, and therefore A = F ⇁⇀f SN
where F = {MN | M ∈ C, N ∈ E}.

Definition 5.7 For every A ∈ Red, A⊥ is defined as the greatest B ⊆ SN f such that A = B ⇁⇀f

SN .

Notice that, since A ⊆ SN , if M ∈ A, then M ∈ SN and Mǫ ∈ SN , so ǫ ∈ A⊥.

Parigot remarks that membership of ǫ is essential. He says [33] “It allows to go from an

arbitrary reducibility candidate A to SN and back, without knowing anything about A. This property

is used for the case of the rule where one switches from one formula to another. Contrary to the case of

a λ where one knows that the type is an arrow, in the one of a µ one has an arbitrary type, but it can

be considered as some kind of arrow A⊥ ⇁⇀f SN whose number of arguments is unknown (possibly

zero).” (notation adapted).

It is perhaps worthwhile to point out that, so far, there is no relation between typeability and

reducibility, in that Red(A) does not just contain terms that are typeable with A; for example,

the term xx is in Red(A), for any A, since xx ∈SN , but is not typeable in ⊢L. However, assume

that term M is typeable with A, then we have a derivation that shows D : Γ ⊢L M : A and for

every free variable x in M there will a type B such that x:B ∈ Γ, and D contains occurrences

of rule (ax) showing Γ′ ⊢L x : B. We will be capable of proving that then replacing x in M by

elements of Red(B), for every free variable of M, creates an element of Red(A) and this will

be sufficient for our purposes.

In [33], Parigot shows termination for typeable terms in λµ enriched with quantification

rules; in order to deal with the binding of type variables, he defines a notion of type interpre-

tation that maps type variables onto reducible sets, extended naturally to quantification and

(using functional construction) to arrow types. Here we do not need to deal with quantifica-

tion, but find it convenient to continue on his path.

Definition 5.8 An interpretation ξ is a function from type variables to Red. Interpretations are

extended to arbitrary formulas by:
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ξ(A→B) = ξ(A)⇁⇀ ξ(B)

ξ(¬A) = ξ(A)⇁⇀ ξ(⊥)

ξ(⊥) = SN

We shall now prove our strong normalisation result by showing that every term typeable

with A is reducible in that type. For this, we need to prove a stronger property: we will now

show that if we replace term-variables by reducible terms in a typeable term, then we obtain

a reducible term.

Lemma 5.9 (Replacement Lemma) • Let Γ = {x1:B1, . . . , xn:Bn,α1:¬C1, . . . ,αm:¬Cm }.

• Let for 1 ≤ i ≤ n, Ni ∈ ξ(Bi), and for all 1 ≤ j ≤ m, Lj ∈ ξ(Cj)
⊥ if Cj = Dj→Ej, and Lj ∈ ξ(Dj)

if Cj = ¬Dj.

• Let {Qj? α} stand for {Qj·γj αj} if Cj = (Dj→Ej), or {Qj α} if Cj = ¬Dj.

If Γ ⊢L M : A, then M{Ni xi}{Li? αi} ∈ ξ(A).

Proof : By induction on the structure of derivations. We will use S for {Ni xi}{Li? αi}.

(ax) : Then M ≡ xi, for some 1 ≤ j ≤ n, Bi = A, and MS ≡ xiS ≡ Ni. From the second

assumption we have that Ni ∈ ξ(A).

(�i) : Then M = λx.N, A = F→G and Γ, x:F ⊢ N : G. Let P ∈ ξ(F), then by Lemma 5.5

SN (P), and by induction N{P x}S ∈ ξ(G). Let Q ∈ ξ(G)⊥, then N{P x}SQ ∈ SN by

Definition 5.7. Then by Proposition 5.2(vi) also (λx.N)PSQ ∈ SN . Therefore, by Defini-

tion 5.7, (λx.N)PS ∈ ξ(G) and since S does not affect P, also (λx.N)SP ∈ ξ(G) ; then by

Definition 5.4 and 5.8, (λx.N)S ∈ ξ(F→G).

(�e) : Then M = PQ and there exists F such that Γ ⊢ P : F→A and Γ ⊢ Q : F. By induction,

PS ∈ ξ(F→A) and QS ∈ ξ(F); by Definition 5.4 and 5.8 we have PS QS ∈ ξ(A), and

PS QS ≡ (PQ)S.

(¬i) : Then M ≡ νy.P, A = ¬F, and Γ,y:F ⊢ P : ⊥. Assume Q ∈ ξ(F), then by induction,

PS{Q y} ∈ ξ(⊥), so by Definition 5.8, SN (PS{Q y}). Then by Proposition 5.2(vii), we

have SN ([νy.PS]Q), so by Definition 5.8, [νy.PS]Q ∈ ξ(⊥), so by Definition 5.8 νy.PS∈
ξ(¬F), and νy.PS ≡ (νy.P)S.

(¬e) : Then A =⊥, M ≡ [P]Q, and there exists F such that Γ ⊢ P : ¬F and Γ ⊢ Q : F. Then, by

induction, we have PS∈ ξ(¬F) and QS∈ ξ(F). Then by Definition 5.4 and 5.8, [PS]QS∈
ξ(⊥), and [PS]QS ≡ ([P]Q)S.

(n) : Then M = [αj]N with 1 ≤ j ≤ m, A = ⊥, and Γ ⊢ N : Cj with α:¬Cj ∈ Γ. By induction,

NS ∈ ξ(Cj). Now either:

(Cj = Dj→Ej) : Notice that {Lj·γj αj} ∈ S and therefore ([αj]N)S = [γj]NSLj. We have Lj ∈

ξ(Cj)
⊥ by assumption, and therefore by Definition 5.7, NSLj ∈SN , so also [γj](NS)Lj ∈

SN ; then by Definition 5.8, [γj](NS)Lj ∈ Red(⊥).

(Cj = ¬F) : Now Vj ∈ ξ(F) by assumption, and therefore by Definition 5.8, [NS]Vj ∈Red(⊥),

and since {Q/α} ∈ S, also [NS]Vj = ([α]N)S.

(µ) : Then M = µβ.N and Γ, β:¬A ⊢ N : ⊥. Now either:

(A = D→E) : Let Q ∈ ξ(A)⊥, then by induction N{Q·γ α}S ∈ ξ(⊥) and by Definition 5.4

and 5.8, N{Q·γ α}S∈SN . Then by Proposition 5.2(viii), (µα.N)SQ∈SN , so (µα.N)S∈
ξ(A).

(A = ¬D) : Assume Q ∈ ξ(D), then by induction PS{Q α} ∈ ξ(⊥) and by Definition 5.4

and 5.8, PS{Q α} ∈ SN . Then by Proposition 5.2, we have [µα.PS]Q ∈ SN , so by
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Definition 5.8 [µα.PS]Q ∈ ξ(⊥), so by Definition 5.4 (µα.P)S ∈ ξ(¬D).

We can now prove the main result.

Theorem 5.10 (Strong Normalisation) Any term typeable in ‘⊢L’ is strongly normalisable.

Proof : Let Γ = x1:B1, . . . , xn:Bn,α1:¬C1, . . . ,αm:¬Cm such that Γ ⊢L M : A. By Lemma 5.5, for

all 1 ≤ i ≤ n, xi ∈ ξ(Bi) and ǫ ∈ ξ(Cj)
⊥. Then, by 5.9, M{xi/xi}{ǫ?/αj} ∈ Red(A); strong

normalisation for M then follows from Lemma 5.5.

6 Principal typing for L

In this section, we will show that we can define a notion of principal typing for ⊢L. This is

achieved in the standard way: we define notions of type substitutions and unification, that are

used for the definition of the algorithm ptL that calculates the principal typing for each term

typeable in ⊢L.

Substitution is shown to be sound, i.e. maps inferable judgements to inferable judgements,

and the algorithm is shown to be complete in that all inferable judgements for a term can be

constructed from its principal typing.

Definition 6.1 (Substitution and unification) i) a) The substitution (ϕ 7→ C) , where ϕ is a

type variable and C a type, is inductively defined6 by:

(ϕ 7→ C) ⊥ = ⊥

(ϕ 7→ C) ϕ = C

(ϕ 7→ C) ϕ′ = ϕ′ (ϕ′ 6= ϕ)

(ϕ 7→ C) A→B = ((ϕ 7→ C) A)→ ((ϕ 7→ C) B)

(ϕ 7→ C) ¬A = ¬((ϕ 7→ C) A)

b) If S1, S2 are substitutions, then so is S1◦S2, where S1◦S2 A = S1(S2 A).

c) SΓ = {x:SB | x:B ∈ Γ} ∪ {α:SB | α:B ∈ Γ}.

d) S〈Γ , A〉 = 〈SΓ , S A〉.

e) If there exists a substitution S such that S A = B, then B is a (substitution) instance of A.

f ) IdS is the identity substitution that replaces all type variables by themselves.

ii) Unification of types is defined by:

unify ϕ ϕ = (ϕ 7→ ϕ)

unify ϕ B = (ϕ 7→ B) (ϕ does not occur in B)

unify A ϕ = unify ϕ A

unify (A→B) (C→D) = S2◦S1

where S1 = unify A C

S2 = unify (S1 B) (S1 D)

unify (¬A) (¬C) = unify A C

iii) The operation unifyC generalises unify to contexts:

6 All algorithmic definitions in this section are presented in ‘functional style’, where calls are matched against
the alternatives ‘top-down’, the first match is taken, and the result is undefined in case there is no match.

30



ptL x = 〈x:ϕ ; ϕ〉
where ϕ is fresh

ptL λx.M = 〈Π ; P〉
where 〈Π′ ; P′〉 = ptL M

Π ; P =

{

Π′ x ; A→P′ (x:A ∈ Π′)

Π′ ; ϕ→P′ (x 6∈ Π′)

ϕ is fresh

ptL MN = S2◦S1 〈Π1 ∪ Π2 ; ϕ〉
where 〈Π1 ; P1〉 = ptL M

〈Π2 ; P2〉 = ptL N

S1 = unify P1 P2→ϕ

S2 = unifyC (S1 Π1) (S1 Π2)

ϕ is fresh

ptL νx.M = 〈Π ; P〉
where 〈Π′ ; ⊥〉 = ptL M

Π ; P =

{

Π′ x ; ¬A (x:A ∈ Π′)

Π′ ; ¬ϕ (x 6∈ Π′)

ϕ is fresh

ptL [M]N = S2◦S1 〈Π1 ∪ Π2 ; ⊥〉
where 〈Π1 ; P1〉 = ptL M

〈Π2 ; P2〉 = ptL N

S1 = unify P1 ¬P2

S2 = unifyC (S1 Π1) (S1 Π2)

ptL µα.M = 〈Π ; P〉
where 〈Π′ ; ⊥〉 = ptL M

Π ; P =

{

Π′ α ; A (α:¬A ∈ Π′)

Π′ ; ϕ (α 6∈ Π′)

ϕ is fresh

ptL [α]N = 〈Π ; ⊥〉
where 〈Π′ ; P′〉 = ptL N

Π =

{

SΠ′ (α:¬A ∈ Π′)

Π′,α:¬P′ (α 6∈ Π′)

S = unify A P′

Figure 2. The algorithm ptL

unifyC (Γ1, x:A) (Γ2, x:B) = S2◦S1,

where S1 = unify A B

S2 = unifyC (S1 Γ1) (S1 Γ2)

unifyC (Γ1, x:A) Γ2 = unifyC Γ1 Γ2 (x 6∈ Γ2)

unifyC (Γ1,α:A) (Γ2,α:B) = S2◦S1,

where S1 = unify A B

S2 = unifyC (S1 Γ1) (S1 Γ2)

unifyC (Γ1,α:A) Γ2 = unifyC Γ1 Γ2 (α 6∈ Γ2)

unifyC ∅ Γ2 = IdS

This definition specifies unify as a partial function; if the side condition ‘ϕ does not occur in B’

fails, no result is returned. So, for example, ‘unify ϕ ϕ→ ϕ’ or ‘unify (A→B) ¬(C→D)’ does

not return a substitution.

If successful, unification returns the most general unifier, as stated by:

Proposition 6.2 ([37]) For all A, B: if S1 is a substitution such that S1 A= S1 B (so then S1 is a unifier

of A and B), then there exist substitutions S2 and S3 such that S2 = unify A B and S1 = S3◦S2 .

Lemma 6.3 (Soundness of substitution) If Γ ⊢L M : A, then SΓ ⊢L M : S A.

Proof : By straightforward induction on the structure of derivations.

We now define a notion of principal typing for terms of L.

Definition 6.4 The principal typing algorithm for ⊢L is given in Figure 2.

We can show that the algorithm creates valid judgements:

Lemma 6.5 (Soundness of ptL ) If ptL M = 〈Π ; P〉, then Π ⊢L M : P.

Proof : By induction on the structure of terms, using Lemma 6.3.

We will now show the main result for ptL , which states that it calculates the most general

typeing with respect to type substitution for all terms typeable in ⊢L.
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Theorem 6.6 (Completeness of substitution.) If Γ ⊢L M : A, then there exists context Π, type

P, and substitution S such that: ptL M = 〈Π ; P〉, SΠ ⊆ Γ, and SP = A.

Proof : By induction on the structure of terms in L.

(M ≡ x) : Then, by rule (ax), x:A ∈ Γ, and ptL x = 〈{x:ϕ} ; ϕ〉. Take S = (ϕ 7→ A).

(M ≡ λx.N) : Then, by rule (�i), there are C, D such that A = C→D, and Γ, x:C ⊢L N : D.

Then, by induction, there are Π′, P′ and S′ such that ptL N = 〈Π′ ; P′〉, S′ Π′ ⊆ Γ, x:C, and

SP′ = D. Then either:

(x ∈ fv(N)) : Then x:C′ ∈ Π′, and ptL λx.N = 〈Π′ x ; C′→P′〉. Since S′ Π′ ⊆ Γ, x:C, in par-

ticular S′ C′ = C, S′ (Π′ x)⊆ Γ, and S′ (C′→P′) = C→D. Take Π = Π′ x, P = C′→P′,

and S = S′.

(x 6∈ fv(N)) : Then ptL λx.N = 〈Π′ ; ϕ→P′〉, x does not occur in Π′, and let ϕ not occur in

〈Π′ ; P′〉. Since S′ Π′ ⊆ Γ, x:C, in particular S′ Π′ ⊆ Γ. Take S = S′◦(ϕ 7→ C), then, since

ϕ does not occur in Π′, also SΠ′ ⊆ Γ. Notice that S(ϕ→P′) = C→D; take Π = Π′ and

P = ϕ→P′.

(M ≡ QR) : Then, by rule (�e), there exists a B such that Γ ⊢L Q : B→A and Γ ⊢L R : B. By in-

duction, there are S1,S2, 〈Π1 ; P1〉 = ptL Q and 〈Π2 ; P2〉 = ptL R (no type variables shared)

such that S1 Π1 ⊆ Γ, S2 Π2 ⊆ Γ, S1 P1 = B→A and S2 P2 = B. Notice that S1,S2 do not

interfere. Let ϕ be a fresh type variable and

Su = unify P1 (P2→ϕ)

SC = unifyC (Su Π1) (Su Π2)

ptL QR = SC◦Su 〈Π1 ∪ Π2 ; ϕ′
1 ∪ ∆′

2〉

We need to argue that ptL QR is successful: since this can only fail on calls to unification

(of P1 and P2→ϕ, or in the unification of the contexts), we need to argue that these are

successful. Take S3 = S2◦S1◦(ϕ 7→ A), then

S3 P1 = B→A, and

S3(P2→ϕ) = B→A.

so P1 and P2→ϕ have a common instance B→A, and by Proposition 6.2, Su exists.

Notice that we have

S3 Π1 ⊆ Γ, and

S3 Π2 ⊆ Γ

since Π1 and Π2 share no type-variables. Since Γ is a context, each term variable has

only one type, and therefore S3 is a unifier for Π1 and Π2, so we know that an S4 exists

which extends the substitution that unifies the contexts, even after being changed with

Su, so such that

S4(Su Π1) ⊆ Γ, and

S4(Su Π2) ⊆ Γ.

So S4 also unifies Su Π1 and Su Π2, so by Proposition 6.2 there exists a substitution S5

such that S4 = S5◦SΓ◦Su. Take S = S5.

(M ≡ νx.N) : Then, by rule (¬i), there exists C such that A = ¬C, and Γ, x:C ⊢L N : ⊥. Then,

by induction, there are Π′ and S′ such that ptL N = 〈Π′ ;⊥〉, and S′ Π′ ⊆ Γ, x:C. Then

either:

(x ∈ fv(N)) : Then x:C′ ∈ Π′, and ptL νx.N = 〈Π′ x ; ¬C′〉. Since S′ Π′ ⊆ Γ, x:C, in particular

S′ C′ = C, S′ (Π′ x) ⊆ Γ, and S′ (¬C′) = ¬C. Take Π = Π′ x, P = ¬C′, and S = S′.

(x 6∈ fv(N)) : Then ptL λx.N = 〈Π′ ;¬ϕ〉, x does not occur in Π′ where ϕ does not occur
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in 〈Π′ ; P′〉. Since S′ Π′ ⊆ Γ, x:C, in particular S′ Π′ ⊆ Γ. Take S = S′◦(ϕ 7→ C), then,

since ϕ does not occur in Π′, also SΠ′ ⊆ Γ. Notice that S(¬ϕ) = ¬C; take Π = Π′ and

P = ¬ϕ.

(M ≡ [Q]R) : Then A = ⊥ and by rule (¬e) there exists a B such that Γ ⊢L Q : ¬B and

Γ ⊢L R : B. By induction, there are S1,S2, 〈Π1 ; P1〉 = ptL Q and 〈Π2 ; P2〉 = ptL R (no type

variables shared) such that S1 Π1 ⊆ Γ, S2 Π2 ⊆ Γ, S1 P1 = ¬B and S2 P2 = B. Notice that

S1,S2 do not interfere. Let ϕ be a fresh type variable and

Su = unify P1 ¬P2

SC = unifyC (Su Π1) (Su Π2)

ptL QR = SC◦Su 〈Π1 ∪ Π2 ; ⊥〉

As for the case M = QR, take S3 = S2◦S1◦(ϕ 7→ A), then S3 P1 =¬B, and S3 P2 = B, so P1

and ¬P2 have a common instance ¬B and Su exists. Since also S3 Π1 ⊆ Γ, and S3 Π2 ⊆ Γ,

as above an S4 exists such that S4(Su Π1) ⊆ Γ, and S4(Su Π2) ⊆ Γ and by Proposition 6.2

there exists a substitution S5 such that S4 = S5◦SΓ◦Su. Take S = S5.

(M ≡ µα.N) : Then, by rule (µ), Γ,α:¬A ⊢L N : ⊥. Then, by induction, there are Π′ and S′

such that ptL N = 〈Π′ ; ⊥〉, and S′ Π′ ⊆ Γ,α:¬A. Then either:

(α ∈ fv(N)) : Then α:¬C∈Π′, and ptL µα.N = 〈Π′ α ; C〉. Since S′ Π′ ⊆ Γ,α:¬A, in particular

S′ C = A and S′ (Π′ α) ⊆ Γ. Take Π = Π′ α, P = C′, and S = S′.

(α 6∈ fv(N)) : Then ptL µα.N = 〈Π′ ; ϕ〉, α does not occur in Π′ where ϕ does not occur in

〈Π′ ; P′〉. Since S′ Π′ ⊆ Γ,α:¬A, in particular S′ Π′ ⊆ Γ. Take S = S′◦(ϕ 7→ A), then,

since ϕ does not occur in Π′, also SΠ′ ⊆ Γ. Notice that S(ϕ) = A; take Π = Π′ and

P = ϕ.

(M ≡ [α]N) : Then A =⊥ and by rule (n) there exists a B such that α:¬B ∈ Γ and Γ ⊢L N : B.

By induction, there exists S1, 〈Π′ ; P′〉 = ptL N such that S1 Π′ ⊆ Γ, and S1 P′ = B. Then

either:

(α ∈ fv(N)) : Let α:¬C ∈ Π′; take S2 = unify C P′, then ptL [α]N = 〈S2 Π′ ; ⊥〉, and α:¬S2 C ∈
S2 Π′. Since α:¬C ∈ Π′ and S1 Π′ ⊆ Γ, we have that S1 ¬C = ¬B and S1 P′ = B, so S2

is successful and there exists S3 such that S1 = S3◦S2, so S1 Π′ = S3(S2 Π′) ⊆ Γ. Take

S = S3.

(α 6∈ fv(N)) : Then ptL [α]N = 〈Π′,α:¬P′ ;⊥〉; take S = S1.

This last result shows the practicality of our notion of type assignment.

Conclusion and Future Work

We have presented L as an extension of Parigot’s λµ-calculus by adding negation as a type

constructor with the aim of representing proofs in ⊢ni, Classical Logic with implication, nega-

tion, and Proof by Contradiction. We gained a more expressive calculus, that no longer repre-

sents ¬A through A→⊥, but, more importantly, negation elimination is no longer represented

by application, and negation introduction not by λ-abstraction, but through new syntactic

constructs that represent negation introduction and elimination directly, thus getting a more

faithful representation of proofs in ⊢ni.

We defined a notion of reduction that extends λµ’s logical and structural reduction rules

with two new reduction rules, one dealing with a (¬i)−(¬e)-pair, the other when Proof by

Contradiction gets applied agains an assumption that has a double negated type. We showed

that type assignment is sound, in that assignable types are preserved under reduction. Using,

as suggested by Py, Aczel’s generalisation of Tait and Martin-Löf’s notion of parallel reduction,

we showed that reduction is confluent.

By it’s nature, not all proofs in ⊢ni can be represented in L, but we have shown a complete-
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ness result in that all propositions that can be shown in ⊢ni have a witness in L. Following

Parigot, using Girard’s approach of reducibility candidates, we have shown that all typeable

terms are strongly normalisable, and that type assignment for L enjoys the principal typing

property.

In all, L satisfies all the properties that can be demanded for a calculus claiming to represent

proofs and proof contraction in ⊢ni. By representing negation directly, it also severely enlarges

the size of the set of nef terms (a syntactic notion, not dependent on assigned types) to those

really not representing negation. All these are important issues for the creation of theorem

provers for Classical Logic.

Our motivation for our work was two-fold: enlarge the set of nef-terms, and the fact that

(implicative) λµ does not fully represent negation. It is now fair to ask: “Is L the finished

product?” In other words, can all logical connectors be expressed in L? Although it is well

known that conjunction A ∧ B can be expressed through ¬(A→¬B) and disjunction A ∨ B

through ¬A→B, this is not enough, since it does not answer the question of representability.

In particular, is seems that rule (∨E) cannot be represented in ⊢ni, since that would require a

combination of a limited version of LEM and (∨E) through the rule

Γ, A ⊢ C Γ,¬A ⊢ C

Γ ⊢ C

We will leave this issue for future work.
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