
A Calculus of Delayed Reductions

Steffen van Bakel, Emma Tye, and Nicholas Wu

Department of Computing, Imperial College London, 180 Queen’s Gate, London SW7 2BZ, UK

Abstract

We introduce the Calculus of Delayed Reduction (cdr), that expresses that redexes can only
be contracted when brought to the right position in a term, and will show that Call by Name
or Value (cbn, cbv) reduction for the λ-calculus can be modelled through reduction in cdr,
and that the cbn fragment of the λµµ̃-calculus can model reduction in cdr. cdr is a Call by
Push Value calculus (cbpv) in that it separates terms in computations and values, with their
corresponding types. Some simulation results were already achieved by others for cbpv, but
only up to equality for cbv; for cbn the results are rather weak.
In order to achieve a single-step reduction respecting mapping for the cbn λ-calculus, we
allow forcing only for variables, thunking only for computations that are not forced vari-
ables, and change the nature of term substitution, and abolish the U-reduction rule. We will
show that, by changing the standard interpretation, we can achieve a reduction respecting
mapping for the cbv λ-calculus as well. Moreover, these changes make it possible to estab-
lish a strong relation between cdr and λµµ̃, allowing to simulate cdr reduction in λµµ̃, and
preserving assignable types.

keywords: Call by Name, Call by Value, Semantics, Small step reduction, Type assignment,

Soundness.

Introduction

Both the ‘call by name’ (cbn) and ‘call by value’ (cbv) [19] reduction strategies of the λ-calculus

[5, 2] are important paradigms in theory as well as in practice of computer science. The first is

based on the concept that the execution of function application (the contraction of a β-redex)

takes places ‘as is’, without consideration of the computational status of the argument. The

second is similar, but the main distinction is that it forces the evaluation of the argument to a

value before the redex under consideration gets contracted. cbn-reduction is normalising, so

will lead to a cbn-normal form, if it exists. The main advantage of cbv is that, since an argu-

ment is evaluated before being substituted, unnecessary duplication of reduction is avoided,

but at the price that this strategy is not normalising, so cbv-reduction does not necessarily

lead to a normal form.

These two reduction strategies differ significantly in semantics and for example do not share

all normal forms; it is an interesting question if a simple calculus can be found1 in which both

can be modelled coherently, preserving typeability, assignable types, denotational semantics,

etc.

In [14, 16] Levy proposed the Call by Push Value (cbpv) calculus as answer to this question,

as a subsuming paradigm for the cbn and cbv paradigms of the λ-calculus. Departing from

earlier work by Moggi [17], Levy defines a calculus that distinguishes values from computa-

tions, not only syntactically, but also through assignable types. It introduces the concepts of

thunking {·} (blocking a computation, turning it into a value) and forcing ·! (used to unblock a

thunked computation).

1 Of course, both can be mapped into the λ-calculus itself.

1

An important characteristic of cbpv is that it is presented with a deterministic reduction

relation, that can be thought of as encoded in the term itself, as reduction might be seen as be-

ing blocked and activated through additional syntax;2 this strategy only allows some redexes

occurring in terms to be contracted, and as will be argued in this paper, this basically follows

a cbn-strategy. In particular, reduction in cbpv is not allowed for operands, i.e. in the right

hand terms of applications; this implies that modelling cbv reduction is not straightforward,

since that explicitly asks for the evaluation of operands. Levy defines cbn and cbv interpre-

tations of the pure λ-calculus; as is usual, since their reduction relation is different, the cbn

and cbv reduction strategies of the λ-calculus are interpreted differently into cbpv. He states

preservation results for both reduction strategies; that this can be achieved in cbpv is rather

remarkable, given that its reduction system is cbn in nature.

Approaches similar to cbpv were later explored in [7]; that paper presents the Bang cal-

culus, which syntax can be mapped to that of cbpv, but allows for reduction to take place

in all sub-terms, not just the computations, so representation of reductions of the cbn/cbv

λ-calculus is not really an issue.

However, although defined exactly for this purpose, Levy’s interpretations fall short in

that they do not fully preserve the operational and denotational semantics. Under the cbv

interpretation, only equality is preserved; the cbn interpretation is not a function, so the

notion of semantics is very loose. For the latter, this is caused by a ‘growth’ of {·}! constructs

created by reduction; under reduction, (x!){{M}/x} creates {M}!, also inside values where

these cannot be contracted (see Ex. 2.17). As we will see through the proofs we supply for

these properties in Sect. 2.1, these difficulties cannot be overcome in cbpv, so cbv and cbn

reduction for the λ-calculus cannot be represented through reduction in cbpv.

So the question remains: is it possible to define a cbpv-like calculus in which we can

faithfully represent cbv and cbn reduction for the λ-calculus? In this paper, we will answer

this question positively, modifying cbpv slightly.

However, before coming to that, we need to address a discrepancy between the λ-calculus

and cbpv. The discourse of Levy’s papers on cbpv is that of terms, types and semantics, pre-

sented, as is perhaps more common in the context of programming languages, as derivations

(called terms by Levy) for statements of the shape Γ ⊢ M : A; this means not only that terms

are intrinsically typed, but also that terms and types cannot be separated, and reduction is in

fact cut-elimination. Moreover, this way all terms are considered to be typeable, limiting the

calculus and results. For the λ-calculus, it is more common to define terms and type assign-

ment separately (so decidability of the latter becomes an issue), and reduction is a relation on

(pure) terms, not depending on typeability.

It is perhaps surprising that Levy [16] nonetheless treats the witnesses of the derivations as

terms separately, without mentioning their type; for example, large-step semantics is defined

on terms only, ignoring that equality between terms can only soundly be defined in a type:

rather than M ⇓ N, as used by Levy, one should use M ⇓B N, so demand that there exists a

Γ such that both Γ ⊢ M : B and Γ ⊢ N : B, and that the corresponding derivations for these

judgements are related through cut elimination. Also, the notion [V/x] as used in the defini-

tion of ⇓ in [16] should be defined on derivations (as in (Γ, x:A ⊢c M : B [(Γ ⊢v V : A)/x:A] or

something similar), demanding that the type for V and x correspond. Fig. 6 of [16] defines an

operational semantics through the abstract machine ck (see Def. 2.8), discarding the types and

the necessity to define ck on type derivations as well. This leads to ambiguity and cannot be

ignored.

2 This is not true in reality, since the reduction steps do not check for the presence of this additional syntax, and
reduction is actually, as always, controlled by evaluation contexts, that specify where redexes can be contracted.
As can be seen in Def.. 2.2, for cbpv those are defined without even using thunking or forcing. In fact, these added
constructs mainly aid type assignment.

2

In this paper we close this gap by extracting a pure, type-free term calculus, called cbpv as

well, out of Levy’s definition [14, 16], engineer a single-step reduction relation on those terms

from the large-step semantics defined there, and define type assignment separately. Thereby

it will be easier to link the λ-calculus and cbpv, without ignoring any aspect of terms. As

a consequence, we can now deal with cbpv terms that are untypeable, like λx.x! x, or non-

terminating, like (λx.x! x){λx.x! x}. In order to correctly represent the cbn/cbv λ-calculus,

we will define a calculus of delayed reductions (cdr) as a variant of our cbpv, where we ba-

sically exclude terms of the shape {M}!, changing not only the syntax of terms, but also term-

substitution. To validate our variant of cbpv, using this minor change, we will show that now

it is possible to define interpretations of the cbn and the cbv-λ-calculus into cdr, and show

that (single step) reduction is respected by (multistep) reduction, in Sect. 3.1 and 3.2, respec-

tively, something which was not achieved for cbpv. For cbn this is achieved through changing

the substitution, as explained above; for cbv, we enhance Levy’s interpretation, which is not

fine-grained enough for our purpose, returning y := JNKλ
v; Jλx.MKλ

v y for J(λx.M)NKλ
v, rather

than x := Jλx.MKλ
v; y := JNKλ

v; x!y as does Levy.

[8] presents cbpv as a pure term calculus with type assignment, as we do here, but in that

paper the discrepancy we indicated above is not mentioned. Forster et al. [8] basically repeat

Levy’s results by using Levy’s definitions (so do not modify term substitution) and show that

the interpretations are “correct w.r.t. small-step semantics, and using eager lets to eliminate

administrative redices [sic]” [8]. Thereby their results do not corresponds to ours; the same

observations on the shortcomings of Levy’s representation results we made above hold for [8]

as well; in fact, it is even difficult to compare [8]’s results with our own, given the differences

in the cbn/cbv calculi that get interpreted into cbpv.

cbpv is not the only calculus that achieves the embodiment of the duality of cbn and

cbv. Herbelin and Curien [11, 4] defined the calculus λµµ̃ that represents proofs and cut-

elimination of a variant Gentzen’s Sequent Calculus for Classical Logic [9] with focus, which

can be seen as a generalisation and extension of Parigot’s λµ-calculus [18], and has been

shown to represent an abstract machine which models both these paradigms successfully. In

particular, the interpretations of the cbn and cbv λ-calculus into λµµ̃ preserve the reductions.

Moreover, the abstract machine, ck, defined in [14] to give an operational semantics for

cbpv, very closely corresponds to the workings of these interpretations into λµµ̃. This obser-

vation led us to investigate the link between these two calculi - λµµ̃ and cbpv - and here we

will give an interpretation of cdr into λµµ̃, inspired by the behaviour of cbpv in the abstract

machine ck [15]. Using the motivation for λµµ̃ as an abstract machine to run the λ-calculus

in, we attempted to use a similar technique for translating cbpv. However, the halting and

continuing of computations - through ‘thunking’ and ‘forcing’ - cannot be modelled by the

traditional λµµ̃ syntax, which gives another motivation to restrict the syntax and notion of

reduction as we do here for cdr: especially the reduction rule {M}!→ M cannot be repre-

sented in λµµ̃. [6] studies the relation between cbpv and ΛLLT, which is a fully polarized

typed calculus, inspired by λµµ̃; it does not present embeddings of the cbn/cbv λ-calculus,

which would be similar those defined by Levy, so does not solve the problems we address

here.

However, when defining an interpretation of cdr-terms into λµµ̃, as well as one for our

variant of Levy’s ck into λµµ̃, we can show that both fully preserve reduction, and that

the first also preserves typeability. In fact, reduction in cdr is fully modelled in cbn-λµµ̃,

emphasising again that cbpv is, in fact, a call-by-name calculus.

Note for the reader

In order to explain the essence of our approach and solutions, in this paper we will revisit

some results shown in [14, 16] and [8], so that we can show the strength of the results shown

3

there, and point out the (relative) weaknesses. As a result, a large part of this paper seems to

present known results; however, this is not the case. As explained above, most of the results

of [14, 16] are stated for a fundamentally different calculus, and mostly not shown or even

defined in full detail, which here we will provide. Also the notion of the cbv λ-calculus differs

significantly. Those details are important to understand why certain results in those other

papers are not as strong as perhaps one would like, and serve to highlight the advantages of

our approach; proofs can now be compared in detail, and exactly why our approach delivers

the results is put into evidence.

Outline of this paper

We start in Section 1 by giving a quick overview of the λ-calculus, and its relevant reduction

strategies; this is followed in Section 2 where we revisit the functional core of Levy’s cbpv-

calculus and the abstract machine ck that is used to give an operational semantics for cbpv.

In Section 2.1 we will revisit some results on the interpretation of cbn-λ and cbv-λ into cbpv,

as well as those presented in λ-val [8] and the Bang calculus.

To address the shortcomings we observe in Section 2.1, in Section 3 we will present cdr,

a variant of cbpv where only variables can be forced, and only ‘real’ computations can be

thunked (so not forced variables). This is paired with a different notion of term substitution,

that carefully avoids to create a term like {M}! since these are no longer accepted as terms.

We will define interpretations of cbn-λ and cbv-λ into cdr and show that now reduction is

respected. But we achieve more: because of this change, we can also establish a strong relation

with λµµ̃ and show the interpretation results in Section 5.

In Section 4 we will give a short overview of Herbelin’s calculus λµµ̃. This is followed

in Section 5 by the definition of an interpretation of cdr-terms into λµµ̃, and one for the

abstract machine ck into λµµ̃; we show that both fully preserve reduction, and that the first

also preserves typeability.

1 The λ-calculus

We assume the reader to be familiar with the λ-calculus [2]; we just recall the definition of

λ-terms and notions of reduction.

Definition 1.1 (Lambda terms, cbn and cbv reduction) i) λ-terms are defined by the gram-

mar:

V ::= x | λx.M (values)

M, N ::= V | MN

In MN, we say that M is in function position, and N is an operand. We will write M ∈ λ

when M is a λ-term.

ii) (One-step) β-reduction is defined using the β-rule

(β) : (λx.M)N→M{N/x}

where {N/x} stands for the implicit substitution3 that is to take place immediately and

silently, and evaluation contexts that are defined as terms with a single hole by:

C ::= ⌈⌋4 | CM | MC | λx.C

3 The notation {N/x} is traditionally used, but since the curly brackets are used for term construction (thunk-
ing) in cbpv, we decided to use the notation {N/x} here.

4 The notation for the ‘hole’ in contexts differs in the literature; we go for the non-standard ⌈ ⌋, since the
alternatives, like [], or { }, or (), are used for different things in this paper.

4

We write C⌈M⌋ for the term obtained from the context C by replacing its hole ⌈⌋ with

M, allowing variables to be captured. One-step β reduction is defined as the compatible

closure of the β-rule through:

C⌈(λx.M)N⌋ →β C⌈M{N/x}⌋

for any evaluation context. We write →∗β for the reflexive and transitive closure of →β,

and use that notation for all the notions of reduction we consider in this paper.

iii) Call-by-name evaluation contexts are defined through:

Cn ::= ⌈⌋ | Cn M

Call-by-name (cbn) reduction, →n is defined through:

Cn⌈(λx.M)N⌋ →n Cn⌈M{N/x}⌋

(also known as lazy reduction).

iv) Call-by-value evaluation contexts are defined through:

Cv ::= ⌈⌋ | Cv M | V Cv

Call-by-value (cbv) reduction, →v, is defined through:

Cv⌈(λx.M)V⌋ →v Cv⌈M{V/x}⌋

For the discourse of this paper, it is important to highlight the difference between cbn and

cbv-reduction.

Remark 1.2 Let M ≡ M1 M2 M3 · · ·Mn be a λ-term such that M1 is not an application, then

either M1 ≡ λx.N, or M1 ≡ y. If M1 ≡ λx.N, then cbn-reduction on M will contract the redex

(λx.N)M2 to obtain the term N{M2/x}M3 · · ·Mn, so without touching M2. On the other

hand, cbv-reduction will then first run M2 using the cbv-reduction strategy until it reaches

an abstraction or variable V2; only then will the first redex become contractable, and will M

reduce to N{V2/x}M3 · · ·Mn.

It is well known that reduction using →β is confluent [3]; this is not a trivially achieved

property, as →β is not deterministic: by the definition of evaluation contexts, nested redexes

can occur, as well as parallel redexes. For example, using→β, the three redexes in

(λx.(λy.M)N) ((λz.P)Q)

can all be contracted. Using→n, only the ‘x’-redex can be contracted, and using→v, only the

‘z’-redex. →n and →v are, in fact, reduction strategies: only ever one redex in a term can be

contracted, so then reduction is deterministic.

Curry (or simple) type assignment for the λ-calculus is defined as follows:

Definition 1.3 (Curry type assignment for the λ-calculus) i) Let ϕ range over a count-

able (infinite) set of type-variables. The set of Curry types is defined by the grammar:

A, B ::= ϕ | A→B

ii) A context of variables Γ is a partial mapping from term variables to types, denoted as a

finite set of statements x:A, such that the subjects of the statements (x) are distinct.

iii) Curry type assignment ‘⊢λ’ is defined by the following inference system:

(Ax) :
Γ, x:A ⊢ x : A

(→I) :
Γ, x:A ⊢ M : B

Γ ⊢ λx.M : A→B
(→E) :

Γ ⊢ M : A→B Γ ⊢ N : A

Γ ⊢ MN : B

Type assignment in this system is decidable, and it enjoys a Curry-Howard correspondence

with implicative intuitionistic logic.

5

2 Call By Push Value

Call by Push Value, presented in [14], is a calculus designed to make the execution order of a

λ-based term explicit, by presenting a deterministic reduction system, but one that is set up to

express both the cbn and cbv λ-calculus. cbpv considers computations and values; the slogan

from [14] is

“a value is, a computation does”

and this is expressed through assignable types and the reduction relation, where only com-

putations reduce to each other,5 and values are used as parameters. However, the notion of

value in cbpv is quite different from that used in the λ-calculus (see Def. 1.1).

We believe that this difference creates confusion when studying the relation between cbpv

and the cbv λ-calculus; using the same terminology for two very different categories of terms

suggest a correspondence between conceptually very different calculi. In both formalisms, val-

ues are the terms that get passed around and are substituted for term variables, but what these

are differs significantly. In the cbv λ-calculus, values are essentially abstractions, whereas in

cbpv, a computation M becomes a value once it is ‘thunked’ {M}, effectively blocking re-

ductions inside M; a value V can be promoted to be a computation when it is ‘forced’ V!,

unblocking the reductions. Since computations are the only terms that can be reduced, and

run to computations, the result of reduction is never a value in the sense of cbpv. In fact,

the only way a computation can be considered to return a value is when the outcome is of

the shape retV; the wrapper ret gets removed to produce a value during the contraction of

rule (F). A value {M} can be transformed into a computation through the reduction process,

by substituting it for a variable x in x!, creating {M}!, which contracts to M, unblocking the

computation.

This arbitrarily halting and continuing of computation can easily be brought back to just

the essential steps, as we will see in this paper. Computations include forced values, λ-

abstractions, applications, sequencing, and returning, and values are variables and thunked

computations. Sequencing and returning play a major role in the encoding of cbv λ, to

influence the order of evaluation in an application. Under cbv, the subterm N in (λx.M)N

gets evaluated first, but in cbpv an application is always of the shape PV, which does not

allow for reduction of the argument; the encoding fixes this, mainly through sequencing. In

fact, as we will argue below, its name notwithstanding, reduction in cbpv is mainly ‘by name’

(or lazy) in nature; this is reflected in the ease with which cbn λ can be encoded. Its type

system has a Curry-Howard-style correspondence with intuitionistic linear logic [20], hence

only intuitionistic calculi can be translated into cbpv.

As mentioned in the introduction, in investigating the relation between reduction in the

λ-calculus, defined on terms, and cbpv, defined through cut-elimination, we are confronted

with a paradigm problem. In order to better compare the cbn/cbv λ-calculus and cbpv, here

we will deviate from Levy’s ‘derivation’ approach, and treat cbpv as a pure λ-calculus: we

will define syntax and type assignment separately, and define a one-step reduction relation

on terms.6 This approach has also been used in [8].7 This will enable us to interpret the

untyped cbn/cbv λ-calculus without hindrances, but more importantly let us deal with non-

terminating or untypeable terms as well. We will use the syntax from [8] but for reasons of

simplicity consider pure, functional cbpv without effects and do not the consider sum and

5 This is not the case in [7], see Sect. 2.5.
6 Therefore, formally, none of the results we show for our variant of cbpv are applicable to Levy’s calculus.
7 It might be better to find a new name for this ‘pure term’ variant, but since [8] uses cbpv, to not introduce

too much new nomenclature, so do we.

6

product types8 that were included in the original definition of cbpv.

Definition 2.1 (cbpv terms) There are two categories of cbpv-terms: values (ranged over by

V,W) and computations (ranged over by M, N). They are defined through the grammar:

V,W ::= x | {M} (values)

M, N ::= V! | λx.M | MV | retV | x := M; N 9 (computations)

The notion of free and bound variables is defined as usual, taking x to be bound in the terms

λx.M and x := M; N; in the latter, the occurrences of x in N are bound, and by Barendregt’s

convention x does not occur in M. We will write M ∈ cbpv when M is a cbpv term.

As usual, we read {·} as ‘thunk’, which represents the blocking of a computation by boxing it

inside a value, and ·! as ‘force’, which pushes a value into becoming a computation.

We based a one-step reduction relation on the big-step semantics in Fig. 4 in [16].

Definition 2.2 (cbpv reduction rules) The three basic reduction rules are defined by:

(C) : (λx.M)V →p M{V/x} (contract) 10

(U) : {M}!→p M (unblock)

(F) : x := retV; M →p M{V/x} (force)

where term substitution M{V/x} is defined as usual.

The cbpv-evaluation contexts are defined through: C ::= ⌈⌋ | CV | x := C; M and cbpv-

reduction is defined through:

C⌈M⌋ →p C⌈N⌋

whenever M→p N through either rule (C), (U), or (F) and C is a cbpv-evaluation context.

Notice that reduction is deterministic: since the definition of evaluation contexts lack the cases

MC, λx.C and x := M; C, no nested or parallel redexes can occur.

The constructs retV and x := M; N are not generated by reduction; in our version of cbpv

they are present mainly for the encoding of the cbv λ-calculus (see Def. 2.11).

Levy [16] only considers semantics for closed terms, so V is closed in x := ret V; M, and M

has only one free variable, x. Here we consider arbitrary terms, so V can have free variables,

and even start with one (be of the shape {y!V1· · ·Vn}).11

Example 2.3 We have (λx.x!){y! y} →p {y! y}!→p y!y whereas the corresponding λ-term

(λx.x) (yy) is in cbv-normal form.

As unforced variables can only occur on the right-hand side of an application, they can

never be the result of a computation, as is evidenced by (λx.x!)y→ y!.

There are also infinite reductions:

(λx.(x!)x){λx.(x!)x} →p (C)

(({λx.(x!)x})!){λx.(x!)x} →p (U)

(λx.(x!)x){λx.(x!)x}

8 This paper ignores the values (), (V1,V2) and injiV, and the computations split(V, x1.x2.M), case constructs
case0(V), 〈〉, case(V, x1.M1, x2.M2), pairs 〈M1, M2〉 and projections prji M. These are all valuable features for
programming languages, but in the context of cbpv do not themselves cause any non-standard treatment, and
greatly complicate the presentation of the calculus. Moreover, we would have to add those features to λµµ̃ as well.

9 Many different notations have been used for cbpv in the past. [16] writes application MV ‘operand first’ as
V‘M in and past papers used let x = M in N or even let x← M in N for our x := M; N.

10 This rule is called (→) in [16].
11 In general, reduction rule (F) does not require the thunked term in N in x := ret{N}; M to be in normal

form; any computation term can be thunked and passed on, even N = (λy.P)Q.

7

Definition 2.4 (cbpv type assignment) i) The types12 for cbpv terms are defined by:

A, B ::= ϕ | U A (value types)

A,B ::= A→B | FA (computation types)

We will write U FA for U (FA) and FU A for F(U A).

ii) Contexts are defined as in Def. 1.3, but mapping term variables to value types.

iii) Type assignment for cbpv is defined through the following inference system; it intro-

duces two notions, ⊢v and ⊢c, that express a judgement for a value or computation,

respectively.

(axiom) :
Γ, x:A ⊢v x : A

(thunk) :
Γ ⊢c M : A

Γ ⊢v {M} : UA

(abstr) :
Γ, x:A ⊢c M : B

Γ ⊢c λx.M : A→B
(appl) :

Γ ⊢c M : A→B Γ ⊢v V : A

Γ ⊢c MV : B

(force) :
Γ ⊢v V : UA

Γ ⊢c V! : A
(ret) :

Γ ⊢v V : A

Γ ⊢c retV : FA
(seq) :

Γ ⊢c M : FA Γ, x:A ⊢c N : B

Γ ⊢c x := M; N : B

Example 2.5 There are various ways of typing ‘identity’ in cbpv; notice that the term λx.x is

not a cbpv-term, since by the grammar, we can only abstract over computations. Since only

value types are allowed for term variables, the statement x:A as occurs in the context stands

for x:ϕ or x:U A. This implies that we have two options for identity:

(axiom)
x:ϕ ⊢v x : ϕ

(ret)
x:ϕ ⊢c ret x : Fϕ

(abstr)
⊢c λx.ret x : ϕ→Fϕ

(axiom)
x:U Fϕ ⊢v x : UFϕ

(force)
x:U Fϕ ⊢c x! : Fϕ

(abstr)
⊢c λx.x! : UFϕ→Fϕ

(axiom)
x:U (UA→A) ⊢v x : U (UA→A)

(force)
x:U (UA→A) ⊢c x! : U A→A

(abstr)
⊢c λx.x! : U (UA→A)→(U A→A)

(axiom)
x:U A ⊢v x : U A

(force)
x:U A ⊢c x! : A

(abstr)
⊢c λx.x! : UA→A

(thunk)
⊢c {λx.x!} : U (U A→A)

(appl)
⊢c (λx.x!){λx.x!} : U A→A

so ‘identity’ either takes in a value and returns it, or takes in a thunked argument and forces

it. Likewise, taking Γ = x:U (ϕ→B),y:ϕ, and Γ′ = x:U (U A→B),y:U A we can derive:

(axiom)
Γ ⊢v x : U (ϕ→B)

(force)
Γ ⊢c x! : ϕ→B

(axiom)
Γ ⊢v y : ϕ

(appl)
Γ ⊢c x!y : B

(abstr)
x:U (ϕ→B) ⊢c λy.x!y : ϕ→B

(abstr)
⊢c λxy.x!y : U (ϕ→B)→ ϕ→B

(axiom)
Γ′ ⊢v x : U (UA→B)

(force)
Γ′ ⊢c x! : U A→B

(axiom)
Γ′ ⊢v y : UA

(appl)
Γ′ ⊢c x!y : B

(abstr)
x:U (UA→B) ⊢c λy.x!y : UA→B

(abstr)
⊢c λxy.x!y : U (UA→B)→U A→B

We can observe that the type for λxy.x!y, the equivalent for λxy.xy in cbpv (which models

application) is not (A→B)→A→B, as the rule (appl) would suggest.

We can even derive the following (where Γ = x:U (U A→B),y:U A):

12 We choose to use a different font for computation types for reasons of readability, rather than underlining as
in [14], or C, D as in [8].

8

(axiom)
Γ ⊢v x : U (UA→B)

(force)
Γ ⊢c x! : U A→B

(thunk)
Γ ⊢v {x!} : U (U A→B)

(force)
Γ ⊢c {x!}! : U A→B

(axiom)
Γ ⊢v y : U A

(force)
Γ ⊢c y! : A

(thunk)
Γ ⊢v {y!} : UA

(appl)
Γ ⊢c {x!}!{y!} : B

(abstr)
x:U (UA→B) ⊢c λy.{x!}!{y!} : UA→B

(abstr)
⊢c λxy.{x!}!{y!} : U (UA→B)→U A→B

indicating that cbpv allows for some superfluous thunking and forcing; it seems that perhaps

the syntax of cbpv-terms could be restricted to not permit thunking of forced terms. We will

further explore this idea in this paper in Section 3.

This polarised type assignment highlights the duality of cbpv, using initial and terminal

objects; it assigns value types to values, and computation types to computations. It does that

by dividing Moggi’s type constructor T [17] into two type constructors U and F, and enriches

Moggi’s λml with thunking and forcing that allow the conversion form computation to values

and vice versa; the intention is that a computation of type FA produces a value of type A,

and a value of type U B is a thunk of a computation of type B. Notice that Fϕ is the basic

computational type, where ϕ is the basic value type.

In the present context, the role of ret · is rather limited, and we will see that it plays no part

in the interpretation of the cbn λ-calculus (Def. 2.16 and 3.2). However, when adding term

constants, like numbers, to cbpv, the role of ret · becomes more evident: then all numbers are

values of type num, and, for example, successor Succ is typed Succ : num→Fnum, so Succ 0 :

Fnum. Note that results of computations of the shape ret V cannot be passed to functions

without being thunked first, and can only be passed on using the assignment construct.

We can show that this notion of type assignment is sound, i.e. satisfies subject-reduction.

Lemma 2.6 i) If Γ, x:A ⊢v V : B , and Γ ⊢v V ′ : A , then Γ ⊢v V{V ′/x} : B .

ii) If Γ, x:A ⊢c M : B , and Γ ⊢v V ′ : A , then Γ ⊢c M{V ′/x} : B .

Proof : By simultaneous induction on the definition of ‘·{V/x}’.

Theorem 2.7 (Subject reduction) If Γ ⊢c M : B , and M→p N, then Γ ⊢c N : B .

Proof : By induction on the definition of reduction; we will only consider the base cases.

(C) : Then M = (λx.M′)V, and by rules (appl) and (abstr) there exists A such that Γ, x:A ⊢c

M′ : B and Γ ⊢v V : A ; the result follows from Lem. 2.6.

(U) : Then M = {M′}!, and we have Γ ⊢c M′ : B by rules (thunk) and (force).

(F) : Then M = x := ret V; M′ and there exists A such that Γ, x:A ⊢c M′ : B and Γ ⊢v V : A ; the

result follows from Lem. 2.6.

In the same vein as Krivine’s machine for the λ-calculus [13], in [16] Levy defines a small-

step operational semantics of cbpv through a stack machine ck, which uses configurations

〈M |S〉 where M is the computation being evaluated and S is the environment (a stack of

values, in combination with contexts that are awaiting the completion of the evaluation of a

term to be inserted in the context) in which that evaluation of M takes place. We will present

a variant of that machine here, adapted to our restriction of cbpv, so without effects or sum

and product types.

Definition 2.8 (ck-machine [16]) i) Evaluation stacks are defined over cbpv terms and values

through: S ::= ǫ | V : S | x := []; M : S.

9

ii) The evaluation of 〈M |S〉 of M ∈ cbpv in the evaluation stack S is defined by:

〈λx.M | V : S〉 →ck 〈M{V/x} | S〉

〈x := M; N | S〉 →ck 〈M | x := []; N : S〉

〈retV | x := []; M : S〉 →ck 〈M{V/x} | S〉

〈MV | S〉 →ck 〈M | V : S〉

〈{M}! | S〉 →ck 〈M | S〉

We define =ck as the equivalence relation generated by→ck.

iii) We define an interpretation from cbpv to ck by: JMKck = 〈M |ǫ〉.

Notice that in the last step of part (ii), there is no interaction with the stack.

We can now show that cbpv-reduction is preserved under =ck.

Theorem 2.9 If M→p N, then 〈M |S〉 =ck 〈N |S〉.

Proof :(λx.M)V→p M{V/x} : 〈(λx.M)V |S〉 →ck 〈λx.M |V : S〉 →ck 〈M{V/x} |S〉

{M}!→p M : 〈{M}! |S〉 →ck 〈M |S〉

x := ret V; M→p M{V/x} : 〈x := retV; M |S〉 →ck 〈retV | x := []; M : S〉 →ck 〈M{V/x} |S〉

M→p N ⇒ MV→p NV : 〈MV |S〉 →ck 〈M |V : S〉 =ck (IH) 〈N |V : S〉 ←ck 〈NV |S〉

M→p N ⇒ x := M; P→p x := N; P : 〈x := M; P |S〉 →ck 〈M | x := []; P : S〉 =ck (IH)

〈N | x := []; P : S〉 ←ck 〈x := N; P |S〉

Notice that the result is stated in terms of equality, rather than reduction, because of the

structure of the last two cases in the proof; see also the comment below. With this result, we

immediately have that cbpv-reduction is preserved by the interpretation J·Kck .

Corollary 2.10 If M→∗
p

N, then JMKck =ck JNKck .

The last property is stated in [16] (adapted here to our notation) as ‘For any closed compu-

tation M, we have M ⇓ T iff 〈M |ǫ〉 →∗
ck
〈T | ǫ〉’ (note that this does not imply that small-step

reduction is respected); our result generalises this to single-step reduction, but at the cost of

using =ck. However, this does not imply that reduction is respected, since we have:

M→p N ⇒ MV→p NV : 〈MV |S〉 →ck 〈M |V : S〉 →ck (IH) 〈N |V : S〉

Now 〈N |V : S〉 does not reduce under →ck to 〈NV |S〉, rather we only have the reverse:

〈NV |S〉 →ck 〈N |V : S〉; hence our use of =ck.

We will see this problem come back in Thm. 2.13.

2.1 Interpreting the cbn/cbv λ-calculus in cbpv

There are two different ways to interpret the λ-calculus in cbpv, by either modelling cbn or

cbv reduction, and the syntax of cbpv allows to explicitly encode either strategy; it is not

possible to model full β-reduction, since the evaluation contexts λx.C and MC are missing

in cbpv. Levy presents in [16] what he calls Fine-Grain cbv, a typed λ-calculus extended

with two let constructs and a conditional construct (presented as derivations); a variant of

that calculus is considered in [8], but there with product and sum, and no longer considering

terms of cbpv to be derivations. Since in this paper we are mainly interested in the relation

between the pure λ-calculus, cbpv, and λµµ̃, all untyped, we will concentrate on the pure

functional component of those calculi and not use Levy’s approach.

10

2.2 A cbv-interpretation of Λ in cbpv

Rather than following the path of [16, 8] where extended calculi are studied, we will here focus

on interpreting the pure cbv λ-calculus (Def. 1.1) in cbpv, so start from the thought that cbv

is a reduction strategy for the λ-calculus, not a different calculus that requires changing the

syntax. Since the calculi involved are different, the results we present in this section are not

those of [16, 8], so all proofs are new.

Definition 2.11 ([16]) Levy’s cbv-interpretation 7→v between λ-terms and cbpv-terms is de-

fined through:

x 7→v ret x

M 7→v P

λx.M 7→v ret{λx.P}

M 7→v P N 7→v Q

MN 7→v x := P; y := Q; x!y

Notice the use of sequencing: it has the effect that, when interpreting an application MN, it

first runs (the interpretation of) M, followed by N, and then applying the resulting terms, as is

intended under cbv. This reorganisation of terms is necessary because the reduction relation

on cbpv is cbn, not cbv in the sense of the λ-calculus. Since 7→v is a function, for notational

convenience in proofs, we will write JMKl
v for P whenever M 7→v P.

We can show that this interpretation preserves reduction (through equality) and assignable

types; we first show that it respects term-substitution.

Lemma 2.12 (Substitution lemma for J · Kl
v) i) JMKl

v{w/z} = JM{w/z}Kl
v.

ii) JMKl
v{{λw.JRKl

v}/z} = JM{λw.R/z}Kl
v.

Proof : i) By straightforward induction on the definition of substitution.

ii) M ≡ z : JzKl
v{{λw.JRKl

v}/z} = (ret z){{λw.JRKl
v}/z} = ret{λw.JRKl

v} = Jλw.RKl
v =

Jz{λw.R/z}Kl
v

M ≡ u and u =/ z : JuKl
v{{λw.JRKl

v}/z} = (ret u){{λw.JRKl
v}/z} = ret u =

∆ JuKl
v =

Ju{λw.R/z}Kl
v

The other cases follow by induction.

With this result we can show that the interpretation J · Kl
v respects reduction up to equality.

Theorem 2.13 If M→v N, then JMKl
v =p JNKl

v.

Proof : (λz.M)w→v M{w/z} : J(λz.M)wKl
v =

∆ x := ret{λz.JMKl
v}; y := ret w; x!y →p

y := ret w; {λz.JMKl
v}!y →p {λz.JMKl

v}!w →p (λz.JMKl
v)w →p JMKl

v{w/z} = (2.12)

JM{w/z}Kl
v

(λz.M) (λw.R)→v M{λw.R/z} :J(λz.M) (λw.R)Kl
v =

∆

x := ret{λz.JMKl
v}; y := ret{λw.JRKl

v}; x!y→p y := ret{λw.JRKl
v}; {λz.JMKl

v}!y →p

{λz.JMKl
v}!{λw.JRKl

v} →p (λz.JMKl
v){λw.JRKl

v} →p

JMKl
v{{λw.JRKl

v}/z} =(2.12) JM{{λw.R}/z}Kl
v

M→v N ⇒ MP→v NP : JMPKl
v =

∆ x := JMKl
v; y := JPKl

v; x!y =p (IH)

x := JNKl
v; y := JPKl

v; x!y =
∆ JNPKl

v

M→v N ⇒ zM→v zN : JzMKl
v =

∆ x := ret z; y := JMKl
v; x!y →p y := JNKl

v; z!y and

JzNKl
v =

∆ x := z; y := JNKl
v; x!y →p y := JNKl

v; z!y

M→v N ⇒ (λw.R)M→v (λw.R)N : J(λw.R)MKl
v =

∆

x := ret{λw.JRKl
v}; y := JMKl

v; x!y →p y := JMKl
v; {λw.JRKl

v}y =p (IH)

y := JNKl
v; {λw.JRKl

v}y and

11

J(λw.R)NKl
v =

∆ x := ret{λw.JRKl
v}; y := JNKl

v; x!y →p y := JNKl
v; {λw.JRKl

v}y

Notice that, in the last two cases, as was also the case or →ck, the two interpretations of

the terms involved in the →v-reduction step are not related through reduction, but through

equality.

The cbv λ-calculus and cbpv are related also on the level of types. We first define an

interpretation of types.

Definition 2.14 ([16]) The cbv-interpretation of Curry types into cbpv-types is defined through:

ϕ =
∆ ϕ

A→B =
∆

U (A→FB)

This interpretation is straightforwardly extended to contexts: Γ =
∆ {x:A | x:A ∈ Γ}.

We can now show that the interpretations respect typeability and assignable types.

Lemma 2.15 If Γ ⊢λ M : A , then Γ ⊢c JMKl
v : FA .

Proof : By induction on definition of type assignment. We only show the base case, the other

follow by induction.

(Ax) : Then M ≡ x, and Γ = Γ′, x:A; and Γ = Γ′, x:A, we can construct:

(axiom)
Γ ⊢v x : A

(ret)
Γ ⊢v ret x : FA

Notice that JxKl
v =

∆ ret x.

2.3 A cbn-handling of Λ in cbpv

In [16], Levy also deals with mapping cbn-reduction for the λ-calculus into cbpv, but this

attempt is less successful than the one dealing with cbv; [8] basically repeats Levy’s work and

result, but for a pure term calculus. Under cbn-reduction in the λ-calculus, the right-hand

side of an application is never evaluated; if we think of cbn reductions as cbpv computations,

those parts of terms need to be ‘thunked’ (or halted), and only resume after being substituted

for a variable, so a variable should be ‘forced’. Using this intuition, we can revisit Levy’s

cbn-treatment of λ-terms into cbpv.

Definition 2.16 (Simulation of cbn [16, 8]) Levy’s relation 7→n between λ-terms and cbpv-

terms is defined as:

x 7→n x!

M 7→n M′

λx.M 7→n λx.M′

M 7→n M′ N 7→n N′

MN 7→n M′{N′}

M 7→n M′

M 7→n {M
′}!

13

Notice that ‘x := N; M’ and ‘ret V’ are not used here, and that all variables are forced, even

those that appear in value position (where they get thunked). Notice that we have

{M ∈ cbpv | λx.xx 7→n M} = {λx.x!{x!}, λx.x!{{x!}!}, λx.x!{{{x!}!}!}, . . .}

and that these terms are not related through reduction, so 7→n is not a (semantic) function.

A problem with this definition is that it does not define an interpretation; the fourth rule

allows to place an arbitrary amount of ‘force’-’thunk’ pairs {·}! around interpreted λ-terms,

so for every λ-term M there are infinitely many cbpv-terms M′ such that M 7→n M′. Thereby

this relation does not give anything close to a semantics.

13 The last rule is missing from Fig. 3 in the Appendix of [8], but we assume this is in error.

12

[8] states that 7→n is injective, but that seems to be an unnecessary claim for a relation that

maps applications to applications, and abstractions to abstractions (modulo {·}!), and is not

even a function.

It is not possible to show that reduction is preserved under this relation.

Example 2.17 Remark that (λx.xx) (λx.xx)→n (λx.xx) (λx.xx). We have:

x 7→n x! x 7→n x!

xx 7→n x!{x!}

λx.xx 7→n λx.x!{x!}

x 7→n x! x 7→n x!

xx 7→n x!{x!}

λx.xx 7→n λx.x!{x!}

(λx.xx) (λx.xx) 7→n (λx.x!{x!}){λx.x!{x!}}

and

(λx.x!{x!}){λx.x!{x!}} →p (C) x!{x!}{λx.x!{x!}/x}

= λx.x!{x!}!{{λx.x!{x!}}!}

→p (U) (λx.x!{x!}){{λx.x!{x!}}!}

→∗
p
(λx.x!{x!}){{{λx.x!{x!}}!}!}

→∗
p

. . .

Note that the {·}! redexes in the operand cannot be contracted. It will be clear that the term

(λx.x!{x!}){λx.x!{x!}} does not run to itself, and that the size of the term keeps increasing.

One could argue that it could have been better to reverse the above idea and add the rule

(U) without limitation to solve this problem; notice that then we would have:

(λx.x!{x!}){{λx.x!{x!}}!} →∗
p
(λx.x!{x!}){λx.x!{x!}}

as desired, and would have obtained a cbn-interpretation; this is essentially the solution

chosen in [7] for the Bang calculus. However, we would need to allow this reduction step

also inside values, breaking the slogan from [14], that “a value is, a computation does”, which is

probably why Levy does not consider this change. Below we will address this by eliminating

forcing of thunked terms and rule (U) altogether in cdr, without breaking the slogan.

It is possible to show that 7→n respects type assignment; this result is very much like that

of Thm. 3.16, and we therefore will not present it here.

Using this notion, [16, 8] show:

Lemma 2.18 ([16, 8]) i) (Forwards simulation) Let M, N ∈ λ. If M 7→n Q, and M→∗
n

N, then there

exists R ∈ cbpv such that N 7→n R and Q→∗
p

R.

ii) (Backwards simulation) Let M ∈ λ. If M 7→n Q, and Q→∗
p

R, then there exists N ∈ λ such that

N 7→n R and M→∗
n

N.

This is a rather complicated solution for a problem that is easily fixed by making a different

choice of grammar for cbpv. Since the problem is introduced by (implicit) substitution of

a thunked term for a forced variable, and arbitrarily allowing for thunking and forcing, our

solution is to change exactly how terms are inserted into positions occupied by variables; this

will be the approach of Sect. 3, where we present essential cbpv.

2.4 The results for λ-val [8]

In this section we will revisit the results shown for a variant of the λ-calculus presented in [16,

8] called the ‘simply-typed fine-grained call-by-value λ-calculus’ that distinguishes terms from

values through the prefix construct return in [16], called val in [8]. It is called cbv throughout

[8], but since it differs significantly from the original cbv λ-calculus, in order to distinguish

13

these we call it the λ-val calculus here. Reduction rules are not presented in [16]; to be able to

show our results, we will define them below.

Definition 2.19 (The λ-val calculus [8]) The terms of the λ-val calculus are defined using

the grammar:

u,v ::= x | λx.s (values)

s, t ::= val v | st (expressions)

For type assignment, we use the types and variants of the inference rules from Def. 1.3,

adding a rule that deals with val:

(axiom) :
Γ, x:A ⊢ v x : A

(abstr) :
Γ, x:A ⊢ e s : B

Γ ⊢ v λx.s : A→B

(val) :
Γ ⊢ v v : A

Γ ⊢ e valv : A
(appl) :

Γ ⊢ e s : A→B Γ ⊢ e t : A

Γ ⊢ e st : B

The name ‘Call by Value’ is used in [8] for this calculus although it bears little resemblance

to cbv-λ: notice that rule (abstr) recognises that an abstraction is a value, but it needs to be

labelled with the keyword val before it can be used in an application. Since it redefines the

concept of cbv, there is little claim to be made that the results of [8] deal with the relation

between cbn, cbv, and cbpv.

When mapping λ-val into cbpv, expressions are interpreted as cbpv computations, so types

should be interpreted as cbpv computation types. Since the type syntax for cbpv is different,

we need an interpretation of the λ-calculus types into cbpv types.

Definition 2.20 (Simulation of λ-val in cbpv [8]) Terms of the λ-val calculus are translated

into those for cbpv through ·:

x =
∆ x

λx.s =
∆ {λx.s}

val v =
∆ ret v

st =
∆ x := s; y := t; x!y

Types are translated using Levy’s · (Def. 2.14):

ϕ =
∆ ϕ

A→B =
∆

U (A→FB)

Notice that values are only allowed inside applications if preceded by the val keyword; this

is the main difference between λ-val and the traditional cbv λ-calculus, and is (we believe)

mainly added to facilitate an interpretation into cbpv. Moreover, the interpretation maps

values to values, and expressions to computations.

Forster et al. state a type preservation result in [8].Lemma 2.3, which incorrectly restates the

result shown in [14] as ‘If Γ ⊢ e s : A , then Γ ⊢c s : A and analogously for values’.14 We correct

and prove the result here for our cbpv.

Lemma 2.21 If Γ ⊢ v v : A , then Γ ⊢v v : A , and if Γ ⊢ e s : A , then Γ ⊢c s : FA .

Proof : Simultaneously by induction on the definition of type assignment.

(axiom) : Then v ≡ x, and Γ = Γ′, x:A; since v =
∆ x, and Γ = Γ′, x:A, by rule (axiom) also Γ ⊢v

v : A .

(abstr) : Then A = B→C, v ≡ λx.s, and Γ, x:B ⊢ e s : C ; since Γ, x:B = Γ, x:B, by induction we

have Γ, x:B ⊢c s : FC . We can construct:

14 The proofs in Coq provided online for [8] seem to avoid this error.

14

Γ, x:B ⊢c s : FC
(abstr)

Γ ⊢c λx.s : B→FC
(thunk)

Γ ⊢v {λx.s} : U (B→FC)

Notice that λx.s =
∆ {λx.s} and A = U (B→FC).

(val) : Then s ≡ val v, and Γ ⊢ v v : A ; by induction, we have Γ ⊢v v : A . Then, by rule (ret),

Γ ⊢c ret v : FA .

(appl) : Then s ≡ uv, and there exists B such that Γ ⊢ e u : B→A and Γ ⊢ e v : B . Then, by

induction, Γ ⊢c u : FB→A and Γ ⊢c v : FB . Notice that B→A = U (B→FA), and uv =
∆

x := u; y := v; x!y. We can construct (with Γ′ = Γ, x:U (B→A),y:B):

Γ ⊢c u : FU (B→A)

Γ, x:U (B→A) ⊢c v : FB

(axiom)
Γ′ ⊢c x : U (B→FA)

(force)
Γ′ ⊢c x! : B→FA

(axiom)
Γ′ ⊢c y : B

(appl)
Γ, x:U (B→A),y:B ⊢c x!y : FA

(seq)
Γ, x:U (B→A) ⊢c y := v; x!y : FA

(seq)
Γ ⊢c x := u; y := v; x!y : FA

Reduction on λ-val is not formally defined in [8], but following common practice, we can

assume it to be defined as follows.

Definition 2.22 (Reduction on λ-val) Evaluation contexts for λ-val are defined through:

Cv ::= [] | Cv t | (val v)Cv

Reduction→v on λ-val is (rather awkwardly) defined through:

Cv⌈(val λx.s) (val v)⌋ →v Cv ⌈s{v/x}⌋

and =v is the equivalence relation generated by→v.

Example 2.23 We consider the reduction of (val λa.(val a) (val a)) (val λa.(val a) (val a)) (which is

the λ-val equivalent of the λ-term (λa.aa) (λa.aa)) which, as we would expect, runs to itself.

(val λa.(val a) (val a)) (valλa.(val a) (val a)) →v

(val a) (val a){λa.(val a) (val a)/a} =

(val λa.(val a) (val a)) (valλa.(val a) (val a))

The interpretation of this term into cbpv runs as:

(val λa.(val a) (val a)) (val λa.(val a) (val a)) =
∆

x := val λa.(val a) (val a); y := val λa.(val a) (val a); x!y =
∆

x := ret λa.(val a) (val a); y := ret λa.(val a) (val a); x!y →p

y := ret λa.(val a) (val a); λa.(val a) (val a)! y →p

λa.(val a) (val a)! λa.(val a) (val a) =
∆

{λa.(val a) (val a)}! λa.(val a) (val a) →p

(λa.(val a) (val a)) λa.(val a) (val a) =
∆

(λa.x := ret a; y := ret a; x!y) λa.(val a) (val a) →p

x := ret λa.(val a) (val a); y := ret λa.(val a) (val a); x!y =
∆

(val λa.(val a) (val a)) (val λa.(val a) (val a))

As we can see from this example, using the keyword val creates a rather cumbersome

calculus and notion of reduction, in which it plays no role at all. It seems that the only

real reason for using it is to facilitate the encoding results, since it causes the keyword ret

15

to be placed inside the interpreted terms. But this was already achieved by Levy’s original

interpretation (see Def. 2.11).

Regardless of the missing formal definition, the authors claim that their ‘translation is cor-

rect w.r.t. small-step semantics’ [8]. We make the following observation:

Example 2.24 Consider the reduction

(val λa.val a) ((val λb.val b) (val λc.val c)) →v (val λa.val a) (val λc.val c)

then under the interpretation we have the reduction:

(val λa.val a) ((val λb.val b) (valλc.val c)) =
∆

x := val λa.val a; y := (val λb.val b) (val λc.val c); x!y =
∆

x := ret{λa.ret a}; y := (val λb.val b) (val λc.val c); x!y →p

y := (val λb.val b) (val λc.val c); {λa.ret a}!y =
∆

y := (u := val λb.val b; v := val λc.val c; u!v); {λa.ret a}!y =
∆

y := (u := ret{λb.ret b}; v := ret{λx.ret x}; u!v); {λa.ret a}!y →p

y := (v := ret{λx.ret x}; {λb.ret b}! v); {λa.ret a}! y →p

y := {λb.ret b}! {λx.ret x}; {λa.ret a}! y →p

y := (λb.ret b) {λx.ret x}; {λa.ret a}! y →p

y := ret{λx.ret x}; {λa.ret a}! y →p

{λa.ret a}! {λx.ret x} →p (λa.ret a) {λx.ret x} →p ret{λx.ret x}

and

(val λa.val a) (val λc.val c) =
∆ x := ret{λa.ret a}; y := ret{λx.ret x}; x!y →p

y := ret{λx.ret x}; {λa.ret a}!y →p {λa.ret a}!{λx.ret x} →p

(λa.ret a){λx.ret x} →p ret{λx.ret x}

As before, we can only show that if s→v t, then s =p t.

Notice that

(val λa.val a) ((val λb.val b) (val λc.val c)) →p/ (val λa.val a) (val λc.val c),

so single-step reduction is not preserved under the interpretation.15

As this example suggests, it would be possible to show that the interpretation is correct with

respect to large-step semantics. This is of course a weaker property, since only terminating

terms can be equated then.

In [8] there is no real motivation given for the departure from the pure λ-calculus with cbv-

reduction by adding the keyword val. In fact, all results shown in [8] were already claimed

in [16], but using (an extension of) the pure λ-calculus with cbv-reduction. In particular, the

problem of Thm. 2.13, that reduction is only respected up to equality, is still there.

2.5 The simulation results for the Bang calculus

Approaches similar to cbpv were later explored in [7], but from the perspective of linear logic

[10]; it presents the Bang calculus, which corresponds to return/sequence-free cbpv, so is not

based on λml. It uses the syntax:16

V,W ::= x | {M} (values)

M, N ::= V | λx.M | MN | M! (terms)

15 It could of course be that our definition of reduction in Def. 2.22 is not the one the authors of [8] intended,
but that seems unlikely.

16 Adapted here to cbpv notation; using [7]’s would create too much confusion, since it uses ! for thunking.

16

on which it defines (weak) reduction rules, corresponding to rules (C) and (U) of cbpv (see

Def. 2.1), that are allowed to contract in the (weak) evaluation contexts,

C ::= ⌈⌋ | λx.C | CN | MC | C! | {C}

W ::= ⌈⌋ | λx.W |WN | MW |W!

essentially permitting contracting of all redexes, but for those occurring in thunked terms in

weak contexts for weak reduction. Thereby reduction in the Bang calculus allows for the

evaluation of operands until they become values, and mapping the cbv λ-calculus is rather

straightforward. Moreover, since reduction is essentially free, even allowed under abstrac-

tions, U-redexes can be contracted anywhere, and modelling cbn is straightforward as well.

In particular, [7] presents encodings of both the cbn and cbv λ-calculus through:

xcbn
=
∆ x! xcbv

=
∆ x

(λx.M)cbn
=
∆ λx.Mcbn (λx.M)cbv

=
∆ {λx.Mcbv}

(MN)cbn
=
∆ Mcbn{Ncbn} (MN)cbv

=
∆ Mcbv! Ncbv

The mapping ·cbn corresponds to Levy’s (see Def. 2.16), so suffers from the same problem of

explosion of syntax as Ex. 2.17. To achieve the simulation results of [7] (see Prop. 2 there),

reduction inside thunked terms is explicitly allowed, which is not possible in cbpv.

As to the simulation of cbv reduction in the Bang calculus, terms in function position are

forced, and abstractions are thunked; notice that ·cbv maps λ-values to Bang values. Take a

redex (λx.M)N and assume that N is not a value, then under cbv reduction, N needs to be

evaluated. Under ·cbv we have

((λx.M)N)cbv
=
∆ {λx.Mcbv}! Ncbv → (λx.Mcbv)Ncbv

In the Bang calculus, operands can be evaluated (towards a Bang-value, which under ·cbv

is a variable or thunked abstraction), so reduction of Ncbv is possible. Since under ·cbv only

abstractions are thunked, to simulate λ’s cbv reduction that stops at abstractions, reduction

in thunked terms is not needed, so can be weak.

So both simulation results for cbn and cbv reduction for the λ-calculus into the Bang

calculus strongly depend on language features that are not shared with cbpv. The simulation

results we focus on here are with respect to a calculus, like cbpv, where reduction of operands

and inside thunked terms is, other than in the Bang calculus, not allowed, and thereby less

easily achieved. So [7]’s results cannot be compared to those we study here. Moreover, types

are not used at all in [7].

3 The Calculus of Delayed Reductions

In this section we will define the Calculus of Delayed Reductions (cdr), our variant of cbpv,

for which it will be possible to define interpretations of the cbn/cbv λ-calculus that respect

single-step reduction, by addressing a number of the issues we mentioned above. The main

thing defined differently will be that we will limit the use of thunking and forcing, essentially

only allowing for the forcing of variables and thunking of unforced computations, together

with defining a notion of term-substitution M⌈V/x⌋ on cdr-terms essentially as normal, with

the exception of the case x!⌈{M}/x⌋ which produces M rather than {M}!, effectively contract-

ing the U-redex that would be created ‘on the fly’ and thereby making that reduction rule

obsolete. This is defined using pattern matching, and is comparable to dropping the construct

ret when contracting an F-redex.

Definition 3.1 (cdr) i) Terms of the Calculus of Delayed Reductions (cdr) are defined through

the grammar:

17

V,W ::= x | {M} (M =/ x!)

M, N ::= x! | λx.M | MV | ret V | x := M; N

ii) The operation of substitution M⌈V/x⌋ on cdr-terms is defined as follows:

x⌈V/x⌋ = V

y⌈V/x⌋ = y (y =/ x)

(x!)⌈V/x⌋ =

{

z! (V = z)

M (V = {M})

(y!)⌈V/x⌋ = y! (y =/ x)

{M}⌈V/x⌋ = {M⌈V/x⌋}

(λz.M)⌈V/x⌋ = λz.M⌈V/x⌋

(retW)⌈V/x⌋ = ret (W⌈V/x⌋)

(MW)⌈V/x⌋ = (M⌈V/x⌋) (W⌈V/x⌋)

(y := M; N)⌈V/x⌋ = y := (M⌈V/x⌋); (N⌈V/x⌋)

iii) The basic reduction rules of cdr are defined using this substitution:

(C′) : (λx.M)V →d M⌈V/x⌋

(F′) : x := ret V; N →d N⌈V/x⌋

The cdr-evaluation contexts are (as before) defined through: C ::= ⌈⌋ | CV | x := C; M.

cdr-reduction is defined through:

M→d N ⇒ C⌈M⌋ →d C⌈N⌋

whenever M→ N through either rule (C′) or (F′), where C is a cbpv-evaluation context

C ::= ⌈⌋ | CV | x := C; M

(as in Def. ??). We use→d for this notion.

Notice the absence of rule (U). Also, observe that only head-variables (that appear in compu-

tation position) of (sub)terms are forced, and all other (unforced) occurrences of variables are

values. As with→p, reduction through→d is deterministic.

In [16], Levy states “What our categorical account will not provide is an alternative motivation

for CBPV. We do not believe that CBPV can be motivated from a purely categorical perspective, the

operational perspective is essential.” Given the strong relationship between cbpv and cdr, this

also applies to the latter.

Type assignment for this variant is inherited from cbpv, so is defined using the rules of

Def. 2.4.

Definition 3.2 Type assignment for cdr is defined through the following inference system,

using the cbpv types.

(axiom) :
Γ, x:A ⊢v x : A

(thunk) :
Γ ⊢c M : A

(M not a forced variable)
Γ ⊢v {M} : UA

(abstr) :
Γ, x:A ⊢c M : B

Γ ⊢c λx.M : A→B

(appl) :
Γ ⊢c M : A→B Γ ⊢v V : A

Γ ⊢c MV : B

(force) :
Γ, x:U A ⊢c x! : A

(ret) :
Γ ⊢v V : A

Γ ⊢c retV : FA
(seq) :

Γ ⊢c M : FA Γ, x:A ⊢c N : B

Γ ⊢c x := M; N : B

Notice that only rules (thunk) and (force) are different from Def. 2.4.

Subject reduction follows easily, after showing first that our notion of substitution preserves

assignable types.

Lemma 3.3 i) If Γ, x:B ⊢v W : A and Γ ⊢v V : B , then Γ ⊢v W⌈V/x⌋ : A .

ii) If Γ, x:B ⊢c M : A and Γ ⊢v V : B , then Γ ⊢c M⌈V/x⌋ : A .

Proof : By simultaneous induction on the definition of ‘· ⌈V/x⌋’.

Theorem 3.4 If Γ ⊢c M : A , and M→∗
d

N, then Γ ⊢c N : A .

18

Proof : By induction on the definition of reduction; we only show the cases for single-step

reduction.

(C′) : Then M ≡ (λx.P)V and N ≡ P⌈V/x⌋. Then there exists B such that the derivation for

Γ ⊢c M : A is constructed as follows:

Γ, x:B ⊢c P : A
(abstr)

Γ ⊢c λx.P : B→A Γ ⊢v V : B
(appl)

Γ ⊢c (λx.P)V : A

so in particular, Γ, x:B ⊢c P : A and Γ ⊢v V : B . Then Γ ⊢c P⌈V/x⌋ : A by Lem. 3.3.

(F′) : Then M≡ x := ret V; P and N ≡ P⌈V/x⌋. Then there exists B such that the derivation for

Γ ⊢c M : A is constructed as follows:

Γ ⊢v V : B
(ret)

Γ ⊢c retV : FB Γ, x:B ⊢c P : A
(seq)

Γ ⊢c x := retV; P : A

so in particular Γ, x:B ⊢c P : A and Γ ⊢v V : B . Then Γ ⊢c P⌈V/x⌋ : A by Lem. 3.3.

P→d Q ⇒ M ≡ PV→d QV ≡ N : Then there exists B such that the derivation for Γ ⊢c M : A

is constructed as follows:

Γ ⊢c P : B→A Γ ⊢v V : B
(appl)

Γ ⊢c PV : A

By induction we have Γ ⊢c Q : B→A , and the result follows by rule (appl).

P→d Q ⇒ M ≡ x := P; R→d x := Q; R ≡ N : Then there exists B such that the derivation for

Γ ⊢c M : A is constructed as follows:

Γ ⊢c P : FB Γ, x:B ⊢c R : A
(seq)

Γ ⊢c x := P; R : A

By induction we have Γ ⊢c Q : FB ; the result follows by rule (seq).

We can also show that in principle the ck-machine implements reduction in cdr, but need

to change its definition first, adapting it to the different notion of term substitution.

Definition 3.5 (ck
d-machine) The reduction relation→d

ck
on configurations 〈M |S〉with M∈

cdr and S a stack of cdr values, is defined as→ck in Def. 2.8, but changing the first and fourth

case:

〈λx.M |V : S〉 → 〈M⌈V/x⌋ |S〉

〈MV |S〉 → 〈M |V : S〉

〈x := M; N |S〉 → 〈M | x := []; N : S〉

〈retV | x := []; M : S〉 → 〈M⌈V/x⌋ |S〉

We define =d

ck
as the equivalence relation generated by→d

ck
.

Notice that the rule 〈{M}! |S〉 → 〈M |S〉 has been omitted.

The interpretation result now becomes:

Theorem 3.6 If M→d N, then 〈M |S〉 =d

ck
〈N |S〉.

Proof : By induction on the definition of→d.

19

(λx.M)V→d M⌈V/x⌋ : 〈(λx.M)V |S〉 →d

ck
〈λx.M |V : S〉 →d

ck
〈M⌈V/x⌋ |S〉

x := ret V; M→d M{V/x} : 〈x := ret V; M |S〉 →d

ck
〈ret V | x := []; M : S〉 →d

ck

〈M⌈V/x⌋ |S〉

M→p N ⇒ MV→d NV : 〈MV |S〉 →d

ck
〈M |V : S〉 =d

ck
(IH) 〈N |V : S〉 ←d

ck
〈NV |S〉

M→p N ⇒ x := M; P→p x := N; P :〈x := M; P |S〉 →ck 〈M | x := []; P : S〉 =ck (IH)

〈N | x := []; P : S〉 ←ck 〈x := N; P |S〉

Notice that, as for Thm. 2.9, we cannot show that reduction is preserved by reduction.

As above, we now have that cdr-reduction is preserved by the interpretation J·Kd

ck
.

Corollary 3.7 If M→∗
d

N, then JMKd

ck
=d

ck
JNKd

ck
.

3.1 A cbv-interpretation of Λ in cdr

We will now define our cbv interpretation of pure λ-terms into cdr and show that it does

respect single-step cbv-reduction, and not just equality.

Definition 3.8 The cbv interpretation V·Uλ
v

of λ-terms into cdr is defined through:

VxUλ
v =

∆ ret x

Vλx.MUλ
v =

∆ ret{λx.VMUλ
v
}

VzNUλ
v =

∆ y := VNUλ
v
; z!y

V(λz.M)NUλ
v =

∆ y := VNUλ
v
; (λz.VMUλ

v
)y

VMNUλ
v =

∆ x := VMUλ
v

; y := VNUλ
v

; x!y (M not a value)

Our cbv interpretation deals with terms basically the same way as Levy’s (see Def. 2.11), but

for the fact that we place the image of the λ-value V in the interpretation of V N directly, so

without using assignment; this is done using pattern matching, so without using (implicit)

substitution, since V is either a variable or an abstraction.

Using this interpretation, we can now show that cbv reduction for the pure λ-calculus is

respected by the interpretation. First we show that V·Uλ
v

respects substitution.

Lemma 3.9 (Substitution lemma for V·Uλ
v

) i) VMUλ
v
⌈w/z⌋ = VM{w/z}Uλ

v
.

ii) VMUλ
v
⌈{λw.VRUλ

v
}/z⌋ = VM{λw.R/z}Uλ

v
.

Proof : i) By straightforward induction on the definition of substitution.

ii) M ≡ z : VzUλ
v
⌈{λw.VRUλ

v
}/z⌋ =

∆ (ret z)⌈{λw.VRUλ
v
}/z⌋ = ret{λw.VRUλ

v
} =

∆ Vλw.RUλ
v
=

Vz{λw.R/z}Uλ
v

M ≡ u and u =/ z : VuUλ
v
⌈{λw.VRUλ

v
}/z⌋ =

∆ (ret u)⌈{λw.VRUλ
v
}/z⌋ = ret u =

∆ VuUλ
v
=

Vu{λw.R/z}Uλ
v

M ≡ λu.N : Vλu.NUλ
v
⌈{λw.VRUλ

v
}/z⌋ =

∆ ret{λu.(VNUλ
v
}⌈{λw.VRUλ

v
}/z⌋) =(IH)

ret{λu.VN{λw.R/z}Uλ
v
} = Vλu.N{λw.R/z}Uλ

v

M ≡ xQ : VxQUλ
v
⌈{λw.VRUλ

v
}/z⌋ =

∆ y := VQUλ
v
⌈{λw.VRUλ

v
}/z⌋; x!y =(IH)

y := VQ{λw.R/z}Uλ
v

; x!y =
∆ VxQ{λw.R/z}Uλ

v
= V(xQ){λw.R/z}Uλ

v

M ≡ (λx.P)Q : V(λx.P)QUλ
v
⌈{λw.VRUλ

v
}/z⌋ =

∆ (y := VQUλ
v
; (λx.VPUλ

v
)y)⌈{λw.VRUλ

v
}/z⌋ =

∆

y := VQUλ
v
⌈{λw.VRUλ

v
}/z⌋; (λx.VPUλ

v
⌈{λw.VRUλ

v
}/z⌋) y = (IH)

y := VQ{λw.R/z}Uλ
v

; (λx.VP{λw.R/z}Uλ
v
) y =

∆ V(λx.P){λw.R/z}Q{λw.R/z}Uλ
v

=

V((λx.P)Q){λw.R/z}Uλ
v

M ≡ PQ, P not a λ-value : VPQUλ
v
⌈{λw.VRUλ

v
}/z⌋ =

∆

x := ; y := VPUλ
v

; x!y⌈{λw.VRUλ
v
}/z⌋VQUλ

v
⌈{λw.VRUλ

v
}/z⌋ =(IH)

x := VP{λw.R/z}Uλ
v

; y := VQ{λw.R/z}Uλ
v
; x!y =

∆ VP{λw.R/z}Q{λw.R/z}Uλ
v
=

V(PQ){λw.R/z}Uλ
v

20

Using this lemma, we can now show:

Theorem 3.10 If M→v N, then VMUλ
v
→∗

d
VNUλ

v
.

Proof : (λx.M) z→v M{z/x} : V(λx.M) zUλ
v =

∆ y := ret z; (λx.VMUλ
v
)y →d (λx.VMUλ

v
) z →d

VMUλ
v
⌈z/x⌋ =(3.9) VM{z/x}Uλ

v

(λx.M) (λz.R)→v M{λz.R/x} : V(λx.M) (λz.R)Uλ
v =

∆ y := Vλz.RUλ
v
; (λx.VMUλ

v
)y =

∆

y := ret{λz.VRUλ
v
}; (λx.VMUλ

v
)y →d (λx.VMUλ

v
){λz.VRUλ

v
} →d

VMUλ
v
⌈{λz.VRUλ

v
}/x⌋ = (3.9) VM{λz.R/x}Uλ

v

M→v z ⇒ MP→v zP : VMPUλ
v =

∆ x := VMUλ
v
; y := VPUλ

v
; x!y →∗

d
(IH)

x := VzUλ
v

; y := VPUλ
v
; x!y =

∆ x := ret z; y := VPUλ
v
; x!y →d

y := VPUλ
v
; z!y =

∆ VzPUλ
v

M→v λz.N ⇒ MP→v (λz.N)P : VMPUλ
v =

∆ x := VMUλ
v
; y := VPUλ

v
; x!y →∗

d
(IH)

x := Vλz.NUλ
v

; y := VPUλ
v
; x!y =

∆ x := ret{λz.VNUλ
v
}; y := VPUλ

v
; x!y →d

y := VPUλ
v
; (λz.VNUλ

v
)y =

∆ V(λz.N)PUλ
v

M→v N ⇒ MP→v NP, N not a value : VMPUλ
v =

∆ x := VMUλ
v
; y := VPUλ

v
; x!y →∗

d
(IH)

x := VNUλ
v

; y := VPUλ
v
; x!y =

∆ VNPUλ
v

M→v N ⇒ zM→v zN : VzMUλ
v =

∆ y := VMUλ
v

; z!y →∗
d
(IH) y := VNUλ

v
; z!y =

∆ VzNUλ
v

M→v N ⇒ (λz.R)M→v (λz.R)N : V(λz.R)MUλ
v =

∆ y := VMUλ
v
; (λz.VRUλ

v
)y →∗

d
(IH)

y := VNUλ
v

; (λz.VRUλ
v
)y =

∆ V(λz.R)NUλ
v

Notice that this result was shown for reduction in cdr, in contrast to Thm. 2.13 which was

shown for equality in cbpv.

We can also show that type assignment for the pure λ-calculus is respected by the interpre-

tations V·Uλ
v

and ·.

Theorem 3.11 If Γ ⊢λ M : A , then Γ ⊢c VMUλ
v

: FA .

Proof : By induction on definition of ⊢λ.

(Ax) : Then M ≡ x, and Γ = Γ′, x:A, and Γ =
∆ Γ′, x:A. We can construct:

(axiom)
Γ ⊢v x : A

(ret)
Γ ⊢c ret x : FA

Notice that x =
∆ ret x.

(→I) : Then A = B→C, M≡ λx.N, and Γ, x:B ⊢λ N : C ; since Γ, x:B =
∆ Γ, x:B, by induction we

have Γ, x:B ⊢c VNUλ
v

: FC . We can construct:

Γ, x:B ⊢c VNUλ
v

: FC
(abstr)

Γ ⊢c λx.VNUλ
v

: B→FC
(thunk)

Γ ⊢v {λx.VNUλ
v
} : U (B→FC)

(ret)
Γ ⊢c ret{λx.VNUλ

v
} : FU (B→FC)

Notice that Vλx.NUλ
v =

∆ ret{λx.VNUλ
v
} and A =

∆
U (B→FC).

(→E) : Then M ≡ PQ, and there exists B such that Γ ⊢λ P : B→A and Γ ⊢λ Q : B . Then, by

induction, Γ ⊢c VPUλ
v

: FB→A and Γ ⊢c VQUλ
v

: FB . Notice that B→A =
∆

U (B→FA). We

have three cases to consider:

P ≡ z : From Γ ⊢c VzUλ
v

: FB→A =
∆ Γ ⊢c ret z : FU (B→FA) we know that z : U (B→FA)∈ Γ,

so we can construct:

21

Γ ⊢c VQUλ
v

: FB

(force)
Γ,y:B ⊢c z! : B→FA

(axiom)
Γ,y:B ⊢v y : B

(appl)
Γ,y:B ⊢c z!y : FA

(seq)
Γ ⊢c y := VQUλ

v
; z!y : FA

Notice that VzQUλ
v =

∆ y := VQUλ
v

; z!y.

P ≡ λz.R : From Γ ⊢c VPUλ
v

: FB→A =
∆ Γ ⊢c ret{λz.VRUλ

v
} : FU (B→FA) , which is shaped

like:

Γ ⊢c λz.VRUλ
v

: B→FA
(thunk)

Γ ⊢v {λz.VRUλ
v
} : U (B→FA)

(ret)
Γ ⊢c ret{λz.VRUλ

v
} : FU (B→FA)

we know that in a subderivation Γ ⊢c λz.VRUλ
v

: B→FA is shown, with which we can

construct:

Γ ⊢c VQUλ
v

: FB

Γ ⊢c λz.VRUλ
v

: B→FA
(Wk)

Γ,y:B ⊢c λz.VRUλ
v

: B→FA
(axiom)

Γ,y:B ⊢v y : B
(appl)

Γ,y:B ⊢c (λz.VRUλ
v
)y : FA

(seq)
Γ ⊢c y := VQUλ

v
; (λz.VRUλ

v
)y : FA

Notice that V(λz.R)QUλ
v =

∆ y := VQUλ
v

; (λz.VRUλ
v
)y.

Otherwise : We can construct (with Γ′ = Γ, x:U (B→FA),y:B):

Γ ⊢c VPUλ
v

: FU (B→FA)

.

..

.

Γ ⊢c VQUλ
v

: FB
(Wk)

Γ, x:U (B→FA) ⊢c VQUλ
v

: FB

(axiom)
Γ′ ⊢v x : U (B→FA)

(force)
Γ′ ⊢c x! : B→FA

(axiom)
Γ′ ⊢v y : B

(appl)
Γ, x:U (B→FA),y:B ⊢c x!y : FA

(seq)
Γ, x:U (B→FA) ⊢c y := VQUλ

v
; x!y : FA

(seq)
Γ ⊢c x := VPUλ

v
; y := VQUλ

v
; x!y : FA

Notice that VPQUλ
v =

∆ x := VPUλ
v

; y := VQUλ
v
; x!y.

3.2 A cbn-interpretation of Λ in cdr

We can achieve a stronger result for cbn-reduction as well, as we will now show; this is where

the new substitution comes into play. First we modify the interpretation of Def. 2.16 to fit cdr.

Definition 3.12 The cbn interpretation V·Uλ
n

of λ-terms into cdr is defined through:

VxUλ
n
= x!

Vλx.MUλ
n
= λx.VMUλ

n

VMxUλ
n
= VMUλ

n
x

VMNUλ
n
= VMUλ

n
{VNUλ

n
} (N not a variable)

Notice that this corresponds to Levy’s cbn-interpretation in Def. 2.16, but for the fact that

only head-variables (that appear in computation position) are forced; in the application case

we avoid to define VMxUλ
n
= JMKλ

n{x!}, but directly write VMUλ
n

x, and that we do not add

unnecessary occurrences of {·}!.

Now, other than in Example 2.17 we get:

22

V(λx.xx) (λx.xx)Uλ
n =

∆ (λx.x! x){λx.x! x}

→d (x! x)⌈{λx.x! x}/x⌋

= x!⌈{λx.x! x}/x⌋ x⌈{λx.x! x}/x⌋

= (λx.x! x){λx.x! x}

This interpretation respects the term substitutions:

Lemma 3.13 (Substitution lemma for V·Uλ
n

) i) VMUλ
n
⌈w/z⌋ = VM{w/z}Uλ

n
.

ii) VMUλ
n
⌈{VNUλ

n
}/x⌋ = VM{N/x}Uλ

n
, if N is not a variable.

Proof : i) By straightforward induction on the definition of · ⌈·/ ·⌋.

ii) M ≡ z : VzUλ
n
⌈{VNUλ

n
}/z⌋ = z!⌈{VNUλ

n
}/z⌋ = VNUλ

n
= Vz{N/z}Uλ

n

M ≡ u and u =/ z : VuUλ
n
⌈{VNUλ

n
}/z⌋ = (u!)⌈{VNUλ

n
}/z⌋ = u! = VuUλ

n
= Vu{N/z}Uλ

n

M ≡ λu.R : Vλu.RUλ
n
⌈{VNUλ

n
}/z⌋ = (λu.VRUλ

n
)⌈{VNUλ

n
}/z⌋ = λu.(VRUλ

n
⌈{VNUλ

n
}/z⌋)

= (IH) λu.VR{N/z}Uλ
n

= Vλu.R{N/z}Uλ
n

M ≡ Pz : VPzUλ
n
⌈{VNUλ

n
}/z⌋ = (VPUλ

n
z)⌈{VNUλ

n
}/z⌋ = JPK⌈{VNUλ

n
}/z⌋{VNUλ

n
} =(IH)

VP{N/z}Uλ
n
{VNUλ

n
} = VP{N/z}NUλ

n
= V(Pz){N/z}Uλ

n

M ≡ Px, x =/ z : VPxUλ
n
⌈{VNUλ

n
}/z⌋ = (VPUλ

n
x)⌈{VNUλ

n
}/z⌋ = JPK⌈{VNUλ

n
}/z⌋x =(IH)

VP{N/z}Uλ
n

x = VP{N/z}xUλ
n

= V(Px){N/z}Uλ
n

M ≡ PQ : VPQUλ
n
⌈{VNUλ

n
}/z⌋ = (VPUλ

n
{VQUλ

n
})⌈{VNUλ

n
}/z⌋ =

VPUλ
n
⌈{VNUλ

n
}/z⌋{VQUλ

n
⌈{VNUλ

n
}/z⌋} =(IH) VP{N/z}Uλ

n
{VQ{N/z}Uλ

n
} =

VP{N/z}Q{N/z}Uλ
n

= V(PQ){N/z}Uλ
n

With this result we can now show that the interpretation respects cbn-reduction.

Theorem 3.14 If M→n N, then VMUλ
n
→∗

d
VNUλ

n
.

Proof : (λx.M)y→n M{y/x} : V(λx.M)yUλ
n =

∆ (λx.VMUλ
n
)y →d VMUλ

n
⌈y/x⌋ =(3.13)

VM{y/x}Uλ
n

(λx.M)N→n M{N/x}, N not a variable : V(λx.M)NUλ
n =

∆ (λx.VMUλ
n
){VNUλ

n
} →d

VMUλ
n
⌈{VNUλ

n
}/x⌋ = (3.13) VM{N/x}Uλ

n

M→n N ⇒ Mx→n Nx : VMxUλ
n =

∆ VMUλ
n

x →∗
d
(IH) VNUλ

n
x =

∆ VNxUλ
n

M→n N ⇒ MP→n NP, with P not a variable : VMPUλ
n =

∆ VMUλ
n
{VPUλ

n
} →∗

d
(IH)

VNUλ
n
{VPUλ

n
} =

∆ VNPUλ
n

For the preservation of type assignment under V·Uλ
n

, we need first to map the types for

Curry’s system to those for cbpv, in a way befitting the interpretation; for this we can use

Levy’s cbn-type interpretation directly.

Definition 3.15 (Simple type interpretation [16]) The type interpretation ‘·’ is defined as:

ϕ = Fϕ

A→B = UA→ B

and the environment interpretation as: Γ = {x:UA | x:A ∈ Γ}.

We can now show that the cbn-interpretation preserves type assignment.

Theorem 3.16 If Γ ⊢λ M : A , then Γ ⊢c VMUλ
n

: A .

Proof : By induction on the structure of derivations.

23

(Ax) : Then M ≡ x, and x:A ∈ Γ. Then x:UA ∈ Γ and we can derive:

(force)
Γ ⊢c x! : A

and VxUλ
n =

∆ x!.

(→I) : Then M ≡ λx.N, A = B→C, and Γ, x:B ⊢λ N : C . By induction, we get Γ, x:UB ⊢c

VNUλ
n

: C , and we can construct:

Γ, x:UB ⊢c VNUλ
n

: C
(abstr)

Γ ⊢c λx.VNUλ
n

: UB→C

and Vλx.NUλ
n =

∆ λx.VNUλ
n

and B→C = UB→C.

(→E) : Then M ≡ PQ, and there exists B such that Γ ⊢λ P : B→A and Γ ⊢λ Q : B . By induc-

tion, we get Γ ⊢c VPUλ
n

: B→A ; also, B→A = UB→A. We have two cases:

Q ≡ x : Then x:B ∈ Γ and x:UB ∈ Γ, and we can construct:

Γ ⊢c VPUλ
n

: UB→A
(Ax)

Γ ⊢v x : UB
(appl)

Γ ⊢c VPUλ
n

x : A

and VPxUλ
n =

∆ VPUλ
n

x.

Q =/ x : By induction, we have Γ ⊢c VQUλ
n

: B , and can construct:

Γ ⊢c VPUλ
n

: UB→A

Γ ⊢c VQUλ
n

: B
(thunk)

Γ ⊢v {VQUλ
n
} : UB

(appl)
Γ ⊢c VPUλ

n
{VQUλ

n
} : A

and VPQUλ
n =

∆ VPUλ
n
{VQUλ

n
}.

4 The calculus λµµ̃

We will now give a short summary of Curien and Herbelin’s calculus λµµ̃, as first presented

in [4]. In its typed version, λµµ̃ is a proof-term syntax for a classical sequent calculus that

treats a logic with focus, and can be seen as an extension of Parigot’s λµ and a variant of

Gentzen’s lk. As in λµ, for λµµ̃ there are two sets of variables: x,y,z, etc., label the types

of the hypotheses and α, β,γ, etc., label the types of the conclusions. The syntax of λµµ̃

has three different categories: commands, terms, and environments. Commands c form the

computational units in λµµ̃ and are composed of a pair 〈t | e〉 of a term t and its environment

e that can interact.

Definition 4.1 (Commands, Terms, and Environments [4]) Using an infinite countable set

of term variables {x,y,z, . . . } and an infinite countable set of environment variables {α, β,γ, . . .},

the three categories of expressions in λµµ̃ are defined by:

c ::= 〈t | e〉 (commands)

t ::= x | λx.t | µβ.c (terms)

e ::= α | t · e | µ̃x.c (environments)

Here λ, µ, and µ̃ are binders, and the notion of free or bound term and environment variables

is defined as usual.

With conventional notations about environments (i.e. seeing environments as terms with

a hole), t · e can be thought of as e[[] t], and the environment t1 ·(· · ·(tn ·α)· · ·) (we can omit

24

these brackets and write t1 · · · tn ·α) as a stack (see Example 4.8); µα.c is inherited from λµ, as

is 〈t |α〉 which corresponds to λµ’s naming construct [α]t, giving name α to the implicit output

name of t; the construct µ̃x.c can be thought of as let x = [] in c.

Reduction in λµµ̃ is dual, in that both parameter call and environment call are represented:

parameter call through the environment µ̃x.c that can pull the corresponding term in to the

places marked by x, and environment call through the term µα.c that places the corresponding

environment in the places marked by α.

Definition 4.2 (Reduction in λµµ̃ [4, 12]) Let c{e/β} stand for the implicit substitution of

the free occurrences of the environment variable β by the environment e, and c{t/x} for that

of x by the term t. The reduction rules are defined by:

logical rules

(λ) : 〈λx.t1 | t2·e〉 → 〈t2 | µ̃x.〈t1 | e〉〉

(µ) : 〈µβ.c | e〉 → c{e/β}

(µ̃) : 〈t | µ̃x.c〉 → c{t/x}

extensional rules

(η) : λx.µβ.〈t | x·β〉 → t (x, β ∈/ fv(t))

(ηµ) : µα.〈t |α〉 → t (α ∈/ fv(t))

(ηµ̃) : µ̃x.〈x | e〉 → e (x ∈/ fv(e))

contextual rules

t→ t′ ⇒

〈t | e〉→〈t′ | e〉

λx.t→λx.t′

t·e→ t′·e

e→ e′ ⇒

{

〈t | e〉→〈t | e′〉

t·e→ t·e′

c→ c′ ⇒

{

µβ.c→µβ.c′

µ̃x.c→ µ̃x.c′

We use→λ for this notion of reduction and =λ for the induced equality.

Notice that rules (λ), (µ), and (µ̃) reduce commands to commands, rules (η) and (ηµ)

reduce a term to a term, and rule (ηµ̃) reduces a environment to a environment. Apart

from Theorem 4.7, the extensional rules play no role in this paper. Not all commands can

be reduced: e.g. 〈x |α〉, 〈λx.t |α〉 and 〈x | t · e〉 are irreducible; this is one of the differences

between the calculus X , which embodies Gentzen’s lk, and λµµ̃ [1].

Notice that, although λµµ̃ has abstraction, it does not have application, which is natural

since lk lacks elimination rules. In fact, abstraction’s counterpart is that of environment con-

struction t·e, where a term with a hole is built, offering the operand t and the continuation

e. The main operators are µ and µ̃ abstraction, which, in a sense, respectively, correspond to

(delayed) substitution (parameter call) and to environment call.

Notice that λµµ̃ has both explicit and implicit variables: the implicit variables are for example

in t·e, where the hole (·, which acts as input) does not have an identity, and in λx.t where

the environment (output) is anonymous. We can make these variables explicit by naming,

respectively, µ̃y.〈y | t·e〉 and µα.〈λx.t |α〉; in case the variable y (α) does not occur in t·e (λx.t),

these terms are η redexes, but, in general, the implicit variable can be made to correspond to

one that already occurs.

The three constructs are typed by three kinds of sequents: the usual sequents Γ ⊢ ∆ type

commands, while the sequents typing terms (resp. environments) are of the form Γ ⊢ A | ∆

(resp. Γ | A ⊢ ∆), marking the conclusion (resp. hypothesis) A as active.

(Implicative) Typing for λµµ̃ is defined by:

Definition 4.3 (Typing for λµµ̃ [4]) Using Curry types (Definition 1.3), type assignment is

defined via the rules:

(cut) :
Γ ⊢ t : A |∆ Γ | e : A ⊢ ∆

〈t | e〉 : Γ ⊢ ∆
(µ) :

c : Γ ⊢ α:A,∆

Γ ⊢ µα.c : A |∆
(µ̃) :

c : Γ, x:A ⊢ ∆

Γ | µ̃x.c : A ⊢ ∆

25

(AxR) :
Γ, x:A ⊢ x : A |∆ (AxL) :

Γ | α : A ⊢ α:A,∆

(→R) :
Γ, x:A ⊢ t : B |∆

Γ ⊢ λx.t : A→B |∆
(→L) :

Γ ⊢ t : A |∆ Γ | e : B ⊢ ∆

Γ | t · e : A→B ⊢ ∆

We write c : Γ ⊢ ∆, Γ ⊢ t : A | ∆, and Γ | e : A ⊢ ∆ if there exists a derivation built using these

rules that has this judgement in the bottom line.

Observe that λµµ̃ has a critical pair in the command 〈µα.c1 | µ̃x.c2〉, which reduces to both

c1{µ̃x.c2/α} and c2{µα.c1/x}; since cut-elimination of the classical sequent calculus is not con-

fluent, neither is reduction in λµµ̃. For example, in lk the proof (where (W) is the admissible

weakening rule)

D1

Γ ⊢ ∆
(W)

Γ ⊢ A,∆

D2

Γ ⊢ ∆
(W)

Γ, A ⊢ ∆
(cut)

Γ ⊢ ∆

reduces to both D1 and D2, different proofs, albeit for the same sequence; likewise, in ⊢ we

can derive (where α does not appear in c1, and x does not appear in c2):

c1 : Γ ⊢ ∆
(W)

c1 : Γ ⊢ α:A,∆
(µ)

Γ ⊢ µα.c1 : A |∆

c2 : Γ ⊢ ∆
(W)

c2 : Γ, x:A ⊢ ∆
(µ̃)

Γ | µ̃x.c2 : A ⊢ ∆
(cut)

〈µα.c1 | µ̃x.c2〉 : Γ ⊢ ∆

and 〈µα.c1 | µ̃x.c2〉 reduces to both c1 and c2, witnesses to the same sequent but not necessarily

the same proof.

The λµµ̃-calculus expresses the duality of lk’s left and right introduction in a very sym-

metric syntax. But the duality goes beyond that: for instance, the symmetry of the reduction

rules displays syntactically the duality between the cbv and cbn evaluations (see also [21]).

In [4] the cbv sub-reduction is not defined as a strategy but is obtained by forbidding a

µ̃-reduction when the command is also a µ-redex, whereas the cbn sub-reduction forbids a

µ-reduction when the redex is also a µ̃-redex; there is no other restriction defined in [4, 12]

in terms of not permitting certain contextual rules in the definition of cbv and cbn. Since

we want cbn and cbv to be reduction strategies in the sense that each term has at most one

contractable cut, we will give a more detailed definition here.

Definition 4.4 (cbv and cbn reduction for λµµ̃) i) Values V are defined by V ::= x | λx.t,

and stacks17 E are defined by E ::= α | t · e.

ii) cbn-reduction→n

p is defined by limiting rule (µ) and restricting the contextual rules:

(λ) : 〈λx.t1 | t2·e〉 → 〈t2 | µ̃x.〈t1 | e〉〉

(µn) : 〈µβ.c |E〉 → c{E/β}

(µ̃) : 〈t | µ̃x.c〉 → c{t/x}

(ηµ) : µα.〈t |α〉 → t (α ∈/ fv(t))

t→ t′ ⇒ 〈t | e〉→ 〈t′ | e〉

c→ c′ ⇒ µβ.c→ µβ.c′

iii) cbv-reduction→v

p is defined by limiting rule (µ̃) and restricting the contextual rules:

17 In [12], stacks are called linear evaluation contexts.

26

(λ) : 〈λx.t1 | t2·e〉 → 〈t2 | µ̃x.〈t1 | e〉〉

(µ) : 〈µβ.c | e〉 → c{e/β}

(µ̃v) : 〈V | µ̃x.c〉 → c{V/x}

(ηµ) : µα.〈t |α〉 → t (α ∈/ fv(t))

t→ t′ ⇒ 〈t | e〉→ 〈t′ | e〉

c→ c′ ⇒ µβ.c→ µβ.c′

so removes the reduction 〈µα.c | µ̃x.c′〉 → c′ [µα.c/x], and does not permit reduction on

the right of the environment constructor.

Notice that both notions do not permit reduction in environments, are defined by eliminat-

ing the same contextual reduction rules, and only differ in rules (µ) and (µ̃).

Essentially following [4], an interpretation J·Kλ
h

of the λ-calculus into λµµ̃ can be defined as

follows:

Definition 4.5 Interpretation of the λ-calculus into λµµ̃:

JxKλ
h =

∆ x

Jλx.M Kλ
h =

∆ λx.JM Kλ
h

JMN Kλ
h =

∆ µα.〈JM Kλ
h
|JN Kλ

h
·α〉

Notice that λ-values are interpreted by λµµ̃-values and that this interpretation is not geared

towards a certain reduction strategy.

The interpretation respects term substitution.

Proposition 4.6 ([1]) JM{N/x} Kλ
h
= JM Kλ

h
{JN Kλ

h
/x}.

Using this result, we can now show that the interpretation respects β-reduction.

Theorem 4.7 i) If M→∗β N, then JM Kλ
h
→∗

λ
JN Kλ

h
.

ii) If M→∗
n

N, then JM Kλ
h
→n∗

λ
JN Kλ

h
.

iii) If M→∗
v

N, then JM Kλ
h
→v∗

λ
JN Kλ

h
.

Proof : i) (λx.M)N→β M{N/x} : J(λx.M)N Kλ
h =

∆ µα.〈Jλx.M Kλ
h
|JN Kλ

h
·α〉 =

∆

µα.〈λx.JM Kλ
h
|JN Kλ

h
·α〉 →λ (λ) µα.〈JN Kλ

h
| µ̃x.〈JM Kλ

h
|α〉〉 →λ (µ̃)

µα.〈JM Kλ
h
{JN Kλ

h
/x} |α〉 →λ (ηµ) JM Kλ

h
{JN Kλ

h
/x}.

M→β N ⇒ λx.M→β λx.N : Jλx.M Kλ
h =

∆ λx.JM Kλ
h
→∗

λ
(IH) λx.JN Kλ

h =
∆ Jλx.N Kλ

h
.

M→β N ⇒ MP→β NP : JMPKλ
h =

∆ µα.〈JM Kλ
h
|JPKλ

h
·α〉→∗

λ
(IH) µα.〈JN Kλ

h
|JPKλ

h
·α〉 =

∆ JNP Kλ
h

.

M→β N ⇒ PM→β PN : JPMKλ
h =

∆ µα.〈JPKλ
h
|JM Kλ

h
·α〉→∗

λ
(IH) µα.〈JPKλ

h
|JN Kλ

h
·α〉 =

∆ JPN Kλ
h

.

ii) (λx.M)N→n M{N/x} : As in part (i) above; notice that all reduction steps are permitted

in→n.

M→n N ⇒ MP→n NP : JMPKλ
h =

∆ µα.〈JM Kλ
h
|JPKλ

h
·α〉 →n∗

λ
(IH) µα.〈JN Kλ

h
|JPKλ

h
·α〉 =

∆

JNP Kλ
h

.

iii) (λx.M)V→v M{V/x} : As in part (i) above; notice that then N ≡ V, and the µ̃-reduction

step is permitted.

M→v N ⇒ MP→v NP : JMPKλ
h =

∆ µα.〈JM Kλ
h
|JPKλ

h
·α〉→v∗

λ
(IH) µα.〈JN Kλ

h
|JPKλ

h
·α〉 =

∆ JNPKλ
h

.

M→v N ⇒ VM→v VN : JVMKλ
h =

∆ µα.〈JV Kλ
h
|JM Kλ

h
·α〉 →v∗

λ
(IH) µα.〈JV Kλ

h
|JN Kλ

h
·α〉 =

∆

JVN Kλ
h

.

This interpretation corresponds to running the λ-calculus in a stack-based cbn abstract

machine (like Krivine’s machine [13]): evaluating the term λx.M takes a term off the stack

and substitutes it for x in M. For the application MN, N gets placed onto the stack and the

machine then attempts to run M to a term of the form λx.M′. So we can think of it as a

27

function that takes some existing stack, and returns the machine which runs M in the existing

stack with N pushed on top.

Example 4.8 In λµµ̃ we express the interaction between a program (term) and its environment

via commands. Although there is no notion of application, λµµ̃ sees JMN1 · · ·Nn Kλ
h

as running

JM Kλ
h

in the environment that offers the terms JN1 Kλ
h

, . . . , JNn Kλ
h

in sequence. To understand

this, first notice that

JMN1N2 Kλ
h =

∆ µα.〈JMN1 Kλ
h
|JN2 Kλ

h
·α〉

=
∆ µα.〈µβ.〈JM Kλ

h
|JN1 Kλ

h
·β〉 |JN2 Kλ

h
·α〉

→λ (µ) µα.〈JM Kλ
h
|JN1 Kλ

h
·JN2 Kλ

h
·α〉

so it is easy to verify that

JMN1 · · ·Nn Kλ
h
→∗ (µ) µα.〈JM Kλ

h
|JN1 Kλ

h
· . . . ·JNn Kλ

h
·α〉

which puts into evidence that, for λ-terms, the only environments that are needed are stacks.

Notice that the environment JN1 Kλ
h
·(JN1 Kλ

h
· . . . ·JNn Kλ

h
·α) represents the λ-environment for M,

so stands for C⌈⌈⌋N1⌋, where C⌈⌋ ≡ ⌈⌋N2 · · ·Nn.

5 Mapping cdr to λµµ̃

In this section we will show that we can interpret cdr into the λµµ̃-calculus and simulate it

via the λµµ̃ cbn reduction rules.

Definition 5.1 (Direct interpretation) The interpretation J·Kd of cdr values and computa-

tions into λµµ̃-terms is defined as:

JyKd = y

J{M} Kd = JM Kd

Jx! Kd = x

Jλx.M Kd = λx.JM Kd

JMV Kd = µα.〈JM Kd |JV Kd ·α〉

JretV Kd = JV Kd

Jx := M; N Kd = µα.〈JM Kd |ρx.〈JN Kd |α〉〉

Notice that this interpretation does without forcing, thunking, and return, but just simply

puts all the sub-terms that are not computations on the stack; since nothing will be allowed

to run on the stack in cbn reduction, computation there is halted automatically. Since in cdr

thunked terms can only appear as arguments in an application, by the interpretation these are

all placed on the stack in the λµµ̃-term, where under cbn reduction is not permitted, so no

syntactic marker is necessary to block computation.

At the moment it is unclear if this encoding can be extended into one for cbpv: to model

the reduction rule (U), it seems necessary to extend λµµ̃ syntactically as well with features

that represent thunking and forcing.

We can show that the interpretation respects term substitution.

Lemma 5.2 JM⌈V/x⌋Kd = JM Kd{JV Kd/x}.

Proof : By induction on the definition of · ⌈V/x⌋. We only show the base cases, the others follow

by straightforward induction.

x⌈V/x⌋= V : We have two cases:

V = y : Jx⌈y/x⌋ Kd = JyKd = y = x{y/x} = JxKd{JyKd/x}.

V = {N} : Jx⌈{N}/x⌋ Kd = J{N} Kd = JN Kd = x{JN Kd/x} = JxKd{J{N} Kd/x}.

z⌈V/x⌋ = z : Jz⌈V/x⌋Kd = JzKd = z = z{JV Kd/x} = JzKd{JV Kd/x}.

x!⌈y/x⌋ = y! : Jx!⌈y/x⌋ Kd = Jy! Kd = y = x{y/x} = Jx! Kd{JyKd/x}.

28

x!⌈{N}/x⌋ = N : Jx!⌈{N}/x⌋Kd = JN Kd = x{JN Kd/x} = Jx! Kd{J{N} Kd/x}.

z!⌈y/x⌋ = z! : Jz!⌈y/x⌋ Kd = Jz! Kd = z = z{JyKd/x} = Jz! Kd{JyKd/x}.

z!⌈{N}/x⌋ = z! : Jz!⌈{N}/x⌋ Kd = Jz! Kd = z = z{J{N} Kd/x} = Jz! Kd{J{N} Kd/x}.

Using this result, we can now show that reduction in cdr is preserved by cbn reduction in

λµµ̃ under the interpretation J·Kd.

Theorem 5.3 If M→d N, then JM Kd→n∗
λ

JN Kd.

Proof : By induction on the definition of→d.

(λx.M)V→M⌈V/x⌋ : J(λx.M)V Kd
=
∆ µα.〈λx.JM Kd |JV Kd ·α〉 →n

p (λ)

µα.〈JV Kd | µ̃x.〈JM Kd |α〉〉 →n

p (µ̃) µα.〈JM Kd{JV Kd/x} |α〉 →n

p (ηµ)

JM Kd{JV Kd/x} = (5.2) JM⌈V/x⌋Kd

x := ret V; N→ N⌈V/x⌋ : Jx := ret V; N Kd
=
∆ µα.〈JV Kd | µ̃x.〈JN Kd |α〉〉 →n

p (µ̃)

µα.〈JN Kd{JV Kd/x} |α〉 →n

p (ηµ) JN Kd{JV Kd/x} = (5.2) JN⌈V/x⌋Kd

M→p N ⇒ MV→p NV : JMV Kd
=
∆ µα.〈JM Kd |JV Kd ·α〉 →n∗

λ
(IH) µα.〈JN Kd |JV Kd ·α〉 =

JNV Kd

M→p N ⇒ x := M; P→ x := N; P : Jx := M; PKd
=
∆ µα.〈JM Kd | µ̃x.〈JPKd |α〉〉 →n∗

λ
(IH)

µα.〈JN Kd | µ̃x.〈JPKd |α〉〉 = Jx := N; PKd

Notice the use of cbn reduction: this stresses again that reduction in cdr (and thereby also

in cbpv) is essentially cbn; since all redexes are unique and reduction is deterministic, we

have:

Theorem 5.4 (Full abstraction) If JM Kd→n∗
λ

Q, then there exists N ∈ cdr such that M→d N,

and Q→n∗
λ

JN Kd.

This result shows that λµµ̃ is an ideal calculus to implement cdr.

Using the ‘inverse’ of the type interpretation from Def. 3.15, we can also show that type

assignment is preserved under the interpretations.

Definition 5.5 The type interpretation J·Kd is defined as:

JϕKd = ϕ

JU AKd = JAKd

JA→BKd = JAKd→JBKd

JFAKd = JAKd

and the environment interpretation as: JΓKd = {x:JAKd | x:A ∈ Γ}.

We can now show that λµµ̃ is suited to not just model the kind of reduction of cbpv, but

also its type assignment.

Theorem 5.6 i) If Γ ⊢v V : A , then JΓKd ⊢ JV Kd : JAKd | .

ii) If Γ ⊢c M : A , then JΓKd ⊢ JM Kd : JAKd | .

Proof : By induction on definition of type assignment for cdr terms.

(axiom) : Then V ≡ x, and Γ = Γ′, x:A; since JxKd
=
∆ x, and JΓKd = JΓ′ Kd, x:JAKd, by rule (AxR)

also JΓKd ⊢ JvKd : JAKd | .

(thunk) : Then A = U A, M ≡ {N}, and Γ ⊢c N : A ; by induction we have JΓKd ⊢ JN Kd : JAKd | .

Notice that JU AKd = JAKd and J{N} Kd = JN Kd.

29

(abstr) : Then A = B→C, M ≡ λx.N, and Γ, x:B ⊢c N : C ; since JΓ, x:BKd = JΓKd, x:JBKd, by

induction we have JΓKd, x:JBKd ⊢ JN Kd : JCKd | . We can construct:

JΓKd, x:JBKd ⊢ JN Kd : JCKd |
(→R)

JΓKd ⊢ λx.JN Kd : JBKd→JCKd |

Notice that Jλx.M Kd
=
∆ λx.JN Kd and JAKd = JBKd→JCKd.

(appl) : Then M ≡ NV, and there exists B such that Γ ⊢c u : B→A and Γ ⊢v v : B . Then, by

induction, JΓKd ⊢ JN Kd : JB→AKd | and JΓKd ⊢ JV Kd : JBKd | . We can construct (with

Γ′ = JΓKd, x:U (B→A),y:B):

JΓKd ⊢ JN Kd : JB→AKd |
(Wk)

JΓKd ⊢ JN Kd : JB→AKd | α:JAKd

JΓKd ⊢ JV Kd : JBKd |
(Wk)

JΓKd ⊢ JV Kd : JBKd | α:JAKd
(AxL)

JΓKd | α : JAKd ⊢ α:JAKd

(→L)
JΓKd | JV Kd ·α : JB→AKd ⊢ α:JAKd

(cut)
〈JMKd |JV Kd ·α〉 : JΓKd ⊢ α:JAKd

(µ)
JΓKd ⊢ µα.〈JN Kd |JV Kd ·α〉 : JAKd |

Notice that JNV Kd
=
∆ µα.〈JN Kd |JV Kd ·α〉 and JB→AKd = JBKd→JAKd so the step (→L) is

justified.

(force) : Then M = x!, and Γ ⊢v x : U A; notice that Jx! Kd = x and JU AKd = JAKd. Then x:U A∈ Γ,

so x:JAKd ∈ JΓKd, and by rule (AxR) also JΓKd ⊢ JxKd : JAKd | .

(ret) : Then A = FA, M = ret V, and Γ ⊢v V : A ; notice that JretV Kd = JV Kd and JFAKd = JAKd.

Then by induction JΓKd ⊢ JV Kd : JAKd | .

(seq) : Then M = x := P; Q, and there exists x and B such that both Γ ⊢c P : FB and Γ, x:B ⊢c

Q : A . Then, by induction, we have JΓKd ⊢ JPKd : JFBKd | and JΓ, x:BKd ⊢ JQKd : JAKd | .

Notice that JΓ, x:BKd
=
∆ JΓKd, x:JBKd, JFBKd ==

∆ JBKd, and JAKd ==
∆ JAKd.

JΓKd ⊢ JPKd : JBKd |
(Wk)

JΓKd ⊢ JPKd : JBKd | α:JAKd

JΓKd, x:JBKd ⊢ JQKd : JAKd |
(Wk)

JΓKd, x:JBKd ⊢ JQKd : JAKd | α:JAKd

(AxL)
JΓKd, x:JBKd | α : JAKd ⊢ α:JAKd

.

.

.

.

.

.

.

.

(cut)
〈JQKd |α〉 : JΓKd, x:JBKd ⊢ α:JAKd

(µ̃)
JΓKd | µ̃x.〈JQKd |α〉 : JBKd ⊢ α:JAKd

(cut)
〈JPKd | µ̃x.〈JQKd |α〉〉 : JΓKd ⊢ α:JAKd

(µ)
JΓKd ⊢ µα.〈JPKd |ρx.〈JQKd |α〉〉 : JAKd |

and Jx := P; QKd
=
∆ µα.〈JPKd |ρx.〈JQKd |α〉〉.

We can also show that reduction in ck
d is respected by reduction in λµµ̃.

Definition 5.7 The interpretation of evaluation stacks and configurations in ck
d into λµµ̃ is

defined through:

JǫKd

ck
α = α

JV : SKd

ck
α = JV Kd · JSKd

ck
α

Jx := []; N : SKd

ck
α = µ̃x.〈JN Kd | JSKd

ck
α〉

J〈MV |S〉Kd

ck
= µα.〈JM Kd |JV Kd · JSKd

ck
α〉

J〈x := M; N |S〉Kd

ck
= µα.〈JM Kd | µ̃x.〈JN Kd | JSKck

α 〉〉

J〈M |S〉Kd

ck
= µα.〈JM Kd | JSKd

ck
α〉 (otherwise)

It was this similarity between stacks in ck and λµµ̃ that was the inspiration for this paper.

We can now show that this interpretation respects→d

ck
-reductions.

30

Theorem 5.8 If 〈M |S〉 →d

ck
〈N |S〉, then J〈M |S〉Kd

ck
→n∗

λ
J〈N |S〉Kd

ck
.

Proof : 〈λx.M |V : S〉 →d

ck
〈M⌈V/x⌋ |S〉 : J〈λx.M |V : S〉Kd

ck =
∆

µα.〈λx.JM Kd |JV Kd · JSKd

ck
α〉 →n

p µα.〈JV Kd | µ̃x.〈JM Kd | JSKd

ck
α〉〉 →n

p

µα.〈JM Kd{JV Kd/x} | JSKd

ck
α〉 = (5.2) µα.〈JM⌈V/x⌋Kd | JSKd

ck
α〉 =

∆ J〈M⌈V/x⌋ |S〉Kd

ck

〈MV |S〉 →d

ck
〈M |V : S〉 : J〈MV |S〉Kd

ck =
∆ µα.〈JM Kd |JV Kd · JSKd

ck
α〉 =

∆ J〈M |V : S〉Kd

ck

〈x := M; N |S〉 →d

ck
〈M | x := []; N : S〉 : J〈x := M; N |S〉Kd

ck =
∆

µα.〈JM Kd | µ̃x.〈JN Kd | JSKd

ck
α〉〉 =

∆ µα.〈JM Kd | Jx := []; N : SKd

ck
α〉 =

∆ J〈M | x := []; N : S〉Kd

ck

〈ret V | x := []; M : S〉 →d

ck
〈M⌈V/x⌋ |S〉 : J〈ret V | x := []; M : S〉Kd

ck =
∆

µα.〈JV Kd | µ̃x.〈JM Kd | JSKd

ck
α〉〉 →n

p µα.〈JM Kd{JV Kd/x} | JSKd

ck
α〉 =

∆ (5.2)

J〈M⌈V/x⌋ |S〉Kd

ck

Conclusion and Future work

We have shown that, although partially presented for that purpose, Levy’s cbpv calculus is

not really suitable to represent the cbn or cbv reduction of the λ-calculus and that in order to

represent that kind of reduction, it is necessary to change the way term substitution is defined.

This is done in cdr, which we defined here; since now we never create forcing of thunked

terms, also the unblock reduction rule is removed.

For this restricted version of cbpv we have shown that we can fully represent single step

cbn or cbv reduction of the λ-calculus, as well as preserve typeability. Moreover, we have

defined a mapping of cdr into Curien and Herbelin’s λµµ̃, and showed that reduction in

cdr can be successfully modeled in the cbn partition of λµµ̃, as well as that typeability is

preserved.

In future work, we will investigate the role of ret ·, as well as define a notion of type assign-

ment for λµµ̃ using cbpv types that can better express the relation between cdr and λµµ̃.

We will also look at the role of the assignment term x := M; N, and see if it could be used to

define cbv reduction for cbpv.

Although all proofs in this paper follow by straightforward induction, and we have no

reason to assume that we missed some detail, we intend to haul everything through a theorem

prover, just to be sure.

References

[1] S. van Bakel and P. Lescanne. Computation with Classical Sequents. Mathematical Structures in
Computer Science, 18:555–609, 2008.

[2] H. Barendregt. The Lambda Calculus: its Syntax and Semantics. North-Holland, Amsterdam, revised
edition, 1984.

[3] A. Church and J.B. Rosser. Some properties of conversion. Transactions of the American Mathematical
Society, 39:472–482, 1936.

[4] P.-L. Curien and H. Herbelin. The Duality of Computation. In Proceedings of the 5th ACM SIGPLAN
International Conference on Functional Programming (ICFP’00), volume 35.9 of ACM Sigplan Notices,
pages 233–243. ACM, 2000.

[5] H.B. Curry. Grundlagen der Kombinatorischen Logik. American Journal of Mathematics, 52:509–536,
789–834, 1930.

[6] T. Ehrhard. Call-By-Push-Value from a Linear Logic Point of View. In P. Thiemann, editor,
Programming Languages and Systems - 25th European Symposium on Programming, ESOP 2016, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The
Netherlands, April 2-8, 2016, Proceedings, volume 9632 of Lecture Notes in Computer Science, pages
202–228. Springer, 2016.

31

[7] T. Ehrhard and G. Guerrieri. The Bang Calculus: an untyped lambda-calculus generalizing call-
by-name and call-by-value. In J. Cheney and G. Vidal, editors, Proceedings of the 18th International
Symposium on Principles and Practice of Declarative Programming, Edinburgh, United Kingdom, Septem-
ber 5-7, 2016, pages 174–187. ACM, 2016.

[8] Y. Forster, S. Schäfer, S. Spies, and K. Stark. Call-by-Push-Value in Coq: Operational, Equational,
and Denotational Theory. In Proceedings of the 8th ACM SIGPLAN International Conference on Cer-
tified Programs and Proofs, pages 118–131, New York, NY, USA, 2019. Association for Computing
Machinery.

[9] G. Gentzen. Untersuchungen über das Logische Schliessen. Mathematische Zeitschrift, 39(2):176–
210 and 405–431, 1935.

[10] J.-Y Girard. Linear Logic. Theoretical Computer Science, 50:1–102, 1987.
[11] H. Herbelin. Séquents qu’on calcule : de l’interprétation du calcul des séquents comme calcul de λ-termes

et comme calcul de stratégies gagnantes. Thèse d’université, Université Paris 7, Janvier 1995.
[12] H. Herbelin. On the Degeneracy of Sigma-Types in Presence of Computational Classical Logic. In

P. Urzyczyn, editor, Typed Lambda Calculi and Applications, 7th International Conference, TLCA 2005,
Nara, Japan, April 21-23, 2005, Proceedings, volume 3461 of Lecture Notes in Computer Science, pages
209–220. Springer, 2005.

[13] J-L. Krivine. A call-by-name lambda-calculus machine. Higher Order and Symbolic Computation,
20(3):199–207, 2007.

[14] P.B. Levy. Call-by-Push-Value: A Subsuming Paradigm. In Jean-Yves Girard, editor, Typed Lambda
Calculi and Applications, pages 228–243, Berlin, Heidelberg, 1999. Springer.

[15] P.B. Levy. Call-By-Push-Value: A Functional/Imperative Synthesis (Semantics Structures in Computation,
V. 2). Kluwer Academic Publishers, USA, 2001.

[16] P.B. Levy. Call-By-Push-Value: Decomposing Call-By-Value and Call-By-Name. Higher Order
Symbolic Computation, 19(4):377–414, 2006.

[17] E. Moggi. Notions of Computation and Monads. Information and Computation, 93:55–92, 1991.
[18] M. Parigot. Classical Proofs as Programs. In Kurt Gödel Colloquium, pages 263–276, 1993. Presented

at TYPES Workshop, at Bǎstad, June 1992.
[19] G.D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theoretical Computer Science,

1:125–159, 1975.
[20] José Espı́rito Santo. The Polarized λ-calculus. In V. Nigam and M. Florido, editors, 11th Workshop

on Logical and Semantic Frameworks with Applications, LSFA 2016, Porto, Portugal, January 1, 2016,
volume 332 of Electronic Notes in Theoretical Computer Science, pages 149–168, 2016.

[21] P. Wadler. Call-by-Value is Dual to Call-by-Name. In Proceedings of the eighth ACM SIGPLAN
international conference on Functional programming, pages 189 – 201, 2003.

32

