
Exception Handling and Classical Logic

Steffen van Bakel

Department of Computing, Imperial College London, 180 Queen’s Gate, London SW7 2BZ, UK
s.vanbakel@imperial.ac.uk

Abstract

We present λtry, an extension of the λ-calculus with named exception handling, via try,
throw and catch, and present a basic notion of type assignment expressing recoverable
exception handling and show that it is sound. We define an interpretation for λtry to Parigot’s
λµ-calculus, and show that reduction (both lazy and call by value) is preserved by the
interpretation. We will show that also types assignable in the basic system are preserved by
the interpretation.
We will then add a notion of total failure through halt that escapes applicative contexts
without being caught by a handler, and show that we can interpret this in λµ when adding
top as destination. We will argue that introducing handlers for halt will break the relation
with λµ.
We will conclude the paper by showing that it is possible to add handlers for program
failure by introducing panic and dedicated handlers to λtry. We will need to extend the
language with a conditional construct that is typed in a non-traditional way, that cannot be
expressed in λµ or logic. This will allow both recoverable exceptions and total failure, dealt
with by handlers; we will show a non-standard soundness result for this system.

keywords: exception handling, abort, classical logic, lambda calculus

Introduction

In this paper we will investigate the relation between exception handling and Classical Logic

[9, 21], but will tread a path different to that usually taken over the last 20 years or so. Where

the normal approach is to start from Classical Logic and to seek computational content in

proofs, here we will do the reverse: we will define a λ-calculus enriched with a primitive

form of named (recoverable) exception handling, and investigate if its natural notions of type

assignment can be represented in Parigot’s λµ [19, 20], a calculus that represents minimal

classical logic [1].

We will also add non-recoverable exceptions; then the corresponding calculus is λµ-top [1],

but only if we do not ‘catch’ these exceptions. When trying to add handlers for failing ex-

ceptions, the correspondence with λµ or λµ-top breaks down, highlighting that type theories

based on classical logic do not fully cover exception handling. To stress that point even fur-

ther, we will enrich λtry with a non-conventionally typed conditional structure, and the type

constant fail that is reserved for failing computations; for this system, we will show that com-

putations either run preserving the type, or run to a term that has type fail, so fail, as can

be expected from the character of failing exceptions. This thereby constitutes a language for

which the standard subject-reduction result does not hold, and which therefore cannot be

represented in calculi based on classical logic.1

1 All such calculi are designed to satisfy preservation of provable statements under the operation of cut-
elimination, which translates to the property of subject reduction on the level of the calculi.

1

For a long time it has been thought that only intuitionistic logic had a computational mean-

ing, given its strong relation with types in programming; this is known as the Curry-Howard

isomorphism, and is most manifest in the simply typed lambda calculus. However, since it is

not possible to comfortably express notions like control or context manipulation in the pure

λ-calculus, it is clear that the λ-calculus by itself, although Turing complete, is perhaps not

expressive enough. Most of these control features, such as direct returns, coroutines, or excep-

tion handling, usually exhibit a form of non-local exit, which, albeit specifiable (and therefore

realisable) in the pure calculus, are not easily represented, and certainly not using meaningful

types. As such, these additions required different formalisms for behaviour specification -

e.g. translation to continuation passing style (CPS) or abstract machines.

That situation changed when Griffin [11] observed that the C-operator of Felleisen’s λC-

calculus [8] can be typed with ¬¬A→A (or ((A→⊥)→⊥)→A), thus highlighting the first

link between classical logic and sequential control in computer science. This led to work

by Parigot, who introduced a candidate for describing continuations in the form of the λµ-

calculus.

The study of the relation between exception handling and classical logic goes back a few

decades. Fundamental work has been done by Nakano [16, 17], followed by Crolard [5], in

building intuitive systems for analysing throw/catch structures in a functional context. Cro-

lard’s intuition with respect to the representation of throw and catch as terms in λµ is an essen-

tial development, and is also used in Bierman’s [3] interpretation into λµ of de Groote’s [13]

calculus λ→
exn, and in a certain sense also by [18], albeit for call-by-value languages. However, in

both approaches the argument of the throw-term is the actual exception handler, which is dif-

ferent from the usual perception of what the information encapsulated in a thrown exception

should be.

Here we will present the λtry-calculus, a λ-calculus extended with a try/throw/catch syntax

which is more similar to the constructions found in common programming languages. In our

view, shared by many in the literature, exceptions should exclusively only be thrown when

reached during the execution of a program; we therefore accept the (almost) generic approach

(an exception is that of [16]) and define reduction strategies that do not permit reduction inside

an abstraction; unlike in other papers, here we will we consider both call-by-name (lazy) and

call-by-value.

Rather than selecting the exception handler through its type, as is the common practice in

languages like java [10], in λtry the handlers are called by name, giving exception handling

a more functional ‘feel’. This calculus can be implemented in λµ in that we will present an

interpretation that preserves both lazy and call-by-value reduction in λtry; as was the case

in [18, 5, 4], the ‘context erasing’ capability of µ-reduction is used to model the functionality

of throw.

To investigate if all natural notions of type assignment for this calculus can correspond to

the one for λµ, we will present three variants of λtry, with different notions of type assignment.

The first comprises a ‘basic’ theory, based on the approach of recoverable exceptions currently

used [7] for example in java; it assumes that all exception handlers return the same type as

that of the main term in a try-construct, effectively hiding the occurrence of the exception and

allowing for execution to continue normally even after an exception has been thrown. We

will show that assignable types are preserved under cbn and cbv-reduction and under the

interpretation into λµ.

The second notion of type assignment we will present represents ‘failure’; we add the

construct halt, which corresponds to an exception that cannot be caught so has no possibility

of recovery. This induces a notion of type assignment, for which we will show soundness for

both cbn and cbv. We will modify the interpretation into on mapping onto λµ-top, a variant

of λµ that represents full classical logic, and show that assignable types are preserved.

2

Since both these notions are presented for a small extension of the λ-calculus, the notions

are sound but not really expressive: for example, both throw and halt can have all types.

Although the type ⊥ is used when mapping the calculus into λµ-top, it is not used for the

calculus itself, so we cannot tell by the assignable types if a program will fail, an arguably

desirable property.

It is fair to state that type assignment for exception handling that marks failing computa-

tions is only really relevant in the presence of the conditional construct, where, depending

on the evaluation of the boolean expression, the program continues normally or raises an ex-

ception. We will therefore extend λtry further, add a conditional construct together with term

constants and their types, and add a handling mechanism to deal with occurrences of halt,

so achieve a notion of both recoverable and fatal exceptions. Also for this extension we will

show a soundness result, which states that a computation either runs preserving the type, or

fails. The key difference for this system is that we have to allow for the conditional construct

to be typed in a non-conventional way. A direct consequence of this choice is that no longer

can we preserve assignable types under the interpretation into λµ or λµ-top.

These result put into evidence that exception handling can be either recoverable or fail-

ing, characterised through assignable types, and that named exception handling is perfectly

feasible in the context of functional programming. Moreover, type assignment systems for

exception handling need not all be based on classical logic.

1 Related systems

In this section we will revise some formal languages and their type assignment systems that

are of interest to this paper. We revisit Curry’s λ-calculus [6, 2], Parigot’s λµ [19], Nakano’s

calculus [16] and Crolard’s interpretation into λµ [5], and de Groote’s calculus [13] and Bier-

man’s interpretation of that [4].

1.1 The λ-calculus

We quickly revise some basic notions for the λ-calculus, to better set the context of this paper.

Definition 1.1 (Lambda terms, call-by-name and call-by-value reduction [2])

i) λ-terms are defined by the grammar:

M, N ::= V | MN

V ::= x | λx.M (values)

ii) (One-step) β-reduction is defined using the β-rule

(β) : (λx.M)N → M{N/x}

and evaluation contexts that are defined as terms with a single hole by:

C ::= [] | CM | MC | λx.C

We write C [M] for the term obtained from the context C by replacing its hole [] with

M, allowing variables to be captured. One-step β reduction is defined as the compatible

closure of the β-rule through:

(β) : C[(λx.M)N] → C[M{N/x}]

for any evaluation context. We write →∗
β for the transitive closure of →β, and use that

notation for all the notions of reduction we consider in this paper.

3

(Ax) :
Γ, x :A ⊢ x : A

(→I) :
Γ, x :A ⊢ M : B

(x /∈ Γ)
Γ ⊢ λx.M : A→B

(→E) :
Γ ⊢ M : A→B Γ ⊢ N : A

Γ ⊢ M N : B

Figure 1: Curry type assignment system for the λ-calculus.

iii) Call-by-name evaluation contexts are defined through:

Cn ::= [] | Cn M

Call-by-name (cbn) reduction →n

βµ (also known as lazy reduction) is defined through:

(β) : Cn [(λx.M)N] → Cn [M{N/x}]

iv) Call-by-value evaluation contexts are defined through:

Cv ::= [] | Cv M | VCv

Call-by-value (cbv) reduction →v

βµ is defined through:

(βv) : Cv [(λx.M)V] → Cv [M{V/x}]

Curry (or simple) type assignment for the λ-calculus is defined by:

Definition 1.2 (Curry type assignment for the λ-calculus)

i) Let ϕ range over a countable (infinite) set of type-variables. The set of Curry types is

defined by the grammar:

A, B ::= ϕ | A→B

ii) A context of variables Γ is a partial mapping from term variables to types, denoted as a

finite set of statements x:A, such that the subjects of the statements (x) are distinct. We

write Γ1, Γ2 for the compatible union of Γ1 and Γ2 (if x:A1 ∈ Γ1 and x:A2 ∈ Γ2, then A1 = A2),

and write Γ, x:A for Γ,{x: A}, and x /∈ Γ if there exists no A such that x:A ∈ Γ.

iii) Curry type assignment is defined by the inference system in Fig. 1.

1.2 On adding exception handling to the λ-calculus

The main topic of this paper is to define an extension of the λ-calculus with exception han-

dling, modelled through try, catch and throw, and investigate notions of type assignment for it

and their relation to classical logic. Before coming to that, perhaps we should point out some

of the inevitable limitations of extending the λ-calculus with exception handling.

• From the point of view of programming, throwing of exceptions from inside an abstrac-

tion, as modelled by the reduction rule

λx.throw α N → throw α N

should not be allowed.2 One reason is that subject reduction will then fail (the variable x

might appear in N; see Ex. 4.5), but, perhaps more importantly, it would correspond to letting

a program raise an exception just because it occurs in a function definition, regardless of

whether or not evaluation of the program has led to the exception.

2 This rule is implied in systems where throw is allowed to escape from any context, as in [16].

4

• In call-by-value or call-by-name functional programming languages, reductions never

take place underneath an abstraction, so exceptions defined inside a function are only ever

thrown when the function has been called (a redex involving the abstraction has been con-

tracted). This restriction seems to have been applied to almost all proposals for λ-calculi with

control in the past (an exception is [16]).

• A common approach to typeing the throw action is to base its rule on the rule for ⊥-

elimination from Classical Logic [9],

Γ ⊢ ⊥

Γ ⊢ A

(ex falso quodlibet sequitur). which allows any type to be assigned to the expression, as through

the rule

(throw) :
Γ ⊢ M : A | ∆

Γ ⊢ throw α M : B | α: A,∆

This, however, is only ever useful in languages that have a conditional construct, when one

of the two alternatives throws a recoverable exception whereas the other executes normally

(see also Sect. 6). We do not know, a priori, if a boolean will evaluate to true or false, so if the

exception handler is only thrown in the else-part, the type assignment system should be able

to express both that the computation will continue normally (in case the boolean evaluates to

true), or fails (in case the boolean evaluates to false).

In order to successfully type this with the normal type assignment rule for the conditional

(cond) :
Γ ⊢ M : bool | ∆ Γ ⊢ P : B | ∆ Γ ⊢ Q : B | ∆

Γ ⊢ if M then P else Q : B | ∆

we need to be able to ‘warp’ the type of the throw to B, for any B. Type assignment thereby

then ‘hides’ the fact that an exception was thrown. This last point will be relevant in Sect. 6

where we present a notion of type assignment that allows for failing exceptions, for which

this hiding feature is no longer present, and the type assignment can (in certain cases) predict

failure of a program. When adding the conditional construct, as we will do in the final part of

the paper, and allowing for both recoverable and failing exceptions, this apparent shortcoming

disappears, and part of a program can fail without that affecting the type for the whole.

• Normal programming hygiene would demand that exceptions can only be thrown to-

wards an existing and corresponding catch (in our case, the one with the right name). Our

approach here, where we use a try-construct

try M; catch n1 (x) = N1 ; . . . ; catch nn (x) = Nn

that contains a number of catch expressions that deal with the exceptions that might be

thrown inside M, demands that the result of a normal execution, which would exit from

the try-construct, cannot contain a throw towards one of the exception handlers inside the try-

construct, but can only refer to exception handlers that are defined outside the try-construct.

In fact, the names for the exception handlers are bound in the construct, and we do not want

reduction ‘to free’ bound names or variables.

If this seems restrictive, dropping this restriction for names is easily dealt with using dy-

namic scoping, and involves checking if a handler for that name is also defined ‘one level

up’, or assuming that all locally defined exception handlers are otherwise redefined on the

outermost level where they generate an undefined message, with reduction rules like

(try V ; catch ni (x) = Mi)P →

tryVP; catch m(x) = Error("Message not understood") (mi = fn(V))

5

etc. Because dynamic scoping cannot be directly represented in λµ, we choose here to syn-

tactically restrict the terms; this leads to more elegant and tractable solutions to the various

theoretical results we achieve, where we can focus on the essential properties without overly

complicating the system.

1.3 The calculus λµ

Parigot’s λµ-calculus is a proof-term syntax for classical logic, expressed in Natural Deduc-

tion, defined as an extension of the Curry type assignment system for the λ-calculus. With

λµ Parigot created a multi-conclusion typing system which corresponds to classical logic; the

derivable statements have the shape Γ ⊢λµ M : A | ∆, where A is the main conclusion of the

statement, expressed as the active conclusion, and ∆ contains the alternative conclusions, con-

sisting of pairs of Greek characters (the names) and types; the left-hand context Γ, as usual,

contains pairs of Roman characters and types, and represents the types of the free term vari-

ables of M. As with Implicative Intuitionistic Logic, the reduction rules for the terms that

represent the proofs correspond to proof contractions; the difference is that the reduction

rules for the λ-calculus are the logical reductions, i.e. deal with the elimination of a type con-

struct that has been introduced directly above. In addition to these, Parigot expresses also

the structural rules that change the focus of a proof, where elimination takes place for a type

constructor that appears in one of the alternative conclusions (the Greek variable is the name

given to a subterm): he therefore needs to express that the focus of the derivation (proof)

changes, and this is achieved by extending the syntax with two new constructs [α]M and

µα.M that act as witness to deactivation and activation, which together move the focus of the

derivation, and are called a context switch.

We now present the variant of λµ we consider in this paper, as defined by Parigot in [20]:

Definition 1.3 (Syntax of λµ) The λµ-terms we consider are defined by the grammar:

M, N ::= V | MN | µα.[β]M

V ::= x | λx.M (values)

Recognising both λ and µ as binders, the notion of free and bound names and variables is

defined as usual, and we accept Barendregt’s convention to keep free and bound names and

variables distinct, using (silent) α-conversion whenever necessary.We write x ∈ M (α ∈ M) if

x (α) occurs in M, either free of bound. As in Haskell [14], we will use ‘ ’ as a special name:

when we write µ .[α]M, the name ‘ ’ does not occur (free) in [α]M. We will call the pseudo-

terms of the shape [α]M commands, written C, and treat them as terms for reasons of brevity,

whenever convenient.

In λµ, reduction of terms is expressed via implicit substitution, and as usual, M{N/x}

stands for the substitution of all occurrences of x in M by N.

We define two kinds of structural substitution: the first is the standard one, where M{N·γ/α}

stands for the term obtained from M in which every command of the form [α]P is replaced

by [γ]PN (γ is a fresh name). The second will be of use for call-by-value reduction; here

{N·γ/α}M stands for the term obtained from M in which every [α]P is replaced by [γ]NP.

They are formally defined by:

Definition 1.4 (Structural substitution) i) Right-structural substitution, M{N·γ/α}, is de-

fined inductively over pseudo terms by:

6

x{N·γ/α} =∆ x

(λx.M){N·γ/α} =∆ λx.(M{N·γ/α})

(M1M2){N·γ/α} =∆ M1{N·γ/α} M2{N·γ/α}

[α]M{N·γ/α} =∆ [γ](M{N·γ/α}N)

[β]M {N·γ/α} =∆ [β](M{N·γ/α}) (β 6= α)

(µδ.C){N·γ/α} =∆ µδ.(C{N·γ/α})

ii) Left-structural substitution, {N·γ/α}M, is defined inductively over pseudo terms by:

{N·γ/α} x =∆ x

{N·γ/α} (λx.M) =∆ λx.({N·γ/α}M)

{N·γ/α} (M1M2) =∆ {N·γ/α}M1 {N·γ/α}M2

{N·γ/α} [α]M =∆ [γ]N({N·γ/α}M)

{N·γ/α} [β]M =∆ [β]{N·γ/α}M (β 6= α)

{N·γ/α}µδ.C =∆ µδ.{N·γ/α}C

[19] only defines the first variant of these notions of structural substitutions (so does not use

the prefix ‘right’); the two notions are defined together, but rather informally, using a notion

for contexts in [18].

We have the following notions of reduction on λµ. For the third, call by value, different

variants exists in the literature; we adopt the one from [18].

Definition 1.5 (λµ reduction) i) The reduction rules of λµ are:

logical (β) : (λx.M)N → M{N/x}

structural (µ) : (µα.C)N → µγ.C{N·γ/α} (γ fresh)

erasing (E) : µα.[α]M → M (α /∈ M)

renaming (R) : [β]µγ.C → C{β/γ}

Evaluation contexts are defined by:

C ::= [] | CM | MC | λx.C | µα.[β]C

(Free, unconstrained) reduction →βµ on λµ-terms is defined through C [M] →n

βµ C[N] if

M → N using either the β, µ, E, or R-reductions rule.

ii) Call-by-name evaluation contexts are defined as:

Cn ::= [] | Cn M | µα.[β]Cn

Call-by-name reduction →n

βµ is defined through: Cn [M] →n

βµ Cn [N] if M → N using either

the β, µ, E, or R-reduction rule.

iii) Call-by-value evaluation contexts are defined through:

Cv ::= [] | Cv M | VCv | µα.[β]Cv

Call-by-value reduction →v

βµ is defined through: Cv [M] →v

βµ Cv [N] if M → N using either

µ, E, R, or:

(βv) : (λx.M)V →n

βµ M{V/x}

(µv) : V(µα.C) →n

βµ µγ.{V·γ/α}C (γ fresh)

iv) Call-by-name applicative contexts are defined as:

Cn

a
::= [] | Cn

a
M

7

(Ax) : Γ, x :A ⊢ x : A | ∆ (µ) :
Γ ⊢ M : B | α: A, β:B,∆

(α /∈∆)
Γ ⊢ µα.[β]M : A | β:B,∆

Γ ⊢ M : A | α: A,∆
(α /∈∆)

Γ ⊢ µα.[α]M : A | ∆

(→I) :
Γ, x :A ⊢ M : B | ∆

(x /∈ Γ)
Γ ⊢ λx.M : A→B | ∆

(→E) :
Γ ⊢ M : A→B | ∆ Γ ⊢ N : A | ∆

Γ ⊢ M N : B | ∆

Figure 2: Type assignment rules for λµ

whereas call-by-value applicative contexts are defined as:

Cv
a

::= [] | Cv
a

M | VCv
a

Remark that, for rule (µv), µα.[β]N is not a value. Also, unlike for the λ-calculus, call-by-value

reduction is not a sub-reduction system of →βµ: the rule (µv) (and left-structural substitution)

are not part of →βµ.

Notice that a term might be in either cbn or cbv-normal form (i.e. reduction has stopped),

but not need be that for →βµ.

The intuition behind the structural rule is given by de Groote [12]: “in a λµ-term µα.M

of type A→B, only the subterms named by α are really of type A→B (. . .); hence, when such a

µ-abstraction is applied to an argument, this argument must be passed over to the sub-terms named

by α.” It is possible to define more reduction rules, but Parigot refrained from that since he

aimed at defining a confluent reduction system. In this paper, we will only deal with the

logical, structural and renaming rule; this is also the restriction made by de Groote in [12].

Type assignment for λµ is defined below; there is a main, or active, conclusion, labelled by

a term, and the alternative conclusions are labelled by names α, β, etc.

Definition 1.6 (Typing rules for λµ) i) Types and contexts of variables Γ are those of Def. 1.2.

ii) A context of names ∆ is a partial mapping from names to types, denoted as a finite set of

statements α:A, such that the subjects of the statements (α) are distinct. Notions ∆1,∆2, as

well as ∆,α:A and α /∈∆ are defined as for Γ.

iii) The type assignment rules for λµ are presented in Fig. 2; we will write Γ ⊢λµ M : A | ∆ for

statements derivable in this system.

We can think of [α]M as storing the type of M amongst the alternative conclusions by giving

it the name α.

Example 1.7 Take the term µα.[α]µβ.[γ]M, such that M does not contain α or β, and α 6= γ.

Then by renaming,

µα.[α]µβ.[γ]M →βµ µα.[γ]M{α/β} = µα.[γ]M

but also, by erasure, µα.[α]µβ.[γ]M →βµ µβ.[γ]M. Notice that µα.[γ]M =α µ .[γ]M =α

µβ.[γ]M.

We will now show that type assignment is closed under reduction for both call-by-name

and call-by-value reduction. This result might itself be as expected, and is presented here

mostly for completeness. First we show results for the three notions of substitution.

Lemma 1.8 (Substitution lemma) i) If Γ, x:B ⊢λµ M : A |∆ and Γ ⊢λµ L : B |∆, then Γ ⊢λµ M{L/x} :

A | ∆.

ii) If Γ ⊢λµ M : A | α:B→C,∆ and Γ ⊢λµ L : B | ∆, then Γ ⊢λµ M{L·γ/α} : A | γ:C,∆.

iii) If Γ ⊢λµ L : B→C | ∆ and Γ ⊢λµ M : A | α:B,∆, then Γ ⊢λµ {L·γ/α}M : A | γ:C,∆.

Proof : i) By induction on the definition of term substitution.

8

(x{L/x} = L) : If Γ, x:B ⊢λµ x : A |∆, then B = A, so Γ ⊢λµ L : A |∆, so also Γ ⊢λµ x[L/x] :

A | ∆.

(y{L/x} ≡ y (y 6= x)) : Then y: A ∈ Γ and by rule (Ax) we have Γ ⊢λµ y : A | ∆.

(λy.(N{L/x}) = (λy.N){L/x}) : Then A = C→D. If Γ, x:B ⊢λµ λy.N : C→D | ∆, then

by rule (→I), Γ, x:B,y:C ⊢λµ N : D |∆. Then by induction, Γ,y:C ⊢λµ N{L/x} : D |∆, so

by (→I), Γ ⊢λµ λy.(N{L/x}) : C→D | ∆.

((PQ){L/x} ≡ P{L/x}Q{L/x}) : If Γ, x:B ⊢λµ PQ : A |∆, then, by rule (→E) there exist

C such that both Γ, x:B ⊢λµ P : C→A | ∆ and Γ, x:B′ ⊢λµ Q : C | ∆. Then, by induction,

Γ ⊢λµ P{L/x} : C→A | ∆ and Γ ⊢λµ Q{L/x} : C | ∆; the result follows by rule (→E).

((µα.[β]N){L/x} ≡ µα.[β]N{L/x}) : If Γ, x:B ⊢λµ µα.[β]N : A |∆, then, by rule (µ) there

exist C such that Γ, x:B ⊢λµ N : C | α:A, β:C,∆′ with ∆ = β:C,∆′. Then, by induction,

Γ ⊢λµ N{L/x} : C | α:A, β:C,∆′, and by rule (µ) we have Γ ⊢λµ N{L/x} : C | α:A, β:C,∆′.

ii) By induction on the definition of right-structural substitution.

(x{L·γ/α} =∆ x) : Then x:A ∈ Γ, and by rule (Ax) we have Γ ⊢λµ x : A | γ:C,∆.

((λx.N){L·γ/α} =∆ λx.(N{L·γ/α})) : Then A = D→E and, bu rule (→I), Γ, x:D ⊢λµ

N : E | α:B→C,∆. Then by induction we have Γ, x:D ⊢λµ N{L·γ/α} : E | γ:C,∆, so by

rule (→I) also Γ ⊢λµ λx.N{L·γ/α} : D→E | γ:C,∆.

((PQ){L·γ/α} =∆ P{L·γ/α}Q{L·γ/α}) : Then by rule (→E) there exists D such that

Γ ⊢λµ P : D→A | α:B→C,∆ and Γ ⊢λµ Q : D | α:B→C,∆. Then by induction both Γ ⊢λµ

P{L·γ/α} : D→A | γ:C,∆ and Γ ⊢λµ Q{L·γ/α} : D | γ:C,∆; the result follows by rule

(→E).

(µδ.[α]N{L·γ/α} =∆ µδ.[γ](N{L·γ/α}L)) : Then by rule (µ) Γ ⊢λµ N : B→C | δ:A,α:B→C,∆,

and by induction Γ ⊢λµ N{L·γ/α} : B→C | δ:A,γ:C,∆. From Γ ⊢λµ L : B | ∆, since α, δ

and γ all do not occur (free) in N, by weakening we also get Γ ⊢λµ L : B | δ:A,γ:C,∆,

and we can construct

Γ ⊢λµ N{L·γ/α} : B→C | δ:A,γ:C,∆ Γ ⊢λµ L : B | δ:A,γ:C,∆
(→E)

Γ ⊢λµ (N{L·γ/α}) L : C | δ: A,γ:C,∆
(µ)

Γ ⊢λµ µδ.[γ](N{L·γ/α}) L : A | γ:C,∆

((µδ.[β]N){L·γ/α} =∆ µδ.[β](N{L·γ/α}) (β 6= α)) : Then by rule (µ) there exists D such

that β:D,∆′=∆, and Γ ⊢λµ N : D | δ:A, β:D,α:B→C,∆′, and by induction Γ ⊢λµ N{L·γ/α} :

D | δ:A, β:D,γ:C,∆′. But then, by rule (µ), also Γ ⊢λµ µδ.[β]N{L·γ/α} : A | β:D,γ:C,∆′.

iii) By induction on the definition of left-structural substitution.

({L·γ/α}x =∆ x) : Then x:A ∈ Γ, and by rule (Ax) we have Γ ⊢λµ x : A | γ:C,∆.

({L·γ/α}(λx.N) =∆ λx.({L·γ/α}N)) : Then A = D→E and, bu rule (→I), Γ, x:D ⊢λµ

N : E | α:B,∆. Then by induction we have Γ, x:D ⊢λµ {L·γ/α}N : E | γ:C,∆, so by rule

(→I) also Γ ⊢λµ λx.{L·γ/α}N : D→E | γ:C,∆.

({L·γ/α}(PQ) =∆ {L·γ/α}P{L·γ/α}Q) : Then by rule (→E) there exists D such that

Γ ⊢λµ P : D→A | α:B,∆ and Γ ⊢λµ Q : D |α:B,∆. Then by induction both Γ ⊢λµ {L·γ/α}P :

D→A | γ:C,∆ and Γ ⊢λµ {L·γ/α}Q : D | γ:C,∆; the result follows by rule (→E).

({L·γ/α}µδ.[α]N =∆ µδ.[γ]L({L·γ/α}N)) : Then by rule (µ) Γ ⊢λµ N : B | δ:A,α:B,∆,

and by induction Γ ⊢λµ {L·γ/α}N : B | δ:A,γ:C,∆. From Γ ⊢λµ L : B→C | ∆, since δ

and γ do not occur (free) in L, by weakening we also get Γ ⊢λµ L : B→C | δ:A,γ:C,∆,

so we can construct

9

Γ ⊢λµ L : B→C | δ:A,γ:C,∆ Γ ⊢λµ {L·γ/α}N : B | δ:A,γ:C,∆
(→E)

Γ ⊢λµ L{L·γ/α}N : C | δ:A,γ:C,∆
(µ)

Γ ⊢λµ µδ.[γ]L{L·γ/α}N : A | γ:C,∆

({L·γ/α}(µδ.[β]N) =∆ µδ.[β]({L·γ/α}N) (β 6= α)) : Then by rule (µ) there exists D such

that β:D,∆′ = ∆, and Γ ⊢λµ N : D | δ:A,α:B, β:D,∆′. Then by induction we have Γ ⊢λµ

{L·γ/α}N : D | δ:A,γ:C, β:D,∆′. But then, by rule (µ), also Γ ⊢λµ µδ.[β]{L·γ/α}N : A |

γ:C, β:D,∆′.

We will now show that type assignment respects lazy and call-by-value reduction:

Theorem 1.9 If M →n

βµ N, and Γ ⊢λµ M : A | ∆, then Γ ⊢λµ N : A | ∆.

Proof : By induction on the definition of →n

βµ.

((λx.M)N →n

βµ M{N/x}) : The derivation for Γ ⊢λµ (λx.M)N : A | ∆ is shaped like

Γ, x :B ⊢λµ M : A | ∆
(→I)

Γ ⊢λµ λx.M : B→ A | ∆ Γ ⊢λµ N : B | ∆
(→E)

Γ ⊢λµ (λx.M)N : A | ∆

Then, by Lem. 1.8, we have Γ ⊢λµ M{N/x} : A | ∆.

((µα.[α]M)N →n

βµ µγ.[γ]M{N·γ/α}N) : The derivation for (µα.[α]M)N is shaped like

Γ ⊢λµ M : B→A | α:B→ A,∆
(µ)

Γ ⊢λµ µα.[α]M : B→A | ∆ Γ ⊢λµ N : B | ∆
(→E)

Γ ⊢λµ (µα.[α]M) N : A | ∆

Then by Lem. 1.8, we have Γ ⊢λµ M{N·γ/α} : B→A |γ:A,∆. Since γ is fresh, by weakening

also Γ ⊢λµ N : B | γ:A,∆, we can construct

Γ ⊢λµ M{N·γ/α} : B→A | γ:A,∆ Γ ⊢λµ N : B | γ:A,∆
(→E)

Γ ⊢λµ M{N·γ/α}N : A | γ:A,∆
(µ)

Γ ⊢λµ µγ.[γ]M{N·γ/α}N : A | ∆

((µα.[δ]M)N →n

βµ µγ.[δ]M{N·γ/α}, with α 6= δ) : The derivation for (µα.[δ]M)N is shaped

like

Γ ⊢λµ M : C | α:B→A,δ:C,∆′

(µ)
Γ ⊢λµ µα.[δ]M : B→A | δ:C,∆′ Γ ⊢λµ N : B | δ:C,∆′

(→E)
Γ ⊢λµ (µα.[δ]M) N : A | δ:C,∆′

with ∆= δ:C,∆′. Then by Lem. 1.8, we have Γ ⊢λµ M{N·γ/α} : C | γ:A,δ:C,∆′, and we can

construct

Γ ⊢λµ M{N·γ/α} : C | γ:A,δ:C,∆′

(µ)
Γ ⊢λµ µγ.[δ]M{N·γ/α}N : A | δ:C,∆′

(µα.[α]M →n

βµ M) : The derivation for µα.[α]M is shaped like

10

Γ ⊢λµ M : A | α:A,∆
(µ)

Γ ⊢λµ µα.[α]M : A | ∆

Since α does not occur in M, we can thin α:A,∆ and obtain Γ ⊢λµ M : A | ∆.

(µα.[β]µγ.[δ]M →n

βµ µα.([δ]M){β/γ}) : The derivation for (µα.[δ]M)N is shaped like

Γ ⊢λµ M : D | α:A, β:B,γ:B,δ:D,∆′

(µ)
Γ ⊢λµ µγ.[δ]M : B | α:A, β:B,δ:D,∆′

(µ)
Γ ⊢λµ µα.[β]µγ.[δ]M : A | β:B,δ:D,∆′

So in particular, replacing all occurrences of γ by β, we obtain a derivation for Γ ⊢λµ

M{β/γ} : D | α:A, β:B,δ:D,∆′. Now either:

(δ 6= γ) : Then we can construct:

Γ ⊢λµ M{β/γ} : D | α:A, β:B,δ:D,∆′

(µ)
Γ ⊢λµ µα.[δ]M{β/γ} : A | β:B,δ:D,∆′

(δ = γ) : Then D = B as well, and we can construct:

Γ ⊢λµ M{β/γ} : B | α:A, β:B,∆′

(µ)
Γ ⊢λµ µα.[β]M{β/γ} : A | β:B,∆′

(M →n

βµ N ⇒ MP →n

βµ NP, µα.[β]M →n

βµ µα.[β]N) : By induction.

Theorem 1.10 If M →v

βµ N, and Γ ⊢λµ M : A | ∆, then Γ ⊢λµ N : A | ∆.

Proof : By induction on the definition of →v

βµ; we only show the cases that deal with left

structural substitution; the others are very similar if not identical to the previous theorem.

(V(µα.[α]M)→n

βµ µγ.[γ]V{V·γ/α}M) : The derivation for V(µα.[α]M) is shaped like

Γ ⊢λµ V : B→A | ∆

Γ ⊢λµ M : B | α:B,∆
(µ)

Γ ⊢λµ µα.[α]M : B | ∆
(→E)

Γ ⊢λµ V (µα.[α]M) : A | ∆

Then by Lem. 1.8, we have Γ ⊢λµ {V·γ/α}M : B | γ:A,∆, and we can construct

Γ ⊢λµ V : B→ A | ∆
(Wk)

Γ ⊢λµ V : B→ A | γ:A,∆ Γ ⊢λµ {V·γ/α}M : B | γ:A,∆
(→E)

Γ ⊢λµ V{V·γ/α}M : A | γ:A,∆
(µ)

Γ ⊢λµ µγ.[γ]V{V·γ/α}M : A | ∆

(V(µα.[δ]M)→n

βµ µγ.[δ]{V·γ/α}M, with α 6= δ) : The derivation for V(µα.[δ]M) is shaped

like

Γ ⊢λµ V : B→A | δ:C,∆′

Γ ⊢λµ M : C | α:B,δ:C,∆′

(µ)
Γ ⊢λµ µα.[δ]M : B | δ:C,∆′

(→E)
Γ ⊢λµ V (µα.[δ]M) : A | δ:C,∆′

11

with ∆= δ:C,∆′. Then by Lem. 1.8, we have Γ ⊢λµ {V·γ/α}M : C | γ:A,δ:C,∆′, and by rule

(µ) we have Γ ⊢λµ µγ.[δ]{V·γ/α}M : A | δ:C,∆′.

[1] also present a variant of λµ, called λµ-top, where top is a special name that cannot occur

bound and denotes the top-level. Their motivation for this extension is: “On the programming

calculi side, the presence of the continuation top makes it possible to distinguish between aborting a

computation and throwing to a continuation (as aborting corresponds to throwing to the special top-

level continuation). This distinction can be used to develop more refined programming calculi for

languages with control operators.” We will follow this suggestion below, when we look to model

aborting computations in λtry in Sect. 5.

Definition 1.11 (λµ-top) i) Terms of the λµ-top-calculus are defined as in Def. 1.3, extended

with the case µα.[top]M, where top is a name that cannot occur bound.

ii) The notion of type assignment for λµ-top, ⊢t, is defined using the types defined by the

grammar

T ::= ⊥ | A

A ::= ϕ | A→T

and the type assignment rules of Fig. 2, extended with the inference rule

(top) :
Γ ⊢ M : ⊥ | α: A,∆

Γ ⊢ µα.[top]M : A | ∆

The appropriate variants of Lem. 1.8 and Thm. 1.9 can much in the same way be shown to

hold for ⊢t.

The following lemma is needed below when encoding throwing exceptions.

Lemma 1.12 i) The reduction rule Cn

a [µ .[β]N]→ µ .[β]N is admissible in →n

βµ.

ii) The reduction rule Cv
a [µ .[β]N] → µ .[β]N is admissible in →v

βµ.

Proof : i) By induction on the structure of contexts:

(Cn
a = []) : Immediate.

(Cn
a = Cn

a′M) : Notice that 6= β and that there is no sub-term called in N; then

Cn
a′[µ .[β]N]M → (IH) (µ .[β]N) M

→n

βµ µγ.[β]N{M·γ/ }

= µγ.[β]N

=α µ .[β]N

Notice that γ is fresh; since there is no sub-term called in M, the structural substitu-

tion {M·γ/ } has no effect, so, in particular, γ does not appear in [β]M.

ii) By induction on the structure of contexts. The first two cases are similar to above; the third

one is:

(Cv
a = VCv

a′) : VCv
a ′[µ .[β]M] → (IH)

V(µ .[β]M) →v

βµ

µγ.[β]{V·γ/ }M =

µγ.[β]M =α µ .[β]M

Notice that this result also holds for β = top.

12

1.4 On modelling the catch/throw mechanism in λµ

Throwing an exception involves an interruption of normal execution, and a jump out of the

current context; those jumps can be modelled by rules that eradicate the context, like for

example C[A(M)] → M as used in λC [8] (using the abort constructor A), or similarly as in

[16, 11].

The kind of contexts that can be aborted differ from paper to paper. The most common

approach, as used in [8, 4] and here, is to allow aborting applicative contexts only, but, for

example, [16] allows aborting executions inside abstractions as well. Allowing the latter kind

of comes with obstacles, in that type assignment and in particular soundness (preservation

of assignable types under reduction) becomes more difficult to achieve, since in general we

cannot preserve types when aborting from an abstraction (see Ex. 4.5 and 6.7), which leaves

that (in the context of the λ-calculus with types) we can only safely abort from applicative

contexts.

In terms of provable properties it is preferable to model eradication of applicative contexts

‘one syntactic construction at the time’, rather than use the λC-approach, which aborts entire

contexts via C[A(M)] → M, where the context is assumed to be as large as possible. This is

exactly what can be modelled in λµ (using the result of Lem. 1.12), where the functionality of

throwing an exception M to name n can be represented by µ .[n]M (where n does not occur

in M), i.e. a context switch that can be used to erase (only) an applicative context. We can now

implement the functionality of ‘escaping from the context’ via the mechanism of consuming

it via the reduction steps:

(µ .[n]M)PQ → (µ .[n]M)QR → (µ .[n]M)R → µ .[n]M

Notice that this will always leave the prefix µ .[n], which therefore has to be removed through

the encoding of the catch functionality. We can achieve this using λµ’s renaming and erasing

reduction steps: we model catching on name n through µn.[α]M, essentially allowing for:

µn.[α](µ .[n]M)PQ →∗
βµ (1.12) µn.[α]µ .[n]M →βµ (R) µn.[n]M →βµ (E) M

However, this is not enough; we also want the catch-mechanism to disappear when computa-

tion terminates normally, as in

try V ; catch ni (x) = Mi → V

which is then modelled through, as a last step µn.[α]V →βµ V but this is only possible when

α = n.

In conclusion, throwing to the name n has to be modelled through µ .[n], whereas catching

on the name n has to be modelled through µn.[n]. This is the approach of all interpretations

into λµ we discuss here, even the historic ones, as, for example, the one presented in [18].

1.5 Nakano’s system and Crolard’s interpretation

In [16], Nakano presented an unnamed programming language with catch and throw, together

with a notion of type assignment. It is presented as extension of a λ-calculus with pairing

and disjunctive choice, and by adding tag variables that are used to mark destinations for the

throw instructions. Crolard [5] later established a relation between Nakano’s calculus and

Parigot’s λµ (see below).

We briefly summarise Nakano’s system as appeared in [16]; to facilitate the comparison

with λtry, we will not consider pairing, disjoint union, nor constants, and use Crolard’s syntax;

we will call it λn here.

13

(Ax) :
Γ, x :A ⊢ x : A | ∆

(→I) :
Γ, x :A ⊢ M : B | ∆

(x /∈ V for all α:〈A,V〉 ∈∆)
Γ ⊢ λx.M : A→B | ∆

(→E) :
Γ1 ⊢ M : A→B | ∆1 Γ2 ⊢ N : A | ∆2

Γ1, Γ2 ⊢ M N : B | ∆1,∆2

(catch) :
Γ ⊢ M : A | α:〈A,V〉,∆

Γ ⊢ catch α M : A | ∆

(throw) :
Γ ⊢ M : A | ∆

Γ ⊢ throw α M : B | α:〈A,Dom(Γ)〉,∆

Figure 3: Type assignment for Nakano’s system

Definition 1.13 (λn) i) The terms of λn are defined through the grammar:

M, N ::= x | λx.M | MN | catch α M | throw α M

ii) Reduction on terms in λn is defined through the rules:

M{throw α N/x} → throw α N (x ∈ M, M 6= x, M 6= C[catch α Q[x]])3

catch α M → M (α /∈ M)

catch α (throw α M) → M (α /∈ M)

(λx.M)N → M{N/x}

iii) The notion of types and context of variables Γ is the same as that of Def. 1.6; as usual, we

will write Dom (Γ) for {x | ∃A [x:A ∈ Γ]}. The notion of name context maps names to

pairs of types and sets of term variables, α:〈A,V〉. The definition of compatible union of

contexts of names ∆1,∆2 then requires the type for a name to be the same in both ∆1 and

∆2, and takes the union of the associated sets.

iv) Type assignment for λn is defined through the inference rules in Fig. 3 (modified here to

our syntax and limitations of the language).

The extra feature of adding a set of type variables to names in the right-hand context is

used in two positions: in rule (→I), to avoid binding of a free variable that occurs in a term

that gets thrown, and in rule (throw) where the set of variables in the context of inputs used to

type the term to be thrown gets stored in the context of names. Notice that rule (throw) adds

α:〈A,V〉 to the context of names; it is not clear if Nakano intends this to be a true addition,

i.e if α is supposed to not already occur in ∆; since the third reduction rule demands that the

name towards which the expression M is thrown does not appear in M, this seems to be the

case.

Nakano proves that the system satisfies subject reduction; it avoids the problem highlighted

in Ex. 4.5 through not allowing abstraction over variables that occur in thrown terms. How-

ever, this restriction is quite strong. For example, the term

λx.(λab.b)(throw α x) x

would be considered untypeable in Nakano’s system, since we have the λn-reduction

λx.(λab.b) (throw α x) x → throw α x

even though its type would be A→A, and it safely runs to λx.x under lazy reduction. In our

approach (as detailed below), we will type the term, but not allow an exception to be thrown

from inside an abstraction.

Notice that the first reduction rule states that any context can be eradicated by a throw that

occurs inside it; thereby, this yields a highly non-confluent calculus; this was already observed

3 The third restriction is missing in [16], but this seems to be in error.

14

by Nakano, who gives the following example4: take

M = catch α ((λxy. I) (throw α K) (throw α Z))

(where I = λx.x, K = λab.a, and Z = λab.b), then we have the following three reduction results:

M → catch α ((λy. I) (throw α Z)) → catch α I → I

M → catch α (throw α K) → K

M → catch α (throw α Z) → Z

So reduction is non-confluent.

In part to address this, Crolard [5] defines an interpretation of the terms in λn into λµ.

Observe that, since reduction in λµ is confluent, this interpretation cannot preserve (all) λn-

reductions.

Definition 1.14 Crolard’s interpretation · c : λn→λµ is (adapted to our notation) defined by:

x c = x

λx.N c = λx. N c

MN c = M c N c

catch α M c = µα.[α] M c

throw α N c = µ .[α] N c

Notice that this interpretation follows the observations made in Sect. 1.4. Then, for example,

we get:

catch α (throw α M) c =∆ µα.[α](µ .[α] M c) →

µα.[α] M c → M c

The last step is only possible if α does not occur in M c, so respects the restriction imposed

by the λn-reduction rule.

Nakano’s example term translates as:

catch α ((λxy. I) (throw α K) (throw α Z)) c =∆

µα.[α]((λxy. I) (µ .[α]K) (µ .[α]Z))

which in λµ only reduces as follows:

µα.[α]((λxy. I) (µ .[α]K) (µ .[α]Z)) →

µα.[α]((λy. I) (µ .[α]Z)) →

µα.[α] I → I

Moreover,

λx.(λab.b) (throw α x)x c =∆

λx.(λab.b) (µ .[α]x)x →∗ λx.x

and we can show ⊢λµ λx.(λba.a) (µ .[α]x)x : A→A | α:A, as in Fig. 4. so non-typeability in

Nakano’s system is not preserved under Crolard’s interpretation.

4 Nakano uses numbers rather than I, K, and Z to get a typeable term.

15

(Ax)
x : A,b:B, a:A ⊢λµ a : A | α: A

(→I)
x : A,b:B ⊢λµ λa.a : A→A | α:A

(→I)
x : A ⊢λµ λba.a : B→ A→A | α:A

(Ax)
x : A ⊢λµ x : A | :B,α:A

(µ)
x :A ⊢λµ µ .[α]x : B | α:A

(→E)
x : A ⊢λµ (λba.a) (µ .[α]x) : A→A | α: A

(Ax)
x : A ⊢λµ x : A | α: A

(→E)
x : A ⊢λµ (λba.a) (µ .[α]x)x : A | α:A

(→I)
⊢λµ λx.(λba.a) (µ .[α]x)x : A→A | α:A

Figure 4: A derivation for ⊢λµ λx.(λba.a) (µ .[α]x)x : A→A | α:A.

Γ, x :A ⊢ x : A | ∆

Γ, x :A ⊢ M : B | ∆

Γ ⊢ λx.M : A→B | ∆

Γ ⊢ M : A→B | ∆ Γ ⊢ N : A | ∆

Γ ⊢ M N : B | ∆

Γ ⊢ c : σ(c) | ∆

Γ ⊢ M : B | ∆

Γ ⊢ raise (n, M) : A | n:¬B,∆

Γ ⊢ M : B | n:¬A,∆ Γ, x :A ⊢ N : B | ∆

Γ ⊢ let n in M handle n x ⇒ N end : B | ∆

Figure 5: Type assignment rules for de Groote’s calculus.

1.6 De Groote and Bierman’s approach

In [4], Bierman studies the interpretation of de Groote’s simply-typed calculus λ→
exn, as pre-

sented in [13] into an abstract machine that evaluates λµ-terms using a call-by-value strategy.

De Groote’s calculus is based on ml’s [15] handling of exceptions. We will follow Bierman’s

notation here, updated to ours.

Definition 1.15 λ→
exn-terms are defined through the grammar:5

M, N ::= V | MN | raise (n, M) | let n in M handle n x ⇒ N end

V ::= c | x | λx.M

It uses the set of types defined as A, B ::= a | ⊥ | A→B (where a ranges over a set of ground

types and ⊥ is a distinguished ground type) and the type assignment rules in Fig. 5 where

¬A = A→ exn, with exn ml’s type of exceptions, represented as ⊥; σ assigns the appropriate

ground type to each constant.

This system is, like Nakano’s, developed out of classical logic, and de Groote argues that it

is complete, i.e. fully represents classical proofs.6

Definition 1.16 The reduction relation on λ→
exn is defined through the rules:

5 In [13] de Groote represents the syntax of λ→
exn differently and thereby also the inference rules, by allowing

for n to be a separate term, rather than only in the appropriate context, like raise (n M), as we do here in λtry.
Moreover, de Groote uses x for term variables, and y for names, which he calls ‘exception variables’, and keeps
their types in the left-hand context; de Groote also adds n and n V to values, but these are not proper terms in
Bierman’s approach.

6 Apart from the fact that we do not aim for completeness in this sense for λtry, it seems also likely that, with
the restrictions present in Def. 2.1(iii), this would not be possible to show for any of the notions of type assignment
we define here for λtry.

16

(λx.M)V → M{V/x}

V ′(raise (n,V)) → raise (n,V)

(raise (n,V))M → raise (n,V)

raise (m, raise (n,V)) → raise (n,V)

let n in V handle n x ⇒ N end → V (n /∈ fn(V))

let n in raise (n,V) handle n x ⇒ N end → N{V/x} (n /∈ fn(V, N))

let n in raise (m,V) handle n x ⇒ N end → raise (m,V) (m 6= n,n /∈ fn(V))

Notice that there are no rules permitting raising an exception from within an abstraction,

thereby avoiding the subject reduction problem mentioned in Ex. 4.5. However, de Groote does

not put the side-condition on the last three rules, opening the system to another kind of subject

reduction problem; Bierman adds the restrictions in his presentation. Operationally, the λ→
exn-

term ‘let n in M handle n x ⇒ N end’ corresponds to the λtry-term ‘try M; catch n(x) = N’ (see

Def. 2.1).

Definition 1.17 (Interpretation of λ→
exn into λµ) Bierman defines the interpretation of terms

into λµ-terms as follows:

x b =∆ x

λx.M b =∆ λx. M b

MN b =∆ M b N b

raise (n, M) b =∆ (λx.µβ.[n]x) M b
7

let n in M handle n x ⇒ N end b =∆ µβn .[βn](λx. N b) (µn.[βn] M b)

and states “It is quite easy to verify that this translation preserves the expected operational behaviour.”,

intended through his interpretation into the abstract machine which essentially runs call-by-

value reduction, but not shown.

Example 1.18 As illustration of Bierman’s claim, take ‘let n in raise (n, M) handle n x ⇒ M end’.

Then:

let n in raise (n, M) handle (nz) ⇒ M end b =∆

µβn .[βn](λx.M) (µn.[βn] raise (n, M) b) =∆

µβn .[βn](λx.M) (µn.[βn](µ .[n] N)) →v

βµ

µβn .[βn](λz. M b) (µn.[n] N b) →v

βµ

(λz. M b) (µn.[n] N b) →v

βµ

(λz. M b) N b →v

βµ M{N/z} b

Also, for ‘let n in V handle n x ⇒ N end’ with n /∈ fn(V) we get:

let n in V handle n x ⇒ M end b =∆

µβn .[βn](λx. N b) (µn.[βn] V b) →v

βµ

µβn .[βn](µγ.{(λx.N)·γ/n}[βn] V b) = (n 6= βn)

µβn .[βn](µγ.[βn]{(λx.N)·γ/n} V b) = (n /∈ fn(V))

µβn .[βn](µγ.[βn] V b) →v

βµ

µβn .[βn] V b{βn/γ} = µβn .[βn] V b →v

βµ V b

7 [3] essentially uses (λx.µβ.[a]x) M b, but the use of a rather than n seems to be in error.

17

2 The calculus λtry

The calculus λtry we will present in this section will use the C++/java-like syntax of try, throw,

and catch, but will discern the exception handlers by name rather than by type. We will see

the term ‘catch n(x) = M’ as an exception handler named n that can receive a parameter on x

after which it runs M with the parameter taking the position of x in M, and ‘throw n(N)’ a

call to the exception handler with name n, passing it the argument N. By the very nature

of exception handling, this implies that then N itself is a term that does not call on itself (so

exception handling is non-recursive), but can call on other exception handlers, defined outside

the scope of the present try-term.

Terms of λtry are defined as follows:

Definition 2.1 (Syntax of λtry) i) The set of pre-terms of λtry is defined by the grammar:

Catch Block ::= catch m(x) = M | Catch Block; catch n(x) = N

M, N ::= V | MN | try M; Catch Block | throw n(M)

V ::= x | λx.M (Values)

ii) We will call n in ‘catch n(x) = N’ a declared name and will write catch ni (x) = Ni for the

catch-block

catch n1 (x) = N1 ; . . . ; catch nn (x) = Nn.

Since exceptions are called using their name, the order in which they appear in the catch-

block is not important.

iii) The set of terms are pre-terms that satisfy the following restrictions:

a) In a catch-block catch ni (x) = Mi the names ni do not occur in the exception handler Mj,

for any i, j ∈ n (where i ∈ n stands for i ∈ {1, . . . ,n}), and all declared names n1, · · ·,nn

are distinct;

b) for each throw nl (N) that occurs inside M in the term try M; catch ni (x) = Ni, none of

the names ni occur in N.

iv) We define the notion of bound variables and of bound names of M (respectively bv (M) and

bn (M)) as usual:

bv (x) = ∅

bv (λx.M) = bv (M) ∪ {x}

bv (MN) = bv (M) ∪ bv (N)

bv (try M; catch ni (x) = Ni) = bv (M) ∪

bv (N1) ∪ · · · ∪ bv (Nn) ∪ {x}

bv (throw n(M)) = bv (M)

bn (x) = ∅

bn (λx.M) = bn (M)

bn (MN) = bn (M) ∪ bn (N)

bn (try M; catch ni (x) = Ni) = {n1, . . . ,nn } ∪

bn (M) ∪ bn (N1) ∪ · · · ∪ bn (Nn)

bn (throw n(M)) = bn (M)

where the occurrences of x in the terms Ni are bound by catch in the try-construct, and,

by Barendregt’s convention, x does not occur free in M. A variable or name is free in M

if it occurs in M and is not bound; we write fv(M) for the set of free variables in M, and

fn(M) for its free names.

We accept Barendregt’s convention, so all free and bound variables and names are distinct,

using renaming of bound variables or names (α-conversion) when necessary.

To control the throwing of exceptions, we define a notion of call by name (lazy) and call by

value reduction; these define an evaluation strategy, where only ever one sub-expression can

execute and an exception is only ever thrown when needed to continue reduction.

Definition 2.2 (λtry-reduction) i) The notion of call-by-name reduction →n

try
on λtry is defined

18

as an extension of lazy reduction on λ-terms. The main reduction rules are:

(β) : (λx.M)N → M{N/x}

(throw) : (throw n(N))M → throw n(N)

(try-throw) : try throw nl(N); Catch Block; catch nl (x) = Ml → Ml{N/x}

(try-normal) : try N ; catch ni (x) = Mi → N (ni /∈ N)

Call-by-name applicative contexts are defined as:

Cn
a

::= [] | Cn
a

M | try Cn
a
; Catch Block

ii) The notion of call-by-value reduction →v

try
on λtry is defined as an extension of call-by-

value reduction on λ-terms using the main reduction rules from call-by-name, with the

exception of (β) which gets replaced by:

(βv) : (λx.M)V → M{V/x}

It adds the rule:

(throwv) : V(throw n(N)) → throw n(N)

Call-by-value applicative contexts are defined as:

Cv

a
::= [] | Cv

a
M | VCv

a | try Cv

a
; Catch Block

Notice that, as in all (call by name, or call by value) functional languages, reduction does

not allow for the evaluation of the body of an abstraction; this implies that throws inside the

body are not ‘triggered’ until at least the surrounding abstraction has disappeared as the result

of the contraction of a redex. If execution inside a try-block leads to a term N that does not

contain throws to the declared names, then the result of the try-block is just that N; it is not

necessarily the case that reduction of N has terminated.

3 Interpreting λtry in λµ

In this section we will define an interpretation of λtry-terms into λµ, using the approach we

discussed above. Notice that, by the very nature of λµ, when encoding throw using a context

switch, the body of the throw is not the information that something has gone wrong that gets

passed to the exception handler, but in fact the entire exception handler. This implies that,

when dealing with the term ‘try M; catch ni (x) = Ni’, we need to bring the exception handlers

catch n(x) = N inside the interpretation of M; this is done using substitution,8 introducing

variables cni
that are placed in front of the argument that is passed to the exception handler

in throw ni(M).

Definition 3.1 (Interpretation of λtry
into λµ) We extend the set of names in λµ with n, m,

. . . , and define the interpretation of terms in λtry into λµ-terms as follows:

8 A perhaps more elegant approach is to encode a try-block using a redex, rather than term substitution, but
that implies that we can no longer model lazy (cbv) reduction in λtry by lazy (cbv) reduction in λµ, in particular
when modelling the step M → N ⇒ try M ; Catch Block→ try N ; Catch Block.

19

x λµ =∆ x

λx.M λµ =∆ λx. M λµ

MN λµ =∆ M λµ N λµ

throw n(M) λµ =∆ µ .[n]cn M λµ

try M; catch n(x) = N λµ =∆ (µn.[n] M λµ){λx. N λµ/cn}

try M;Catch Block; catch n(x) = N λµ =∆

(µn.[n] M;Catch Block λµ){λx. N λµ/cn}

Remark 3.2 Although many names can be used in a λtry-term, when interpreting into λµ all

collapse onto the outermost one. To illustrate this, take the term

try M(throwm(N))(throw n(L)); catch n(x) = P; catch m(x) = Q

The interpretation of this term is

(µm.[m](µn.[n] M (µ .[m]cm N)(µ .[n]cn L))

{λx. P λµ/cn}){λx. Q λµ/cm} =

µm.[m] µn.[n] M λµ(µ .[m](λx. Q λµ) N λµ)(µ .[n](λx. P λµ) L λµ) →βµ (R)

µm.[m] M λµ(µ .[m](λx. Q λµ) N λµ)(µ .[m](λx. P λµ) L λµ)

We will show that both reduction and assignable types (under the basic system, see Sect. 4)

are preserved under this interpretation. First we show that term-substitution is preserved

under the interpretation.

Lemma 3.3 (· λµ preserves term substitution)

M λµ{ N λµ/x} = M{N/x} λµ.

Proof : (x) : x λµ{ N λµ/x} = x{ N λµ/x} = N λµ = x{N/x} λµ

(y 6= x) : y λµ{ N λµ/x} = y{ N λµ/x} = y = y{N/x} λµ

(λx.M) : λy.M λµ{ N λµ/x} = (λy.M){ N λµ/x} = λy.M{ N λµ/x} = (IH)

λy. M{N/x} λµ = λy.M{N/x} λµ = (λy.M){N/x} λµ

(PQ) : PQ λµ{ N λµ/x} = P λµ Q λµ{ N λµ/x} =

P λµ{ N λµ/x} Q λµ{ N λµ/x} = (IH) P{N/x} λµ Q{N/x} λµ =

P{N/x}Q{N/x} λµ = (PQ){N/x} λµ

(try M; catch ni (x) = Ni ; catch m(x) = L) :

try M; catch ni (x) = Ni ; catch m(x) = L λµ{ N λµ/x} =

(µm.[m] try M; catch ni (x) = Ni λµ) (λx. L λµ){ N λµ/x} =

(µm.[m] try M; catch ni (x) = Ni λµ{ N λµ/x}) (λx. L λµ{ N λµ/x}) = (IH)

(µm.[m] try M{N/x}; catch ni (x) = Ni{N/x} λµ) (λx. L{N/x} λµ) =

try M{N/x} ; catch ni (x) = Ni{N/x}; catch m(x) = L{N/x} λµ =

(try M; catch ni (x) = Ni ; catch m(x) = L){ N λµ/x} λµ

(throw n(M)) : throw n(M) λµ{ N λµ/x} = (µ .[n]cn M λµ){ N λµ/x} =

µ .[n]cn M λµ{ N λµ/x} = (IH) µ .[n]cn M{N/x} λµ =

throw n(M{N/x}) λµ

We can now show that cbn-reduction on λtry-terms is preserved as well under the interpre-

tation:

Theorem 3.4 (Soundness of · λµ with respect to →n

try
) If P →n

try
Q, then P λµ →n∗

βµ Q λµ.

20

Proof : By induction on the definition of →n

try
. We show the non-trivial cases (and drop the

subscript on · λµ).

(throw) : Then P = (throw n(N)) M → throw n(N) = Q, and

(throw n(N)) M =∆ (µ .[n]cn N) M →n

βµ (1.12) µ .[n]cn N =∆ throw n(N)

(try-throw) : Then P= try throw nl (N); catch ni (x) = Mi → Ml{N/x}= Q, with l ∈{1, . . . ,n},

and

try throw nl (N); catch ni (x) = Mi =∆

(µnn .[nn] try throw nl(N) ; catch ni (x) = Mi){λx. Mn /cnn} =∆

(µnn .[nn] · · ·(µn1 .[n1] throw nl(N)){λx. M1 /cn1
}· · ·){λx. Mn /cnn} =

(cnn /∈ (µnn .[nn] · · ·(µn1 .[n1] throw nl(N)){λx. M1 /cn1
} · · ·){λx. Mn−1 /cnn−1

})

(µnn .[nn] · · ·(µn1 .[n1] throw nl (N)){λx. M1 /cn1} · · ·) →n

βµ (E)

(nn /∈ (µnn−1 .[nn−1] · · ·(µn1 .[n1] throw nl (N)){λx. M1 /cn1
} · · ·)

(µnn−1 .[nn−1] · · ·(µn1 .[n1] throw nl (N)){λx. M1 /cn1}· · ·){λx. Mn−1 /cnn−1} →n∗
βµ (E)

(µnl .[nl] · · ·(µn1 .[n1] throw nl(N)){λx. M1 /cn1}· · ·){λx. Ml /cnl
} =∆

(µnl .[nl] · · ·(µn1 .[n1]µ .[nl]cnl
N){λx. M1 /cn1}· · ·){λx. Ml /cnl

} =

µnl .[nl] · · ·(µn1 .[n1]µ .[nl](λx. Ml) N){λx. M1 /cn1
}· · ·) →n∗

βµ (R)

µnl .[nl]µ .[nl]((λx. Ml) N) →n

βµ (R)

µnl .[nl] ((λx. Ml) N) →n

βµ (E) (λx. Ml) N →n

βµ Ml { N /x} = (3.3) Ml{N/x}

(try-normal) : Then P = try N ; catch ni (x) = Mi → N = Q, with ni /∈ N for all i ∈ n. Notice

that, since ni /∈ N for all i ∈ n, also ni and cni
do not occur in N . Then:

try N ; catch ni (x) = Mi =∆

(µnn .[nn] try N ; catch ni (x) = Mi){λx. Mn /cnn} =∆

(µnn .[nn] · · ·(µn1 .[n1] N){λx. M1 /cn1}· · ·){λx. Mn /cnn} =

(cnn /∈ (µnn .[nn] · · ·(µn1 .[n1] N){λx. M1 /cn1
} · · ·){λx. Mn−1 /cnn−1

})

(µnn .[nn] · · ·(µn1 .[n1] N){λx. M1 /cn1} · · ·) →n

βµ (E)

(nn /∈ (µnn−1 .[nn−1] · · ·(µn1 .[n1] N){λx. M1 /cn1
} · · ·))

(µnn−1 .[nn−1] · · ·(µn1 .[n1] N){λx. M1 /cn1}· · ·){λx. Mn−1 /cnn−1} →n∗
βµ N

(P = ML → N L = Q because M → N) : ML t =∆ M L →n∗
βµ (IH) N L =∆

N L

(try M; catch ni (x) = Li → try N ; catch ni (x) = Li because M → N) :

try M; catch ni (x) = Li =∆ (µnn .[nn] · · ·µn1 .[n1] M) {λx. Li /cni
}

→n∗
βµ (IH) (µnn .[nn] · · ·µn1 .[n1] N) {λx. Li /cni

}

=∆ try N ; catch ni (x) = Li

So it seems that interpreting into λµ is the natural thing to do.

Similarly, we can verify that the interpretation respects call by value reduction →v

try
.

Theorem 3.5 (Soundness of · λµ with respect to →v

try
) If P →v

try
Q, then P λµ →v∗

βµ Q λµ.

Proof : By induction on the definition of →v

try
. Most cases correspond to those of the previous

proof, except for:

21

(Ax) :
Γ, x :A ⊢ x : A | ∆

(→I) :
Γ, x :A ⊢ M : B |∆

(x /∈ Γ)
Γ ⊢ λx.M : A→B | ∆

(→E) :
Γ ⊢ M : A→B | ∆ Γ ⊢ N : A | ∆

Γ ⊢ M N : B | ∆

(throw) :
Γ ⊢ N : A | n:A→B,∆

Γ ⊢ throw n(N) : C | n:A→B,∆

(try) :
Γ ⊢ M : B | ni :Ai→B,∆ Γ, x :Ai ⊢ Ni : B | ∆ (∀i ∈ n)

(ni /∈∆)
Γ ⊢ try M; catch ni (x) = Ni : B | ∆

Figure 6: Basic type assignment for λtry

(throwv) : V(throw n(N)) λµ =∆ V λµ(µn.[n] .cn N λµ) →v

βµ (µv)

µγ.{ V λµ · γ/ } ([n].cn N λµ) = µγ.[n].cn N λµ =α

µn.[n] .cn N λµ =∆ throw n(N) λµ

Notice that the only non-β-reduction steps for the λµ-calculus used in these two encoding

results are renaming, erasing, and µ (or µv) towards , i.e. a non-occurring name.

4 Basic type assignment

In this section we will define a notion of basic type assignment for terms in λtry in the tra-

ditional way; in particular, in rule (try), we will demand that the type of the main term is

exactly that returned by all exception handlers; this is, in principle, also the approach chosen

for java [7], and all the notions of type assignment presented above in Sect. 1.

Definition 4.1 (Basic type assignment for λtry) i) Types and contexts of variables Γ and names

∆ are those of Def. 1.6.

ii) Basic type assignment for terms in λtry is defined through the inference system in Fig. 6.

We write Γ ⊢b M : A | ∆ for statements derivable using these rules.

Notice that our (throw) rule is almost identical to Nakano’s in that it allows to derive any type

for the term throw n(N), but provided there is an exception handler with name n capable of

accepting arguments of the type of N, as represented by the context of names.

Explaning rule (try), notice that, if we have derivations for

Γ ⊢ M : C | ni :Ai →Bi,∆ and Γ, x :Ai ⊢ Ni : Bi | ∆ (∀i ∈ n)

then we cannot predict, a priori, if running M to normal form M′ will throw an exception or

not. If it does not, then running the term try M; catch ni (x) = Ni will result in M′ (assuming

M′ is free of throws) and to achieve subject reduction, M′ should be of type C. If it does,

running M will produce throw n(L) and (assuming n= nl ∈ ni), try M; catch ni (x) = Ni will run

to Ni{L/x}, which has type Bi. So in order to achieve a subject reduction result also for this

case, there is no choice but to demand that C = B1 = · · · = Bn.

Lemma 4.2 (Weakening and thinning for ⊢b) The following rules are admissible for ⊢b:

(Wk) :
Γ ⊢b M : A | ∆

(Γ ⊆ Γ′,∆ ⊆ ∆′)
Γ′ ⊢b M : A | ∆′

(Th) :
Γ ⊢b M : A | ∆

(Γ′ = {x :B ∈ Γ | x ∈ fv(M)}, ∆′ = {n:B ∈∆ | n∈ fn(M)})
Γ′ ⊢b M : A | ∆′

Proof : Standard.

22

We can show:

Lemma 4.3 (Substitution lemma for ⊢b) If Γ, x:C⊢b M : A |∆ and Γ⊢b N : C |∆, then Γ⊢b M{N/x} :

A | ∆.

Proof : By induction on the definition of term substitution.

(M ≡ x) : Then x:A ∈ Γ, x:C, so A = C. Also, x{N/x} = N, so Γ ⊢b x{N/x} : A | ∆.

(M ≡ y 6= x) : Then y:A ∈ Γ, so Γ ⊢b y : A | ∆.

(M ≡ λy.M′) : Then A = A′→B′ and Γ, x:C,y:A′ ⊢b M′ : B′ | ∆. By induction, Γ,y: A′ ⊢b

M′{N/x} : B′ |∆. But then Γ ⊢b λy.M′{N/x} : A |∆ by (→I), so Γ ⊢b λy.(M′{N/x}) : A |∆.

Notice that λy.(M′{N/x}) = (λy.M′){N/x}.

(M ≡ PQ) : Then there exists B such that Γ, x:C ⊢b P : B→A | ∆ and Γ, x:C ⊢b Q : B | ∆. By

induction both Γ ⊢b P{N/x} : B→A | ∆ and Γ ⊢b Q{N/x} : B | ∆; then, by (→E), we have

Γ ⊢b P{N/x} Q{N/x} : A | ∆. Notice that P{N/x} Q{N/x} = (PQ){N/x}.

(M ≡ try P; catch ni (y) = Qi) : Then there exists Bi (i∈ n) such that Γ, x:C⊢b P : A | ni :Bi→C,∆

and Γ, x:C,y:Bi ⊢b Qi : A | ∆, for all i ∈ n. By induction, Γ ⊢b P{N/x} : A | ni :Bi→C,∆ and

Γ,y:Bi ⊢b Qi{N/x} : A |∆, for all i∈ n. Then we get Γ⊢b try P{N/x}; catch ni (y) = Qi{N/x} :

A | ∆ by rule (try). Notice that

try P{N/x} ; catch ni (y) = Qi{N/x} = (try P; catch ni (y) = Qi){N/x}

(M ≡ throw n(P)) : Then there exists B,C such that n:B→C ∈ ∆, and Γ, x:C ⊢b P : B | ∆. By

induction Γ⊢b P{N/x} : B |∆. Since n:B→C∈∆, by rule (throw) we get Γ⊢b throw n(P{N/x}) :

A | ∆; notice that throw n(P{N/x}) = (throw n(P)){N/x}.

It is relatively straightforward to show that this notion of type assignment is closed under

cbn and cbv-reduction:

Theorem 4.4 (Subject reduction for ⊢b) i) If Γ ⊢b P : A | ∆ and P →n

try
Q, then Γ ⊢b Q : A | ∆.

ii) If Γ ⊢b P : B | ∆ and P →v

try
Q, then Γ ⊢b Q : B | ∆.

Proof : i) By induction on the definition of →n

try
.

(β) : Standard, using Lemma 4.3.

(throw) : Then ∆= n:A→C,∆′, P = (throw n(N)) M → throw n(N) = Q; the derivation for

P is constructed as:

D

Γ ⊢ N : A | n:A→C,∆′

(throw)
Γ ⊢ throw n(N) : D→B | n:A→C,∆′

Γ ⊢ M : D | n:A→C,∆′

.

.

.

(→E)
Γ ⊢ (throw n(N)) M : B | n:A→C,∆′

We can construct the derivation for Q:9

D

Γ ⊢ N : A | n:A→C,∆′

(throw)
Γ ⊢ throw n(N) : B | n:A→C,∆′

(try-throw) : Then P = try throw nl(M); catch ni (x) = Ni → Nl{M/x} = Q; the derivation

for P is constructed as follows:

9 Notice that throw n (N) changes type; this corresponds to a feature of reduction in λµ, where in some presentations the
structural rule is written as (using the notation of Definition 1.5) (µα.[β]M)N → µα.([β]M{N·α/α}); before the reduction,
α has type A→B, say, and a�er it has type B.

23

Γ ⊢ M : Al | ni :Ai →B,∆
(throw)

Γ ⊢ throw nl (M) : B | ni :Ai →B,∆

Γ, x :Ai ⊢ Ni : B | ∆

.

.

.
(∀i ∈ n)

(try)
Γ ⊢ try throw nl (M); catch n(x) = N : B | ∆

In particular, we have derivations for both Γ ⊢b M : Al | ni :Ai→C,∆ and Γ, x: Al ⊢b Nl :

B | ∆. By the definition of λtry-terms, we know that ni /∈ fn(M), for all i ∈ n, so by

thinning (Lem. 4.2) we can remove ni :Ai→B from the co-context for the first to obtain

Γ ⊢b M : Al |∆. Then, by the substitution lemma Lem. 4.3, we obtain Γ ⊢b Nl{M/x} : B |

∆.

(try-normal) : Then P = try Q; catch ni (x) = Ni → Q, and ni /∈ Q; the derivation for P is

constructed as follows:

Γ ⊢ Q : B | ni :Ai→B,∆ Γ, x :Ai ⊢ Ni : B | ∆ (∀i ∈ n)
(try)

Γ ⊢ try Q; catch ni (x) = Ni : B | ∆

In particular, we have a derivation for Γ ⊢b Q : B | ni :Ai→B,∆; as above we can remove

ni :Ai→B from the co-context to obtain Γ ⊢b Q : B | ∆.

ii) The proof is much like that for the previous part, but with the addition of:

(throwv) : Then ∆= n:A→C,∆′, P = V(throw n(N))→ throw n(N) = Q; the derivation for

P is constructed as:

Γ ⊢ V : E→F | n:A→C,∆′

D

Γ ⊢ N : A | n:A→C,∆′

(throw)
Γ ⊢ throw n(N) : E | n:A→C,∆′

(→E)
Γ ⊢ V(throw n(N)) : F | n:A→C,∆′

We can construct the derivation for Q:

D

Γ ⊢ N : A | n:A→C,∆′

(throw)
Γ ⊢ throw n(N) : F | n:A→C,∆′

Although restricting throwing an exception to applicative contexts might seem too limiting,

it is in fact not possible to extend it to full reduction whilst preserving soundness, as we will

argue now.

Example 4.5 Assume we would have tried to model throwing exceptions from inside an ab-

straction as well, by adding the rule:

(throw-abstr) : λx. throw n(N) → throw n(N)

Apart from that this is undesirable within programming languages (it would correspond to

throwing an exception simply because it occurs in a function definition), or the fact that we

cannot model this reduction in pure λµ, also subject reduction would fail instantly. Suppose

we can derive

Γ, x :A ⊢ N : D | n:D→C,∆
(throw)

Γ, x :A ⊢ throw n(N) : B | n:D→C,∆
(→I)

Γ ⊢ λx. throw n(N) : A→B | n:D→C,∆

We can construct

24

Γ, x :A ⊢ N : D | n:D→C,∆
(throw)

Γ, x :A ⊢ throw n(N) : A→B | n:D→C,∆

but cannot, in general, derive Γ ⊢b throw n(N) : A→B | n:D→C,∆: notice that x might be free

in N, so then would need a type in any derivation for N. This problem was observed by

Nakano [16, 17], who solved it by not allowing an abstraction to be typeable if the bound

variable occurs in a thrown term, and avoided by many others who do not allow throwing an

exception from within an abstraction, as we do here.

We will now show that our encoding into λµ preserves types assignable in the basic system:

Theorem 4.6 (Preservation of assignable types) If Γ⊢b M : B | ni :Ai→Ci, then Γ, cni
:Ai→Ci ⊢λµ

M λµ : B | ni :Ci.

Proof : By induction on the definition of ⊢b.

(throw) : Then the derivation looks like

Γ ⊢ M : Ai | ni :Ai →Ci
(throw)

Γ ⊢ throw nl (M) : B | ni :Ai→Ci

By induction we have Γ, cni
:Ai→Ci ⊢ M λµ : Ai | ni :Ci,∆, and we can construct:

.

.

..

.

(Ax)
Γ, cni

:Ai→Ci ⊢ cnl
: A→Ci | ni :Ci

Γ, cni :Ai →Ci ⊢ M λµ : Ai | ni :Ci
(→E)

Γ, cni
:Ai →Ci ⊢ cnl

M λµ : Ci | ni :Ci
(Wk)

Γ, cni :Ai →Ci ⊢ cnl
M λµ : Ci | :B,ni :Ci

(µ)
Γ, cni

:Ai →Ci ⊢ µ .[nl] cnl
M λµ : B | ni :Ci

and throw nl(M) λµ = µ .[nl]cnl
M λµ. Notice that the weakening step is correct, in that

the names n and do not occur (free) in M λµ, so (perhaps using thinning) can be as-

sumed to not occur in ∆.

(try) : Then the derivation ends like (assuming there are m exception handlers defined):

..

.

..
Γ ⊢ M : B |mj :Dj →B,ni :Ai →Ci

Γ, x :Dj ⊢ Nj : B | ni :Ai →Ci (∀ j ∈ m)
(try)

Γ ⊢ try M; catch mi (x) = Ni : B | ni :Ai →Ci

We can now construct derivations for the two alternatives of the interpretation of a try-

expression; for clarity, we only present the second, the first is almost identical.

So the case we deal with here is:

try M; Catch Block; catch m(x) = N λµ =∆ (µm.[m] try M; Catch Block λµ){λx. N λµ/cm}

Let M′ = try M; Catch Block; then Γ, cni
:Ai→Ci, cm :D→B ⊢ M′

λµ : B | m:B,ni :Ci and

Γ, cni
:Ai→Ci, x:D ⊢ N λµ : B | ni :Ci follow by induction. We can construct:

25

Γ, cni
:Ai →Ci, x :D ⊢ L λµ : B | ni :Ci

(→I)
Γ, cni

:Ai→Ci ⊢ λx. L λµ : D→B | ni :Ci
(Wk)

Γ, cni
:Ai→Ci ⊢ λx. L λµ : D→B |m:B,ni :Ci

Then Γ, cni
:Ai→Ci ⊢ M′

λµ {λx. L λµ/cm} : B |m:Bni :Ci follows by Lem. 1.8, and we can

construct:

Γ, cni :Ai →Ci ⊢ M′
λµ{λx. L λµ/cm} : B |m:B,ni :Ci

(µ)
Γ, cni

:Ai→Ci ⊢ µm.[m] M λµ{λx. N1 λµ/cm} : B | ni :Ci

So λtry with basic type assignment is fully representable in λµ.

5 Adding halt to λtry

We will now define a notion of type assignment that extends the system we defined above, by

allowing for both recoverable and unrecoverable failure; to distinguish raising the latter kind

of exception from the former, throw, we considered above, we use the keyword halt. The idea

is that halt gets propagated through the system and becomes the end result. Therefore, we

need to add reduction rules that consume applicative contexts, as for throw, and make sure to

not ‘catch’ the halt, as that would localise the event and limit its range (see also Rem. 5.11).

Not catching halt is done also for technical reasons. We will argue below that raising a halt

is different from throw: when aiming for a representation in λµ, we cannot use handlers and

parameter passing for halt. In Rem. 5.11 we will discuss an alternative approach, and indicate

why that does not satisfy the purpose.

As mentioned above, following the suggestion of [1], we will aim to map our calculus onto

λµ-top, where top is a special name that cannot occur bound and denotes the top-level. We

would therefore want to define a notion of type assignment that, for example, deals with halt

by assigning it the type ⊥, but that would not be possible, as argued in Ex. 5.10.

We extend the calculus λtry from Def. 2.1, by extending the set of pre-terms through adding

the construct halt; the notion of reduction is defined as in Def. 2.2, by adding the rule that

expresses that also halt consumes an applicative context.

Definition 5.1 (Syntax of λtry

h) i) The set of pre-terms of λtry

h is defined by the grammar:

Catch Block ::= ǫ | Catch Block; catch n(x) = M

M, N ::= V | MN | try M; Catch Block | throw n(M) | halt
V ::= x | λx.M

ii) The cbn-reduction system for λtry

h is like that for λtry from Def. 2.2, defined by the rules:

(β) : (λx.M)N → M{N/x}
(throw) : (throw n(N)) M → throw n(N)
(halt) : halt M → halt

(try-throw) : try throw nl (N); catch ni (x) = Mi → Ml{N/x} (nl ∈ ni)
(try-normal) : try N ; catch ni (x) = Mi → N (ni /∈ N)

cbn applicative contexts are defined as in Def. 2.2.

iii) The cbv-reduction system for λtry

h is that of cbn, replacing rule (β) by the first reduction

rule below, and adding the second and third:

26

(Ax) :
Γ, x :A ⊢ x : A | ∆

(→I) :
Γ, x :A ⊢ M : B | ∆

Γ ⊢ λx.M : A→B | ∆

(→E) :
Γ ⊢ M : A→B | ∆ Γ ⊢ N : A | ∆

Γ ⊢ M N : B | ∆

(throw) :
Γ ⊢ M : A | n:A→B,∆

Γ ⊢ throw n(M) : C | n:A→B,∆

(halt) :
Γ ⊢ halt : A | ∆

(try) :
Γ ⊢ M : C | n:Ai→C,∆ Γ, x :Ai ⊢ Ni : C | ∆ (∀i ∈ n)

Γ ⊢ try M; catch ni (x) = Ni : C | ∆

Figure 7: Type assignment for λtry with failure

(βv) : (λx.M)V → M{V/x}
(throwv) : V(throw n(N)) → throw n(N)
(haltv) : V halt → halt

cbv applicative contexts are defined as in Def. 2.2.

Notice that the system only handles throws; halt is just propagated through the reduction

system until it is the remaining term, as in

try halt; catch ni (x) = Mi → halt

through reduction rule try-normal. So when a halt occurs, no parameter passing takes place,

and the event is not handled.

We define failure type assignment for terms in λtry

h as follows:

Definition 5.2 (Type assignment for λtry

h) Type assignment for terms in λtry

h , ⊢h, is defined

through the inference system in Fig 7. We write Γ ⊢h M : A | ∆ if this judgement is derivable

using these rules.

Notice that we use the same set of types as before, so are not using the type constant ⊥

that is used in λµ-top. Also, the way halt is treated in the type assignment system is the same

as throw, in that it allows halt to have any type at all, essentially following the logic rule ex

falso quodlibet sequitur. Here we do not inhabit this rule with a term construct, as is done for

example, in Λµ [12] and [1]. Rather, we limit its use to just (halt).

So although aborting a computation is successfully modelled in the calculus itself, there is

no representation of that in the type system.

Our aim is that the type ⊥ indicates the occurrence of a halt during execution, and that

throws are in that sense invisible since they return a normal type. Therefore, arguably, we

should have opted for the type assignment rule

(try) :
Γ ⊢ M : C | n:Ai →C,∆ Γ, x :Ai ⊢ Ni : C | ∆ (∀i ∈ n)

(C 6= ⊥)
Γ ⊢ try M; catch ni (x) = Ni : C | ∆

and to tweak the type assignment system such that only the rules (halt), (→Eh), and (tryh)

would derive the type ⊥. However, that would not give an expressive enough notion of type

assignment.

Example 5.3 To illustrate that we have to allow C = ⊥ in rule (try), take the term

try (λxy.x) halt (throw n(L)); catch n(x) = P

which will panic. However, when not allowing the type for the main term in rule (try) to

be ⊥, this term would not be typeable. Although we can allow the throw and halt to return

different types inside (λxy.x) halt (throw n(L)), as in Fig. 5.3, when we place this term inside

the context of dealing with the catch on n, this no longer is the case:

27

Γ ⊢ (λxy.x) halt (throw n(L)) : ⊥ | ∆2 Γ, x :C ⊢ P : A | ∆
(try)

Γ ⊢ try (λxy.x) halt (throw n(L)); catch n(x) = P : ⊥ | ∆

Remark that rule (try) demands that the return type of the handlers and the type of the main

term are the same, so A = ⊥. So therefore we are forced to accept the rule (try) as in Fig. 7

which allows for C = ⊥, and we cannot conclude from the fact that a term has type ⊥ that it

will raise a halt.

We will address this point again in Sect. 6, where we will present a system that does have

that characteristic.

We can show the following:

Lemma 5.4 (Substitution lemma for ⊢h) If Γ, x:C ⊢h M : A | ∆ and Γ ⊢h N : C | ∆, then

Γ ⊢h M{N/x} : A | ∆.

Proof : By induction on the definition of term substitution.

(M ≡ x) : If Γ, x:C ⊢h x : A | ∆ and Γ ⊢h N : C | ∆, then by rule (Ax) we have x:A ∈ Γ, x:C, so

A = C. Also, x{N/x} = N, so Γ ⊢h x{N/x} : A | ∆.

(M ≡ y 6= x) : If Γ, x:C ⊢h y : A | ∆, then by y: A ∈ Γ and by rule (Ax) also Γ ⊢h y : A | ∆.

(M ≡ λy.M′) : Then by rule (→I) we have A = A′→B′ and Γ, x:C,y:A′ ⊢h M′ : B′ | ∆. By

induction, Γ,y: A′ ⊢h M′{N/x} : B′ | ∆. But then Γ ⊢h λy.M′{N/x} : A | ∆ by (→I), so Γ ⊢h

λy.(M′{N/x}) : A | ∆. Notice that λy.(M′{N/x}) = (λy.M′){N/x}.

(M ≡ PQ) : Then either the derivation ends with rule (→E); then there exists B such that

Γ, x:C ⊢h P : B→A |∆ and Γ, x:C ⊢h Q : B |∆. By induction both Γ ⊢h P{N/x} : B→A |∆ and

Γ ⊢h Q{N/x} : B | ∆; then, by (→E), we have Γ ⊢h P{N/x} Q{N/x} : A | ∆. Notice that

P{N/x} Q{N/x} = PQ{N/x}.

(M ≡ try P; catch ni (y) = Qi) : Then by rule (try) there exists Bi such that Γ, x:C ⊢h P : A | ∆

and Γ, x:C,y:Bi ⊢h Qi : ⊥ | ∆, for all i ∈ {1, . . . ,n}. By induction, Γ ⊢h P{N/x} : A | ∆ and

Γ,y:Bi ⊢h Qi{N/x} : ⊥ | ∆, (1 ≤ i ≤ n). Then, by rule (try), we get

Γ ⊢h try P{N/x} ; catch ni (y) = Qi{N/x} : A | ∆

and try P{N/x}; catch ni (y) = Qi{N/x} = (try P; catch ni (y) = Qi){N/x}.

(M ≡ halt) : Immediate.

We can now show the following soundness result for cbn reduction.

Theorem 5.5 (Subject reduction for ⊢h with respect to →n

try
) If Γ⊢h P : C |∆ and P→n

try
Q,

then Γ ⊢h Q : C | ∆.

Proof : By induction on the definition →n

try
. The proof is very similar to that of Thm. 4.4; we

only show here the interesting cases.

(halt) : Then P = halt M → halt= Q, and the derivation for P is shaped like:

(halt)
Γ ⊢ halt : A→C | ∆ Γ ⊢ M : A | ∆

(→E)
Γ ⊢ halt M : C | ∆

We have Γ ⊢h halt : C | ∆ by rule (halt).

We can also show a similar result for cbv:

Theorem 5.6 (Subject reduction for ⊢h with respect to →v

try
) If Γ⊢h P : C |∆ and P→v

try
Q,

28

then Γ ⊢h Q : C | ∆.

Proof : Similar to that of Thm. 5.5 and Thm. 4.4, but with the added cases:

(throwv) : Then ∆= n:A→C,∆′, P = V(throw n(N))→ throw n(N) = Q, and the derivation

for P is constructed as:

Γ ⊢ V : E→F | n:A→C,∆′

D

Γ ⊢ N : A | n:A→C,∆′

(throw)
Γ ⊢ throw n(N) : E | n:A→C,∆′

(→E)
Γ ⊢ V(throw n(N)) : F | n:A→C,∆′

We can construct the derivation for Q:

D

Γ ⊢ N : A | n:A→C,∆′

(throw)
Γ ⊢ throw n(N) : F | n:A→C,∆′

(haltv) : Then P = V halt→ halt= Q, and and the derivation for P is constructed as:

Γ ⊢h V : A→C | ∆
(halt)

Γ ⊢h halt : A | ∆
(→E)

Γ ⊢h V halt : C | ∆

Notice that we have Γ ⊢h halt : C | ∆ by rule (halt).

So, in terms of type assignment for a λ-calculus with exceptions, the failure system satisfies

the basic requirement with respect to call-by-name and call-by-value reduction.

We can interpret λtry

h in λµ-top as follows:

Definition 5.7 (Interpretation of λtry

h into λµ-top) i) We add the term constant halt 10 to

λµ-top that can only be assigned ⊥ by adding the inference rule:

(halt) : Γ ⊢t halt : ⊥ | ∆

ii) The interpretation of λtry

h in λµ-top is defined as follows:

x t =∆ x

λx.M t =∆ λx. M t

MN t =∆ M t N t

throw n(M) t =∆ µ .[n]cn M t

try M;ǫ t =∆ M t

try M; Catch Block; catch n(x) = L t =∆ (µn.[n] try M; Catch Block t){λx. L t/cn}

halt t =∆ µ .[top]halt

Notice that, in order to achieve that halt t consumes applicative contexts, we need to use the

prefix ‘µ ’, as we have done also for throw n(M) t.

We can now show:

Theorem 5.8 (Soundness of the interpretation for λtry

h)

i) If P →n

h Q, then P t →n∗
βµ Q t.

ii) If P →v

h Q, then P t →n∗
βµ Q t.

Proof : i) As in the proof of Thm. 3.4, with the added case (again, we drop the subscript on

· t):

10 We use halt just as a place holder, it is not active in the reduction relation.

29

(halt) : Then P = halt M →n

h halt= Q, and

halt M =∆ (µ .[top]halt) M →n

βµ (1.12) µ .[top]halt =∆ halt

ii) As the proof for the previous case, except for the rules:

(βv) : As in case (β) in the previous part.

(haltv) : Then P = V halt→ halt= Q.

V halt =∆ V (µ .[top]halt) →v

βµ (1.12) µ .[top]halt =∆ halt

We can also show that assignable types are preserved.

Theorem 5.9 (Preservation of assignable types) If Γ⊢h M : B | ni :Ai→Ci, then Γ, cni
:Ai→Ci ⊢t

M : B | ni :Ci.

Proof : By induction on the definition of ⊢h, very similar to that of Thm. 4.6, but with an added

case.

(halt) : Then M = halt. We can construct

(halt)
Γ ⊢ halt : ⊥ | :C,∆

(top)
Γ ⊢ µ .[top]halt : C | ∆

and halt = µ .[top]halt.

Remark 5.10 In this paper we are mainly looking at the relation between notions of exception

handling and classical logic; in that setting, it would be reasonable to add the type constant

⊥ to the type language, and use it to type halt, as also suggested in the proof of the previous

theorem.

This is, on its own, perfectly feasible, and works well on the level of λtry itself, but we would

not be able to establish a relation with λµ. For example, we can add the rules

(halt) : Γ ⊢ halt : ⊥ | ∆

(→En) :
Γ ⊢ M : ⊥ | ∆ Γ ⊢ N : A | ∆

Γ ⊢ M N : ⊥ | ∆

for a notion of type assignment geared towards cbn, and add the rule

(→Ev) :
Γ ⊢ M : A | ∆ Γ ⊢ N : ⊥ | ∆

Γ ⊢ M N : ⊥ | ∆

for cbv.11

The problem appears in the proof of Thm. 5.9, where we would have the case

(→En) : Then M = PQ, the derivation looks like

Γ ⊢h P : ⊥ | ni :Ai →Ci Γ ⊢h Q : D | ni :Ai →Ci
(→E)

Γ ⊢h PQ : ⊥ | ni :Ai →Ci

and by induction we have Γ, cni
:Ai→Ci ⊢t P : ⊥ | ni :Ci and Γ, cni

:Ai→Ci ⊢t Q : D | ni :Ci.

In order for us to be able to combine these two derivations in ⊢t, we need to create the

arrow type D→⊥ from ⊥. The only way to do that, in ⊢t, is to apply rule (top):

11 Notice that these two variants of (→E) need to be added to achieve subject reduction.

30

Γ, cni
:Ai →Ci ⊢λµ P : ⊥ | ni :Ci

(Wk)
Γ, cni

:Ai →Ci ⊢λµ P : ⊥ | :D→⊥,ni :Ci
(top)

Γ, cni
:Ai→Ci ⊢λµ µ .[top] P : D→⊥ | ni :Ci Γ, cni

:Ai →Ci ⊢λµ Q : D | ni :Ci
(→E)

Γ, cni
:Ai →Ci ⊢λµ (µ .[top] P) Q : ⊥ | ni :Ci

but (µ .[top] P) Q 6= PQ . In fact, these terms are computationally incompatible.

So we cannot give the type ⊥ the role it should have.

In the next section, we will introduce a notion of type assignment that uses the type con-

stant fail (which can be seen as ⊥) for calls to panic, which are essentially catchable halts; as

suggested here, we will not be able to establish a relation with λµ or λµ-top for that notion.

Remark 5.11 It might seem natural to define failing through halt in much the same way as

throw (and that is basically what is suggested in [1]). This would lead to, contrary to what

we have done above, adding panic n(N) as a construct, together with dedicated exception

handlers abort n(x) = L, so using, for example, the grammar:

Catch Block ::= ǫ | Catch Block; catch n(x) = M
Abort Block ::= ǫ | Abort Block; abort n(x) = M

M, N ::= V | MN | try M; Catch Block | throw n(N)
| try M; Abort Block | panic n(N)

V ::= x | λx.M

and the (additional) reduction rules

(panic) : (panic n(N)) M → panic n(N)
(try-panic) : try panic nl(N) ; abort ni (x) = Mi → Ml{N/x} (nl ∈ ni)

(try-normal) : try N ; abort ni (x) = Mi → N (ni /∈ N)

for cbn, and the inference rules

(panic) :
Γ ⊢ M : A | n:A→⊥,∆

Γ ⊢ panic n(M) : fail | n:A→⊥,∆

(→Eh) :
Γ ⊢ M : ⊥ | ∆ Γ ⊢ N : A | ∆

Γ ⊢ M N : ⊥ | ∆

(tryh) :
Γ ⊢ M : ⊥ | ni :Ai →⊥,∆ Γ, x :Ai ⊢ Ni : ⊥ | ∆ (∀i ∈ n)

Γ ⊢ try M; abort ni (x) = Ni : ⊥ | ∆

and extending the interpretation · t with the cases:

panic n(M) t =∆ µ .[top]cn M t

try M; Abort Block; abort n(x) = L t =∆

(µn.[n] try M; Abort Block t){λx. L t/cn}

This would behave well on the level of λtry (see also the next section), but not when we aim

to show that

if P →h Q, then P t →n∗
βµ Q t,

for either cbn or cbv-reduction. Although that property follows straightforwardly from the

proof of Thm. 3.4, and for the additional case panic, the reduction rule try-panic throws a

spanner in the works. Then the interpretation of

try panic n(N); abort n(x) = M

does not reduce to that of M{N/x}:

31

try panic n(N); abort n(x) = M λµ =∆ (µn.[n] panic n(N) λµ){λz. M t/cn} =∆

(µn.[n] (µ .[top]cn N λµ)){λz. M t/cn} = µn.[n]µ .[top] (λx. M λµ) N λµ →n

βµ (E)

µ .[top] (λx. M λµ) N λµ →n

βµ µ .[top] M λµ{ N λµ/x} = (3.3) µ .[top] M{N/x} λµ

So here we have P t →n∗
βµ µ .[top] Q t, not P t →n∗

βµ Q t, as desired, and the terms µ .[top] Q t

and Q t are also computationally incompatible.12

In a certain sense, the encoding expects M{N/x} λµ to be ‘thrown again’, which suggests

the reduction rule

(try-panic) : try panic nl (N); abort ni (x) = Mi

→ panic nl (Ml{N/x}) (nl ∈ ni)

where handlers for panics should be redefined consistently, violating Barendregt’s convention.

Alternatively, we could invoke a handler for all aborts, as in

(try-panic) : try panic nl (N); abort ni (x) = Mi

→ panic-top(Ml{N/x}) (nl ∈ ni)

which gets dealt with at the ‘outermost level’.

Otherwise, we can assume that there is no handler named nl, and that the panic escapes

the try-block without being processed. But that would constitute the solution we presented

above, by just using the keyword halt.

So, in order to define a notion of aborting exceptions for our language λtry that is strongly

related to classical logic (i.e. mappable into λµ or variants thereof), we cannot opt to ‘handle’

these events, nor explicitly use the type ⊥ to type them, but are forced to add simply a

constant halt to the language that consumes all applicative contexts.

6 Handling failing computation

In this section, we will generalise the approach of the previous section, and add the con-

struct panic that is dealt with by handlers. As explained in Rem. 5.10 and 5.11, this is not

straightforward, and we will have to forgo on establishing a direct relation with λµ or λµ-top.

Our approach will be to construct a system that adds a type constant fail to the type lan-

guage, and is set up in such a way that, essentially, only calls to panic can be typed with fail.

Our aim is to define a calculus that is close to ‘normal’ programming: programs can raise

exceptions and panic from within the same try-statement. As we argued above, for reasons

of subject reduction, we have to demand that the return type of the handlers is equal to that

of the main term, which would mean that we cannot return fail for a failing program without

having to demand that all handlers return fail. That clearly goes agains intuition, since 1) we

cannot expect the type checker to decide if a program will fail; 2) failure can depend on input, which

need not be part of the code; 3) the programmer should have the liberty to cater for the event of a

successful computation and a total failure in a different way. We therefore introduce a new feature:

handlers for exceptions, called catch, all return the type of the main term, whereas handlers

for panic call, called abort, all return fail.

The system we will present thereby is unconventional in that the standard subject reduction

result does not hold as such. Our aim is to show that, as usual, types are preserved under

normal reduction (is sound), but that the type fail is only used when a panic is raised; as a

result of this duplicity we will not be able to show the normal subject reduction result. Since

12 Notice the similarity with the problem spotted in Rem. 5.10.

32

in standard notions of type assignment for the λ-calculi this property holds, for both the

reduction strategies cbn and cbv we need to explicitly insert the duplicity of keeping the type

under reduction or running to a term with type fail. Note that this will not be decidable, since

modelling the concept that predicts how a program will run, i.e. if a panic will be triggered,

through assignable types, is impossible.

To introduce the duplicity, we enrich the language with a conditional construct; then de-

pending on the result of running the boolean expression, either the then or else part will be

deployed. Assuming the boolean expression tests if the execution is running normally (like a

test for division by zero), we can call panic in one part, and continue normal execution in the

other. Our aim is that in the first case a term is returned of type fail, whereas the second one

will return a normal type, int in our case. We will type the whole term then with int, which

then is the type for the result produced by normal reduction.

The system ⊢fail.

Remark 6.1 Since the conditional is encodable in the pure λ-calculus through λbtf .bt f , with

the boolean constant true through λab.a, and false through λab.b, there is no need to add the

conditional construct explicitly for reasons of expressivity. The type bool then necessarily is

a type suitable for both λab.a and λab.b, so has to correspond to A→A→A, for any A (or

∀ϕ.ϕ→ ϕ→ ϕ). This is found also in the standard way of typeing the conditional construct,

which demands that the then and else part have the same type as the expression itself, as

normally expressed through the rule:

(cond) :
Γ ⊢ M : bool | ∆ Γ ⊢ P : A | ∆ Γ ⊢ Q : A | ∆

Γ ⊢ if M then P else Q : A | ∆

But this standard approach would not allow us the characterisation of failing computations

through assignable types we aim for. So, rather, we deviate from that standard approach and,

essentially, let bool correspond to

A→A→A ∨ A→ fail→A ∨ fail→A→A.

If we would allow that to be a type for both λab.a and λab.b, we would be forced to set A = fail

and we would be forced to allow for fail to be treated as any type, rather than just the type for

panic.

So to be able to express the characteristic we aim for, we are forced to add the conditional

construct explicitly, which allows us to use non-standard type assignment rule(s) for the con-

ditional that allow the two branches to have different types, provided that one of them is

typed with fail. This is achieved by adding the rules :

Γ ⊢ M : fail | ∆ Γ ⊢ P : A | ∆ Γ ⊢ Q : B | ∆

Γ ⊢ if M then P else Q : fail | ∆

(if running the boolean expression fails, the whole computation will fail)

Γ ⊢ M : bool | ∆ Γ ⊢ P : A | ∆ Γ ⊢ Q : fail | ∆

Γ ⊢ if M then P else Q : A | ∆

(if M runs to false, the computation will fail, otherwise it runs to a term of type A)

Γ ⊢ M : bool | ∆ Γ ⊢ P : fail | ∆ Γ ⊢ Q : A | ∆

Γ ⊢ if M then P else Q : A | ∆

(if M runs to true, the computation will fail, otherwise it runs to a term of type A).

We define λtry

fail by extending the calculus λtry from Def. 2.1, by adding panic and abort,

a conditional construct and term constants (ranged over by c, and including err, true, false,

33

numbers, (prefix) addition and multiplication, boolean operators, etc, etc.) to the set of pre-

terms.

Definition 6.2 (λtry

fail)i)The set of pre-terms of λtry

fail is defined through the grammar:

handlers ::= catch m(x) = M | handlers; catch m(x) = M | abort n(x) = N | handlers; abort n(x) = N

M, N ::= V | MN | try M; handlers | throw n(M) | panic n(M) | if M then P else Q

V ::= x | c | λx.M

The order in which the handlers are listed is not important; we will reorganise them whenever

convenient, and will use handle for either catch or abort.

ii)Call-by-name reduction is defined as in Def. 2.2 by the rules

(β) : (λx.M)N → M{N/x}
(throw) : (throw n(N))M → throw n(N)

(try-throw) : try throw nl (N); handle ni (x) = Mi ; catch nl (x) = Ml → Ml{N/x}
(try-normal) : try N ; handle ni (x) = Mi → N (ni /∈ N)

(panic) : (panic n(N))M → panic n(N)
(try-panic) : try panic nl(N) ; handle ni (x) = Mi ; abort nl (x) = Ml → Ml{N/x}
(cond-true) : if true then P else Q → P
(cond-false) : if false then P else Q → Q
(cond-throw) : if throw n(N) then P else Q → throw n(N)
(cond-panic) : if panic n(N) then P else Q → panic n(N)

cbn applicative contexts are defined as:

Cn
a

::= [] | Cn
a

M | try Cn
a
; Catch Block | if Cn

a
then P else Q

iii)Call-by-value reduction is defined as in the previous part by also changing/adding the rule

(βv) : (λx.M)V → M{V/x}
(panicv) : V(panic n(N)) → panic n(N)

cbv applicative contexts are defined as:

Cv
a

::= [] | Cv
a

M | VCv
a | try Cv

a
; Catch Block | if Cv

a
then P else Q

We will now define a notion of type assignment that characterises unrecoverable failure. The

idea is that the exception handlers that deal with panic return terms that are typed fail and

have to return a panic call, so panic gets propagated through the system and fail becomes

the type of the whole program.13 In order to deal with this properly, we need to extend our

notion of type assignment.

Definition 6.3 (Type assignment with throw and panic)i)We extend the set of types by adding

the type constant fail and normal type constants, ranged over by c:

c ::= bool | int | . . .
A, B ::= ϕ | fail | c | A→B.

ii)Type assignment (with failure) ⊢n

fail for terms in λtry

fail is defined through the inference system

presented in Fig. 6, where all types are not equal to fail unless explicitly mentioned, and σ

assigns the appropriate ground type to each constant.

iii)The notion ⊢v

fail is defined using the rules of Fig. 6, extended with the rule

13 We could even add the term halt with type ⊥ for this purpose, similar to the previous section.

34

Let ∆′ =m; B→ fail,n:C→A,∆.

(Ax)
Γ, x :fail,y:A ⊢ x : fail | ∆′

(→I)
Γ, x :fail ⊢ λy.x : A→ fail | ∆′

(→I)
Γ ⊢ λxy.x : fail→A→ fail | ∆′

Γ ⊢ N : C | ∆′

(panic)
Γ ⊢ panic m(N) : fail | ∆′

(→E)
Γ ⊢ (λxy.x) (panic m(N)) : A→ fail | ∆′

Γ ⊢ L : B | ∆′

(throw)
Γ ⊢ throw n(L) : A | ∆′

(→E)
Γ ⊢ (λxy.x) (panic m(N))(throw n(L)) : fail | ∆′

Figure 8: A derivation for (λxy.x) (panicm(N))(throw n(L))

(true)
Γ ⊢ true : bool | ∆ .

.

.

.

Γ ⊢ N : C | ∆
(panic)

Γ ⊢ panic m(N) : fail | ∆
Γ ⊢ L : B | ∆

(throw)
Γ ⊢ throw n(L) : A | ∆

(cond)
Γ ⊢ if true then panic m(N) else throw n(L) : A | ∆ Γ, x :B ⊢ P : A | ∅ Γ, x :C ⊢ Q : fail | ∅

(try)
Γ ⊢ try if true then panic m(N) else throw n(L); catch n(x) = P; abort m(x) = Q : A | ∅

Figure 9: A derivation for try if true then panic m(N) else throw n(L); catch n(x) = P; abort m(x) = Q

(→Ev) :
Γ ⊢ M : A | ∆ Γ ⊢ N : fail | ∆

Γ ⊢ M N : fail | ∆

Note that we no longer require that the handlers return the same type as the main term in

a try-expression, but allow them to either return that type, or fail; moreover, each panic n(M)

is typed with fail (fails), and rules (→Efail) and (→Ev) propagate the type fail in applicative

contexts. Also, an abstraction can never fail; the only rule that is allowed for abstractions is

(→I), so the type for an abstraction is of the shape A→B, and both A 6= fail and B 6= fail.

Remark 6.4 Although the derivation rule (→Efail) is clearly inspired by fail≤ A→ fail, for all A,

or the logic rule

Γ ⊢ ⊥

Γ ⊢ A

(ex falso quodlibet sequitur), we do not inhabit this rule with a term construct, as is done for

example, in Λµ [12] and [1], and implicitly done for the systems above and rules (throw) and

(halt). Rather, we limit its use to just (→Efail). Our treatment thereby better corresponds to

the characteristic of aborting computations. If we would allow, as above, the rule

(panic) :
Γ ⊢fail M : A | n:A→B,∆

Γ ⊢fail panic n(M) : C | n:A→B,∆

by implicitly using the logical rule above, then it would be possible to assign an abortive

computation any type, rather than just the one indication that computation has failed, and we

could no longer be able to distinguish between exceptions and panic.

Example 6.5 We have (essentially) restricted the use of fail to panic only. For example, the term

try (λxy.x) (panicm(N)) (throw n(L));
catch n(x) = P; abort m(x) = Q

is not typeable in ⊢fail, since it would demand that the type for λxy.x contains fail. It would be

typeable if we relax the restriction, allowing fail as a normal type. Take the sub-term

M = (λxy.x) (panicm(N))(throw n(L))

35

which will panic. We can allow the throw and panic to return different types inside M, as in

Fig. 8. When we place this term inside the context of dealing with the catch on n and abort on

m, the special character of the rule (try) in ⊢fail becomes evident; it allows the return type of

exception handlers to differ from the type of the main term in case the latter is fail.

Γ ⊢ M : fail | ∆2 Γ, x :C ⊢ P : A | ∆ Γ, x :C ⊢ Q : fail | ∅
(try)

Γ ⊢ try M; catch n(x) = P; abort m(x) = Q : fail | ∆

But relaxing the restriction would take away the characteristic that the type fail indicates a

failing execution; we therefore opt to have fewer typeable terms.

Using the conditional structure, the similar term

try if true then panic m(N) else throw n(L);
catch n(x) = P; abort m(x) = Q

is typeable under the restriction; see Fig. 9.

Our notion of type assignment is predictive in that we can show that terms typed with fail

will raise a panic.

Lemma 6.6i)If Γ ⊢fail M : fail | ∆, then M →n

p
panic n(N).

ii)If Γ ⊢v

fail M : fail | ∆, then M →v

p
panic n(N).

Proof : Straightforward by induction on the structure of derivations.

Notice that something similar also holds for type assignment in the λ-calculus (extended

with type constants): if Γ ⊢ M : int, then M will run to an integer. Note that, because of the

presence of throw, this property does not hold for ⊢fail.

So failing (having type fail) is now exclusively the domain of panic, as we intended from

the outset; in particular, the type assignment system forces the type of the body of an abort to

have type fail as well, running the body of each abort has to result in a panic as well.

Example 6.7 Remark that we do not consider rules like

Γ, x :A ⊢ M : fail | ∆

Γ ⊢ λx.M : fail | ∆

Γ, x :A ⊢ M : fail | ∆

Γ ⊢ λx.M : A→ fail | ∆

Γ ⊢ M : fail | ∆

Γ ⊢ M : B |∆

Moreover, assume we would add the first of the above two rules and assume we can derive:

Γ, x :A ⊢fail M : fail | ∆
(λ-fail)

Γ ⊢fail λx.M : fail | ∆ Γ ⊢fail N : B | ∆
(→Efail)

Γ ⊢fail (λx.M) N : fail | ∆

Remark that now we cannot apply Lem. 5.4 to conclude Γ ⊢fail M{N/x} : fail | ∆, since we

cannot be sure that A = B; therefore we would not be able to show soundness.

We can show that weakening and thinning are both admissible.

Lemma 6.8 (Weakening and thinning for ⊢fail) The following rules are admissible:

(Wk) :
Γ ⊢fail M : A | ∆

(Γ ⊆ Γ′,∆ ⊆ ∆′)
Γ′ ⊢fail M : A | ∆′

(Th) :
Γ ⊢fail M : A | ∆

(Γ′ = {x :B ∈ Γ | x ∈ fv(M)}, ∆′ = {n:B ∈ ∆ | n ∈ fn(M)})
Γ′ ⊢fail M : A | ∆′

36

Proof : Standard.

We can also show that type assignment is closed under term substitution.

Lemma 6.9 (Substitution lemma for ⊢fail) If Γ, x:C ⊢fail M : A | ∆ and Γ ⊢fail N : C | ∆, then Γ ⊢fail

M{N/x} : A | ∆.

Proof : By induction on the structure of terms.

(M ≡ c) : Then A = σ(c); then also Γ ⊢fail c : σ(c) | ∆, and c{N/x} = c.

(M ≡ x) : If Γ, x:C ⊢fail x : A |∆ and Γ ⊢fail N : C |∆, then x:A∈ Γ, x:C, so A = C. Also, x{N/x} =

N, so Γ ⊢fail x{N/x} : A | ∆.

(M ≡ y 6= x) : If Γ, x:C ⊢fail y : A | ∆, then y:A ∈ Γ, so also Γ ⊢fail y : A | ∆.

(M ≡ λy.M′) : Then A = A′→B′ and Γ, x:C,y:A′ ⊢fail M′ : B′ | ∆. By induction, Γ,y:A′ ⊢fail

M′{N/x} : B′ | ∆. But then Γ ⊢fail λy.M′{N/x} : A | ∆ by (→I), so Γ ⊢fail λy.(M′{N/x}) : A | ∆.

Notice that λy.(M′{N/x}) = (λy.M′){N/x}.

(M ≡ PQ) : Then either:

– there exists B such that Γ, x:C ⊢fail P : B→A | ∆ and Γ, x:C ⊢fail Q : B | ∆. By induction

both Γ ⊢fail P{N/x} : B→A | ∆ and Γ ⊢fail Q{N/x} : B | ∆; then, by (→E), we have Γ ⊢fail

P{N/x} Q{N/x} : A | ∆.

– A = fail and there exists B such that Γ, x:C ⊢fail P : fail | ∆ and Γ, x:C ⊢fail Q : B | ∆. By in-

duction both Γ ⊢fail P{N/x} : fail | ∆ and Γ ⊢fail Q{N/x} : B | ∆; then, by (fail), we have

Γ ⊢fail P{N/x} Q{N/x} : fail | ∆.

Notice that P{N/x} Q{N/x} = PQ{N/x}.

(M ≡ if P then Q else R) : Then either:

– Γ, x:C ⊢fail P : bool | ∆, Γ, x:C ⊢fail Q : A | ∆, and Γ, x:C ⊢fail R : A | ∆, and by induction Γ ⊢fail

P{N/x} : bool | ∆, Γ ⊢fail Q{N/x} : A | ∆, and Γ ⊢fail R{N/x} : A | ∆. Then also

Γ ⊢fail if P{N/x} then Q{N/x} else R{N/x} : A | ∆.

– A = fail, Γ, x:C ⊢fail P : fail | ∆, Γ, x:C ⊢fail Q : B | ∆, and Γ, x:C ⊢fail R : D | ∆, and by induction

Γ ⊢fail P{N/x} : fail | ∆, Γ ⊢fail Q{N/x} : B | ∆, and Γ ⊢fail R{N/x} : D | ∆. Then also Γ ⊢fail

if P{N/x} then Q{N/x} else R{N/x} : fail | ∆.

Notice that if P{N/x} then Q{N/x} else R{N/x} = (if P then Q else R){N/x}.

(M ≡ try P; catch ni (y) = Qi) : Then there exists Ai, Bi such that Γ, x:C ⊢fail P : A | ∆ and

Γ, x:C,y:Ai ⊢fail Qi : Bi | ∆, for all i ∈ n. By induction, Γ ⊢fail P{N/x} : A | ∆ and Γ,y: Ai ⊢fail

Qi{N/x} : Bi | ∆, (∀i ∈ n). We get Γ ⊢fail try P{N/x}; catch ni (y) = Qi{N/x} : A | ∆ by rule

(try), and try P{N/x} ; catch ni (y) = Qi{N/x} = (try P; catch ni (y) = Qi){N/x}.

(M ≡ throw n(P)) : Then A 6= fail, and there exists B, D such that n:B→D ∈ ∆, and Γ, x:C ⊢fail

P : B | ∆. By induction Γ ⊢fail P{N/x} : B | ∆. Since n:B→D ∈ ∆, by rule (throw) we get Γ ⊢fail

throw n(P{N/x}) : A | ∆. Notice that throw n(P{N/x}) = (throw n(P)){N/x}.

(M ≡ panic n(P)) : Then A = fail and there exists B such that n:B→ fail∈∆, and Γ, x:C⊢fail P : B |

∆. By induction Γ ⊢fail P{N/x} : B |∆. Since n:B→ fail∈∆ we get Γ ⊢fail panic n(P{N/x}) : fail |∆

by rule (panic). Notice that panic n(P{N/x}) = (panic n(P)){N/x}.

The main result we show for this system is the following soundness result. It states that

running a program will either run normally, preserving the assigned type, or will run to a

term that has type fail, so throws a panic.

Theorem 6.10 (Soundness for ⊢fail with respect to →n

fail) If Γ ⊢fail P : C |∆ and P →n

fail
∗ Q, then

either Γ ⊢fail Q : C | ∆, or Γ ⊢fail Q : fail | ∆.

37

Proof : By induction on the definition →n

fail
∗; we focus on the single step reduction, and only

show the interesting cases.

(panic) : Then P = (panic n(N))M → panic n(N) = Q, and the return type for the exception

handler n is fail; then the derivation for P looks like:

D

Γ ⊢ N : A | n:A→ fail,∆
(panic)

Γ ⊢ panic n(N) : fail | n:A→ fail,∆

Γ ⊢ M : B | n:A→ fail,∆

.

.

.

(→E f)
Γ ⊢ (panic n(N))M : fail | n:A→ fail,∆

Notice that we have a sub-derivation for Γ ⊢fail panic n(N) : fail | n:A→ fail,∆.

(try-panic) : Then P = try panic nl (M); abort ni (x) = Ni → Nl{M/x}= Q and the derivation for

P is shaped as follows:

Γ ⊢ M : Al | ni :Ai→Bi,∆
(panic)

Γ ⊢ panic nl (M) : fail | ni :Ai→Bi,∆

Γ, x :Ai ⊢ Ni : Bi | ∆

.

..
(l ∈ n,∀i ∈ n)

(try)
Γ ⊢ try panic nl (M); abort ni (x) = Ni : fail | ∆

so Bl = fail. In particular, we have derivations for both Γ ⊢fail M : Al | ni :Ai→Bi,∆ and Γ, x: Al ⊢fail

Nl : fail | ∆.14 By Lem. 6.8, we can remove ni :Ai→Bi from the co-context for the first to obtain

Γ ⊢fail M : Al | ∆. Then, by Lem. 6.9, we obtain Γ ⊢fail Nl{M/x} : fail | ∆.

(cond-true) : Then P = if true then M else N → M = Q. Since true can only be assigned bool,

the derivation is constructed as follows:

(σ)
Γ ⊢ true : bool | ∆ Γ ⊢ Q : A | ∆ Γ ⊢ N : B | ∆

(cond)
Γ ⊢ if true then Q else N : C | ∆

and either:

((A = B = C) ∨ (A = C & B = fail)) : Then, in particular, Γ ⊢fail Q : C | ∆.

(A = fail & B = C) : Then, in particular, Γ ⊢fail Q : fail | ∆.

(cond-throw) : Then P = if throw n(R) then M else N → throw n(P) = Q, and the derivation for

P is constructed as:

D

Γ ⊢ R : E | n:E→F,∆′

(throw)
Γ ⊢ throw n(R) : bool | n:E→F,∆′

Γ ⊢ M : B | ∆

.

..
Γ ⊢ N : C | ∆

(cond)
Γ ⊢ if throw n(P) then M else N : D | ∆

for certain B, C, and D. Then we can construct the derivation:

D

Γ ⊢ R : E | n:E→F,∆′

(throw)
Γ ⊢ throw n(R) : D | n:E→F,∆′

(cond-panic) : Then P = if panic n(R) then M else N → panic n(R) = Q, and the derivation for

P is constructed as:

14 Remark that we cannot apply (→I) to the latter result.

38

Γ ⊢ panic n(R) : fail | ∆ Γ ⊢ M : B | ∆ Γ ⊢ N : C | ∆
(cond)

Γ ⊢ if panic n(R) then M else N : fail | ∆

for certain B and C. Notice that we have a sub-derivation for Γ ⊢fail panic n(R) : fail | ∆.

For the call-by-value system, we can show:

Theorem 6.11 (Soundness for ⊢fail with respect to →v

try
) If Γ ⊢v

fail P : C | ∆ and P →v

try

∗ Q,

then either Γ ⊢v

fail Q : C | ∆, or Γ ⊢v

fail Q : fail | ∆.

Proof : The proof is much like that for the previous result, with the addition of:

(throwv) : Then ∆ = n:A→C,∆′, P = V(throw n(N))→ throw n(N) = Q, and the derivation for

P is constructed as:

Γ ⊢fail V : E→F | n:A→C,∆′

D

Γ ⊢fail N : A | n:A→C,∆′

(throw)
Γ ⊢fail throw n(N) : E | n:A→C,∆′

(→E)
Γ ⊢fail V (throw n(N)) : F | n:A→C,∆′

We can construct the derivation for Q:

D

Γ ⊢fail N : A | n:A→C,∆′

(throw)
Γ ⊢fail throw n(N) : F | n:A→C,∆′

(panicv) : Then P = V(panic n(N))→ panic n(N) = Q, and the derivation for P is constructed

like:

Γ ⊢ V : A | ∆ Γ ⊢ panic n(N) : fail | ∆
(→Ev)

Γ ⊢ V(panic n(N)) : fail | ∆

We have Γ ⊢fail panic n(N) : fail | ∆ in a sub-derivation.

Conclusion

We have defined λtry, a natural extension to the λ-calculus by adding exception handling, and

shown that it can be embedded into λµ, preserving both cbn and cbv reduction. The normal

notion of type assignment for λtry, here called the basic system, is also preserved by our map-

ping onto λµ. Type assignment is not preserved, however, for the notion of type assignment

that captures total program failure using exception handling. We also have presented a notion

of handling of exception and panic calls, together with a natural notion of type assignment,

that cannot be represented in λµ or λµ-top.

We thus have shown that, although a strong link between typeable exception handling

and double negation elimination is evident, exception handling itself is a feature that is not

naturally a part of calculi based on classical logic, since it is possible to define notions of type

assignment that are natural for λtry, but are not founded on classical logic.

By letting go of the link between programming and logic, we have shown that it is pos-

sible to define handling of exception and panic calls for formal calculi in a computationally

meaningful way.

39

Acknowledgements

I am greatly indebted to the students who, over the years, have worked on this and other

problems related to classical logic and functional programming with me. A special mention

is for Mihai-Radu-Niculae Popescu, Wil Fisher, Adela Baciu, James Griffiths, and Isaac van

Bakel.

References

[1] Z.M. Ariola, H. Herbelin, and A. Sabry. A Proof-Theoretic Foundation of Abortive Continuations.
In Proceedings of Higher-Order and Symbolic Computation, 2007, pages 403–429, 2007.

[2] H. Barendregt. The Lambda Calculus: its Syntax and Semantics. North-Holland, Amsterdam, revised
edition, 1984.

[3] G.M. Bierman. A Computational Interpretation of the λµ-calculus. In Proceedings of Symposium
on Mathematical Foundations of Computer Science, volume 1450 of Lecture Notes in Computer
Science, pages 336–345. Springer Verlag, 1998.

[4] G.M. Bierman. A Computational Interpretation of the λµ-calculus. Technical report, University
of Cambridge, 1998. Expanded version of [3].

[5] T. Crolard. A confluent lambda-calculus with a catch/throw mechanism. Journal of Functional
Programming, 9(6):625–647, 1999.

[6] H.B. Curry. Functionality in Combinatory Logic. In Proc. Nat. Acad. Sci. U.S.A, volume 20, pages
584–590, 1934.

[7] S. Drossopoulou and T. Valkevych. Java Exceptions Throw No Surprises. Unpublished, March
2000.

[8] M. Felleisen and R Hieb. The revised report on the syntactic theories of sequential control and
state. Theoretical Computer Science, 103(2), 1992.

[9] G. Gentzen. Untersuchungen über das Logische Schliessen. Mathematische Zeitschrift, 39(2):176–
210 and 405–431, 1935.

[10] J. Gosling, W.N. Joy, and G.L. Steele Jr. The Java Language Specification. Addison-Wesley, 1996.
[11] T. Griffin. A formulae-as-types notion of control. In Proceedings of the 17th Annual ACM Symposium

on Principles of Programming Languages, Orlando (Fla., USA), pages 47–58, 1990.
[12] Ph. de Groote. On the Relation between the λµ-Calculus and the Syntactic Theory of Sequential

Control. In Proceedings of 5th International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR’94), volume 822 of Lecture Notes in Computer Science, pages 31–43. Springer
Verlag, 1994.

[13] Ph. de Groote. A Simple Calculus of Exception Handling. In M. Dezani-Ciancaglini and G.D.
Plotkin, editors, Second International Conference on Typed Lambda Calculi and Applications, TLCA
’95, Edinburgh, UK, April 10-12, 1995, Proceedings, volume 902 of Lecture Notes in Computer Science,
pages 201–215. Springer Verlag, 1995.

[14] P. Hudak, S. Peyton Jones, P. Wadler, B. Boutel, J. Fairbairn, J. Fasel, K. Hammond, J. Hughes,
T. Johnsson, D. Kieburtz, R. Nikhil, W. Partain, and J. Peterson. Report on the Programming
Language Haskell. ACM SIGPLAN Notices, 27(5):1–64, 1992.

[15] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press, 1990.
[16] H. Nakano. The Non-deterministic Catch and Throw Mechanism and Its Subject Reduction Prop-

erty. In N.D. Jones, M. Hagiya, and M. Sato, editors, Logic, Language and Computation, Festschrift
in Honor of Satoru Takasu, volume 792 of Lecture Notes in Computer Science, pages 61–72. Springer,
1994.

[17] H. Nakano. Logical Structures of the Catch and Throw Mechanism. PhD thesis, University of Tokyo,
1995.

[18] C.-H.L. Ong and C.A. Stewart. A Curry-Howard foundation for functional computation with
control. In Proceedings of the 24th Annual ACM Symposium on Principles Of Programming Languages,
pages 215–227, 1997.

[19] M. Parigot. An algorithmic interpretation of classical natural deduction. In Proceedings of 3rd
International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR’92),
volume 624 of Lecture Notes in Computer Science, pages 190–201. Springer Verlag, 1992.

[20] M. Parigot. Classical Proofs as Programs. In Kurt Gödel Colloquium, pages 263–276, 1993. Presented
at TYPES Workshop, at Bǎstad, June 1992.

[21] M.E. Szabo, editor. The Collected Papers of Gerhard Gentzen. Studies in Logic and the Foundations
of Mathematics. North-Holland, 1969.

40

	Related systems
	The `l-calculus
	On adding exception handling to the `l-calculus
	The calculus `l`m
	On modelling the catch/throw mechanism in `l`m
	Nakano's system and Crolard's interpretation
	De Groote and Bierman's approach

	The calculus 90
	Interpreting 85 in 21
	Basic type assignment
	Adding 89 to 90
	Handling failing computation

