
Exception Handling and Classical Logic

Steffen van Bakel
Department of Computing
Imperial College London

London, UK

ABSTRACT

We present λtry, an extension of the λ-calculus with named excep-

tion handling, via try, throw and catch, and present a basic no-

tion of type assignment expressing recoverable exception handling

and show that it is sound. We define an interpretation for λtry to

Parigot’s λµ-calculus, and show that reduction (both lazy and call

by value) is preserved by the interpretation. We will show that also

types assignable in the basic system are preserved by the interpre-

tation.

We will then add a notion of total failure through halt that es-

capes applicative contexts without being caught by a handler, and

show that we can interpret this in λµ when adding top as destina-

tion. We will argue that introducing handlers for halt will break

the relation with λµ.

We will conclude the paper by showing that it is possible to add

handlers for program failure by introducing panic and dedicated

handlers to λtry. We will need to extend the language with a condi-

tional construct that is typed in a non-traditional way, that cannot

be expressed in λµ or logic. This will allow both recoverable ex-

ceptions and total failure, dealt with by handlers; we will show a

non-standard soundness result for this system.

KEYWORDS

exception handling, abort, classical logic, lambda calculus

ACM Reference Format:

Steffen van Bakel. 2019. Exception Handling and Classical Logic. In Pro-

ceedings of the 21st International Symposium on Principles and Practice of

Programming Languages 2019. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3354166.3354186

INTRODUCTION

In this paper we will investigate the relation between exception

handling and Classical Logic [9, 20], but will tread a path different

to that usually taken over the last 20 years or so. Where the normal

approach is to start from Classical Logic and to seek computational

content in proofs, here we will do the reverse: we will define a

λ-calculus enriched with a primitive form of named (recoverable)

exception handling, and investigate if its natural notions of type

assignment can be represented in Parigot’s λµ [18, 19], a calculus

that represents minimal classical logic [1].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PPDP’19, 7-9 October 2019, Porto, Portugal

© 2019 Association for Computing Machinery.

https://doi.org/10.1145/3354166.3354186

We will also add non-recoverable exceptions; then the corre-

sponding calculus is λµ-top [1], but only if we do not ‘catch’ these

exceptions. When trying to add handlers for failing exceptions,

the correspondence with λµ or λµ-top breaks down, highlighting

that type theories based on classical logic do not fully cover ex-

ception handling. To stress that point even further, we will enrich

λtry with a non-conventionally typed conditional structure, and the

type constant fail that is reserved for failing computations; for this

system, we will show that computations either run preserving the

type, or run to a term that has type fail, so fail, as can be expected

from the character of failing exceptions. This thereby constitutes a

language for which the standard subject-reduction result does not

hold, and which therefore cannot be represented in calculi based

on classical logic.1

For a long time it has been thought that only intuitionistic logic

had a computational meaning, given its strong relation with types

in programming; this is known as the Curry-Howard isomorphism,

and ismostmanifest in the simply typed lambda calculus.However,

since it is not possible to comfortably express notions like control

or context manipulation in the pure λ-calculus, it is clear that the

λ-calculus by itself, although Turing complete, is perhaps not ex-

pressive enough. Most of these control features, such as direct re-

turns, coroutines, or exception handling, usually exhibit a form of

non-local exit, which, albeit specifiable (and therefore realisable)

in the pure calculus, are not easily represented, and certainly not

usingmeaningful types. As such, these additions required different

formalisms for behaviour specification - e.g. translation to contin-

uation passing style (CPS) or abstract machines.

That situation changed when Griffin [11] observed that the C-

operator of Felleisen’s λC-calculus [8] can be typed with ¬¬A→A

(or ((A→⊥)→⊥)→A), thus highlighting the first link between

classical logic and sequential control in computer science. This led

to work by Parigot, who introduced a candidate for describing con-

tinuations in the form of the λµ-calculus.

The study of the relation between exception handling and clas-

sical logic goes back a few decades. Fundamental work has been

done by Nakano [15, 16], followed by Crolard [5], in building intu-

itive systems for analysing throw/catch structures in a functional

context. Crolard’s intuition with respect to the representation of

throw and catch as terms in λµ is an essential development, and is

also used in Bierman’s [3] interpretation into λµ of deGroote’s [13]

calculus λ→exn, and in a certain sense also by [17], albeit for call-by-

value languages. However, in both approaches the argument of the

throw-term is the actual exception handler, which is different from

the usual perception of what the information encapsulated in a

thrown exception should be.

1All such calculi are designed to satisfy preservation of provable statements under the
operation of cut-elimination, which translates to the property of subject reduction on
the level of the calculi.

https://doi.org/10.1145/3354166.3354186
https://doi.org/10.1145/3354166.3354186

PPDP’19, 7-9 October 2019, Porto, Portugal Steffen van Bakel

Here we will present the λtry-calculus, a λ-calculus extended

with a try/throw/catch syntax which is more similar to the con-

structions found in common programming languages. In our view,

shared by many in the literature, exceptions should exclusively

only be thrown when reached during the execution of a program;

we therefore accept the (almost) generic approach (an exception is

that of [15]) and define reduction strategies that do not permit re-

duction inside an abstraction; unlike in other papers, here we will

we consider both call-by-name (lazy) and call-by-value.

Rather than selecting the exception handler through its type, as

is the common practice in languages like java [10], in λtry the han-

dlers are called by name, giving exception handling a more func-

tional ‘feel’. This calculus can be implemented in λµ in that we

will present an interpretation that preserves both lazy and call-by-

value reduction in λtry; as was the case in [4, 5, 17], the ‘context

erasing’ capability of µ -reduction is used to model the functional-

ity of throw.

To investigate if all natural notions of type assignment for this

calculus can correspond to the one for λµ, we will present three

variants of λtry, with different notions of type assignment. The first

comprises a ‘basic’ theory, based on the approach of recoverable

exceptions currently used [7] for example in java; it assumes that

all exception handlers return the same type as that of the main

term in a try-construct, effectively hiding the occurrence of the

exception and allowing for execution to continue normally even

after an exception has been thrown. We will show that assignable

types are preserved under cbn and cbv-reduction and under the

interpretation into λµ.

The second notion of type assignment we will present repre-

sents ‘failure’; we add the construct halt, which corresponds to an

exception that cannot be caught so has no possibility of recovery.

This induces a notion of type assignment, for which we will show

soundness for both cbn and cbv. We will modify the interpretation

into on mapping onto λµ-top, a variant of λµ that represents full

classical logic, and show that assignable types are preserved.

Since both these notions are presented for a small extension of

the λ-calculus, the notions are sound but not really expressive: for

example, both throw and halt can have all types. Although the type

⊥ is used when mapping the calculus into λµ-top, it is not used for

the calculus itself, so we cannot tell by the assignable types if a

program will fail, an arguably desirable property.

It is fair to state that type assignment for exception handling

that marks failing computations is only really relevant in the pres-

ence of the conditional construct, where, depending on the evalu-

ation of the boolean expression, the program continues normally

or raises an exception. We will therefore extend λtry further, add a

conditional construct together with term constants and their types,

and add a handling mechanism to deal with occurrences of halt, so

achieve both recoverable and fatal exceptions. Also for this exten-

sion we will show a soundness result, which states that a computa-

tion either runs preserving the type, or fails. The key difference for

this system is that we have to allow for the conditional construct to

be typed in a non-conventional way. A direct consequence of this

choice is that no longer can we preserve assignable types under

the interpretation into λµ or λµ-top.

These result put into evidence that exception handling can be ei-

ther recoverable or failing, characterised through assignable types,

(Ax) :
Γ, x :A ⊢ x :A

(→I) :
Γ, x :A ⊢ M : B

(x /∈ Γ)
Γ ⊢ λx .M :A→B

(→E) :
Γ ⊢ M :A→B Γ ⊢ N :A

Γ ⊢ MN : B

Figure 1: Curry type assignment system for the λ-calculus.

and that named exception handling is perfectly feasible in the con-

text of functional programming. Moreover, type assignment sys-

tems for exception handling need not all be based on classical logic.

1 RELATED SYSTEMS

In this section we will revise some formal languages and their type

assignment systems that are of interest to this paper. We revisit

Curry’s λ-calculus [2, 6], and Parigot’s λµ [18].

1.1 The λ-calculus

We quickly revise some basic notions for the λ-calculus, to better

set the context of this paper.

Definition 1.1 (Lambda terms, call-by-name and call-by-value).

(1) λ-terms are defined by the grammar:

M,N ::= V | MN

V ::= x | λx .M (values)

(2) (One-step) β-reduction is defined using the β-rule

(β) : (λx .M)N → M{N /x}

and evaluation contexts that are defined as terms with a sin-

gle hole by:

C ::= [] | CM | MC | λx .C

We write C[M] for the term obtained from the context C

by replacing its hole [] with M , allowing variables to be

captured. One-step β reduction is defined as the compatible

closure of the β-rule through:

(β) : C[(λx .M)N] → C[M{N /x}]

for any evaluation context. We write →∗
β for the transitive

closure of →β , and use that notation for all the notions of

reduction we consider in this paper.

(3) Call-by-name evaluation contexts are defined through:

Cn ::= [] | CnM

Call-by-name (cbn) reduction →n

βµ
(also known as lazy re-

duction) is defined through:

(β) : Cn[(λx .M)N] → Cn[M{N /x}]

(4) Call-by-value evaluation contexts are defined through:

Cv ::= [] | CvM | V Cv

Call-by-value (cbv) reduction→v

βµ
is defined through:

(βv) : Cv[(λx .M)V] → Cv[M{V /x}]

Curry type assignment for the λ-calculus is defined by:

Definition 1.2 (Curry type assignment for the λ-calculus).

PPDP’19, 7-9 October 2019, Porto, Portugal

(1) Let φ range over a countable (infinite) set of type-variables.

The set of Curry types is defined by the grammar:

A,B ::= φ | A→B

(2) A context of variables Γ is a partial mapping from term vari-

ables to types, denoted as a finite set of statements x :A, such

that the subjects of the statements (x) are distinct. We write

Γ1, Γ2 for the compatible union of Γ1 and Γ2 (if x :A1 ∈ Γ1 and

x :A2 ∈ Γ2, then A1 = A2), and write Γ, x :A for Γ, {x :A}, and

x /∈ Γ if there exists no A such that x :A ∈ Γ.

(3) Curry type assignment is defined by the inference system in

Fig. 1.

1.2 On adding exception handling to the

λ-calculus

The main topic of this paper is to define an extension of the λ-

calculus with exception handling, modelled through try, catch and

throw, and investigate notions of type assignment for it and their

relation to classical logic. Before coming to that, perhapswe should

point out some of the inevitable limitations of extending the λ-

calculus with exception handling.

• From the point of view of programming, throwing of excep-

tions from inside an abstraction, as modelled by the reduction rule

λx .throw α N → throw α N

should not be allowed.2 One reason is that subject reduction will

then fail (the variable x might appear in N ; see Ex. 3.4), but, per-

haps more importantly, it would correspond to letting a program

raise an exception just because it occurs in a function definition,

regardless of whether or not evaluation of the program has led to

the exception.

• In call-by-value or call-by-name functional programming lan-

guages, reductions never take place underneath an abstraction, so

exceptions defined inside a function are only ever thrown when

the function has been called (a redex involving the abstraction has

been contracted). This restriction seems to have been applied to

almost all proposals for λ-calculi with control in the past (an ex-

ception is [15]).

• A common approach to typeing the throw action is to base its

rule on the rule for ⊥-elimination from Classical Logic [9],

Γ ⊢ ⊥

Γ ⊢ A

(ex falso quodlibet sequitur). which allows any type to be assigned

to the expression, as through the rule

(throw) :
Γ ⊢M : A | ∆

Γ ⊢ throw α M : B | α :A, ∆

This, however, is only ever useful in languages that have a con-

ditional construct, when one of the two alternatives throws a re-

coverable exception whereas the other executes normally (see also

Sect. 5). We do not know, a priori, if a boolean will evaluate to true

or false, so if the exception handler is only thrown in the else-part,

the type assignment system should be able to express both that the

2This rule is implied in systems where throw is allowed to escape from any context,
as in [15].

computationwill continue normally (in case the boolean evaluates

to true), or fails (in case the boolean evaluates to false).

In order to successfully type this with the normal type assign-

ment rule for the conditional

(cond) :
Γ ⊢M : bool | ∆ Γ ⊢ P : B | ∆ Γ ⊢Q : B | ∆

Γ ⊢ if M then P else Q : B | ∆

we need to be able to ‘warp’ the type of the throw to B, for any

B. Type assignment thereby then ‘hides’ the fact that an exception

was thrown. This last point will be relevant in Sect. 5 where we

present a notion of type assignment that allows for failing excep-

tions, for which this hiding feature is no longer present, and the

type assignment can (in certain cases) predict failure of a program.

When adding the conditional construct, as we will do in the final

part of the paper, and allowing for both recoverable and failing

exceptions, this apparent shortcoming disappears, and part of a

program can fail without that affecting the type for the whole.

• Normal programming hygiene would demand that exceptions

can only be thrown towards an existing and corresponding catch

(in our case, the one with the right name). Our approach here,

where we use a try-construct

try M ; catch n1 (x) = N1 ; . . . ; catch nn (x) = Nn

that contains a number of catch expressions that deal with the ex-

ceptions that might be thrown inside M , demands that the result

of a normal execution, which would exit from the try-construct,

cannot contain a throw towards one of the exception handlers in-

side the try-construct, but can only refer to exception handlers that

are defined outside the try-construct. In fact, the names for the ex-

ception handlers are bound in the construct, and we do not want

reduction ‘to free’ bound names or variables.

If this seems restrictive, dropping this restriction for names is

easily dealt with using dynamic scoping, and involves checking if

a handler for that name is also defined ‘one level up’, or assuming

that all locally defined exception handlers are otherwise redefined

on the outermost level where they generate an undefined message,

with reduction rules like

(tryV ; catch ni (x) = Mi)P →

tryVP ; catch m(x) = Error("Message not understood")

(mi = fn(V))

etc. Because dynamic scoping cannot be directly represented in

λµ, we choose here to syntactically restrict the terms; this leads

to more elegant and tractable solutions to the various theoretical

results we achieve, where we can focus on the essential properties

without overly complicating the system.

1.3 The calculus λµ

Parigot’s λµ-calculus is a proof-term syntax for classical logic, ex-

pressed in Natural Deduction, defined as an extension of the Curry

type assignment system for the λ-calculus.With λµ Parigot created

a multi-conclusion typing system which corresponds to classical

logic; the derivable statements have the shape Γ ⊢λµ M : A | ∆,

where A is the main conclusion of the statement, expressed as the

active conclusion, and ∆ contains the alternative conclusions; the

left-hand context Γ represents the types of the free term variables

of M . As with Implicative Intuitionistic Logic, the reduction rules

PPDP’19, 7-9 October 2019, Porto, Portugal Steffen van Bakel

for the terms that represent the proofs correspond to proof contrac-

tions; the difference is that the reduction rules for the λ-calculus

are the logical reductions, i.e. deal with the elimination of a type

construct that has been introduced directly above. In addition to

these, Parigot expresses also the structural rules that change the

focus of a proof.

We now present the variant of λµ we consider in this paper, as

defined by Parigot in [19]:

Definition 1.3 (Syntax of λµ). The λµ-terms we consider are de-

fined by the grammar:

M,N ::= V | MN | µα .[β]M

V ::= x | λx .M (values)

Recognising both λ and µ as binders, the notion of free and bound

names and variables is defined as usual, andwe accept Barendregt’s

convention to keep free and bound names and variables distinct,

using (silent) α-conversion whenever necessary.We write x ∈ M

(α ∈ M) if x (α) occurs in M , either free of bound. As in Haskell

[14], we will use ‘ ’ as a special name: when we write µ .[α]M ,

the name ‘ ’ does not occur (free) in [α]M . We will call the pseudo-

terms of the shape [α]M commands, written C, and treat them as

terms for reasons of brevity, whenever convenient.

In λµ, reduction of terms is expressed via implicit substitution,

and as usual,M{N /x} stands for the substitution of all occurrences

of x in M by N .

We define two kinds of structural substitution: the first is the

standard one, whereM{N ·γ /α} stands for the term obtained from

M in which every command of the form [α]P is replaced by [γ]PN

(γ is a fresh name). The second will be of use for call-by-value re-

duction; here {N ·γ /α}M stands for the term obtained from M in

which every [α]P is replaced by [γ]NP .

They are formally defined by:

Definition 1.4 (Structural substitution). (1) Right-structural sub-

stitution,M{N ·γ /α}, is defined inductively by:

x {N ·γ /α} =
∆ x

(λx .M) {N ·γ /α} =
∆ λx .(M{N ·γ /α})

(M1M2) {N ·γ /α} =
∆ M1{N ·γ /α} M2{N ·γ /α}

[α]M {N ·γ /α} =
∆ [γ](M{N ·γ /α}N)

[β]M {N ·γ /α} =
∆ [β](M{N ·γ /α}) (β , α)

(µδ .C) {N ·γ /α} =
∆ µδ .(C{N ·γ /α})

(2) Left-structural substitution, {N ·γ /α}M , is defined by:

{N ·γ /α} x =

∆ x

{N ·γ /α} (λx .M) =
∆ λx .({N ·γ /α}M)

{N ·γ /α} (M1M2) =
∆ {N ·γ /α}M1 {N ·γ /α}M2

{N ·γ /α} [α]M =
∆ [γ]N ({N ·γ /α}M)

{N ·γ /α} [β]M =
∆ [β]{N ·γ /α}M (β , α)

{N ·γ /α} µδ .C =

∆ µδ .{N ·γ /α}C

[18] only defines the first variant of these notions of structural

substitutions (so does not use the prefix ‘right’); the two notions

are defined together, but rather informally, using a notion for con-

texts in [17].

We have the following notions of reduction on λµ. For the third,

call by value, different variants exists in the literature; we adopt

the one from [17].

(Ax) :
Γ, x :A ⊢ x : A | ∆

(µ) :
Γ ⊢M : B | α :A, β :B, ∆

(α /∈∆)
Γ ⊢ µα .[β]M : A | β :B, ∆

Γ ⊢M : A | α :A, ∆
(α /∈∆)

Γ ⊢ µα .[α]M : A | ∆

(→I) :
Γ, x :A ⊢M : B | ∆

(x /∈ Γ)
Γ ⊢ λx .M : A→B | ∆

(→E) :
Γ ⊢M : A→B | ∆ Γ ⊢ N : A | ∆

Γ ⊢MN : B | ∆

Figure 2: Type assignment rules for λµ

Definition 1.5 (λµ reduction). (1) The reduction rules of λµ are:

logical (β) : (λx .M)N → M{N /x}

structural (µ) : (µα .C)N → µγ .C{N ·γ /α} (γ fresh)

erasing (E) : µα .[α]M → M (α /∈M)

renaming (R) : [β]µγ .C → C{β/γ }

Evaluation contexts are defined by:

C ::= [] | CM | MC | λx .C | µα .[β]C

(Free, unconstrained) reduction→βµ on λµ-terms is defined

through C[M] →n

βµ
C[N] if M → N using either the β , µ ,

E, or R-reductions rule.

(2) Call-by-name evaluation contexts are defined as:

Cn ::= [] | CnM | µα .[β]Cn

Call-by-name reduction is defined through: Cn[M] →n

βµ

Cn[N] ifM → N using either the β , µ , E, or R rule.

(3) Call-by-value evaluation contexts are defined through:

Cv ::= [] | CvM | V Cv | µα .[β]Cv

Call-by-value is defined through:Cv[M] →v

βµ
Cv[N] ifM →

N using either µ, E, R, or:

(βv) : (λx .M)V →n

βµ
M{V /x}

(µv) : V (µα .C) →n

βµ
µγ .{V ·γ /α} C (γ fresh)

(4) Call-by-name applicative contexts are defined as:

Cn
a

::= [] | Cn
a
M

whereas call-by-value applicative contexts are defined as:

Cv
a

::= [] | Cv
a
M | VCv

a

Remark that, for rule (µv), µα .[β]N is not a value. Also, unlike

for the λ-calculus, call-by-value reduction is not a sub-reduction

system of →βµ: the rule (µv) (and left-structural substitution) are

not part of →βµ.

Notice that a term might be in either cbn or cbv-normal form

(i.e. reduction has stopped), but not need be that for→βµ.

Type assignment for λµ is defined below; there is a main, or ac-

tive, conclusion, labelled by a term, and the alternative conclusions

are labelled by names α , β , etc.

Definition 1.6 (Typing rules for λµ). (1) Types and contexts are

those of Def. 1.2.

PPDP’19, 7-9 October 2019, Porto, Portugal

(2) A context of names ∆ is a partial mapping from names to

types, denoted as a finite set of statements α :A, such that the

subjects of the statements (α) are distinct. Notions ∆1, ∆2, as

well as ∆,α :A and α /∈ ∆ are defined as for Γ.

(3) The type assignment rules for λµ are presented in Fig. 2; we

will write Γ ⊢λµ M : A | ∆ for statements derivable in this

system.

We can think of [α]M as storing the type of M amongst the

alternative conclusions by giving it the name α .

Example 1.7. Take the term µα .[α]µβ .[γ]M , such that M does

not contain α or β , and α , γ . Then by renaming,

µα .[α]µβ .[γ]M →βµ µα .[γ]M{α/β} = µα .[γ]M

but also, by erasure, µα .[α]µβ .[γ]M →βµ µβ .[γ]M . Notice that

µα .[γ]M =α µ .[γ]M =α µβ .[γ]M .

We can show that type assignment is closed under reduction for

both call-by-name and call-by-value reduction. This result might

itself be as expected, and is presented heremostly for completeness.

First we show results for the three notions of substitution.

Lemma 1.8 (Substitution lemma). (1) If Γ,x :B ⊢λµ M : A | ∆

and Γ ⊢λµ L : B | ∆, then Γ ⊢λµ M{L/x} :A | ∆.

(2) If Γ ⊢λµ M : A | α :B→C,∆ and Γ ⊢λµ L : B | ∆, then Γ ⊢λµ
M{L·γ /α} :A | γ :C,∆.

(3) If Γ ⊢λµ L : B→C | ∆ and Γ ⊢λµ M : A | α :B,∆, then Γ ⊢λµ
{L·γ /α}M :A | γ :C,∆.

With this lemma we can now show:

Theorem 1.9. (1) IfM →n

βµ
N , and Γ ⊢λµ M :A | ∆, then Γ ⊢λµ

N :A | ∆.

(2) IfM →v

βµ
N , and Γ ⊢λµ M :A | ∆, then Γ ⊢λµ N :A | ∆.

[1] also present a variant of λµ, called λµ-top, where top is a spe-

cial name that cannot occur bound and denotes the top-level. Their

motivation for this extension is: “On the programming calculi side,

the presence of the continuation top makes it possible to distinguish

between aborting a computation and throwing to a continuation (as

aborting corresponds to throwing to the special top-level continua-

tion). This distinction can be used to develop more refined program-

ming calculi for languages with control operators.” We will follow

this suggestion below, when we look to model aborting computa-

tions in λtry in Sect. 4.

Definition 1.10 (λµ-top). (1) Terms of the λµ-top-calculus are de-

fined as inDef. 1.3, extendedwith the case µα .[top]M , where

top is a name that cannot occur bound.

(2) The notion of type assignment for λµ-top, ⊢t , is defined ex-

tending the set of types with the constant ⊥ and the type

assignment rules of Fig. 2, extended with the rule

(top) :
Γ ⊢M : ⊥ | α :A, ∆

Γ ⊢ µα .[top]M : A | ∆

The appropriate variants of Lem. 1.8 and Thm. 1.9 can much in

the same way be shown to hold for ⊢t .

The following lemma is needed below when encoding throwing

exceptions.

Lemma 1.11. (1) The reduction rule Cn
a
[µ .[β]N] → µ .[β]N

is admissible in→n

βµ
.

(2) The reduction rule Cv
a
[µ .[β]N] → µ .[β]N is admissi-

ble in→v

βµ
.

Proof. (1) By induction on the structure of contexts:

(Cn
a
= []) : Immediate.

(Cn
a
= Cn

a ′M) : Notice that , β and that there is no sub-term

called in N ; then

Cn
a ′[µ .[β]N]M → (IH) (µ .[β]N)M

→n

βµ
µγ .[β]N {M ·γ / }

= µγ .[β]N

=α µ .[β]N

Notice that γ is fresh; since there is no sub-term called

in M , the structural substitution {M ·γ / } has no effect,

so, in particular, γ does not appear in [β]M .

(2) By induction on the structure of contexts. The first two cases

are similar to above; the third one is:

(Cv
a
= VCv

a ′) : VCv
a ′[µ .[β]M] → (IH)

V (µ .[β]M) →v

βµ

µγ .[β]{V ·γ / }M =

µγ .[β]M =α µ .[β]M �

Notice that this result also holds for β = top.

1.4 On modelling the catch/throw mechanism

in λµ

Throwing an exception involves an interruption of normal exe-

cution, and a jump out of the current context; those jumps can

be modelled by rules that eradicate the context, like for example

C[A(M)] → M as used in λC [8] (using the abort constructorA),

or similarly as in [11, 15].

The kind of contexts that can be aborted differ from paper to

paper. The most common approach, as used in [4, 8] and here, is

to allow aborting applicative contexts only, but, for example, [15]

allows aborting executions inside abstractions as well. Allowing

the latter kind of comes with obstacles, in that type assignment

and in particular soundness (preservation of assignable types un-

der reduction) becomes more difficult to achieve, since in general

we cannot preserve types when aborting from an abstraction (see

Ex. 3.4), which leaves that we can only safely abort from applica-

tive contexts.

In terms of provable properties it is preferable to model eradica-

tion of applicative contexts ‘one syntactic construction at the time’,

rather than use the λC-approach, which aborts entire contexts via

C[A(M)] → M , where the context is assumed to be as large as pos-

sible. This is exactly what can be modelled in λµ (using the result

of Lem. 1.11), where the functionality of throwing an exceptionM

to name n can be represented by µ .[n]M (where n does not oc-

cur in M), i.e. a context switch that can be used to erase (only) an

applicative context. We can now implement the functionality of

‘escaping from the context’ via the mechanism of consuming it via

the reduction steps:

(µ .[n]M)PQ → (µ .[n]M)QR →

(µ .[n]M)R → µ .[n]M

Notice that this will always leave the prefix µ .[n], which therefore

has to be removed through the encoding of the catch functionality.

PPDP’19, 7-9 October 2019, Porto, Portugal Steffen van Bakel

We can achieve this using λµ’s renaming and erasing reduction

steps: we model catching on name n through µn.[α]M :

µn.[α](µ .[n]M)PQ →∗
βµ (1.11) µn.[α]µ .[n]M →βµ (R)

µn.[n]M →βµ (E) M

However, this is not enough; we also want the catch-mechanism

to disappear when computation terminates normally, as in

try V ; catch ni (x) = Mi → V

which is then modelled through, as a last step µn.[α]V →βµ V

but this is only possible when α = n.

In conclusion, throwing to the name n has to bemodelled through

µ .[n], whereas catching on the name n has to bemodelled through

µn.[n]. This is the approach of all historic interpretations into λµ,

as, for example, the one presented in [17].

2 THE CALCULUS λtry

The calculusλtry wewill present in this sectionwill use the C++/java-

like syntax of try, throw, and catch, but will discern the excep-

tion handlers by name rather than by type. We will see the term

‘catch n(x) = M’ as an exception handler named n that can receive

a parameter on x after which it runs M with the parameter tak-

ing the position of x inM , and ‘throw n(N)’ a call to the exception

handler with name n, passing it the argument N .

Terms of λtry are defined as follows:

Definition 2.1 (Syntax of λtry). (1) The set of pre-terms of λtry is

defined by the grammar:

Catch Block ::= catch m(x) = M | Catch Block; catch n(x) = N

M,N ::= V | MN | tryM ; Catch Block | throw n(M)

V ::= x | λx .M (Values)

(2) We will call n in ‘catch n(x) = N ’ a declared name and will

write catch ni (x) = Ni for the catch-block

catch n1 (x) = N1 ; . . . ; catch nn (x) = Nn .

Since exceptions are called using their name, the order in

which they appear in the catch-block is not important.

(3) The set of terms are pre-terms that satisfy the following re-

strictions:

(a) In catch ni (x) = Mi the names ni do not occur in the ex-

ception handler Mj , for any i, j ∈ n (where i ∈ n stands

for i ∈ { 1, . . . ,n }), and all declared names n1, · · ·, nn are

distinct;

(b) for each throw nl (N) that occurs inside M in the term

tryM ; catch ni (x) = Ni , none of the names ni occur in N .

(4) We define the notion of bound variables and of bound names

of M (respectively bv (M) and bn (M)) as usual, extended

with:

bv (tryM ; catch ni (x) = Ni) = bv (M) ∪

bv (N1) ∪ · · · ∪ bv (Nn) ∪ { x }

bv (throw n(M)) = bv (M)

bn (tryM ; catch ni (x) = Ni) = { n1, . . . , nn } ∪

bn (M) ∪ bn (N1) ∪ · · · ∪ bn (Nn)

bn (throw n(M)) = bn (M)

where the occurrences of x in the terms Ni are bound by

catch in the try-construct, and, by Barendregt’s convention,

x does not occur free in M . A variable or name is free in M

if it occurs in M and is not bound; we write fv(M) for the

set of free variables inM , and fn(M) for its free names.

We accept Barendregt’s convention, so all free and bound vari-

ables and names are distinct, using renaming of bound variables or

names (α-conversion) when necessary.

To control the throwing of exceptions, we define a notion of

call by name (lazy) and call by value reduction; these define an

evaluation strategy, where an exception is only ever thrown when

needed to continue reduction.

Definition 2.2 (λtry-reduction). (1) The notion of call-by-name re-

duction→n
try on λ

try is defined as an extension of lazy reduc-

tion on λ-terms. The main reduction rules are:

(β) : (λx .M)N → M{N /x}

(throw) : (throw n(N))M → throw n(N)

(try-throw) : try throw nl (N); Catch Block; catch nl (x) = Ml

→ Ml {N /x}

(try-normal) : try N ; catch ni (x) = Mi → N (ni /∈ N)

Call-by-name applicative contexts are defined as:

Cn
a

::= [] | Cn
a
M | try Cn

a
; Catch Block

(2) The notion of call-by-value reduction→v
try on λ

try is defined

using the reduction rules from call-by-name, with the ex-

ception of (β) which gets replaced by:

(βv) : (λx .M)V → M{V /x}

It adds the rule:

(throwv) : V (throw n(N)) → throw n(N)

Call-by-value applicative contexts are defined as:

Cv
a ::= [] | Cv

a
M | V Cv

a
| try Cv

a
; Catch Block

Notice that, as in all (call by name, or call by value) functional

languages, reduction does not allow for the evaluation of the body

of an abstraction; this implies that throws inside the body are not

‘triggered’ until at least the surrounding abstraction has disappear-

ed as the result of the contraction of a redex. If execution inside a

try-block leads to a term N that does not contain throws to the

declared names, then the result of the try-block is just that N ; it is

not necessarily the case that reduction of N has terminated.

We will now define an interpretation of λtry-terms into λµ, using

the approach we discussed above. Notice that, by the very nature

of λµ, when encoding throw using a context switch, the body of

the throw is not the information that something has gone wrong

that gets passed to the exception handler, but in fact the entire

exception handler. This implies that, when dealing with the term

‘tryM ; catch ni (x) = Ni ’, we need to bring the exception handlers

catch n(x) = N inside the interpretation of M ; this is done using

substitution,3 introducing variables cni that are placed in front of

the argument that is passed to the exception handler in throw ni (M).

3A perhaps more elegant approach is to encode a try-block using a redex, rather
than term substitution, but that implies that we can no longer model lazy (cbv) re-

duction in λtry by lazy (cbv) reduction in λµ , in particular when modelling the step

M → N ⇒ try M ; Catch_Block → try N ; Catch_Block.

PPDP’19, 7-9 October 2019, Porto, Portugal

Definition 2.3 (Interpretation of λtry into λµ). We extend the set

of names in λµ with n,m, . . . , and define the interpretation of terms

in λtry into λµ-terms as follows:

x λµ =
∆ x

λx .M λµ =
∆ λx . M λµ

MN λµ =

∆ M λµ N λµ

throw n(M) λµ =

∆ µ .[n]cn M λµ

tryM ; catch n(x) = N λµ =
∆ (µn.[n] M λµ) {λx . N λµ /cn}

tryM ;Catch Block; catch n(x) = N λµ =
∆

(µn.[n] M ; Catch Block λµ) {λx . N λµ /cn}

Remark 2.4. Although many names can be used in a λtry-term,

when interpreting into λµ all collapse onto the outermost one. To

illustrate this, take the term

tryM (throwm(N))(throw n(L)); catch n(x) = P ; catch m(x) = Q

The interpretation of this term is

(µm.[m](µn.[n] M (µ .[m]cm N)(µ .[n]cn L))

{λx . P λµ /cn}) {λx . Q λµ /cm} =

µm.[m] µn.[n] M λµ (µ .[m](λx . Q λµ) N λµ)

(µ .[n](λx . P λµ) L λµ) →βµ (R)

µm.[m] M λµ (µ .[m](λx . Q λµ) N λµ)

(µ .[m](λx . P λµ) L λµ)

We will show that both reduction and assignable types (under

the basic system, see Sect. 3) are preserved under this interpreta-

tion. First we show that term-substitution is preserved under the

interpretation.

Lemma 2.5 (· λµ preserves term substitution).

M λµ { N λµ /x} = M{N /x} λµ .

Wecan show that cbn-reduction and cbv-reduction onλtry-terms

is preserved under the interpretation:

Theorem 2.6 (Soundness of · λµ with respect to →n
try).

If P →n
try Q , then P λµ →n ∗

βµ
Q λµ .

So it seems that interpreting into λµ is the natural thing to do.

Similarly, we can verify that the interpretation respects call by

value reduction→v
try.

Theorem 2.7 (Soundness of · λµ with respect to →v
try).

If P →v
try Q , then P λµ →v ∗

βµ
Q λµ .

The only non-β-reduction steps for the λµ-calculus used in these

two encoding results are renaming, erasing, and µ (or µv) towards

, i.e. a non-occurring name.

3 BASIC TYPE ASSIGNMENT

In this section we will define a notion of basic type assignment for

terms in λtry in the traditional way; in particular, in rule (try), we

will demand that the type of the main term is exactly that returned

by all exception handlers.

Definition 3.1 (Basic type assignment for λtry). (1) Types and con-

texts of variables Γ and names ∆ are those of Def. 1.6.

(2) Basic type assignment for terms in λtry is defined through

the inference system in Fig. 3. We write Γ ⊢b M : A | ∆ for

statements derivable using these rules.

(Ax) :
Γ, x :A ⊢ x : A | ∆

(→I) :
Γ, x :A ⊢M : B | ∆

(x /∈ Γ)
Γ ⊢ λx .M : A→B | ∆

(→E) :
Γ ⊢M : A→B | ∆ Γ ⊢ N : A | ∆

Γ ⊢MN : B | ∆

(throw) :
Γ ⊢ N : A | n:A→B, ∆

Γ ⊢ throw n(N) :C | n:A→B, ∆

(try) :
Γ ⊢M : B | ni :Ai→B, ∆ Γ, x :Ai ⊢ Ni : B | ∆ (∀i ∈ n)

(ni /∈∆)
Γ ⊢ try M ; catch ni (x) = Ni : B | ∆

Figure 3: Basic type assignment for λtry

Notice that our (throw) rule allows to derive any type for the

term throw n(N), but provided there is an exception handler with

name n capable of accepting arguments of the type of N , as repre-

sented by the context of names.

Explaning rule (try), notice that, if we have derivations for

Γ ⊢M :C | ni :Ai → Bi, ∆ and Γ, x :Ai ⊢ Ni : Bi | ∆ (∀i ∈ n)

then we cannot predict, a priori, if running M to normal form M ′

will throw an exception or not. If it does not, then running the

term tryM ; catch ni (x) = Ni will result inM
′ (assumingM ′ is free

of throws) and to achieve subject reduction, M ′ should be of type

C . If it does, runningM will produce throw n(L) and (assuming n =

nl ∈ ni), try M ; catch ni (x) = Ni will run to Ni {L/x}, which has

type Bi . So in order to achieve a subject reduction result also for

this case, there is no choice but to demand thatC = B1 = · · · = Bn .

We can show:

Lemma 3.2 (Substitution lemma for ⊢b). If Γ,x :C ⊢b M : A | ∆

and Γ ⊢b N :C | ∆, then Γ ⊢b M{N /x} :A | ∆.

It is relatively straightforward to show that this notion of type

assignment is closed under cbn and cbv-reduction:

Theorem 3.3 (Subject reduction for ⊢b). (1) If Γ ⊢b P : A | ∆

and P →n
try Q , then Γ ⊢b Q :A | ∆.

(2) If Γ ⊢b P : B | ∆ and P →v
try Q , then Γ ⊢b Q : B | ∆.

Proof. (1) By induction on the definition of→n
try; we only show

the interesting parts.

(β) : Standard, using Lemma 3.2.

(throw) : Then ∆ = n:A→C,∆′, P = (throw n(N))M →

throw n(N) = Q ; the derivation for P is constructed as:

D

Γ ⊢ N : A | n:A→C, ∆′

(throw)
Γ ⊢ throw n(N) : D→ B | n:A→C, ∆′

Γ ⊢M : D | n:A→C, ∆′

.

.

.

(→E)
Γ ⊢ (throw n(N))M : B | n:A→C, ∆′

We can construct the derivation for Q :4

4Notice that throw n (N) changes type; this corresponds to a feature of reduction in
λµ , where in some presentations the structural rule is written as (using the notation
of Definition 1.5) (µα .[β]M)N → µα .([β]M {N ·α /α }); before the reduction, α
has type A→B, say, and a�er it has type B.

PPDP’19, 7-9 October 2019, Porto, Portugal Steffen van Bakel

D

Γ ⊢ N : A | n:A→C, ∆′

(throw)
Γ ⊢ throw n(N) : B | n:A→C, ∆′

(try-throw) : Then P = try throw nl (M); catch ni (x) = Ni →

Nl {M/x} = Q ; the derivation for P is constructed as fol-

lows:

Γ ⊢M : Al | ni :Ai →B, ∆
(throw)

Γ ⊢ throw nl (M) : B | ni :Ai → B, ∆

Γ, x :Ai ⊢ Ni : B | ∆

..

.
(∀i ∈ n)

(try)
Γ ⊢ try throw nl (M); catch n(x) = N : B | ∆

In particular, we have derivations for both Γ ⊢b M : Al |

ni :Ai →C,∆ and Γ, x :Al ⊢b Nl : B | ∆. By the definition

of λtry-terms, we know that ni /∈ fn(M), for all i ∈ n, so by

thinning we can remove ni :Ai →B from the co-context

for the first to obtain Γ ⊢bM :Al | ∆. Then, by Lem. 3.2, we

obtain Γ ⊢b Nl {M/x} : B | ∆.

(try-normal) : Then P = try Q ; catch ni (x) = Ni → Q , and

ni /∈Q ; the derivation for P is constructed as follows:

Γ ⊢Q : B | ni :Ai →B, ∆ Γ, x :Ai ⊢ Ni : B | ∆ (∀i ∈ n)
(try)

Γ ⊢ try Q ; catch ni (x) = Ni : B | ∆

In particular, we have Γ ⊢b Q : B | ni :Ai →B,∆; as above

we can remove ni :Ai →B from the co-context to obtain

Γ ⊢b Q : B | ∆.

(2) The proof is much like that for the previous part, but with

the addition of:

(throwv) : Then ∆ = n:A→C,∆′, P = V (throw n(N)) →

throw n(N) = Q ; the derivation for P is constructed as:

Γ ⊢V : E→ F | n:A→C, ∆′

D

Γ ⊢ N : A | n:A→C, ∆′

(throw)
Γ ⊢ throw n(N) : E | n:A→C, ∆′

(→E)
Γ ⊢V (throw n(N)) : F | n:A→C, ∆′

We can construct the derivation for Q :

D

Γ ⊢ N : A | n:A→C, ∆′

(throw)
Γ ⊢ throw n(N) : F | n:A→C, ∆′ �

Although restricting throwing an exception to applicative con-

texts might seem too limiting, it is in fact not possible to extend it

to full reduction whilst preserving soundness.

Example 3.4. Assume we would have tried to model throwing

exceptions from inside an abstraction as well, by adding the rule:

(throw-abstr) : λx . throw n(N) → throw n(N)

Apart from that this is undesirable within programming languages

(it would correspond to throwing an exception simply because it

occurs in a function definition), or the fact that we cannot model

this reduction in pure λµ, also subject reductionwould fail instantly.

Suppose we can derive

Γ, x :A ⊢ N : D | n:D→C, ∆
(throw)

Γ, x :A ⊢ throw n(N) : B | n:D→C, ∆
(→I)

Γ ⊢ λx . throw n(N) : A→B | n:D→C, ∆

We can construct

Γ, x :A ⊢ N : D | n:D→C, ∆
(throw)

Γ, x :A ⊢ throw n(N) : A→B | n:D→C, ∆

but cannot, in general, derive Γ ⊢b throw n(N) :A→B | n:D→C,∆:

notice that x might be free in N , so then would need a type in

any derivation for N . This problem was observed by [15, 16], who

solved it by not allowing an abstraction to be typeable if the bound

variable occurs in a thrown term, and avoided by many others who

do not allow throwing an exception from within an abstraction, as

we do here.

We will now show that our encoding into λµ preserves types

assignable in the basic system:

Theorem 3.5 (Preservation of assignable types). If Γ ⊢b M :

B | ni :Ai →Ci , then Γ, cni :Ai →Ci ⊢λµ M λµ : B | ni :Ci .

Proof. By induction on the definition of ⊢b; we will only show

the interesting cases.

(throw) : Then the derivation looks like

Γ ⊢M : Ai | ni :Ai →Ci
(throw)

Γ ⊢ throw nl (M) : B | ni :Ai →Ci

By induction we have Γ, cni :Ai →Ci ⊢ M λµ :Ai | ni :Ci ,∆,

and we can construct:

.

..

..

(Ax)
Γ, cni :Ai →Ci ⊢ cnl : A→Ci | ni :Ci

Γ, cni :Ai →Ci ⊢ M λµ : Ai | ni :Ci
(→E)

Γ, cni :Ai →Ci ⊢ cnl M λµ :Ci | ni :Ci
(Wk)

Γ, cni :Ai →Ci ⊢ cnl M λµ :Ci | :B, ni :Ci
(µ)

Γ, cni :Ai →Ci ⊢ µ .[nl]cnl M λµ : B | ni :Ci

and throw nl (M) λµ = µ .[nl]cnl M λµ . Notice that the

weakening step is correct, in that the names n and do not

occur (free) in M λµ , so (perhaps using thinning) can be

assumed to not occur in ∆.

(try) : Then the derivation ends like (assuming there arem excep-

tion handlers defined):

.

..

..
Γ ⊢M : B | mj :D j → B, ni :Ai →Ci

Γ, x :D j ⊢ Nj : B | ni :Ai →Ci (∀j ∈m)
(try)

Γ ⊢ try M ; catch mi (x) = Ni : B | ni :Ai →Ci

We can now construct derivations for the two alternatives

of the interpretation of a try-expression; for clarity, we only

present the second, the first is almost identical.

So the case we deal with here is:

tryM ; Catch Block; catch m(x) = N λµ =
∆

(µm.[m] tryM ; Catch Block λµ) {λx . N λµ /cm}

LetM ′
= tryM ; Catch Block; then Γ, cni :Ai →Ci , cm :D→B⊢

M ′
λµ : B |m:B, ni :Ci and Γ, cni :Ai →Ci , x :D ⊢ N λµ : B |

ni :Ci follow by induction. We can construct:

PPDP’19, 7-9 October 2019, Porto, Portugal

Γ, cni :Ai →Ci , x :D ⊢ L λµ : B | ni :Ci
(→I)

Γ, cni :Ai →Ci ⊢ λx . L λµ : D→B | ni :Ci
(Wk)

Γ, cni :Ai →Ci ⊢ λx . L λµ : D→B | m:B, ni :Ci

Then Γ, cni :Ai →Ci ⊢ M ′
λµ {λx . L λµ /cm} :B |m:Bni :Ci

follows by Lem. 1.8, and we can construct:

Γ, cni :Ai →Ci ⊢ M ′
λµ {λx . L λµ /cm } : B | m:B, ni :Ci

(µ)
Γ, cni :Ai →Ci ⊢ µm .[m] M λµ {λx . N1 λµ /cm } : B | ni :Ci �

So λtry with basic type assignment is fully representable in λµ.

4 ADDING halt TO λtry

We will now define a notion of type assignment that extends the

system we defined above, by allowing for both recoverable and

unrecoverable failure; to distinguish raising the latter kind of ex-

ception from the former, throw, we considered above, we use the

keyword halt. The idea is that halt gets propagated through the

system and becomes the end result. Therefore, we need to add re-

duction rules that consume applicative contexts, as for throw, and

make sure to not ‘catch’ the halt, as that would localise the event

and limit its range (see also Rem. 4.9).

Not catching halt is done also for technical reasons. We will ar-

gue below that raising a halt is different from throw: when aiming

for a representation in λµ, we cannot use handlers and parameter

passing for halt. In Rem. 4.9 wewill discuss an alternative approach,

and indicate why that does not satisfy the purpose.

As mentioned above, following the suggestion of [1], we will

aim to map our calculus onto λµ-top, where top is a special name

that cannot occur bound and denotes the top-level.Wewould there-

fore want to define a notion of type assignment that, for example,

deals with halt by assigning it the type ⊥, but that would not be

possible, as argued in Ex. 4.8.

We extend the calculus λtry from Def. 2.1, by extending the set

of pre-terms through adding the construct halt; the notion of re-

duction is defined as in Def. 2.2, by adding the rule that expresses

that also halt consumes an applicative context.

Definition 4.1 (Syntax of λtry
h
). (1) The set of pre-terms of λtry

h
is

defined by the grammar:

Catch Block ::= ϵ | Catch Block; catch n(x) = M

M,N ::= V | MN | tryM ; Catch Block
| throw n(M) | halt

V ::= x | λx .M

(2) The cbn-reduction system for λtry
h

is like that for λtry from

Def. 2.2, defined by the rules:

(β) : (λx .M)N → M{N /x}
(throw) : (throw n(N))M → throw n(N)
(halt) : haltM → halt

(try-throw) : try throw nl (N); catch ni (x) = Mi

→ Ml {N /x} (nl ∈ ni)

(try-normal) : try N ; catch ni (x) = Mi → N (ni /∈ N)

cbn applicative contexts are defined as in Def. 2.2.

(3) The cbv-reduction system for λtry
h

is that of cbn, replacing

rule (β) by the first reduction rule below, and adding the

second and third:

(Ax) :
Γ, x :A ⊢ x : A | ∆

(→I) :
Γ, x :A ⊢M : B | ∆

Γ ⊢ λx .M : A→B | ∆

(→E) :
Γ ⊢M : A→B | ∆ Γ ⊢ N : A | ∆

Γ ⊢MN : B | ∆

(throw) :
Γ ⊢M : A | n:A→B, ∆

Γ ⊢ throw n(M) :C | n:A→B, ∆

(halt) :
Γ ⊢ halt : A | ∆

(try) :
Γ ⊢M :C | n:Ai →C, ∆ Γ, x :Ai ⊢ Ni :C | ∆ (∀i ∈ n)

Γ ⊢ try M ; catch ni (x) = Ni :C | ∆

Figure 4: Type assignment for λtry with failure

(βv) : (λx .M)V → M{V /x}
(throwv) : V (throw n(N)) → throw n(N)
(haltv) : V halt → halt

cbv applicative contexts are defined as in Def. 2.2.

Notice that the system only handles throws; halt is just propagated

through the reduction system until it is the remaining term, as in

try halt; catch ni (x) = Mi → halt

through reduction rule try-normal. So when a halt occurs, no pa-

rameter passing takes place, and the event is not handled.

We define failure type assignment for terms in λtry
h

as follows:

Definition 4.2 (Type assignment for λtry
h
). Type assignment for

terms in λtry
h
, ⊢h, is defined through the inference system in Fig 4.

We write Γ ⊢h M : A | ∆ if this judgement is derivable using these

rules.

Notice that we use the same set of types as before, so are not

using the type constant ⊥ that is used in λµ-top. Also, the way halt

is treated in the type assignment system is the same as throw, in

that it allows halt to have any type at all, essentially following the

logic rule ex falso quodlibet sequitur. Here we do not inhabit this

rule with a term construct, as is done for example, in Λµ [12] and

[1]. Rather, we limit its use to just (halt).

So although aborting a computation is successfully modelled in

the calculus itself, there is no representation of that in the type

system.

We can now show the following soundness result for cbn reduc-

tion.

Theorem 4.3 (Subject reduction for ⊢h wrt→n
try). If Γ ⊢h P :

C | ∆ and P →n
try Q , then Γ ⊢h Q :C | ∆.

We can also show a similar result for cbv:

Theorem 4.4 (Subject reduction for ⊢h wrt→v
try). If Γ ⊢h P :

C | ∆ and P →v
try Q , then Γ ⊢h Q :C | ∆.

So, in terms of type assignment for a λ-calculuswith exceptions,

the failure system satisfies the basic requirement with respect to

call-by-name and call-by-value reduction.

We can interpret λtry
h

in λµ-top as follows:

PPDP’19, 7-9 October 2019, Porto, Portugal Steffen van Bakel

Definition 4.5 (Interpretation of λtry
h

into λµ-top). (1) We add the

term constant halt 5 to λµ-top that can only be assigned ⊥

by adding the inference rule:

(halt) :
Γ ⊢t halt : ⊥ | ∆

(2) The interpretation of λtry
h

in λµ-top is defined as follows:

x t =
∆ x

λx .M t =
∆ λx . M t

MN t =
∆ M t N t

throw n(M) t =
∆ µ .[n]cn M t

tryM ; ϵ t =
∆ M t

tryM ; Catch Block; catch n(x) = L t =
∆

(µn.[n] tryM ; Catch Block t) {λx . L t/cn}

halt t =
∆ µ .[top] halt

Notice that, in order to achieve that halt t consumes applicative

contexts, we need to use the prefix ‘µ ’, as we have done also for

throw n(M) t .

We can now show:

Theorem 4.6 (Soundness of the interpretation for λtry
h
).

(1) If P →n

h
Q , then P t →

n ∗
βµ

Q t .

(2) If P →v

h
Q , then P t →

n ∗
βµ

Q t .

We can also show that assignable types are preserved.

Theorem 4.7 (Preservation of assignable types). If Γ ⊢h M :

B | ni :Ai →Ci , then Γ, cni :Ai →Ci ⊢t M : B | ni :Ci .

Proof. By induction on the definition of ⊢h, very similar to that

of Thm. 3.5, but with an added case.

(halt) : ThenM = halt. We can construct

(halt)
Γ ⊢ halt : ⊥ | :C, ∆

(top)
Γ ⊢ µ .[top] halt :C | ∆

and halt = µ .[top] halt. �

Remark 4.8. In this paper we are mainly looking at the relation

between notions of exception handling and classical logic; in that

setting, it would be reasonable to add the type constant ⊥ to the

type language, and use it to type halt, as also suggested in the proof

of the previous theorem.

This is, on its own, perfectly feasible, and works well on the

level of λtry itself, but we would not be able to establish a relation

with λµ. For example, we can add the rules

(halt) :
Γ ⊢ halt : ⊥ | ∆

(→En) :
Γ ⊢M : ⊥ | ∆ Γ ⊢ N : A | ∆

Γ ⊢MN : ⊥ | ∆

for a notion of type assignment towards cbn, and add the rule

(→Ev) :
Γ ⊢M : A | ∆ Γ ⊢ N : ⊥ | ∆

Γ ⊢MN : ⊥ | ∆

for cbv.6

The problem appears in the proof of Thm. 4.7, where we would

have the case

5We use halt just as a place holder, it is not active in the reduction relation.
6Notice that these two variants of (→E) need to be added to achieve subject reduction.

(→En) : ThenM = PQ , the derivation looks like

Γ ⊢h P : ⊥ | ni :Ai →Ci Γ ⊢h Q : D | ni :Ai →Ci
(→E)

Γ ⊢h PQ : ⊥ | ni :Ai →Ci

and by induction we have Γ, cni :Ai →Ci ⊢t P :⊥|ni :Ci and

Γ, cni :Ai →Ci ⊢t Q :D | ni :Ci . In order for us to be able to

combine these two derivations in ⊢t , we need to create the

arrow type D→⊥ from ⊥. The only way to do that, in ⊢t , is

to apply rule (top):

Γ, cni :Ai →Ci ⊢λµ P : ⊥ | ni :Ci
(Wk)

Γ, cni :Ai →Ci ⊢λµ P : ⊥ | :D→⊥, ni :Ci
(top)

Γ, cni :Ai →Ci ⊢λµ µ .[top] P : D→⊥ | ni :Ci

Γ, cni :Ai →Ci ⊢λµ Q : D | ni :Ci

.

..

.

..

..

..

.

(→E)
Γ, cni :Ai →Ci ⊢λµ (µ .[top] P) Q : ⊥ | ni :Ci

but (µ .[top] P) Q , PQ . In fact, these terms are com-

putationally incompatible.

So we cannot give the type ⊥ the role it should have.

In the next section, we will introduce a notion of type assign-

ment that uses the type constant fail (which can be seen as ⊥) for

calls to panic, which are essentially catchable halts; as suggested

here, we will not be able to establish a relation with λµ or λµ-top

for that notion.

Remark 4.9. It might seem natural to define failing through halt

in much the same way as throw (and that is basically what is sug-

gested in [1]). This would lead to, contrary to what we have done

above, adding panic n(N) as a construct, together with dedicated

exception handlers abort n(x) = L, so using, for example, the gram-

mar:

Catch Block ::= ϵ | Catch Block; catch n(x) = M
Abort Block ::= ϵ | Abort Block; abort n(x) = M

M,N ::= V | MN | tryM ; Catch Block | throw n(N)
| tryM ; Abort Block | panic n(N)

V ::= x | λx .M

and the (additional) reduction rules

(panic) : (panic n(N))M → panic n(N)

(try-panic) : try panic nl (N); abort ni (x) = Mi

→ Ml {N /x} (nl ∈ ni)

(try-normal) : try N ; abort ni (x) = Mi → N (ni /∈ N)

for cbn, and extending the interpretation · t with the cases:

panic n(M) t =
∆ µ .[top]cn M t

tryM ; Abort Block; abort n(x) = L t =
∆

(µn.[n] tryM ; Abort Block t) {λx . L t/cn}

This would behave well on the level of λtry (see also the next

section), but not when we aim to show that

if P →h Q , then P t →
n ∗
βµ

Q t ,

for either cbn or cbv-reduction. Although that property follows

straightforwardly from the proof of Thm. 2.6, and for the additional

case panic, the reduction rule try-panic throws a spanner in the

works. Then the interpretation of the term

try panic n(N); abort n(x) = M

PPDP’19, 7-9 October 2019, Porto, Portugal

does not reduce to that ofM{N /x}:

try panic n(N); abort n(x) = M λµ =
∆

(µn.[n] panic n(N) λµ) {λz. M t/cn} =

∆

(µn.[n](µ .[top]cn N λµ)) {λz. M t/cn} =

µn.[n]µ .[top] (λx . M λµ) N λµ →n

βµ
(E)

µ .[top] (λx . M λµ) N λµ →n

βµ

µ .[top] M λµ { N λµ /x} = (2.5)

µ .[top] M{N /x} λµ

So here we have P t →
n ∗
βµ

µ .[top] Q t , not P t →
n ∗
βµ

Q t , as de-

sired, and µ .[top] Q t and Q t are also computationally incom-

patible.7

In a certain sense, the encoding expects M{N /x} λµ to be ‘thrown

again’, which suggests the reduction rule

(try-panic) : try panic nl (N); abort ni (x) = Mi

→ panic nl (Ml {N /x}) (nl ∈ ni)

where handlers for panics should be redefined consistently, vio-

lating Barendregt’s convention. Alternatively, we could invoke a

handler for all aborts, as in

(try-panic) : try panic nl (N); abort ni (x) = Mi

→ panic-top(Ml {N /x}) (nl ∈ ni)

which gets dealt with at the ‘outermost level’.

Otherwise, we can assume that there is no handler named nl ,

and that the panic escapes the try-block without being processed.

But that would constitute the solution we presented above, by just

using the keyword halt.

So, in order to define a notion of aborting exceptions for our

language λtry that is strongly related to classical logic (i.e.mappable

into λµ or variants thereof), we cannot opt to ‘handle’ these events,

nor explicitly use the type ⊥ to type them, but are forced to add

simply a constant halt to the language that consumes all applicative

contexts.

5 HANDLING FAILING COMPUTATION

In this section, we will generalise the approach of the previous

section, and add the construct panic that is dealt with by handlers.

As explained in Rem. 4.8 and 4.9, this is not straightforward, and

we will have to forgo on establishing a direct relation with λµ or

λµ-top.

Our approach will be to construct a system that adds a type

constant fail to the type language, and is set up in such a way that,

essentially, only calls to panic can be typed with fail. Our aim is to

define a calculus that is close to ‘normal’ programming: programs

can raise exceptions and panic fromwithin the same try-statement.

As we argued above, for reasons of subject reduction, we have to

demand that the return type of the handlers is equal to that of the

main term, which would mean that we cannot return fail for a fail-

ing programwithout having to demand that all handlers return fail.

That clearly goes agains intuition, since (1) we cannot expect the

type checker to decide if a programwill fail; (2) failure can depend on

input, which need not be part of the code; (3) the programmer should

have the liberty to cater for the event of a successful computation and

7Notice the similarity with the problem spotted in Rem. 4.8.

a total failure in a different way. We therefore introduce a new fea-

ture: handlers for exceptions, called catch, all return the type of the

main term, whereas handlers for panic call, called abort, all return

fail.

The system we will present thereby is unconventional in that

the standard subject reduction result does not hold as such. Our

aim is to show that, as usual, types are preserved under normal

reduction (is sound), but that the type fail is only usedwhen a panic

is raised; as a result of this duplicity we will not be able to show

the normal subject reduction result. Since in standard notions of

type assignment for the λ-calculi this property holds, for both the

reduction strategies cbn and cbv we need to explicitly insert the

duplicity of keeping the type under reduction or running to a term

with type fail. Note that this will not be decidable, since modelling

the concept that predicts how a programwill run, i.e. if a panicwill

be triggered, through assignable types, is impossible.

To introduce the duplicity, we enrich the language with a con-

ditional construct; then depending on the result of running the

boolean expression, either the then or else part will be deployed.

Assuming the boolean expression tests if the execution is running

normally (like a test for division by zero), we can call panic in one

part, and continue normal execution in the other. Our aim is that in

the first case a term is returned of type fail, whereas the second one

will return a normal type, int in our case. We will type the whole

term then with int, which then is the type for the result produced

by normal reduction.

Remark 5.1. Since the conditional is encodable in the pure λ-

calculus through λbtf .bt f , with the boolean constant true through

λab .a, and false through λab .b , there is no need to add the condi-

tional construct explicitly for reasons of expressivity. The type bool

then necessarily is a type suitable for both λab .a and λab .b , so has

to correspond to A→A→A, for any A (or ∀φ.φ→φ→φ). This

is found also in the standard way of typeing the conditional con-

struct, which demands that the then and else part have the same

type as the expression itself, as normally expressed through the

rule:

(cond) :
Γ ⊢M : bool | ∆ Γ ⊢ P : A | ∆ Γ ⊢Q : A | ∆

Γ ⊢ if M then P else Q : A | ∆

But this standard approachwould not allow us the characterisation

of failing computations through assignable types we aim for. So,

rather, we deviate from that standard approach and, essentially, let

bool correspond to

A→A→A ∨ A→ fail→A ∨ fail→A→A.

If we would allow that to be a type for both λab .a and λab .b , we

would be forced to setA = fail and we would be forced to allow for

fail to be treated as any type, rather than just the type for panic.

So to be able to express the characteristic we aim for, we are

forced to add the conditional construct explicitly, which allows us

to use non-standard type assignment rule(s) for it that allow the

two branches to have different types, provided that one of them is

typed with fail. This is achieved by adding the rules of Fig. 5.

We define λtry
fail

by extending the calculus λtry from Def. 2.1, by

adding panic and abort, a conditional construct and term constants

(ranged over by c, and including err, true, false, numbers, (prefix)

PPDP’19, 7-9 October 2019, Porto, Portugal Steffen van Bakel

(Ax) :
Γ, x :A ⊢ x : A | ∆

(c) :
Γ ⊢ c : σ (c) | ∆

(→I) :
Γ, x :A ⊢M : B | ∆

Γ ⊢ λx .M : A→B | ∆

(→E) :
Γ ⊢M : A→B | ∆ Γ ⊢ N : A | ∆

Γ ⊢MN : B | ∆

(→Efail) :
Γ ⊢M : fail | ∆ Γ ⊢ N : A | ∆

Γ ⊢MN : fail | ∆

(throw) :
Γ ⊢M : A | n:A→B, ∆

Γ ⊢ throw n(M) :C | n:A→B, ∆
(panic) :

Γ ⊢M : A | n:A→ fail, ∆

Γ ⊢ panic n(M) : fail | n:A→ fail, ∆

(try) :
Γ ⊢M :C | n:Ai → Bi, ∆ Γ, x :Ai ⊢ Ni : Bi | ∆ (∀i ∈ n)

(∀i [Bi = C ∨ Bi = fail])
Γ ⊢ try M ; catch ni (x) = Ni :C | ∆

(tryfail) :
Γ ⊢M : fail | ni :Ai →Bi , ∆ Γ, x :Ai ⊢ Ni : Bi | ∆ (∀i ∈ n)

(∀i [Bi = C ∨ Bi = fail])
Γ ⊢ try M ; catch ni (x) = Ni : fail | ∆

(cond) :
Γ ⊢M : bool | ∆ Γ ⊢ P : A | ∆ Γ ⊢Q : B | ∆ (A = B = C ∨ (A = C & B = fail) ∨

(A = fail & B = C))Γ ⊢ if M then P else Q :C | ∆

(condfail) :
Γ ⊢M : fail | ∆ Γ ⊢ P : A | ∆ Γ ⊢Q : B | ∆

Γ ⊢ if M then P else Q : fail | ∆

Figure 5: The system ⊢fail.

addition and multiplication, boolean operators, etc, etc.) to the set

of pre-terms.

Definition 5.2 (λtry
fail
). (1) The set of pre-terms of λtry

fail
is defined

through the grammar:

handlers ::= catch m(x) = M | handlers; catch m(x) = M |
abort n(x) = N | handlers; abort n(x) = N

M,N ::= V | MN | tryM ; handlers | throw n(M) |
panic n(M) | if M then P else Q

V ::= x | c | λx .M

The order in which the handlers are listed is not important;

we will reorganise them whenever convenient, and will use

handle for either catch or abort.

(2) Call-by-name reduction is defined as in Def. 2.2 by the rules

(β) : (λx .M)N → M{N /x}
(throw) : (throw n(N))M → throw n(N)

(try-throw) :

try throw nl (N); handle ni (x) = Mi ; catch nl (x) = Ml
→ Ml {N /x}

(try-normal) : try N ; handle ni (x) = Mi → N (ni /∈ N)
(panic) : (panic n(N))M → panic n(N)

(try-panic) :

try panic nl (N); handle ni (x) = Mi ; abort nl (x) = Ml
→ Ml {N /x}

(cond-true) : if true then P else Q → P
(cond-false) : if false then P else Q → Q
(cond-throw) : if throw n(N) then P else Q → throw n(N)
(cond-panic) : if panic n(N) then P else Q → panic n(N)

cbn applicative contexts are defined as:

Cn
a

::= [] | Cn
a
M | try Cn

a
; Catch Block | if Cn

a
then P else Q

(3) Call-by-value reduction is defined as in the previous part by

also changing/adding the rule

(βv) : (λx .M)V → M{V /x}
(panicv) : V (panic n(N)) → panic n(N)

cbv applicative contexts are defined as:

Cv
a ::= [] | Cv

a
M | V Cv

a
| try Cv

a
; Catch Block

| if Cv
a
then P else Q

We will now define a notion of type assignment that charac-

terises unrecoverable failure. The idea is that the exception handlers

that deal with panic return terms that are typed fail and have to re-

turn a panic call, so panic gets propagated through the system and

fail becomes the type of the whole program.8 In order to deal with

this properly, we need to extend our notion of type assignment.

Definition 5.3 (Type assignment with throw and panic).

(1) We extend the set of types by adding the type constant fail

and normal type constants, ranged over by c:

c ::= bool | int | . . .
A,B ::= φ | fail | c | A→B.

(2) Type assignment (with failure) ⊢n
fail

for terms in λtry
fail

is de-

fined through the inference system presented in Fig. 5, where

all types are not equal to fail unless explicitly mentioned,

and σ assigns the appropriate ground type to each constant.

(3) The notion ⊢v
fail

is defined using the rules of Fig. 5, extended

with the rule

(→Ev) :
Γ ⊢M : A | ∆ Γ ⊢ N : fail | ∆

Γ ⊢MN : fail | ∆

Note that we no longer require that the handlers return the same

type as the main term in a try-expression, but allow them to either

return that type, or fail; moreover, each panic n(M) is typed with

fail (fails), and rules (→Efail) and (→Ev) propagate the type fail in

applicative contexts. Also, an abstraction can never fail; the only

rule that is allowed for abstractions is (→I), so the type for an

abstraction is of the shape A→B, and bothA , fail and B , fail.

Example 5.4. We have (essentially) restricted the use of fail to

panic only. For example, the term

try (λxy.x) (panicm(N)) (throw n(L));
catch n(x) = P ; abort m(x) = Q

is not typeable in ⊢fail, since it would demand that the type for λxy.x

contains fail. It would be typeable if we relax the restriction, allow-

ing fail as a normal type. Take the sub-term

M = (λxy.x) (panicm(N))(throw n(L))

which will panic. We can allow the throw and panic to return differ-

ent types insideM , as in Fig. 6. When we place this term inside the

context of dealing with the catch on n and abort on m, the special

character of the rule (try) in ⊢fail becomes evident; it allows the re-

turn type of exception handlers to differ from the type of the main

term in case the latter is fail.

8We could even add the term haltwith type⊥ for this purpose, similar to the previous
section.

PPDP’19, 7-9 October 2019, Porto, Portugal

Let ∆′
= m; B→ fail, n:C→A,∆.

(Ax)
Γ, x :fail, y :A ⊢ x : fail | ∆′

(→I)
Γ, x :fail ⊢ λy .x : A→ fail | ∆′

(→I)
Γ ⊢ λxy .x : fail→A→ fail | ∆′

Γ ⊢ N :C | ∆′

(panic)
Γ ⊢ panic m(N) : fail | ∆′

(→E)
Γ ⊢ (λxy .x) (panic m(N)) : A→ fail | ∆′

Γ ⊢ L : B | ∆′

(throw)
Γ ⊢ throw n(L) : A | ∆′

(→E)
Γ ⊢ (λxy .x) (panic m(N))(throw n(L)) : fail | ∆′

Figure 6: A derivation for (λxy.x) (panicm(N))(throw n(L))

(true)
Γ ⊢ true : bool | ∆

Γ ⊢ N :C | ∆
(panic)

Γ ⊢ panic m(N) : fail | ∆

Γ ⊢ L : B | ∆
(throw)

Γ ⊢ throw n(L) : A | ∆
(cond)

Γ ⊢ if true then panic m(N) else throw n(L) : A | ∆ Γ, x :B ⊢ P : A | ∅ Γ, x :C ⊢Q : fail | ∅
(try)

Γ ⊢ try if true then panic m(N) else throw n(L); catch n(x) = P ; abort m(x) = Q : A | ∅

Figure 7: A derivation for try if true then panicm(N) else throw n(L); catch n(x) = P ; abort m(x) = Q

Γ ⊢M : fail | ∆2 Γ, x :C ⊢ P : A | ∆ Γ, x :C ⊢Q : fail | ∅
(try)

Γ ⊢ try M ; catch n(x) = P ; abort m(x) = Q : fail | ∆

But relaxing the restrictionwould take away the characteristic that

the type fail indicates a failing execution; we therefore opt to have

fewer typeable terms.

Using the conditional structure, the similar term

try if true then panic m(N) else throw n(L);
catch n(x) = P ; abort m(x) = Q

is typeable under the restriction; see Fig. 7.

Our notion of type assignment is predictive in that we can show

that terms typed with fail will raise a panic.

Lemma 5.5. (1) If Γ ⊢fail M : fail | ∆, thenM →n
p panic n(N).

(2) If Γ ⊢v
fail

M : fail | ∆, thenM →v
p panic n(N).

Notice that something similar also holds for type assignment in

the λ-calculus (extended with type constants): if Γ ⊢ M : int, thenM

will run to an integer. Note that, because of the presence of throw,

this property does not hold for ⊢fail.

So failing (having type fail) is now exclusively the domain of

panic, as we intended from the outset; in particular, the type as-

signment system forces the type of the body of an abort to have

type fail as well, running the body of each abort has to result in a

panic as well.

We can also show that type assignment is closed under term

substitution.

Lemma 5.6 (Substitution lemma for ⊢fail). If Γ, x :C ⊢failM :A |∆

and Γ ⊢fail N :C | ∆, then Γ ⊢fail M{N /x} :A | ∆.

The main result we show for this system is the following sound-

ness result. It states that running a program will either run nor-

mally, preserving the assigned type, or will run to a term that has

type fail, so throws a panic.

Theorem 5.7 (Soundness for ⊢fail with respect to →n

fail
). If

Γ⊢failP :C |∆ and P →n

fail
∗ Q , then either Γ⊢failQ :C |∆, or Γ⊢failQ :fail |∆.

Proof. By induction on the definition →n

fail
∗; we focus on the

single step reduction, and only show the interesting cases, that

were not already included in the proof of Thm. 3.3.

(panic) : Then P = (panic n(N))M → panic n(N) = Q , and the re-

turn type for the exception handler n is fail; then the deriva-

tion for P looks like:

D

Γ ⊢ N : A | n:A→ fail, ∆
(panic)

Γ ⊢ panic n(N) : fail | n:A→ fail, ∆

Γ ⊢M : B | n:A→ fail, ∆

.

..

(→E f)
Γ ⊢ (panic n(N))M : fail | n:A→ fail, ∆

Notice that we have a sub-derivation for Γ ⊢fail panic n(N) :

fail | n:A→ fail,∆.

(try-panic) : Then P = try panic nl (M); abort ni (x) = Ni →

Nl {M/x} = Q and the derivation for P is shaped as follows:

Γ ⊢M : Al | ni :Ai →Bi , ∆
(panic)

Γ ⊢ panic nl (M) : fail | ni :Ai →Bi , ∆

Γ, x :Ai ⊢ Ni : Bi | ∆

..

.
(l ∈ n, ∀i ∈ n)

(try)
Γ ⊢ try panic nl (M); abort ni (x) = Ni : fail | ∆

so Bl = fail. In particular, we have derivations for both Γ ⊢fail
M : Al | ni :Ai →Bi ,∆ and Γ, x :Al ⊢fail Nl : fail | ∆.

9 By thin-

ning, we can remove ni :Ai →Bi from the co-context for the

first to obtain Γ ⊢fail M :Al | ∆. Then, by Lem. 5.6, we obtain

Γ ⊢fail Nl {M/x} : fail | ∆.

(cond-true) : Then P = if true then M else N → M = Q . Since

true can only be assigned bool, the derivation is constructed

as follows:

(σ)
Γ ⊢ true : bool | ∆ Γ ⊢Q : A | ∆ Γ ⊢ N : B | ∆

(cond)
Γ ⊢ if true then Q else N :C | ∆

and either:

((A = B = C) ∨ (A = C & B = fail)) : Then, in particular,

Γ ⊢fail Q :C | ∆.

(A = fail & B = C) : Then, in particular, Γ ⊢fail Q : fail | ∆.

9Remark that we cannot apply (→I) to the latter result.

PPDP’19, 7-9 October 2019, Porto, Portugal Steffen van Bakel

(cond-throw) : Then P = if throw n(R) then M else N →

throw n(P) = Q , and the derivation for P is constructed as:

D

Γ ⊢ R : E | n:E→ F , ∆′

(throw)
Γ ⊢ throw n(R) : bool | n:E→ F , ∆′

Γ ⊢M : B | ∆

..

.
Γ ⊢ N :C | ∆

(cond)
Γ ⊢ if throw n(P) then M else N : D | ∆

for certain B, C , and D. Then we can construct the deriva-

tion:

D

Γ ⊢ R : E | n:E→ F , ∆′

(throw)
Γ ⊢ throw n(R) : D | n:E→ F , ∆′

(cond-panic) : Then P = if panic n(R) then M else N →

panic n(R) = Q , and the derivation for P is constructed as:

Γ ⊢ panic n(R) : fail | ∆ Γ ⊢M : B | ∆ Γ ⊢ N :C | ∆
(cond)

Γ ⊢ if panic n(R) then M else N : fail | ∆

for certain B and C . Notice that we have a sub-derivation

for Γ ⊢fail panic n(R) : fail | ∆. �

For the call-by-value system, we can show:

Theorem 5.8 (Soundness for ⊢fail with respect to →v
try). If

Γ⊢v
fail
P :C |∆ and P →v

try
∗ Q , then either Γ⊢v

fail
Q :C |∆, or Γ⊢v

fail
Q :fail |∆.

Proof. The proof is much like that for the previous result, with

the addition of:

(throwv) : Then ∆ = n:A→C,∆′, P = V (throw n(N)) →

throw n(N) = Q , and the derivation for P is constructed as:

Γ ⊢fail V : E→ F | n:A→C, ∆′

D

Γ ⊢fail N : A | n:A→C, ∆′

(throw)
Γ ⊢fail throw n(N) : E | n:A→C, ∆′

(→E)
Γ ⊢fail V (throw n(N)) : F | n:A→C, ∆′

We can construct the derivation for Q :

D

Γ ⊢fail N : A | n:A→C, ∆′

(throw)
Γ ⊢fail throw n(N) : F | n:A→C, ∆′

(panicv) : Then P = V (panic n(N)) → panic n(N) = Q , and the

derivation for P is constructed like:

Γ ⊢V : A | ∆ Γ ⊢ panic n(N) : fail | ∆
(→Ev)

Γ ⊢V (panic n(N)) : fail | ∆

We have Γ ⊢fail panic n(N) : fail | ∆ in a sub-derivation. �

Conclusion

Wehave defined λtry, a natural extension to theλ-calculus by adding

exception handling, and shown that it can be embedded into λµ,

preserving both cbn and cbv reduction. The normal notion of type

assignment for λtry, here called the basic system, is also preserved

by our mapping onto λµ. Type assignment is not preserved, how-

ever, for the notion of type assignment that captures total program

failure using exception handling. We also have presented a notion

of handling of exception and panic calls, together with a natural no-

tion of type assignment, that cannot be represented in λµ or λµ-top.

We thus have shown that, although a strong link between ty-

peable exception handling and double negation elimination is ev-

ident, exception handling itself is a feature that is not naturally a

part of calculi based on classical logic, since it is possible to define

notions of type assignment that are natural for λtry, but are not

founded on classical logic.

By letting go of the link between programming and logic, we

have shown that it is possible to define handling of exception and

panic calls for formal calculi in a computationally meaningful way.

Acknowledgements

I am greatly indebted to the students who, over the years, have

worked on this and other problems related to classical logic and

functional programming with me. A special mention is for Mihai-

Radu-Niculae Popescu, Wil Fisher, Adela Baciu, James Griffiths,

and Isaac van Bakel.

REFERENCES
[1] Z.M. Ariola, H. Herbelin, and A. Sabry. 2007. A Proof-Theoretic Foundation of

Abortive Continuations. In Proceedings of Higher-Order and Symbolic Computa-
tion, 2007. 403–429.

[2] H. Barendregt. 1984. The Lambda Calculus: its Syntax and Semantics (revised ed.).
North-Holland, Amsterdam.

[3] G.M. Bierman. 1998. A Computational Interpretation of the λµ -calculus. In
MFCS’98 (LNCS) 1450, 336–345.

[4] G.M. Bierman. 1998. A Computational Interpretation of the λµ -calculus. Techni-
cal Report. University of Cambridge. Expanded version of [3].

[5] T. Crolard. 1999. A confluent lambda-calculus with a catch/throw mechanism.
Journal of Functional Programming 9, 6 (1999), 625–647.

[6] H.B. Curry. 1934. Functionality in Combinatory Logic. In Proc. Nat. Acad. Sci.
U.S.A, Vol. 20. 584–590.

[7] S. Drossopoulou and T. Valkevych. 2000. Java Exceptions Throw No Surprises.
(March 2000). http://pubs.doc.ic.ac.uk/nosurprises-00/ Unpublished.

[8] M. Felleisen and R Hieb. 1992. The revised report on the syntactic theories of
sequential control and state. Theoretical Computer Science 103, 2 (1992).

[9] G. Gentzen. 1935. Untersuchungen über das Logische Schliessen. Mathematische
Zeitschrift 39, 2 (1935), 176–210 and 405–431.

[10] J. Gosling, W.N. Joy, and G.L. Steele Jr. 1996. The Java Language Specification.
Addison-Wesley.

[11] T. Griffin. 1990. A formulae-as-types notion of control. In POPL’90, 47–58.

[12] Ph. de Groote. 1994. On the Relation between the λµ -Calculus and the Syntactic
Theory of Sequential Control. In LPAR’94. LNCS 822, 31–43.

[13] Ph. de Groote. 1995. A Simple Calculus of Exception Handling. In TLCA ’95, 1995,
Proceedings LNCS 902, 201–215.

[14] P. Hudak, S. Peyton Jones, P.Wadler, B. Boutel, J. Fairbairn, J. Fasel, K. Hammond,
J. Hughes, T. Johnsson, D. Kieburtz, R. Nikhil, W. Partain, and J. Peterson. 1992.
Report on the Programming Language Haskell. ACM SIGPLAN Notices 27, 5
(1992), 1–64.

[15] H. Nakano. 1994. The Non-deterministic Catch and Throw Mechanism and Its
Subject Reduction Property. In Logic, Language and Computation, Festschrift in
Honor of Satoru Takasu LNCS 792, 61–72.

[16] H. Nakano. 1995. Logical Structures of the Catch and Throw Mechanism. PhD
thesis. University of Tokyo.

[17] C.-H.L. Ong and C.A. Stewart. 1997. A Curry-Howard foundation for functional
computation with control. In Proceedings of the 24th Annual ACM Symposium on
Principles Of Programming Languages. 215–227.

[18] M. Parigot. 1992. An algorithmic interpretation of classical natural deduction.
In LPAR’92, LNCS 624, 190–201.

[19] M. Parigot. 1993. Classical Proofs as Programs. In Kurt Gödel Colloquium. 263–
276. Presented at TYPES Workshop, at Bǎstad, June 1992.

[20] M.E. Szabo (Ed.). 1969. The Collected Papers of Gerhard Gentzen. North-Holland.

http://pubs.doc.ic.ac.uk/nosurprises-00/

	Abstract
	1 Related systems
	1.1 The `l-calculus
	1.2 On adding exception handling to the `l-calculus
	1.3 The calculus `l`m
	1.4 On modelling the catch/throw mechanism in `l`m

	2 The calculus 90
	3 Basic type assignment
	4 Adding 89 to 90
	5 Handling failing computation
	References

