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ABSTRACT

We introduce the Calculus of Delayed Reduction (cdr), that ex-
presses that redexes can only be contracted when brought to the

right position in a term, and will show that Call by Name or Value

(cbn, cbv) reduction for the _-calculus can be modelled through

reduction in cdr, and that the cbn fragment of the _` ˜̀-calculus

can model reduction in cdr. cdr is a Call by Push Value calculus

(cbpv) in that it separates terms in computations and values, with

their corresponding types. Some simulation results were already

achieved by others for cbpv, but only up to equality for cbv; for
cbn the results are rather weak.

In order to achieve a single-step reduction respecting mapping

for the cbn _-calculus, we allow forcing only for variables, thunk-

ing only for computations that are not forced variables, and change

the nature of term substitution, and abolish the U-reduction rule.

We will show that, by changing the standard interpretation, we can

achieve a reduction respecting mapping for the cbv _-calculus as

well. Moreover, these changes make it possible to establish a strong

relation between cdr and _` ˜̀, allowing to simulate cdr reduction

in _` ˜̀, and preserving assignable types.
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INTRODUCTION

Both the ‘call by name’ (cbn) and ‘call by value’ (cbv) [18] re-
duction strategies of the _-calculus [1, 4] are important paradigms

in theory as well as in practice of computer science. The first is

based on the concept that the execution of function application

(the contraction of a V-redex) takes places ‘as is’, without consider-

ation of the computational status of the argument. The second is

similar, but the main distinction is that it forces the evaluation of
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the argument to a value before the redex under consideration gets

contracted. cbn-reduction is normalising, so will lead to a cbn-
normal form, if it exists; cbv-reduction does not necessarily lead to
a normal form. These two reduction strategies differ significantly

in semantics and for example do not share all normal forms; it is

an interesting question if a simple calculus can be found1 in which

both can be modelled coherently, preserving typeability, assigna-

ble types, denotational semantics, etc.

In [13, 15] Levy proposed the Call by Push Value (cbpv) calcu-
lus as answer to this question, as a subsuming paradigm for the

cbn and cbv paradigms of the _-calculus. Departing from earlier

work by Moggi [16], Levy defines a calculus that distinguishes val-

ues from computations, not only syntactically, but also through

assignable types. It introduces the concepts of thunking {·} (block-

ing a computation, turning it into a value) and forcing ·! (used to

unblock a thunked computation).

An important characteristic of cbpv is that it is presented with a

deterministic reduction relation, that can be thought of as encoded

in the term itself, as reduction might be seen as being blocked

and activated through additional syntax;2 this strategy only allows

some redexes occurring in terms to be contracted, and as will be

argued in this paper, this basically follows a cbn-strategy. In par-

ticular, reduction in cbpv is not allowed for operands, i.e. in the

right hand terms of applications; this implies that modelling cbv
reduction is not straightforward, since that explicitly asks for the

evaluation of operands. Levy defines cbn and cbv interpretations

of the pure _-calculus and states preservation results for both re-

duction strategies; that this can be achieved in cbpv is remarkable,

given that its reduction system is cbn in nature.

Approaches similar to cbpv were later explored in [6]; that pa-

per presents the Bang calculus, which syntax can be mapped to

that of cbpv, but allows for reduction to take place in all sub-terms,

not just the computations, so representation of reductions of the

cbn/cbv _-calculus is not really an issue.

However, although defined exactly for this purpose, Levy’s in-

terpretations fall short in that they do not fully preserve the oper-

ational and denotational semantics. Under the cbv interpretation,

only equality is preserved; the cbn interpretation is not a func-

tion, so the notion of semantics is very loose. For the latter, this

is caused by a ‘growth’ of {·}! constructs created by reduction; un-

der reduction, (G !) {{"}/G} creates {"}!, also inside values where

these cannot be contracted (see Ex. 2.15). As we will see through

the proofs we supply for these properties in Sect. 2.1, these difficul-

ties cannot be overcome in cbpv, so cbv and cbn reduction for

the _-calculus cannot be represented through reduction in cbpv.

1Of course, both can be mapped into the _-calculus itself.
2This is not true in reality, since the reduction steps do not check for the presence of
this additional syntax, and reduction is actually, as always, controlled by evaluation
contexts, that specify where redexes can be contracted. As can be seen in Def.. 2.2, for
cbpv those are defined without even using thunking or forcing. In fact, these added
constructs mainly aid type assignment.
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So the question remains: is it possible to define a cbpv-like cal-
culus in which we can faithfully represent cbv and cbn reduction

for the _-calculus? In this paper, we will answer this question pos-

itively, modifying cbpv slightly.

However, before coming to that, we need to address a discrep-

ancy between the _-calculus and cbpv. The discourse of Levy’s

papers on cbpv is that of terms, types and semantics, presented,

as is perhaps more common in the context of programming lan-

guages, as derivations (called terms by Levy) for statements of the

shape Γ ⊢ " : A; this means not only that terms are intrinsically

typed, but also that terms and types cannot be separated, and re-

duction is in fact cut-elimination. Moreover, this way all terms are

considered to be typeable, limiting the calculus and results. For the

_-calculus, it is more common to define terms and type assignment

separately (so decidability of the latter becomes an issue), and re-

duction is a relation on (pure) terms, not depending on typeability.

It is perhaps surprising that Levy [15] nonetheless treats the wit-

nesses of the derivations as terms separately, without mentioning

their type. This leads to ambiguity and cannot be ignored.

In this paper we close this gap by extracting a pure, type-free

term calculus, called cbpv as well, out of Levy’s definition [13, 15],

engineer a single-step reduction relation on those terms from the

large-step semantics defined there, and define type assignment sep-

arately. Thereby it will be easier to link the _-calculus and cbpv,
without ignoring any aspect of terms. As a consequence, we can

now deal with cbpv terms that are untypeable, like _G.G !G , or non-

terminating, like (_G.G !G) {_G.G !G}. In order to correctly represent

the cbn/cbv _-calculus, we will define a calculus of delayed reduc-

tions (cdr) as a variant of our cbpv, where we basically exclude

terms of the shape {"}!, changing not only the syntax of terms,

but also term-substitution. To validate our variant of cbpv, using
this minor change, we will show that now it is possible to define

interpretations of the cbn and the cbv-_-calculus into cdr, and
show that (single step) reduction is respected by (multistep) reduc-

tion, in Sect. 3.1 and 3.2, respectively, something which was not

achieved for cbpv. For cbn this is achieved through changing the

substitution, as explained above; for cbv, we enhance Levy’s inter-
pretation, which is not fine-grained enough for our purpose.

[7] presents cbpv as a pure term calculus with type assignment,

as we do here, but in that paper the discrepancy we indicated above

is not mentioned. Forster et al. [7] basically repeat Levy’s results

by using Levy’s definitions (so do not modify term substitution)

and show that the interpretations are “correct w.r.t. small-step se-

mantics, and using eager lets to eliminate administrative redices

[sic]” [7]. Thereby their results do not corresponds to ours; the

same observations on the shortcomings of Levy’s representation

results we made above hold for [7] as well.

cbpv is not the only calculus that achieves the embodiment of

the duality of cbn and cbv. Herbelin and Curien [3, 10] defined the

calculus _` ˜̀ that represents proofs and cut-elimination of a vari-

ant Gentzen’s Sequent Calculus for Classical Logic [8] with focus,

which can be seen as a generalisation and extension of Parigot’s

_`-calculus [17], and has been shown to represent an abstract ma-

chine which models both these paradigms successfully. In partic-

ular, the interpretations of the cbn and cbv _-calculus into _` ˜̀

preserve the reductions.

Moreover, the abstract machine, ck, defined in [13] to give an

operational semantics for cbpv, very closely corresponds to the

workings of these interpretations into _` ˜̀. This observation led us

to investigate the link between these two calculi - _` ˜̀ and cbpv -

and here we will give an interpretation of cdr into _` ˜̀, inspired

by the behaviour of cbpv in the abstract machine ck [14]. Using

themotivation for _` ˜̀ as an abstract machine to run the _-calculus

in, we attempted to use a similar technique for translating cbpv.
However, the halting and continuing of computations - through

‘thunking’ and ‘forcing’ - cannot bemodelled by the traditional _` ˜̀

syntax, which gives another motivation to restrict the syntax and

notion of reduction as we do here for cdr: especially the reduction

rule {"}!→" cannot be represented in _` ˜̀. [5] studies the relation

between cbpv and ΛLLT , which is a fully polarized typed calculus,

inspired by _` ˜̀; it does not present embeddings of the cbn/cbv
_-calculus, which would be similar those defined by Levy, so does

not solve the problems we address here.

However, when defining an interpretation of cdr-terms into

_` ˜̀, as well as one for our variant of ck into _` ˜̀, we can show

that both fully preserve reduction, and that the first also preserves

typeability. In fact, reduction in cdr is fully modelled in cbn-_` ˜̀,
emphasising again that cbpv is, in fact, a call-by-name calculus.

Outline of this paper

We start in Section 1 by giving a quick overview of the _-calculus,

and its relevant reduction strategies; this is followed in Section 2

where we revisit the functional core of Levy’s cbpv-calculus and
the abstract machine ck that is used to give an operational seman-

tics for cbpv. In Section 2.1 we will revisit some results on the

interpretation of cbn-_ and cbv-_ into cbpv, as well as those pre-
sented in _-val [7] and the Bang calculus.

In Section 3 we will present cdr, a variant of cbpv where only

variables can be forced, and only ‘real’ computations can be thun-

ked (so not forced variables). This is paired with a different notion

of term substitution, that carefully avoids to create a term like {"}!

since these are no longer accepted as terms.Wewill define interpre-

tations of cbn-_ and cbv-_ into cdr and show that now reduction

is respected. But we achieve more: because of this change, we can

also establish a strong relation with _` ˜̀ and show the interpreta-

tion results in Section 5.

In Section 4 we will give a short overview of Herbelin’s calculus

_` ˜̀. This is followed in Section 5 by the definition of an interpre-

tation of cdr-terms into _` ˜̀, and one for the abstract machine ck

into _` ˜̀; we show that both fully preserve reduction, and that the

first also preserves typeability.

1 THE _-CALCULUS

We assume the reader to be familiar with the _-calculus [1]; we

just recall the definition of _-terms and notions of reduction.

Definition 1.1 (Lambda terms, cbn and cbv reduction).

(1) _-terms are defined by:

+ ::= G | _G." (values)

", # ::= + | "#
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In "# , we say that " is in function position, and # is an operand.

We will write" ∈ _ when " is a _-term.

(2) (One-step) V-reduction is defined using the V-rule

(V) : (_G.")# →" {#/G}

where {#/G} stands for the implicit substitution3, and evaluation

contexts that are defined as terms with a single hole by:

C ::= ⌈ ⌋4 | C" | "C | _G.C

Wewrite C ⌈"⌋ for the term obtained from the context C by replac-

ing its hole ⌈ ⌋ with" , allowing variables to be captured. One-step

V reduction is defined through: C ⌈(_G.")# ⌋ →V C ⌈" {#/G}⌋ for

any evaluation context. We write →∗V for the reflexive and tran-

sitive closure of →V , and use that notation for all the notions of

reduction we consider in this paper.

(3) Call-by-name (cbn) reduction,→n is defined by limiting the

evaluation contexts to cbn contexts: Cn ::= ⌈ ⌋ | Cn" .

(4) Call-by-value (cbv) reduction,→v, is defined by changing

rule V to (_G.")+ → " {+/G} and limiting the evaluation con-

texts to cbv contexts: Cv ::= ⌈ ⌋ | Cv" | + Cv .

It is well known that reduction using→V is confluent [2]; this

is not a trivially achieved property, as→V is not deterministic: by

the definition of evaluation contexts, nested redexes can occur, as

well as parallel redexes. For example, using→V , the three redexes

in

(_G.(_~.")# ) ((_I.%)&)

can all be contracted. Using →n, only the ‘G’-redex can be con-

tracted, and using→v, only the ‘I’-redex.→n and→v are, in fact,

reduction strategies: only ever one redex in a term can be con-

tracted, so then reduction is deterministic.

Simple type assignment for the _-calculus is defined as follows:

Definition 1.2 (Curry type assignment for the _-calculus).

(1) Let i range over a countable (infinite) set of type-variables.

The set of Curry types is defined by the grammar:

�, � ::= i | �→�

(2) A context of variables Γ is a partial mapping from term vari-

ables to types, denoted as a finite set of statements G :�.

(3) Curry type assignment ‘⊢_ ’ is defined by the following infer-

ence system:

(Ax) :
Γ, G :� ⊢ G : �

(→I) :
Γ, G :� ⊢ " : �

Γ ⊢ _G ." : �→�

(→E) :
Γ ⊢_ " : �→� Γ ⊢_ # : �

Γ ⊢_ "# : �

Type assignment in this system is decidable, and it enjoys a

Curry-Howard correspondencewith implicative intuitionistic logic.

2 CALL BY PUSH VALUE

Call by Push Value, presented in [13], is a calculus designed to

make the execution order of a _-based term explicit, by presenting

a deterministic reduction system, but one that is set up to express

3The notation {# /G } is traditionally used, but since the curly brackets are used for
term construction (thunking) in cbpv, we decided to use the notation {#/G } here.
4The notation for the ‘hole’ in contexts differs in the literature; we go for the non-
standard ⌈ ⌋, since the alternatives, like [ ], or { } , or ( ) , are used for different things
in this paper.

both the cbn and cbv _-calculus. cbpv considers computations

and values; the slogan from [13] is “a value is, a computation does”

and this is expressed through assignable types and the reduction

relation, where only computations reduce to each other,5 and val-

ues are used as parameters. However, the notion of value in cbpv
is quite different from that used in the _-calculus (see Def. 1.1).

As mentioned in the introduction, in investigating the relation

between reduction in the _-calculus, defined on terms, and cbpv,
defined through cut-elimination, we are confronted with a para-

digm problem. In order to better compare the cbn/cbv _-calculus

and cbpv, here we will deviate from Levy’s ‘derivation’ approach,

and treat cbpv as a pure _-calculus: we will define syntax and

type assignment separately, and define a one-step reduction rela-

tion on terms.6 This approach has also been used in [7].7 This will

enable us to interpret the untyped cbn/cbv _-calculus without

hindrances, but more importantly let us deal with non-terminating

or untypeable terms as well. We will use the syntax from [7] but

for reasons of simplicity consider pure, functional cbpv without

effects and do not the consider sum and product types.

Definition 2.1 (cbpv terms). There are two categories of cbpv-
terms: values and computations, that are defined through:

+ ,, ::= G | {"} (values)

", # ::= + ! | _G." | "+ | ret+ | G :=" ;# 8 (computations)

The notion of free and bound variables is defined as usual, taking

G to be bound in the terms _G." and G :=" ;# ; in the latter, the

occurrences of G in # are bound, and by Barendregt’s convention

G does not occur in" . We will write" ∈ cbpv when" is a cbpv
term.

As usual, we read {·} as ‘thunk’, which represents the blocking

of a computation by boxing it inside a value, and ·! as ‘force’, which

pushes a value into becoming a computation.

We based a one-step reduction relation on the big-step seman-

tics in Fig. 4 in [15].

Definition 2.2 (cbpv reduction rules). The basic reduction rules

are defined by:

(�) : (_G.")+ →p " {+/G} (contract)9

(* ) : {"}! →p " (unblock)

(� ) : G := ret+ ;" →p " {+/G} (force)

where term substitution" {+/G} is defined as usual.

The cbpv-evaluation contexts are defined through:

C ::= ⌈ ⌋ | C+ | G := C;"

and cbpv-reduction is defined through: C ⌈"⌋ →p C ⌈# ⌋ when-

ever " →p # through either rule (�), (* ), or (� ) and C is a

cbpv-evaluation context.

5 This is not the case in [6], see Sect. 2.3.
6 Therefore, formally, none of the results we show for our variant of cbpv are appli-
cable to Levy’s calculus.
7 It might be better to find a new name for this ‘pure term’ variant, but since [7] uses
cbpv, to not introduce too much new nomenclature, so do we.
8 Manydifferent notations have been used for cbpv in the past. [15] writes application
"+ ‘operand first’ as+ ‘" in and past papers used let G = " in # or even let G ←
" in # for our G :=" ; # .
9 This rule is called (→) in [15].
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Notice that reduction is deterministic: since the definition of

evaluation contexts lack the cases "C, _G.C and G :=" ; C, no

nested or parallel redexes can occur.

The constructs ret+ and G :=" ;# are not generated by reduc-

tion; in our version of cbpv they are present mainly for the encod-

ing of the cbv _-calculus (see Def. 2.9).

Levy [15] only considers semantics for closed terms, so + is

closed in G := ret+ ;" , and " has only one free variable, G . Here

we consider arbitrary terms, so+ can have free variables, and even

start with one (be of the shape {~!+1 · · ·+=}).
10

Definition 2.3 (cbpv type assignment).

(1) The types11 for cbpv terms are defined by:

�, � ::= i | UA (value types)

A, B ::= �→B | F� (computation types)

(2) Contexts are defined as in Def. 1.2, but mapping term vari-

ables to value types.

(3) Type assignment for cbpv is defined through the following

inference system:

(axiom) :
Γ, G :� ⊢v G : �

(thunk) :
Γ ⊢c " : A

Γ ⊢v {"} : U A

(abstr) :
Γ, G :� ⊢c " : B

Γ ⊢c _G ." : �→B
(appl) :

Γ ⊢c " : �→B Γ ⊢v + : �

Γ ⊢c "+ : B

(force) :
Γ ⊢v + : U A

Γ ⊢c + ! : A
(ret) :

Γ ⊢v + : �

Γ ⊢c ret+ : F�

(seq) :
Γ ⊢c " : F� Γ, G :� ⊢c # : B

Γ ⊢c G :=" ;# : B

This polarised type assignment highlights the duality of cbpv,
using initial and terminal objects; it assigns value types to values,

and computation types to computations. It does that by dividing

Moggi’s type constructor) [16] into two type constructors U and

F, and enriches Moggi’s _ml with thunking and forcing that allow

the conversion form computation to values and vice versa; the in-

tention is that a computation of type F� produces a value of type

�, and a value of type UB is a thunk of a computation of type B.

In the present context, the role of ret · is rather limited, and we

will see that it plays no part in the interpretation of the cbn _-

calculus (Def. 2.14 and 3.2). However, when adding term constants,

like numbers, to cbpv, the role of ret · becomes more evident: then

all numbers are values of type num, and, for example, successor

Succ is typed Succ : num→ Fnum, so Succ 0 : Fnum. Results of com-

putations of the shape ret+ cannot be passed to functions without

being thunked first, and can only be passed on using the assign-

ment construct.

We can show that type assignment is sound.

Lemma 2.4. (1) If Γ, G :� ⊢v + : � , and Γ ⊢v + ′ : � , then Γ ⊢v
+ {+ ′/G} : � .

(2) If Γ, G :� ⊢c " : B , and Γ ⊢v +
′ : � , then Γ ⊢c " {+

′/G} : B .

Proof. By simultaneous induction on the definition of ‘·{+/G}’.

10 In general, reduction rule (� ) does not require the thunked term in # in
G := ret {# };" to be in normal form; any computation term can be thunked and
passed on, even # = (_~.% )& .
11 We choose to use a different font for computation types for reasons of readability,
rather than underlining as in [13], or�,� as in [7].

Theorem 2.5 (Subject reduction). If Γ ⊢c " : B , and " →p

# , then Γ ⊢c # : B .

Proof. By induction on the definition of reduction; we will only

consider the base cases.

(�) : Then " = (_G."′)+ , and by rules (appl) and (abstr) there

exists � such that Γ, G :� ⊢c "′ : B and Γ ⊢v + : � ; the

result follows from Lem. 2.4.

(* ) : Then" = {"′}!, and we have Γ ⊢c "
′ : B by rules (thunk)

and (force).

(� ) : Then" = G := ret+ ;"′ and there exists� such that Γ, G :� ⊢c
"′ : B and Γ ⊢v + : � ; the result follows from Lem. 2.4.

In the same vein as Krivine’s machine [12], in [15] Levy defines a

small-step operational semantics of cbpv through a stack machine

ck, which uses configurations 〈" | (〉 where" is the computation

being evaluated and ( is the environment (a stack of values and

terms with a hole) in which that evaluation takes place. We will

present a variant of that machine here, adapted to our restriction

of cbpv, so without effects or sum and product types.

Definition 2.6 (ck-machine [15]).

(1) Evaluation stacks are defined over cbpv terms and values

through: ( ::= n | + : ( | G := [ ];" : (.

(2) The evaluation of 〈" | (〉 of"∈cbpv in the evaluation stack

( is defined by:

〈_G." |+ : (〉 →ck 〈" {+/G} | (〉

〈G :=" ;# | (〉 →ck 〈" | G := [ ];# : (〉

〈ret+ | G := [ ];" : (〉 →ck 〈" {+/G} | (〉

〈"+ | (〉 →ck 〈" |+ : (〉

〈{"}! | (〉 →ck 〈" | (〉

We define =ck as the equivalence relation generated by→ck.

(3) We define an interpretation from cbpv to ck by: [[" ]]ck =

〈" | n〉.

In the last step of part 2, there is no interaction with the stack.

We can now show that cbpv-reduction is preserved under =ck.

Theorem 2.7. If" →p # , then 〈" | (〉 =ck 〈# | (〉.

Proof. (_G.")+ →p " {+/G} : 〈(_G.")+ | (〉 →ck

〈_G." |+ : (〉 →ck 〈" {+/G} | (〉

{"}! →p " : 〈{"}! | (〉 →ck 〈" | (〉

G := ret+ ;" →p " {+/G} : 〈G := ret+ ;" | (〉 →ck

〈ret+ | G := [ ];" : (〉 →ck 〈" {+/G} | (〉

" →p # ⇒ "+ →p #+ : 〈"+ | (〉 →ck 〈" |+ : (〉 =ck (IH)

〈# |+ : (〉 ←ck 〈#+ | (〉

" →p # ⇒ G :=" ; % →p G := # ; % : 〈G :=" ; % | (〉 →ck

〈" | G := [ ]; % : (〉 =ck (IH) 〈# | G := [ ]; % : (〉 ←ck

〈G := # ; % | (〉

Notice that the result is stated in terms of equality, rather than re-

duction, because of the structure of the last two cases in the proof;

see also the comment below.With this result, we immediately have

that cbpv-reduction is preserved by the interpretation [[·]]ck .

Corollary 2.8. If" →∗p # , then [["]]ck =ck [[# ]]
ck .

The last property is stated in [15] as ‘For any closed computation

" , we have " ⇓ ) iff 〈" | n〉 →∗ck 〈) | n〉’; our result generalises

this to single-step reduction, but at the cost of using =ck.
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2.1 Interpreting the cbn/cbv _-calculus in cbpv

There are two different ways to interpret the _-calculus in cbpv, by
either modelling cbn or cbv reduction, and the syntax of cbpv al-

lows to explicitly encode either strategy; it is not possible to model

full V-reduction, since the evaluation contexts _G.C and "C are

missing in cbpv. Levy presents in [15] what he calls Fine-Grain

cbv, a typed _-calculus extended with two let constructs and a

conditional construct (presented as derivations); a variant of that

calculus is considered in [7], but with product and sum, and no

longer considering terms of cbpv to be derivations. Since in this

paper we are mainly interested in the relation between the pure

_-calculus, cbpv, and _` ˜̀, all untyped, we will concentrate on the

pure functional component of those calculi.

We now focus on interpreting the pure cbv _-calculus (Def. 1.1)

in cbpv, so start from the thought that cbv is a reduction strategy

for the _-calculus, not a different calculus that requires changing

the syntax. Since the calculi involved are different, the results we

present in this section are not those of [7, 15], so all proofs are new.

Definition 2.9 ([15]). Levy’s cbv-interpretation ↦→v between _-

terms and cbpv-terms is defined through:

G ↦→v retG

" ↦→v %

_G ." ↦→v ret {_G .%}

" ↦→v % # ↦→v &

"# ↦→v G := % ; ~ :=& ;G !~

Notice the use of sequencing: it has the effect that, when in-

terpreting an application "# , it first runs (the interpretation of)

" , followed by # , and then applying the resulting terms, as is in-

tended under cbv. This reorganisation of terms is necessary be-

cause the reduction relation on cbpv is cbn, not cbv in the sense

of the _-calculus. Since ↦→v is a function, for notational conve-

nience in proofs, we will write [["]]lv for % whenever " ↦→v % .

We can show that this interpretation preserves reduction (through

equality).

Lemma 2.10 (Substitution lemma for [[·]]lv).

(1) [["]]lv {F/I} = [[" {F/I}]]
l
v.

(2) [["]]lv {{_F.[[']]lv}/I} = [[" {_F.'/I}]]lv .

Proof. (1) By straightforward induction on the definition of sub-

stitution.

(2) " ≡ I : [[I]]lv {{_F.[[']]lv}/I} = (retI) {{_F.[[']]lv}/I} =

ret {_F.[[']]lv} = [[_F.']]lv = [[I {_F.'/I}]]lv
" ≡ D and D =/ I : [[D]]lv{{_F.[[']]lv}/I} =

(retD) {{_F.[[']]lv}/I} = retD =

Δ [[D]]lv = [[D {_F.'/I}]]lv
The other cases follow by induction.

Theorem 2.11. If" →v # , then [["]]lv =p [[# ]]
l
v .

Proof. (_I.")F →v " {F/I} : [[(_I.")F ]]lv =

Δ

G := ret {_I.[["]]lv};~ := retF ; G !~ →p

~ := retF ; {_I.[["]]lv}!~→p {_I.[["]]
l
v}!F →p

(_I.[["]]lv)F →p [["]]
l
v {F/I} = (2.10) [[" {F/I}]]lv

(_I.") (_F.') →v " {_F.'/I} : [[(_I.") (_F.')]]lv =

Δ

G := ret {_I.[["]]lv};~ := ret {_F.[[']]lv};G !~ →p

~ := ret {_F.[[']]lv}; {_I.[["]]
l
v}!~ →p

{_I.[["]]lv}!{_F.[[']]lv} →p

(_I.[["]]lv) {_F.[[']]lv} →p

[["]]lv {{_F.[[']]lv}/I} = (2.10) [[" {{_F.'}/I}]]lv

" →v # ⇒ "% →v # % : [["% ]]lv =

Δ

G := [["]]lv;~ := [[%]]lv ;G !~ =p (IH)

G := [[# ]]lv;~ := [[%]]lv; G !~ =

Δ [[# % ]]lv
" →v # ⇒ I" →v I# : [[I"]]lv =

Δ

G := retI;~ := [["]]lv; G !~ →p ~ := [[# ]]lv; I!~ and

[[I# ]]lv =

Δ G := I;~ := [[# ]]lv; G !~ →p ~ := [[# ]]lv; I!~

" →v # ⇒ (_F.')" →v (_F.')# : [[(_F.')"]]lv =

Δ

G := ret {_F.[[']]lv};~ := [["]]lv; G !~→p

~ := [["]]lv; {_F.[[']]lv}~ =p (IH)

~ := [[# ]]lv; {_F.[[']]lv}~ and

[[(_F.')# ]]lv =

Δ G := ret {_F.[[']]lv};~ := [[# ]]lv; G !~ →p

~ := [[# ]]lv; {_F.[[']]lv}~

Notice that, in the last two cases, as was also the case or→ck,

the two interpretations of the terms involved in the→v-reduction

step are not related through reduction, but through equality.

The cbv _-calculus and cbpv are related also on the level of

types.

Definition 2.12 ([15]). The cbv-interpretation of types is defined
through:

i =

Δ i

�→� =

Δ
U (�→F�)

This interpretation is straightforwardly extended to contexts: Γ =

Δ

{ G :� | G :� ∈ Γ }.

We can now show that the interpretations respect typeability

and assignable types.

Lemma 2.13. If Γ ⊢_ " : � , then Γ ⊢c [["]]
l
v : F� .

Proof. By induction on definition of type assignment. We only show

the base case, the other follow by induction.

(Ax) : Then " ≡ G , and Γ = Γ
′, G :�; and Γ = Γ′, G :�, we can

construct:
(axiom)

Γ ⊢v G : �
(ret)

Γ ⊢v retG : F�

Notice that [[G]]lv =

Δ ret G .

In [15], Levy also deals with mapping cbn-reduction for the _-

calculus into cbpv, but this attempt is less successful than the one

dealing with cbv; [7] basically repeats Levy’s work and result, but
for a pure term calculus.

Definition 2.14 (Simulation of cbn [7, 15]). Levy’s relation ↦→n

between _-terms and cbpv-terms is defined as:

G ↦→n G !

" ↦→n " ′

_G ." ↦→n _G ." ′

" ↦→n " ′ # ↦→n # ′

"# ↦→n " ′ {# ′}

" ↦→n " ′

" ↦→n {"
′}!

12

Notice that ‘G := # ;"’ and ‘ret+ ’ are not used here, and that all

variables are forced, even those that appear in value position (where

they get thunked). Notice that we have

{" ∈ cbpv | _G.GG ↦→n " } = { _G.G !{G !}, _G.G !{{G !}!},

_G.G !{{{G !}!}!}, . . . }

12The last rule is missing from Fig. 3 in the Appendix of [7], but we assume this is in
error.
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and that these terms are not related through reduction, so ↦→n is

not a (semantic) function.

A problem with this definition is that it does not define an in-

terpretation; the fourth rule allows to place an arbitrary amount

of ‘force’-’thunk’ pairs {·}! around interpreted _-terms, so for ev-

ery _-term " there are infinitely many "′ such that " ↦→n "′ .

Thereby this relation does not give a semantics.

It is not possible to show that reduction is preserved.

Example 2.15. We have (_G.GG ) (_G.GG ) →n (_G.GG ) (_G.GG ),

(_G.GG ) (_G.GG ) ↦→n (_G.G !{G !}){_G.G !{G !}} and

(_G.G !{G !}){_G.G !{G !}} →∗p (_G.G !{G !}){{_G.G !{G !}}!}

→∗p (_G.G !{G !}){{{_G.G !{G !}}!}!}

→∗p . . .

Note that the {·}! redexes in the operand cannot be contracted. It

will be clear that (_G.G !{G !}){_G.G !{G !}} does not run to itself, and

that the size of the term keeps increasing.

One could argue that it could have been better to reverse the

above idea and add the rule (* ) without limitation to solve this

problem; notice that then we would have:

(_G.G !{G !}){{_G.G !{G !}}!} →∗p (_G.G !{G !}){_G.G !{G !}}

as desired, and would have obtained a cbn-interpretation; this is
essentially the solution chosen in [6] for the Bang calculus. How-

ever, we would need to allow this reduction step also inside values,

breaking the slogan from [13], which is probably why Levy does

not consider this change. Belowwewill address this by eliminating

forcing of thunked terms and rule (* ) altogether in cdr, without
breaking the slogan.

It is possible to show that ↦→n respects type assignment; this

result is very much like that of Thm. 3.16, and we therefore will

not present it here.

Using this notion, [7, 15] show:

Lemma 2.16 ([7, 15]). (1) (Forwards simulation) Let", # ∈ _. If

" ↦→n & , and" →∗n # , then there exists ' ∈cbpv such that # ↦→n

' and & →∗p '.

(2) (Backwards simulation) Let" ∈ _. If" ↦→n & , and & →∗p ',

then there exists # ∈ _ such that # ↦→n ' and" →∗n # .

This is a rather complicated solution for a problem that is easily

fixed by making a different choice of grammar for cbpv. Since the
problem is introduced by (implicit) substitution of a thunked term

for a forced variable, and arbitrarily allowing for thunking and forc-

ing, our solution is to change exactly how terms are inserted into

positions occupied by variables.

2.2 The results for _-val [7]

In this section we will revisit the results shown for a variant of

the _-calculus presented in [7, 15] called the ‘simply-typed fine-

grained call-by-value _-calculus’ that distinguishes terms from val-

ues through the prefix construct return in [15], called val in [7]. It

is called cbv throughout [7], but since it differs significantly from

the original cbv _-calculus, in order to distinguish these we call it

the _-val calculus here. Reduction rules are not presented in [15];

to be able to show our results, we will define them below.

Definition 2.17 (The _-val calculus [7]). The terms of the _-val

calculus are defined using the grammar:

D, E ::= G | _G.B (values)

B, C ::= val E | BC (expressions)

For type assignment, we use the types and variants of the infer-

ence rules from Def. 1.2, adding a rule that deals with val:

(axiom) :
Γ, G :� ⊢ E G : �

(abstr) :
Γ, G :� ⊢ 4 B : �

Γ ⊢ E _G .B : �→�

(val) :
Γ ⊢ E E : �

Γ ⊢ 4 val E : �
(appl) :

Γ ⊢ 4 B : � →� Γ ⊢ 4 C : �

Γ ⊢ 4 BC : �

The name ‘Call by Value’ is used in [7] for this calculus although

it bears little resemblance to cbv-_: notice that rule (abstr) recog-
nises that an abstraction is a value, but it needs to be labelled with

the keyword val before it can be used in an application. Since it re-

defines the concept of cbv, there is little claim to be made that the

results of [7] deal with the relation between cbn, cbv, and cbpv.
When mapping _-val into cbpv, expressions are interpreted as

cbpv computations, so types should be interpreted as cbpv com-

putation types. Since the type syntax for cbpv is different, we need

an interpretation of the _-calculus types into cbpv types.

Definition 2.18 (Simulation of _-val in cbpv [7]). Terms of the

_-val calculus are translated into those for cbpv through ·:

G =

Δ G

_G.B =

Δ {_G.B}

val E =

Δ ret E

BC =

Δ G := B;~ := C ; G !~

Types are translated using Levy’s · (Def. 2.12):

i =

Δ i

�→� =

Δ
U (�→F�)

Notice that values are only allowed inside applications if pre-

ceded by the val keyword; this is the main difference between

_-val and the traditional cbv _-calculus, and is (we believe) mainly

added to facilitate an interpretation into cbpv. Moreover, the inter-

pretation maps values to values, and expressions to computations.

Forster et al. state a type preservation result in [7].Lemma 2.3,

which incorrectly restates the result shown in [13] as ‘If Γ ⊢ 4 B : � ,

then Γ ⊢c B : � and analogously for values’.13 Wecorrect and prove

the result here for our cbpv.

Lemma 2.19. If Γ ⊢ E E : � , then Γ ⊢v E : � , and if Γ ⊢ 4 B : � ,

then Γ ⊢c B : F� .

Proof. Simultaneously by induction on the definition of type as-

signment.

(axiom) : Then E ≡ G , and Γ = Γ
′, G :�; since E =

Δ G , and Γ =

Γ′, G :�, by rule (axiom) also Γ ⊢v E : � .

(abstr) : Then � = �→� , E ≡ _G.B , and Γ, G :� ⊢ 4 B : � ; since

Γ, G :� = Γ, G :�, by induction we have Γ, G :� ⊢c B : F� . We

can construct:

❈❈ ✄✄
Γ, G :� ⊢c B : F�

(abstr)
Γ ⊢c _G .B : �→F�

(thunk)
Γ ⊢v {_G .B} : U (�→F� )

Notice that _G.B =

Δ {_G.B} and � = U (�→F�).

(val) : Then B ≡ val E , and Γ ⊢ E E : � ; by induction, we have

Γ ⊢v E : � . Then, by rule (ret), Γ ⊢c ret E : F� .

13The proofs in Coq provided online for [7] seem to avoid this error.
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(appl) : Then B ≡ DE , and there exists � such that Γ ⊢ 4 D : �→�

and Γ ⊢ 4 E : � . Then, by induction, Γ ⊢c D : F�→� and

Γ ⊢c E : F� . Notice that �→� = U (�→F�), and DE =

Δ

G := D;~ := E ;G !~.We can construct (Γ′ = Γ, G :U (�→A), ~:�):

..

..

..

.

.

❈❈ ✄✄
Γ ⊢c D : FU (�→A)

❈❈ ✄✄
Γ, G :U (�→A) ⊢c E : F�

(axiom)
Γ
′ ⊢c G : U (�→F�)

(force)
Γ
′ ⊢c G ! : �→F�

(axiom)
Γ
′ ⊢c ~ : �

(appl)
Γ, G :U (�→A), ~:� ⊢c G !~ : F�

(seq)
Γ, G :U (�→A) ⊢c ~ := E; G !~ : F�

(seq)
Γ ⊢c G :=D; ~ := E; G !~ : F�

Reduction on _-val is not formally defined in [7], but following

common practice, we can assume it to be defined as follows.

Definition 2.20 (Reduction on _-val). Evaluation contexts for _-val

are defined through:

Cv ::= [ ] | CvC | (val E)Cv

Reduction→E on _-val is (rather awkwardly) defined through:

Cv ⌈(val _G.B) (val E)⌋ →E Cv ⌈B {E/G}⌋

and =E is the equivalence relation generated by→E .

Regardless of the missing formal definition, the authors claim

that their ‘translation is correct w.r.t. small-step semantics’ [7]. We

make the following observation:

Example 2.21. Consider the reduction

(val _0.val0) ((val _1.val1) (val _2.val 2)) →E

(val _0.val0) (val _2.val 2)

then under the interpretation we have the reduction:

(val _0.val 0) ((val _1.val1) (val _2.val 2)) →∗p ret {_G.ret G}

and

(val _0.val 0) (val _2.val 2) →∗p ret {_G.ret G}

As before, we can only show that if B →E C , then B =p C .

Notice that

(val _0.val 0) ((val _1.val1) (val _2.val 2)) →p/

(val _0.val 0) (val _2.val 2),

so single-step reduction is not preserved under the interpretation.14

As this example suggests, it would be possible to show that the

interpretation is correct with respect to large-step semantics. This

is of course a weaker property, since only terminating terms can

be equated then.

In [7] there is no real motivation given for the departure from

the pure _-calculus with cbv-reduction by adding the keyword val.
In fact, all results shown in [7] were already claimed in [15], but

using (an extension of) the pure _-calculus with cbv-reduction.
In particular, the problem of Thm. 2.11, that reduction is only re-

spected up to equality, is still there.

2.3 The simulation results for the Bang

calculus

Approaches similar to cbpv were later explored in [6], but from

the perspective of linear logic [9]; it presents the Bang calculus,

14It could of course be that our definition of reduction in Def. 2.20 is not the one the
authors of [7] intended, but that seems unlikely.

which corresponds to return/sequence-free cbpv, so is not based

on _ml. It uses the syntax:
15

+ ,, ::= G | {"} (values)

", # ::= + | _G." | "# | " ! (terms)

on which it defines (weak) reduction rules, corresponding to rules

(�) and (* ) of cbpv (see Def. 2.1), that are allowed to contract in

the (weak) evaluation contexts,

C ::= ⌈⌋ | _G.C | C# | "C | C! | {C}

W ::= ⌈⌋ | _G.W | W# | "W | W!

essentially permitting contracting of all redexes, but for those oc-

curring in thunked terms in weak contexts for weak reduction.

Thereby reduction in the Bang calculus allows for the evaluation

of operands until they become values, and mapping the cbv _-

calculus is rather straightforward. Moreover, since reduction is es-

sentially free, even allowed under abstractions, * -redexes can be

contracted anywhere, andmodelling cbn is straightforward aswell.

In particular, [6] presents encodings of both the cbn and cbv
_-calculus through:

Gcbn =

Δ G ! Gcbv =

Δ G

(_G.")cbn =

Δ _G."cbn (_G.")cbv =

Δ {_G."cbv}

("# )cbn =

Δ "cbn{# cbn} ("# )cbv =

Δ "cbv!# cbv

The mapping ·cbn corresponds to Levy’s (Def. 2.14), so suffers from

the same problem of explosion of syntax as Ex. 2.15. To achieve

the simulation results of [6] (see Prop. 2 there), reduction inside

thunked terms is explicitly allowed, which is not possible in cbpv.
As to the simulation ofcbv reduction in theBang calculus, terms

in function position are forced, and abstractions are thunked; no-

tice that ·cbv maps _-values to Bang values. Take a redex (_G.")#

and assume that # is not a value, then under cbv reduction, #

needs to be evaluated. Under ·cbv we have

((_G.")# )cbv =

Δ {_G."cbv}! # cbv→ (_G."cbv)# cbv

In theBang calculus, operands can be evaluated (towards a Bang-

value, which under ·cbv is a variable or thunked abstraction), so re-

duction of # cbv is possible. Since under ·cbv only abstractions are

thunked, to simulate _’s cbv reduction that stops at abstractions,

reduction in thunked terms is not needed, so can be weak.

So both simulation results for cbn and cbv reduction for the _-

calculus into the Bang calculus strongly depend on language fea-

tures that are not shared with cbpv. The simulation results we

focus on here are with respect to a calculus, like cbpv, where re-
duction of operands and inside thunked terms is, other than in the

Bang calculus, not allowed, and thereby less easily achieved. So

[6]’s results cannot be compared to those we study here. Moreover,

types are not used at all in [6].

3 THE CALCULUS OF DELAYED

REDUCTIONS

In this section we will define the Calculus of Delayed Reductions

(cdr), our variant of cbpv, for which it will be possible to define in-
terpretations of the cbn/cbv _-calculus that respect single-step re-

duction, by addressing a number of the issues wementioned above.

Themain thing defined differently will be that we will limit the use

15Adapted here to cbpv notation; using [6]’s would create too much confusion, since
it uses ! for thunking.
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of thunking and forcing, essentially only allowing for the forcing

of variables and thunking of unforced computations, together with

defining a notion of term-substitution " ⌈+/G⌋ on cdr-terms es-

sentially as normal, with the exception of the caseG ! ⌈{"}/G⌋ which

produces " rather than {"}!, effectively contracting the * -redex

that would be created ‘on the fly’ and thereby making that reduc-

tion rule obsolete. This is defined using pattern matching, and is

comparable to dropping the construct ret when contracting an � -

redex.

Definition 3.1 (cdr). (1) Terms of the Calculus of Delayed Re-

ductions (cdr) are:

+ ,, ::= G | {"} (" =/ G !)

", # ::= G ! | _G." | "+ | ret+ | G :=" ;#

(2) The operation of substitution " ⌈+/G⌋ on cdr-terms is the

compatible extension of:

G ⌈+/G⌋ = +

~ ⌈+/G⌋ = ~ (~ =/ G)

(G !) ⌈+/G⌋ =

{
I! (+ = I)

" (+ = {"})

(~!) ⌈+/G⌋ = ~! (~ =/ G)

(3) The basic reduction rules of cdr are defined using this sub-

stitution:
(�′) : (_G.")+ →d " ⌈+/G⌋

(� ′) : G := ret+ ;# →d # ⌈+/G⌋

The cdr-evaluation contexts are (as before) defined through:

C ::= ⌈ ⌋ | C+ | G := C;".

cdr-reduction is defined through:

" →d # ⇒ C ⌈"⌋ →d C ⌈# ⌋

whenever " → # through either rule (�′) or (� ′), where C is a

context. We use→d for this notion.

Notice the absence of rule (* ). Also, observe that only head-varia-

bles (that appear in computation position) of (sub)terms are forced,

and all other (unforced) occurrences of variables are values. As

with→p, reduction through→d is deterministic.

In [15], Levy states “What our categorical account will not pro-

vide is an alternative motivation for CBPV. We do not believe that

CBPV can be motivated from a purely categorical perspective, the

operational perspective is essential.” Given the strong relationship

between cbpv and cdr, this also applies to the latter.

Type assignment for this variant is inherited from cbpv, so is

defined using the rules of Def. 2.3.

Definition 3.2. Type assignment for cdr is defined through the

following inference system, using the cbpv types.

(axiom) :
Γ, G :� ⊢v G : �

(thunk) :
Γ ⊢c " : A

(∗)
Γ ⊢v {"} : U A

(abstr) :
Γ, G :� ⊢c " : B

Γ ⊢c _G ." : �→B
(appl) :

Γ ⊢c " : �→B Γ ⊢v + : �

Γ ⊢c "+ : B

(force) :
Γ, G :U A ⊢c G ! : A

(ret) :
Γ ⊢v + : �

Γ ⊢c ret+ : F�

(seq) :
Γ ⊢c " : F� Γ, G :� ⊢c # : B

Γ ⊢c G :=" ;# : B

∗ : " not a forced variable.

Notice that only rules (thunk) and (force) are different fromDef. 2.3.

Subject reduction follows easily.

Lemma 3.3. (1) If Γ, G :� ⊢v , : � and Γ ⊢v + : � , then Γ ⊢v
, ⌈+/G⌋ : � .

(2) If Γ, G :� ⊢c " : A and Γ ⊢v + : � , then Γ ⊢c " ⌈+/G⌋ : A .

Proof. By simultaneous induction on the definition of ‘· ⌈+/G⌋’.

Theorem 3.4. If Γ ⊢c " : A , and" →∗d # , then Γ ⊢c # : A .

Proof. By induction on the definition of reduction; we only show

the cases for single-step reduction.

(�′) : Then" ≡ (_G.%)+ and # ≡ % ⌈+/G⌋. Then by rules (appl)

and (abstr) there exists � such that Γ, G :� ⊢c % : A and

Γ ⊢v + : � . Then Γ ⊢c % ⌈+/G⌋ : A by Lem. 3.3.

(� ′) : Then " ≡ G := ret+ ; % and # ≡ % ⌈+/G⌋ . Then by rules

(seq) and (ret) there exists � such that Γ, G :� ⊢c % : A and

Γ ⊢v + : � . Then Γ ⊢c % ⌈+/G⌋ : A by Lem. 3.3.

% →d & ⇒ " ≡ %+ →d &+ ≡ # : Then there exists � such that

Γ ⊢c % : �→A and Γ ⊢v + : � . By induction we have

Γ ⊢c & : �→A , and the result follows by rule (appl).

% →d & ⇒ " ≡ G := % ;' →d G :=& ;' ≡ # : Then there exists�

such that Γ ⊢c % : F� and Γ, G :� ⊢c ' : A . By induction we

have Γ ⊢c & : F� ; the result follows by rule (seq).

We can also show that in principle the ck-machine implements

reduction in cdr, but need to change its definition first, adapting

it to the different notion of term substitution.

Definition 3.5 (ckd-machine). The reduction relation→d
ck on con-

figurations 〈" | (〉 with " ∈ cdr and ( a stack of cdr values, is

defined as→ck, changing the first and fourth case:

〈_G." |+ : (〉 → 〈" ⌈+/G⌋ |(〉

〈"+ |(〉 → 〈" |+ : (〉

〈G :=" ;# |(〉 → 〈" |G := [ ];# : (〉

〈ret+ |G := [ ];" : (〉 → 〈" ⌈+/G⌋ |(〉

We define =d
ck as the equivalence relation generated by→d

ck.

Notice that the rule 〈{"}! |(〉 → 〈" |(〉 has been omitted.

The interpretation result now becomes:

Theorem 3.6. If" →d # , then 〈" | (〉 =d
ck 〈# | (〉.

The proof is, but for the use of a different substitution, identical

to that of Thm. 2.7. Notice that, as for Thm. 2.7, we cannot show

that reduction is preserved by reduction.

As above, we now have that cdr-reduction is preserved by the

interpretation [[·]]dck .

Corollary 3.7. If" →∗d # , then [["]]dck =
d
ck [[# ]]

d
ck .

3.1 A cbv-interpretation of Λ in cdr

We will now define our cbv interpretation of pure _-terms into

cdr and show that it does respect single-step cbv-reduction.

Definition 3.8. The cbv interpretation V·U_v of _-terms into cdr
is defined through:

VGU_v =

Δ ret G

V_G."U_v =

Δ ret {_G.V"U_v }

VI#U_v =

Δ ~ := V# U_v ; I!~

V(_I.")# U_v =

Δ ~ := V# U_v ; (_I.V"U_v )~

V"#U_v =

Δ G := V"U_v ;~ := V# U_v ; G !~ (" not a value)
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Our cbv interpretation deals with terms basically the same way

as Levy’s (see Def. 2.9), but for the fact that we place the image of

the _-value+ in the interpretation of+ # directly, so without using

assignment; this is done using pattern matching, since + is either

a variable or an abstraction.

Using this interpretation, we can now show that cbv reduction

for the pure _-calculus is respected by the interpretation. First we

show that V·U_v respects substitution.

Lemma 3.9 (Substitution lemma for V·U_v ).

(1) V"U_v ⌈F/I⌋ = V" {F/I}U_v .

(2) V"U_v ⌈{_F.V'U_v }/I⌋ = V" {_F.'/I}U_v .

Proof. (1) By straightforward induction on substitution.

(2) By induction on substitution; we only show the base cases.

" ≡ I : VIU_v ⌈{_F.V'U_v}/I⌋ =

Δ (retI) ⌈{_F.V'U_v }/I⌋ =

ret {_F.V'U_v } =

Δ V_F.'U_v = VI {_F.'/I}U_v
" ≡ D and D =/ I : VDU_v ⌈{_F.V'U_v}/I⌋ =

Δ

(retD) ⌈{_F.V'U_v }/I⌋ = retD =

Δ VDU_v =

VD {_F.'/I}U_v

Using this lemma, we can now show:

Theorem 3.10. If" →v # , then V"U_v →
∗
d V# U_v .

Proof. (_G.")I →v " {I/G} : V(_G.")IU_v =

Δ

~ := ret I; (_G.V"U_v )~→d (_G.V"U_v )I →d

V"U_v ⌈I/G⌋ = (3.9) V" {I/G}U_v
(_G.") (_I.') →v " {_I.'/G} : V(_G.") (_I.')U_v =

Δ

~ := V_I.'U_v ; (_G.V"U_v )~ =

Δ

~ := ret {_I.V'U_v}; (_G.V"U_v )~→d

(_G.V"U_v ) {_I.V'U_v} →d

V"U_v ⌈{_I.V'U_v}/G⌋ = (3.9) V" {_I.'/G}U_v
" →v I ⇒ "% →v I% : V"%U_v =

Δ

G := V"U_v ;~ := V%U_v ; G !~ →∗d (IH)

G := VIU_v ;~ := V%U_v ; G !~ =

Δ

G := ret I;~ := V%U_v ; G !~ →d

~ := V%U_v ; I!~ =

Δ VI%U_v
" →v _I.# ⇒ "% →v (_I.# )% : V"%U_v =

Δ

G := V"U_v ;~ := V%U_v ; G !~ →∗d (IH)

G := V_I.#U_v ;~ := V%U_v ; G !~ =

Δ

G := ret {_I.V# U_v};~ := V%U_v ; G !~ →d

~ := V%U_v ; (_I.V# U_v )~ =

Δ V(_I.# )%U_v
The other cases follow by induction.

Notice that this result was shown for reduction in cdr, in con-

trast to Thm. 2.11 which was shown for equality in cbpv.
We can also show that type assignment for the pure _-calculus

is respected by the interpretations V·U_v and ·.

Theorem 3.11. If Γ ⊢_ " : � , then Γ ⊢c V"U_v : F� .

Proof. By induction on definition of ⊢_ .

(Ax) : Then " ≡ G , and Γ = Γ
′, G :�, and Γ =

Δ
Γ′, G :�. We can

construct Γ ⊢c retG : F� using (ret) and (axiom). Notice

that G =

Δ retG .

(→I) : Then � = �→� , " ≡ _G.# , and Γ, G :� ⊢_ # : � ; since

Γ, G :� =

Δ
Γ, G :�, by induction we have Γ, G :� ⊢c V# U_v :

F� . We can construct Γ ⊢c ret {_G.V# U_v} : FU (�→ F�)

using (ret), (thunk), and (abstr). Notice that V_G.# U_v =

Δ

ret {_G.V# U_v} and � =

Δ
U (�→ F�).

(→E) : Then " ≡ %& , and there exists � such that Γ ⊢_ % :

�→� and Γ ⊢_ & : � . Then, by induction, Γ ⊢c V%U_v :

F�→� and Γ ⊢c V&U_v : F� . Notice that�→� =

Δ
U (�→ F�).

We have three cases to consider:

% ≡ I : From Γ ⊢c VIU_v : F�→� =

Δ
Γ ⊢c retI : FU (�→ F�)

we know that I : U (�→ F�) ∈ Γ, so we can construct

Γ ⊢c ~ := V&U_v ; I~ : F� using (seq), (appl), (force), and

(axiom). Notice that VI&U_v =

Δ ~ := V&U_v ; I!~.

% ≡ _I.' : From Γ ⊢c V%U_v : F�→� =

Δ
Γ ⊢c ret {_I.V'U_v} :

FU (�→ F�) , which is shaped like:

❈❈ ✄✄
Γ ⊢c _I.V'U_

v : �→F�
(thunk)

Γ ⊢v {_I.V'U_

v } : U (�→F�)
(ret)

Γ ⊢c ret {_I.V'U_

v } : FU (�→F�)

we know that in a subderivation Γ ⊢c _I.V'U_v : �→ F�

is shown, with which we can construct

Γ ⊢c ~ := V&U_v ; (_I.V'U_v )~ : F�,

using (seq), (appl), and (axiom). Notice thatV(_I.')&U_v =

Δ

~ := V&U_v ; (_I.V'U_v )~.
Otherwise :We can construct

Γ ⊢c G := V%U_v ;~ := V&U_v ; G !~ : F�,

using (seq), (appl), (force), and (axiom). Notice thatV%&U_v
=

Δ G := V%U_v ;~ := V&U_v ; G !~.

3.2 A cbn-interpretation of Λ in cdr

We can achieve a stronger result for cbn-reduction as well, as we

will now show; this is where the new substitution comes into play.

First we modify the interpretation of Def. 2.14 to fit cdr.

Definition 3.12. The cbn interpretation V·U_n of _-terms into

cdr is defined through:

VGU_n = G !

V_G."U_n = _G.V"U_n
V"GU_n = V"U_nG

V"# U_n = V"U_n {V# U_n} (# not a variable)

Notice that this corresponds to Levy’s cbn-interpretation in

Def. 2.14, but for the fact that only head-variables (that appear in

computation position) are forced; in the application case we avoid

to define V"GU_n = [["]]_n{G !}, but directly write V"U_nG , and that
we do not add unnecessary occurrences of {·}!. This interpretation

respects the term substitutions:

Lemma 3.13 (Substitution lemma for V·U_n ).

(1) V"U_n ⌈F/I⌋ = V" {F/I}U_n .

(2) V"U_n ⌈{V# U_n}/G⌋ = V" {#/G}U_n , if # is not a variable.

Proof. (1) By straightforward induction on the definition of · ⌈ · / ·⌋.

(2) By induction on the definition of · ⌈ · / ·⌋; we only show the

base cases.

" ≡ I : VIU_n ⌈{V# U_n}/I⌋ = I! ⌈{V# U_n}/I⌋ = V# U_n =

VI {#/I}U_n
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" ≡ D and D =/ I : VDU_n ⌈{V# U_n}/I⌋ = (D!) ⌈{V# U_n}/I⌋ =

D! = VDU_n = VD {#/I}U_n

With this result we can now show that the interpretation re-

spects cbn-reduction.

Theorem 3.14. If" →n # , then V"U_n →
∗
d V# U_n .

Proof. (_G.")~ →n " {~/G} :V(_G.")~U_n =

Δ (_G.V"U_n )~→d

V"U_n ⌈~/G⌋ = (3.13) V" {~/G}U_n
(_G.")# →n " {#/G}, # not a variable :V(_G.")#U_n =

Δ

(_G.V"U_n ){V# U_n} →d V"U_n ⌈{V# U_n}/G⌋ = (3.13)

V" {#/G}U_n
" →n # ⇒ "G →n #G : V"GU_n =

Δ V"U_nG →
∗
d (IH)

V# U_nG =

Δ V#GU_n
" →n # ⇒ "% →n # % , with % not a variable : V"%U_n =

Δ

V"U_n {V%U_n} →
∗
d (IH) V# U_n{V%U_n} =

Δ V#%U_n

For the preservation of type assignment under V·U_n , we need

first to map the types for Curry’s system to those for cbpv, in a

way befitting the interpretation; for this we can use Levy’s cbn-
type interpretation directly.

Definition 3.15 (Simple type interpretation [15]). The type inter-

pretation ‘·’ is defined as:

i = Fi

�→� = U�→ �

and the environment interpretation as: Γ = { G :U� | G :� ∈ Γ }.

We can now show that the cbn-interpretation preserves type

assignment.

Theorem 3.16. If Γ ⊢_ " : � , then Γ ⊢c V"U_n : � .

Proof. By induction on the structure of derivations.

(Ax) : Then" ≡ G , and G :�∈Γ. Then G :U�∈ Γ and we can derive

Γ ⊢c G ! : � using (force), and VGU_n =

Δ G !.

(→I) : Then " ≡ _G.# , � = �→� , and Γ, G :� ⊢_ # : � . By in-

duction, we get Γ, G :U� ⊢c V# U_n : � , and we can construct

Γ ⊢c _G.V# U_n : U�→� using (abstr), and V_G.# U_n =

Δ

_G.V# U_n and �→� = U�→� .

(→E) : Then " ≡ %& , and there exists � such that Γ ⊢_ % :

�→� and Γ ⊢_ & : � . By induction, we get Γ ⊢c V%U_n :

�→� ; also, �→� = U�→�. We have two cases:

& ≡ G : Then G :� ∈ Γ and G :U� ∈ Γ, and we can construct Γ ⊢c
V%U_nG : � using (appl) and (Ax), and V%GU_n =

Δ V%U_nG .

& =/ G : By induction, we have Γ ⊢c V&U_n : � , and can con-

struct Γ ⊢c V%U_n {V&U_n} : � using (appl) and (thunk),

and V%&U_n =

Δ V%U_n {V&U_n}.

4 THE CALCULUS _` ˜̀

We will now give a short summary of Curien and Herbelin’s cal-

culus _` ˜̀ [3]. In its typed version, _` ˜̀ is a proof-term syntax for

a classical sequent calculus that treats a logic with focus, and can

be seen as an extension of Parigot’s _` and a variant of Gentzen’s

lk. As in _` , for _` ˜̀ there are two sets of variables: G,~, I, etc., la-

bel the types of the hypotheses and U, V,W , etc., label the types of

the conclusions. The syntax of _` ˜̀ has three different categories:

commands, terms, and environments. Commands 2 form the com-

putational units in _` ˜̀ and are composed of a pair 〈C | 4〉 of a term

C and its environment 4 that can interact.

Definition 4.1 (Commands, Terms, and Environments [3]). Using

an infinite countable set of term variables { G,~, I, . . . } and an infi-

nite countable set of environment variables { U, V,W, . . . }, the three

categories of expressions in _` ˜̀ are defined by:

2 ::= 〈C | 4〉 (commands)

C ::= G | _G.C | `V.2 (terms)

4 ::= U | C · 4 | ˜̀G.2 (environments)

With conventional notations about environments (i.e. seeing en-

vironments as terms with a hole), C · 4 can be thought of as 4 [[ ] C],

and the environment C1 ·( · · · (C= ·U) · · ·) (we can omit these brack-

ets and write C1 · · · C= ·U) as a stack; `U.2 is inherited from _` , as

is 〈C | U〉 which corresponds to _`’s naming construct [U]C , giving

name U to the implicit output name of C ; the construct ˜̀G.2 can be

thought of as let G = [ ] in 2 .

Reduction in _` ˜̀ is dual, in that both parameter call and envi-

ronment call are represented: parameter call through the environ-

ment ˜̀G.2 that can pull the corresponding term in to the places

marked by G , and environment call through the term `U.2 that

places the corresponding environment in the places marked by U .

Definition 4.2 (Reduction in _` ˜̀ [3, 11]). Let 2 {4/V} stand for the

implicit substitution of the free occurrences of the environment

variable V by the environment 4 , and 2 {C/G} for that of G by the

term C . The reduction rules are defined by:

logical rules

(_) : 〈_G.C1 | C2·4〉 → 〈C2 | ˜̀G.〈C1 | 4〉〉

(`) : 〈`V.2 | 4〉 → 2 {4/V}

( ˜̀) : 〈C | ˜̀G.2〉 → 2 {C/G}

extensional rules

([) : _G.`V.〈C | G ·V〉 → C (G, V ∈/ fv (C))

([`) : `U.〈C | U〉 → C (U ∈/ fv (C))

([ ˜̀) : ˜̀G.〈G | 4〉 → 4 (G ∈/ fv (4))

contextual rules

C → C ′ ⇒




〈C | 4〉 → 〈C ′ | 4〉

_G.C→ _G.C ′

C ·4→ C ′ ·4

4→ 4′ ⇒

{
〈C | 4〉 → 〈C | 4′〉

C ·4→ C ·4′

2→ 2′ ⇒

{
`V.2→ `V.2′

˜̀G.2→ ˜̀G.2′

We use→
_
for this notion of reduction and =

_
for the induced

equality.

(Implicative) Typing for _` ˜̀ is defined by:

Definition 4.3 (Typing for _` ˜̀ [3]). Using Curry types (Defini-

tion 1.2), type assignment is defined via the rules:

(cut) :
Γ ⊢ C :� | Δ Γ | 4 :� ⊢ Δ

〈C | 4 〉 : Γ ⊢ Δ
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(`) :
2 : Γ ⊢ U :�, Δ

Γ ⊢ `U .2 :� | Δ
( ˜̀) :

2 : Γ, G :� ⊢ Δ

Γ | ˜̀G .2 :� ⊢ Δ

(AxR) :
Γ, G :� ⊢ G :� | Δ

(AxL) :
Γ | U :� ⊢ U :�, Δ

(→R) :
Γ, G :� ⊢ C : � | Δ

Γ ⊢ _G .C :�→� | Δ
(→L) :

Γ ⊢ C :� | Δ Γ | 4 : � ⊢ Δ

Γ | C · 4 :�→� ⊢ Δ

We write 2 : Γ ⊢ Δ , Γ ⊢ C : � | Δ , and Γ | 4 : � ⊢ Δ if there exists

a derivation built using these rules that has this judgement in the

bottom line.

In [3] the cbv sub-reduction is not defined as a strategy but is

obtained by forbidding a ˜̀-reduction when the command is also

a `-redex, whereas the cbn sub-reduction forbids a `-reduction

when the redex is also a ˜̀-redex; there is no other restriction de-

fined in [3, 11] in terms of not permitting certain contextual rules

in the definition of cbv and cbn. Since we want cbn and cbv to

be reduction strategies in the sense that each term has at most one

contractable cut, we will give a more detailed definition here.

Definition 4.4 (cbv and cbn reduction for _` ˜̀).

(1) Values + are defined by + ::= G | _G.C , and stacks16 � are

defined by � ::= U | C · 4 .

(2) cbn-reduction →n
p is defined by limiting rule (`) and re-

stricting the contextual rules:

(_) : 〈_G.C1 | C2·4〉 → 〈C2 | ˜̀G.〈C1 | 4〉〉

(`=) : 〈`V.2 | �〉 → 2 {�/V}

( ˜̀) : 〈C | ˜̀G.2〉 → 2 {C/G}

([`) : `U.〈C | U〉 → C (U ∈/ fv (C))

C → C ′ ⇒ 〈C | 4〉 → 〈C ′ | 4〉

2→ 2′ ⇒ `V.2→ `V.2′

(3) cbv-reduction →v
p is defined by limiting rule ( ˜̀) and re-

stricting the contextual rules:

(_) : 〈_G.C1 | C2·4〉 → 〈C2 | ˜̀G.〈C1 | 4〉〉

(`) : 〈`V.2 | 4〉 → 2 {4/V}

( ˜̀E) : 〈+ | ˜̀G.2〉 → 2 {+/G}

([`) : `U.〈C | U〉 → C (U ∈/ fv (C))

C → C ′ ⇒ 〈C | 4〉 → 〈C ′ | 4〉

2→ 2′ ⇒ `V.2→ `V.2′

Notice that both notions do not permit reduction in environ-

ments, are defined by eliminating the same contextual reduction

rules, and only differ in rules (`) and ( ˜̀).

5 MAPPING CDR TO _` ˜̀

In this section we will show that we can interpret cdr into the

_` ˜̀-calculus and simulate it via the _` ˜̀ cbn reduction rules.

Definition 5.1 (Direct interpretation). The interpretation J·Kd of

cdr values and computations into _` ˜̀-terms is defined as:

J~ Kd = ~

J{"}Kd = J" Kd

JG ! Kd = G

J_G." Kd = _G.J" Kd

J"+ Kd = `U.〈J" Kd | J+ Kd ·U〉

Jret+ Kd = J+ Kd

JG :=" ;# Kd = `U.〈J" Kd | dG.〈J# Kd | U〉〉

16In [11], stacks are called linear evaluation contexts.

Notice that this interpretation does without forcing, thunking,

and return, but just simply puts all the sub-terms that are not com-

putations on the stack; since nothing will be allowed to run on the

stack in cbn reduction, computation there is halted automatically.

Since in cdr thunked terms can only appear as arguments in an

application, by the interpretation these are all placed on the stack

in the _` ˜̀-term, where under cbn reduction is not permitted, so

no syntactic marker is necessary to block computation.

At themoment it is unclear if this encoding can be extended into

one for cbpv: to model the reduction rule (* ), it seems necessary

to extend _` ˜̀ syntactically as well with features that represent

thunking and forcing.

Lemma 5.2. J" ⌈+/G⌋ Kd = J" Kd{J+ Kd/G}.

Proof. Straightforward by induction on · ⌈+/G⌋.

Using this result, we can show that reduction in cdr is pre-

served by cbn reduction in _` ˜̀ under the interpretation J·Kd.

Theorem 5.3. If" →d # , then J" Kd →n∗

_
J# Kd.

Proof. By induction on the definition of→d.

(_G.")+ →" ⌈+/G⌋ : J(_G.")+ Kd =

Δ

`U.〈_G.J" Kd | J+ Kd ·U〉 →n
p (_)

`U.〈J+ Kd | ˜̀G.〈J" Kd | U〉〉 →n
p ( ˜̀)

`U.〈J" Kd {J+ Kd/G} | U〉 →n
p ([`)

J" Kd {J+ Kd/G} = (5.2) J" ⌈+/G⌋ Kd

G := ret+ ;# → # ⌈+/G⌋ : JG := ret+ ;# Kd =

Δ

`U.〈J+ Kd | ˜̀G.〈J# Kd | U〉〉 →n
p ( ˜̀)

`U.〈J# Kd{J+ Kd/G} | U〉 →n
p ([`)

J# Kd{J+ Kd/G} = (5.2) J# ⌈+/G⌋ Kd

The other cases follow by induction.

Notice the use of cbn reduction: this stresses again that reduc-

tion in cdr (and in cbpv) is essentially cbn; since all redexes are
unique and reduction is deterministic, we have:

Theorem 5.4 (Full abstraction). If J" Kd →n∗

_
& , then there

exists # ∈ cdr such that " →d # , and & →n∗

_
J# Kd.

This result shows that _` ˜̀ is an ideal calculus to implement cdr.
Using the ‘inverse’ of the type interpretation from Def. 3.15, we

can also show that type assignment is preserved under the inter-

pretations.

Definition 5.5. The type interpretation J·Kd is defined as:

Ji Kd = i

JUAKd = JAKd
J�→BKd = J�Kd→ JBKd

JF�Kd = J�Kd

and the environment interpretation as: JΓ Kd = { G :J�Kd | G :� ∈ Γ }.

We can now show that _` ˜̀ is suited to not just model the kind

of reduction of cbpv, but also its type assignment.

Theorem 5.6. (1) If Γ ⊢v + : � , then JΓ Kd ⊢ J+ Kd : J�Kd | .
(2) If Γ ⊢c " : A , then JΓ Kd ⊢ J" Kd : JAKd | .

Proof. By induction on definition of type assignment forcdr terms.

(axiom) : Then+ ≡ G , and Γ = Γ
′, G :�; since JG Kd =

Δ G , and JΓ Kd =

JΓ′ Kd, G :J�Kd, by rule (AxR) also JΓ Kd ⊢ JE Kd : J�Kd | .
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(thunk) : Then � = UA, " ≡ {# }, and Γ ⊢c # : A ; by induction

we have JΓ Kd ⊢ J# Kd : JAKd | . Notice that JUAKd = JAKd

and J{# }Kd = J# Kd.
(abstr) : Then A = �→C, " ≡ _G.# , and Γ, G :� ⊢c # : C ; since

JΓ, G :� Kd = JΓ Kd, G :J� Kd, by inductionwe have JΓ Kd, G :J� Kd ⊢
J# Kd : JCKd | . We can construct:

❈❈ ✄✄
JΓKd, G :J� Kd ⊢ J# Kd : JCKd |

(→R)
JΓKd ⊢ _G .J# Kd : J� Kd→JCKd |

Notice that J_G." Kd =

Δ _G.J# Kd and JAKd = J� Kd→ JCKd.
(appl) : Then " ≡ #+ , and there exists � such that Γ ⊢c D :

�→A and Γ ⊢v E : � . Then, by induction, JΓ Kd ⊢ J# Kd :

J�→AKd | and JΓ Kd ⊢ J+ Kd :J� Kd | . We can construct (with

Γ
′
= JΓ Kd, G :U (�→A), ~:�):

❈❈ ✄✄
JΓKd ⊢ J# Kd : J�→AKd |

(W)
JΓKd ⊢ J# Kd : J�→AKd | U :JAKd

❈❈ ✄✄
JΓKd ⊢ J+ Kd : J� Kd |

(W)
JΓKd ⊢ J+ Kd : J� Kd | U :JAKd

(AxL)
JΓKd | U : JAKd ⊢ U :JAKd

(→L)
JΓKd | J+ Kd · U : J�→AKd ⊢ U :JAKd

..

..

..

(cut)
〈J" Kd | J+ Kd · U 〉 : JΓKd ⊢ U :JAKd

(` )
JΓKd ⊢ `U . 〈J# Kd | J+ Kd · U 〉 : JAKd |

Notice that J#+ Kd =

Δ `U.〈J# Kd | J+ Kd ·U〉 and J�→AKd =

J� Kd→ JAKd so the step (→L) is justified.

(force) : Then" = G !, and Γ ⊢v G : U A; notice that JG ! Kd = G and

JUAKd = J�Kd. Then G :UA∈Γ, so G :J�Kd ∈JΓ Kd, and by rule
(AxR) also JΓ Kd ⊢ JG Kd : J�Kd | .

(ret) : Then A = F�, " = ret+ , and Γ ⊢v + : � ; notice that

Jret+ Kd = J+ Kd and JF�Kd = J�Kd. Then by induction

JΓ Kd ⊢ J+ Kd : J�Kd | .
(seq) : Then " = G := % ;& , and there exists G and � such that

both Γ ⊢c % : F� and Γ, G :� ⊢c & : A . Then, by induction,

we have JΓ Kd ⊢ J% Kd :JF� Kd | and JΓ, G :� Kd ⊢ J& Kd :JAKd | .
Notice that JΓ, G :� Kd =

Δ JΓ Kd, G :J� Kd, JF� Kd ==

Δ J� Kd, and
JAKd ==

Δ J�Kd.

❈❈ ✄✄
JΓKd ⊢ J% Kd : J� Kd |

(W)
JΓKd ⊢ J% Kd : J� Kd | U :JAKd

❈❈ ✄✄
JΓKd, G :J� Kd ⊢ J& Kd : JAKd |

(W)
JΓKd, G :J� Kd ⊢ J& Kd : JAKd | U :JAKd

(AxL)
JΓKd, G :J� Kd | U : JAKd ⊢ U :JAKd

.

..

.

..

..

(cut)
〈J& Kd | U 〉 : JΓKd, G :J� Kd ⊢ U :JAKd

( ˜̀ )
JΓKd | ˜̀G .〈J& Kd | U 〉 : J� Kd ⊢ U :JAKd

(cut)
〈J% Kd | ˜̀G .〈J& Kd | U 〉 〉 : JΓKd ⊢ U :JAKd

(` )
JΓKd ⊢ `U . 〈J% Kd | dG .〈J& Kd | U 〉 〉 : JAKd |

and JG := % ;& Kd =

Δ `U.〈J% Kd | dG.〈J& Kd | U〉〉.

We can also show that reduction in ckd is respected by reduc-

tion in _` ˜̀.

Definition 5.7. The interpretation of evaluation stacks and con-

figurations in ckd into _` ˜̀ is defined through:

[[n]]dckU = U

[[+ : (]]dckU = J+ Kd · [[(]]dckU

[[G := [ ];# : (]]dckU = ˜̀G.〈J# Kd | [[(]]dckU〉

[[〈"+ | (〉]]dck = `U.〈J" Kd | J+ Kd · [[(]]dckU〉

[[〈G :=" ;# | (〉]]dck = `U.〈J" Kd | ˜̀G.〈J# Kd | [[(]]ckU 〉〉

[[〈" | (〉]]dck = `U.〈J" Kd | [[(]]dckU 〉 (otherwise)

It was this similarity between stacks in ck and _` ˜̀ that was the

inspiration for this paper.

We can now show that this interpretation respects→d
ck-reduc-

tions.

Theorem 5.8. If 〈" | (〉 →d
ck 〈# | (〉, then [[〈" | (〉]]

d
ck →

n∗

_
[[〈# | (〉]]dck .

Proof. 〈_G." |+ : (〉 →d
ck 〈" ⌈+/G⌋ | (〉 : [[〈_G." |+ : (〉]]dck =

Δ

`U.〈_G.J" Kd | J+ Kd · [[(]]dckU〉 →n
p

`U.〈J+ Kd | ˜̀G.〈J" Kd | [[(]]dckU〉〉 →
n
p

`U.〈J" Kd {J+ Kd/G} | [[(]]dckU〉 = (5.2)

`U.〈J" ⌈+/G⌋ Kd | [[(]]dckU〉 =

Δ [[〈" ⌈+/G⌋ | (〉]]dck
〈"+ | (〉 →d

ck 〈" |+ : (〉 : [[〈"+ | (〉]]dck =

Δ

`U.〈J" Kd | J+ Kd · [[(]]dckU〉 =
Δ [[〈" |+ : (〉]]dck

〈G :=" ;# | (〉 →d
ck 〈" | G := [ ];# : (〉 : [[〈G :=" ;# | (〉]]dck =

Δ

`U.〈J" Kd | ˜̀G.〈J# Kd | [[(]]dckU〉〉 =
Δ

`U.〈J" Kd | [[G := [ ];# : (]]dckU〉 =

Δ

[[〈" | G := [ ];# : (〉]]dck
〈ret+ | G := [ ];" : (〉 →d

ck 〈" ⌈+/G⌋ | (〉 :

[[〈ret+ | G := [ ];" : (〉]]dck =

Δ

`U.〈J+ Kd | ˜̀G.〈J" Kd | [[(]]dckU〉〉 →
n
p

`U.〈J" Kd{J+ Kd/G} | [[(]]dckU〉 =

Δ (5.2)

[[〈" ⌈+/G⌋ | (〉]]dck
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CONCLUSION AND FUTUREWORK

We have shown that in order to represent cbn or cbv reduction

of the _-calculus in cbpv, it is necessary to change the way term

substitution is defined. This is done in cdr, which we defined here;
since now we never create forcing of thunked terms, also the un-

block reduction rule is removed.

For this restricted version of cbpv we have shown that we can

fully represent single step cbn or cbv reduction of the _-calculus,

as well as preserve typeability. Moreover, we have defined a map-

ping of cdr into Curien and Herbelin’s _` ˜̀, and showed that re-

duction in cdr can be successfully modeled in the cbn partition

of _` ˜̀, as well as that typeability is preserved.

In future work, we will investigate the role of ret ·, as well as

define a notion of type assignment for _` ˜̀ using cbpv types that

can better express the relation between cdr and _` ˜̀. We will also

look at the role of the assignment term G :=" ;# , and see if it could

be used to define cbv reduction for cbpv.
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