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Preface

The work on intersection type assignment systems presented in this thesis grew between 1988

and 1992. I first encountered intersection types in 1986 in an introductory course on Lambda

Calculus by professor Henk Barendregt at the University of Nijmegen. Under his supervision I

wrote a master’s thesis [van Bakel ’88], in which a first version of the Strict Type Assignment

System was presented. After my MSc-graduation in 1988 I worked with professors

Mariangiola Dezani-Ciancaglini, Mario Coppo and Simonetta Ronchi della Rocca in Turin,

Italy, from February 15 until July 15 1988. This resulted in a paper [van Bakel ’92a] that

appeared in the June 1992 issue of Theoretical Computer Science. The results presented in this

paper can be found in the chapters four and seven of this thesis.

In the first half of 1989 I implemented an intersection type inference algorithm for lambda

terms, reported on in [van Bakel ’90]. It led to the proof that the Strict Type Assignment

System has the principal type property. This proof was presented in [van Bakel ’91], which is

submitted for publication to the journal Logic and Computation. The results presented in that

paper can be found in chapter six.

In March 1991 I visited Turin. In a discussion with Mariangiola Dezani-Ciancaglini and

Mario Coppo the observation was made that in Term Rewriting Systems, types are not

preserved under rewriting. This problem was successfully tackled and reported on in the paper

[van Bakel et al. ’92] which appeared in the February 1992 proceedings of CAAP ’92,

Colloquium on Trees in Algebra and Programming, Rennes, France. Part of the results of that

paper can be found in the chapters nine and eleven. The design of the Applicative Term

Rewriting Systems and the notion of type assignment as presented in that paper was the result

of a cooperation between Sjaak Smetsers of the University of Nijmegen, Simon Brock of the

University of East Anglia, Norwich, U.K., and myself. In the second half of 1991 I

generalized this notion of type assignment to the system that uses intersection types of Rank 2,

which resulted in [van Bakel ’92c], that is submitted for publication to the Journal of

Functional Programming. The results of that paper can be found in chapters eight and twelve.

When writing this thesis I defined the Essential Type Assignment System, both for Lambda

Calculus and Applicative Term Rewriting Systems. These two notions of type assignment

were also presented in [van Bakel ’92b]. The former has been submitted to LICS ’93, Logic In

Computer Science, Montreal, Canada, and can be found in chapter five, the latter will appear
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as [van Bakel ’93] in the March 1993 proceedings of TLCA ’93, Typed Lambda Calculi and

Applications, Utrecht, the Netherlands, and can be found in chapter ten.

The research presented in this thesis was supported by:

• The Dutch Organisation for the Advancement of Pure Research (N.W.O.), grant NF-68.

• The Esprit Basic Research Action 3074 ‘Semantics and Pragmatics of Generalized Graph

Rewriting (Semagraph)’.

• N.W.O.-project ‘Design and implementation of a type system based on intersection types

for the functional graph rewriting language Concurrent Clean’, grant 612-316-027.

Preface xiii

Prerequisites

I assume the reader to be familiar with the lambda calculus, including notions like normal

forms, reduction strategies, λ-models, etc. For definitions and notions used here, see

[Barendregt ’84].

Notations

This section is given as a point of return while reading the thesis; its contents is not intended as

something to read before studying the chapters of the thesis.

In this thesis, the symbol ϕ (often indexed, like in ϕi) will be a type-variable; when writing

a type-variable ϕi, I will sometimes use the index i only, so as to obtain more readable types.

Greek symbols like α, β, γ, µ, ν, η, ρ, σ and τ (often indexed) will range over types, and π

will be used for principal types. To avoid parentheses in the notation of types, I will assume

that ‘→’ associates to the right – so right-most, outer-most brackets will be omitted – and I

will assume that, as in logic, ‘∩’ binds stronger than ‘→’. So σ∩τ→ρ∩µ→γ means

((σ∩τ )→((ρ∩µ)→γ)). I use the word ‘subtype’ to express that one type is a syntactic

component of another or the type itself.

I use M , N for lambda terms, x, y, z for term-variables and A for terms in λ⊥-normal

form. F , G, H , I , etc. are used for function symbols, Q for constants and T for terms in

rewriting systems.

I use B for bases, B\x for the basis obtained from B by erasing the statements that have x

as subject, and P for principal bases. Two types (bases, pairs of basis and type) are disjoint if

and only if they have no type-variables in common.

Notions of type assignment are defined as ternary relations on bases, terms and types, that

are denoted by ! . I use B !I M :σ for the statement ‘M can be typed with the type σ starting

from a basis B using the set of derivation rules that is indicated by I’. If in a notion of type

assignment for M there are basis B and type σ such that B ! M :σ, or a node or edge in the

tree-representation of terms is labelled with a type σ, then the term (node, edge) is typed with

σ, and σ is assigned to it.

I use O for operations on types, bases and pairs of basis and type; I use D for duplications, E

for expansions, L for liftings, S for substitutions, and W for weakenings.

I use the symbol to mark the end of a proof.
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Introduction

Over the last decade the popularity of functional programming has increased. A large and still

growing number of people is becoming interested in functional programming languages: com-

puter scientists and logicians on the scientific side as well as hard- and software manufacturers

on the applied side. Unfortunately for the major part of people working in computer science or

companies, functional programming languages are but a toy, since programs written in the av-

erage functional language take a long time to execute. Nevertheless impressive improvements

are achieved in implementing these languages (reaching nfib-numbers of over one million for

the functional programming language Clean on an Apple Macintosch IIFX) and it seems just a

matter of time before they will become a practical tool in program development.

In recent years several paradigms were investigated for the implementation of functional

programming languages. Not only the Lambda Calculus [Barendregt ’84], but also Term

Rewriting Systems [Klop ’90] and Term Graph Rewriting Systems [Barendregt et al. ’87] were

topics of research. Lambda Calculus (or rather combinator systems) constitutes the underly-

ing model for the functional programming language Miranda [Turner ’85]. Term Rewriting

Systems were used in the underlying model for the language OBJ [Futatsugi et al. ’85], and

Term Graph Rewriting Systems were the model for the language Clean [Brus et al. ’87, Nöcker

et al. ’91].

The extension from Lambda Calculus to Term Rewriting Systems is done via combinator

systems. Term rewrite rules are written very much like the definitions of combinators, the

difference being that a formal parameter can be a pattern: it is allowed to have structure and it

need not be a term-variable. Term Graph Rewriting Systems are obtained from Term Rewriting

Systems by writing terms as trees, and allowing cyclic structures as well as sharing of nodes.

The Lambda Calculus, Term Rewriting Systems and Graph Rewriting Systems themselves are

type free, whereas in programming the notion of types plays an important role. Type assignment

to programs and objects is in fact a way of performing abstract interpretation that provides nec-

essary information for both compilers and programmers. Types are essential to obtain efficient

machine code when compiling a program and are also used to make sure that the program-

mer has a clearer understanding of the programs that are written. Since Lambda Calculus is a

fundamental basis for many functional programming languages, a type assignment system for
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pure untyped Lambda Calculus capable of deducing meaningful and expressive types has been

a topic of research for many years.

There are various ways to deal with the problem of handling types in programming lan-

guages. These can roughly be divided in the ‘typed’ and ‘untyped’ approaches. The ‘typed’ ap-

proach can be found in programming languages that have explicit typing: objects in a program

have types provided by the programmer, and the type-algorithm incorporated in the compiler

for the language checks if these are used consistently. The ‘untyped’ approach is used in lan-

guages that allow programmers to write programs without any type-specification at all, and it is

the task of the type-algorithm to infer types for objects and to check consistency.

There exists a well-understood and well-defined notion of type assignment on lambda terms,

known as the Curry Type Assignment System [Curry & Feys ’58, Curry ’34]), which expressed

abstraction and application. Many of the now existing type assignment systems for functional

programming languages that use the ‘untyped’ approach are based on (extensions of) Curry’s

system. For example, the functional programming language ML [Milner ’78] is in fact an

extended lambda calculus and its type system is based on Curry’s system.

It is well known that in Curry’s system, the problem of typeability

Given a term M , are there basis B and type σ such that B !M :σ?

is decidable. This system also has the principal type property: M is typeable if and only if there

are a basis P , and type π, such that

P !M :π, and for every pair 〈B, σ〉 such that B ! M :σ, there exists an operation O

(from a specified set of operations) such that O (〈P , π〉) = 〈B, σ〉.

The type π is then called a ‘principal type for M ’. In general it is undecidable whether such

an operation exists in the specified collection, except for certain special cases. For Curry’s sys-

tem the operation O consists entirely of substitutions, i.e. operations that replace type-variables

by types. Principal type schemes for Curry’s system were defined in [Hindley ’69].

The existence of a principal type within a type assignment system for a typeable lambda

term M shows an internal coherence between all types that can be assigned to M . Since sub-

stitution is an easy operation, the set { 〈B, σ〉 | B ! M :σ } can be computed in Curry’s system

easily from the principal pair for M . The principal type property plays an important role in the

‘untyped’ approach, since, in an implementation, it allows of the use of the principal type of M

to find the right types for the various occurrences of M without deriving the type for M over

and over again; this property constitutes the basis for the notion of ‘polymorphic functions’ in

programming languages like ML.

In some type assignment systems it is uncertain whether or not this property holds. For

Introduction 3

example, for the Polymorphic Type Discipline [Girard ’86] there is no natural way to obtain the

types (∀ϕ.ϕ)→(∀ϕ.ϕ) and (∀ϕ.ϕ→ϕ)→(∀ϕ.ϕ→ϕ), both types for the lambda term (λx.xx)

from a single type (see [Giannini & Ronchi della Rocca ’88]). In any case, there exists no type

σ derivable for λx.xx such that both types can be obtained from σ by substitution.

In [Milner ’78] an extension of Curry’s system is presented, which can be seen as a restric-

tion of the Polymorphic Type Discipline. Type assignment in this system is decidable and it has

the principal type property. It is designed to formalize the notion of polymorphic functions as

used in functional programming languages like ML and Miranda. (In [Mycroft ’84] a slightly

more general extension of this system was presented in which type assignment is no longer

decidable, but that is nevertheless used for type checking in Miranda.)

Although frequently used in functional programming languages, the Curry Type Assignment

System has some drawbacks. In this system it is, for example, not possible to assign a type to

the term (λx.xx). Moreover, although the lambda terms (λcd.d) and ((λxyz.xz(yz))(λab.a))

are β-equal, the principal type schemes for these terms are different.

The Intersection Type Discipline as presented in [Coppo et al. ’81, Barendregt et al. ’83] is

an extension of Curry’s system that does not have these drawbacks. The extension to Curry’s

system is essentially that term-variables are allowed to have more than one type. Intersection

types are constructed by adding, next to the type constructor ‘→’, the type constructor ‘∩’ and

the type constant ‘ω’. This yields a type assignment system that is very powerful: it is closed

under β-equality:

If B ! M :σ and M =β N , then B ! N :σ.

Because of this power, type assignment in this system is undecidable.

As stated above, if a type assignment system with intersection types is desired – instead of

Curry’s system – for the construction of a type inference system for an untyped functional

programming language, then such a system should at least have the principal pair property.

(Of course decidability of type assignment is also convenient.) There are two intersection type

assignment systems for which this property is proved.

In [Coppo et al. ’80] principal type schemes were defined for a type assignment system that

is a restriction of the one presented in [Coppo et al. ’81]. This system has as a disadvantage

that it is not an extension of Curry’s system: if B !M :τ , and the variable x does not occur

in B, then for λx.M only the type ω→τ can be derived. Therefore, it is impossible to derive

ϕ0→ϕ1→ϕ0 for the lambda term λab.a. This type is derivable for that term in Curry’s system.

For the BCD-system defined in [Barendregt et al. ’83], principal type schemes can be de-

fined as in [Ronchi della Rocca & Venneri ’84]. In [Ronchi della Rocca ’88] a unification
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semi-algorithm for intersection types was presented, together with a semi-algorithm that finds

the principal type for every strongly normalizable lambda term. These algorithms are called

‘semi-algorithms’, because they do not terminate for every possible input.

The BCD-system has as a disadvantage that it is too general: in this system there are several

ways to deduce a desired result, due to the presence of the derivation rules (∩I), (∩E) and (≤).

These rules not only allow of superfluous steps in derivations, but they also make it possible to

give essentially different derivations for the same result. Moreover, in [Barendregt et al. ’83]

the relation ≤ induced an equivalence relation ∼ on types. Equivalence classes are big (for

example: ω ∼ σ→ω, for all types σ) and type assignment is closed for ∼ . And although the set

{ 〈B, σ〉 | B !M :σ } can be generated using the operations specified in [Ronchi della Rocca

& Venneri ’84], the problem of type-checking

Given a term M and type σ, is there a B such that B !M :σ?

is complicated.

Although the BCD-system has the principal type property, it is not used in type checkers

for functional languages at the present time, as type assignment is undecidable in this system.

In order to obtain a terminating type checker based on this system, some restrictions have

to be made. There are of course limitations of the BCD-system that provide decidable type

assignment and efficient implementation (the trivial one being the restriction to Curry’s system).

Another possibility is the one suggested in [Leivant ’83]: limiting the set of types to intersection

types of Rank 2.

Because of the similarity between this system and the one for ML, this system got little

attention from the functional programming world in the past. This is surprising, considering

the several advantages of the Rank 2 system over the one for ML. Not only the class of ty-

peable terms is significantly extended when intersection types of Rank 2 are used, but also

more accurate types can be deduced for terms. Moreover, when using the ML-type checker it

is possible that a program (correct in the programmers mind) is rejected because of occurring

type conflicts, while on the other hand it could be accepted after the programmer has rewritten

the specification. Such a rewrite would not be necessary if Rank 2 types were used.

Most functional programming languages, for instance Miranda, allow programmers to specify

an algorithm (function) as a set of rewrite rules. It is remarkable that little is known – apart from

the algebraic approach [Dershowitz & Jouannaud ’90] – about type assignment in Term Rewrit-

ing Systems. The type assignment systems incorporated in most term rewriting languages are

in fact extensions of type assignment systems for a(n extended) lambda calculus, and although

it seems straightforward to generalize those systems to the (significantly larger) world of Term

Rewriting Systems, it is at first glance not evident that those borrowed systems still have all the
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properties they possessed in the world of Lambda Calculus. For example, type assignment in

Term Rewriting Systems in general does not satisfy the subject reduction property: i.e. types

are not preserved under rewriting. In order to be able to study the details of type assignment

for Term Rewriting Systems, a formal notion of type assignment on Term Rewriting Systems is

needed, that is closer to the approach of type assignment in Lambda Calculus than the algebraic

one.

The aim of the research presented in this thesis is develop to type assignment systems with

intersection types for the Lambda Calculus and for Term Rewriting Systems, in order to in-

vestigate and understand their structure and properties and to see whether the definition of a

type-checker for a functional programming language with intersection types is feasible. Inter-

section types are examined because they are a good means to perform abstract interpretation:

better than Curry types, also even better than the kind of types used in languages like ML. Also,

the presented formalisms could be extended to the world of Term Graph Rewriting Systems,

which is favourable as in that world intersection types are the natural tool to type nodes that are

shared. Moreover, intersection types seem to be promising for use in functional programming

languages, since they seem to provide a good formalism to express overloading. The results

of this research can be used as a guideline to develop type-inferencing (and type-checking)

algorithms using intersection types in functional programming languages.

There is a great number of notions of type assignment presented in this thesis (fifteen in total),

each defined as a ternary relation on bases, terms and types and denoted by ! , indexed with

information to be able to distinguish them.

In chapters one through three a short overview of various type disciplines will be given.

It starts with the presentation of the Curry Type Assignment System ( !C ) in chapter one.

Chapter two will contain the development of the Intersection Type Discipline, by presenting the

several systems that were published in the past. In section 2.1 the Coppo-Dezani System ( !CD )

will be discussed, and in section 2.2 three Coppo-Dezani-Venneri Systems ( !CDV , !CDVR
,

!CDVP
). In section 2.3 the Barendregt-Coppo-Dezani System ( !BCD ) will be discussed. In

chapter three a short overview of the Milner Type Assignment System [Milner ’78] ( !ML ) will

be given – that will be compared to the Rank 2 Intersection Type Assignment System in chapter

eight – and the Mycroft Type Assignment System [Mycroft ’84] ( !Myc ).

In chapters four through eight intersection type disciplines for the Lambda Calculus will

be studied. In chapter four the Strict Type Assignment System ( !S ) will be presented, a

restriction of the BCD-system that satisfies all major properties of that full system, for which

in chapter six will be proved that the principal type property holds. In chapter five the Essential

Intersection Type Assignment System ( !E ) will be defined, a slight generalization of the strict
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one and also a restriction of the BCD-system. The intersection type assignment system without

the type constant ω ( !−ω ) will be presented in chapter seven. It will be shown that all three

restrictions yield undecidable systems. So these attempts to restrict the system in preparation

for the construction of a type checker will fail. In chapter eight the Rank 2 Intersection Type

Assignment System ( !R ) will be defined, the smallest restriction of the Intersection Type

Discipline that contains intersection types. It will be shown that in this system type assignment

is decidable and that it has the principal type property.

In chapters nine through twelve intersection type disciplines will be studied for Applicative

Term Rewriting Systems, that will be defined in chapter nine. In chapter ten a formal notion

of type assignment ( !E ) will be presented that uses strict intersection types. Chapters eleven

and twelve will be presented in such a way that they can be read independently from the other

chapters in this thesis, although it is advisable to study chapter eight before reading chapter

twelve. Those chapters aim to present type assignment systems that can be used in functional

programming languages, so not only will be shown that the presented systems have the principal

type property, but also will be shown that type assignment is decidable in those systems by

presenting (terminating) unification algorithms that should be implemented when such a system

is used.

In chapter eleven a formal notion of type assignment on left linear Applicative Term Rewrit-

ing Systems will be presented ( !CE ) that uses Curry types, and the way of dealing with recur-

sion of the extension defined by Mycroft of Curry’s system. This chapter aims to give formal

motivation for the type system of Miranda, and to provide a formal type system for all languages

that use pattern matching and have type systems based on Mycroft’s extension of Curry’s sys-

tem.

In chapter twelve a type assignment system for Applicative Term Rewriting Systems will

be defined that uses intersection types of Rank 2 ( !RE ). The Rank 2 system is very close to the

Milner Type Assignment System, as discussed in chapter eight, so should show the advantages

of intersection types over Curry types (or ML types).

In a picture the relation between the several notions of type assignment looks like this:
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An arrow is drawn from one turnstyle to another if the second (the one the arrow will

eventually point at) is a natural extension (or generalization) of the first (the one the arrow will

point from). This means that ideas and definitions of the system at the start of the arrow are

used to define the system at the end of it, or the system at the start is a restriction of the system

at the end. When the arrow does not stand for a real extension, it is marked by ∗. Otherwise if

B ! M :σ holds in the system at the start of the arrow, then B ! M :σ holds in the system at the

end; the latter M is sometimes obtained from the former one by bracket-abstraction.



Chapter 1 The Curry Type Assignment System

Type assignment for the Lambda Calculus was first studied in [Curry ’34]. (See also [Curry

& Feys ’58].) Curry’s system – the first and most primitive one – expresses abstraction and

application and has as its major advantage that the problem of type assignment (given a term

M , are there B, σ such that B !C M :σ) is decidable. In this chapter we will present the main

definitions and results for this system, using a notation that will be used throughout this thesis.

Definition 1.1 (cf. [Curry ’34, Curry & Feys ’58]) i) TC, the set of Curry-types is inductively

defined by:

a) All type-variables ϕ0, ϕ1, . . . ∈ TC.

b) If σ and τ ∈ TC, then σ→τ ∈ TC.

ii) A Curry statement is an expression of the form M :σ, where M ∈Λ and σ ∈ TC.

M is the subject and σ the predicate of M :σ.

iii) A Curry basis is a set of Curry statements with only distinct variables as subjects.

Definition 1.2 (cf. [Curry ’34, Curry & Feys ’58]) i) Curry-type assignment and

Curry-derivations are defined by the following natural deduction system.

[x:σ]
:

M :τ
(→I): (a)

λx.M :σ→τ

M :σ→τ N :σ
(→E):

MN :τ

(a) : If x:σ is the only statement about x on which M :τ depends.

ii) If M :σ is derivable from B using a Curry-derivation, we write B !C M :σ.
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The main properties of this system are:

• The principal type property.

• Decidability of type assignment.

• Strongly normalizability of all typeable terms.

Because of the decidability of type assignment in this system, many of the now existing

type assignment systems for functional programming languages are based on Curry’s system.

Principal type schemes for Curry’s system were defined in [Hindley ’69]. In this paper

Hindley actually proved the existence of principal types for an object in Combinatory Logic,

but the same construction can be used for a proof of the principal type property for terms in the

Lambda Calculus. We will discuss this construction briefly.

First we define the operation of Curry-substitution on types as the operation that replaces type-

variables by types in a consistent way. There are various ways to formally define such an

operation; the one we choose here will be used throughout this thesis. The operation is called

a Curry-substitution in order to distinguish it from other substitutions, very similar to Curry-

substitution, as defined in definitions 2.2.2.2, 2.3.2.1, 3.1.2, 6.2.1.1, and 8.3.1.1.

Definition 1.3 i) a) The Curry-substitution (ϕ := α) : TC → TC where ϕ is a type-variable

and α ∈ TC, is inductively defined by:

1) (ϕ := α) (ϕ) = α.

2) (ϕ := α) (ϕ′) = ϕ′, if ϕ ,= ϕ′.

3) (ϕ := α) (σ→τ ) = (ϕ := α) (σ)→ (ϕ := α) (τ ).

b) If S1 and S2 are Curry-substitutions, then so is S1◦S2, where S1◦S2 (σ) = S1 (S2 (σ)).

c) S (B) = { x:S (α) | x:α ∈B }.

d) S (〈B, σ〉) = 〈S (B), S (σ)〉.

ii) If for σ, τ there is a Curry-substitution S such that S (σ) = τ , then τ is called a

(substitution) instance of σ.

iii) If σ is an instance of τ , and τ is an instance of σ, then σ is called a trivial variant of τ .

We identify types that are trivial variants of each other.

Curry-substitution is a sound operation on pairs:

Property 1.4 If B !C M :σ, then for every Curry-substitution S: if S (〈B, σ〉) = 〈B′, σ′〉, then

B′ !C M :σ′.
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Principal types for lambda terms are defined using the notion of unification of types that was

defined in [Robinson ’65]. Robinson’s unification is a procedure on Curry-types which, given

two arguments, returns a Curry-substitution that maps the arguments to a common instance. It

can be defined as follows:

Definition 1.5 Let B the collection of all Curry bases, S be the set of all Curry-substitutions,

and IdS be the Curry-substitution that replaces all type-variables by themselves.

i) Robinson’s unification algorithm. The operation unifyR : TC × TC → S is defined by:

unifyR (ϕ, ϕ′) = (ϕ := ϕ′).

unifyR (ϕ, µ) = (ϕ := µ), if ϕ does not occur in µ and µ is not a type-variable.

unifyR (σ, ϕ) = unifyR (ϕ, σ).

unifyR (σ→τ , ρ→µ) = S2◦S1,

where S1 = unifyR (σ, ρ),

S2 = unifyR (S1 (τ ), S1 (µ)).

ii) By defining the operation UnifyBases : B × B → S the operation unifyR can be

generalized to bases:

UnifyBases (B0 ∪{x:σ}, B1) = S2◦S1, if x:τ ∈B1

where S1 = unifyR (σ, τ ),

S2 = UnifyBases (S1 (B0), S1 (B1)).

UnifyBases (B0 ∪{x:σ}, B1) = UnifyBases (B0, B1), if x does not occur in B1.

UnifyBases (∅, B1) = IdS .

Notice that unifyR can fail only in the second alternative, when ϕ occurs in µ.

The following property of Robinson’s unification is very important for all systems that

depend on it, and formulates that unifyR returns the most general unifier of two Curry-types.

This means that if two Curry-types σ and τ have a common instance, then they have a least

common instance γ and all their common instances can be obtained from γ by Curry-substitu-

tion.

Property 1.6 [Robinson ’65] If two types have an instance in common, they have a highest

common instance which is returned by unifyR, so for all σ, τ : if S1 is a substitution such that

S1 (σ) = S1 (τ ), then there are substitutions S2 and S3 such that

S2 = unifyR (σ, τ ) and S1 (σ) = S3◦S2 (σ) = S3◦S2 (τ ) = S1 (τ ).
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Since the substitution returned by unifyR is only defined on type-variables occurring in σ

and τ , it is even possible to show that S1 = S3◦S2.

The definition of principal pairs for lambda terms in Curry’s system then looks like:

Definition 1.7 We define for every term M the Curry principal pair by defining the notion

PPC (M ) = 〈P , π〉 inductively by:

i) For all x, ϕ: PPC (x) = 〈{x:ϕ}, ϕ〉.

ii) If PPC (M ) = 〈P , π〉, then:

a) If x occurs free in M and x:σ ∈ P , then PPC (λx.M ) = 〈P\x, σ→π〉.

b) otherwise PPC (λx.M ) = 〈P , ϕ→π〉, where ϕ does not occur in 〈P , π〉.

iii) If PPC (M1) = 〈P1, π1〉 and PPC (M2) = 〈P2, π2〉 (we choose, if necessary, trivial

variants such that the 〈Pi, πi〉 are disjoint in pairs), ϕ is a type-variable that does not

occur in any of the pairs 〈Pi, πi〉, and

S1 = unifyR (π1, π2→ϕ)

S2 = UnifyBases (S1 (P1), S1 (P2)),

then PPC (M1M2) = S2◦S1 (〈P1 ∪P2, ϕ〉).

The proof that these are indeed the principal pairs is given by showing that all possible pairs

for a typeable term M can be obtained from the principal one by applying Curry-substitutions

(similar to the proof of theorem 11.2.2). In this proof, property 1.6 is needed.

Chapter 2 Intersection Type Assignment

Systems

Although type assignment in Curry’s system is decidable and has the principal type property,

it has drawbacks. It is for example not possible to assign a type to the lambda term λx.xx,

and although the lambda terms λcd.d and (λxyz.xz(yz))λab.a are β-equal, the principal type

schemes for these terms are different, ϕ0→ϕ1→ϕ1 and (ϕ1→ϕ0)→ϕ1→ϕ1 respectively. The

Intersection Type Discipline is an extension of Curry’s Type Assignment System for the pure

Lambda Calculus that does not have these drawbacks. It has developed over a period of several

years; we will not just give the final presentation, but show the various systems as they appeared

between 1980 and 1983, since they all play a role in this thesis.

2.1 The Coppo-Dezani Type Assignment System
The first paper by M. Coppo and M. Dezani-Ciancaglini from the University of Turin, Italy

that introduced intersection types is [Coppo & Dezani-Ciancaglini ’80] (in this paper the word

‘intersection’ was not used; instead it used the word ‘sequence’). The system presented in this

paper is a true extension of Curry’s system: the extension made is to allow more than one type

for term-variables in the (→I)-derivation rule, and therefore to allow of, also, more than one

type for the right hand term in the (→E)-derivation rule.

We will present the definition and main properties of the Coppo-Dezani system in the nota-

tion used in this thesis.

Definition 2.1.1 [Coppo & Dezani-Ciancaglini ’80] The set of Coppo-Dezani types is

inductively defined by:
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i) All type-variables ϕ0, ϕ1, . . . are types.

ii) If σ1, . . . , σn are types (n ≥ 1), then σ1∩· · ·∩σn is a sequence.

iii) If σ1∩· · ·∩σn is a sequence and τ is a type, then σ1∩· · ·∩σn→τ is a type.

Definition 2.1.2 [Coppo & Dezani-Ciancaglini ’80] i) CD-type assignment and

CD-derivations are defined by the following natural deduction system.

[x:σ1∩· · ·∩σn]
:

M :τ
(→I): (a)

λx.M :σ1∩· · ·∩σn→τ

M :σ1∩· · ·∩σn→τ N :σ1∩· · ·∩σn
(→E):

MN :τ

M :σ1 · · · M :σn
(∩I):

M :σ1∩· · ·∩σn

x:σ1∩· · ·∩σn
(∩E):

x:σi

(a) : If x:σ1∩· · ·∩σn is the only statement about x on which M :τ depends.

ii) If M :σ is derivable from B using a CD-derivation, we write B !CD M :σ.

The main properties of that system proved in [Coppo & Dezani-Ciancaglini ’80] are:

• Subject reduction: If B !CD M :σ, and M →β N , then B !CD N :σ.

• Normalizability of typeable terms: If B !CD M :σ, then M has a normal form.

• Typeability of all terms in normal form.

• Closure for β-equality in the λI-calculus: if B !CD M :σ, and M =β N , then

B !CD N :σ.

• In the λI-calculus: B !CD M :σ if and only if M has a normal form.

That subject reduction holds is not difficult to see (we give an intuitive argument). Suppose

there exists a type assignment for the redex (λx.M)N , so there are a basis B and a type σ such

that there is a derivation for B !CD (λx.M)N :σ. Then by (→E) there is a sequence τ1∩· · ·∩τn

such that there are derivations B !CD λx.M :τ1∩· · ·∩τn→σ and B !CD N :τ1∩· · ·∩τn. Since

(→I) should be the last step performed in the derivation for B !CD λx.M :τ1∩· · ·∩τn→σ, there

is also a derivation for B∪{x:τ1∩· · ·∩τn} !CD M :σ, and then a derivation for B !CD M [x := N ]:σ

can be obtained from this one by replacing for 1≤ i≤n the statement x:τi by the CD-derivation

for N :τi.

The problem to solve in a proof for closure under β-equality is then that of β-expansion:

suppose we have derived B !CD M [x := N ]:σ and also want to derive B !CD (λx.M)N :σ.
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When restricting to λI-terms, the term-variable x occurs in M , and the term N is a subterm

of M [x := N ], so N is typed in the derivation for B !CD M [x := N ]:σ. It may be that in

this derivation the subterm N is typed with several different types. Then in Curry’s system

the redex (λx.M)N can not be typed using the same types, since then the basis would contain

more than one type for x, which is not allowed. In the CD-system this problem is solved by

the introduction of sequences. The assignment of a sequence to a term-variable allows of that

variable to have different types within a derivation, so in this formalism the redex can be typed.

From this initial system several others emerged. The best known is the one presented in [Baren-

dregt et al. ’83], but there are two earlier papers ([Coppo et al. ’81] and [Coppo et al. ’80])

that investigate interesting systems which can be regarded as in-between the ones in [Coppo &

Dezani-Ciancaglini ’80] and [Barendregt et al. ’83].

2.2 The Coppo-Dezani-Venneri Type Assignment Systems
In this section two papers by M. Coppo, M. Dezani-Ciancaglini and B. Venneri will be dis-

cussed. The paper [Coppo et al. ’81] presented a notion of type assignment that is an extension

of the CD-system; the paper [Coppo et al. ’80] contained the proof of the principal type property

for a restricted version of the system in [Coppo et al. ’81].

2.2.1 The systems of [Coppo et al. ’81]

In [Coppo et al. ’81] two type assignment systems are presented, that, in approach, are more

general than the Coppo-Dezani Type Assignment System: in addition to the type constructors

‘→’ and ‘∩’, they also contain the type constant ‘ω’. The first type discipline as presented in

[Coppo et al. ’81] is a true extension of the one presented in [Coppo & Dezani-Ciancaglini ’80]

(a similar system was presented in [Sallé ’78]); the second one limits the use of intersection

types in bases. By introducing the type constant ω next to the intersection types, a system is

obtained that is closed under β-equality for the full λK-calculus: if M =β N , where M and N

are lambda terms, then B !CDV M :σ ⇐⇒ B !CDV N :σ.

Definition 2.2.1.1 [Coppo et al. ’81] i) TCDV, the set of Coppo-Dezani-Venneri types is

inductively defined by:

a) All type-variables ϕ0, ϕ1, . . . ∈ TCDV.

b) ω ∈ TCDV.

c) If σ1, . . . , σn ∈ TCDV, (n ≥ 1), then σ1∩· · ·∩σn is a sequence.
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d) If σ1∩· · ·∩σn is a sequence and τ ∈ TCDV, then σ1∩· · ·∩σn→τ ∈ TCDV.

ii) Every τ ∈ TCDV can be written as σ1→· · ·→σn→σ, where σ1, . . . , σn are sequences, and

σ is a type-variable or ω. The type τ is called tail-proper if σ ,= ω.

Definition 2.2.1.2 [Coppo et al. ’81] i) CDV-type assignment and CDV-derivations are defined

by:

[x:σ1] · · · [x:σn]
:

M :τ
(→I): (a)

λx.M :σ→τ

M :σ1∩· · ·∩σn→τ N :σ1∩· · ·∩σn
(→E):

MN :τ

(ω):
M :ω

M :σ1 · · · M :σn
(∩I):

M :σ1∩· · ·∩σn

(a) : If x:σ1, . . . , x:σn are all and nothing but the statements about x on which M :τ

depends, and σ is a sequence that at least contains all σ1, . . . , σn.

ii) If M :σ is derivable from B using a CDV-derivation, we write B !CDV M :σ.

The main properties of this system proved in [Coppo et al. ’81] are:

• If B !CDV M :σ and M =β N , then B !CDV N :σ.

• B !CDV M :σ and σ is tail-proper, if and only if M has a head normal form.

• B !CDV M :σ and ω does not occur in B and σ, if and only if M has a normal form.

To illustrate the difference between this system and the Coppo-Dezani system, we again

look at β-expansion: suppose we have a derivation for B !CDV M [x := N ]:σ and also want

to derive B !CDV (λx.M)N :σ. For the full λK-calculus this problem is solved by the in-

troduction of the type constant ω and the sequences. The type constant ω is the universal

type, i.e. each term can be typed by ω. It can be used in the expansion to type N if N

does not occur in M [x := N ], and there is no other type ρ such that B !CDV N :ρ. If N

does not occur in M [x := N ], x does not occur in M , and therefore there is a derivation

for B !CDV λx.M :ω→σ. Since N is typeable by ω, by derivation rule (→E) we have that

(λx.M)N is typeable by σ.

As before, the sequences allow a term-variable to have different types within a derivation;

they are used for the cases that N occurs more than once in M [x := N ], and these occurrences

were typed in the derivation for B !CDV M [x := N ]:σ with different types.
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The second type assignment system presented in [Coppo et al. ’81] is a restricted version of

the first. Since it limits the possible bases that can be used in a derivation, it is not a proper

extension of Curry’s system.

As mentioned in [Coppo et al. ’81]:

“ (. . . ) notice that a type σ→ω represents a property of terms which applied

to a particular class of terms (i.e. terms in σ), give a term. But this property

characterizes all terms and, so, it is natural to identify with ω all types of the

shape σ→ω and, in general, all non-tail-proper types. By a similar argument

we (. . . ) identify a sequence σ1∩· · ·∩σn with a sequence σ1
′∩· · ·∩σm′ obtained

by eliminating from σ1∩· · ·∩σn all occurrences of non-tail-proper types σi

(unless, obviously, σ1∩· · ·∩σn ≡ ω). These arguments justify the elimination

of all non-tail-proper types (except ω) and of all sequences that contain non-

tail-proper types (except ω). ”

A good justification for this identification of types can be found in the definition of type-

semantics (definition 2.3.1.4). This leads to the following definition.

Definition 2.2.1.3 [Coppo et al. ’81] i) The set of normalized types is inductively defined by:

a) All type-variables ϕ0, ϕ1, . . . are normalized types.

b) ω is a normalized sequence.

c) If σ1, . . . , σn are normalized types (n ≥ 1) and for 1≤ i≤n σi ,= ω, then σ1∩· · ·∩σn

is a normalized sequence.

d) If σ is a normalized sequence and τ is a normalized type, where τ ,= ω, then σ→τ is a

normalized type.

Observe that the only normalized non-tail-proper type is ω.

ii) On the set of types, the relation ∼CDV is defined by:

a) ϕ ∼CDV ϕ.

b) σ1∩· · ·∩σi∩σi+1∩· · ·∩σn ∼CDV σ1
′∩· · ·∩σi+1

′∩σi
′∩· · ·∩σn′ ⇐⇒

∀ 1≤ i≤n [ σi ∼CDV σi
′ ].

c) σ→τ ∼CDV σ′→τ ′ ⇐⇒ σ ∼CDV σ′ & τ ∼CDV τ ′.

Types are considered modulo ∼CDV .

Definition 2.2.1.4 [Coppo et al. ’81] i) Restricted CDV-type assignment and restricted

CDV-derivations are defined by:
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[x:σ1] · · · [x:σn]
:

M :τ
(→I): (a)

λx.M :σ1∩· · ·∩σn→τ

M :σ1∩· · ·∩σn→τ N :σ1∩· · ·∩σn
(→E):

MN :τ

(ω):
M :ω

M :σ1 · · · M :σn
(∩I): (b)

M :σ1∩· · ·∩σn

(a) : If τ ,= ω and x:σ1, . . . , x:σn are all and nothing but the statements about x on which

M :τ depends. If n = 0, so in the derivation for M :τ there is no premise whose subject

is x, then σ1∩· · ·∩σn = ω.

(b) : If for 1≤ i≤n, σi ,= ω.

ii) If M :σ is derivable from B using a restricted CDV-derivation, we write B !CDVR
M :σ.

It is obvious that B !CDVR
M :σ implies B !CDV M :σ. The converse does not hold, due

to the fact that the derivation rule (→I) in the unrestricted system allows for the construction of

sequences that contain ‘redundant’ types, which is not possible in the restricted system.

In both systems, types are not invariant by η-expansion, since for example ! λx.x:ϕ→ϕ,

but not ! λxy.xy:ϕ→ϕ. Moreover, type assignment in the unrestricted system is not invariant

under η-reduction: for example

!CDV λxy.xy:(σ→τ )→σ∩ρ→τ , but not !CDV λx.x:(σ→τ )→σ∩ρ→τ .

This property however holds for the restricted system; properties of this restricted system

proved in [Coppo et al. ’81] are:

• If B !CDVR
M :σ, then σ is a normalized type.

• If B !CDVR
M :σ and M →η N , then B !CDVR

N :σ.

2.2.2 The system of [Coppo et al. ’80]

The type assignment system studied in [Coppo et al. ’80] is the restricted one from [Coppo

et al. ’81], but with the set of types of the unrestricted system.

Definition 2.2.2.1 We will write B !CDVP
M :σ for statements derivable in the system with

the derivation rules from definition 2.2.1.4 and types in TCDV.
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The two main results of that paper are the proof of existence of principal types and that it

is possible to define a λ-calculus model the domain of which is the powerset of the set of type

schemes. In this model a term is interpreted by the set of types assignable to it.

The principal type property is achieved by defining principal pairs of basis and type for

terms in λ⊥-normal form, specifying the operations of expansion and substitution, proved suf-

ficient to generate all possible pairs for those terms from their principal pair, and generalizing

this result to arbitrary lambda terms. This technique is the same as for example used in [Ronchi

della Rocca & Venneri ’84] (discussed in subsection 2.3.2) and in chapter six of this thesis. We

will briefly discuss this construction, using the notations of this thesis.

In [Coppo et al. ’80] two operations on types were specified, substitution and expansion. The

definition of substitution is similar to the one for Curry-substitutions. Expansion is defined as

an operation that introduces extra types in a sequence, by replacing a subderivation by more

than one subderivation with the same structure.

Definition 2.2.2.2 [Coppo et al. ’80] i) The CDV-substitution (ϕ := α) : TCDV → TCDV,

where ϕ is a type-variable and α is a normalized type, is defined by:

a) (ϕ := α) (ϕ) = α.

b) (ϕ := α) (ϕ′) = ϕ′, if ϕ ,= ϕ′.

c) (ϕ := α) (σ→τ ) = (ϕ := α) (σ)→ (ϕ := α) (τ ).

d) (ϕ := α) (σ1∩· · ·∩σn) = (ϕ := α) (σ1)∩· · ·∩ (ϕ := α) (σn).

ii) If S1 and S2 are CDV-substitutions, then so is S1◦S2, where S1◦S2 (σ) = S1 (S2 (σ)).

Notice that although α is normalized, if σ→τ is normalized then the type (ϕ := α) (σ→τ )

need not be normalized, since for example α can be ω and τ the type-variable ϕ.

CDV-substitution is, like Curry-substitution, extended to bases in a natural way and it is a

sound operation on pairs:

Property 2.2.2.3 [Coppo et al. ’80] If B !CDVP
M :σ, then for every CDV-substitution S:

S (B) !CDVP
M :S (σ).

As mentioned in the introduction of [Coppo et al. ’80]:

“ (. . . ) different types can be assigned to the same component of a given term.

Then the structure of deductions does not simply correspond, as in Curry’s

theory, to the structure of terms but it is more ‘ramified’ and there is no limit
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to its complexity. With the only operation of substitution we cannot obtain, for

a given term, all types whose deduction are more complex than the one of the

type on which we are doing the substitution. (. . . ) (This) difficulty (. . . ) can

be overcome if we introduce, besides substitution, the new (context-dependent)

operation of expansion. ”

The definition of expansion is very complicated. It is an operation on types that deals with

the replacement of (sub)types by a number of copies of that type. An expansion indicates not

only the type to be expanded, but also the number of copies that has to be generated. It is a

complex operation, possibly affecting more types than just the one to be expanded occurs in.

To clarify this, consider the following: suppose that µ is a subtype of σ that is to be expanded

into n copies. If τ→µ is also a subtype of σ, then there are several ways to create the expansion

of τ→µ: just replacing µ by an intersection of copies of µ would generate τ→1∩· · ·∩µn, which

is not a type in TCDV. It could be replaced by (τ→µ1) ∩· · ·∩ (τ→µn). But this last approach

is not sufficient: it would not be closed for ground pairs (definition 2.2.2.8), a property that is

needed in the proof that the specified operations are complete.

The subtype τ→µ will therefore be expanded into (τ 1→µ1)∩· · ·∩ (τn→µn), where the τ1,

. . . , τn are copies of τ . Then τ is affected by the expansion of µ; all other occurrences of τ

should be expanded into 1∩· · ·∩τn, with possibly the same effect on other types.

Before we give the definition of expansion, the notion of nucleus of a multiset of type schemes

is defined. A multiset is a like a set, but with possibly multiple occurrences of elements. A

nucleus is defined on a collection of types, and is the set of all types that are affected by the

expansion.

Definition 2.2.2.4 [Coppo et al. ’80] Let C = {τ1, . . . , τn} be a multiset of type schemes. Let

ρ1, . . . , ρm be occurrences of subtypes of τ1, . . . , τn and let E denote the multiset {ρ1, . . . ,

ρm}. E is a nucleus of C if and only if:

i) ρi ,= ω for 1≤ i≤m.

ii) for all 1 ≤ i ,= j ≤ m the occurrence ρi is not a part of the occurrence ρj in C.

iii) all type-variables that occur in ρ1, . . . , ρm do not occur in C outside ρ1, . . . , ρm.

iv) for all 1≤ i≤m, either ρi ≡ τj or ρi is contained in some sequence which occurs in τj ,

for some 1≤ j≤n.

These notions of multiset and nucleus are then used to define expansions.
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Definition 2.2.2.5 [Coppo et al. ’80] i) A multiset of type schemes C′ is an immediate

expansion of a multiset C if and only if there are a nucleus E of C and integer n ≥ 1 such

that C′ can be obtained from C in the following way:

a) Suppose {ϕ1, . . . , ϕm} is the set of all type-variables that occur in E. Choose m× n

different type-variables ϕ1
1, . . . , ϕn

1 , . . . , ϕ1
m, . . . , ϕn

m, such that each ϕi
j does not

occur in C, for 1≤ i≤n and 1≤ j≤m. Let Si be the substitution that replaces every

ϕj by ϕi
j .

b) For each occurrence of τ ∈ E, replace τ in C by S1 (τ )∩· · ·∩ Sn (τ ).

ii) The multiset C′ is a CDV-expansion of another multiset C if and only if we can obtain C′

from C by means of a finite number (possible none) of successive immediate expansions.

Notice that if C (〈B, σ〉) = 〈B′, σ′〉 and B, σ are normalized, then B′, σ′ are normalized too.

As remarked in the introduction of [Coppo et al. ’80]:

“ (. . . ) in our theory also terms without normal form or, in particular, terms that

have an ‘infinite’ normal form (. . . ) have types. (. . . ) the set of all functional

characters of these terms must carry an infinite amount of information and it

cannot be represented in a finite way. (. . . ) we shall consider the existence of

principal type schemes for arbitrary terms. We shall do this through the notion

of approximant of a term. (. . . ) It will turn out that terms with a finite number

of approximants have finite principal type schemes while terms with a infinite

number of approximants have ‘infinite’ principal type schemes. ”

The notion of approximant is defined using the notion of terms in λ⊥-normal form (like in

[Barendregt ’84], we use the symbol ⊥ instead of Ω).

Definition 2.2.2.6 [Barendregt ’84] i) The set of Λ⊥-terms is defined as the set Λ of lambda

terms, extended by: ⊥∈Λ⊥.

ii) The notion of reduction →β⊥ is defined as →β , extended by:

a) λx.⊥→β⊥ ⊥.

b) ⊥M →β⊥ ⊥.

iii) The set of normal forms for elements of Λ⊥ with respect to →β⊥ is the set N of

λ⊥-normal forms or approximate normal forms and is inductively defined by:

a) All term-variables are elements of N , ⊥∈N .

b) If A ∈N , A ,= ⊥, then λx.A ∈N .
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c) If A1, . . . , An ∈N , then xA1 . . . An ∈N .

iv) A∈N is a direct approximant of M ∈Λ, if A matches M except for occurrences of ⊥.

v) A∈N is an approximant of M ∈Λ (notation: A 5 M ) if there is an M ′ =β M such that

A is a direct approximant of M ′.

vi) A(M) = {A ∈ N | A 5 M}.

The type assignment rules are generalized by allowing for the terms to be elements of Λ⊥.

Definition 2.2.2.7 [Coppo et al. ’80] A set of pairs V is called complete for a term M if and

only if for all pairs 〈B, σ〉: B !CDVP
M :σ if and only if there is a pair 〈B′, σ′〉 ∈ V and an

operation O such that O (〈B′, σ′〉) = 〈B, σ〉.

Then for A ∈N the notion of ground pairs for A is introduced. The set of ground pairs

for a term A∈N is proved to be complete for A. Ground pairs are those that express the

essential structure of a derivation, and types in it are as general as possible with respect to

CDV-substitutions. Ground pairs are defined as follows:

Definition 2.2.2.8 [Coppo et al. ’80] The pair 〈B, σ1∩· · ·∩σn〉 is a CDV-ground pair for

A∈N if and only if:

i) If n > 1, then σi ,= ω for 1≤ i≤n, there are B1, . . . , Bn such that B = B1∪· · ·∪Bn, the

〈Bi, σi〉 are disjoint in pairs and for 1≤ i≤n 〈Bi, σi〉 is a CDV-ground pair for A.

ii) If n = 1, then:

a) If σ = ω, then B = ∅ and A ≡ ⊥.

b) If A ≡ x, then B = {x:ϕ}, and σ = ϕ.

c) If A ≡ λx.A′, then:

1) If x∈ FV(A′), then σ = α→β, and 〈B ∪{x:α}, β〉 is a CDV-ground pair for A′.

2) If x ,∈ FV(A′), then σ = ω→β, and 〈B, β〉 is a CDV-ground pair for A′.

d) If A ≡ xA1 . . . Am, then σ = ϕ, and there are B1, . . . , Bm, τ1, . . . , τm such that

B = B1∪· · ·∪Bm∪{x:τ1→· · ·→τm→ϕ}, the 〈Bj , τj〉 are disjoint in pairs, and for

every 1≤ j≤m, ϕ does not occur in 〈Bj , τj〉, which is a CDV-ground pair for Aj .

The proof of the principal type property is obtained by first proving the following (proofs

in [Coppo et al. ’80] are obscured by the fact that, between steps, types have to be normalized;

we will ignore these details here):
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Property 2.2.2.9 [Coppo et al. ’80] i) If B !CDVP
A:σ with A ∈N , then there is a

substitution S and a CDV-ground pair 〈B′, σ′〉 for A such that S (〈B, σ〉) = 〈B′, σ′〉.

ii) If 〈B, σ〉 is a CDV-ground pair for A∈N , and 〈B′, σ′〉 can be obtained from 〈B, σ〉 by

an immediate expansion, then 〈B′, σ′〉 is a CDV-ground pair for A.

So expansion is closed on CDV-ground pairs.

iii) For all A∈N : every CDV-ground pair for A is complete for A.

In the construction of principal pairs for lambda terms, first for every A∈N a particular

pair 〈P , π〉 is chosen of basis P and type π, called the principal basis scheme and principal

type scheme of A respectively. This pair will be called the principal pair of A.

Definition 2.2.2.10 [Coppo et al. ’80] i) Let A ∈N . PPCDV (A), the CDV-principal pair of

A, is defined by:

a) PPCDV (⊥) = 〈∅, ω〉.

b) PPCDV (x) = 〈{x:ϕ}, ϕ〉.

c) If A ,= ⊥, and PPCDV (A) = 〈P , π〉, then:

1) If x occurs free in A, and x:σ ∈ P , then PPCDV (λx.A) = 〈P\x, σ→π〉.

2) otherwise PPCDV (λx.A) = 〈P , ω→π〉.

d) If PPCDV (Ai) = 〈Pi, πi〉 for 1≤ i≤n (we choose trivial variants that are disjoint in

pairs), then PPCDV (xA1 . . . An) = 〈P1∪· · ·∪Pn ∪{x:π1→· · ·→πn→ϕ}, ϕ〉, where ϕ

is a type-variable that does not occur in PPCDV (Ai) for 1≤ i≤n.

ii) For all terms M define ΠCDV (M ) = { PPCDV (A) | A∈A(M) }, the set of all principal

pairs for all approximants of M .

Principal pairs are not completely well defined, since the type-variables mentioned are not

unique. However, types that only differ in the names of type-variables can be considered iden-

tical.

The proof of the principal type property is completed by proving:

• The principal pair for A is a CDV-ground pair for A.

• B !CDVP
M :σ if and only if there exists A∈A(M) such that B !CDVP

A:σ.

• ΠCDV (M ) is complete for M .
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2.3 The Barendregt-Coppo-Dezani Type Assignment System
The type assignment system presented in [Barendregt et al. ’83] by H. Barendregt, M. Coppo

and M. Dezani-Ciancaglini is based on the system as presented in [Coppo et al. ’81]. This

system was strengthened further by extending the set of types to TBCD and introducing a par-

tial order relation ‘≤’ on types, as well as adding the type assignment rule (≤), and a more

general form of the rules concerning intersection. The rule (≤) is mainly introduced to prove

completeness of type assignment.

In this paper, it was shown that the set of types derivable for a lambda term in the extended

system is a filter, i.e. a set closed under intersection and right-closed for ≤ (if σ ≤ τ and σ ∈ d

where d is a filter, then τ ∈ d.) The interpretation of a lambda term by the set of types derivable

for it – [[M ]]ξ – is defined in the standard way, and gives a filter lambda model F . The main

result of that paper is that, using this model, completeness is proved by proving the statement:

!BCD M :σ ⇐⇒ [[M ]] ∈ υ(σ), where υ : TBCD → F is a simple type interpretation as defined

in [Hindley ’83]. In order to prove the ⇐-part of this statement (completeness), the relation ≤ is

needed. Other interesting use of filter lambda models can be found in [Coppo et al. ’84], [Coppo

et al. ’87], [Dezani-Ciancaglini & Margaria ’84], and [Dezani-Ciancaglini & Margaria ’86].

In this subsection we give the definition of the Intersection Type Discipline as presented in

[Barendregt et al. ’83], together with its major features.

Definition 2.3.1 [Barendregt et al. ’83] i) TBCD, the set of BCD-types is inductively defined

by:

a) All type-variables ϕ0, ϕ1, . . . ∈ TBCD.

b) ω ∈ TBCD.

c) If σ and τ ∈ TBCD, then σ→τ and σ∩τ ∈ TBCD.

ii) On TBCD the type inclusion relation ≤ is inductively defined by:

a) σ ≤ σ.

b) σ ≤ ω.

c) ω ≤ ω→ω.

d) σ∩τ ≤ σ.

e) σ∩τ ≤ τ .

f) (σ→τ )∩(σ→ρ) ≤ σ→τ∩ρ.

g) σ ≤ τ ≤ ρ ⇒ σ ≤ ρ.

h) σ ≤ τ & σ ≤ ρ ⇒ σ ≤ τ∩ρ.

i) ρ ≤ σ & τ ≤ µ ⇒ σ→τ ≤ ρ→µ.
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iii) σ ∼ τ ⇐⇒ σ ≤ τ ≤ σ.

iv) A BCD-statement is an expression of the form M :σ where M ∈Λ and σ ∈ TBCD.

M is the subject and σ is the predicate of M :σ.

v) A BCD-basis is a set of statements with only distinct variables as subjects.

TBCD may be considered modulo ∼ . Then ≤ becomes a partial order.

Notice that in the original paper [Barendregt et al. ’83] the type inclusion relation was de-

fined in a slightly different way. Instead of rule 2.3.1 (ii.h) the rules

h.1) : σ ≤ τ & µ ≤ ρ ⇒ σ∩µ ≤ τ∩ρ.

h.2) : σ ≤ σ∩σ.

are given. It is not difficult to show that these definitions are equivalent.

Notice, moreover, that in [Barendregt et al. ’83] the subjects of statements in a basis need

not be distinct. However, the presence of intersections makes these two approaches similar; for

reasons of clarity we present bases as maps from term-variables to types.

Definition 2.3.2 i) The relation ≤ is extended to bases by: B ≤ B′ if and only if

for every x:σ′ ∈B′ there is an x:σ ∈B such that σ ≤ σ′.

ii) B ∼ B′ ⇐⇒ B ≤ B′ ≤ B.

Definition 2.3.3 [Barendregt et al. ’83] i) BCD-type assignment and BCD-derivations are

defined by the following natural deduction system.

[x:σ]
:

M :τ
(→I): (a)

λx.M :σ→τ

M :σ→τ N :σ
(→E):

MN :τ

M :σ M :τ
(∩I):

M :σ∩τ

M :σ∩τ
(∩E):

M :σ

M :σ∩τ

M :τ

M :σ σ ≤ τ
(≤):

M :τ
(ω):

M :ω

(a) : If x:σ is the only statement about x on which M :τ depends.

ii) If M :σ is derivable from a basis B using a BCD-derivation, we write B !BCD M :σ.
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In the BCD-system there are several ways to deduce a desired result, due to the presence

of the derivation rules (∩I), (∩E) and (≤), which allow superfluous steps in derivations. In

the CDV-system these rules are not present and there is a one-one relationship between terms

and skeletons of derivations. In other words: that system is syntax directed. The BCD-type

discipline has the same expressive power as the previous unrestricted CDV-system: all solvable

terms have types other than ω, and a term has a normal form if and only if it has a type without

ω occurrences.

• The set of normalizable terms can be characterized in the following way:

∃ B, σ [ B !BCD M :σ & B, σ ω-free ] ⇐⇒ M has a normal form.

• The set of terms having a head normal form can be characterized in the following way:

∃ B, σ [ B !BCD M :σ & σ ,= ω ] ⇐⇒ M has a head normal form.

The following properties of the BCD-system, used in this thesis, are listed here so as to

refer to them easily:

Property 2.3.4 i) [Barendregt et al. ’83].2.8 (i): B !BCD MN :τ ⇒

∃ σ ∈ TBCD [ B !BCD M :σ→τ & B !BCD N :σ ].

ii) [Barendregt et al. ’83].2.8 (iii): B !BCD λx.M :σ→τ ⇐⇒ B\x∪{x:σ} !BCD M :τ .

iii) [Barendregt et al. ’83].4.13 (i): ∃ B, σ [ B !BCD M :σ & σ ,= ω ] ⇐⇒

M has a head normal form.

iv) [Barendregt et al. ’83].4.13 (ii): ∃ B, σ [ B !BCD M :σ & B, σ ω-free ] ⇐⇒

M has a normal form.

v) [Barendregt et al. ’83].2.7 (ii): B !BCD x:τ ⇒ ∃ x:σ ∈B [ σ ≤ τ ].

vi) [Dezani-Ciancaglini & Margaria ’86].5.6: ρ ≤ τ1∩· · ·∩τn→σ ⇒

ρ = (τ11→· · ·→τ sn→σ1)∩· · ·∩(τ s1→· · ·→τ sn→σs) ∩ρ′, for some τ j1 , . . . , τ jn, σj , ρ′ such that

τ ji ≥ τi with 1≤ i≤n, 1≤ j ≤ s and σ1∩· · ·∩σs ≤ σ.

2.3.1 Completeness of type assignment

The main result of [Barendregt et al. ’83] is the proof for completeness of type assignment.

This is achieved by showing that the set of types derivable for a lambda term is a filter, i.e. a

set closed under intersection and right closed for ≤. The construction of a filter lambda model

and the definition of a map from types to elements of this model (a simple type interpretation)
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make the proof of completeness possible: if the interpretation of the term M is an element of

the interpretation of the type σ, then M is typeable with σ.

Filters and the filter λ-model F are defined by:

Definition 2.3.1.1 [Barendregt et al. ’83] i) A BCD-filter is a subset d ⊆ TBCD such that:

a) ω ∈ d.

b) σ, τ ∈ d ⇒ σ∩τ ∈ d.

c) σ ≥ τ ∈ d ⇒ σ ∈ d

ii) F = { d | d is a BCD-filter }.

iii) For d1, d2 ∈F define d1 ·d2 = { τ ∈ TBCD | ∃ σ ∈ d2 [ σ→τ ∈ d1 ] }.

The following properties are proved in [Barendregt et al. ’83]:

• ∀M ∈Λ [ { σ | ∃ B [ B !BCD M :σ ] } ∈F ].

• Let ξ be a valuation of term-variables in F , and Bξ = { x:σ | σ ∈ ξ (x) }.

For M ∈Λ define [[M ]]ξ = { σ | Bξ !BCD M :σ }. Using the method of Hindley and

Longo [Hindley & Longo ’80] it is shown that 〈F , · , [[ ]]〉 is a λ-model.

The following two definitions were absent [Barendregt et al. ’83]. They are presented here

so as to compare the construction of the completeness proof in [Barendregt et al. ’83] with that

of chapter four.

In constructing a complete system, the semantics of types play a crucial role. As in [Dezani-

Ciancaglini & Margaria ’86], [Mitchell ’88] and essentially following [Hindley ’82], a distinc-

tion can be made between several notions of type interpretations and semantic satisfiability.

There are, roughly, three notions of type semantics that differ in the meaning of an arrow type

scheme: inference type interpretations, simple type interpretations and F type interpretations.

These different notions of type interpretations induce of course different notions of semantic

satisfiability.

Following essentially [Mitchell ’88], we distinguish several kinds of type interpretations.

Definition 2.3.1.2 i) Let 〈D, · , ε〉 be a continuous lambda model.

A mapping υ: TBCD → ℘(D) = {X | X ⊆ D} is a type interpretation if and only if:

a) { ε ·d | ∀ e [ e∈ υ(σ) ⇒ d · e∈ υ(τ ) ] } ⊆ υ(σ→τ ).

b) υ(σ→τ ) ⊆ { d | ∀ e [ e∈ υ(σ) ⇒ d · e∈ υ(τ ) ] }.

c) υ(σ∩τ ) = υ(σ)∩ υ(τ ).
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ii) Following [Hindley ’83] we say that a type interpretation is simple if and only if:

υ(σ→τ ) = { d | ∀ e [ e ∈ υ(σ) ⇒ d · e ∈ υ(τ ) ] }.

iii) On the other hand, a type interpretation is called an F type interpretation if it satisfies:

υ(σ→τ ) = { ε ·d | ∀ e [ e ∈ υ(σ) ⇒ d · e ∈ υ(τ ) ] }.

Notice that, in part (ii), the containment relation ⊆ of part (i.b) is replaced by =, and that in

part (iii) the same is done with regard to part (i.a).

These notions of type interpretation lead, naturally, to the following definitions for semantic

satisfiability (called inference-, simple- and F-semantics, respectively).

Definition 2.3.1.3 i) Let M = 〈D, · , [[ ]]〉 be a λ-model, and ξ a valuation.

Then [[M ]]M
ξ ∈D is the interpretation of M in M via ξ.

ii) We define !! by: (where M is a lambda model, ξ a valuation and υ a type interpretation)

a) M, ξ, υ !! M :σ ⇐⇒ [[M ]]M
ξ ∈ υ(σ).

b) M, ξ, υ !! B ⇐⇒ M, ξ, υ !! x:σ for every x:σ ∈B.

c) 1) B !!M :σ ⇐⇒ ∀ M, ξ, υ [ M, ξ, υ !! B ⇒ M, ξ, υ !!M :σ ].

2) B !!s M :σ ⇐⇒

∀M, ξ, simple type interpretations υ [ M, ξ, υ !! B ⇒ M, ξ, υ !! M :σ ].

3) B !!F M :σ ⇐⇒

∀M, ξ, F type interpretations υ [ M, ξ, υ !! B ⇒ M, ξ, υ !!M :σ ].

If no confusion is possible, we will omit the superscript on [[ ]].

The method followed in [Barendregt et al. ’83] is to define a simple type interpretation υ

and to use it for the proof of completeness.

Definition 2.3.1.4 (cf. [Barendregt et al. ’83]) The type interpretation υ : TBCD → ℘(F) is

defined as follows:

i) υ (ω) = F .

ii) υ (ϕ) = { d ∈F | ϕ∈ d }.

iii) υ (σ→τ ) = { d∈F | ∀ e∈ υ (σ) [ d · e∈ υ (τ ) ] }.

iv) υ (σ∩τ ) = υ (σ)∩ υ (τ ).

Notice that because of part (iii), υ is a simple type interpretation. For υ, the following

properties are proved:
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• For all types σ: υ (σ) = { d∈F | σ ∈ d }.

• If [[M ]]ξB ∈ υ (σ), then σ ∈ [[M ]]ξB , where ξB (x) = { σ ∈ TBCD | B !BCD x:σ }.

The main result of [Barendregt et al. ’83] is obtained by proving, using the following prop-

erties:

Property 2.3.1.5 [Barendregt et al. ’83] i) Soundness. B !BCD M :σ ⇒ B !!s M :σ.

ii) Completeness. B !!s M :σ ⇒ B !BCD M :σ.

The proof of completeness is obtained in a way very similar to the one of theorem 4.4.5.

Since the type interpretation υ is simple, the results of [Barendregt et al. ’83] in fact show that

type assignment in the BCD-system is complete with respect to simple type semantics.

2.3.2 Principal type schemes

For the system as defined in [Barendregt et al. ’83], principal type schemes can be defined as

done by S. Ronchi della Rocca and B. Venneri in [Ronchi della Rocca & Venneri ’84]. In

this paper, three operations are provided: substitution, expansion, and rise. These are sound

and sufficient to generate all suitable pairs for a term M from its principal pair. This result is

achieved in a way similar to that of [Coppo et al. ’80], as discussed in subsection 2.2.2. (Like

in the CDV-system the type assignment rules of the BCD-system are generalized by allowing

for the terms to be elements of Λ⊥.)

We will briefly discuss the construction of [Ronchi della Rocca & Venneri ’84]. In this

paper, all constructions and definitions are made modulo the equivalence relation ∼ .

The first operation defined is substitution; it is a natural extension of Curry-substitution and

CDV-substitution.

Definition 2.3.2.1 [Ronchi della Rocca & Venneri ’84] i) The RV-substitution (ϕ := α) :

TBCD → TBCD, where ϕ is a type-variable and α ∈ TBCD, is defined by:

a) (ϕ := α) (ϕ) ∼ α.

b) (ϕ := α) (ϕ′) ∼ ϕ′, if ϕ ,= ϕ′.

c) (ϕ := α) (σ→τ ) ∼ (ϕ := α) (σ)→ (ϕ := α) (τ ).

d) (ϕ := α) (σ1∩· · ·∩σn) ∼ (ϕ := α) (σ1) ∩· · ·∩ (ϕ := α) (σn).

ii) If S1 and S2 are RV-substitutions, then so is S1◦S2, where S1◦S2 (σ) = S1 (S2 (σ)).
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Notice that a RV-substitution is defined without restriction: the type α that is to be substituted

can be every element of TBCD.

Next, the operation of expansion is defined, which is a generalization of the CDV-expansion.

Definition 2.3.2.2 [Ronchi della Rocca & Venneri ’84] For every µ∈ TBCD, n ≥ 2, the pair

〈µ,n〉 determines an RV-expansion E〈µ,n〉 that is constructed as follows:

i) Let Le(B, τ ) be the set of type schemes defined as follows:

a) µ ∈Le(B, τ ).

b) If σ ∈Le(B, τ ), any proper subtype of σ belongs to Le(B, τ ).

c) For each type scheme σ, such that σ is a subtype of either τ or a predicate in B:

1) If either σ ∼ α→β or σ ∼ α→β∩γ and β ∈Le(B, τ ), then σ ∈Le(B, τ ).

2) If σ ∼ α∩β and α, β ∈Le(B, τ ), then σ ∈Le(B, τ ).

ii) Suppose Le(B, τ ) is the list obtained by ordering the elements of Le(B, τ ) in decreasing

order according to the number of symbols (if two type schemes have the same number of

symbols, their mutual order is unimportant).

iii) Let V = {ϕ1, . . . , ϕm} be all the variables occurring in Le(B, τ ). Choose m× n different

type-variables ϕ1
1, . . . , ϕn

1 , . . . , ϕ1
m, . . . , ϕn

m, such that each ϕi
j does not occur in 〈B, τ〉,

for 1≤ i≤n and 1≤ j≤m. Let Si be the substitution that replaces every ϕj by ϕi
j .

iv) For every σ ∈ TBCD, E〈µ,n〉 (σ) is obtained from σ by examining in order each element of

Le(B, τ ), and each time an element α is found that is a subtype of σ, by replacing α, in

σ, by S1 (α) ∩· · ·∩ Sn (α).

The set Le(B, τ ) is the equivalent of the nucleus in definition 2.2.2.4.

Substitution and expansions are in the natural way extended to operations on bases and

pairs. The third operation defined is the operation of rise: it consists of adding applications of

the derivation rule (≤) to a derivation.

Definition 2.3.2.3 [Ronchi della Rocca & Venneri ’84] A rise R is an operation denoted by a

pair of pairs <<B0, τ0〉, 〈B1, τ1>> such that τ0 ≤ τ1 and B1 ≤ B0, and is defined by:

i) a) R (σ) ∼ τ1, if σ ∼ τ0.

b) R (σ) ∼ σ, otherwise.

ii) a) R (B) ∼ B1, if B ∼ B0.

b) R (B) ∼ B, otherwise.
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iii) R (〈B, σ〉) ∼ 〈R (B), R (σ)〉.

The following property is proved; it shows that all defined operations are sound:

Property 2.3.2.4 [Ronchi della Rocca & Venneri ’84] Let A ∈N , 〈B, σ〉 be such that

B !BCD A:σ, and let O be an operation of substitution, expansion or rise.

Then O (B) !BCD A:O (σ).

As in [Coppo et al. ’80], principal types are defined for terms in λ⊥-normal form.

Definition 2.3.2.5 [Ronchi della Rocca & Venneri ’84] i) Let A∈N . PPRV (A), the

RV-principal pair of A, is defined by:

a) PPRV (⊥) ∼ 〈∅, ω〉.

b) PPRV (x) ∼ 〈{x:ϕ}, ϕ〉.

c) If A ,= ⊥, and PPRV (A) ∼ 〈P , π〉, then:

1) If x occurs free in A, and x:σ ∈ P , then PPRV (λx.A) ∼ 〈P\x, σ→π〉.

2) otherwise PPRV (λx.A) ∼ 〈P , ω→π〉.

d) If PPRV (Ai) ∼ 〈Pi, πi〉 for 1≤ i≤n (we choose trivial variants that are disjoint in

pairs), then PPRV (xA1 . . . An) ∼ 〈P1∪· · ·∪Pn∪{x:π1→· · ·→πn→ϕ}, ϕ〉, where ϕ

is a type-variable that does not occur in PPRV (Ai) for 1≤ i≤n.

ii) PRV = {〈P , π〉 | ∃ A ∈N [ PPRV (A) ∼ 〈P , π〉 ] }.

Notice that this definition is almost the same as definition 2.2.2.10 (apart from the notion of

sequence and the relation ∼).

Definition 2.3.2.6 (cf. [Ronchi della Rocca & Venneri ’84]) i) Linear chains of operations are

defined as sequences of operations that start with a number of expansions, followed by a

number of substitutions, and that end with one rise.

ii) Let M be a term. As in [Coppo et al. ’80] let ΠRV (M ) be the set of all RV-principal pairs

for all approximants of M : ΠRV (M ) = { PPRV (A) | A∈A(M) }.

iii) On PRV is it possible to to define the preorder relation 5ω by:

〈P , π〉 5ω 〈P ′, π′〉 ⇐⇒

∃ ϕ1, . . . , ϕn [ 〈P , π〉 = (ϕ1 := ω)◦· · ·◦(ϕn := ω) (〈P ′, π′〉) ],

and PRV, 5ω is a meet semilattice isomorphic to N , ≤.

iv) ΠRV (M ) is an ideal in PRV and therefore:
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a) If ΠRV (M ) is finite, there exists a pair 〈P , π〉 =
⊔
ΠRV (M ), where 〈P , π〉 ∈PRV.

This pair is then called the principal pair of M .

b) If ΠRV (M ) is infinite,
⊔
ΠRV (M ) does not exist in PRV.

The principal pair of M is then the infinite set of pairs ΠRV (M ).

In [Ronchi della Rocca & Venneri ’84], linear chains are defined as those sequences of

operations that start with a number of expansions, followed by a number of substitutions or

rises. Both are allowed. This definition is not complete: that the chain ends with one rise is

essential in the proof for completeness.

Property 2.3.2.7 B !BCD M :σ if and only if there exists A∈A(M) such that

B !BCD A:σ.

The proof of the principal type property is completed by proving:

• Let A∈N and 〈P , π〉 be the RV-principal pair for A. For any pair 〈B, σ〉 such that

B !BCD A:σ there exists a linear chain C such that C (〈P , π〉) = 〈B, σ〉.

• – A(M ) is finite. Let 〈P , π〉 be the RV-principal pair of M . Then there exists a chain C

such that C (〈P , π〉) = 〈B, σ〉.

– A(M ) is infinite. Then there exist a pair 〈P , π〉 ∈ΠRV (M ) and a chain C such that

C (〈P , π〉) = 〈B, σ〉.

Chapter 3 The Milner - and Mycroft Type

Assignment Systems

In this chapter we focus on some aspects of two type assignment systems that were defined for

a simple applicative language called Exp that is in fact an extended lambda calculus.

The first, defined by R. Milner, has become very famous and is implemented in a type

checker that is embedded in the functional programming language ML. The second one is a

generalization of Milner’s system presented by A. Mycroft, which is defined by allowing a

more permissive rule for recursion. Both systems are present in the implementation of the

functional programming language Miranda. Milner’s system is used when the Miranda type

assignment algorithm infers a type for an object; Mycroft’s system is used when the type as-

signment algorithm does type checking, i.e. when the programmer has specified a type for an

object. These two systems will play an important role in the third part of this thesis.

3.1 The Milner Type Assignment System
In [Milner ’78], a formal type discipline was presented for polymorphic procedures in a simple

programming language called Exp, designed to express that certain procedures work well on

objects of a wide variety. This kind of procedures is called (shallow) polymorphic, and they are

essential to obtain enough flexibility in programming. To illustrate the need for polymorphic

procedures, consider the following example.

Suppose we have a programming language in which we can write the following program:

I x = x

I I



34 Chapter 3 The Milner - and Mycroft Type Assignment Systems

The definition of I is of course a definition for the identity function. If the type assignment

system for this language were not able to express that I works well on objects of a different

type, then the term I I cannot be typed. Milner’s Type Assignment System makes it possible to

express that various occurrences of I can have different types, as long as these types are related

(by Curry-substitution) to the type derived for the definition of I.

Moreover, Milner presented a compile type-checking algorithm W that is semantically

sound (based on a formal semantics for the language) (so typed programs cannot go wrong),

and syntactically sound, so if W accepts a program, then it is well typed.

In this subsection, we present Milner’s Type Assignment System as was done in [Damas &

Milner ’82], and not as in [Milner ’78], because the former presentation is clearer.

Definition 3.1.1 [Milner ’78] The language Exp of expressions M is defined by:

i) All term-variables x1, x2, x3, . . . ∈ Exp.

ii) If M , N ∈ Exp, then (MN ) ∈ Exp.

iii) If x is a term-variable and M ∈Exp, then (λx.M ) ∈ Exp.

iv) If x is a term-variable and M ∈Exp, then (Fixx.M ) ∈ Exp.

v) If x is a term-variable and M , N ∈ Exp, then (let x = N in M ) ∈ Exp.

The language defined in [Milner ’78] also contains a conditional-structure (if-then-else).

It is not present in the definition of Exp in [Damas & Milner ’82], and neither does it play a

role in this thesis, so we have omitted it from the definition. The language constructor Fix is

introduced to model recursion, a very useful tool in a programming language. It is present in

the definition of Exp in [Milner ’78], but not in [Damas & Milner ’82]. Since it plays a part in

the extension defined by Mycroft of this system, we have inserted it here. Notice that Fix is a

language constructor, not a combinator.

The example program given before would be expressed in Exp by: (let x = (λy.y) in (xx)).

Definition 3.1.2 [Milner ’78] i) a) The set of ML-types is inductively defined by:

1) All type-variables ϕ0, ϕ1, . . . are ML-types.

2) All type constants c0, c1, . . . are ML-types.

3) If σ, τ are ML-types, then σ→τ is an ML-type.

Notice that the set of ML-types is the set of Curry-types, extended with type constants.

b) If σ is an ML-type, and ϕ1, . . . , ϕn are type-variables, then ∀ϕ1· · ·∀ϕn.σ is called a

type-scheme, and ϕ1, . . . , ϕn are called its generic type-variables. Type-schemes are

denoted by σ, τ , etc.

3.1 The Milner Type Assignment System 35

Notice that if σ = ∀ϕ1· · ·∀ϕn.σ, then the set of type-variables occurring in σ is not

necessarily equal to {ϕ1, . . . , ϕn}.

ii) An ML-substitution on types is defined like a Curry-substitution as the replacement of

type-variables by types, extended with:

d) (ϕ := α) (ci) = ci.

ML-substitution on a type-scheme σ is defined as the replacement of free type-variables

by renaming the generic type-variables of σ if necessary.

iii) A type obtained from another by mere substitution is called an instance.

iv) If σ, τ are type-schemes, and σ = ∀ϕ1· · ·∀ϕn.µ, τ = ∀ϕn+1· · ·∀ϕn+m.ρ, and for ρ there

is a Curry-substitution S such that S (µ) = ρ, and none of the ϕn+1, . . . , ϕn+m occur free

in σ, then τ is called a generic instance of σ and we write σ > τ .

In the following definition, we show derivation rules for Milner’s system as presented in

[Damas & Milner ’82]. (In [Milner ’78] there are no derivation rules; instead, a rather compli-

cated definition of ‘well typed prefixed expressions’ is given.) In this definition we deviate from

the standard natural deduction style presentation, as the basis used to derive a statement plays

a more important role in the definition of the rules; in the sequent style the basis is explicitly

given.

Definition 3.1.3 [Damas & Milner ’82] ML-type assignment and ML-derivations are defined

by the following sequent style deduction system.

(TAUT): B∪ {x:σ} !ML x:σ

B∪{x:σ} !ML M :σ
(FIX):

B !ML (Fixx.M ):σ

B∪{x:σ} !ML M :τ
(ABS): (a)

B !ML (λx.M ):σ→τ

B !ML M :σ→τ B !ML N :σ
(COMB):

B !ML (MN ):τ

B !ML M :σ σ > τ
(INST):

B !ML M :τ

B !ML M :σ
(GEN): (b)

B !ML M :∀ϕ.σ

B∪{x:σ} !ML M :τ B !ML N :σ
(LET):

B !ML (let x = N in M ):τ

(a) : If x:σ is the only statement about x on which M :τ depends.
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(b) : If ϕ not free in any assumption in the basis B.

In understanding the (LET)-rule, notice that the statement x:σ is used. Assume that σ =

∀ϕ1· · ·∀ϕn.σ; suppose that in building the derivation for the statement M :τ , σ is instantiated

(otherwise the rules (ABS) and (COMB) cannot be used) into the types σ1, . . . , σn. So, for

every σi there is a substitution Si such that Si (σ) = σi. Assume without loss of generality that

N :σ is obtained from N :σ by applying the rule (GEN). Notice that the types actually used for

x in the derivation for M :τ are, therefore, instances of the type derived for N .

In a sense, the terms (let x = N in M ) and ((λx.M)N ) are both denotations for a redex;

however, the semantic interpretation of these terms is different (for details of this semantics,

see [Milner ’78]). The term ((λx.M)N ) is interpreted as a function with an operand, whereas

the term (let x = N in M ) is interpreted as the term M [x := N ]. This difference is reflected in

the way the type assignment system treats these terms: in assigning a type to ((λx.M)N ), the

term-variable x can only be typed with one Curry-type. This is not required for x in (let x =

N in M ), because the type-scheme σ can be instantiated into several, different Curry-types.

Also, as suggested by the semantics of the let-construct, in finding a type for the expression

(let x = N in M ), the ML-type inference system in fact looks for a type for the term M [x :=

N ].

As was also remarked by A. Mycroft in [Mycroft ’84], instead of inserting Fix as a language

constructor, a fixed-point combinator FIX can be inserted that has the type ∀ϕ.(ϕ→ϕ)→ϕ (as

implicitly done in [Damas & Milner ’82]).

This system has several important properties:

• Because of the presence of type-schemes and the rules (GEN) and (INST) in this system,

polymorphism can be modelled.

• The system has the principal pair property.

• Type assignment is decidable. Milner presents an algorithm (called W) that takes as input

a pair of (basis, term) and returns a pair of (substitution, type) such that:

– Completeness of W . If for a term M there are bases B and B′ and type σ, such that

B′ is an instance of B and B′ !ML M :σ, then W (B, M ) succeeds and returns the

pair (S, τ ), and there is a substitution S′ such that B′ = S′ (S (B)) and S′ (S (τ )) > σ.

– Soundness of W . For every term M : if W (B, M ) returns the pair (S, σ), then

S (B) !ML M :σ.

• By defining an adequate semantics for the language Exp, soundness of inference will

hold: If B !ML M :σ, then B !!M :σ.
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This notion of type assignment, when restricted to the pure Lambda Calculus, is also a

restriction of the Polymorphic Type Discipline, Λ2, as presented in [Girard ’86]. This system

is obtained from Curry’s system by adding the type constructor ‘∀’: if ϕ is a type-variable and

σ is a type, then ∀ϕ.σ is a type. A difference between the types created in this way and the

types (or type-schemes) of Milner’s system is that in Milner’s type-schemes the ∀-symbol can

occur only at the outside of a type, not inside. In section 8.1 we will show that the restriction

of the ML-type assignment system to the pure Lambda Calculus is equivalent to a restricted

intersection system.

3.2 The Mycroft Type Assignment System
In [Mycroft ’84] (and, independently, in [Kfoury et al. ’88]), a generalization of Milner’s Type

Assignment System is presented. This generalization is made to obtain more permissive types

for recursively defined objects.

The example that Mycroft gives to justify his generalization is the following (using a here

not defined syntax):

map f l = if (null l) then nil else (cons (f (hd l)) (map f (tl l)))

squarelist l = map (λx.x ∗ x) l

squarelist (cons 2 nil)

where hd, tl, null, nil, cons, and 2 are assumed to be familiar, and ∗ is a multiplication.

In the implementation of ML, there is no check if functions are independent or are mutually

recursive, so all definitions are dealt with in one step. For this purpose, the language Exp is

formally extended with a pairing function ‘〈 , 〉’, and the translation of the above expression

into Exp will be:

let 〈map, squarelist〉 = Fix 〈m, s〉.

〈λf . λl. if (null l) then nil else (cons (f (hd l)) (m f (tl l))), λl. (m (λx.x ∗ x) l)〉

in (squarelist (cons 2 nil))

Within Milner’s Type Assignment System these definitions (when defined simultaneously

in ML) would get the types:

map : (INT→INT) → (INT-list) → (INT-list)

squarelist : (INT-list) → (INT-list)

while the definition of map alone would yield the type:
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map : ∀ϕ1∀ϕ2.(ϕ1→ϕ2) → (ϕ1-list)→(ϕ2-list).

Since the definition of map does not depend on the definition of squarelist, one would expect

the type inferer to find the second type for map. That such is not the case is caused by the fact

that all occurrences of a recursively defined function on the right hand side within the definition

must have the same type as in the left hand side.

There is more than one way to overcome this problem. One is to recognize mutual recursive

rules, and treat them as one definition. (Easy to implement, but difficult to formalize, a problem

we run into in chapters ten and twelve). Then, the translation of the above program could be:

let map = (Fixm. λf . λl. if (null l) then nil else (cons (f (hd l)) (m f (tl l))))

in (let squarelist = (λl. (map (λx.x ∗ x) l))

in (squarelist (cons 2 nil)))

The other solution, chosen by Mycroft, is to allow of a more general rule for recursion than

Milner’s (FIX)-rule. Mycroft, like Milner, defined a type assignment system for a language

Exp that is the same as Milner’s. Also the set of types used by Mycroft is the same as defined

by Milner. In the following definition we show the derivation rules for Mycroft’s system.

Definition 3.2.1 [Mycroft ’84] Mycroft type assignment is defined by the following sequent

style deduction system.

(TAUT): B∪ {x:σ} !Myc x:σ

B∪ {x:σ} !Myc M :σ
(FIX):

B !Myc (Fixx.M ):σ

B∪ {x:σ} !Myc M :τ
(ABS): (a)

B !Myc (λx.M ):σ→τ

B !Myc M :σ→τ B !Myc N :σ
(COMB):

B !Myc (MN ):τ

B !Myc M :σ σ ≤ τ
(INST):

B !Myc M :τ

B !Myc M :σ
(GEN): (b)

B !Myc M :∀ϕ.σ

B∪{x:σ} !Myc M :τ B !Myc N :σ
(LET):

B !Myc (let x = N in M ):τ

(a) : If x:σ is the only statement about x on which M :τ depends.

(b) : If ϕ not free in any assumption in the basis.

Thus, the only difference lies in the fact that, in this system, the derivation rule (FIX) allows
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for type-schemes instead of types, so the various occurrences of x in M can be typed with

different Curry-types.

Mycroft’s system has the following properties:

• Like in Milner’s system, in this system polymorphism can be modelled.

• Type assignment in this system is undecidable, as shown by A.J. Kfoury, J. Tiuryn and

P. Urzyczyn in [Kfoury et al. ’90].

• By defining an adequate semantics for the language Exp, soundness of inference holds: If

B !Myc M :σ, then B !! M :σ.

3.3 The difference between Milner’s and Mycroft’s system
Since Mycroft’s system is a true extension of Milner’s, there are terms typeable in Mycroft’s

system that are not typeable in Milner’s. For example,

Fix g.λx.((λab.a) (g (λc.c)) (g (λde.d))) : ∀ϕ1∀ϕ2.(ϕ1→ϕ2).

is a derivable statement in Mycroft’s system. It is easy to see that this term is not typeable using

Milner’s system, because the types needed for g in the body of the term cannot be unified.

But, the generalization allows for more than was aimed at by Mycroft: in contrast to what

Mycroft suggests, type assignment in this system is undecidable. And not only is the set of

terms that can be typed in Mycroft’s system larger than in Milner’s, it is also possible to assign

more general types to terms that are typeable in Milner’s system. Take, for example,

R = Fix r.λxy.(r (r y (λab.a)) x),

then the statement R : ∀ϕ1∀ϕ2∀ϕ3.(ϕ1→ϕ2→ϕ3) is derivable in Mycroft’s system. R is also

typeable in Milner’s system, where its principal type is:

∀ϕ4∀ϕ5.((ϕ4→ϕ5→ϕ4)→(ϕ4→ϕ5→ϕ4)→ϕ4→ϕ5→ϕ4).

In [Milner ’78] type assignment was not defined by presenting derivation rules, but by

defining well-typed prefixed expressions. The derivation rules (GEN) and (INST) presented in

[Damas & Milner ’82] are motivated by the proof in [Milner ’78] for the following statement:

if B !ML M :σ and S is a substitution, then S (B) !ML M :S (σ) can be shown using a derivation

with exactly the same height. This property is used in [Damas & Milner ’82] for the proof of

soundness of the algorithm W .

For Mycroft’s system, this cannot be proved: to prove that if B !Myc M :σ and S is a sub-

stitution, then S (B) !Myc M :S (σ), for some terms the derivation rules (GEN) and (INST) are

needed: substitution is only by definition a sound operation.



40 Chapter 3 The Milner - and Mycroft Type Assignment Systems

For example, to show in Milner’s system that any substitution instance of the type

α = (ϕ4→ϕ5→ϕ4)→(ϕ4→ϕ5→ϕ4)→ϕ4→ϕ5→ϕ4

is a correct type for R, it is sufficient to take the derivation for

{r:α} !ML λxy.(r (r y (λab.a)) x) : α,

just substitute the types in this derivation, and apply the (FIX)-derivation rule.

For Mycroft’s system this construction does not yield correct derivations. If the derivation

for the statement

{r : ∀ϕ1∀ϕ2∀ϕ3.(ϕ1→ϕ2→ϕ3)} !Myc λxy.(r (r y (λab.a)) x) : ϕ1→ϕ2→ϕ3

were taken and, for example, the type-variable ϕ2 were replaced by ϕ1, then the (FIX)-derivation

rule cannot be applied because the type in the conclusion of the derivation is affected by

the substitution, but the type ∀ϕ1∀ϕ2∀ϕ3.(ϕ1→ϕ2→ϕ3) in the basis is not. The only way

to obtain !Myc R : ϕ1→ϕ1→ϕ3 is by using the derivation rule (INST) on the derivation for

!Myc R : ∀ϕ1∀ϕ2∀ϕ3.(ϕ1→ϕ2→ϕ3).

Chapter 4 The Strict Type Assignment System

In this chapter we present the Strict Type Assignment System, a restricted version of the BCD-

system. Compared to the BCD-system, the major feature of this restricted system is the absence

of the derivation rule (≤). It is based on a set of strict types, which correspond to the normalized

types of the CDV-system. We will show that these two together give rise to a strict filter lambda

model that is essentially different from F . We will show that the Strict Type Assignment System

is the nucleus of the BCD-system, i.e. for every derivation in the BCD-type discipline there is

a derivation in which (≤) is used only at the very end. Finally we will prove that strict type

assignment is complete for inference semantics.

4.1 Strict type assignment
In this section we will present the Strict Type Assignment System, together with the set of strict

types. These two together will yield a lambda model FS, with which we prove completeness of

type assignment without the derivation rule (≤).

The elimination of ≤ induces a set of strict types, a restriction of the set of types used in the

BCD-system. Strict types are the types that are strictly needed to assign a type to a term in the

BCD-system. The set of strict types is a true subset of set TBCD; intersection type schemes and

the type constant ω play a limited role in the Strict Type Assignment System. We will assume

that ω is the same as an intersection over zero elements: if n = 0, then σ1∩· · ·∩σn = ω, so

ω does not occur in an intersection subtype. Moreover, intersection type schemes (so also ω)

occur in strict types only as subtypes at the left hand side of an arrow type scheme. We could

have omitted the type constant ω completely from the presentation of the system, because we

can always assume that n = 0 in σ1∩· · ·∩σn, but some of the definitions and the results we
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obtain are more clear when ω is dealt with explicitly.

Definition 4.1.1 i) Ts, the set of strict types, is inductively defined by:

a) All type-variables ϕ0, ϕ1, . . . ∈ Ts.

b) If τ , σ1, . . . , σn ∈ Ts (n ≥ 0), then σ1∩· · ·∩σn→τ ∈ Ts.

ii) TS, the set of strict intersection types is defined by: If σ1, . . . , σn ∈ Ts (n ≥ 0), then

σ1∩· · ·∩σn ∈ TS.

iii) On TS, the relation ≤S is defined by:

a) σ ≤S σ.

b) σ ≤S ω.

c) σ∩τ ≤S σ & σ∩τ ≤S τ .

d) σ ≤S τ ≤S ρ ⇒ σ ≤S ρ.

e) σ ≤S ρ & σ ≤S τ ⇒ σ ≤S ρ∩τ .

iv) On TS, the relation ∼S is defined by:

a) σ ≤S τ ≤S σ ⇒ σ ∼S τ .

b) σ ∼S ρ & τ ∼S µ ⇒ σ→τ ∼S ρ→µ.

v) A strict statement is an expression of the form M :σ, where M ∈Λ and σ ∈ TS.

M is the subject and σ the predicate of M :σ.

vi) A strict basis is a set of strict statements with only distinct variables as subjects.

If σ1∩· · ·∩σn is a predicate in a basis, then n ≥ 1.

TS may be considered modulo ∼S . Then ≤S becomes a partial order.

The definition of ∼S as in [van Bakel ’92a] did not contain part 4.1.1 (iv.b), but was defined

by: σ ≤S τ ≤S σ ⇐⇒ σ ∼S τ . As was remarked by Professor G. Plotkin of the University of

Edinburgh, Schotland (private communication), defining the equivalence relation on types in

that way causes an anomaly in the definition of type-interpretation as in definition 4.4.2, since,

then, the interpretation of an arrow type σ→τ is no longer a map from the interpretation of σ

onto the interpretation of τ . See also the remark made after theorem 4.4.3.

Unless stated otherwise, if σ1∩· · ·∩σn is used to denote a type, then all σ1, . . . , σn are

assumed to be strict. Notice that Ts is a proper subset of TS, that the set Ts coincides with the set

of normalized tail-proper types of the CDV-system, and that the set TS coincides with the set of

normalized tail-proper sequences.

It is an easy exercise to show that the definition of ≤S is equivalent to:

4.1 Strict type assignment 43

{σ1, . . . , σn} ⊆ {τ1, . . . , τm} ⊆ Ts (n ≥ 0, m ≥ 0) ⇐⇒ τ1∩· · ·∩τm ≤S σ1∩· · ·∩σn.

It is also easy to show that, if σ ≤S τ , then either τ = ω or τ = σ or σ is an intersection

type scheme in which τ occurs. Notice also that, if σ ∼S τ , then τ can be obtained from σ

by permuting the strict components in an intersection subtype, e.g. ρ∩(σ∩τ ) ∼S (ρ∩σ)∩τ . The

differences affect none of our proofs and σ = τ means σ ∼S τ , so we consider types modulo

∼S . Notice also that { σ | σ ∼S ω } = {ω}.

As in definition 2.3.2, with the relation ≤ we extend the relation ≤S to bases. The following

definition introduces some terminology and notations for bases.

Definition 4.1.2 i) If B∪{x:σ} is a basis, then B is a basis, and x does not occur in B.

ii) If B1, . . . , Bn are bases, then Π{B1, . . . , Bn} is the basis defined as follows:

x:1∩· · ·∩σm ∈Π{B1, . . . , Bn} if and only if {x:σ1, . . . , x:σm} is the set of all statements

whose subject is x that occur in B1∪ . . . ∪Bn.

Notice that if n = 0, then Π{B1, . . . , Bn} = ∅. By abuse of notation, we sometimes write a

basis as B∪{x:σ}, where σ = ω. We will then assume that B∪ {x:σ} = B.

The Strict Type Assignment System is constructed from the set of strict types and a minor

extension of the derivation rules of the CD-system. This way, a syntax directed system is

obtained that satisfies the main properties of the BCD-system: type assignment is closed under

β-equality, the set of terms typeable with type σ from a basis B such that ω does not occur in

B and σ is the set of normalizable terms, and the set of terms typeable with type σ ,= ω is the

set of terms having a head normal form.

Strict types and strict derivations are closely related. Strict derivations are syntax directed

and yield strict types.

Definition 4.1.3 i) Strict type assignment and strict derivations are defined by the following

natural deduction system (where all types displayed are strict, except σ in the derivation

rule (→I)):
[x:σ] (σ ∈ TS)

:
M :τ

(→I): (a)
λx.M :σ→τ

x:σ1∩· · ·∩σn
(∩E): (n ≥ 2)

x:σi

M :σ1∩· · ·∩σn→τ N :σ1 . . . N :σn
(→E): (n ≥ 0)

MN :τ

(a) : If x:σ is the only statement about x on which M :τ depends.
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If M :σ is derivable from B using a strict derivation, we write B !s M :σ.

ii) We define !S by: B !S M :σ if and only if: there are σ1, . . . , σn (n ≥ 0) such that

σ = σ1∩· · ·∩σn and for every 1≤ i≤n B !s M :σi.

If B !S M :σ, and B = ∅, we write !S M :σ. Notice that in B !s M :σ the basis can contain

types that are not strict, and that B !S M :σ is only defined for σ ∈ TS.

Example 4.1.4 In this notion of type assignment we cannot – unlike e.g. in the BCD-system

and the CDV-systems – build one derivation for {x:σ∩τ} !S x:σ∩τ . By definition 4.1.3 (ii) we

should show that there are derivations for both {x:σ∩τ} !s x:σ and {x:σ∩τ} !s x:τ .

x:σ∩τ

x:σ
(∩E)

x:σ∩τ

x:τ

The difference between the strict system and the BCD-system is essentially this: in the

BCD-system, the derivation rule (∩E) is allowed of on all terms, whereas in the strict system it

is only performed on variables, as in the CD-system. Also, the BCD-system has the derivation

rules (ω) and (∩I) – also allowed of on all terms – that are implicitly present in the derivation

rule (→E) of the strict system. Moreover, we cannot compose a derivation in the !S system

with conclusion M :ω with any other derivation.

The introduction of two different notions of derivability seems somewhat superfluous. No-

tice that we could limit ourselves to one, by stating:

We define !s by: B !s M :σ if and only if there are σ1, . . . , σn (n ≥ 0) such that σ =

σ1∩· · ·∩σn and for every 1≤ i≤nM :σi is derivable from B using a strict derivation.

This definition would cause a lot of words in the proofs, and perhaps also a lot of confusion

as well. We therefore prefer two different notions of derivability.

Apart from the presence of ω, the type assignment defined by !S is in fact the same as the

CD-system. Also, the derivation rules (not the set of types) for the one defined by !s are in

fact the same as for the !CDV -system; the difference between these systems is nothing more

than, in the !CDV -system, ω is a type, whereas it is a sequence in the strict system. The type

assignment defined by !S is in fact an extension of !CDVR
, the main difference is that in the

derivation rule (→I) more than just the used types can be cancelled.

For these notions of type assignment, the following properties hold:

Lemma 4.1.5 i) B !s MN :σ ⇐⇒ ∃ τ [ B !s M :τ→σ & B !S N :τ ].

ii) B !s M :σ ⇐⇒ B !S M :σ & σ ∈ Ts.

iii) B !s λx.M :σ ⇐⇒ ∃ ρ∈ TS, µ ∈ Ts [ σ = ρ→µ & B\x∪{x:ρ} !s M :µ ].

4.2 The strict filter lambda model 45

iv) B !S M :σ ⇐⇒ ∃ σ1, . . . , σn (n ≥ 0) [ σ = σ1∩· · ·∩σn & ∀ 1≤ i≤n [ B !s M :σi ] ].

v) B !S M :σ ⇐⇒ { x:τ ∈B | x∈ FV(M ) } !S M :σ.

vi) ∀ σ, τ ∈ TS [ B∪ {x:σ} !S M :τ ⇒ B ∪{x:σ} !S N :τ ] ⇒

∀ ρ∈ TS [ B !S λx.M :ρ ⇒ B !S λx.N :ρ ].

vii) {x:σ} !S x:τ ⇐⇒ σ ≤S τ .

Proof: Easy.

Lemma 4.1.6 If B !S M :σ and B′ ≤S B, then B′ !S M :σ.

Proof: Since for every x:τ ∈B: if B′ ≤S B, then by lemma 4.1.5 (vii) B′ !S x:τ .

4.2 The strict filter lambda model
As in [Barendregt et al. ’83] we aim to construct a filter lambda model. By use of names we

will distinguish between the definition of filters in the paper, and the ones given here.

Definition 4.2.1 i) A subset d of TS is called a strict filter if and only if:

a) σ1, . . . , σn ∈ d (n ≥ 0) ⇒ σ1∩· · ·∩σn ∈ d.

b) τ ∈ d & τ ≤S σ ⇒ σ ∈ d.

ii) If V is a subset of TS, then ↑SV is the smallest strict filter that contains V , and ↑Sσ =

↑S{σ}. If no confusion is possible, we will omit the subscript on ↑.

iii) FS = { d ⊆ TS | d is a strict filter }. We define application on FS, · : FS × FS → FS by:

d · e = ↑{ τ | ∃ σ ∈ e [ σ→τ ∈ d ] }.

Notice that if types are not considered modulo ∼S , then part (i.b) should also contain:

τ ∈ d & τ ∼S σ ⇒ σ ∈ d. Notice also that ω ∈ d, for every strict filter d.

The application on BCD-filters as defined in definition 2.3.1.1 would not be useful in our

approach, since it would not be well defined. We must force the application to yield filters,

since in each arrow type scheme σ→τ ∈ TS, τ is strict. 〈FS, ⊆ 〉 is a cpo and henceforward

we will consider it with the corresponding Scott topology. Because of the remark made after

definition 4.1.1, part 4.2.1 (i) can be replaced by:

i) σ1∩· · ·∩σn ∈ d (n ≥ 0) ⇐⇒ ∀ 1≤ i≤n [ σi ∈ d ].
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Notice that a strict filter generated by a finite number of types is finite. Let, for example, σ

be a strict type, then ↑σ = {σ, ω} (where by ∼S we identify σ and σ∩σ). If σ is an intersection

of n strict types, σ = σ1∩· · ·∩σn, then ↑σ contains 2n elements, namely:

{ σ1, . . . , σn, σ1∩σ2, σ1∩σ3, . . . , σn−1∩σn, σ1∩σ2∩σ3, . . . , σ1∩· · ·∩σn, ω }.

Of course FS contains also infinite elements.

Lemma 4.2.2 For strict filters the following properties hold:

i) σ ∈ ↑V & V ⊆ Ts ⇐⇒ ∃ σ1, . . . , σn (n ≥ 0) [ σ = σ1∩· · ·∩σn & ∀ 1≤ i≤n [σi ∈ V ] ].

ii) σ ∈ Ts & σ ∈ ↑V & V ⊆ Ts ⇒ σ ∈ V .

iii) σ ∈ ↑τ ⇐⇒ τ ≤S σ.

iv) σ ∈ ↑{ τ | B !s M :τ } ⇐⇒ σ ∈ { τ | B !S M :τ }.

Proof: Easy.

Theorem 4.2.3 i) If B !S M :σ and σ ≤S τ , then B !S M :τ .

ii) { σ ∈ TS | B !S M :σ } ∈FS.

Proof: i) By induction on ≤S .

ii) By lemma 4.2.2 (iv).

Unlike [Barendregt et al. ’83], we will not use the method of Hindley and Longo to show

that 〈FS, · 〉 is a lambda model, but instead we will specify two maps F and G and show that

these give rise to a lambda model.

Definition 4.2.4 We define F: FS → [FS → FS] and G: [FS → FS] → FS by:

i) F d e = d · e.

ii) G f = ↑{ σ→τ ∈ TS | τ ∈ f (↑σ) }.

It is easy to check that F and G are continuous.

Theorem 4.2.5 〈FS, · 〉 with F and G as defined in definition 4.2.4 is a lambda model.

Proof: By [Barendregt ’84].5.4.1 it is sufficient to prove that F◦G = id[FS→FS].

F◦G f d = ↑{ µ | ∃ ρ∈ d [ ρ→µ ∈ ↑{ σ→τ | τ ∈ f (↑σ) } ] } = (4.2.2 (ii))

↑{ µ | ∃ ρ∈ d [ µ ∈ f (↑ρ) ] } = f (d).
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Since the definition of ∼S as in [van Bakel ’92a] did not contain part 4.1.1 (iv.b), the filter

model FS as defined in this chapter is, as domain, not equivalent to the one defined in the paper.

With the definition we gave here, it is straightforward to show that FS is equivalent to Engeler’s

model DA [Engeler ’81].

Notice that FS and the filter lambda model F defined in [Barendregt et al. ’83] are not

isomorphic as complete lattices, since, for example, in F the BCD-filter ↑σ∩τ→σ is contained

in ↑σ→σ, whereas in FS the strict filter ↑Sσ∩τ→σ is not contained in ↑Sσ→σ. Moreover, they

are not isomorphic as lambda models, since, in F , the meaning of λxy.xy is contained in the

meaning of λx.x, whereas this does not hold in FS (see the examples in 4.2.9).

Definition 4.2.6 Let ξ be a valuation of term-variables in FS.

i) [[M ]]ξ , the interpretation of terms in FS via ξ is inductively defined by:

a) [[x]]ξ = ξ(x).

b) [[MN ]]ξ = F [[M ]]ξ[[N ]]ξ .

c) [[λx.M ]]ξ = G (λλ v ∈FS.[[M ]]ξ(v/x)).

ii) Bξ = { x:σ | σ ∈ ξ(x) }.

Theorem 4.2.7 For all M , ξ: [[M ]]ξ = { σ ∈ TS | Bξ !S M :σ }.

Proof: By induction on the structure of lambda terms.

i) [[x]]ξ = ξ(x). Since { y:ρ | ρ ∈ ξ(y) } !S x:σ ⇐⇒ σ ∈ ξ(x).

ii) [[MN ]]ξ = ↑{ τ | ∃ σ [ Bξ !s M :σ→τ & Bξ !S N :σ ] } = (4.1.5 (i) & (ii))

↑{ τ | Bξ !s MN :τ } = (4.2.3 (ii))

{ τ | Bξ !S MN :τ }.

iii) [[λx.M ]]ξ = ↑{ σ→τ | Bξ(↑σ/x) !S M :τ } = (4.1.5 (ii))

↑{ σ→τ | Bξ(↑σ/x) !s M :τ } = (Bξ′ = Bξ\x)

↑{ σ→τ | Bξ′ ∪{x:µ | µ ∈ ↑σ} !s M :τ } =

↑{ σ→τ | Bξ′ ∪{x:σ} !s M :τ } = (4.1.5 (iii))

↑{ σ→τ | Bξ′ !s λx.M :σ→τ } = (4.1.5 (v))

↑{ σ→τ | Bξ !s λx.M :σ→τ } = (4.1.5 (iii) & 4.2.2 (iv))

{ ρ | Bξ !S λx.M :ρ }.

Corollary 4.2.8 If M =β N and B !S M :σ, then B !S N :σ, so the following rule is a derived

rule in !S :
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M :σ M =β N
(=β):

N :σ

Proof: Since FS is a lambda model, we know that if M =β N , then [[M ]]ξ = [[N ]]ξ;

so { σ ∈ TS | Bξ !S M :σ } = { σ ∈ TS | Bξ !S N :σ }.

Notice that, because of the way !S is defined, corollary 4.2.8 will also hold if !S is

replaced by !s .

Example 4.2.9 By using lemmas 4.1.5 and 4.2.2 we can show the following:

i) If M is a closed term, then for all ξ, [[M ]]ξ = { σ ∈ TS | !S M :σ }. So for closed terms

we can omit the subscript ξ.

ii) [[λxy.xy]] = ↑{ ρ→σ→τ | ∃ σ′ [ ρ ≤S σ′→τ & σ ≤S σ′ ] }.

iii) [[λx.x]] = ↑{ σ→τ | σ ≤S τ }.

iv) [[(λx.x)y]]ξ = ξ(y).

If we take, for example, µ = (σ→τ )→σ∩ρ→τ , then it is easy to check that µ ∈ [[λxy.xy]] and

µ ,∈ [[λx.x]], so [[λxy.xy]] is not contained in [[λx.x]].

Notice that, if M is a closed term, [[M ]] is infinite. If M is not closed, it may be that [[M ]]ξ

is finite, since ξ can select finite filters as well. However, we can limit FS by selecting only

infinite strict filters. Notice that this would still give us a lambda model different from F .

Theorem 4.2.10 If M is in normal form, then there are B and σ such that B !s M :σ, and in

this derivation ω does not occur.

Proof: By induction on the structure of lambda terms in normal form.

i) M ≡ x. Take σ strict, such that ω does not occur in σ. Then {x:σ} !s x:σ.

ii) M ≡ λx.M ′, with M ′ in normal form. By induction there are B, τ such that B !s M ′:τ

and ω does not occur in this derivation. In order to perform the (→I)-step, B must contain

(whether or not x is free in M ′) a statement with subject x and predicate, say, σ. But

then, of course, B\x !s λx.M ′:σ→τ , and ω does not occur in this derivation.

iii) M ≡ xM1 . . .Mn, with M1, . . . , Mn in normal form. By induction there are B1, . . . , Bn

and σ1, . . . , σn such that for every 1≤ i≤n Bi !s Mi:σi, and ω does not occur in these

derivations. Take τ strict, such that ω does not occur in τ , and

B = Π{B1, . . . , Bn, {x:σ1→· · ·→σn→τ}}.
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Then B !s xM1 . . .Mn:τ , and in this derivation ω does not occur.

Theorem 4.2.11 If M is in head normal form, then there are B and σ such that B !s M :σ.

Proof: By induction on the structure of lambda terms in head normal form.

i) M ≡ x. Take σ strict, then {x:σ} !s x:σ.

ii) M ≡ λx.M ′, with M ′ in head normal form. By induction there are B and τ such that

B !s M ′:τ . As in the previous theorem, B must contain a statement with subject x and

predicate, say, σ. But then, of course, B\x !s λx.M ′:σ→τ .

iii) M ≡ xM1 . . .Mn, with M1, . . . , Mn lambda terms. Take τ strict, then also (with n times

ω) ω→ω→· · ·→ω→τ is strict, and {x:ω→ω→· · ·→ω→τ} !s xM1 . . .Mn:τ .

Theorem 4.2.12 ∃ B, σ [ B !s M :σ & B, σ ω-free ] ⇐⇒ M has a normal form.

Proof: ⇒) If B !s M :σ and B, σ ω-free, then B !BCD M :σ and B, σ ω-free. Then by

property 2.3.4 (iv) M has a normal form.

⇐) By theorem 4.2.10, and corollary 4.2.8.

Notice that in the second part of the proof, because of corollary 4.2.8 we can only state that

if M =β N and B !s M :σ, then B !s N :σ. From theorem 4.2.10 we can conclude that B and

σ do not contain ω, but the property that ω does not occur at all in the derivation is, in general,

lost. (See also the remark after lemma 7.4.2.)

Theorem 4.2.13 ∃ B, σ [ B !s M :σ ] ⇐⇒ M has a head normal form.

Proof: ⇒) If B !s M :σ, then B !BCD M :σ and σ ,= ω. Then by property 2.3.4 (iii), M has a

head normal form.

⇐) By theorem 4.2.11 and corollary 4.2.8.

Corollary 4.2.14 i) ∃ B, σ [ B !S M :σ & B, σ ω-free ] ⇐⇒ M has a normal form.

ii) ∃ B, σ [ B !S M :σ & σ ,= ω ] ⇐⇒ M has a head normal form.
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4.3 The relation between !S and !BCD

The BCD-type assignment is not conservative over the strict type assignment. So the following

does not hold:

Suppose all types occurring in B and σ are in TS. Then B !S M :σ ⇐⇒ B !BCD M :σ.

As a counter example for ⇐, take {x:σ→σ} !BCD x:σ∩τ→σ. It is not possible to derive

the statement x:σ∩τ→σ from the basis {x:σ→σ} in !S . Of course the implication in the

other direction holds: B !S M :σ implies B !BCD M :σ. The relation between the two systems

is stronger, however. The strict system turns out to be the nucleus of the BCD-system: we will

show that, if in a derivation for M :σ the derivation rule (≤) is used, the same statement can be

derived using a derivation in which the derivation rule (≤) is at the most only used at the very

end of the derivation (theorem 4.3.5). The proof is based on the fact that for every σ ∈ TBCD

there is a σ∗ ∈ TS such that σ ∼ σ∗ (lemma 4.3.1; the same result was stated in [Hindley ’82],

$4), and the approximation theorem as given in [Ronchi della Rocca & Venneri ’84].

Lemma 4.3.1 (cf. [Hindley ’82]) For every σ ∈ TBCD there is a σ∗ ∈ TS such that σ ∼ σ∗.

Proof: By induction on the structure of types in TBCD.

i) σ = ω, or σ is a type-variable: trivial.

ii) σ = ρ→τ . By induction there are ρ∗ and τ∗ ∈ TS such that ρ ∼ ρ∗ and τ ∼ τ∗.

a) τ∗ = ω. Take σ∗ = ω.

b) τ∗ = τ1∩· · ·∩τm, each τi ∈ Ts. Take σ∗ = (ρ∗→τ1)∩· · ·∩ (ρ∗→τn).

c) τ∗ is strict, then take σ∗ = ρ∗→τ∗.

iii) σ = ρ∩τ . By induction there are ρ∗ and τ∗ ∈ TS such that ρ ∼ ρ∗ and τ ∼ τ∗.

a) ρ∗ = ω. Take σ∗ = τ∗.

b) τ∗ = ω. Take σ∗ = ρ∗.

c) ρ∗ ,= ω & τ∗ ,= ω. Take σ∗ = ρ∗∩τ∗.

Notice that lemma 4.3.1 is not a proof for the statement that TS modulo ∼S is isomorphic

to TBCD modulo ∼ . For example, take σ1 = σ→τ and σ2 = (σ→τ )∩(σ∩ρ→τ ); then σ1 ∼ σ2,

σ1
∗ = σ1, σ2

∗ = σ2, but not σ1 ∼S σ2.

As for the CDV-system and the BCD-system, the type assignment rules of the strict system are

generalized to elements of N by allowing for the terms to be elements of Λ⊥. Notice that,

because strict type assignment is syntax directed, if ⊥ occurs in a term M and B !S M :σ, then
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either σ = ω, or in the derivation for M :σ, ⊥ appears in the right hand subterm of an application

on which the derivation rule (→E) is used with n = 0.

We will now prove the main theorem of this section by showing that the !S -system is in

fact the nucleus of the BCD-system. We will do this by proving first, for terms in N , that the

derivation rule (≤) can be transferred to the very end of a derivation, and afterwards generalizing

this result to arbitrary lambda terms.

Theorem 4.3.2 If A is in λ⊥-normal form and B !BCD A:σ then there are B′, σ′ ∈ TS such

that B′ !S A:σ′, σ′ ≤ σ and B′ ≥ B.

Proof: The proof is given by induction on the structure of terms in λ⊥-normal form.

All cases where σ ∼ ω are trivial, because then we can take B′ = ∅ and σ′ = ω. Therefore, in

the rest of the proof, we will assume σ ,= ω.

i) B !BCD x:σ. By property 2.3.4 (v) there is an x:ρ∈B such that ρ ≤ σ.

By lemma 4.3.1 {x:ρ∗} ≥ B and ρ∗ ≤ σ.

ii) B !BCD λx.A′:σ, with A′ ,= ⊥. Then there are ρ1, . . . , ρn, µ1, . . . , µn such that

σ = (ρ1→µ1) ∩· · ·∩ (ρn→µn).

So, by (∩E) and property 2.3.4 (ii) for every 1≤ i≤n we have B∪{x:ρi} !BCD A′:µi.

By induction for 1≤ i≤n there are Bi and ρi
′, µi

′ ∈ TS such that

Bi∪{x:ρi
′} !S A′:µi

′, µi
′ ≤ µi and Bi∪ {x:ρi

′} ≥ B ∪{x:ρi}.

We can assume, without loss of generality, that each µi
′ is an element of Ts. Then:

∀ 1≤ i≤n Bi !s λx.A′:ρi
′→µi

′, ρi
′→µi

′ ≤ ρi→µi and Bi ≥ B.

So Π{B1, . . . , Bn} !S λx.A
′:(ρ1

′→µ1
′)∩· · ·∩ (ρn

′→µn
′), Π{B1, . . . , Bn} ≥ B, and

(ρ1
′→µ1

′) ∩· · ·∩ (ρn
′→µn

′) ≤ σ.

iii) B !BCD xA1 . . . An:σ. By property 2.3.4 (i) there are τ1, . . . , τn ∈ TBCD such that

B !BCD x:τ1→· · ·→τn→σ, and for every 1≤ i≤n B !BCD Ai:τi.

By induction for 1≤ i≤n there are Bi, τi such that Bi !S Ai:τi
′, τi

′ ≤ τi and Bi ≥ B.

Also Π{B1, . . . , Bn} ≥ B.

Let σ∗ = σ1∩· · ·∩σk where each σi ∈ Ts and k ≥ 1. By lemma 4.3.1

τ1→· · ·→τn→σ ≤ (τ1
′→· · ·→τn

′→σ1)∩· · ·∩ (τ1
′→· · ·→τn

′→σk)

and because of property 2.3.4 (v), we have

Π{B1, . . . , Bn, {x:(τ1
′→· · ·→τn

′→σ1) ∩· · ·∩ (τ1
′→· · ·→τn

′→σk)}} ≥ B.

For every 1≤ f ≤ k Π{B1, . . . , Bn, {x:τ1
′→· · ·→τn

′→σf}} !s xA1 . . . An:σf , so
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Π{B1, . . . , Bn, {x:(τ1
′→· · ·→τn

′→σ1) ∩· · ·∩ (τ1
′→· · ·→τn

′→σk)}}

!S xA1 . . . An:σ′.

Lemma 4.3.3 i) If A1, A2 ∈A(M), then there is an A′ such that A1 and A2 both match A′

except for occurrences of ⊥, and A′ ∈A(M).

ii) If for every 1≤ i≤n there is an A ∈A(M ) such that Bi !S A:σi, then there is an

A∈A(M ) such that for 1≤ i≤n Bi !S A:σi.

Proof: i) This is a consequence of proposition 10.2.2, in [Barendregt ’84].

ii) If for every 1≤ i≤n there is an Ai ∈ A(M) such that Bi !S Ai:σi, then by part (i) there

is an A∈A(M ), such that for every 1≤ i≤n, Ai matches A except for occurrences of

⊥. Since ⊥ occurs only in subterms that are typed with ω, also for every 1≤ i≤n,

Bi !S A:σi.

Theorem 4.3.4 B !S M :σ ⇐⇒ ∃ A ∈A(M) [ B !S A:σ ].

Proof: ⇒) By straightforward induction on the structure of derivations, using lemma

4.3.3 (ii).

⇐) If B !S A:σ, then by the remark made before theorem 4.3.2, ⊥ appears only in subterms

that are typed by ω. Since A ∈A(M ), there is an M ′ such that M ′ =β M and A matches

M ′ except for occurrences of ⊥. Then obviously B !S M ′:σ, and by corollary 4.2.8 also

B !S M :σ.

Theorem 4.3.5 If B !BCD M :σ, then there are B′, σ′ ∈ TS such that B′ !S M :σ′, σ′ ≤ σ, and

B′ ≥ B.

Proof: B !BCD M :σ ⇒ (2.3.2.7)

∃ A ∈A(M) [ B !BCD A:σ ] ⇒ (4.3.2)

∃ A ∈A(M), B′, σ′ ∈ TS [ B′ !S A:σ′ & σ′ ≤ σ & B′ ≥ B ] ⇒ (4.3.4)

∃ B′, σ′ ∈ TS [ B′ !S M :σ′ & σ′ ≤ σ & B′ ≥ B ].

4.4 Soundness and completeness of strict type assignment
In this section we will prove completeness for the strict system. Recall definitions 2.3.1.2 and

2.3.1.3.

As shown in [Barendregt et al. ’83], the BCD-type assignment is sound and complete with

respect to the simple type semantics. In this section we will show that soundness is lost if –
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instead of simple type semantics – the inference type semantics as defined in [Mitchell ’88] is

used. By using the latter, we are able to prove soundness and completeness without having the

necessity of introducing ≤. This is done in a way very similar to the one used in [Barendregt

et al. ’83], using the strict filter lambda model FS.

At one very crucial point, the completeness proof in this section differs from the one in

[Barendregt et al. ’83]. In this paper, the simple type semantic was inductively defined, whereas

our approach will be to give a map from TS to ℘(FS) and prove that it is a type interpretation.

It will be a different kind of type interpretation than the one used in [Barendregt et al. ’83],

because the latter would not suffice in our case.

Theorem 4.4.1 Soundness. B !S M :σ ⇒ B !!M :σ.

Proof: By induction on the structure of derivations.

The notion of derivability !BCD is not sound for !! . Take, for example, the statement

λx.x:(σ→σ)→σ∩τ→σ. This statement is derivable in the system !BCD , but it is not valid in

the strict filter lambda model.

Definition 4.4.2 i) We define a map υ0 : TS → ℘(FS) by υ0 (σ) = { d ∈FS | σ ∈ d }.

ii) ξB(x) = { σ ∈ TS | B !S x:σ }.

Theorem 4.4.3 The map υ0 is a type interpretation.

Proof: We check condition (a) of definition 2.3.1.2 (i). (Condition (b) is easy, (c) is trivial.)

∀ e [ e ∈ υ0 (σ) ⇒ d · e∈ υ0 (τ ) ] ⇒

∀ e [ e ∈ υ0 (σ) ⇒ ε ·d · e∈ υ0 (τ ) ] ⇒ (take e = ↑σ)

τ ∈ ε ·d · ↑σ ⇒ (4.2.2 (ii))

∃ ρ∈ ↑σ, ν ∈ d, η [ ν ≤S η→τ & ρ ≤S η ] ⇒ (4.2.2 (iii))

∃ ν ∈ d, η [ ν ≤S η→τ & σ ≤S η ] ⇒

σ→τ ∈ ↑{ ρ→µ | ∃ ν ∈ d, η [ ν ≤S η→µ & ρ ≤S η ] } ⇒

σ→τ ∈ ↑{ η | ∃ ν ∈ d [ ν→η ∈ ε] } ⇒

ε ·d∈ υ0 (σ→τ ).

Notice that, if part (iv.b) of definition 4.1.1 is omitted, the sets υ0 (σ∩τ→σ) and υ0 (τ∩σ→σ)

are incompatible. Then, we can only show that both contain

{ ε ·d | ∀ e [ e ∈ υ0 (σ)∩ υ0 (τ ) ⇒ d · e∈ υ0 (σ) ] }

and that they are both contained in
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{ d | ∀ e [ e ∈ υ0 (σ)∩ υ0 (τ ) ⇒ d · e∈ υ0 (σ) ] }.

If the relation ∼S is defined as in definition 4.1.1 then σ∩τ→σ ∼S τ∩σ→σ. Since filters

are closed for ∼S , σ∩τ→σ ∈ ↑τ∩σ→σ and τ∩σ→σ ∈ ↑σ∩τ→σ, so υ0 (σ∩τ→σ) = υ0 (τ∩σ→σ).

Lemma 4.4.4 i) B !S M :σ if and only if BξB !S M :σ.

ii) FS, ξB, υ0 !! B.

Proof: i) Because for every x, ξB(x) is a strict filter.

ii) x:σ ∈B ⇒ (i) σ ∈ { τ | BξB !S x:τ } ⇒ σ ∈ [[x]]ξB .

So [[x]]ξB ∈ { d∈FS | σ ∈ d } = υ0 (σ).

The system of [Barendregt et al. ’83] proved to be complete with respect to the simple type

semantics. The system !S , however, is not complete in this semantics, due to the fact that, if

we take υ to be a type interpretation from TS to ℘(FS), the set

{ d | ∀ e [ e ∈ υ(σ) ⇒ d · e ∈ υ(τ ) ] }

is not contained in υ(σ→τ ), since we don’t allow for ω or an intersection type scheme at

the right hand side of an arrow type scheme. If, instead, we use the notion of type interpretation

as defined in definition 2.3.1.2 (i), because of theorem 4.4.3, completeness can be proved.

Theorem 4.4.5 Completeness. Let σ ∈ TS, then B !!M :σ ⇒ B !S M :σ.

Proof: B !!M :σ ⇒ (2.3.1.3 (ii.c.1), 4.4.4 (ii) & 4.4.3)

FS, ξB, υ0 !! M :σ ⇒ (2.3.1.3 (ii.a) & 4.4.3)

[[M ]]ξB ∈ υ0 (σ) ⇒ (4.4.2 (i))

σ ∈ [[M ]]ξB ⇒ (4.2.7)

BξB !S M :σ ⇒ (4.4.4 (i))

B !S M :σ.

Chapter 5 The Essential Intersection Type

Assignment System

The strict system is not closed under η-reduction. So, the following does not hold:

B !S M :σ & M →η N ⇒ B !S N :σ.

For example, take as in example 4.2.9 the terms λxy.xy and λx.x, and notice that λxy.xy →η

λx.x. It is easy to check that:

!S λxy.xy:(σ→τ )→σ∩ρ→τ and not !S λx.x:(σ→τ )→σ∩ρ→τ .

In this chapter, we will show that the straightforward extension of ≤S to a relation that is

also defined over arrow-types is sufficient to create a system that is closed under η-reduction.

We call this notion of type assignment essential, to emphasize that it is the smallest restriction

(that is not strict) of the BCD-system that satisfies all its properties. We will compare this notion

of type assignment with the one defined in [Hindley ’82], and prove a completeness result.

5.1 Essential type assignment
The relation ≤E on TS is a natural extension of the relation ≤S , that was only defined for

intersection types. Notice that, as in the relation ≤, in the definition of ≤E , the arrow type

constructor is contravariant in its left argument and covariant in its right argument.

Definition 5.1.1 i) We define the relation ≤E on TS like ≤S , but add the last alternative.

a) σ ≤E σ.

b) σ ≤E ω.

c) σ∩τ ≤E σ & σ∩τ ≤E τ .
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d) σ ≤E τ ≤E ρ ⇒ σ ≤E ρ.

e) σ ≤E ρ & σ ≤E τ ⇒ σ ≤E ρ∩τ .

f) ρ ≤E σ & τ ≤E µ ⇒ σ→τ ≤E ρ→µ.

ii) On TS, the relation ∼E is defined by: σ ∼E τ ⇐⇒ σ ≤E τ ≤E σ.

TS may be considered modulo ∼E . As before, ≤E becomes a partial order, and in this

chapter we consider types modulo ∼E .

As with the relations ≤ (definition 2.3.2) and ≤S , we extend the relation ≤E to bases.

Lemma 5.1.2 For the relation ≤E , the following properties hold:

i) σ ≤S τ ⇒ σ ≤E τ .

ii) ϕ ≤E σ ⇐⇒ σ = ϕ. So { σ | σ ∼E ϕ } = {ϕ}.

iii) ω ≤E σ ⇐⇒ σ = ω. So { σ | σ ∼E ω } = {ω}.

iv) σ→τ ≤E ρ∈ Ts ⇐⇒ ∃ α∈ TS, β ∈ Ts [ ρ = α→β & α ≤E σ & τ ≤E β ].

v) σ1∩· · ·∩σn ≤E τ ∈ Ts ⇒ ∃ 1≤ i≤n [ σi ≤E τ ].

Proof: Easy.

Using this lemma, we can prove the following:

Lemma 5.1.3 i) σ1∩· · ·∩σn ≤E τ ∈ TS ⇒

∃ τ1, . . . , τm ∈ Ts [ τ = τ1∩· · ·∩τm & ∀ 1≤ j ≤m ∃ 1≤ i≤n [ σi ≤E τj ] ].

ii) σ ≤E τ & σ ∈ Ts ⇒

∃ τ1, . . . , τm (m ≥ 0) [ τ = τ1∩· · ·∩τm & ∀ 1≤ j≤m [ σ ≤E τj ] ].

iii) B′ ≤E B ≤S {x:σ} & σ ∈ Ts ⇒ ∃ σ′ ∈ Ts [ B′ ≤S {x:σ′} & σ′ ≤E σ ].

Proof: Easy.

Notice that ∼S is a true subrelation of ∼E , since for example σ→τ ∼E (σ→τ )∩(σ∩ρ→τ ),

but this does not hold in ∼S .

The essential type assignment system is constructed from the set of strict types, and a minor

extension of the derivation rules as in definition 4.1.3 (i). This way, a system is obtained that

satisfies the main properties of the BCD- and the strict system, which is not surprising: type

assignment is closed under β-equality, the set of terms typeable with type σ from a basis B such
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that ω does not occur in B and σ is the set of normalizable terms, and the set of terms typeable

with type σ ,= ω is the set of terms having a head normal form.

Definition 5.1.4 i) Essential type assignment and essential derivations are defined by the

following natural deduction system (where all types displayed are strict, except σ in the

derivation rules (→I) and (≤E)):

[x:σ]
:

M :τ
(→I): (a)

λx.M :σ→τ

x:σ σ ≤E τ
(≤E):

x:τ

M :σ1∩· · ·∩σn→τ N :σ1 . . . N :σn
(→E): (n ≥ 0)

MN :τ

(a) If x:σ is the only statement about x on which M :τ depends.

If M :σ is derivable from B using an essential derivation, we write B !e M :σ.

ii) We define !E by: B !E M :σ if and only if: there are σ1, . . . , σn (n ≥ 0) such that

σ = σ1∩· · ·∩σn, and for every 1≤ i≤n, B !e M :σi.

Notice that derivation rule (∩E) from the strict system is not required in this definition, since it

is derivable from (≤E).

The difference between the strict system and the essential system does not lie in the set of

types that can occur in derivations, but only in the extension of the derivation rule (∩E) to the

one for (≤E).

For this notion of type assignment, the following properties hold:

Lemma 5.1.5 i) B !e MN :σ ⇐⇒ ∃ τ ∈ TS [ B !e M :τ→σ & B !E N :τ ].

ii) B !e λx.M :σ ⇐⇒ ∃ ρ∈ TS, µ∈ Ts [ σ = ρ→µ & B∪{x:ρ} !e M :µ ].

iii) B !E M :σ ⇐⇒ ∃ σ1, . . . , σn (n ≥ 0) [ σ = σ1∩· · ·∩σn & ∀ 1≤ i≤n [ B !e M :σi ] ].

iv) B !E x:σ ⇐⇒ ∃ ρ∈ TS [ x:ρ∈B & ρ ≤E σ ].

v) B !E M :σ & B′ ≤E B ⇒ B′ !E M :σ.

Proof: Easy.

Although the derivation rule (≤E) is not allowed on all terms, we can prove the following:
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Lemma 5.1.6 If B !E M :σ, and σ ≤E τ , then B !E M :τ .

Proof: By induction on !E .

i) σ = ω. Then by lemma 5.1.2 (iii) τ = ω. Obviously B !E M :τ .

ii) σ = σ1∩· · ·∩σn. Then by lemma 5.1.5 (iii), for every 1≤ i≤n, B !e M :σi. By lemma

5.1.3 (i) there are τ1, . . . , τm ∈ Ts such that τ = τ1∩· · ·∩τm, and for every 1≤ j≤m there

is a 1≤ i≤n such that σi ≤E τj . By induction for every 1≤ j≤m B !e M :τj . But then

B !E M :τ .

iii) σ ∈ Ts. This part is proved by induction on M .

a) M ≡ x. Then B ≤E {x:σ} ≤E {x:τ}, so by lemma 5.1.5 (iv) B !E x:τ .

b) M ≡ λx.M ′. Then by lemma 5.1.5 (ii), there are ρ ∈ TS, µ ∈ Ts such that σ = ρ→µ,

and B∪{x:ρ} !e M ′:µ. By lemmas 5.1.3 (ii) and 5.1.2 (iv), there are ρ1, . . . , ρn, µ1,

. . . , µn such that τ = (ρ1→µ1) ∩· · ·∩ (ρn→µn), and for 1≤ i≤n ρi ≤E ρ and

µ ≤E µi. By lemma 5.1.5 (v), for 1≤ i≤n B∪{x:ρi} !e M ′:µ, and by induction

B∪{x:ρi} !e M ′:µi. So by lemma 5.1.5 (ii), for every 1≤ i≤n B !e λx.M ′:ρi→µi,

so B !E λx.M ′:τ .

c) M ≡M1M2. Then by lemma 5.1.5 (i), there is a µ∈ TS such that B !e M1:µ→σ, and

B !E M2:µ. Since σ ≤E τ , also µ→σ ≤E µ→τ , and by induction B !e M1:µ→τ .

But then, by lemma 5.1.5 (i), B !E M1M2:τ .

Now it is easy to prove that type assignment in this system is closed under η-reduction.

Theorem 5.1.7 If B !E M :σ and M →η N , then B !E N :σ.

Proof: We will only show the part σ ∈ Ts. The proof is completed by induction on the

definition of →η , of which we only show the part λx.Mx →η M , where x does not occur

free in M . The other parts are dealt with by straightforward induction.

B !e λx.Mx:σ ⇒ (5.1.5 (ii))

∃ ρ, µ [ σ = ρ→µ & B∪ {x:ρ} !e Mx:µ ] ⇒ (5.1.5 (i))

∃ τ , ρ, µ [ σ = ρ→µ & B∪{x:ρ} !e M :τ→µ & B∪{x:ρ} !E x:τ ] ⇒

(5.1.5 (iv), x not in M )

∃ τ , ρ, µ [ σ = ρ→µ & B !e M :τ→µ & ρ ≤E τ ] ⇒ (5.1.1)

∃ τ , ρ, µ [ σ = ρ→µ & B !e M :τ→µ & τ→µ ≤E ρ→µ ] ⇒ (5.1.6)

B !e M :σ.

It is easy to check that !E λxy.xy:(σ→τ )→σ∩ρ→τ and !E λx.x:(σ→τ )→σ∩ρ→τ .
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5.2 The relation between !S , !E and !BCD

As with the BCD-type assignment system and the strict system, essential type assignment is not

conservative over strict type assignment. So the following does not hold:

B !S M :σ ⇐⇒ B !E M :σ.

As a counter example for ⇐, take {x:σ→σ} !E x:σ∩τ→σ. Notice that σ→σ ≤E σ∩τ→σ.

It is not possible to derive the statement x:σ∩τ→σ from the basis {x:σ→σ} in !S . Of course

the implication in the other direction holds: B !S M :σ implies B !E M :σ.

In a way similar to that of section 4.3, we can show that the essential type assignment system

is the nucleus of the BCD-system; we can also show that the strict system is the nucleus of the

essential system. The relation between the different notions of type assignment is formulated

as follows:

Theorem 5.2.1 i) If B !BCD M :σ, then there are B′, σ′ such that B′ !E M :σ′, σ ∼ σ′ and

B ∼ B′.

ii) If B !E M :σ, then there are B′, σ′ such that B′ !S M :σ′, σ′ ≤E σ and B ≤E B′.

Proof: i) As the proof of theorem 4.3.5.

ii) By easy induction, using lemma 5.1.5.

In part (i) in particular σ′ ≤ σ and B ≤ B′.

As in the previous chapter, it is possible to prove that the essential type assignment system

satisfies the main properties of the BCD-system and of the strict system.

Property 5.2.2 i) B !E M :σ & M =β N ⇒ B !E N :σ.

ii) ∃ B, σ [ B !E M :σ & B, σ ω-free ] ⇐⇒ M has a normal form.

iii) ∃ B, σ [ B !E M :σ & σ ,= ω ] ⇐⇒ M has a head normal form.

5.3 Soundness and completeness of essential type assign-

ment
For this essential system, it is possible to prove completeness of type assignment with respect

to the simple type semantics the same way as done in [Barendregt et al. ’83]. Since such a proof

would be obtained in exactly the same way as in [Barendregt et al. ’83], we will not present it

here. Instead, we will prove a completeness result using results proven in [Hindley ’82]. In this
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paper, some restrictions of the BCD-system were investigated, and one of them proved to be

essentially the same as the BCD-system.

Definition 5.3.1 [Hindley ’82] i) The set TN of normal intersection types is defined by:

a) Type-variables and ω are in TN.

b) If σ, τ ∈ TN – {ω}, then σ∩τ ∈ TN.

c) If σ ∈ TN, and τ ∈ TN-{ω, intersections}, then σ→τ ∈ TN.

ii) On TN, the relation ≤N is obtained by restricting the definition of ≤ to TN.

iii) The notion of type assignment !N is defined as !BCD , but by adding:

a) All types are in TN.

b) Derivation rule (∩E) never immediately follows (∩I).

c) Derivation rules (∩E) and (≤N) are only used with atomic subjects.

It is straightforward to show that TN = TS, and ≤N = ≤E .

Proposition 5.3.2 (cf. [Hindley ’82]) i) If σ, τ ∈ TS, then σ ≤ τ ⇐⇒ σ ≤E τ .

ii) Let ∗ be defined as in lemma 4.3.1. B !BCD M :σ ⇐⇒ B∗ !N M :σ∗.

We will now prove that BCD-type assignment is conservative over essential type assign-

ment.

Theorem 5.3.3 Conservativity. Let B and σ contain types in TS. If B !BCD M :σ, then

B !E M :σ.

Proof: B !BCD M :σ ⇒ (5.2.1 (i))

∃ B′, σ′ [ B′ !E M :σ′ & σ′ ∼ σ & B ∼ B′ ] ⇒ (5.3.2 (i))

∃ B′, σ′ [ B′ !E M :σ′ & σ′ ≤E σ & B ≤E B′ ] ⇒ (5.1.5 (v) & 5.1.6)

B !E M :σ.

Of course the implication in the other direction also holds: If B !E M :σ, then B !BCD M :σ.

We will now show that !N and !E are equivalent.

Theorem 5.3.4 B !N M :σ ⇐⇒ B !E M :σ.

Proof: ⇒) B !N M :σ ⇒ (5.3.2 (ii)) B !BCD M :σ ⇒ (5.3.3) B !E M :σ.

⇐) B !E M :σ ⇒ B !BCD M :σ ⇒ (5.3.2 (ii)) B !N M :σ.
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Now, soundness and completeness of essential type assignment are easy to prove.

Theorem 5.3.5 Soundness and completeness of essential type assignment. Let B and σ contain

types in TS. Then B !E M :σ ⇐⇒ B !!s M :σ.

Proof: ⇒) B !E M :σ ⇒ B !BCD M :σ ⇒ (2.3.1.5 (i)) B !!s M :σ.

⇐) B !!s M :σ ⇒ (2.3.1.5 (ii)) B !BCD M :σ ⇒ (5.3.3) B !E M :σ.

Since !N and !E are equivalent, soundness and completeness of essential type assign-

ment could also be proved using a similar result proved in [Hindley ’82] for !N .



Chapter 6 Principal Type Schemes for the

Strict Type Assignment System

In this chapter, we will prove that the Strict Type Assignment System as presented in chapter

four has the principal type property. For each lambda term the principal pair (of basis and

type) will be defined. We will define three operations on pairs of basis and types, namely strict

substitution, strict expansion, and lifting, that are correct and sufficient to generate all derivable

pairs for lambda terms. The operation of lifting is the strict counterpart of rise, and the operation

of substitution is a slight modification of the ones defined before. The operation of expansion

coincides with the CDV- and RV-expansions. Substitution and expansion will prove to be sound

on all pairs; we will also show that there is no operation of lifting that is sound on all pairs of

basis and type.

In order to prove that the operations defined are sufficient, we will define a hierarchy of pairs

consisting of principal pairs, ground pairs, primitive pairs, and pairs. We will show that these

form a true hierarchy, that the set of ground pairs is closed under the operation of expansion,

and that the set of primitive pairs is closed under the operation of lifting. In a diagram, this

construction looks like:

!
"

#
$

Set of

Principal pairs

% &
+

Expansion

⊂
,=

!
"

#
$

Set of

Ground pairs'
( Expansion

)
*
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+

Lifting

⊂
,=

!
"

#
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Primitive pairs'
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*
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+

Substitution

⊂
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!
"

#
$

Set of

Pairs'
( Substitution

)
*

*
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There is an arrow from one set of pairs to another, if the operation mentioned above the

arrow maps a pair in the set at the beginning of the arrow to a pair in the set at the end. When

these sets are different, the result of applying the operation in general is not a pair in the set at

the beginning of the arrow. The symbols between the sets indicate that the set on the left is a

true subset of the set on the right.

The principal pair for a lambda term M in the Strict Type Assignment System, PPS (M ),

turns out to be the same as PPCDV (M ) and PPRV (M ); the definition of ground pairs coincides

with the one for CDV-ground pairs. As will be shown in this chapter, the results of [Coppo

et al. ’80] and [Ronchi della Rocca & Venneri ’84] do not provide principal types for the strict

system. Although the type assignment systems differ only in details, none of the results of

either paper can be applied to the strict system. All results presented in this chapter with proofs

are therefore new, although we are using techniques that are similar to the ones used in these

two papers.

Since the strict system is closed under β-equality, type assignment in this system is not

decidable, but semi-decidable. This means that, in an implementation of the strict system, some

restrictions have to be made, as is done, for example, in [Coppo & Giannini ’92].

We will show that the three operations defined in this chapter are complete: if 〈B, σ〉 is a

suitable pair for a term A in λ⊥-normal form, and 〈P , π〉 is the principal pair for A, then there

are an operation of lifting L, sequences of operations of expansion 1E, and substitution 1S, such

that 〈B, σ〉 = 1S (L (1E (〈P , π〉))).

We will generalize these results to arbitrary lambda terms, and, finally, show that also the

essential type assignment system has the principal type property.

In proving that the strict system has the principal pair property, we could have used the same

technique as [Margaria & Zacchi ’90]. In this paper, principal typings for the type assignment

system as presented in [Jacobs et al. ’92] were studied. This system is a combination of the

BCD-system and the polymorphic type discipline as presented in [Girard ’86]. This combina-

tion can be seen as an extension of the BCD-system by adding the type constructor ‘∀’: if ϕ

is a type-variable and σ is a type, then ∀ϕ.σ is a type. Also, the type inclusion relation ≤ is

extended in a natural way. The type assignment rules consist of (→I), (→E), (∀I), (∩I), (≤),

and (ω). The rules (∩E) and (∀E) are omitted since they can be derived from (≤).

The technique used in [Margaria & Zacchi ’90] is the following: For every A in λ⊥-normal

form, a relation ⊆A is defined on the inductively defined set of pairs 〈B, σ〉 admissible for A

(i.e. such that B ! A:σ). This relation satisfies: if 〈B1, σ1〉 ⊆A 〈B2, σ2〉, then 〈B1, σ1〉 and

〈B2, σ2〉 are both admissible pairs for A. The principal pairs of terms in λ⊥-normal form are

defined by induction on the structure of such terms (similar to definitions 2.2.2.10, 2.3.2.5 and
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6.1.3 of this thesis). The proof is completed by showing that, if 〈B, σ〉 is an admissible pair for

A, and 〈P , π〉 is the principal pair of A, then 〈P , π〉 ⊆A 〈B, σ〉.

A major difference between this technique and the one used in this chapter, is that the latter

yields, given an admissible pair 〈B, σ〉 for A, a sequence of operations that will transform the

principal pair of A into 〈B, σ〉. The technique of [Margaria & Zacchi ’90] is sufficient to show

that, for every term in λ⊥-normal form, there exists a principal type; it does not specify how to

create an admissible pair from the principal one.

6.1 Principal pairs for terms in λ⊥-normal form
In [Coppo et al. ’80], principal pairs were defined for a type assignment system that is, at first

sight, very similar to the strict system, and in [Ronchi della Rocca & Venneri ’84] principal pairs

were defined for the BCD-system. In order to understand the necessity of defining principal

pairs for the the strict system, we focus on the small but important differences between the

strict system and the other two.

In the type assignment system as presented in [Coppo et al. ’80], the types that occur in

bases can only be type-variables or arrow types. Instead of using intersections in bases, it

is allowed for to let a basis contain several statements the subject of which is a variable. If

B !CDVP
M :τ , and x occurs in B, the (→I)-rule of this system collects all types that are

predicates for x and are used in the derivation of M :τ . This system does not contain an (∩E)-

rule of any kind, so, in this system, it is impossible to derive the type ϕ0∩ϕ1→ϕ0 for the lambda

term λx.x. This type is derivable for this term in the strict system.

Moreover, if B !CDVP
M :τ , and the variable x does not occur in B, then for λx.M only

the type ω→τ can be derived. Therefore, in that system it is impossible to derive ϕ0→ϕ1→ϕ0

for the lambda term λab.a. This type is derivable for this term in the strict system.

The restriction being made from the BCD-system to the strict system consists of eliminating

the derivation rule (≤). This rule plays an important part in [Ronchi della Rocca & Venneri ’84],

in which the derivation rule (∩E) of the BCD-system is left out because it is in fact derivable

from (≤). In this system, the statement λx.x:ϕ0∩ϕ1→ϕ0 can be derived by applying the (≤)-

rule to the derivation for

!BCD λx.x:ϕ0→ϕ0

(allowed for since ϕ0→ϕ0 ≤ ϕ0∩ϕ1→ϕ0). Similarly, the statement λab.a:ϕ0→ϕ1→ϕ0 can be

derived by applying the (≤)-rule to the derivation for

!BCD λab.a:ϕ0→ω→ϕ0
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(since ϕ0→ω→ϕ0 ≤ ϕ0→ϕ1→ϕ0). Although the (≤)-rule is not allowed in the strict system,

it could of course be that the operation of rise – which works on pairs and produces pairs – is

sound for strict pairs. This, however, is not true. Take, for example, the rise

R = 〈〈∅, ϕ0→ω→ϕ0〉, 〈∅, ϕ0→ϕ1→ϕ0〉〉.

Then R (〈{x:ϕ0→ω→ϕ0}, ϕ0→ω→ϕ0〉) = 〈{x:ϕ0→ω→ϕ0}, ϕ0→ϕ1→ϕ0〉. It is not possible

to derive x:ϕ0→ϕ1→ϕ0 from the basis {x:ϕ0→ω→ϕ0} in the strict system.

So, the results of [Coppo et al. ’80] and [Ronchi della Rocca & Venneri ’84] do not provide

principal types for the strict system. The technique used in these papers to construct the princi-

pal pairs and to define the operations that generate all other derivable pairs for a lambda term,

is, however, similar to the one used here.

Before we come to the definition of principal pairs, we introduce the notion of a basis used

for a statement. The idea is that, in an average derivation, a number of types attached to term-

variables in the basis is not needed in the derivation at all: there is, for example, no (∩E)-rule

that selects these types. In constructing a used basis of a derivation, we collect all (and nothing

but) the types that are actually used in the derivation. This notion makes the proofs of subsection

6.2.2 easier.

Definition 6.1.1 i) The used bases of B !S M :σ are inductively defined by:

a) If σ = σ1∩· · ·∩σn (n ≥ 0), then for every 1≤ i≤n B !s M :σi. Let, for every

1≤ i≤n, Bi be a used basis of B !s M :σi. Take Π{B1, . . . , Bn}.

b) σ ∈ Ts.

1) M ≡ x. Take {x:σ}.

2) M ≡ λx.M ′. Then σ = α→β, and B∪{x:α} !S M ′:β. Let B′ be a used basis of

B ∪{x:α} !S M ′:β. If x:α′ ∈B′, take B′\x, otherwise take B′.

3) M ≡ M1M2. Then there is a τ such that B !s M1:τ→σ and B !S M2:τ .

Let B1 be a used basis of B !s M1:τ→σ, and B2 be a used basis of B !S M2:τ .

Take Π{B1, B2}.

ii) A basis B is used for M :σ if and only if there is a basis B′ such that B′ !S M :σ, and B

is a used basis of B′ !S M :σ.

Notice that in part (i.a), if n = 0, then σ = ω, and Π{B1, . . . , Bn} = ∅.

Notice that constructing a used basis from a derivation is not the same as constructing

the minimal basis needed to derive the conclusion of the derivation. Also, a used basis for a

derivable statement M :σ is not unique, but depends on the derivation used. This is caused by
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the fact that in part (i.b.3), for example, the type τ is not fixed. Choosing another suitable τ

could give another used basis. The results we present with used bases do not depend on the

actual structure of a used basis, however; they only depend on its existence.

For used bases, the following properties hold.

Lemma 6.1.2 i) If B is used for M :σ, then B !S M :σ.

ii) B !S M :σ ⇐⇒ ∃ B′ [ B ≤S B′ & B′ is used for M :σ ].

iii) B is used for λx.M :σ→τ ⇐⇒ ∃ σ′ [ σ ≤S σ
′ & B ∪{x:σ′} is used for M :τ ].

iv) B is used for xM1 . . .Mn:σ ⇐⇒ ∃ B1, . . . , Bn, σ1, . . . , σn [ ∀ 1≤ i≤n [ Bi is used for

Mi:σi ] & B = Π{B1, . . . , Bn, {x:σ1→· · ·→σn→σ}} ].

Proof: By lemmas 4.1.5 and 4.1.6, and definition 6.1.1.

Principal pairs for the Strict Type Assignment System are defined by:

Definition 6.1.3 i) Let A∈N . PPS (A), the strict principal pair of A, is defined by:

a) PPS (⊥) = 〈∅, ω〉.

b) PPS (x) = 〈{x:ϕ}, ϕ〉.

c) If A ,= ⊥, and PPS (A) = 〈P , π〉, then:

1) If x occurs free in A, and x:σ ∈ P , then PPS (λx.A) = 〈P\x, σ→π〉.

2) Otherwise PPS (λx.A) = 〈P , ω→π〉.

d) If PPS (Ai) = 〈Pi, πi〉 for 1≤ i≤n (we choose trivial variants that are disjoint in

pairs), then PPS (xA1 . . . An) = 〈Π{P1, . . . , Pn, {x:π1→· · ·→πn→ϕ}}, ϕ〉, where ϕ

is a type-variable that does not occur in PPS (Ai) for 1≤ i≤n.

ii) PS = {〈P , π〉 | ∃ A∈N [ PPS (A) = 〈P , π〉 ] }.

Notice that, this definition is, apart from the notion of sequence, the same as the definition for

PPCDV (M ), and equivalent to the one for PPRV (M ), so we can say that PS = PRV.

Notice that, if 〈P , π〉 ∈PS, then π ∈ Ts, and that if PPS (A) = 〈P , π〉, then P is used for

A:π. The notion of principal pairs for λ⊥-normal forms will be generalized to arbitrary lambda

terms in subsection 6.3.2. This is done the same way as in [Coppo et al. ’80] and [Ronchi della

Rocca & Venneri ’84].
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6.2 Operations on pairs
In this section, we present three different operations on pairs of 〈basis, type〉, namely strict

substitution, strict expansion, and lifting. The operation of strict substitution is a slight modifi-

cation of the one normally used; this modification is required to make sure that substitution is

closed on strict types. The operation of strict expansion coincides with the one given in [Coppo

et al. ’80, Ronchi della Rocca & Venneri ’84]. The operation of lifting forms the strict counter-

part of the operation of rise. It deals with the introduction of extra (types to) statements in the

basis of a derivation, or introduces extra types to term-variables that are bound.

For the operations of substitution and expansion we will prove soundness: for every A ∈N ,

if B !S A:σ, and 〈B′, σ′〉 can be obtained from 〈B, σ〉 by an operation of substitution or

expansion, then B′ !S A:σ′. For the operation of lifting we will prove a more restricted result:

if 〈B, σ〉 is a primitive pair for A (then also B !S A:σ), and 〈B′, σ′〉 can be obtained from

〈B, σ〉 by lifting, then 〈B′, σ′〉 is a primitive pair for A. We will also show that there is no

operation of lifting that is sound on all pairs.

We will define a hierarchy of pairs, consisting of (in order): principal pairs, ground pairs,

and primitive pairs. We will show that the set of ground pairs is closed under the operation

of expansion, and that the set of primitive pairs is closed under the operation of lifting. These

results are required in the completeness proof of section 6.3.

6.2.1 Strict substitution

Substitution on types is normally defined as the operation that replaces type-variables by types.

For strict types, this definition would not be correct. For example, the replacement of ϕ by

ω would transform σ→ϕ (or σ∩ϕ) into σ→ω (σ∩ω), which is not a strict type. Therefore,

substitution on strict types is not defined as an operation that replaces type-variables by types,

but as a mapping from types to types.

Definition 6.2.1.1 i) The strict substitution (ϕ := α) : TS → TS, where ϕ is a type-variable

and α∈ Ts∪ {ω}, is defined by:

a) (ϕ := α) (ϕ) = α.

b) (ϕ := α) (ϕ′) = ϕ′, if ϕ ,= ϕ′.

c) (ϕ := α) (σ→τ ) = ω, if (ϕ := α) (τ ) = ω.

d) (ϕ := α) (σ→τ ) = (ϕ := α) (σ)→ (ϕ := α) (τ ), if (ϕ := α) (τ ) ,= ω.

e) (ϕ := α) (σ1∩· · ·∩σn) = (ϕ := α) (σ1
′) ∩· · ·∩ (ϕ := α) (σm

′),

where {σ1′, . . . , σm
′} = { σi ∈ {σ1, . . . , σn} | (ϕ := α) (σi) ,= ω }.
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ii) If S1 and S2 are strict substitutions, then so is S1◦S2, where S1◦S2 (σ) = S1 (S2 (σ)).

iii) S (B) = { x:S (α) | x:α ∈B & S (α) ,= ω }.

iv) S (〈B, σ〉) = 〈S (B), S (σ)〉.

Notice that in part (i.e), if for 1≤ i≤n (ϕ := α) (σi) = ω, then (ϕ := α) (σ1∩· · ·∩σn) = ω.

Since no confusion is possible, we will throughout this chapter speak of ‘substitution’ in-

stead of ‘strict substitution’. For substitutions, the following properties hold:

Lemma 6.2.1.2 Let S be a substitution.

i) If σ ≤S τ , then S (σ) ≤S S (τ ).

ii) If σ ∈ Ts, then S (σ) ,= ω ⇒ S (σ) ∈ Ts.

Proof: Easy.

The following lemma is needed in the proof of theorem 6.3.1.2.

Lemma 6.2.1.3 Let S be a substitution such that S (τ ) = τ ′, τ ∈ Ts, and τ ′ ,= ω, then:

i) If S (B∪{x:σ}) = B′∪{x:σ′}, then S (〈B, σ→τ〉) = 〈B′, σ′→τ ′〉.

ii) If, for every 1≤ i≤n, S (〈Bi, σi〉) = 〈Bi
′, σi

′〉, then

S (〈Π{B1, . . . , Bn, {x:σ1→ · · ·→σn→τ}}, τ〉) =

〈Π{B1
′, . . . , Bn

′, {x:σ1
′→· · ·→σn

′→τ ′}}, τ ′〉.

Proof: Immediately by definition 6.2.1.1.

We will now prove that the operation of substitution is sound on all pairs of basis and type.

Theorem 6.2.1.4 If B !S A:σ, then for every substitution S: if S (〈B, σ〉) = 〈B′, σ′〉, then

B′ !S A:σ′.

Proof: By induction on the definition of !S .

i) B !S A:ω. S (ω) = ω, and obviously B′ !S A:ω.

ii) B !S A:σ1∩· · ·∩σn. Then, for every 1≤ i≤n, B !s A:σi. Let σ1
′, . . . , σm

′ be the

elements in {σ1, . . . , σn} such that S (σi
′) ,= ω. By induction and lemma 6.2.1.2 (ii), for

every 1≤ i≤m, B′ !s A:S (σi
′). Then B′ !S A:S (σ1

′)∩· · ·∩ S (σm
′), so B′ !S A:S (σ).

iii) B !s A:σ. Then σ ∈ Ts. This part is proven by induction on elements of N . The case

S (σ) = ω is trivial, so in the rest of the proof S (σ) ,= ω, so by lemma 6.2.1.2 (ii) S (σ) ∈ Ts.
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a) A ≡ x. Then there is an α such that x:α ∈B, and α ≤S σ.

Then x:S (α) ∈B′, and, by lemma 6.2.1.2 (i), S (α) ≤S S (σ) ∈ Ts, so B′ !s x:S (σ).

b) A ≡ λx.A′. Then σ = α→β, B∪{x:α} !s A′:β, and

S (〈B ∪{x:α}, β〉) = 〈B′∪{x:S (α)}, S (β)〉.

Since S (σ) ∈ Ts, also S (β) ∈ Ts, so by induction: B′∪{x:S (α)} !s A′:S (β), so

B′ !s λx.A′:S (α)→ S (β), and, therefore, B′ !s λx.A′:S (σ).

c) A ≡ xA1 . . . Am. Then there are τ1, . . . , τm, such that x:τ1→· · ·→τm→σ ∈B, and

for every 1≤ j≤mB !S Aj :τj . S (σ) ∈ Ts, so x:S (τ1)→· · ·→S (τm)→S (σ) ∈B′. By

induction for every 1≤ j≤m, B′ !S Aj:S (τj). But then also

B′ !S xA1 . . . Am:S (σ).

6.2.2 Strict expansion

The operation of strict expansion as defined in this subsection corresponds to the CDV-expansion,

and is a simplified version of the RV-expansion. It is an operation on types that deals with the

replacement of (sub)types by an intersection of a number of copies of that type. Strict expan-

sion on types corresponds to the duplication of (sub)derivations: a subderivation in either the

right hand side of an (→E)-step – or the final step in a derivation in !S – is expanded by copy-

ing. In this process, the types that occur in the subderivation are also copied: the types in the

conclusion and the ones in the basis of the subderivation will be instantiated into a number of

copies.

A strict expansion not only indicates the type to be expanded, but also the number of copies

that has to be generated. Like in the original definition, strict expansion is a complex operation,

possibly affecting more types than just the one which is to be expanded occurs in. Suppose that

µ is a subtype of σ that is to be expanded into n copies. If τ→µ is also a subtype of σ, then,

just replacing µ by an intersection of copies of µ would generate τ→1∩· · ·∩µn. This is not a

legal strict type.

Defining an operation of strict expansion by saying that it should replace the subtype τ→µ

by (τ→µ1)∩· · ·∩ (τ→µn) (which is by definition of ≤ a type equivalent to τ→1∩· · ·∩µn) would

give an expansion that is sound, but not sufficient: it would not be closed for ground pairs, a

property we need in the proof of theorem 6.3.1.2.

Therefore, the subtype τ→µ will be expanded into (τ 1→µ1) ∩· · ·∩ (τn→µn), where τ1,

. . . , τn are copies of τ . This means that all other occurrences of τ should also be expanded into

1∩· · ·∩τn, with possibly the same effect on other types. Moreover, if ϕ is a type-variable that

occurs in µ (or τ ), then all occurrences of ϕ outside µ (τ ) will be expanded into 1∩· · ·∩ϕn, and

6.2 Operations on pairs: Strict expansion 71

all types of the shape ρ→ϕ will be expanded into (ρ1→ϕ1)∩· · ·∩ (ρn→ϕn), etc.

So, again the strict expansion of µ can have a more than local effect on σ. Therefore, the

strict expansion of a type is defined in a such a way that, before replacing types by intersections,

all type-variables are collected that are affected by the strict expansion of µ. Then, types are

traversed top down, and subtypes are replaced if they end with one of the type-variables found.

The definition of the operation of strict expansion can be found in definition 6.2.2.6; it

is based on the definition of a type-expansion, as given in definition 6.2.2.2. The definition

of expansion as presented here is slightly different from the ones given in definitions 2.2.2.5

and 2.3.2.2. In those definitions subtypes are collected, whereas this definition collects type-

variables.

Definition 6.2.2.1 i) a) The last type-variable of a strict type is defined by:

1) The last type-variable of ϕ is ϕ.

2) The last type-variable of σ1∩· · ·∩σn→τ (n ≥ 0) is the last type-variable of τ .

b) A strict type σ is said to end with ϕ, if ϕ is the last type-variable of σ.

ii) If B is a basis and σ ∈ TS, then T〈B,σ〉 is the set of all strict subtypes occurring in the pair

〈B, σ〉.

Definition 6.2.2.2 For every µ ∈ Ts, n ≥ 2, basis B and σ ∈ TS, the quadruple 〈µ,n,B,σ〉

determines a type-expansion T〈µ,n,B,σ〉 : TS → TS, that is constructed as follows.

i) The set of type-variables Vµ(〈B, σ〉) is constructed by:

a) If ϕ occurs in µ, then ϕ∈ Vµ(〈B, σ〉).

b) Let τ ∈ T〈B,σ〉 with last type-variable ϕ0. If ϕ0 ∈ Vµ(〈B, σ〉), then for all

type-variables ϕ that occur in τ : ϕ ∈ Vµ(〈B, σ〉).

ii) Suppose Vµ(〈B, σ〉) = {ϕ1, . . . , ϕm}. Choose m× n different type-variables ϕ1
1, . . . , ϕn

1 ,

. . . , ϕ1
m, . . . , ϕn

m, such that each ϕi
j does not occur in T〈B,σ〉, for 1≤ i≤n and 1≤ j ≤m.

Let Si be the substitution that replaces every ϕj by ϕi
j .

iii) a) T〈µ,n,B,σ〉 (α) = S1 (α) ∩· · ·∩ Sn (α), if the last type-variable of α is in Vµ(〈B, σ〉).

b) T〈µ,n,B,σ〉 (α→β) = T〈µ,n,B,σ〉 (α)→T〈µ,n,B,σ〉 (β), if the last type-variable of β is not

in Vµ(〈B, σ〉).

c) T〈µ,n,B,σ〉 (ϕ) = ϕ, if ϕ ,∈ Vµ(〈B, σ〉).

d) T〈µ,n,B,σ〉 (α1∩· · ·∩αn) = T〈µ,n,B,σ〉 (α1) ∩· · ·∩T〈µ,n,B,σ〉 (αn).

iv) T〈µ,n,B,σ〉 (B′) = { x:T〈µ,n,B,σ〉 (ρ) | x:ρ∈B′ }.

v) T〈µ,n,B,σ〉 (〈B′, σ′〉) = 〈T〈µ,n,B,σ〉 (B′), T〈µ,n,B,σ〉(σ
′)〉.
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Instead of T〈µ,n,B,σ〉 we will write 〈µ,n,B,σ〉.

For an operation of type-expansion the following properties hold:

Lemma 6.2.2.3 Let T = 〈µ,n,B,σ〉 be a type-expansion.

i) If τ ∈ T〈B,σ〉, then either:

a) T (τ ) = τ1∩· · ·∩τn with for every 1≤ i≤n τi is a trivial variant of τ , or:

b) T (τ ) ∈ Ts.

ii) T (Π{B1, . . . , Bn}) = Π{T (B1), . . . , T (Bn)}.

iii) If τ ≤S ρ, then T (τ ) ≤S T (ρ).

iv) If B′ ≤S B
′′, then T (B′) ≤S T (B′′).

Proof: Immediately by 6.2.2.2.

Variants of the following lemmas are proved in [Coppo et al. ’80] and [Ronchi della Rocca

& Venneri ’84]. They are needed in the proofs of the following theorems.

Lemma 6.2.2.4 Let B′ be used for A:τ , where τ ∈ Ts, and 〈µ,n,B,σ〉 be a type-expansion

such that T〈B′, τ〉 ⊆ T〈B,σ〉. If τ ends with ϕ∈ Vµ(〈B, σ〉), then, for every type-variable ϕ′ that

occurs in 〈B′, τ〉, ϕ′ ∈ Vµ(〈B, σ〉).

Proof: By induction on elements of N .

i) A ≡ x, then B′ = {x:τ}. Since the last type-variable of τ is in Vµ(〈B, σ〉), and

τ ∈ T〈B′, τ〉 ⊆ T〈B,σ〉, all type-variables that occur in τ are in Vµ(〈B, σ〉).

ii) A ≡ λx.A′, then τ = α→β. Since B′ is used for λx.A′:α→β, there is an α′ such that

α ≤S α′, and B′∪{x:α′} is used for A′:β. Because the last type-variable of α→β is in

Vµ(〈B, σ〉), and α→β ∈ T〈B′, α→β〉 ⊆ T〈B,σ〉, all type-variables of α→β are

in Vµ(〈B, σ〉). Since the last type-variable of α→β is the last type-variable of β, and

T〈B′∪{x:α′}, β〉 ⊆ T〈B′∪{x:α}, β〉 ⊆ T〈B′, α→β〉 ⊆ T〈B,σ〉,

by induction: all type-variables in 〈B∪ {x:α′}, β〉 are in Vµ(〈B, σ〉). So all

type-variables in 〈B, α→β〉 are in Vµ(〈B, σ〉).

iii) A ≡ xA1 . . . Am. Then there are τ1, . . . , τm, and B1, . . . , Bm, such that for every

1≤ j≤mBj is used for Aj :τj and B′ = Π{B1, . . . , Bm, {x:τ1→· · ·→τm→τ}}. Since

the last type-variable of τ is in Vµ(〈B, σ〉), and

τ1→· · ·→τm→τ ∈ T〈B′, τ〉 ⊆ T〈B,σ〉,
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every type-variable in τ1→· · ·→τm→τ is in Vµ(〈B, σ〉). Assume, without loss of

generality, that each τj ∈ Ts, then for every 1≤ j ≤m the last type-variable of τj is in

Vµ(〈B, σ〉), and

T〈Bj , τj〉 ⊆ T〈B′, τ〉 ⊆ T〈B,σ〉,

so by induction all type-variables in 〈Bj , τj〉 are in Vµ(〈B, σ〉). So all type-variables in

〈Π{B1, . . . , Bm, {x:τ1→· · ·→τm →τ}}, τ〉 are in Vµ(〈B, σ〉).

Lemma 6.2.2.5 Let B′ be used for A:τ , where τ ∈ Ts, and 〈µ,n,B,σ〉 be a type-expansion

such that T〈B′, τ〉 ⊆ T〈B,σ〉. Then

i) There are B1, . . . , Bn, τ1∩· · ·∩τn, such that

〈µ,n,B,σ〉 (〈B′, τ〉) = 〈Π{B1, . . . , Bn}, τ1∩· · ·∩τn〉

and for every 1≤ i≤n 〈Bi, τi〉 is a trivial variant of 〈B′, τ〉, or

ii) 〈µ,n,B,σ〉 (〈B′, τ〉) = 〈B′′, τ ′〉, with τ ′ ∈ Ts.

Proof: By lemma 6.2.2.4.

Notice that in particular this lemma holds for the case that 〈B′, τ〉 = 〈B, σ〉.

We will now define the operation of strict expansion, that maps pairs to pairs.

Definition 6.2.2.6 Let Pairs be the set of all pairs of basis and type. For every µ ∈ Ts and

n ≥ 2, the pair 〈µ,n〉 determines a strict expansion E〈µ,n〉 : Pairs → Pairs, defined by:

E〈µ,n〉 (〈B, σ〉) = 〈µ,n,B,σ〉 (〈B, σ〉).

Instead of E〈µ,n〉 we write 〈µ,n〉, and we will say expansion instead of strict expansion.

The following lemma is needed in the proofs of theorems 6.2.2.10 and 6.3.1.2.

Lemma 6.2.2.7 Let E be an expansion, and τ ∈ Ts.

i) E (〈B∪ {x:σ}, τ〉) = 〈B′∪{x:σ′}, τ ′〉, where τ ′ ∈ Ts, if and only if

E (〈B, σ→τ〉) = 〈B′, σ′→τ ′〉.

ii) Let E (〈Bi, σi〉) = 〈Bi
′, σi

′〉 for every 1≤ i≤n. Then

E (〈Π{B1, . . . , Bn, {x:σ1→ · · ·→σn→ϕ}}, ϕ〉) =

〈Π{B1
′, . . . , Bn

′, {x:σ1
′→· · ·→σn

′→ϕ}}, ϕ〉.

Proof: Easy, using definitions 6.2.2.6 and 6.2.2.2, and lemma 6.2.2.3 (ii).
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We will now prove that the operation of expansion is closed on the set of strict ground pairs,

as defined in the next definition. This property is needed in the proof that the operations defined

in this chapter are complete (as given in subsection 6.3.1).

Definition 6.2.2.8 The pair 〈B, σ〉 is a strict ground pair for A∈N if and only if:

i) If σ = ω, then B = ∅ and A ≡ ⊥.

ii) If σ = σ1∩· · ·∩σn, then there are B1, . . . , Bn such that B = Π{B1, . . . , Bn}, the 〈Bi, σi〉

are disjoint in pairs and for 1≤ i≤n 〈Bi, σi〉 is a ground pair for A.

iii) If σ ∈ Ts, then:

a) If A ≡ x, then σ = ϕ, and B = {x:ϕ}.

b) If A ≡ λx.A′, then:

1) If x∈ FV(A′), then σ = α→β, and 〈B ∪{x:α}, β〉 is a ground pair for A′.

2) If x ,∈ FV(A′), then σ = ω→β, and 〈B, β〉 is a ground pair for A′.

c) If A ≡ xA1 . . . Am, then σ = ϕ, and there are B1, . . . , Bm, τ1, . . . , τm such that

B = Π{B1, . . . , Bm, {x:τ1→· · ·→τm→ϕ}}, the 〈Bj , τj〉 are disjoint in pairs, and for

every 1≤ j≤m ϕ does not occur in 〈Bj , τj〉, and 〈Bj , τj〉 is a ground pair for Aj .

Notice that this definition is the same as the one for CDV-ground pairs (apart from the notion

of sequence).

Lemma 6.2.2.9 i) If 〈B, σ〉 is a ground pair for A, then B is used for A:σ.

ii) For every A, PPS (A) is a ground pair for A.

Proof: Easy.

The following theorem states that expansion is closed on the set of ground pairs.

Theorem 6.2.2.10 If 〈B, σ〉 is a ground pair for A, and 〈µ,n〉 (〈B, σ〉) = 〈B′, σ′〉,

then 〈B′, σ′〉 is a ground pair for A.

Proof: By induction on the definition of ground pairs. We will only show the part σ ∈ Ts.

Notice that, because of lemma 6.2.2.9 (i), we already know that B is used for A:σ, and,

therefore, by lemma 6.2.2.5 either:

i) σ′ = σ1∩· · ·∩σn, B′ = Π{B1, . . . , Bn} where each 〈Bi, σi〉 is a trivial variant of 〈B, σ〉

and, therefore, a ground pair for A. Because of definition 6.2.2.6, the 〈Bi, σi〉 are disjoint

in pairs. So 〈B′, σ′〉 is a ground pair for A.
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ii) σ′ ∈ Ts. This part is proved by induction on elements of N . Notice that we need not

consider the case that A ≡ ⊥.

a) A ≡ x, B = {x:ϕ}, and σ = ϕ.

Since σ′ ∈ Ts, ϕ ,∈ Vµ(〈B, σ〉) and 〈B′, σ′〉 = 〈{x:ϕ}, ϕ〉.

b) A ≡ λx.A′, σ = α→β, and 〈B∪{x:α}, β〉 is a ground pair for A′. Let σ′ = α′→β′.

(Notice that if x ,∈ FV(A′), then α = α′ = ω). By lemma 6.2.2.7 (i)

〈µ,n〉 (〈B ∪{x:α}, β〉) = 〈B′∪{x:α′}, β′〉,

which is by induction a ground pair for A′. Because β′ ∈ Ts, also 〈B′, α′→β′〉 is a

ground pair for λx.A′.

c) A ≡ xA1 . . . Am, σ = ϕ, and B = Π{B1, . . . , Bm, {x:τ1→· · ·→τm→ϕ}}, the

(disjoint in pairs) 〈Bj , τj〉 are ground pairs for Aj , in which ϕ does not occur.

Since σ′ ∈ Ts, σ′ = ϕ. Let for every 1≤ j ≤m

〈µ,n〉 (〈Bj , τj〉) = 〈Bj
′, τj

′〉,

which is by induction a ground pair for Aj . Then by lemma 6.2.2.7 (ii)

〈µ,n〉 (〈Π{B1, . . . , Bm, {x:τ1→· · ·→τm→ϕ}}, ϕ〉) =

〈Π{B1
′, . . . , Bm

′, {x:τ1
′→· · ·→τm

′→ϕ}}, ϕ〉.

Since the 〈Bj , τj〉 are disjoint in pairs, the 〈Bj
′, τj

′〉 are too, because of definition

6.2.2.6, and ϕ does not occur in any of the 〈Bj
′, τj

′〉. So

〈Π{B1
′, . . . , Bm

′, {x:τ1
′→· · ·→τm

′→ϕ}}, ϕ〉

is a ground pair for xA1 . . . Am.

Example 6.2.2.11 (cf. [Coppo et al. ’80]) Take the pair 〈∅, (ω→(ϕ0→ϕ0)→ϕ1)→ϕ1〉, which

is the principal pair of λx.x⊥(λy.y).

[x:ω→(ϕ0→ϕ0)→ϕ1] [y:ϕ0]

λy.y:ϕ0→ϕ0x⊥:(ϕ0→ϕ0)→ϕ1

x⊥(λy.y):ϕ1

λx.x⊥(λy.y):(ω→(ϕ0→ϕ0)→ϕ1)→ϕ1

Take the expansion E = 〈ϕ0→ϕ0, 2〉. Then Vϕ0→ϕ0(〈∅, (ω→(ϕ0→ϕ0)→ϕ1)→ϕ1〉) = {ϕ0}

and E (〈∅, (ω→(ϕ0→ϕ0)→ϕ1)→ϕ1〉) = 〈∅, (ω→(ϕ2→ϕ2)∩(ϕ3→ϕ3)→ϕ1)→ϕ1〉, which is by

the previous lemma a ground pair for the term λx.x⊥(λy.y).
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[x:ω→(ϕ2→ϕ2)∩(ϕ3→ϕ3)→ϕ1] [y:ϕ2]

λy.y:ϕ2→ϕ2

[y:ϕ3]

λy.y:ϕ3→ϕ3x⊥:(ϕ2→ϕ2)∩(ϕ3→ϕ3)→ϕ1

x⊥(λy.y):ϕ1

λx.x⊥(λy.y):(ω→(ϕ2→ϕ2)∩(ϕ3→ϕ3)→ϕ1)→ϕ1

We can also prove that the operation of expansion is sound on all pairs. In order to do so,

we first need to prove that the operation of type-expansion is sound on pairs 〈B, σ〉 for the

terms A∈N such that B is used for A:σ. Notice that the possible type-expansions are limited

to those that at least compute the effect of the expansion on all types in T〈B,σ〉.

Theorem 6.2.2.12 For every A∈N : if 〈µ,n,B,σ〉 (〈B1, σ1〉) = 〈B2, σ2〉,

B1 is used for A:σ1, and T〈B1, σ1〉 ⊆ T〈B,σ〉, then B2 !S A:σ2.

Proof: Again we only show the part σ1 ∈ Ts. Because of lemma 6.2.2.5, we know that either:

i) σ2 = σ1
′∩· · ·∩σn′, B2 = Π{B1

′, . . . , Bn
′}, and for every 1≤ i≤n 〈Bi

′, σi
′〉 is a trivial

variant of 〈B1, σ1〉. So B2 !S A:σ2.

ii) σ2 ∈ Ts. This part is proved by induction on elements of N . Again we need not consider

the case that A ≡ ⊥.

a) A ≡ x. Then B1 = {x:σ1}, and B2 = {x:σ2}. Then B2 !s x:σ2.

b) A ≡ λx.A′. Then σ1 = α→β, and B1∪{x:α} !s A′:β. Since σ2 ∈ Ts, σ2 = α′→β′,

and by definition 6.2.2.2, α′ = 〈µ,n,B,σ〉 (α) and β′ = 〈µ,n,B,σ〉 (β), so:

〈µ,n,B,σ〉 (〈B1 ∪{x:α}, β〉) = 〈B2∪{x:α′}, β′〉.

B1 is used for λx.A′:α→β, so by lemma 6.1.2 (iii) there is a ρ such that B1∪ {x:ρ} is

used for A′:β, and α ≤S ρ. Let ρ′ = 〈µ,n,B,σ〉 (ρ), then

〈µ,n,B,σ〉 (〈B1∪ {x:ρ}, β〉) = 〈B2∪{x:ρ′}, β′〉,

and since

T〈B1∪{x:ρ},β〉 ⊆ T〈B1∪{x:α},β〉 ⊆ T〈B1,α→β〉 ⊆ T〈B,σ〉,

and β′ ∈ Ts, by induction B2∪ {x:ρ′} !s A′:β′.

By lemmas 6.2.2.3 (iv) and 4.1.6 also B2∪{x:α′} !s A′:β′. Then B2 !s λx.A′:σ2.

c) A ≡ xA1 . . . Am. Then B1 = Π{B1
′, . . . , Bm

′, {x:τ1→· · ·→τm→σ1}}, where Bj
′ is

used for Aj :τj (notice that τj need not be strict). Take

〈Bj
′′, τj

′′〉 = 〈µ,n,B,σ〉 (〈Bj
′, τj〉).

Since
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T〈B′
j ,τj〉

⊆ T〈B1,σ1〉 ⊆ T〈B,σ〉,

by induction: Bj
′′ !S Aj :τi

′′ for every 1≤ j≤m.

By definition 6.2.2.2 τ1
′′→· · · →τm

′′→σ2 = 〈µ,n,B,σ〉 (τ1→· · ·→τm→σ1), so

〈B2, σ2〉 = 〈Π{B1
′′, . . . , Bm

′′, {x:τ1
′′→· · · →τm

′′→σ2}}, σ2〉.

So B2 !S xA1 . . . Am:σ2.

The next theorem was also proved in [Ronchi della Rocca & Venneri ’84] for the BCD-

ystem; it states that expansion is a sound operation on pairs.

Theorem 6.2.2.13 If B !S A:σ, and 〈µ,n〉 (〈B, σ〉) = 〈B′, σ′〉, then B′ !S A:σ′.

Proof: By definition 6.2.2.6 〈µ,n〉 (〈B, σ〉) = 〈µ,n,B,σ〉 (〈B, σ〉). If B !S A:σ, then by

6.1.2 (ii) there is a B1 such that B ≤S B1 (so T〈B1,σ〉 ⊆ T〈B,σ〉), and B1 is used for A:σ. By

theorem 6.2.2.12, if 〈B2, σ′〉 = 〈µ,n,B,σ〉 (〈B1, σ〉), then B2 !S A:σ′. Since B ≤S B1, by

lemma 6.2.2.3 (iv) B′ ≤S B2, so by lemma 4.1.6 B′ !S A:σ′.

6.2.3 Lifting

The operation on pairs defined in this subsection forms the strict counterpart of the operation of

rise, that consists of applying an extra derivation rule (≤) to a derivation. As mentioned in the

beginning of this chapter, in the BCD-system the derivation rule (≤) can be applied anywhere

in the derivation, and the derivation rule (∩E) can be omitted since it is derivable from rule (≤).

The main difference between the BCD-system and the strict one is that, in the latter, the

derivation rule (≤) is omitted. In the Strict Type Assignment System the only part of the (≤)-

rule that is kept is the derivation rule (∩E). Moreover, this rule can only be applied to term-

variables. Therefore, the strict counterpart of the operation of rise will in fact be introducing

extra (∩E)-rules (or extra types in the upper half of that rule) for premisses.

In general, the derivation

[x:σ]
:

M :τ
(→I)

λx.M :σ→τ

will be transformed into:

[x:σ∩ρ]
(∩E)

x:σ
:

M :τ
(→I)

λx.M :σ∩ρ→τ

The notion of lifting as defined in this section is not sound on all pairs 〈B, σ〉. Take, for

example, the pair 〈∅, (α→β)→α→β〉. This is a pair for both λxy.xy and λz.z.
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[x:α→β] [y:α]

xy:β

λy.xy:α→β

λxy.xy:(α→β)→α→β

[z:α→β]

λz.z:(α→β)→α→β

Suppose there is an operation O which enables to express that in the derivation for

λxy.xy:(α→β)→α→β,

the predicate for the term-variable y is lifted to α∩γ, which corresponds to the following deriva-

tion:
[y:α∩γ]
y:α[x:α→β]

xy:β

λy.xy:α∩γ→β

λxy.xy:(α→β)→α∩γ→β

Then O should be such that O (〈∅, (α→β)→α→β〉) = 〈∅, (α→β)→α∩γ→β〉. However, 〈∅,

(α→β)→α∩γ→β〉 is not a suitable pair for λz.z: there exists no derivation in !S for

λz.z:(α→β)→α∩γ→β.

So it is not true that for every M , B and σ: if B !S M :σ, and O (〈B, σ〉) = 〈B′, σ′〉, then

also B′ !S M :σ′. Therefore, we are not able to prove that this O produces correct results for all

lambda terms. We will however show that the operation defined here is closed for a certain class

of pairs, being the primitive pairs. The above problem is solved by allowing liftings only on

primitive pairs for terms: the pair 〈∅, (α→β)→α→β〉 is a primitive pair for the term λxy.xy,

not for the term λz.z.

We now come to the definition of lifting. It is based on the relation ≤E, in the same way as the

operation of rise is based on ≤.

Definition 6.2.3.1 A lifting L is an operation denoted by a pair of pairs 〈〈B0, τ0〉, 〈B1, τ1〉〉

such that τ0 ≤E τ1 and B1 ≤E B0, and is defined by:

i) a) L (σ) = τ1, if σ = τ0.

b) L (σ) = σ, otherwise.

ii) a) L (B) = B1, if B = B0.

b) L (B) = B, otherwise.

iii) L (〈B, σ〉) = 〈L (B), L (σ)〉.

For operations of lifting, the following properties hold:
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Lemma 6.2.3.2 i) 〈〈B ∪{x:σ}, τ〉, 〈B′∪ {x:σ′}, τ ′〉〉 is a lifting (where τ , τ ′ ∈ Ts), if and

only if 〈〈B, σ→τ〉, 〈B′, σ′→τ ′〉〉 is a lifting.

ii) 〈〈Bi, σi〉, 〈Bi
′, σi

′〉〉 is a lifting for every 1≤ i≤n, if and only if

〈〈Π{B1, . . . , Bn, {x:σ1→· · ·→σn→ϕ}}, ϕ〉,

〈Π{B1
′, . . . , Bn

′, {x:σ1
′→· · ·→σn

′→ϕ}}, ϕ〉〉

is a lifting.

Proof: By definitions 5.1.1 and 6.2.3.1.

Although the strict type assignment is not closed for ≤E , we will show that there is a set

of primitive pairs – a subset of the set of pairs – for which the operation of lifting is sound.

The definition for primitive pairs we will give here is based on the definition of ground pairs

given in definition 6.2.2.8. The main difference between ground pairs and primitive pairs is

that, in a primitive pair, a predicate for a term-variable x (bound or free) is not the smallest

type needed, but it can contain some additional, irrelevant types. Crucial in the definition is

that a pair is called a primitive pair for an application if the type in the pair is a type-variable,

and that term-variables that are not head-variables of a term xA1 . . . Am are also typed with

type-variables.

Definition 6.2.3.3 The pair 〈B, σ〉 is a primitive pair for A if and only if:

i) If σ = σ1∩· · ·∩σn (n ≥ 0), then for every 1≤ i≤n, 〈B, σi〉 is a primitive pair for A.

ii) If σ ∈ Ts, then:

a) If A ≡ x, then σ = ϕ, and B ≤S {x:ϕ}.

b) If A ≡ λx.A′, then there are α ∈ TS and β ∈ Ts, such that: σ = α→β, and

〈B ∪{x:α}, β〉 is a primitive pair for A′.

c) If A ≡ xA1 . . . Am, then there are τ1, . . . , τm ∈ TS, and a type-variable ϕ such that

σ = ϕ, B ≤S {x:τ1→· · ·→τm→ϕ}, and for every 1≤ j≤m, 〈B, τj〉 is a primitive

pair for Aj .

Notice that in this definition the relation ≤S is used, not ≤E.

For primitive pairs, the following properties hold.

Lemma 6.2.3.4 i) If 〈B, σ〉 is a primitive pair for A, then B !S A:σ.

ii) For every A, every ground pair for A is a primitive pair for A.

Proof: By induction on the definitions of primitive pairs and ground pairs.
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The next theorem states that a lifting performed on a primitive pair for A produces a primi-

tive pair for A.

Theorem 6.2.3.5 For all A ∈N , liftings L: if L (〈B, σ〉) = 〈B′, σ′〉, and 〈B, σ〉 is a primitive

pair for A, then 〈B′, σ′〉 is a primitive pair for A.

Proof: By induction on the definition of primitive pairs.

i) σ = σ1∩· · ·∩σn (n ≥ 0), and for every 1≤ i≤n 〈B, σi〉 is a primitive pair for A.

Since σ1∩· · ·∩σn ≤E σ′, by lemma 5.1.3 (i) there are σ1
′, . . . , σm

′ such that

σ′ = σ1
′∩· · ·∩σm′, and for every 1≤ j≤m there is a 1≤ ij ≤n such that σij ≤E σj

′.

Take for every 1≤ j≤m the lifting

Lj = 〈〈B, σij〉, 〈B
′, σj

′〉〉,

then by induction for every 1≤ j≤m 〈B′, σj
′〉 is a primitive pair for A.

So 〈B′, σ1
′∩· · ·∩σm′〉 is a primitive pair for A.

ii) σ ∈ Ts. This part is proved by induction on elements of N . Notice that we need not

consider the case that A ≡ ⊥.

a) A ≡ x, and σ = ϕ. By lemmas 5.1.2 (ii) and 5.1.3 (ii) σ′ = ϕ, so by lemma 5.1.3 (iii)

B′ ≤S {x:ϕ}. So 〈B′, ϕ〉 is a primitive pair for x.

b) A ≡ λx.A′. Then there are α and β, such that σ = α→β and 〈B ∪{x:α}, β〉 is a

primitive pair for A′. Then by lemmas 5.1.2 (iv) and 5.1.3 (ii) there are ρ1, . . . , ρn, µ1,

. . . , µn such that σ′ = (ρ1→µ1)∩· · ·∩ (ρn→µn), and for 1≤ i≤n, ρi ≤E α and

β ≤E µi. Take, for every 1≤ i≤n, the lifting

Li = 〈〈B∪ {x:α}, β〉, 〈B′∪{x:ρi}, µi〉〉,

then by induction 〈B′∪{x:ρi}, µi〉 is a primitive pair for A′ for every 1≤ i≤n. So

for every 1≤ i≤n, 〈B′, ρi→µi〉 is a primitive pair for A, so 〈B′, σ′〉 is a primitive

pair for A.

c) A ≡ xA1 . . . Am, there are τ1, . . . , τm and ϕ such that B ≤S {x:τ1→· · ·→τm→ϕ},

σ = ϕ, and for every 1≤ j≤m, 〈Bj , τj〉 is a primitive pair for Aj . Then by lemmas

5.1.2 (ii) and 5.1.3 (ii) σ′ = ϕ, and by lemmas 5.1.2 (iv) and 5.1.3 (iii) there are τ1
′, . . . ,

τm
′ ∈ TS such that

B′ ≤S {x:τ1
′→· · ·→τm

′→ϕ}, and for 1≤ j≤m τj ≤E τj
′.

Take for 1≤ j≤m the lifting Lj = 〈〈B, τj〉, 〈B′, τj
′〉〉, then by induction 〈B′, τj

′〉 is a

primitive pair for Aj . So 〈B′, ϕ〉 is a primitive pair for A.
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Example 6.2.3.6 i) Take the pair 〈{y:(ϕ0→ϕ0)∩(ϕ1→ϕ1)→ϕ2}, ϕ2〉, which is a primitive

pair for the lambda term y(λx.x).

[x:ϕ0]

λx.x:ϕ0→ϕ0

[x:ϕ1]

λx.x:ϕ1→ϕ1y:(ϕ0→ϕ0)∩(ϕ1→ϕ1)→ϕ2

y(λx.x):ϕ2

Since (ϕ0∩ϕ3→ϕ0)∩(ϕ1→ϕ1)→ϕ2 ≤E (ϕ0→ϕ0)∩(ϕ1→ϕ1)→ϕ2, the pair

〈{y:(ϕ0∩ϕ3→ϕ0)∩(ϕ1→ϕ1)→ϕ2}, ϕ2〉

is a primitive pair for y(λx.x).

[x:ϕ0∩ϕ3]
x:ϕ0

λx.x:ϕ0∩ϕ3→ϕ0

[x:ϕ1]

λx.x:ϕ1→ϕ1y:(ϕ0∩ϕ3→ϕ0)∩(ϕ1→ϕ1)→ϕ2

y(λx.x):ϕ2

ii) Take the pair 〈∅, ((ϕ0→ω→ϕ0)→ϕ1)→ϕ1〉, which is a primitive pair for the lambda term

λz.z(λxy.x).

[x:ϕ0]

λy.x:ω→ϕ0

λxy.x:ϕ0→ω→ϕ0[z:(ϕ0→ω→ϕ0)→ϕ1]

z(λxy.x):ϕ1

λz.z(λxy.x):((ϕ0→ω→ϕ0)→ϕ1)→ϕ1

Since ((ϕ0→ω→ϕ0)→ϕ1)→ϕ1 ≤E ((ϕ0→ϕ2→ϕ0)→ϕ1)→ϕ1, the pair

〈∅, ((ϕ0→ϕ2→ϕ0)→ϕ1)→ϕ1〉

is a primitive pair for λz.z(λxy.x).

[x:ϕ0]

λy.x:ϕ2→ϕ0

λxy.x:ϕ0→ϕ2→ϕ0[z:(ϕ0→ϕ2→ϕ0)→ϕ1]

z(λxy.x):ϕ1

λz.z(λxy.x):((ϕ0→ϕ2→ϕ0)→ϕ1)→ϕ1

6.3 Completeness for lambda terms
Although lifting is not sound on all pairs, we are able to prove that the three operations de-

fined in the previous section are sufficient (i.e. complete): for every pair 〈B, σ〉 and A ∈N , if

B !S A:σ, then there exists a number of operations of expansion, lifting, and substitution, such
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that 〈B, σ〉 can be obtained from PPS (A) by performing these operations in sequence. In the

next section we will generalize this result to arbitrary lambda terms.

6.3.1 Soundness and completeness for terms in λ⊥-normal form

Definition 6.3.1.1 i) A chain is an object 〈O1, . . . , On〉, where each Oi is an operation of

expansion, lifting, or substitution, and

〈O1, . . . , On〉 (〈B, σ〉) = On (· · ·(O1 (〈B, σ〉))· · ·).

ii) On chains we denote the operation of concatenation by ∗ , and

〈O1, . . . , Oi〉 ∗ 〈Oi+1, . . . , On〉 = 〈O1, . . . , On〉.

iii) A strict chain is a chain of a number of expansions, one lifting, and a number of

substitutions, in that order. So a strict chain C = 〈E1, . . . , Em, L, S1, . . . , Sn〉, where

m ≥ 0, and n ≥ 0. We also write C = 1E ∗ 〈L〉 ∗1S.

We will now prove that, for every suitable pair for a term A, there exists a strict chain such

that the result of the application of this chain on the principal pair of A produces the desired

pair. Part (i) of the lemmas 6.2.1.3, 6.2.2.7, and 6.2.3.2 are needed for the inductive step in

case of an abstraction term, part (iii.b) of the proof, part (ii) of these lemma’s are needed for

the inductive step in case of an application term, part (iii.c). Notice that, by construction, all

operations mentioned in this part satisfy the conditions required by these lemmas.

Theorem 6.3.1.2 If B !S A:σ, and PPS (A) = 〈P , π〉, then there exists a strict chain C such

that C (〈P , π〉) = 〈B, σ〉.

Proof: By induction on the definition of !S .

i) B !S A:ω. Assume, without loss of generality, that P and B are disjoint. Take

L = 〈〈P , π〉, 〈Π{P , B}, ω〉〉,

and S the substitution that replaces all type-variables occurring in P by ω.

Take C = 〈L, S〉.

ii) B !S A:σ1∩· · ·∩σn. Then B !S A:σi. For 1≤ i≤n, take 〈Bi, τi〉, which are trivial

variants of 〈B, σi〉 that are disjoint in pairs. Take S such that

S (〈Π{B1, . . . , Bn}, τ1∩· · ·∩τn〉) = 〈B, σ1∩· · ·∩σn〉,

and let E = 〈π, n〉, then

E (〈P , π〉) = 〈Π{P1, . . . , Pn}, π1∩· · ·∩πn〉,
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with PPS (A) = 〈Pi, πi〉 for every 1≤ i≤n. By induction there exist strict chains C1, . . . ,

Cn such that for 1≤ i≤n Ci (〈Pi, πi〉) = 〈Bi, τi〉.

Let for 1≤ i≤n, Ci = 1Ei ∗ 〈Li〉 ∗ 1Si. Let 1E = 1E1 ∗ · · · ∗ 1En, and 1S = 1S1 ∗ · · · ∗ 1Sn.

Let for 1≤ i≤n, 1Ei (〈Pi, πi〉) = 〈Bi
′, τi

′〉; by construction there are Bi
′′, τi

′′, such that Li

= 〈〈Bi
′, τi

′〉, 〈Bi
′′, τi

′′〉〉. Take

L = 〈〈Π{B1
′, . . . , Bn

′}, τ1
′∩· · ·∩τn′〉, 〈Π{B1

′′, . . . , Bn
′′}, τ1

′′∩· · ·∩τn′′〉〉.

Take C = 〈E〉 ∗ 1E ∗ 〈L〉 ∗1S ∗ 〈S〉.

iii) B !s A:σ, so σ ∈ Ts. This part is proved by induction on the structure of elements of N .

Notice that we need not consider the case that A ≡ ⊥.

a) A ≡ x, B ≤S {x:σ}, P = {x:ϕ}, and π = ϕ. Assume, without loss of generality, that

P and B are disjoint. Take L = 〈〈P , ϕ〉, 〈Π{P , B}, ϕ〉〉, and S = (ϕ := σ). Take C =

〈L, S〉.

b) A ≡ λx.A′. Then there are α, β such that σ = α→β, and B∪ {x:α} !S A′:β.

We will distinguish two cases:

1) x ∈ FV(A′). Then PPS (λx.A′) = 〈P , µ→π〉, with PPS (A′) = 〈P∪{x:µ}, π〉. By

induction there exists a strict chain C′ = 1E ∗ 〈L′〉 ∗1S such that

C′ (〈P ∪{x:µ}, π〉) = 〈B ∪{x:α}, β〉.

Let

1E (〈P ∪{x:µ}, π〉) = 〈B1∪{x:α1}, β1〉, and

L′ = 〈〈B1 ∪{x:α1}, β1〉, 〈B2∪{x:α2}, β2〉〉.

Since β ∈ Ts, by construction also β2 ∈ Ts and by lemma 6.2.2.7 (i)

1E (〈P , µ→π〉) = 〈B1, α1→β1〉. Take

L = 〈〈B1, α1→β1〉, 〈B2, α2→β2〉〉

which is by lemma 6.2.3.2 (i) a lifting.

2) x ,∈ FV(A′). Then PPS (λx.A′) = 〈P , ω→π〉, where PPS (A′) = 〈P , π〉.

By induction there exists a strict chain C′ = 1E ∗ 〈L′〉 ∗1S such that

C′ (〈P , π〉) = 〈B∪{x:α}, β〉.

Let 1E (〈P , π〉) = 〈B1, β1〉, and L′ = 〈〈B1, β1〉, 〈B2∪ {x:α2}, β2〉〉.

Since β ∈ Ts, by construction also β2 ∈ Ts and by lemma 6.2.2.7 (i)

1E (〈P , ω→π〉) = 〈B1, ω→β1〉. Take

L = 〈〈B1, ω→β1〉, 〈B2, α2→β2〉〉
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which is by lemma 6.2.3.2 (i) a lifting.

Notice that in both cases by theorems 6.2.2.10 and 6.2.3.5, 〈B2, α2→β2〉 is a

primitive pair for λx.A′, and by lemma 6.2.1.3 (i) 1S (〈B2, α2→β2〉) = 〈B, α→β〉.

Take C = 1E ∗ 〈L〉 ∗1S.

c) A ≡ xA1 . . . Am. Then there are σ1, . . . , σm such that B ≤S {x:σ1→· · ·→σm→σ},

and for every 1≤ j≤mB !S Aj :σj , and

P = Π{P1, . . . , Pm, {x:π1→· · ·→πm→ϕ}}, π = ϕ,

with for every 1≤ j≤m, PPS (Aj) = 〈Pj , πj〉, in which ϕ does not occur. Take

〈Bj , τj〉, trivial variants of 〈B, σj〉, that are disjoint in pairs. Let S be such that

S (〈Π{B1, . . . , Bm}, τ1∩· · ·∩τm〉) = 〈B, σ1∩· · ·∩σm〉.

By induction there are strict chains C1, . . . , Cm such that for 1≤ j≤m Cj (〈Pj , πj〉)

= 〈Bj , τj〉. Notice that the strict chains C1, . . . , Cm do not interfere, and that ϕ does

not occur in any of the operations or pairs. Let for 1≤ j≤m, Cj = 1Ej ∗ 〈Lj〉 ∗ 1Sj , and

1E = 1E1 ∗ · · · ∗ 1Em, and 1S = 1S1 ∗ · · · ∗ 1Sm. Let for 1≤ j≤m, 1Ei (〈Pj , πj〉) = 〈Bj
′, τj

′〉,

and Lj = 〈〈Bj
′, τj

′〉, 〈Bj
′′, τj

′′〉〉. Then by lemma 6.2.2.7 (ii)

1E (〈Π{P1, . . . , Pm, {x:π1→· · ·→πm→ϕ}}, ϕ〉) =

〈Π{B1
′, . . . , Bm

′, {x:τ1
′→· · ·→τm

′→ϕ}}, ϕ〉.

Take

L = 〈〈Π{B1
′, . . . , Bm

′, {x:τ1
′→· · ·→τm

′→ϕ}}, ϕ〉〉,

〈Π{B1
′′, . . . , Bm

′′, {x:τ1
′′→· · ·→τm

′′→ϕ}}, ϕ〉,

which is by lemma 6.2.3.2 (ii) a lifting. By lemma 6.2.1.3 (ii)

1S (〈Π{B1
′′, . . . , Bm

′′, {x:τ1
′′→· · ·→τm

′′→ϕ}}, ϕ〉) =

〈Π{B1, . . . , Bm, {x:σ1→· · ·→σm→ϕ}}, ϕ〉.

Take C = 1E ∗ 〈L〉 ∗1S ∗ 〈S, (ϕ := σ)〉.

Theorem 6.3.1.3 i) Soundness of strict chains. If PPS (A) = 〈P , π〉, and there exists a strict

chain C such that C (〈P , π〉) = 〈B, σ〉, then B !S A:σ.

ii) Completeness of strict chains. If B !S A:σ, and PPS (A) = 〈P , π〉, then there exists a

strict chain C such that C (〈P , π〉) = 〈B, σ〉.

Proof: i) By theorems 6.2.2.10, 6.2.3.5, and 6.2.1.4.

ii) By theorem 6.3.1.2.
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6.3.2 Principal pairs for lambda terms

We will conclude the proofs of this chapter by, like in subsections 2.2.2 and 2.3.2, generalizing

the concept of principal pairs to arbitrary lambda terms, using that 〈B, σ〉 is a suitable pair for

M , if and only if there is an A∈A(M) such that 〈B, σ〉 is a suitable pair for A.

Definition 6.3.2.1 (cf. [Ronchi della Rocca & Venneri ’84]) i) For all terms M we define the

set ΠS (M ) as follows:

ΠS (M ) = { 〈P , π〉 | ∃ A∈A(M) [ PPS (A) = 〈P , π〉 ] }

ii) Like in definition 2.3.2.6 (iii), on PS it is possible to define the preorder relation 5ω by:

〈P , π〉 5ω 〈P ′, π′〉 ⇐⇒

∃ ϕ1, . . . , ϕn [ 〈P , π〉 = (ϕ1 := ω)◦· · ·◦(ϕn := ω) (〈P ′, π′〉) ].

Since our definition of principal pairs of an approximate normal form coincides with the

corresponding definition in [Coppo et al. ’80] and [Ronchi della Rocca & Venneri ’84], we can

use the following result proved there:

Theorem 6.3.2.2 [Coppo et al. ’80, Ronchi della Rocca & Venneri ’84] i) PS, 5ω is a meet

semilattice isomorphic to N , ≤.

ii) ΠS (M ) is an ideal in PS and therefore:

a) If ΠS (M ) is finite, there exists a pair 〈P , π〉 =
⊔
ΠS (M ), where 〈P , π〉 ∈PS. This

pair is then called the principal pair of M .

b) If ΠS (M ) is infinite,
⊔
ΠS (M ) does not exist in PS. The principal pair of M will then

be the infinite set of pairs ΠS (M ).

By theorems 4.3.4 and 6.3.1.3, we have the following:

Theorem 6.3.2.3 (cf. [Ronchi della Rocca & Venneri ’84]) Let M ∈Λ, and B and σ such that

B !S M :σ.

i) A(M ) is finite. Let 〈P , π〉 be the principal pair of M . Then there exists a strict chain C

such that C (〈P , π〉) = 〈B, σ〉.

ii) A(M ) is infinite. Then there exist a pair 〈P , π〉 ∈ΠS (M ), and a strict chain C such that

C (〈P , π〉) = 〈B, σ〉.
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6.4 Principal pairs for the essential type assignment system
It is possible to prove the principal type property for the essential type assignment system, the

same way as done in [Ronchi della Rocca & Venneri ’84] for the BCD-system. The operations

needed for this proof would be strict substitution, strict expansion, and lifting, and it is possible

to show that all pairs for a term can be generated by chains that exist of expansions, and substi-

tutions (in that order) and end with one lifting. Since these results would be obtained in exactly

the same way as in [Ronchi della Rocca & Venneri ’84], we will not present them here. We

just remark that all three operations can be proved to be sound on all pairs; part of the proofs

needed for these results can be found in section 10.2.

It is worthwhile to observe that the set of operations for both systems would be exactly the

same. The only difference between the chains that produce pairs for both systems is the place

of the allowed operations of lifting. As for the strict system, they are only allowed directly after

expansions, and before substitutions; for the essential system they are allowed after expansions

and substitutions.

Chapter 7 The Barendregt-Coppo-Dezani Type

Assignment System without ω

In this chapter we will present a type assignment system that is a restriction of the BCD-system.

Its major feature is the elimination of the type constant ω, and it is an extension of the CD-

system.

While building a derivation B !BCD M :σ (where ω does not occur in σ and B) for a lambda

term M that has a normal form, the type ω is only needed to type sub-terms that will be erased

while reducing M to its normal form and that cannot be typed starting from B. This, together

with the results of [Coppo & Dezani-Ciancaglini ’80], gives rise to the idea that, if we limit

ourselves to the set of lambda terms where no sub-terms will be erased – i.e. the λI-calculus

– the type ω is not really needed for terms that have a normal form. We will show that the

intersection type assignment system without ω yields a filter model for the λI-calculus. We

will also show that for the λI-calculus the BCD-type assignment is conservative over the one

without ω, and prove that this type assignment is complete for the λI-calculus with respect to

the simple type semantics. Furthermore we will prove that the set of all terms typeable by the

system without ω is the set of all strongly normalizable terms.

While obtaining these results, we could of course use the result of chapter four and look at

the system without ≤ and ω, but, since this is a more restricted system, we prefer the approach

we use in this chapter. Also, the proofs of various lemmas in section 7.4 are greatly facilitated

by the presence of derivation rule (≤); the technique used for the proof of the main theorem of

this section requirers a notion of type assignment that is closed under η-reduction. In fact, the

strong normalization property for the system without ≤ and ω follows immediately from the

results of 7.4. Moreover, we could prove a completeness result for this system with respect to

the inference semantics.
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7.1 ω-free derivations
In this section we present a restriction of the BCD-system in which the type ω is removed. This

system yields a filter λI-model.

Definition 7.1.1 i) T−ω, the set of ω-free types is inductively defined by:

a) All type-variables ϕ0, ϕ1, . . . ∈ T−ω.

b) If σ, τ ∈ T−ω, then σ∩τ , σ→τ ∈ T−ω.

ii) On T−ω the relation ≤ is as defined in definition 2.3.1 (ii), but without parts (ii.b) and

(ii.c).

iii) If M :σ is derivable from a basis B, using only ω-free types and the derivation rules (∩I),

(∩E), (→I), (→E) or (≤) of the BCD-system, we write B !−ω M :σ.

Lemma 7.1.2 i) B !−ω MN :σ ⇐⇒ ∃ τ [ B !−ω M :τ→σ & B !−ω N :τ ].

ii) B !−ω λx.M :σ→τ ⇐⇒ B\x∪{x:σ} !−ω M :τ .

iii) If B !−ω λx.M :ρ, then there are types σi, and τi (1≤ i≤n) such that ρ =

(σ1→τ1)∩· · ·∩ (σn→τn).

iv) If B\z∪{z:σ} !−ω Mz:τ and z ,∈ FV(M ), then B !−ω M :σ→τ .

Proof: By induction on the structure of derivations, using property 2.3.4 (ii) to prove (ii). To

prove part (iv), the derivation rule (≤) is needed.

Definition 7.1.3 i) A subset d of T−ω is called an I-filter if

a) σ, τ ∈ d ⇒ σ∩τ ∈ d.

b) σ ≥ τ ∈ d ⇒ σ ∈ d.

ii) F−ω = { d ⊆ T−ω | d is an I-filter }. We define application on F−ω, · :F−ω × F−ω → F−ω

by:

d · e = { τ | ∃ σ ∈ e [ σ→τ ∈ d ] }.

iii) If V is a subset of T−ω, then ↑ωV is the smallest I-filter that contains V . Also ↑ωσ =

↑ω{σ}. Since no confusion is possible, we will omit the subscript on ↑.

Notice that the empty set, ∅, is the bottom element of F−ω.

Let 〈D, ≤〉 be a cpo with least element ⊥. The set of strict functions is defined as usual, i.e.

as the set of continuous functions that at least map ⊥ onto ⊥. We denote by [D →⊥ D] the set

of strict functions from D to D.
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Definition 7.1.4 We define F: F−ω → [F−ω→⊥F−ω] and G: [F−ω→⊥F−ω] → F−ω by:

i) F d e = d · e.

ii) G f = ↑{ σ→τ ∈ T−ω | τ ∈ f (↑σ) }.

It is, again, easy to check that F and G are continuous.

Definition 7.1.5 [Honsell & Ronchi della Rocca ’84] Let · be a binary relation on the set D.

The structure 〈D, · , ε〉 is called a λI-model if and only if, in D, there are five elements i, b, c, s

and ε that satisfy:

i) i ·d = d.

ii) ((b ·d) · e) · f = d · (e · f ).

iii) ((c ·d) · e) · f = (d · f ) · e.

iv) ((s ·d) · e) · f = (d · f ) · (e · f ).

v) (ε ·d) · e = d · e & ∀ d ∈D [ e ·d = f ·d ⇒ ε · e = ε · f ] & ε · ε = ε.

Moreover, in [Dezani-Ciancaglini et al. ’86] the following is stated:

Proposition 7.1.6 [Dezani-Ciancaglini et al. ’86] If 〈D, ≤ 〉 is a cpo and there are continuous

maps F: D→[D →⊥ D] and G: [D →⊥ D]→D such that:

i) F◦G = id[D→⊥D]

ii) G◦F ∈ [D →⊥ D]

Then D is a λI-model.

Theorem 7.1.7 F and G as defined in definition 7.1.4 yield a λI-model.

Proof: It is sufficient to check that the conditions of proposition 7.1.6 are met.

i) F◦G f d = { µ | ∃ ρ∈ d [ ρ→µ ∈ ↑{σ→τ | τ ∈ f (↑σ)} ] } =

{ µ | ∃ ρ∈ d [ µ ∈ f (↑ρ) ] } = f (d).

ii) G◦F ∅ = ↑{ ρ→µ | µ ∈ { σ | ∃ τ ∈ ↑ρ [ τ→σ ∈ ∅ ] } } = ∅.

That the type discipline without ω gives rise to a model for the λI-calculus is also proved in

[Honsell & Ronchi della Rocca ’84]. The technique used there is to build – using Scott’s inverse

limit construction – a model M2 satisfying the equation D;Pω×[D →⊥ D], with D0 = Pω

(the powerset of natural numbers) and i: D0→Pω×[D0 →⊥ D0] is defined by i(d) = 〈d, λx.⊥〉

(see also [Barendregt ’84], exercise 18.4.26 and [Plotkin & Smyth ’78].) It is straightforward

to verify that F−ω is a solution of the same domain equation.
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Definition 7.1.8 Let ξ be a valuation of term-variables in F−ω .

i) [[M ]]ξ , the interpretation of λI-terms in F−ω via ξ is inductively defined by:

a) [[x]]ξ = ξ(x).

b) [[MN ]]ξ = F [[M ]]ξ[[N ]]ξ .

c) [[λx.M ]]ξ = G (λλ v ∈F−ω .[[M ]]ξ(v/x)).

ii) Bξ = {x:σ | σ ∈ ξ(x)}.

Notice that λλ is well defined in λI-models, since (λλ v ∈F−ω.[[M ]]ξ(v/x)) ∅ = ∅.

Theorem 7.1.9 For all M ∈ΛI, ξ: [[M ]]ξ = { σ | Bξ !−ω M :σ }.

Proof: By induction on the structure of lambda terms.

i) [[x]]ξ = ξ(x). Since { y:ρ | ρ ∈ ξ(y) } !−ω x:σ ⇐⇒ σ ∈ ξ(x).

ii) [[MN ]]ξ = { τ | ∃ σ [ Bξ !−ω N :σ & Bξ !−ω M :σ→τ ] } = (7.1.2 (i))

{ τ | Bξ !−ω MN :τ }.

iii) [[λx.M ]]ξ = ↑{ σ→τ | τ ∈ { ρ | Bξ(↑σ/x) !−ω M :ρ } } =

↑{ σ→τ | Bξ(↑σ/x) !−ω M :τ } = (Bξ′ = Bξ\x)

↑{ σ→τ | Bξ′ ∪{x:ρ | ρ∈ ↑σ } !−ω M :τ} =

↑{ σ→τ | ∃ µ ∈ ↑σ [ Bξ′ ∪ {x:µ} !−ω M :τ ] } = (7.1.2 (ii))

↑{ σ→τ | ∃ µ ∈ ↑σ [ Bξ′ !−ω λx.M :µ→τ ] } = (≤)

↑{ σ→τ | Bξ′ !−ω λx.M :σ→τ } =

↑{ σ→τ | Bξ !−ω λx.M :σ→τ } = (7.1.2 (iii))

{ ρ | Bξ !−ω λx.M :ρ }.

Notice that F and G do not yield a lambda model. For example: take O = λxy.y, D = λx.xx

and I = λx.x. Then, clearly, O(DD) =β I and !−ω I:σ→σ, but we cannot give a derivation

without ω for O(DD):σ→σ.

7.2 The relation between !−ω and !BCD

Type assignment in the BCD-system is not fully conservative over the type assignment without

ω. If, for example, we have B !BCD M :σ such that B and σ are ω-free, but M contains a sub-

term that has no normal form, ω is needed in the derivation. (See the final remark of the previous

section.) However, we can prove that for every lambda-term M such that B !BCD M :σ with

B and σ ω-free, there is an M ′ such that M →β M ′ and B !−ω M ′:σ. We will show this by
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proving for terms in normal form, that each ω-free predicate, starting from a ω-free basis, can

be derived in !−ω , and afterwards by using property 2.3.4 (iv). We will use the same technique

to prove a conservativity result.

Lemma 7.2.1 If M is in normal form and B !BCD M :σ with B and σ ω-free, then

B !−ω M :σ.

Proof: The proof is given by induction on the structure of terms in normal form.

i) B !BCD x:σ. Then by property 2.3.4 (v) there is x:τ ∈B such that τ ≤ σ.

Obviously B !−ω x:σ.

ii) B !BCD λx.M ′:σ. Then σ ≡ (ρ1→µ1)∩· · ·∩ (ρn→µn) (n ≥ 1), and by property

2.3.4 (ii) for every 1≤ i≤n B∪{x:ρi} !BCD M ′:µi.

By induction for every 1≤ i≤n, B ∪{x:ρi} !−ω M ′:µi. So B !−ω λx.M ′:σ.

iii) B !BCD xM1 . . .Mn:σ. By property 2.3.4 (i) there are τ1, . . . , τn such that

B !BCD x:τ1→· · ·→τn→σ, and for every 1≤ i≤n B !BCD Mi:τi.

By property 2.3.4 (v) there is a x:ρ ∈B such that ρ ≤ τ1→· · ·→τn→σ. By property

2.3.4 (vi) this implies

ρ = (τ11→· · ·→τ1n→σ1)∩· · ·∩ (τ s1→· · ·→τ sn→σs)∩ ρ′,

for τ j1 , . . . , τ jn, σj such that τ ji ≥ τi with 1≤ i≤n, 1≤ j≤ s, and σ1∩· · ·∩σs ≤ σ. Then

by (≤) and (∩I) for every 1≤ i≤n, we have B !BCD Mi:τ
1
i ∩· · ·∩τ

s
i .

Since each τ ji occurs in a statement in the basis, the induction hypothesis is applicable,

and, for every 1≤ i≤n, we have B !−ω Mi:τ
1
i ∩· · ·∩τ

s
i . Also

(τ11→· · ·→τ1n→σ1)∩· · ·∩ (τ s1→· · ·→τ sn→σs) ≤

τ11∩· · ·∩τ
s
1 →· · ·→ τ1n∩· · ·∩τ

s
n→σ1∩· · ·∩σs,

so B !BCD x:τ11∩· · ·∩τ
s
1 →· · ·→ τ1n∩· · ·∩τ

s
n→σ1∩· · ·∩σs and by part (i)

B !−ω x:τ11∩· · ·∩τ
s
1 →· · ·→ τ1n∩· · ·∩τ

s
n→σ1∩· · ·∩σs.

But then by (→E) B !−ω xM1 . . .Mn:σ1∩· · ·∩σn and by (≤)

B !−ω xM1 . . .Mn:σ.

Theorem 7.2.2 If B !BCD M :σ, where ω does not occur in B and σ, then there is an M ′ such

that M →→β M ′ and B !−ω M ′:σ.

Proof: If B !BCD M :σ, where ω does not occur in B and σ, then, by property 2.3.4 (iv), M

has a normal form M ′. Then also B !BCD M ′:σ. By the previous lemma we have that

B !−ω M ′:σ.
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As was remarked in the beginning of this chapter, if we are interested in deriving types

without ω occurrences, the type constant ω will only be needed in the BCD-system to type

sub-terms N of M that will be erased while reducing M . In fact, if there is a type ρ such that

B !−ω N :ρ, then, even for this N , we would not need ω. Unfortunately, there are lambda terms

M that contain a sub-term N that must be typed with ω in B !BCD M :σ, even if ω does not

occur in B and σ. We can even find strongly normalizable lambda terms that contain such a

sub-term (see also the remark made after lemma 7.4.2). So, to prove theorem 7.2.2 we have to

go down all the way to the set of lambda terms in normal form, since only these do not contain

sub-terms that will be erased.

Theorem 7.2.3 Conservativity. If M is a λI-term and B !BCD M :σ where ω does not occur in

B and σ, then B !−ω M :σ.

Proof: If B !BCD M :σ and B, σ are ω-free, then, by property 2.3.4 (iv), M has a normal

form M ′. Then, also, B !BCD M ′:σ. By lemma 7.2.1 we have B !−ω M ′:σ. Because M and

M ′ are λI-terms, by corollary 7.4.3 we obtain B !−ω M :σ.

7.3 The type assignment without ω is complete for the λI-

calculus
In this section, completeness of type assignment without ω for the λI-calculus will be proved

using the method of [Barendregt et al. ’83]. The notions of type interpretation as defined in

definition 2.3.1.2 lead also for the λI-calculus in a natural way to the following definitions for

semantic satisfiability.

Definition 7.3.1 As in definition 2.3.1.3, we define !! by: (where M is a λI-model, ξ a

valuation and υ a type interpretation)

i) M, ξ, υ !!M :σ ⇐⇒ [[M ]]Mξ ∈ υ(σ).

ii) M, ξ, υ !! B ⇐⇒ M, ξ, υ !! x:σ for every x:σ ∈B.

iii) a) B !! M :σ ⇐⇒ ∀M, ξ, υ [ M, ξ, υ !! B ⇒ M, ξ, υ !! M :σ ].

b) B !!s M :σ ⇐⇒

∀M, ξ, simple type interpretations υ [ M, ξ, υ !! B ⇒ M, ξ, υ !!M :σ ].

c) B !!F M :σ ⇐⇒ ∀M, ξ, F type interpretations υ [ M, ξ, υ !! B ⇒ M, ξ, υ !! M :σ ].
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We will only consider the simple type semantics, since !−ω is not sound for all type inter-

pretations. For example: {y:(ϕ1∩ϕ2→ϕ3)→ϕ4, x:ϕ1→ϕ3} !−ω yx:ϕ4, but this is not seman-

tically valid for all type interpretations.

Theorem 7.3.2 Soundness. If B !−ω M :σ then B !!s M :σ.

Proof: By induction on the structure of derivations.

Definition 7.3.3 i) We define a map υ1 : T−ω → ℘(F−ω) by υ1 (σ) = { d ∈F−ω | σ ∈ d }.

ii) ξB(x) = { σ ∈ T−ω | B !−ω x:σ }.

Theorem 7.3.4 i) The map υ1 is a simple type interpretation.

ii) B !−ω M :σ ⇐⇒ BξB !−ω M :σ.

iii) F−ω, ξB, υ1 !!s B.

Proof: i) Easy.

ii) Because for every x, ξB(x) is an I-filter.

iii) x:σ ∈B ⇒ σ ∈ { τ | BξB !−ω x:τ } ⇒ σ ∈ [[x]]ξB .

So [[x]]ξB ∈ { d∈F−ω | σ ∈ d }.

Theorem 7.3.5 Completeness. Let M be a λI-term, and suppose ω does not occur in B and σ.

If B !!s M :σ, then B !−ω M :σ.

Proof: B !!s M :σ ⇒ (7.3.1 (iii.b), 7.3.4 (i) & 7.3.4 (iii))

F−ω, ξB, υ1 !!s M :σ ⇒ (7.3.1 (i) & 7.3.4 (i))

[[M ]]ξB ∈ υ1 (σ) ⇒ (7.3.3 (i))

σ ∈ [[M ]]ξB ⇒ (7.1.9)

BξB !−ω M :σ ⇒ (7.3.4 (ii))

B !−ω M :σ.

7.4 Strong normalization result for the system without ω
In this section, we show that the set of lambda terms typeable by means of the derivation rules

(∩I), (∩E), (→I) and (→E) of the BCD-system is exactly the set of strongly normalizable terms.

The same result was presented in [Coppo et al. ’81], [Leivant ’83] and [Pottinger ’80]. However,

the proof in [Leivant ’83] was too brief, the proof in [Pottinger ’80] gave few details and the
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proof in [Coppo et al. ’81] was not complete. In this section, we will present a complete and

formal proof. The same result has also been proved in [Krivine ’90], using the technique of

saturated sets.

In order to prove that each term typeable by the rules (∩I), (∩E), (→I) and (→E) is strongly

normalizable, we will prove even more: we will show that if B !−ω M :σ (i.e. using derivation

rule (≤) as well), then M is strongly normalizable. In [Ronchi della Rocca ’88], a similar

result was proved: B !−ω M :σ ⇐⇒ M is strongly normalizable. In this paper, this result was

given in corollary 6.3 and was obtained from the theorem that the procedure PP’ (as defined in

[Ronchi della Rocca ’88], section 6) finds a principal pair for all and nothing but the strongly

normalizable terms. In this section, we will present a proof for the same result, different from

the one given in [Ronchi della Rocca ’88]. The proof that all strongly normalizable terms are

typeable in the system without ω and (≤) will be given in theorem 7.4.4.

Notice that an I-filter can be empty. A direct result of the main theorem of this section

will be that [[· · ·]] as defined in definition 7.1.8 will map all unsolvable terms onto the empty

filter (‘unsolvable’ in the λI-calculus equals to ‘not having a normal form,’ as well as that

‘normalizable’ and ‘strongly normalizable’ coincide).

Notice, also, that we no longer restrict ourselves to the λI-terms, but prove the statement for

the full λK-calculus.

Fact 7.4.1 In the sequel, we will accept the following without proof:

i) If xM1 . . .Mn and N are strongly normalizable, then so is xM1 . . .MnN .

ii) If Mz is strongly normalizable (where z does not occur free in M ), then so is M .

iii) If M [x := N ] and N are strongly normalizable, then so is (λx.M)N .

Lemma 7.4.2 If B !−ω C[M [x := N ]]:τ and B !−ω N :ρ, then B !−ω C[(λx.M)N ]:τ ,

where C[· · ·] is the notation for a context.

Proof: By induction on the structure of contexts. We will omit the case that the context is an

application, since it is trivial.

i) C[M [x := N ]] ≡M [x := N ]. We can assume that x does not occur in B.

a) N occurs n times in M [x := N ], each time typed by, say, σi.

B !−ω M [x := N ]:τ ⇒

B∪{x:σ1∩· · ·∩σn} !−ω M :τ & B !−ω N :σ1∩· · ·∩σn ⇒

B !−ω λx.M :σ1∩· · ·∩σn→τ & B !−ω N :σ1∩· · ·∩σn ⇒

B !−ω (λx.M)N :τ .

7.4 Strong normalization result for the system without ω 95

b) N does not occur in M [x := N ], so x ,∈ FV(M ).

B !−ω M :τ & B !−ω N :ρ ⇒ (x ,∈ FV(M ))

B∪{x:ρ} !−ω M :τ & B !−ω N :ρ ⇒

B !−ω λx.M :ρ→τ & B !−ω N :ρ ⇒

B !−ω (λx.M)N :τ .

ii) B !−ω λy.C[M [x := N ]]:τ & B !−ω N :ρ ⇒ (7.1.2 (ii) & (iii))

∃ ρ1, . . . , ρn, µ1, . . . , µn [ τ = (ρ1→µ1) ∩· · ·∩ (ρn→µn) &

∀ 1≤ i≤n [ B∪{y:ρi} !−ω C[M [x := N ]]:µi ] ] & B !−ω N :ρ ⇒ (IH)

∃ ρ1, . . . , ρn, µ1, . . . , µn [ τ = (ρ1→µ1) ∩· · ·∩ (ρn→µn) &

∀ 1≤ i≤n [ B∪{y:ρi} !−ω C[(λx.M)N ]:µi ] ] ⇒

B !−ω λy.C[(λx.M)N ]:τ .

Notice that the condition B !−ω N :ρ in the formulation of the lemma is essential. As a

counter example, take the two lambda terms λyz.(λb.z)(yz) and λyz.z. Notice that the first

strongly reduces to the latter. We know that

{z:σ, y:τ} !−ω z:σ,

but it is impossible to give a derivation for (λb.z)(yz):σ from the same basis without using ω.

This is caused by the fact that we can only type (λb.z)(yz) in the system without ω from a basis

in which the predicate for y is an arrow type scheme. We can, for example, derive

{z:σ, y:σ→τ} !−ω (λb.z)(yz):σ.

We can therefore only state that we can derive

!−ω λyz.(λb.z)(yz):(σ→τ )→σ→σ and !−ω λyz.z:τ→σ→σ

but that we are not able to give a derivation without ω for the statement

λyz.(λb.z)(yz):τ→σ→σ.

So the type assignment without ω is not closed for β-equality, but of course this is not

imperative. We only want to be able to derive a type for each strongly normalizable term,

no matter what basis or type is used. Notice that, for the λI-calculus, part 7.4.2 (i.b) is not

applicable and the condition B !−ω N :ρ is not needed. So, the following is an immediate

result:

Corollary 7.4.3 Let M and M ′ be λI-terms, such that M →→β M ′, and there are B and σ such

that B !−ω M ′:σ. Then B !−ω M :σ.
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Lemma 7.4.2 is also essentially the proof for the statement that each strongly normalizable

term can be typed in the system !−ω .

Theorem 7.4.4 If M is strongly normalizable, then there are B and σ such that B !−ω M :σ

and in this derivation the rule (≤) is not used.

Proof: If M is strongly normalizable, then the normal form of M will be reached using the

inside-out reduction strategy (see [Barendregt ’84].14.2.11). This strategy has the special

property that a redex (λx.M)N can only be contracted if N is in normal form. The proof is

completed by induction on the inside-out reduction path, using lemma 7.4.2 and theorem

4.2.10.

In order to prove that each term typeable in !−ω is strongly normalizable, we will introduce

a notion of computability. We will abbreviate ‘M is strongly normalizable’ by SN(M ).

Definition 7.4.5 (cf. [Pottinger ’80]) Comp (B, M , ρ) is inductively defined by:

i) Comp (B, M , ϕ) ⇐⇒ B !−ω M :ϕ & SN(M ).

ii) Comp (B, M , σ→τ ) ⇐⇒ (Comp (B′, N , σ) ⇒ Comp (B ∪B′, MN , τ )).

iii) Comp (B, M , σ∩τ ) ⇐⇒ (Comp (B, M , σ) & Comp (B, M , τ )).

Lemma 7.4.6 Take σ, and τ such that σ ≤ τ . Then Comp (B, M , σ) ⇒ Comp (B, M , τ ).

Proof: By straightforward induction on the definition of ≤.

Theorem 7.4.7 i) B !−ω xM1 . . .Mn:ρ & SN(xM1 . . .Mn) ⇒ Comp (B, xM1 . . .Mn, ρ).

ii) Comp (B, M , ρ) ⇒ B !−ω M :ρ & SN(M ).

Proof: Simultaneously by induction on the structure of types. The only interesting case is

when ρ = σ→τ ; the other cases are dealt with by induction.

i) B !−ω xM1 . . .Mn:σ→τ & SN(xM1 . . .Mn) ⇒ ((ii))

(Comp (B′, N , σ) ⇒

B !−ω xM1 . . .Mn:σ→τ & SN(xM1 . . .Mn) & B′ !−ω N :σ & SN(N )) ⇒

(7.4.1 (i))

(Comp (B′, N , σ) ⇒ B∪B′ !−ω xM1 . . .MnN :τ & SN(xM1 . . .MnN )) ⇒

(IH)

(Comp (B′, N , σ) ⇒ Comp (B ∪B′, xM1 . . .MnN , τ )) ⇒ (7.4.5 (ii))

Comp (B, xM1 . . .Mn, σ→τ ).
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ii) Comp (B, M , σ→τ ) & z ,∈ FV(M ) ⇒ ((i))

Comp (B, M , σ→τ ) & Comp ({z:σ}, z, σ) & z ,∈ FV(M ) ⇒ (7.4.5 (ii))

Comp (B∪{z:σ}, Mz, τ ) & z ,∈ FV(M ) ⇒ (IH)

B∪{z:σ} !−ω Mz:τ & SN(Mz) & z ,∈ FV(M ) ⇒ (7.1.2 (iv) & 7.4.1 (ii))

B !−ω M :σ→τ & SN(M ).

Lemma 7.4.8 Comp (B∪B′, C[M [x := N ]], σ) & Comp (B′, N , ρ) ⇒

Comp (B∪B′, C[(λx.M)N ], σ).

Proof: By induction on the structure of types. We will only consider the case that σ is a

type-variable:

Comp (B∪B′, C[M [x := N ]], ϕ) & Comp (B′, N , ρ) ⇒ (7.4.7 (ii))

B∪B′ !−ω C[M [x := N ]]:ϕ & SN(C[M [x := N ]]) & B′ !−ω N :ρ & SN(N ) ⇒

(7.4.2 & 7.4.1 (iii))

B∪B′ !−ω C[(λx.M)N ]:ϕ & SN(C[(λx.M)N ]) ⇒ (7.4.5 (i))

Comp (B∪B′, C[(λx.M)N ], ϕ).

Theorem 7.4.9 If B = {x1:µ1, . . . , xn:µn} and for every 1≤ i≤n Comp (Bi, Ni, µi) and

B !−ω M :σ, then Comp (B1∪ · · ·∪Bn, M [x1 := N1, . . . , xn := Nn], σ).

Proof: By induction on the structure of derivations. We will only show the non-trivial parts.

i) (→I). Then M ≡ λy.M ′, σ = ρ→τ , and B∪ {y:ρ} !−ω M ′:τ .

B = {x1:µ1, . . . , xn:µn} &

∀ 1≤ i≤n [Comp (Bi, Ni, µi)] & B∪{y:ρ} !−ω M ′:τ ⇒ (IH)

(Comp (B′, N , ρ) ⇒

Comp (B1∪· · ·∪Bn∪B′, M ′[x1 := N1, . . . , xn := Nn, y := N ], τ )) ⇒ (7.4.8)

(Comp (B′, N , ρ) ⇒

Comp (B1∪· · ·∪Bn∪B′, (λy.M ′[x1 := N1, . . . , xn := Nn])N , τ )) ⇒

(7.4.5 (ii))

Comp (B1∪· · ·∪Bn, (λy.M ′)[x1 := N1, . . . , xn := Nn], ρ→τ ).

ii) (→E). Then M ≡M1M2, B !−ω M1:ρ→τ and B !−ω M2:ρ.

B = {x1:µ1, . . . , xn:µn} & ∀ 1≤ i≤n [Comp (Bi, Ni, µi)] &

B !−ω M1:ρ→τ & B !−ω M2:ρ ⇒ (IH)

Comp (B1∪· · ·∪Bn, M1[x1 := N1, . . . , xn := Nn], ρ→τ ) &

Comp (B1∪· · ·∪Bn, M2[x1 := N1, . . . , xn := Nn], ρ) ⇒ (7.4.5 (ii))

Comp (B1∪· · ·∪Bn, (M1M2)[x1 := N1, . . . , xn := Nn], τ ).



98 Chapter 7 The Barendregt-Coppo-Dezani Type Assignment System without ω

Theorem 7.4.10 If B !−ω M :σ, then SN(M ).

Proof: B !−ω M :σ ⇒ (7.4.9) Comp (B, M , σ) ⇒ (7.4.7 (ii)) SN(M ).

We can now prove the main theorem of this section.

Theorem 7.4.11 {M | M is typeable by means of the derivation rules (∩I), (∩E), (→I) and

(→E)} = {M | M is strongly normalizable}.

Proof: ⊆ ) If M is typeable by means of the derivation rules (∩I), (∩E), (→I) and (→E), then

certainly B !−ω M :σ. Then, by theorem 7.4.10, M is strongly normalizable.

⊇ ) If M is strongly normalizable, then, by theorem 7.4.4, there are B, σ such that

B !−ω M :σ; in this derivation the derivation rule (≤) is not used.

Chapter 8 The Rank 2 Intersection Type

Assignment System

The notion of type assignment presented in this chapter will be based on the strict type as-

signment system (restricted to intersection types of Rank 2, as suggested by D. Leivant in

[Leivant ’83]), and the CD-system. We will define intersection types of Rank 2, and we will

present two operations on pairs of basis and type, namely Rank 2 substitution and duplication.

We will show that the presented notion of type assignment has the principal type property: for

every typeable term M , there are a basis P and type π such that the pair 〈P , π〉 is the prin-

cipal pair for M , and P !R M :π. We will show that for every basis B and type σ such that

B !R M :σ, there is a type-chain of operations C (consisting of nothing but substitutions and

duplications) such that C (〈P , π〉) = 〈B, σ〉. We will obtain this result by defining a unification

algorithm for intersection types of Rank 2; using this algorithm, for every term M we define

the principal pair for M .

The system presented in this chapter is perhaps more general than needed to obtain Rank 2

intersection type assignment for the lambda calculus. For example, the definition of duplication

in definition 8.3.2.1 could be formulated in a slightly simplified way. However, in chapter

twelve we will formulate a notion of type assignment based on the one presented in this chapter,

for which this more general approach is appropriate.

To avoid confusion, we would like to point out that there also exists a notion of type as-

signment that is called the Rank 2 polymorphic type assignment system, defined in [Kfoury &

Tiuryn ’89]. This system is an extension of Milner’s system, by allowing the ∀-type constructor

to occur on the left hand side of an arrow type as well, instead of only at top level. (It is also

a restriction of the polymorphic type discipline [Girard ’86], in which types are restricted to

polymorphic types of Rank 2.) The definition of types allowed in this system is similar to that
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of Rank 2 intersection types, and ∀ can occur only at the left of the ‘top’-arrow. As in the system

presented here, type assignment in this system is decidable.

8.1 Coppo-Dezani type assignment versus ML type assign-

ment
In [Leivant ’83] was remarked that (part of) the Milner’s type assignment system can be seen as

a restriction of the Coppo-Dezani type discipline, by limitation of the set of types to intersection

types of Rank 2. This observation can be understood through the following argument: suppose

the (LET)-rule is used to derive a type for a term. Then there is a Curry type σ, such that

B ∪{x:σ} !ML M :τ

B !ML N :σ
(GEN)

B !ML N :σ
(LET)

B !ML (let x = N in M ):τ

is part of the derivation, and σ = ∀ϕ1· · ·∀ϕm.σ. (When assigning a type to the term (let x = N

in M ), first the ‘operand’ N is typed by the Curry-type σ.) In deriving B∪{x:σ} !ML M :τ , σ

is instantiated using the derivation rule (INST) (otherwise the rules (ABS) and (COMB) cannot

be used) into the Curry-types σ1, . . . , σn.

B∪{x:σ} !ML x:σ σ 〉 σ1

B∪ {x:σ} !ML x:σ1
· · ·

B∪{x:σ} !ML x:σ σ 〉 σn

B∪{x:σ} !ML x:σn
(INST)

:

B∪{x:σ} !ML M :τ

B !ML N :σ
(GEN)

B !ML N :σ
(LET)

B !ML (let x = N in M ):τ

By definition of the relation ‘〉’ on ML-type schemes, there are Curry-substitutions S1, . . . ,

Sn such that for every 1≤ i≤n, Si (σ) = σi.

Under those conditions, however, the term (λx.M)N can be typed in the Coppo-Dezani

type assignment system, because in this system the term λx.M can be typed by σ1∩· · ·∩σn→τ ;

it is easy to verify that N is typeable by every σi, so by derivation rules (∩I) and (→E) the term

(λx.M)N is typeable by τ .
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[x:σ1∩· · ·∩σn]

x:σ1
· · ·

[x:σ1∩· · ·∩σn]
(∩E)

x:σn
:

M :τ
(→I)

λx.M :σ1∩· · ·∩σn→τ

N :σ1 · · · N :σn
(∩I)

N :σ1∩· · ·∩σn
(→E)

(λx.M)N :τ

So, when using intersection types, the let-construct is not needed. Notice that this derivation

can also be given in the BCD-system and in the strict system.

Notice, moreover, that the construction sketched above only uses intersections of Curry-

types, and that such an intersection can only occur on the left hand side of an →-type constructor

(Leivant speaks of ‘intersection types of Rank 2’). This gives rise to the idea that the ML

type assignment system (and, in particular, the unification algorithm for that system) and the

limitation of the intersection type assignment system to Rank 2 are, as far as decidability is

concerned, equivalent.

The Rank 2 system and Milner’s system are not really equivalent, because there are terms

that are typeable in the former and not typeable in the latter (see example 8.4.2.2). But not only

is the class of typeable terms significantly extended when intersection types of Rank 2 are used,

also more accurate types can be deduced for terms. For example, the term S K S I (where S,

K and I are the well know lambda terms) has a more general principal type in the Rank 2

Intersection Type Assignment System than in the ML system (see also example 8.4.2.2).

When the lambda calculus is extended with the fixed-point combinator Y , and the notion

of reduction →β is extended by: YM →β M(YM) for all terms M , and Y is assumed to

have the principal type (ϕ→ϕ)→ϕ (so all occurrences of Y have a type that is a substitution

instance of this type), then all Milner-typeable terms in Exp can be translated into terms in this

extended calculus with Rank 2 intersection types. This construction cannot be given for the

Mycroft-typeable terms, since in this approach it is not possible to give Y one type from which

all other types can be generated; if Y is used in Mycroft’s system, then for every occurrence of

an Y there are σ1, . . . , σn and σ, such that Y is typed with (σ1∩· · ·∩σn→σ)→σ, and all σi are

substitution instances of σ.
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8.2 Rank 2 intersection type assignment
In this section, we will give a formal presentation of a Rank 2 intersection type assignment sys-

tem. Since Leivant only presented an observation, it is not clear whether the system presented

here is the one he had in mind. Moreover, when we would formally define intersection types

of Rank 2 using the general definition of the ‘rank of a type’, then we would obtain a notion

of type assignment that is more general than the one we will present in this chapter: then, for

example, ω→σ would also be a Rank 2 type. The system we will present here is designed in

such a way, that it has enough expressive power to get a straightforward proof that every term

in Exp is typeable in it, after let-expressions are replaced by redexes, and Y is added to the

calculus.

Allowing of more general rank 2 types would unnecessarily obscure this chapter; also, it

would not be possible to extend the notion of type assignment defined here to the one to be

defined in chapter twelve.

Intersection types of Rank 2 are a true subset of the set of BCD-types and the set of strict types

and only a minor extension of the set of Curry-types. They are defined by:

Definition 8.2.1 i) T1 is defined by: If σ1, . . . , σn ∈ TC (n ≥ 1), then σ1∩· · ·∩σn ∈ T1.

ii) T2 is inductively defined by:

a) If σ ∈ TC, then σ ∈ T2.

b) If σ ∈ T1, τ ∈ T2, then σ→τ ∈ T2.

iii) TR, the set of intersection types of Rank 2 is defined by: if σ1, . . . , σn ∈ T2 (n ≥ 1) then

σ1∩· · ·∩σn ∈ TR.

In the next definition we will define a partial order relation ≤R on TR that is, like ≤S,

induced by intersections. This relation does not really play a role in this chapter, but it will be

important in chapter twelve. We will also define an equivalence relation ∼R on types. Types σ

and τ are equivalent under this relation, if σ can be obtained from τ by permuting subtypes that

are part of an intersection subtype.

Definition 8.2.2 i) On TR, the relation ≤R is defined by:

a) σ ≤R σ.

b) σ∩τ ≤R σ & σ∩τ ≤R τ .

c) σ ≤R τ ≤R ρ ⇒ σ ≤R ρ.

d) σ ≤R ρ & σ ≤R τ ⇒ σ ≤R ρ∩τ .
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ii) On TR, the relation ∼R is defined by:

a) For σ, τ ∈ TR: σ ≤R τ ≤R σ ⇒ σ ∼R τ .

b) For σ→τ , ρ→µ ∈ TR: σ ∼R ρ & τ ∼R µ ⇒ σ→τ ∼R ρ→µ.

In this chapter we consider types modulo ∼R. Therefore, ρ∩(σ∩τ ) = (ρ∩σ)∩τ , and σ→τ =

σ∩σ→τ . Unless stated otherwise, if σ1∩· · ·∩σn is used to denote a type, then all σ1, . . . , σn are

assumed to be in T2.

Definition 8.2.3 i) A Rank 2 statement is an expression of the form M :σ, where M ∈Λ and

σ ∈ TR. M is the subject and σ the predicate of M :σ.

ii) A Rank 2 basis is a set of Rank 2 statements with term-variables, not necessarily distinct,

as subjects and types in TC as predicates.

The definition of bases is not the standard one, since we do not allow for all types in TR as

predicates for Rank 2 statements that have a term-variable as subject. (See also the remark after

theorem 8.4.2.5.) Moreover, we allow of more than one statement for term-variables.

The Rank 2 Intersection Type Assignment System is defined as follows:

Definition 8.2.4 i) Rank 2 type assignment and Rank 2 derivations are defined by the

following natural deduction system:

[x:σ1] · · · [x:σn]
:

M :τ
(→I): (a)

λx.M :σ1∩· · ·∩σn→τ

M :σ1∩· · ·∩σn→τ N :σ1 . . . N :σn
(→E):

MN :τ

(a) : If x:σ1, . . . , x:σn are all and nothing but the statements about x on which M :τ

depends. If x does not occur free in M , so no statement with subject x is used to

obtain M :τ , then n = 1.

If B is a basis such that M :σ is derivable from B using a Rank 2 derivation, and B

contains nothing but the statements about term-variables needed to obtain M :σ, we write

B !2 M :σ.

ii) We define !R by: B !R M :σ if and only if: there are σ1, . . . , σn, B1, . . . , Bn (n ≥ 1)

such that σ = σ1∩· · ·∩σn, B = B1∪· · ·∪Bn and for every 1≤ i≤n Bi !2 M :σi.

Notice that in both the derivation rules, for 1≤ i≤n, σi ∈ TC.

For the notions of type assignment defined here, the following properties hold:
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Lemma 8.2.5 i) B !2 λx.M :σ ⇐⇒ ∃ τ1, . . . , τn ∈ TC, τ ∈ T2 [ σ = τ1∩· · ·∩τn→τ &

( x∈ FV(M ) ⇒ B∪{x:τ1, . . . , x:τn} !2 M :τ ) &

( x ,∈ FV(M ) ⇒ B !2 M :τ & n = 1 ) ].

ii) B !2 MN :σ ⇐⇒ ∃ τ ∈ T1, B1, B2 [ B1 !2 M :τ→σ & B2 !R N :τ & B = B1∪B2 ].

Proof: Immediately from definition 8.2.4.

Notice that the notion ‘B !2 M :σ’ is a more restricted relation between basis, term and

type than in the previous chapters. In these chapters, it was sufficient for a basis to just contain

all types needed in the derivation, while in the Rank 2 intersection system we must require

that a basis contain nothing more than these types. (So for this notion of type assignment, the

definition of ‘B is used for M :σ’ would be superfluous.) If we drop this restriction, then we

should also be more permissive in the constraints on derivation rule (→I), and, for example,

allow of derivations for

{x:ϕ1, x:ϕ2} !2 x:ϕ1, and !2 λx.x:ϕ1∩ϕ2→ϕ1.

Since it is not possible to derive this last type for λx.x in Milner’s system, we have chosen

not to allow it for the Rank 2 Intersection Type Assignment System. Notice that being more

permissive forces to define an operation of lifting, something not needed in the approach taken

here. In fact this restriction is only needed for the Rank 2 Intersection Type Assignment System

for the lambda calculus. We will drop it in chapter twelve, in which we will extend the system

defined in this chapter to one for Term Rewriting Systems.

8.3 Operations on pairs
In this section we will define two operations on pairs of basis and type, namely substitution and

duplication. In theorem 8.3.3.3 (i) we will prove that these operations are sound, and in theorem

8.4.2.5 we will prove that these are complete (i.e. are sufficient to generate all pairs for a term

from its principal pair).

8.3.1 Rank 2 substitution

In this chapter, substitution will be defined as a Curry-substitution, the operation that replaces

type-variables by elements of TC. Although perhaps this is a more restricted kind of substitution

than could be expected, it is a sound operation and will prove to be sufficient.
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Definition 8.3.1.1 i) The Rank 2 substitution (ϕ := α) : TR → TR, where ϕ is a type-variable

and α∈ TC, is defined by:

a) (ϕ := α) (ϕ) = α.

b) (ϕ := α) (ϕ′) = ϕ′, if ϕ ,= ϕ′.

c) (ϕ := α) (σ→τ ) = (ϕ := α) (σ)→ (ϕ := α) (τ ).

d) (ϕ := α) (σ1∩· · ·∩σn) = (ϕ := α) (σ1)∩· · ·∩ (ϕ := α) (σn).

ii) If S1 and S2 are Rank 2 substitutions, then so is S1◦S2, where S1◦S2 (σ) = S1 (S2 (σ)).

iii) S (B) = {x:S (σ) | x:σ ∈B}.

iv) S (〈B, σ〉) = 〈S (B), S (σ)〉.

Substitution is normally defined as the operation that replaces type-variables by types, with-

out restriction. This definition would not be correct for the Rank 2 system, since, for example,

the replacement of the type-variable ϕ in ϕ→ϕ by the type (σ→τ )∩σ→τ would give a type

that is not an element of TR. It is easy to verify that the above defined operation is well defined.

For substitutions, the following properties hold:

Lemma 8.3.1.2 Let S be a Rank 2 substitution. Then:

i) If σ ≤R τ , then S (σ) ≤R S (τ ).

ii) If σ ∈ TC (T1, T2, TR), then S (σ) ∈ TC (T1, T2, TR).

Proof: Easy.

Notice that, because of part (ii) of this lemma, substitution is well defined on bases.

The following theorem will show that substitution is a sound operation.

Theorem 8.3.1.3 Soundness of substitution. If B !R M :σ, then for every Rank 2 substitution

S: S (B) !R M :S (σ).

Proof: i) σ ∈ T2, so B !2 M :σ. By induction on the structure of M .

a) M ≡ x, so B = {x:σ}, and σ ∈ TC. Then S (σ) ∈ TC, and S (B) !2 x:S (σ).

b) M ≡ λx.M ′. Then by lemma 8.2.5 (i) there are τ1, . . . , τn ∈ TC, τ ∈ T2 such that

σ = τ1∩· · ·∩τn→τ and either

1) x ∈ FV(M ). Then B∪{x:τ1, . . . , x:τn} !2 M
′:τ . By induction

S (B∪{x:τ1, . . . , x:τn}) !2 M
′:S(τ ),
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so by definition 8.3.1.1 S (B)∪{x:S (τ1), . . . , x:S (τn)} !2 M
′:S(τ ), so by lemma

8.2.5 (i) and definition 8.3.1.1 S (B) !2 λx.M :S (σ).

2) x ,∈ FV(M ). Then B !2 M
′:τ , and n = 1. By induction S (B) !2 M

′:S (τ ), and by

lemma 8.2.5 (i) S (B) !2 λx.M
′:S (τ1)→ S (τ ), so by definition 8.3.1.1

S (B) !2 λx.M :S (σ).

c) M ≡M1M2. By lemma 8.2.5 (ii) there are B1, B2 and τ ∈ T1, such that:

B = B1∪B2, B1 !2 M1:τ→σ, and B2 !R M2:τ .

Then S (B) = S (B1)∪S (B2), and by lemma 8.3.1.2 (ii) S (τ ) ∈ T1, and since S (τ→σ)

= S (τ )→ S (σ), also by induction:

S (B1) !2 M1:S (τ )→ S (σ) and S (B2) !R M2:S (τ ).

Then by lemma 8.2.5 (ii) S (B) !2 M1M2:S (σ).

ii) σ ∈ TR. Then by definition 8.2.4 (ii) there are σ1, . . . , σn, B1, . . . , Bn (n ≥ 1) such that

σ = σ1∩· · ·∩σn, and B = B1∪· · ·∪Bn and for every 1≤ i≤n Bi !2 M :σi.

Then S (B) = S (B1)∪ · · ·∪S (Bn), and by induction for 1≤ i≤n S (Bi) !2 M :S (σi).

Again by definition 8.2.4 (ii) we have S (B) !2 M :S (σ).

8.3.2 Duplication

We now come to the definition of duplication. It can be seen as a very simple version of the

various operations of expansion as defined before; duplication is a total expansion, that is not

‘computed’: all type-variables occurring in basis and type are copied.

Definition 8.3.2.1 Let B be a basis, σ ∈ TR, and n ≥ 1. The triple 〈n, B, σ〉 determines a

duplication D〈n,B,σ〉 : TR → TR, which is constructed as follows:

i) a) Suppose V = {ϕ1, . . . , ϕm} is the set of all type-variables occurring in 〈B, σ〉. Choose

m× n different type-variables ϕ1
1, . . . , ϕn

1 , . . . , ϕ1
m, . . . , ϕn

m, such that each ϕi
j

(1≤ i≤n, 1≤ j≤m) does not occur in V. Let Si be the substitution that replaces

every ϕj by ϕi
j .

b) D〈n,B,σ〉 (τ ) = S1 (τ )∩· · ·∩ Sn (τ ).

ii) D〈n,B,σ〉 (B′) = S1 (B′)∪ · · ·∪Sn (B′).

iii) D〈n,B,σ〉 (〈B′, σ′〉) = 〈D〈n,B,σ〉 (B′), D〈n,B,σ〉 (σ′)〉.

Instead of D〈n,B,σ〉, we will simply write 〈n, B, σ〉.
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Notice that if τ does not contain type-variables that occur in V, then 〈n, B, σ〉 (τ ) = τ∩· · ·∩τ ,

which is by definition of ∼R the same as τ .

For an operation of duplication, the following properties hold:

Lemma 8.3.2.2 Let D = 〈n, B, σ〉.

i) If ρ ≤R τ , then D (ρ) ≤R D (τ ).

ii) D (〈B′, σ′〉) = 〈B1∪· · ·∪Bn, σ1∩· · ·∩σn〉 with for every 1≤ i≤n there is a substitution

Si such that Si (〈B′, σ′〉) = 〈Bi, σi〉.

iii) D (〈B, σ〉) = 〈B1∪· · ·∪Bn, σ1∩· · ·∩σn〉, with for every 1≤ i≤n, 〈Bi, σi〉 is a trivial

variant of 〈B, σ〉, and the 〈Bi, σi〉 are disjoint in pairs.

iv) If τ ∈ TC (T1, T2, TR), then D (τ ) ∈ T1 (T1, TR, TR).

Proof: Immediately by definition 8.3.2.1.

We will now prove that the operation of duplication is sound.

Theorem 8.3.2.3 Soundness of duplication. If B !R M :σ, then for every duplication D:

If D (〈B, σ〉) = 〈B′, σ′〉, then B′ !R M :σ′.

Proof: By lemma 8.3.2.2 (ii) there are B1, . . . , Bn, σ1, . . . , σn such that: 〈B′, σ′〉 =

〈B1∪· · ·∪Bn, σ1∩· · ·∩σn〉, and for every 1≤ i≤n there is a substitution Si such that

Si (〈B, σ〉) = 〈Bi, σi〉. The proof is completed by theorem 8.3.1.3.

8.3.3 Type-chains

As before we will define chains as sequences of operations. To avoid confusion, we will call

the chains needed in this chapter type-chains.

Definition 8.3.3.1 A type-chain is a chain 〈O1, . . . , On〉, where each Oi is an operation of

Rank 2 substitution or duplication.

Type-chains have the following effect on types.

Lemma 8.3.3.2 Let C be a type-chain.

i) If σ ≤R τ , then C (σ) ≤R C (τ ).

ii) If τ ∈ TC (T1, T2, TR), then C (τ ) ∈ T1 (T1, TR, TR).
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iii) If τ ∈ TC, and C (τ ) ∈ TC, then there is a substitution S such that C (τ ) = S (τ ). Without

loss of generality, we can even assume that there is also a type-chain C′ such that

C = 〈S〉 ∗ C′.

Proof: By lemmas 8.3.1.2 and 8.3.2.2.

Type-chains have the following effect on pairs.

Theorem 8.3.3.3 Let C be a type-chain.

i) Soundness of type-chains. If B !R M :σ and C (〈B, σ〉) = 〈B′, σ′〉, then B′ !R M :σ′.

ii) If C (〈B\x∪{x:σ1, . . . , x:σn}, σ〉) = 〈B′\x∪{x:τ1, . . . , x:τm}, τ〉, and τ ∈ T2, then

C (〈B\x, σ1∩· · ·∩σn→σ〉) = 〈B′\x, τ1∩· · ·∩τm→τ〉.

Proof: i) By theorems 8.3.1.3 and 8.3.2.3.

ii) By definitions 8.3.1.1 and 8.3.2.1.

8.4 Principal type property
In this section, we will show that the Rank 2 Intersection Type Assignment System has the

principal type property: for every typeable term M there exists a pair PPR (M ), the principal

pair of M , and for every pair 〈B, σ〉 such that B !R M :σ, there exists a type-chain C such that

C (PPR (M )) = 〈B, σ〉.

As for the Curry type assignment system, principal types for terms will be defined using a

notion of unification.

8.4.1 Unification of intersection types of Rank 2

Unification is a procedure normally used to find a common instance for demanded and provided

types for application, i.e.: if M1 has type σ→τ , and M2 has type α, then unification will look

for a common instance of both the types σ and α, such that M1M2 can be typed properly.

The unification algorithm unify1 we will present in the next definition deals with just that

problem. This means that it is not a full unification algorithm for intersection types of Rank 2,

but only an algorithm that finds the most general unifying type-chain for demanded and pro-

vided type. It is defined using Robinson’s unification algorithm unifyR.

The algorithm is used in the definition of principal pairs for M ; in finding the principal pair

for the term M1M2 by construction, the demanded type σ in σ→τ is in T1 and the provided
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type α is in T2. The unification algorithm looks for types that can be assigned to the terms

M1 and M2, such that the derivation rule (→E) can be applied. Therefore, the result of the

unification of σ and α – a type-chain C – should always be such that C (α) ∈ T1. However, by

lemma 8.3.3.2 (ii), if α ,∈ TC, then C (α) ,∈ T1. To overcome this difficulty, we have inserted an

extra algorithm toTC that, when called with the type α, returns a type-chain of operations that

removes, if possible, intersections in α, and unify1 is called with the types σ and α′, the latter

being α in which the intersections are removed, so α′ = toTC (α) (α).

It is possible that σ ,∈ TC, so it can be that α′ must be duplicated. Since such an operation

affects the basis as well, the third argument of unify1 is a basis.

Definition 8.4.1.1 Rank 2 unification. Let B be the set of all bases, C the set of all type-chains,

and let IdS be the substitution that replaces all type-variables by themselves.

i) unify1 : T1× TC×B → C

unify1 (σ, α, B) = unifyR (σ, α), if σ ∈ TC

unify1 (σ1∩· · ·∩σn, α, B) = 〈D, S1, . . . , Sn〉, otherwise

where D = 〈n, B, α〉,

α1∩· · ·∩αn = D (α),

Si = unifyR (〈S1, . . . , Si−1〉 (σi), αi) for every 1≤ i≤n.

ii) toTC : T2 → C

toTC (σ) = IdS , if σ ∈ TC

toTC (σ1∩· · ·∩σn→σ) = 〈S1, . . . , Sn−1〉 ∗ C, otherwise

where Si = unifyR (〈S1, . . . , Si−1〉 (σ1), 〈S1, . . . , Si−1〉 (σi+1))

for every 1≤ i≤n-1,

C = toTC (〈S1, . . . , Sn−1〉 (σ)) .

Notice that unify1 and toTC may fail because unifyR may fail, and that 〈n, B, α〉 never fails.

Because of this relation between unify1 and toTC, and unifyR, the procedures defined here are

terminating and type assignment in the system defined in this chapter is decidable.

Lemma 8.4.1.2 i) For every σ ∈ T2, type-chain C: if C (σ) = τ ∈ T1, then there is a type-chain

C′ such that: toTC (σ) ∗ C′ (σ) = τ . (Without loss of generality, we can assume that

C = toTC (σ) ∗ C′.)

ii) For every σ ∈ T1, α ∈ TC that are disjoint: if there is a type-chain C such that C (σ) =

C (α), then for every basis B that shares no type-variables with σ there is a type-chain C′
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such that

C (σ) = unify1 (σ, α, B) ∗ C′ (σ) = unify1 (σ, α, B) ∗ C′ (α) = C (α).

(Without loss of generality, we can assume that C = unify1 (σ, α, B) ∗ C′.)

Proof: By induction on definition 8.4.1.1, using property 1.6.

8.4.2 Principal pairs for terms

The definition of principal pairs for lambda terms in the Rank 2 system will then look like:

Definition 8.4.2.1 We define, for every term M , the Rank 2 principal pair by defining the

notion PPR (M ) = 〈P , π〉 inductively by:

i) For all x, ϕ: PPR (x) = 〈{x:ϕ}, ϕ〉.

ii) If PPR (M ) = 〈P , π〉, then:

a) If x occurs free in M and P = P\x∪{x:σ1, . . . , x:σn}, then

PPR (λx.M ) = 〈P\x, σ1∩· · ·∩σn→π〉.

b) otherwise PPR (λx.M ) = 〈P , ϕ→π〉, where ϕ is a type-variable that does not occur in

〈P , π〉.

iii) If PPR (M1) = 〈P1, π1〉 and PPR (M2) = 〈P2, π2〉 (we choose if necessary trivial variants

such that the 〈Pi, πi〉 are disjoint in pairs), and S2 = toTC (π2), then

a) If π1 = ϕ, then:

PPR (M1M2) = 〈S2, S1〉 (〈P1∪P2, ϕ′〉),

where S1 = unifyR (ϕ, S2 (π2)→ϕ′)

and ϕ′ is a type-variable not occurring in any other type.

b) If π1 = σ→τ , then:

PPR (M1M2) = 〈S2〉 ∗ C (〈P1∪P2, τ〉),

where C = unify1 (σ, S2 (π2), S2 (P2)).

Example 8.4.2.2 Using Rank 2 intersection types, the term S K S I (where S, K and I are the

well known lambda terms) has a smaller principal type than using Curry types. Notice that:

PPR (S) = (1→2→3)→(4→2)→1∩4→3,

PPR (K) = 5→6→5, and

PPR (I) = 7→7,
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and by definition 8.4.2.1 it is easy but laborious to check that PPR (S K S I) = 8→8 (in

Curry’s system – and in ML – this term has the principal type (9→10)→9→10).

If we define D = λx.xx, then we can even check that for example PPR (D (S K S I)) =

PPR (D I) = 9→9. Notice that the term I D is not typeable in this system.

Lemma 8.4.2.3 If PPR (M ) = 〈P , π〉, then P !2 M :π, so π ∈ T2.

Proof: By induction on the definition of PPR (M ), using lemma 8.3.3.2.

The following lemma is needed in the proof of theorem 8.4.2.5, and formulates that if a

type-chain maps the principal pairs of terms in an application to pairs that allow the use of

derivation rule (→E), then these pairs can also be obtained by first performing a unification.

Lemma 8.4.2.4 Let σ ∈ T2, and for i = 1, 2 PPR (Mi) = 〈Pi, πi〉, such that these pairs are

disjoint, and let C be a type-chain such that:

C (PPR (M1)) = 〈B1, τ→σ〉, and C (PPR (M2)) = 〈B2, τ〉.

Then there are type-chains Cg and C′, and type α∈ T2 such that:

PPR (M1M2) = Cg (〈P1∪P2, α〉), and C′ (PPR (M1M2)) = 〈B1∪B2, σ〉.

Proof: Since C (π2) ∈ T1, by lemma 8.4.1.2 (i) there is a C1 such that C = 〈S2〉 ∗ C1,

with S2 = toTC (π2).

i) π1 = ϕ. Take S1 = unifyR (ϕ, S2 (π2)→ϕ′), where ϕ′ is a type-variable not occurring in

any other type. Assume, without loss of generality, that C1 (ϕ′) = σ. Then by definition

8.4.2.1 (iii.a)

PPR (M1M2) = 〈S2, S1〉 (〈P1∪P2, ϕ′〉).

Since ϕ∈ TC and τ→σ ∈ T2, by lemma 8.3.3.2 (ii) τ→σ ∈ T1, so τ→σ ∈ TC and τ ∈ TC.

So C1 (S2 (π2)→ϕ′) ∈ TC, and by lemma 8.3.3.2 (iii) there are a substitution S3 and a

type-chain C2 such that:

S3 (S2 (π2)→ϕ′) = τ→σ, and C1 = 〈S3〉 ∗ C2.

Assume, without loss of generality, that S3 (ϕ) = τ→σ. Then by property 1.6 there is a

substitution S4 such that S3 = S4◦S1. So

C = 〈S2〉 ∗ C1 = 〈S2〉 ∗ 〈S3〉 ∗ C2 = 〈S2, S1〉 ∗ 〈S4〉 ∗ C2.

Take Cg = 〈S2, S1〉, C′ = 〈S4〉 ∗ C2 and α = ϕ′.

ii) π1 = ρ→µ. Since the pairs 〈P1, ρ→µ〉 and 〈P2, π2〉 are disjoint, C1 (ρ→µ) = τ→σ.
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Since C1 (ρ) = C1 (S2 (π2)), and S2 (P2) shares no type-variables with ρ, by lemma

8.4.1.2 (ii) there are type-chains Cu and C2 such that

Cu = unify1 (ρ, S2 (π2), S2 (P2)), and C1 = Cu ∗ C2.

By definition 8.4.2.1 (iii.b)

PPR (M1M2) = 〈S2〉 ∗ Cu (〈P1∪P2, µ〉).

Then C = 〈S2〉 ∗ C1 = 〈S2〉 ∗ Cu ∗ C2. Take Cg = 〈S2〉 ∗ Cu, C′ = C2, and α = µ.

The following theorem will show that type-chains are sufficient to generate all possible

pairs for a typeable term.

Theorem 8.4.2.5 Completeness of type-chains. If B !R M :σ, then there are a basis P , type π

and a type-chain C such that PPR (M ) = 〈P , π〉, and C (〈P , π〉) = 〈B, σ〉.

Proof: i) σ ∈ T2. By induction on the structure of M .

a) M ≡ x. Then B = {x:σ}, σ ∈ TC, and PPR (x) = 〈{x:ϕ}, ϕ〉.

Take C = 〈(ϕ := σ)〉.

b) M ≡ λx.M ′. Then by lemma 8.2.5 (i) either:

1) x occurs free in M ′ and there are τ1, . . . , τn ∈ TC, τ ∈ T2 such that

σ = τ1∩· · ·∩τn→τ , and B∪{x:τ1, . . . , x:τn} !2 M
′:τ .

By induction there are P , π, and a type-chain C such that

PPR (M ′) = 〈P , π〉, and C (〈P , π〉) = 〈B∪{x:τ1, . . . , x:τn}, τ〉.

By definition 8.4.2.1 (ii.a) there are σ1, . . . , σm (m ≤ n) such that

P = P\x∪ {x:σ1, . . . , x:σm} and PPR (M ) = 〈P\x, σ1∩· · ·∩σm→π〉.

Since C (〈P\x∪ {x:σ1, . . . , x:σm}, π〉) = 〈B∪ {x:τ1, . . . , x:τn}, τ〉, by theorem

8.3.3.3 (ii) C (〈P\x, σ1∩· · ·∩σm→π〉) = 〈B, σ〉.

2) x does not occur free in M ′ and there are τ1 ∈ TC, τ ∈ T2 such that

σ = τ1→τ , and B !2 M
′:τ .

By induction there are P , π, and a type-chain C′ such that

PPR (M ′) = 〈P , π〉, and C′ (〈P , π〉) = 〈B, τ〉.

By definition 8.4.2.1 (ii.b) there is a ϕ not occurring in 〈P , π〉 such that

PPR (M ) = 〈P , ϕ→π〉.

Take C = (ϕ := τ1) ∗ C′, then C (〈P , ϕ→π〉) = 〈B, σ〉.
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c) M ≡M1M2. Then by lemma 8.2.5 (ii) there are a τ ∈ T1 and B1, B2 such that:

B1 !2 M1:τ→σ, B2 !R M2:τ , and B = B1∪B2.

By induction for i = 1, 2 there are Pi, πi, and type-chains Ci such that:

PPR (M1) = 〈P1, π1〉, C1 (PPR (M1)) = 〈B1, τ→σ〉,

PPR (M2) = 〈P2, π2〉, and C2 (PPR (M2)) = 〈B2, τ〉.

Assume, without loss of generality, that the pairs 〈Pi, πi〉 are disjoint. Then the

type-chains Ci do not interfere, so

C1 ∗ C2 (PPR (M1)) = 〈B1, τ→σ〉, and C1 ∗ C2 (PPR (M2)) = 〈B2, τ〉.

Then, by lemma 8.4.2.4 there is a type-chain C such that C (PPR (M1M2)) = 〈B, σ〉.

ii) σ = σ1∩· · ·∩σn. By definition 8.2.4 (ii) there are B1, . . . , Bn such that B = B1∪· · ·∪Bn,

and for every 1≤ i≤n, Bi !2 M :σi. Take pairs 〈Bi
′, σi

′〉, trivial variants of 〈Bi, σi〉 and

disjoint in pairs. Take S such that

S (〈B1
′∪· · ·∪Bn

′, σ1
′∩· · ·∩σn′〉) = 〈B1∪· · ·∪Bn, σ1∩· · ·∩σn〉.

By induction there are P , π, such that PPR (M ) = 〈P , π〉. Let D = 〈n, P , π〉, then

D (〈P , π〉) = 〈P1∪· · ·∪Pn, π1∩· · ·∩πn〉,

and by lemma 8.3.2.2 (iii) the 〈Pi, πi〉 are disjoint in pairs, and for 1≤ i≤n

PPR (M ) = 〈Pi, πi〉. By induction there are type-chains C1, . . . , Cn such that

for 1≤ i≤n Ci (〈Pi, πi〉) = 〈Bi
′, σi

′〉.

Since the 〈Pi, πi〉 and the 〈Bi
′, σi

′〉 are disjoint in pairs, the Ci do not interfere.

Take C = 〈D〉 ∗ C1 ∗ · · · ∗ Cn ∗ 〈S〉.

At this stage, we can more clearly explain why we choose to define a basis as in definition

8.2.3 (ii). Take the term xy. If all types were allowed for term-variables, then the following

would be a correct statement:

{x:σ∩τ→ρ, y:σ, y:τ} !2 xy:ρ.

Notice that

PPR (xy) = 〈{x:1→2, y:1}, 2〉.

If we want our notion of principal pair to be correct, we should show that we have a way of

obtaining the first pair for xy from its principal one, so we need a type-chain of operations C

such that:

C (〈{x:1→2, y:1}, 2〉) = 〈{x:σ∩τ→ρ, y:σ, y:τ}, ρ〉.
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However, there exists no type-chain of operations as defined in this chapter that can replace

the type 1→2 by σ∩τ→ρ; therefore, we have chosen to restrict the possible predicates for

statements that have a term-variable as subject to types in TC.

Chapter 9 Applicative Term Rewriting Systems

In this chapter we will define Applicative Term Rewriting Systems (ATRS), a slight extension

of the Term Rewriting Systems as defined in [Klop ’90], as term rewriting systems that con-

tain a special binary operator Ap. The Applicative Term Rewriting Systems to be defined in

this chapter are extensions to those suggested by most functional programming languages, in

that they do not discriminate against the varieties of function symbols that can be used in pat-

terns. As such, there is no distinction between function symbols (e.g. append and plus) and

constructor symbols (e.g. cons and succ); the extension made consists of allowing not only

constructor-symbols in the operand space of the left hand side of rewrite rules, but all function

symbols.

The definition of applicative systems as will be done in this chapter is motivated by the

following observation: there is a clear translation (embedding) of combinator systems into

Term Rewriting Systems, in which the implicit application of the world of combinators is made

explicit. The kind of term rewriting system that is needed for such a translation contains only

one function symbol, called Ap, and is therefore often called an applicative term rewriting

system. A translation of, for example, Combinatory Logic (CL)

S x y z = x z (y z)

K x y = x

I x = x

into such a term rewriting system then looks like:

Ap (Ap (Ap (S, x), y), z) → Ap (Ap (x, z), Ap (y, z))

Ap (Ap (K,x), y) → x

Ap (I, x) → x
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The definition of applicative systems we will present in this thesis is, however, more general:

in the systems we consider, Ap is a special function symbol; in particular it is one of the function

symbols, not the only one. We prefer to see an applicative term rewriting system as a term

rewriting system with a predefined symbol, which we call Ap. In order to distinguish between

the term rewriting systems that contain only the function symbol Ap and those that contain

Ap next to other function symbols, we call the former the Pure Applicative Term Rewriting

Systems.

We prefer to see the symbols S, K and I as functions, with 3, 2 and 1 operands, respectively.

If we try to capture this view in our translation, then a first attempt would give:

S (x, y, z) → Ap (Ap (x, z), Ap (y, z))

K (x, y) → x

I (x) → x.

Then a term like S (K,S, I) would be illegal, since the functions that appear in operand

position are used without the necessary arguments; it would not be possible to translate all

combinator expressions. This means that we have to introduce extra rewrite rules to express the

Curried versions of these symbols. Moreover, to get some computational power, some rewrite

rule starting with Ap should be added. Such an extended CL system might look like:

S (x, y, z) → Ap (Ap (x, z), Ap (y, z))

Ap (Ap (Ap (S0, x), y), z) → S (x, y, z)

K (x, y) → x

Ap (Ap (K0, x), y) → K (x, y)

I (x) → x

Ap (I0, x) → I (x),

or like,

S (x, y, z) → Ap (Ap (x, z), Ap (y, z))

Ap (S2 (x, y), z) → S (x, y, z)

Ap (S1 (x), y) → S2 (x, y)

Ap (S0, x) → S1 (x)

K (x, y) → x

Ap (K1 (x), y) → K (x, y)

Ap (K0, x) → K1 (x)

I (x) → x

Ap (I0, x) → I (x).
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The rules with S0, K0, I0, etc. give in fact the ‘Curried’ versions of respectively S, K and

I .

We will consider the applicative rewriting systems, because they are far more general than the

subclass of pure applicative systems. However, all results obtained in the next three chapters

are also valid for that subclass. Moreover, every term rewriting system is an applicative term

rewriting system.

9.1 The defined symbol of rewrite rules
We take the view that in a rewrite rule a certain symbol is defined; it is this symbol to which

the structure of the rewrite rule gives a type. The reason for treating Ap as a predefined symbol

is the following: It is clear that the rules added to obtain the Curried versions of symbols in

the translation of CL into a rewriting system are not intended as definitions for Ap, but as

definitions for those Curried versions. However, in general, Term Rewriting Systems are not

sensitive for the names used for functions symbols and function symbols can be replaced by

others, as long as this is done in a consistent way. So the translation of CL is in fact the same

as the one obtained by replacing all Ap’s by F :

S (x, y, z) → F (F (x, z), F (y, z))

F (S2 (x, y), z) → S (x, y, z)

F (S1 (x), y) → S2 (x, y)

F (S0, x) → S1 (x)

K (x, y) → x

F (K1 (x), y) → K (x, y)

F (K0, x) → K1 (x)

I (x) → x

F (I0, x) → I (x).

Now, all rewrite rules starting with F could be seen as rules that define F . Because this is in

fact the same term rewriting system, there should be no difference in the intended meaning, so

all rules starting with Ap should then be rules that define Ap. In order to avoid this problem, we

will regard those rewriting systems that have a ‘predefined’ binary function, called Ap, which

then cannot be renamed. As suggested above, the symbol Ap is neglected when we are looking

for the symbol that is defined in a rewrite rule.

We will consider rewriting systems that are Curry closed. We could have defined a closure

operation on ATRS’s, by adding rules and extending the set of function symbols, but it is easier
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to assume that every ATRS is closed. When presenting a rewrite system, however, we will only

show the rules that are essential; we will not show the rules that define the Curried versions.

9.2 Partial type assignment
The type assignment systems we will present in the next three chapters are partial systems in the

sense of [Pfenning ’88]. Not only will we define how terms and rewrite rules can be typed, but

we will also assume that every function symbol already has a type, which structure is usually

motivated by a rewrite rule. There are several reasons to do so.

First of all a term rewriting system can contain a symbol that is not the defined symbol of a

rewrite rule (such a symbol is called a constant). A constant can appear in a rewrite rule more or

less as a symbol that ‘has to be there’, but for which it is impossible to determine any functional

characterization, apart from what is demanded by the immediate context. If we provide a type

for every constant, then we can formulate some consistency requirement by saying that the

types used for a constant must be related to the provided type.

Moreover, even for every defined symbol there must be some way of determining what

type can be used for an occurrence. Normally the rewrite rules that define such a symbol are

investigated, and from analyzing the structure of those rules the ‘most general type’ for that

symbol can be constructed. Instead of investigating all the defining rules for a defined symbol

every time the symbol is encountered, we can store the type of the symbol in a mapping from

symbols to types, and use this mapping instead. Of course it makes no difference to assume the

existence from the start of such a mapping from symbols (both defined and constant) to types,

and to define type assignment using that mapping (in the following such a mapping is called an

‘environment’).

In fact, the approach we take here is very much the same as the one taken by Hindley in

[Hindley ’69], where he defines the principal Curry-type scheme of an object in Combinatory

Logic. Even his notion of type assignment could be regarded as a partial one. Moreover,

since combinator systems can easily be translated into (Left Linear) Applicative Term Rewriting

Systems, the results of chapter eleven (when restricting the allowed rewrite rules to those that

correspond to combinators), are the same as in [Hindley ’69].
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9.3 Definitions
The following definitions will be based on definitions given in [Klop ’90]. Definition 9.3.1 will

define Applicative Term Rewriting Systems the same way as the definition given by Klop for

Term Rewriting Systems, extended with part (i.c) to express the existence of the predefined

symbol Ap. Definition 9.3.2 will define a notion of rewriting on Applicative Term Rewriting

Systems, the same way as the definition of rewriting given by Klop for Term Rewriting Systems,

extended with part (ii.a.3) to express that the possible use of the symbol Ap in the left hand side

is restricted, and part (iii) to define the notion of defined symbol of a rewrite rule. In fact, parts

(ii.a.3) and (iii) are related. Part (iv) is added to express that only Curry closed rewrite systems

are considered.

We will introduce in some parts a notation different from Klop’s, because some of the sym-

bols or definitions Klop used were already used in this thesis with a different meaning. For

example, we will use the word ‘replacement’ for the operation that replaces term-variables

by terms, instead of the word ‘substitution’, which was used for operations that replace type-

variables by types. (Substitution and replacement are also operations defined in [Curry &

Feys ’58]. They both are defined as operations on terms; substitution was defined as the oper-

ation that replaces term-variables by terms, and replacement was defined as the operation that

replaces occurrences of subterms by terms. Note that our definition therefore differs also from

the one given in [Curry & Feys ’58].) To denote a replacement, we will use capital characters

like ‘R’, instead of Greek characters like ‘σ’, which were used to denote types. We will use the

symbol ‘→’ for the rewriting symbol, instead of ‘→’ which was used as a type constructor. We

will use the notion ‘constant symbol’ for a symbol that cannot be rewritten (for which there is

no rewrite rule that defines that symbol), instead of for a function symbol with arity 0.

Definition 9.3.1 (cf. [Klop ’90]) An Applicative Term Rewriting System (ATRS) is a pair (Σ,

R) of an alphabet or signature Σ and a set of rewrite rules R.

i) The alphabet Σ consists of:

a) A countable infinite set of variables x1, x2, x3, . . . (or x, y, z, x′, y′, . . . ).

b) A non empty set F of function symbols or operator symbols F , G, . . . , each equipped

with an ‘arity’ (a natural number), i.e. the number of ‘arguments’ it is supposed to

have. We have 0-ary, unary, binary, ternary etc. function symbols.

c) A special binary operator, called application (Ap).

ii) The set of terms (or expressions) ‘over’ Σ is T(F,X ) and is defined inductively:

a) x, y, z, . . . ∈ T(F,X ).
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b) If F ∈F ∪ {Ap} is an n-ary symbol (n ≥ 0), and t1, . . . , tn ∈ T(F,X ), then

F (t1, . . . , tn) ∈ T(F,X ).

The ti (i = 1, . . . , n) are the arguments of the last term.

Definition 9.3.2 (cf. [Klop ’90]) Let (Σ, R) be an ATRS.

i) A replacement R is a map from T(F,X ) to T(F,X ) satisfying

R(F (t1, . . . , tn)) = F (R(t1), . . . , R(tn))

for every n-ary function symbol F (here n ≥ 0). So, R is determined by its restriction to

the set of variables. We also write TR instead of R(T ).

ii) a) A rewrite rule ∈ R is a pair (Lhs, Rhs) of terms ∈ T(F,X ). Often, a rewrite rule will

get a name, e.g. r, and we write r : Lhs→ Rhs. Three conditions will be imposed:

1) Lhs is not a variable.

2) The variables occurring in Rhs are contained in Lhs.

3) For every Ap in Lhs, the left hand argument is not a variable.

b) A rewrite rule r : Lhs→ Rhs determines a set of rewrites LhsR → RhsR for all

replacements R. The left hand side LhsR is called a redex; it may be replaced by its

‘contractum’ RhsR inside a context C[ ]; this gives rise to rewrite steps:

C[ LhsR ] →r C[ RhsR ].

c) We call →r the one-step rewrite relation generated by r. Concatenating rewrite steps

we have (possibly infinite) rewrite sequences t0 → t1 → t2 → · · · or rewrites for

short. If t0 → · · · → tn we also write t0 →∗ tn, and tn is a rewrite of t0.

iii) a) In a rewrite rule, the leftmost, outermost symbol in the left hand side that is not an Ap,

is called the defined symbol of that rule.

b) If the symbol F is the defined symbol of the rewrite rule r, then r defines F .

c) F is a defined symbol, if there is a rewrite rule that defines F .

d) Q ∈F is called a constant symbol if Q is not a defined symbol.

iv) For every defined symbol F with arity n ≥ 1, there are n additional rewrite rules that

define the function symbols F0 upto Fn−1 as follows:

Ap (Fn−1 (x1, . . . , xn−1), xn) → F (x1, . . . , xn)

Ap (Fn−2 (x1, . . . , xn−2), xn−1) → Fn−1 (x1, . . . , xn−1)
...

Ap (F1 (x1), x2) → F2 (x1, x2)
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Ap (F0, x1) → F1 (x1)

The added rules with Fn−1, . . . , F1, F0, etc. give in fact the ‘Curried’-versions of F .

Because of part (iv) in this thesis we will consider only rewriting systems that are called Curry

closed.

Part (ii.a.3) of definition 9.3.2 was added in order to avoid rewrite rules with left hand sides

like Ap (x, y), because such a rule would not have a defined symbol. It was also added to avoid

the kind of problem as mentioned in [van Oostrom ’90]. In this paper a lambda calculus with

patterns was defined: when arbitrary applications like Ap (x, y) are allowed in patterns, then, for

example, λ(xy).(yx) is a correct term (it changes the order of terms in an application). Using

this term in this calculus it is then possible to show that K = I . Moreover, this restriction on

occurrences of Ap in left hand sides makes it possible to give the following structural definition

of those terms.

Definition 9.3.3 LHS, the set of terms that are allowed in the left hand side of a rewrite rule, is

inductively defined by:

i) If t1 ∈ LHS, and t2 ∈ T(F,X ) such that either:

a) t2 ≡ x for some term-variable x, or

b) t2 ∈ LHS,

then Ap (t1, t2) ∈ LHS.

ii) If F ∈F with arity n, and M1, . . . , Mn ∈ T(F,X ) such that for every 1≤ i≤n either:

a) ti ≡ x for some term-variable x, or

b) ti ∈ LHS,

then F (t1, . . . , tn) ∈ LHS.

It is easy to show that LHS is exactly the set of terms allowed by definition 9.3.2 (ii.a).

We can call a rewrite rule r : Lhs → Rhs with defined symbol F recursive if the defined

symbol also occurs in other nodes than the defining one, and then call such an F a recursive

symbol. This definition is, however, not accurate. Take, for example, the rewrite system

F (x) = G (x)

G (x) = F (x).

Then these rewrite rules are not recursive according to the definition. However, apart from

the length of rewrite sequences, this rewrite system is in fact the same as
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F (x) = G (x)

F (x) = F (x)

G (x) = F (x)

and now of course F is a recursive symbol. Therefore, the first system too is regarded as a

recursive one, and the two rewrite rules are called mutually recursive. If allowing this kind of

recursion, we are in fact forced to give a different notion of defined symbol, since both rules in

the first system define F and G simultaneously. Therefore, for the sake of simplicity, we will

assume that rules are not mutually recursive.

Proposition 9.3.4 Let F be the defined symbol of the rewrite rule r : Lhs→ Rhs. Then there

are n ≥ j ≥ 0, and t1, . . . , tn ∈ T(F,X ), such that F has arity j and:

Lhs = Ap (Ap (· · ·Ap (F (t1, . . . , tj), tj+1), · · ·), tn)

and t1, . . . , tn are called the patterns of r.

Proof: Easy.

In chapter eleven a notion of type assignment on Left Linear Applicative Term Rewriting

Systems will be defined. These systems are defined as above, extended with parts to express

the left linearity of rewrite rules.

Definition 9.3.5 A Left Linear Applicative Term Rewriting System (LLATRS) is a pair (Σ, R)

of an alphabet or signature Σ and a set of rewrite rules R and is defined as in definition 9.3.1,

extended with:

iii) Terms in which no variable occurs twice or more, are called linear.

Definition 9.3.6 Let (Σ, R) be a LLATRS. The notion of rewriting on LLATRS’s is defined as

is definition 9.3.2, extended with:

ii) a) 4) Lhs is linear.

In the following definition we will give a special Applicative Term Rewriting System.

Definition 9.3.7 Applicative Combinatory Logic (ACL) is the ATRS (Σ, R), where F = {S,

S2, S1, S0, K , K1, K0, I , I0}, and R contains the rewrite rules

S (x, y, z) → Ap (Ap (x, z), Ap (y, z))

K (x, y) → x

I (x) → x.
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Notice that ACL is even a LLATRS.

For ACL we have, for example, the following rewriting sequence:

S (K0, S0, I0) →

Ap (Ap (K0, I0), Ap (S0, I0)) →

Ap (K1 (I0), Ap (S0, I0)) →

K (I0, Ap (S0, I0)) →

I0.

Notice that a term like K1 (I0) itself cannot be rewritten. This corresponds to the fact that

in CL the term K I is not a redex.

Because ACL is Curry-closed, it is in fact combinatory complete: every lambda term can

be translated into a term in ACL; for details of such a translation, see [Barendregt ’84, Dezani-

Ciancaglini & Hindley ’92].

Example 9.3.8 Rewrite rules can of course be more complicated than was illustrated above by

the rules for ACL. In general, if the left hand side of a rewrite rule is F (t1, . . . , tn), then the

ti need not be simple variables but can be terms as well, as, for example, in the rewrite rule

H (S2 (x, y)) → S2 (I0, y).

It is also possible that for a certain symbol F , there is more than one rewrite rule that defines

F . For example, the rewrite rules:

F (x) → x

F (x) → Ap (x, x)

are legal.

9.4 Tree-representation of terms and rewrite rules
The three different notions of type assignment on ATRS’s as defined in the next three chapters

will in fact be defined on the tree-representation of terms and rewrite rules of these systems. In

this section we will present this representation in a formal way.

Definition 9.4.1 i) The tree-representation of terms and rewrite rules is in a straightforward

way obtained by representing a term F (t1, . . . , tn) by:
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+
F

,,-
t1

../
tn

· · ·

ii) The spine of a term-tree is defined as usual, i.e.: the root node of the term-tree is on the

spine, and if a node is on the spine, then its left most descendant is on the spine.

iii) In the tree-representation of a rewrite rule, the first node on the spine of the left hand side

(starting from the root node) that does not contain an Ap is called the defining node of that

rule. Notice that if F is the defined symbol of the rule, then it occurs in the defining node.

iv) The edge pointing to the the root of a term is called the root edge.

v) A node containing a term-variable (a function symbol F ∈F , the symbol Ap) will be

called a variable node (function node, application node).

Example 9.4.2 We give some of the rewrite rules of ACL in tree-representation:
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Example 9.4.3 We give the tree-representations of the rewrite rules given in example 9.3.8.
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Chapter 10 Partial Intersection Type

Assignment in Applicative Term

Rewriting Systems

In this chapter and the following two, we will define three different notions of partial type

assignment on the tree-representation of terms and rewrite rules. The only constraints on these

systems are local, and are imposed by the relation between the type assigned to a node and

those assigned to its incoming and out-going edges. Assigning types to an ATRS will consist of

assigning types to function symbols via a mapping that is called an environment, and labelling

the nodes and edges in the tree-representation of terms with type information. Left- and right

hand side of rewrite rules will be typed as terms, and conditions will be formulated that the

types assigned to those terms should satisfy.

Types are labelled to nodes to capture the notion of ‘type of a function’, ‘type of a constant’

or ‘type of a variable’, and are assigned to edges to capture the notion of ‘type of a subterm’

(or term-tree). The type assigned to the root edge of a term-tree is the type assigned to the term

that is represented by the term-tree.

In this chapter we will present a notion of type assignment on ATRS’s that is based on the

essential type assignment system for the lambda calculus and Milner’s system for ML. Milner’s

system plays a role in recursive definitions.

As remarked in section 6.4, the essential type assignment system for the lambda calculus

has the principal type property. The operations on types for this system are strict substitution,

strict expansion, and lifting, and all pairs for a lambda term can be generated by chains that

exist of strict expansions, strict substitutions (in that order), and that end with one lifting. But,

since all those operations can be proved sound on all pairs, we will, in this section, allow the
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operations to appear in arbitrary order, so we will use just ordinary chains. Moreover, in this

section we will drop the distinction between the operations of expansions and type-expansions

made in section 6.2.2; we will call both expansions.

The three operations on types are used to define type assignment on ATRS’s: types that can

be assigned to occurrences of function symbols can be obtained from the type provided by the

environment using a chain of operations. These operations will be proved sound on typeable

term-trees. For the operations of strict substitution and strict expansion we will prove a notion

of soundness on rewrite rules, and we will show that it is not possible to show such a result for

the operation of lifting.

It will be shown that type assignment in term rewriting systems in general does not satisfy

the subject reduction property: i.e. types are not preserved under rewriting. For the notions

of type assignment presented in this chapter and the next two we will formulate a sufficient

condition rewrite rules should satisfy to obtain subject reduction. For the system of chapter

eleven, even this condition will be proved necessary. For the system presented in this chapter

this condition is not decidable. It is so for the systems of chapters eleven and twelve.

We will discuss the differences between the notions of type assignment defined for ATRS’s

that are based on Milner’s or Mycroft’s way of dealing with recursion.

10.1 Essential type assignment in ATRS’s
Partial intersection type assignment on an ATRS (Σ, R) is defined as the labelling of nodes and

edges in the tree-representation of terms and rewrite rules with types in TS. In this labelling,

we will use that there is a mapping that provides a type in Ts for every F ∈F ∪{Ap}. Such a

mapping is called an environment.

Definition 10.1.1 Let (Σ, R) be an ATRS.

i) A mapping E : F ∪{Ap} → Ts is called an environment if E(Ap) = (1→2)→1→2, and

for every F ∈F with arity n, E (F ) = E (Fn−1) = · · · = E(F0).

ii) For F ∈F with arity n ≥ 0, σ ∈ Ts, and E an environment, the environment E[F := σ] is

defined by:

a) E[F :=σ] (G) = σ, if G∈ {F , Fn−1, . . . , F0}.

b) E[F :=σ] (G) = E (G), otherwise.

The condition that E (F ) = E (Fn−1) = · · · = E(F0) is not essential. It is only introduced for

reasons of efficiency; we want to be able to assign the same set of types to all Curried versions
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of a function symbol. It could be dropped without loss of results.

Since E maps all F ∈F to types in Ts, no function symbol in particular is mapped to the

type constant ω.

Type assignment on applicative term rewriting systems will be defined in two stages. In the

next definition we will define type assignment on terms, in definition 10.1.7 we will define type

assignment on term rewrite rules.

Definition 10.1.2 Let (Σ, R) be an ATRS, and E an environment.

i) We say that T ∈ T(F,X ) is typeable by σ ∈ TS with respect to E , if there exists an

assignment of types to edges and nodes that satisfies the following constraints:

a) The root edge of T is typed with σ; if σ = ω, then the root edge is the only thing in the

term-tree that is typed.

b) The type assigned to a function node containing F ∈F ∪{Ap} (where F has arity

n ≥ 0) is τ1∩· · ·∩τm, if and only if for every 1≤ i≤m there are σi
1, . . . , σi

n ∈ TS, and

σi ∈ Ts, such that τi = σi
1→· · ·→σi

n→σi, the type assigned to the j-th (1≤ j ≤n)

out-going edge is σ1
j∩· · ·∩σ

m
j , and the type assigned to the incoming edge is

σ1∩· · ·∩σm.

+
σ1∩· · ·∩σm

F :(σ1
1→· · ·→σ1

n→σ1)∩· · ·∩ (σm
1 →· · ·→σm

n →σm)
000001

σ1
1∩· · ·∩σ

m
1 4

4
4

445
σ1
2∩· · ·∩σ

m
2

6
6
6
667
σ1
n−1∩· · ·∩σ

m
n−1

222223
σ1
n∩· · ·∩σ

m
n

. . .

c) If the type assigned to a function node containing F ∈F ∪{Ap} is τ , then there is a

chain C such that C (E (F )) = τ .

ii) Let T ∈ T(F,X ) be typeable by σ with respect to E . If B is a basis such that for every

statement x:τ occurring in the typed term-tree there is a x:τ ′ ∈B such that τ ′ ≤E τ , we

write B !E T :σ.

Notice that if B !E T :σ, then B can contain more statements than needed to obtain T :σ.

Notice also that parts (i.a) and (ii) are not in conflict, so for every B and T : B !E T :ω.

A typical example for part (i.b) of definition 10.1.2 is the symbol Ap, for which every

environment provides the type (1→2)→1→2. So for every occurrence of Ap in a term-tree,

there are σ and τ such that the following is part of the typed term-tree.
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+τ
Ap: (σ→τ )→σ→τ

,,-σ→τ ../ σ

Notice that the type the environment provides for Ap is crucial; it is the type suggested by

the (→E) derivation rule, and gives structure to the type assignment. As remarked by F.J. de

Vries of the C.W.I. in Amsterdam, the Netherlands (private communication), it is possible to

define type assignment on term rewriting systems in a trivial way: We could define an envi-

ronment in such a way that the only requirement is that for every F ∈F ∪{Ap} with arity n

there are σ1, . . . , σn, and σ such that E (F ) = σ1→· · ·→σn→σ. Then it would be, for example,

possible to define it in such a way that the type provided for Ap is 1→2→3. Moreover, it would

then be possible to assign the type 0→0→· · ·→0→0 (n + 1 times) to all F with arity n, and

all structure would be lost. Also, such a system would then not be a natural extension of the

essential type assignment system for the lambda calculus.

Instead of saying ‘typeable with respect to E’, we will just say ‘typeable’, and instead of saying

‘the type assigned to the node containing a function symbol (variable)’ we will often speak of

‘the type assigned to a function symbol (variable)’.

Example 10.1.3 The term S (K0, S0, I0) can be typed with the type 7→7, under the

assumption that:

E (S) = (1→2→3)→(4→2)→1∩4→3

E (K) = 5→ω→5

E (I) = 6→6.

+7→7

S:((7→7)→ω→7→7) → ω → (7→7) → 7→7

,,-
K0:(7→7)→ω→7→7

+
S0

../
I0:7→7

Notice that to obtain the type ((7→7)→ω→7→7)→ω→(7→7)→7→7 for S, we used the

chain 〈(1 := 7→7), (2 := ω), (3 := 7→7), (4 := ω)〉, and that the node containing S0 is not

typed since the incoming edge is typed with ω.

If we define D (x) → Ap (x, x), then we can even check that, for example,

D (S (K0, S0, I0)) and D (I0) are typeable by 8→8.

For the notion of type assignment as defined in definition 10.1.2 the following properties

hold:
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Lemma 10.1.4 i) B !E T :σ1∩· · ·∩σn ⇐⇒ ∀ 1≤ i≤n [ B !E T :σi ].

ii) If x:τ is a statement occurring in the typed term-tree for B !E T :σ, then B ≤E {x:τ}.

Proof: Immediately from definition 10.1.2.

In the next definition we will introduce the notion of essentially used bases, which is, be-

cause of the relation ≤E, more specific than the notion of used basis. The idea of this notion is

to collect all types assigned to term-variables that are actually used for the typed term-tree. A

difference, however, with the notion of used basis is that the collected types need not occur in

the original bases themselves.

Definition 10.1.5 i) The essentially used bases of B !E T :σ are inductively defined by:

a) σ ∈ Ts.

1) T ≡ x. Take {x:σ}.

2) T ≡ F (t1, . . . , tn). There are σ1, . . . , σn such that for every 1≤ i≤n

B !E ti:σi. Let for 1≤ i≤n, Bi be an essentially used basis of B !E ti:σi.

Take Π{B1, . . . , Bn}.

b) If σ = σ1∩· · ·∩σn (n ≥ 0), then by lemma 10.1.4 (i) for every 1≤ i≤n B !E T :σi.

Let for every 1≤ i≤n, Bi be an essentially used basis of B !E T :σi.

Take Π{B1, . . . , Bn}.

ii) A basis B is essentially used for T :σ with respect to E if and only if there is a basis B′

such that B′ !E T :σ and B is an essentially used basis of B′ !E T :σ.

Notice that in part (i.b), if n = 0, then σ = ω, and Π{B1, . . . , Bn} = ∅.

We will say ‘B is essentially used for T :σ’ instead of ‘B is essentially used for T :σ with

respect to E’. As before, an essentially used basis for a statement T :σ is not unique, but again

the results of this chapter do not depend on the actual structure of such a basis, only on its

existence.

For essentially used bases, the following properties hold.

Lemma 10.1.6 i) If B is essentially used for T :σ, then B !E T :σ.

ii) B !E T :σ ⇐⇒ ∃ B′ [ B ≤E B′ & B′ is essentially used for T :σ ].

Proof: By induction on definition 10.1.5.

Thanks to the notion of essentially used basis, we can give a clear definition of a typeable

rewrite rule and a typeable rewrite system. The condition ‘B is essentially used for Lhs:σ’ in



130 Chapter 10 Partial Intersection Type Assignment in Applicative Term Rewriting Systems

definition 10.1.7 (i.a) is crucial. Just saying:

We say that Lhs → Rhs ∈ R with defined symbol F is typeable with respect to E , if

there are basis B, type σ ∈ Ts, and an assignment of types to nodes and edges such

that: B !E Lhs:σ and B !E Rhs:σ

would give a notion of type assignment that is not closed under rewriting (i.e. does not satisfy

the subject reduction property), and is not a natural extension of the essential intersection type

assignment system for the λ-calculus. As an example of the first, take the rewrite system

I (x) → x

K (x, y) → x

F (I0) → I0

G (x) → F (x).

Take the environment E :

E (I) = 1→1

E (K) = 2→ω→2

E (F ) = (3→3)→4→4

E (G) = (5→ω→5)→6→6.

Take B = {x:(7→7)∩(5→ω→5)}, then B !E G (x):6→6, and B !E F (x):6→6. Notice

that !E G (K0):7→7, but not !E F (K0):7→7.

Therefore, a minimal requirement for subject reduction will be to demand that all types

assigned to term-variables in the typed term-tree for the right hand side of a rewrite rule already

occurred in the typed term-tree for the left hand side. This is accomplished by restricting the

possible bases to those that contain nothing but the types actually used for the left hand side.

As an example of the second, take the rewrite rule

E (x, y) → Ap (x, y).

Let E (E) = 3→1→4. Take B = {x:3∩(1→4), y:1}, then B !E E (x, y):4 and B !E Ap (x, y):4.

This rewrite rule for E corresponds to the lambda term λxy.xy, but 3→1→4 is not a correct

type for this term in the type assignment system of chapter five.

Definition 10.1.7 Let (Σ, R) be an ATRS, and E an environment.

i) We say that Lhs→ Rhs ∈ R with defined symbol F is typeable with respect to E , if there

are basis B, type σ ∈ Ts, and an assignment of types to nodes and edges such that:

a) B is essentially used for Lhs:σ and B !E Rhs:σ.
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b) In B !E Lhs:σ and B !E Rhs:σ, all nodes containing F are typed with E (F ).

ii) We say that (Σ, R) is typeable with respect to E , if every r ∈ R is typeable with respect to

E .

Condition (i.b) of definition 10.1.7 is in fact added to ensure that the type provided by the

environment for a function symbol F is not in conflict with the rewrite rules that define F .

By restricting the type that can be assigned to the defined symbol to the type provided by the

environment, we ensure that the rewrite rule is typed using that type, and not using some other

type. By part (i.b) of definition 10.1.7, all occurrences of the defined symbol in a rewrite rule are

typed with the same type, so type assignment of rewrite rules is actually defined using Milner’s

solution for recursion.

It is easy to check that if F is a function symbol with artity n, and all rewrite rules that

define F are typeable, then there are γ1, . . . , γn, γ such that E (F ) = γ1→· · ·→γn→γ.

The use of an environment corresponds to the use of ‘axiom-schemes’, and part (i.c) of

definition 10.1.2 to the use of ‘axioms’ as in [Hindley ’69], and to the use of a ‘combinator

basis’ and the axioms in definition 3.2 of [Dezani-Ciancaglini & Hindley ’92]. Also, because

of these definitions the type assignment system we present in this chapter is a partial system;

each function symbol has a type provided by the environment, and the connection between that

type and the type assigned to that symbol in a term is given in definition 10.1.2 (i.c).

The combination of these two definitions also introduces a notion of polymorphism into our

type assignment system. The environment returns the ‘principal type’ for a function symbol;

this symbol can be used with types that are ‘instances’ of its principal type.

Example 10.1.8 Typed versions of some of the rewrite rules for ACL, assuming that:

E (S) = (1→2→3)→(4→2)→1∩4→3

E (K) = 5→ω→5

E (I) = 6→6.

+3
S:(1→2→3)→(4→2)→1∩4→3

,,-
x:1→2→3 +

y:4→2

../
z:1∩4

→

+3
Ap

0001
2223

Ap

,,-
x:1→2→3

../
z:1

Ap

,,-
y:4→2

../
z:4
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+5

K:5→ω→5
,,-

x:5

../
y

→ +5

x:5

+6

I:6→6

+
x:6

→ +6

x:6

Example 10.1.9 Typed versions of the the rewrite rules given in example 9.4.3, using:

E (H) = (1→2)→(3→4)∩1→4

E (F ) = 6∩(5→6)∩5→6

E (S) = (7→8→9)→(10→8)→7∩10→9

E (I) = 11→11.

+(3→4)∩1→4

H:(1→2)→(3→4)∩1→4

+
S2:(1→3→2)→(1→3)→1→2

,,-
x:1→3→2

../
y:1→3

→
+(3→4)∩1→4

S2:((3→4)→3→4)→(1→3)→(3→4)∩1→4

,,-
I0:(3→4)→3→4

../
y:1→3

+6

F :6∩(5→6)∩5→6

+
x:6∩(5→6)∩5

→ +6

x:6

+6

F :6∩(5→6)∩5→6

+
x:6∩(5→6)∩5

→
+6

Ap

,,-
x:5→6

../
x:5

10.2 Soundness of strict operations
In this section we will show that the three strict operations on pairs (strict substitution, strict

expansion, and lifting) are sound on typed term-trees. For the operations of strict substitution

and strict expansion we will also show that part (i.c) of definition 10.1.2 is sound in the follow-

ing sense: if there is an operation O (either a strict substitution or a strict expansion) such that

O (E (F )) = σ, then for every type τ ∈ Ts such that σ ≤S τ , the rewrite rules that define F are

typeable with respect to the changed environment E[F := τ ].

We will also show that we cannot prove such a property for the operation of lifting.

Lemma 10.2.1 Let S be a strict substitution.

i) If σ ≤E τ , then S (σ) ≤E S (τ ).

ii) If B ≤E B′, then S (B) ≤E S (B′).
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Proof: Easy.

The following theorem will show that strict substitution is a sound operation on typed term-

trees and rewrite rules.

Theorem 10.2.2 Soundness of strict substitution. Let S be a strict substitution.

i) If B !E T :σ, then S (B) !E T :S (σ).

ii) If B is essentially used for T :σ, then S (B) is essentially used for T :S (σ).

iii) Let r: Lhs→ Rhs be a rewrite rule typeable with respect to the environment E , and let F

be the defined symbol of r. Then r is typeable with respect to E [F := S (E (F ))].

Proof: i) Similar to that for theorem 6.2.1.4, by induction on TS.

a) σ ∈ Ts. This part is proved by induction on the structure of terms. The case S (σ) = ω

is trivial, so, in the rest of the proof, S (σ) ,= ω, and, therefore, by lemma 6.2.1.2 (ii),

S (σ) ∈ Ts.

1) T ≡ x. Then B ≤E {x:σ}. By lemma 10.2.1 (ii) S (B) ≤E S ({x:σ}) = {x:S (σ)},

so S (B) !E x:S (σ).

2) T ≡ F (t1, . . . , tn). Then there are σ1, . . . , σn ∈ TS, and a chain C such that for

every 1≤ i≤n, B !E ti:σi, and C (E (F )) = σ1→· · ·→σn→σ. By induction for

every 1≤ i≤n, S (B) !E ti:S (σi); since C ∗ 〈S〉 is a chain and

C ∗ 〈S〉 (E (F )) = S (σ1)→· · ·→ S (σn)→ S (σ),

we obtain S (B) !E T :S (σ).

b) σ = σ1∩· · ·∩σn. Then, for every 1≤ i≤n, B !E T :σi. Let σ1
′, . . . , σm

′ be the

elements in {σ1, . . . , σn} such that S (σi
′) ,= ω. By induction for every 1≤ i≤m,

S (B) !E T :S (σi
′). Then S (B) !E T :S (σ1

′) ∩· · ·∩ S (σm
′), so S (B) !E T :S (σ).

c) σ = ω, then S (σ) = ω. Obviously S (B) !E T :ω.

ii) As the proof of part (i).

iii) If r is a rewrite rule typeable with respect to E , then, by definition 10.1.7 (i), there is a

basis B and σ ∈ Ts, and an assignment f of types to nodes and edges such that B is

essentially used for Lhs:σ and B !E Rhs:σ. Moreover, in B !E Lhs:σ and B !E Rhs:σ

all nodes containing F are typed with E (F ).

We will check the requirements of definition 10.1.7 (i) for E [F := S (E (F ))].

Let B′ = S (B), σ′ = S (σ), and take the assignment f ′ of types to nodes and edges such

that f ′ (node/edge) = S (f (node/edge)). Then:
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a) By part (ii): B′ is essentially used for Lhs:σ′, and by part (i): B′ !E Rhs:σ′.

b) All occurrences of F in B′ !E Lhs:σ′ and B′ !E Rhs:σ′ are typed with

S (E (F )).

In the ATRS-world we are not able to prove the counterpart of lemma 6.2.2.4. As a counter

example, take the term F (x) and assume that E (F ) = ϕ1→ϕ2. Then we have:

{x:ϕ3} !E F (x):ϕ4.

In the construction of the expansion T〈ϕ4, n, {x:ϕ3}, ϕ4〉, the set Vϕ4(〈{x:ϕ3}, ϕ4〉) = {ϕ4}.

This difference is caused by the fact that the set of λ⊥-normal forms does not contain redexes;

from the type assignment point of view the term F (x) is a redex. However, lemma 6.2.2.4 is

only needed to prove that strict expansion is closed on ground pairs, in other words to prove

completeness of operations in the strict type assignment system. We will not show such a

property for the type assignment system of this chapter, and, therefore, the loss of this lemma

is harmless. Moreover, we can show that strict expansion is a sound operation on typed term-

trees. In order to do so, we will only need a more general formulation of the lemmas 6.2.2.3

and 6.2.2.5.

Lemma 10.2.3 Let B′ !E T :τ , where τ ∈ Ts, and 〈µ,n,B,σ〉 be a strict expansion such that

T′, τ〉 ⊆ T〈B,σ〉, and ρ∈ T〈B,σ〉. Then

i) a) For 1≤ i≤n, there are ρi and a strict substitution Si such that Si (ρ) = ρi and

〈µ,n,B,σ〉 (ρ) = ρ1∩· · ·∩ρn, or

b) 〈µ,n,B,σ〉 (ρ) ∈ Ts.

ii) a) For 1≤ i≤n, there are Bi, τi, and a strict substitution Si such that Si (〈B′, τ〉) =

〈Bi, τi〉, and 〈µ,n,B,σ〉 (〈B′, τ〉) = 〈Π{B1, . . . , Bn}, τ1∩· · ·∩τn〉, or

b) 〈µ,n,B,σ〉 (〈B′, τ〉) = 〈B′′, τ ′〉, with τ ′ ∈ Ts.

Proof: By definition 6.2.2.2.

Lemma 10.2.4 Let E be a strict expansion.

i) If σ ≤E τ , then E (σ) ≤E E (τ ).

ii) If B ≤E B′, then E (B) ≤E E (B′).

Proof: Easy.

We can now prove that strict expansion is a sound operation on typed term-trees and rewrite

rules.
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Theorem 10.2.5 Soundness of strict expansion. Let E be a strict expansion such that

E (〈B, σ〉) = 〈B′, σ′〉.

i) If B !E T :σ, then B′ !E T :σ′.

ii) If B is essentially used for T :σ, then B′ is essentially used for T :σ′.

iii) Let r: Lhs→ Rhs be a rewrite rule typeable with respect to the environment E , and let F

be the defined symbol of r. If E (E (F )) = τ ∈ TS, then, for every µ ∈ Ts such that τ ≤S µ,

r is typeable with respect to E[F :=µ].

Proof: i) By induction on TS. We will only show the part σ ∈ Ts. Then, by lemma 10.2.3

either:

a) σ′ = τ1∩· · ·∩τm, B′ = Π{B1, . . . , Bm}, and for every 1≤ j ≤m there is a strict

substitution S such that S (〈B, σ〉) = 〈Bj , τj〉. Then, by theorem 10.2.2 (i), for every

1≤ j≤m, Bj !E T :τj , so B′ !E T :σ′.

b) σ′ ∈ Ts. This part is proved by induction on the structure of terms.

1) T ≡ x. Then B ≤E {x:σ}. By lemma 10.2.4 (ii) B′ ≤E {x:σ′}, so B′ !E x:σ′.

2) T ≡ F (t1, . . . , tn). Then there are σ1, . . . , σn, σ1
′, . . . , σn

′ ∈ TS, and a chain C

such that C (E (F )) = σ1→· · ·→σn→σ, and, for every 1≤ i≤n, B !E ti:σi and

E (σi) = σi
′. By induction for every 1≤ i≤n, B′ !E ti:σi

′; since C ∗ 〈E〉 is a chain

and C ∗ 〈E〉 (E (F )) = σ1
′→· · ·→σn

′→σ′, we obtain B′ !E T :σ.

ii) Similar to the proof of part (i).

iii) Since E (F ) ∈ Ts, by lemma 10.2.3 either:

a) τ = τ1∩· · ·∩τn; notice that for 1≤ i≤n, τ ≤S τi. For every 1≤ i≤n, there is a strict

substitution S such that S (E (F )) = τi. The proof is completed by theorem 10.2.2 (iii).

b) τ ∈ Ts. If r is a rewrite rule typeable with respect to E , then, by definition 10.1.7 (i),

there is a basis B1, and τ ∈ Ts, and an assignment f of types to nodes and edges such

that B1 is essentially used for Lhs:σ and B1 !E Rhs:σ, and in B1 !E Lhs:σ and

B1 !E Rhs:σ all nodes containing F are typed with E (F ).

We will check the requirements of definition 10.1.7 (i) for E[F := E (E (F ))].

Let E (〈B1, τ〉) = 〈B2, σ′〉, and take the assignment f ′ of types to nodes and edges

such that f ′ (node/edge) = E (f (node/edge)). Then:

1) By part (ii): B2 is essentially used for Lhs:σ′ and by part (i): B2 !E Rhs:σ′.

2) All occurrences of F in B2 !E Lhs:σ′ and B2 !E Rhs:σ′ are typed with

E (E (F )).

Notice that in part (iii.a) the relation ≤S is used, not ≤E .
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Lifting is a sound operation on typed term-trees, i.e:

Theorem 10.2.6 Soundness of lifting. If B !E T :σ and L is a lifting , then L (B) !E T :L (σ).

Proof: By induction on TS. Remember that L (B) ≤E B, and σ ≤E L (σ).

i) σ ∈ Ts. This part is proved by induction on the structure of terms.

a) T ≡ x. Then B ≤E {x:σ}. Because L (B) ≤E B ≤E {x:σ} ≤E {x:L (σ)}, we obtain

L (B) !E x:L (σ).

b) T ≡ F (t1, . . . , tn). Then there are σ1, . . . , σn ∈ TS, and a chain C such that for every

1≤ i≤n, B !E ti:σi and C (E (F )) = σ1→· · ·→σn→σ.

For 1≤ i≤n, take Li = 〈〈B, σi〉, 〈L (B), σi〉〉, then Li is a lifting and, by induction,

Li (B) !E ti:σi. Take

L0 = 〈〈∅, σ1→· · ·→σn→σ〉, 〈∅, σ1→· · ·→σn→L (σ)〉〉,

then L0 is a lifting. Since C ∗ 〈L0〉 is a chain and

C ∗ 〈L0〉 (E (F )) = σ1→· · ·→σn→L (σ),

we obtain L (B) !E T :L (σ).

ii) σ = σ1∩· · ·∩σn. Then for every 1≤ i≤n, B !E T :σi. By lemma 5.1.3 (i) there are τ1,

. . . , τm ∈ Ts such that L (σ) = τ1∩· · ·∩τm, and for every 1≤ j≤m there is a 1≤ ij ≤n

such that σij ≤E τj . Take, for 1≤ j≤m, Lj = 〈〈B, σij 〉, 〈L (B), τj〉〉, which is a lifting,

then by induction: L (B) !E T :τj . So also L (B) !E T :L (σ).

iii) σ = ω, then L (σ) = ω. Obviously L (B) !E T :ω.

Obviously, not every lifting performed on a pair 〈B, σ〉 such that B is essentially used for

T :σ produces a pair with this same property. Since type assignment on rewrite rules is defined

using the notion of essentially used bases, it is clear that lifting cannot be a sound operation on

rewrite rules. This can also be illustrated by the following:

Take the rewrite system

I (x) → x

F (I0) → I0

that is typeable with respect to the environment E1:

E1 (I) = 1→1

E1 (F ) = (2→2)→3→3.

Notice that (2→2)→3→3 ≤E (2→2)∩4→3→3, so
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〈〈∅, (2→2)→3→3〉, 〈∅, (2→2)∩4→3→3〉〉

is a lifting. It is impossible to show that the rewrite rule that defines F is typeable with respect

to E[F := (2→2)∩4→3→3], since all types in (2→2)∩4 should be types for I . However, for

rewrite rules of which the patterns consist of term-variables only, it is not difficult to show that

lifting is a sound operation, so, therefore, it is not difficult to show that translating lambda terms

into terms in ACL preserves types.

Combining the results proved above for the different operations, we have:

Theorem 10.2.7 i) If B !E T :σ then for every chain C such that C (〈B, σ〉) = 〈B′, σ′〉,

B′ !E T :σ′.

ii) If B is essentially used for T :σ, and C is a chain that contains no lifting, then:

if C (〈B, σ〉) = 〈B′, σ′〉, then B′ is essentially used for T :σ′.

iii) Let r: Lhs→ Rhs be a rewrite rule typeable with respect to the environment E , and let F

be the defined symbol of r. If C is a chain that contains no lifting, then: if C (E (F )) =

τ ∈ TS, then for every µ ∈ Ts such that τ ≤S µ, r is typeable with respect to E [F :=µ].

Proof: By theorems 10.2.2, 10.2.5, and 10.2.6.

10.3 The loss of the subject reduction property
If a term T is rewritten to the term T ′ using the rewrite rule Lhs → Rhs, there is a subterm t0

of T , and a replacement R, such that LhsR = t0; T ′ is obtained by replacing t0 by RhsR. The

subject reduction property for this notion of reduction is:

If B !E T :σ, and T can be rewritten to T ′, then B !E T ′:σ.

This is, of course, an important property of reduction systems. To guarantee the subject

reduction property, we should accept only those rewrite rules Lhs→ Rhs, that satisfy:

For all replacements R, bases B and types σ: if B !E LhsR:σ, then B !E RhsR:σ,

because only then are we sure that all possible rewrites are safe.

Definitions 10.1.1, 10.1.2 and 10.1.7 defined what a type assignment should be, just using

the strategy as used in languages like, for example, Miranda. Unfortunately, it will not suffice

to guarantee the subject reduction property. Even typeability cannot be kept under rewriting.

Take, for example, the definition of H as in example 9.3.8, and the following environment

E0:
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E0 (H) = ((1→2)→3)→(1→2)→2

E0 (S) = (1→2→3)→(1→2)→1→3

E0 (I) = 1→1

The rule that defines H is typeable with respect to E0:

+(1→2)→2

H:((1→2)→3)→(1→2)→2

+
S2:((1→2)→1→3)→((1→2)→1)→(1→2)→3

,,-
x:(1→2)→1→3

../
y:(1→2)→1

→ +(1→2)→2

S2:((1→2)→1→2)→((1→2)→1)→(1→2)→2

,,-
I0:(1→2)→1→2

../
y:(1→2)→1

If we take the term H (S2 (K0, I0)) then it is easy to see that the rewrite is allowed and that

this term will be rewritten to S2 (I0, I0).

Although the first term is typeable with respect to E0 in the following way:

+(4→5)→5

H:((4→5)→4→5)→(4→5)→5

+
S2:((4→5)→(4→5)→4→5)→((4→5)→4→5)→(4→5)→4→5

,,-
K0:(4→5)→(4→5)→4→5

../
I0:(4→5)→4→5

the term S2 (I0, I0) is not typeable with respect to E0 with the type (4→5)→5. In fact, it is not

typeable at all with respect to E0.

We emphasize that the loss of the subject reduction property is not caused by the fact that

we use intersection types. The environment E0 maps function symbols to Curry-types, so even

for a notion of type assignment based on Curry-types (as presented in the next chapter) types

are not preserved under rewriting.

By the construction of this example, the impression could arise that the problem is caused

by the fact that an environment is allowed to select more complicated types than needed to type

the rewrite rules. This, however, is not true.

Take the rewrite system:

I (x) → x

K (x, y) → x

Z (x, y) → y

F (I0) → I0
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G (Z1 (x)) → F (x)

that is typeable with respect to the environment E1:

E1 (I) = 1→1

E1 (K)= 2→ω→2

E1 (Z) = ω→3→3

E1 (F ) = (4→4)→5→5

E1 (G) = (6→6)→7→7.

Notice that E1 is more or less minimal for the rewrite system. If we take T ≡ G (Z1 (K0)),

then it is easy to check that T is typeable with respect to E1, that the rewrite rule that defines G

matches T , but that F (K0) is not typeable with respect to E1.

In the next two chapters, we will discuss two restrictions (variants) of the notion of type as-

signment of the current chapter for which we can formulate a decidable and sufficient condition

that rewrite rules should satisfy, in order to reach the subject reduction property. The first, pre-

sented in chapter eleven, will restrict the set of types to the Curry types (extended with type

constants); for this system we will even prove that the condition is necessary. The second, in

chapter twelve, will limit the possible types to intersection types of Rank 2.

The construction of these conditions will be made using a notion of principal pairs; the

condition a rewrite rule should satisfy is that the principal pair for the left hand side term is also

a pair for the right hand side term. For the notion of type assignment defined in this chapter,

we are not able to formulate this condition in a constructive way, since it is not clear how we

should define the principal pair for a term. Remember that, for the notion of essential type

assignment in the lambda calculus, the principal pair for a lambda term was defined using the

set of principal pairs for its approximants. There is no notion of approximants for terms in

T(F,X ). This problem will be overcome in the next two chapters by defining a most general

unification algorithm for types, and defining principal pairs using that algorithm, as was done

for Curry’s system and the Rank 2 system. At this moment there is no general unification

algorithm for types in TS which works well on all types, so we cannot take this approach.

For the notion of type assignment as defined in this chapter, the only result we can obtain

is to show that if a left hand side of a rewrite rule has a principal pair and, using that pair, the

rewrite rule can be typed, then rewriting using this rule is safe with respect to subject reduction.

Definition 10.3.1 i) Let T ∈ T(F,X ). A pair 〈P , π〉 is called an essential principal pair for T

with respect to E , if P !E T :π, and, for every B, and σ such that B !E T :σ, there is a

chain C such that C (〈P , π〉) = 〈B, σ〉.
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ii) The definition of a safe type assignment with respect to E is the same as the one for a type

assignment as defined in definition 10.1.7, by replacing condition (i.a) by:

〈B, σ〉 is an essential principal pair for Lhs with respect to E , and B !E Rhs:σ.

Then rewrite rule Lhs → Rhs is called a safe rewrite rule.

Notice that we will not show that every typeable term has a principal pair with respect to E ;

at the moment we cannot give a construction of such a pair for every term. But, even with this

non-constructive approach we can show that the condition is sufficient.

First we will prove some preliminary results.

Lemma 10.3.2 Let T ∈ T(F,X ).

i) If B !E T :σ, and R is a replacement and B′ a basis such that for every statement x:ρ∈B

B′ !E xR:ρ, then B′ !E TR:σ.

ii) If, for replacement R, there are B and σ such that B !E TR:σ, then, for every x occurring

in T , there is a type ρx such that { x:ρx | x occurs in T } !E T :σ, and B !E xR:ρx.

Proof: By induction on the structure of T .

i) We will show only the part σ ∈ Ts.

a) T ≡ x. Trivial.

b) T ≡ F (t1, . . . , tn). If B !E F (t1, . . . , tn):σ, then there are σ1, . . . , σn, and a chain

C such that

C (E (F )) = σ1→· · ·→σn→σ, and for every 1≤ i≤n B !E ti:σi.

By induction for every 1≤ i≤n, B′ !E ti
R:σi. By definition 9.3.2 (i)

F (t1R, . . . , t1R) = F (t1, . . . , tn)R.

So also B′ !E F (t1, . . . , tn)R:σ.

ii) Trivial.

In the following theorem, we prove that our solution is sufficient.

Theorem 10.3.3 The condition is sufficient. Let r : Lhs → Rhs be a safe rewrite rule. Then,

for every replacement R, basis B and a type µ: if B !E LhsR:µ, then B !E RhsR:µ.

Proof: Since r is safe, there are P , and π such that 〈P , π〉 is a principal pair for Lhs with

respect to E , and P !E Rhs:π. Suppose R is a replacement such that there are basis B and

type µ such that B !E LhsR:µ. By lemma 10.3.2 (ii) there is a B′ such that for every x:ρ∈B′,
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B !E xR:ρ, and B′ !E Lhs:µ. Since 〈P , π〉 is a principal pair for Lhs with respect to E , then,

by definition 10.3.1 (i) there is a chain C such that C (〈P , π〉) = 〈B′, µ〉. Since P !E Rhs:π,

then, by theorem 10.2.7 (i) we obtain B′ !E Rhs:µ. Then, by lemma 10.3.2 (i),

B !E RhsR:µ.

10.4 About recursion
Recall the two Exp-terms mentioned in section 3.3. The counterpart of the last of these two

(that was presented to show a crucial difference between Milner’s and Mycroft’s notions of type

assignment) in the applicative term rewriting world is the rule

R (x, y) → R (R (y,K0), x),

which can be typed using the environment

E (R) = (1→2→1)→(1→2→1)→1→2→1

E (K) = 3→4→3.

+1→2→1
R:(1→2→1)→(1→2→1)→1→2→1

,,-
x:1→2→1

../
y:1→2→1

→

+1→2→1
R:(1→2→1)→(1→2→1)→1→2→1

,,-
223 x:1→2→1

R:(1→2→1)→(1→2→1)→1→2→1

,,-
y:1→2→1

../
K0:1→2→1

The main (and only) difference between Milner’s type assignment system as used in this

chapter and Mycroft’s system lies in the way recursion is dealt with. If we had based our notion

of type assignment on Mycroft’s type assignment system, we would have required that only the

occurrence of the defined symbol F of a rule in the defining node is typed with E (F ). The rule

given above is of course typeable in a type assignment system based on Mycroft’s system, but

in such a system it is even possible to use smaller types.

Take the environment

E (R) = 1→2→3

E (K) = 4→5→4.

In Mycroft’s approach, the types assigned to the nodes containing R in the right hand side

need only be ‘instances’ of the type 1→2→3.
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+3

R:1→2→3
,,-

x:1

../
y:2

→

+3

R:5→1→3
,,-

223 x:1
R:2→(6→7→6)→5

,,-
y:2

../
K:6→7→6

However, one important property is lost when Mycroft’s approach is used: not every substi-

tution instance of the type 1→2→3 can be proved to be a correct type for R. (This is related to

the problem discussed in section 3.3.) For example, when using E (R) = 4→4→5, this rule can-

not be typed. If first and second argument of R should have the same type, then the only types

possible for R are the substitution instances of (1→2→1)→(1→2→1)→1→2→1. However,

by definition 10.1.2 (i.c) it is possible that R occurs in a term with type 4→4→5 since, using

Mycroft’s system, all occurrences of the defined symbol of a rule other than the occurrence in

the defining node can be typed by a type that is an instance of the type assigned to the defining

node, no matter where they appear. This implies that, although all types that can be obtained

from the environment type for a defined symbol - by applying an operation - are allowed for

occurrences of this defined symbol, we cannot prove in a system based on Mycroft’s approach

that these types are correct for the rewrite rule.

Mycroft’s type assignment system for Exp has the important property that Curry-substitu-

tion is a sound operation, both for terms and functions. When using Mycroft’s system for term

rewriting systems, we would want to obtain the same property. It is possible to prove this for

typeable terms, but, for every defined symbol F and for every Curry-substitution S we should

prove that the type E(F ) in the environment can be replaced by S (E(F )). Notice that this does

not hold, as was illustrated above.

This, in fact, means that the Mycroft approach is not very well suited for type assignment

in term rewriting systems.

But, even when using the notion of type assignment based on Milner’s solution, changing

the environment can affect typeability of rewrite systems. Take, for example, the rewrite system

I(x) → x

K(x, y) → x

that is typeable with respect to the environment E2:

E2 (I) = 1→1

E2 (K)= 2→3→2.
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Then we have !E2 I (K0):4→5→4. But this term is not typeable with respect to the envi-

ronment E2[I := (1→1)→1→1]. So, the only thing we can say about this apparent drawback of

Mycroft’s approach is that the loss of typeability becomes apparent within rewrite rules.

We can also remark that Mycroft’s system avoids a complicated definition of ‘defined sym-

bol’, and in such a system there is no need to assume that rewrite rules are not mutually recur-

sive.

Like in the language Exp, it is possible to produce rewrite rules that are typeable when using

Mycroft’s system, and that are not typeable using Milner’s. As an example for this, take the

following rewrite rule:

G (x) → K (G (I0), G (K0)).

This rule corresponds to the other Exp-term given in subsection 3.3. This rule can be typed

using Mycroft’s system with E(G) = 1→2, and is not typeable using Milner’s system, because

the types needed for G in the right hand side can never be the same.

The price we are paying for this freedom is that it is in general no longer possible to check

the types for defined symbols, other than the type provided by the environment. This is of course

a great disadvantage, but since it is used in the functional programming language Miranda

(that basically uses Curry types), we will use it also in chapter eleven. In chapter twelve we

will, again, present a system based on Milner’s way of dealing with recursion, using Rank 2

intersection types.



Chapter 11 Partial Curry Type Assignment in

Left Linear Applicative Term

Rewriting Systems

In this chapter we will present a formal notion of type assignment on Left Linear Applica-

tive Term Rewriting Systems, which is based on the extension defined by Mycroft of Curry’s

type assignment system. Since we use Mycroft’s approach, the system of this chapter is not a

restriction of the type assignment system of the previous chapter.

We will show that Curry-substitution is a sound operation: for every basis B, term T , type

σ and Curry-substitution S: if B !CE T :σ, then also S (B) !CE T :S (σ). We will show that, for

every typeable term T , there is a principal pair 〈P , π〉 for T ; i.e. P !CE T :π, and for every pair

〈B, σ〉 such that B !CE T :σ there is a Curry-substitution S such that S (〈P , π〉) = 〈B, σ〉.

We will formulate a condition that typeable rewrite rules should satisfy in order to guarantee

the subject reduction property. This condition could be used to prove that all rewrite rules that

can be defined in a language like Miranda are safe in this respect. Another result presented is

that, if 〈P , π〉 is the principal pair for T , T ′ is obtained from T by replacing (in a consistent

way) term-variables by terms, and T ′ is typeable by τ , then there is a Curry-substitution S such

that: S (π) = τ , and for every x:ρ occurring in P the replacement of x is typeable by S (ρ). Using

this result we will prove the formulated condition to be necessary and sufficient.

The most important difference between the notion of type assignment we will introduce in

this chapter and Curry’s type assignment system is the following: In Curry’s system, a basis is

defined as a mapping from term-variables to types, or, equivalently, as a set of statements with

distinct term-variables as subjects. However, the bases allowed in the system we will present

in this chapter can contain several different statements for the same term-variable. So, in the
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system we present, it is possible to assign a type to the term Ap (x, x). This in fact corresponds

to the definition of ML-type assignment as given in [Damas ’85], and it was used there for

tackling the let-construct. Unlike in lambda calculus, in term rewriting systems this causes no

difficulties, since there is no notion of ‘abstraction’ in this world.

This more general definition of bases will force the restriction to the Left Linear Applicative

Term Rewriting Systems (LLATRS) when defining Curry type assignment on term rewrite sys-

tems. In term rewriting systems, a term-variable x that occurs in the left hand side of a rewrite

rule can be seen as the binding occurrence of x, binding the occurrences of x in the right hand

side. However, in general x can occur more than once in the left hand side, making the notion

of the binding occurrence obscure. In this chapter we will consider left linear rewriting sys-

tems, that contain only rewrite rules for which the left hand side is linear (term-variables occur

only once), because for these rules the binding occurrence of a term-variable is unique. This

is required because, with the used definition of bases, different occurrences can be typed with

different types, and allowing of more than one type for a term variable in a rewrite rule could

obviously give a notion of type assignment that is more an intersection approach than a Curry

one: we will avoid this discrepancy by limiting the rewrite rules to the left linear ones. The left

linearity of rewrite rules will play a role in the proof of theorem 11.3.5 (i).

11.1 Curry type assignment in LLATRS’s
In this section we will present a notion of partial type assignment on LLATRS’s, based on

the Mycroft type assignment system, which can also be seen as a generalization of Milner’s

type assignment system. Using this system, the only requirement for recursive definitions will

be that the separate occurrences of the defined symbol within the rewrite rule (other than the

occurrence in the defining node) are typed with types that are substitution instances of the type

that is provided by the environment for the defined symbol.

The type system we will define in this section is based on the Curry type system, extended

with type constants; we will in fact use ML-types but, nonetheless, we will use the symbol TC.

Type constants will play a role in the proof of theorem 11.3.5 (i).

Definition 11.1.1 i) A statement is an expression of the form T :σ, where T ∈ T(F,X ) and

σ ∈ TC. T is the subject and σ the predicate of T :σ.

ii) A basis B is a set of statements with term-variables (not necessarily distinct) as subjects.

Curry type assignment on a LLATRS (Σ, R) will be defined as the labelling of nodes and
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edges in the tree-representation of terms and rewrite rules with Curry-types. In this labelling,

we will use that there is an environment that provides a type in TC for every F ∈F ∪ {Ap}.

Definition 11.1.2 Let (Σ, R) be a LLATRS. A mapping E : F ∪{Ap}→ TC is called a

Curry-environment if E(Ap) = (1→2)→1→2, and, for every F ∈F with arity n, E (F ) =

E (Fn−1) = · · · = E(F0).

Definition 11.1.3 Let (Σ, R) be a LLATRS, and E a Curry-environment.

i) We will say that T ∈ T(F,X ) is Curry typeable by σ ∈ TC with respect to E , if there exists

an assignment of Curry-types to edges and nodes that satisfies the following constraints:

a) The root edge of T is typed with σ.

b) If a node contains a symbol F ∈F ∪{Ap} that has arity n (n ≥ 0), then there are

σ1, . . . , σn and σ, such that this node is typed with σ1→· · ·→σn→σ, the n out-going

edges are from left to right typed with σ1 upto σn, and the in-going edge is typed with

σ.

+σ
F :σ1→· · ·→σn→σ

00001
σ1 4

4
445

σ2

6
6
667
σn−1

22223
σn

· · ·

c) If a node containing a symbol F ∈F ∪{Ap} is typed with σ, then there is a

Curry-substitution S such that S (E (F )) = σ.

ii) Let T ∈ T(F,X ) be Curry typeable by σ with respect to E . If B is a basis containing all

statements with variables as subjects that appear in the typed term-tree for T :σ, we will

write B !CE T :σ.

Notice that if B !CE T :σ, then B can contain more statements than needed to obtain T :σ.

The following theorem will show that substitution is a sound operation on term-trees. As

illustrated in section 10.4, we cannot show such a result for rewrite rules.

Theorem 11.1.4 Soundness of Curry-substitution. If B !CE T :σ, then for every

Curry-substitution S: S (B) !CE T :S (σ).

Proof: By induction on the structure of T .

i) T ≡ x. If B !CE x:σ, then x:σ ∈B and x:S (σ) ∈ S (B), so S (B) !CE x:S (σ).

ii) T ≡ F (t1, . . . , tn). If B !CE F (t1, . . . , tn):σ, then are σ1, . . . , σn, such that
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for every 1≤ i≤n, B !CE ti:σi, and there is a substitution S′ such that S′ (E (F )) =

σ1→· · ·→σn→σ. By induction for every 1≤ i≤n, S (B) !CE ti:S (σi). Since S◦S′ is a

substitution, and S◦S′ (E (F )) = S (σ1)→· · ·→ S (σn)→ S (σ), we obtain

S (B) !CE F (t1, . . . , tn):S (σ).

As in chapter ten, in defining type assignment on rewrite rules we will restrict the possible

bases for rewrite rules to those that contain nothing but the statements needed to type the left

hand side. Therefore, we will define the notion of Curry used bases.

Definition 11.1.5 i) The Curry used bases of B !CE T :σ are inductively defined by:

a) T ≡ x. Take {x:σ}.

b) T ≡ F (t1, . . . , tn). There are σ1, . . . , σn such that for every 1≤ i≤n, B !CE ti:σi.

Let, for 1≤ i≤n, Bi be a Curry used basis of B !CE ti:σi.

Take B1∪· · ·∪Bn.

ii) A basis B is Curry used for T :σ with respect to E , if and only if there is a basis B′ such

that B′ !CE T :σ and B is a Curry used basis of B′ !CE T :σ.

We will say ‘B is Curry used for T :σ’ instead of ‘B is Curry used for T :σ with respect to

E’. As before, a Curry used basis for a statement T :σ is not unique, but, again, the results of

this chapter do not depend on the actual structure of such a basis, only on its existence.

For Curry used bases, the following properties hold.

Lemma 11.1.6 i) If B is Curry used for T :σ, then B !CE T :σ.

ii) B !CE T :σ ⇐⇒ ∃ B′ [ B′ ⊆ B & B′ is Curry used for T :σ ].

Proof: By induction on definition 11.1.5.

Thanks to the notion of Curry used basis, we can give a clear definition of a typeable rewrite

rule and a typeable rewrite system. The notion of ‘Curry used basis’ in this definition will play

the same role as the notion of ‘essentially used basis’ in definition 10.1.7 (i.a).

Definition 11.1.7 Let (Σ, R) be a LLATRS, and E a Curry-environment.

i) We say that Lhs → Rhs ∈ R with defined symbol F is naively Curry typeable with

respect to E , if the following constraints hold:

a) There are σ ∈ TC and basis B such that B is Curry used for Lhs:σ, and B !CE Rhs:σ.

b) The defining node of r, containing F , is typed with E (F ).
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ii) We say that (Σ, R) is naively Curry typeable with respect to E , if, for every r ∈ R, r is

naively Curry typeable with respect to E .

Notice that, by the formulation of part (i.b), type assignment on rewrite rules in this chapter is

defined using Mycroft’s approach.

As illustrated before definition 10.1.7, in order to avoid a conflict when modelling lambda

abstraction, a natural thing to ask of a well-typed rewrite rule would be that all types assigned

to term-variables in the right hand side have already been used in the left hand side. Condition

(i.a) of definition 11.1.7 covers this problem. Notice that, since only left linear rewrite rules are

considered in this chapter, by part (i.a) all nodes within a typeable rewrite rule r containing the

same term-variable x are typed with the same type.

In the rest of this chapter we will say ‘typeable’, instead of saying ‘(naively) Curry typeable

with respect to E’.

Example 11.1.8 Typed variants of some of the rewrite rules given in example 9.4.2. We have

only inserted those types that are not immediately clear. Notice that we assumed that

E (S) = (1→2→3)→(1→2)→1→3

E (K) = 1→2→1

E(I) = 1→1.

+3

S:(1→2→3)→(1→2)→1→3

,,-
x:1→2→3 +

y:1→2

../
z:1

→

+3
Ap

0001
2223

Ap

,,-
x:1→2→3

../
z:1

Ap

,,-
y:1→2

../
z:1

+1

K:1→2→1
,,-

x:1

../
y:2

→ +1

x:1

+1

I:1→1

+
x:1

→ +1

x:1

11.2 The principal pair for a term
In this section we will define the principal pair for a typeable term T with respect to E , by

defining the notion PPCE (T ) using Robinson’s unification algorithm unifyR. In the following

we will show that, for every typeable term, this is a legal pair and it is indeed the most general

one possible.
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Definition 11.2.1 We define for every term T the Curry principal pair with respect to the

environment E , by inductively defining the notion PPCE (T ) = 〈P , π〉 by:

i) For all x, ϕ: PPCE (x) = 〈{x:ϕ}, ϕ〉.

ii) If for every 1≤ i≤n, PPCE (ti) = 〈Pi, πi〉 (we choose, when necessary, trivial variants

such that the 〈Pi, πi〉 are disjoint in pairs and share no type-variables with E (F )), and

S = unifyR (E (F ), π1→· · ·→πn→ϕ),

where ϕ does not occur in any of the pairs 〈Pi, πi〉, neither in E (F ), then:

PPCE (F (t1, . . . , tn)) = S (〈P1∪· · ·∪Pn, ϕ〉).

By induction on the definition of PPCE (T ), using theorem 11.1.4, it is easy to verify that

PPCE (T ) = 〈P , π〉 implies P !CE T :π.

In the following theorem we will show that the operation of substitution is complete.

Theorem 11.2.2 Completeness of Curry-substitution. If B !CE T :σ, then there are P , π, and a

Curry-substitution S such that: PPCE (T ) = 〈P , π〉, and S (P ) ⊆ B, S (π) = σ.

Proof: By induction on the structure of T .

i) T ≡ x. Then {x:σ} ⊆ B. Then PPCE (x) = 〈{x:ϕ}, ϕ〉. Take S = (ϕ := σ).

ii) T ≡ F (t1, . . . , tn). Then there are σ1, . . . , σn, and a Curry-substitution S0 such that for

every 1≤ i≤n, B !CE ti:σi, and S0 (E (F )) = σ1→· · ·→σn→σ. By induction for every

1≤ i≤n, there are 〈Pi, πi〉 (disjoint in pairs) and a Curry-substitution Si, such that

Si (Pi) ⊆ B, Si (πi) = σi, and PPCE (ti) = 〈Pi, πi〉.

Assume, without loss of generality, that none of the type-variables of the type E (F ) occur

in any pair 〈Pi, πi〉. Let ϕ be a type-variable not occurring in any other type.

Take S′ = Sn◦· · ·◦S0◦(ϕ := σ), then:

S′ (E (F )) = σ1→· · ·→σn→σ, S′ (P1∪· · ·∪Pn) ⊆ B, S′ (ϕ) = σ,

and, for every 1≤ i≤n, S′ (πi) = σi.

Since σ1→· · ·→σn→σ is a common instance of both E (F ) and π1→· · ·→πn→ϕ, by

property 1.6 there are Curry-substitutions Sg and S such that:

Sg = unifyR (E (F ), π1→· · ·→πn→ϕ) and S′ = S◦Sg .

By definition 11.2.1 (ii), PPCE (F (t1, . . . , tn)) = Sg (〈P1∪· · ·∪Pn, ϕ〉).

Also, S (Sg (P1∪· · ·∪Pn)) ⊆ B, and S (Sg (ϕ)) = σ.
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11.3 A necessary and sufficient condition for subject reduc-

tion
In this section we will formulate a condition typeable rewrite rules should satisfy in order to ob-

tain the subject reduction property. We will show that this condition is necessary and sufficient.

Definition 11.3.1 i) We call a rewrite rule Lhs→ Rhs safe if:

If PPCE (Lhs) = 〈P , π〉, then P !CE Rhs:π.

ii) The definition of a safe Curry type assignment with respect to E is the same as the one for

a naive Curry type assignment, by replacing in definition 11.1.7 condition (i.a) by:

If PPCE (Lhs) = 〈P , π〉, then P !CE Rhs:π.

Notice that the notion PPCE (T ) is defined independently from the definition of typeable

rewrite rules. Moreover, since type assignment as defined in this chapter is decidable, this

safeness constraint on rewrite rules is decidable.

Example 11.3.2 As an example of a rule that is not safe, take the typed rewrite rule that

defined H as in section 10.3: the types assigned to the nodes containing x and y are not the

most general ones needed to find the type for the left hand side of the rewrite rule.

To obtain PPCE (H (S2 (x, y))), we will assign types to nodes in the term-tree in the

following way:

+(1→2)→2

H:((1→2)→3)→(1→2)→2

+
S2:((1→2)→4→3)→((1→2)→4)→(1→2)→3

,,-
x:(1→2)→4→3

../
y:(1→2)→4

If S2 (I0, y)) were to be typed with (1→2)→2, the node containing y must be typed with

(1→2)→1.

+(1→2)→2

S2:((1→2)→1→2)→((1→2)→1)→(1→2)→2

,,-
I0:(1→2)→1→2

../
y:(1→2)→1

Since types assigned to term-variables should be the same in left- and right hand side, we

should replace the type-variable 4 by 1, so in the typed rewrite rule the most general pair for

the left hand side is no longer used. In other words, this rule is not safe and should therefore be
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rejected.

Before we will come to the proof that the condition imposed on typeable rewrite rules as

defined in definition 11.3.1 is necessary and sufficient, we will prove some preliminary results.

In the following lemma we will show that, if F is the defined symbol of a rewrite rule, then

the type E (F ) dictates not only the type for the left and right hand side of that rule, but also the

principal type for the left hand side.

Lemma 11.3.3 If F is the defined symbol of the typeable rewrite rule r : Lhs→ Rhs, then

there are P , B, σ1, . . . , σn, and σ such that

E(F ) = σ1→· · ·→σn→σ, PPCE (Lhs) = 〈P , σ〉, B !CE Lhs:σ and B !CE Rhs:σ.

Proof: Since r is typeable, there are B and σ such that B !CE Lhs:σ, and B !CE Rhs:σ. By

theorem 11.2.2 there are P , π, and S, such that PPCE (Lhs) = 〈P , π〉, S (P ) ⊆ B, S (π) = σ.

If F is the defined symbol of r, then, by proposition 9.3.4, there are n ≥ j ≥ 0 such that F

has arity j and Lhs = Ap (· · ·Ap (F (t1, . . . , tj), tj+1) · · ·, tn). Then there are σ1, . . . , σj , µ

such that F is typed with σ1→· · ·→σj→µ in B !CE Lhs:σ.

For every Ap there are α, β such that Ap is typed with (α→β)→α→β; therefore, there are

σj+1, . . . , σn, such that µ = σj+1→· · ·→σn→σ. But then F is typed with σ1→· · ·→σn→σ in

B !CE Lhs:σ. Since F is the defined symbol of r, E(F ) = σ1→· · ·→σn→σ.

Likewise, there are τ1, . . . , τn such that F is typed with τ1→· · ·→τn→π in P !CE Lhs:π.

Since τ1→· · ·→τn→π is a substitution instance of E(F ), and σ is a substitution instance of π,

σ = π.

The following lemma will formulate the relation between replacements performed on a

term, and possible type assignments for that term.

Lemma 11.3.4 i) If PPCE (T ) = 〈P , π〉, and for replacement R there are B and σ such that

B !CE TR:σ, then there is a Curry-substitution S such that S (π) = σ, and for every

statement x:ρ∈ P B !CE xR:S (ρ).

ii) If B !CE T :σ, R is a replacement, and B′ a basis such that for every statement x:ρ ∈B

B′ !CE xR:ρ, then B′ !CE TR:σ.

Proof: By induction on the structure of T .

i) a) T ≡ x. Then P = {x:ϕ}, and π = ϕ. Take S = (ϕ := σ).

b) T ≡ F (t1, . . . , tn). If B !CE F (t1, . . . , tn)R:σ, then B !CE F (t1R, . . . , t1R):σ, and

there are σ1, . . . , σn, and a Curry-substitution S0 such that
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for every 1≤ i≤n, B !CE ti
R:σi, and σ1→· · ·→σn→σ = S0 (E (F )).

Let ϕ be a type-variable not occurring in any other type. If PPCE (F (t1, . . . , tn)) =

〈P , π〉, then for 1≤ i≤n, there are 〈Pi, πi〉 (disjoint in pairs), such that for every

1≤ i≤n, PPCE (ti) = 〈Pi, πi〉, and none of the type-variables of the type E (F ) occur

in any pair 〈Pi, πi〉. By induction for every 1≤ i≤n, there is a Curry- substitution Si

such that Si (πi) = σi, and, for every x:α ∈Pi, B !CE xR:Si (α).

Take S′ = Sn◦· · ·◦S0◦(ϕ := σ), then, for every x:α ∈ P1∪· · ·∪Pn, B !CE xR:S′ (α),

and S′ (ϕ) = σ. Since S′ (E (F )) = σ1→· · ·→σn→σ = S′ (π1→· · ·→πn→ϕ), by

property 1.6 there are Curry-substitutions S and Sg such that

Sg = unifyR (E (F ), π1→· · ·→πn→ϕ), and S′ = S◦Sg

and 〈P , π〉 = Sg (〈P1∪· · ·∪Pn, ϕ〉). Then,

for every x:β ∈ Sg(P1∪· · ·∪Pn), B !CE xR:S (β), and S (Sg (ϕ)) = σ.

ii) a) T ≡ x. Trivial.

b) T ≡ F (t1, . . . , tn). If B !CE F (t1, . . . , tn):σ, then there are σ1, . . . , σn, and a

Curry-substitution S such that S (E (F )) = σ1→· · ·→σn→σ, and, for every 1≤ i≤n,

B !CE ti:σi. By induction for every 1≤ i≤n, B′ !CE ti
R:σi. By definition 9.3.6 (i)

F (t1R, . . . , t1R) = F (t1, . . . , tn)R.

So, we obtain B′ !E F (t1, . . . , tn)R:σ.

In the following theorem we will prove that our solution is correct. The structure of the

proof of the first part depends greatly on the fact that for every type σ we can trivially find an

Q ∈F such that E (Q) = σ: we will just pick a constant Q that was not used previously.

Theorem 11.3.5 i) The condition is necessary. Let Lhs, Rhs ∈ T(F,X ), and r : Lhs→ Rhs

be a typeable rewrite rule that is not safe. Then there there exist a replacement R and a

type µ, such that !CE LhsR:µ and not !CE RhsR:µ.

ii) The condition is sufficient. Let r : Lhs → Rhs be a safe rewrite rule. Then, for every

replacement R, basis B and a type µ, if B !CE LhsR:µ, then B !CE RhsR:µ.

Proof: i) Since r is typeable and left linear, we know that there are β1, . . . , βn, τ , and distinct

x1, . . . , xn, such that:

{x1:β1, . . . , xn:βn} !CE Lhs:τ & {x1:β1, . . . , xn:βn} !CE Rhs:τ .

Then, by theorem 11.2.2 and lemma 11.3.3, we know that there are bases Pl, Pr, types

ρ1, . . . , ρn, πr and a Curry-substitution S0, such that:
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PPCE (Lhs) = 〈Pl, τ〉 & PPCE (Rhs) = 〈Pr , πr〉 & Pl = {x1:ρ1, . . . , xn:ρn}

& S0 (τ ) = S0 (πr) = τ & S0 (Pl) = S0 (Pr) = {x1:β1, . . . , xn:βn}.

Let S1 be the Curry-substitution such that, for every i, S1 (ϕi) = ci (the i-th type constant),

µ be a type such that S1 (τ ) = µ, Q1, . . . , Qn be constants such that, for every 1≤ i≤n,

E (Qi) = S1 (ρi), and R be the replacement such that, for every 1≤ i≤n, xi
R = Qi. Then,

by lemma 11.3.4 (ii), !CE LhsR:µ. (Notice that LhsR does not contain term-variables.)

Since r is not safe, we know that

¬{x1:ρ1, . . . , xn:ρn} !CE Rhs:τ .

Suppose (towards a contradiction) that !CE RhsR:µ.

Then, by lemma 11.3.4 (i), there is a Curry-substitution S2 such that

S2 (πr) = µ, and, for every x:γ ∈ Pr, !CE xR:S2 (γ).

By definition 9.3.6 (ii.a.2), for every x:γ ∈ Pr there is an 1≤ i≤n such that x = xi. Since

S1 replaces type-variables by type constants, the type assigned to Qi can only be S1 (ρi).

This implies that for every x:γ ∈ Pr there is an 1≤ i≤n such that x = xi and S2 (γ) =

S1 (ρi). It is straightforward to verify that, since S1 replaces type-variables by type

constants, there is a Curry-substitution S3 such that S2 = S1◦S3. So, for every x:γ ∈ Pr

there is an 1≤ i≤n such that: x = xi and ρi = S3 (γ). But then by theorem 11.1.4

{x1:ρ1, . . . , xn:ρn} !CE Rhs:S3 (πr).

Moreover, µ = S1 (τ ) = S2 (πr) = S1◦S3 (πr). Since S1 replaces type-variables by distinct

type constants, τ = S3 (πr).

ii) Since r is safe, there are P , π such that: if PPCE (Lhs) = 〈P , π〉, then P !CE Rhs:π.

Suppose PPCE (Lhs) = 〈P , π〉, and R is a replacement such that there are basis B and

type µ such that B !CE LhsR:µ, then, by lemma 11.3.4 (i) there is a Curry-substitution S

such that

S (π) = µ & ∀ x:ρ∈ P [ B !CE xR:S (ρ) ].

But then by theorem 11.1.4

S (P ) !CE Rhs:S (π) & ∀ x:ρ∈ P [ B !CE xR:S (ρ) ].

So, by lemma 11.3.4 (ii) B !CE RhsR:µ.

Notice that, although the proof of part (i) explicitly used the presence of type constants,

the problem of loss of subject reduction also arises if type constants are not in the type system.

However, we do not believe that it is possible to prove that the condition is also necessary in

this particular case.

Chapter 12 Partial Rank 2 Intersection Type

Assignment in Applicative Term

Rewriting Systems

The notion of type assignment presented in this chapter for Applicative Term Rewriting Systems

will be based on the Rank 2 intersection type assignment system for the lambda calculus, and

will be a restriction of the partial intersection type assignment system of chapter ten.

In the previous chapter, a partial type assignment system for Left Linear Applicative Term

Rewriting Systems was presented. The system presented here can be seen as a variant of this

system; the differences between these two are in the set of types that can be assigned to nodes

and edges: Curry types in chapter eleven, intersection types of Rank 2 in this one. Another

difference lies in the way we deal with recursively defined objects. The system in chapter

eleven was based on Mycroft’s extension of Curry’s type assignment system, the one presented

in this chapter will be based on Milner’s. Also, because intersection types are used, the term

rewrite rules need no longer be left linear.

We will define three operations on pairs: the operations of Rank 2 substitution and dupli-

cation are in fact the same as defined in chapter eight, the operation of weakening will replace

a basis by a more informative one. We will define a notion of type assignment using Rank 2

intersection types. We will show that the defined operations are sound, i.e: for every basis B,

term T , type σ and operation O: if B !RE T :σ and O (〈B, σ〉) = 〈B′, σ′〉, then B′ !RE T :σ′.

We will show that the presented notion of type assignment has the principal type property.

We will obtain this result by defining (using the unification algorithm for intersection types

of Rank 2) for every term T the principal pair for T . We will show that for every typeable

term T , there are a basis P and type π such that the pair 〈P , π〉 is the principal pair for T ,
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i.e. P !RE T :π, and, for every basis B and type σ such that B !RE T :σ, there is a chain of

operations C such that C (〈P , π〉) = 〈B, σ〉.

We will formulate a constraint typeable rewrite rules should satisfy in order to gain subject

reduction. We will also show for every rewrite rule Lhs → Rhs that, if 〈P , π〉 is the principal

pair for Lhs, T is obtained from Lhs by replacing (in a consistent way) term-variables by

terms, and T is typeable by τ , then there is a chain of operations C such that C (π) = τ , and, for

every x:α occurring in P , the replacement of x is typeable by C (α). With this result, we will

prove the formulated condition to be sufficient.

We conclude this chapter by discussing some implementation aspects of Rank 2 type as-

signment in Applicative Term Rewriting Systems.

12.1 Operations on pairs
In this section we will discuss three operations on pairs of basis and type, namely substitu-

tion, duplication and weakening. Substitution is the same operation as defined in definition

8.3.1.1, with the same properties as, for example, in lemma 8.3.1.2. It will not be repeated

here, although, for example, the notion of basis is different for the notion of type assignment

we discuss here. Duplication is very similar to the one defined in definition 8.3.2.1, and will be

presented in definition 12.1.2.

The third operation we will present here is weakening. It was not needed for the results of

chapter eight, but it plays a role in this chapter.

Definition 12.1.1 i) A statement is an expression of the form T :σ, where T ∈ T(F,X ) and

σ ∈ TR. T is the subject and σ the predicate of T :σ.

ii) A basis is a set of statements with distinct term-variables as subjects and types in T1 as

predicates.

The definition of basis is not the same as in definition 8.2.3, since we do not allow for

statements with the same term-variable. Unlike in chapter eight, this will cause no difficulties

here. To make the Rank 2 system as we will define it in this chapter for Applicative Term

Rewriting Systems fully comparable with the definition of the similar system for the lambda

calculus in chapter eight, we have chosen to allow for types in T1 for term-variables only.

As in definition 2.3.2 we will extend the relation ≤R to bases. Notice that Π{B1, . . . , Bn}

is well defined, since, if σ1, . . . , σm are predicates of statements in B1∪· · ·∪Bn, then σ1 ∈ T1,

. . . , σm ∈ T1, and σ1∩· · ·∩σm ∈ T1.
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We now come to the definition of duplication. The differences between the one defined in this

chapter and the one in definition 8.3.2.1 lies in part (ii), and is caused by the difference in the

definition of bases.

Definition 12.1.2 Let B be a basis, σ ∈ TR, and n ≥ 1. The triple 〈n, B, σ〉 determines a

duplication D〈n,B,σ〉 : TR → TR, which is constructed as follows:

i) a) Suppose V = {ϕ1, . . . , ϕm} is the set of all type-variables occurring in 〈B, σ〉. Choose

m× n different type-variables ϕ1
1, . . . , ϕn

1 , . . . , ϕ1
m, . . . , ϕn

m, such that each ϕi
j

(1≤ i≤n, 1≤ j≤m) does not occur in V. Let Si be the substitution that replaces

every ϕj by ϕi
j .

b) D〈n,B,σ〉 (τ ) = S1 (τ )∩· · ·∩ Sn (τ ).

ii) D〈n,B,σ〉 (B′) = {x:D〈n,B,σ〉 (ρ) | x:ρ∈B′}.

iii) D〈n,B,σ〉 (〈B′, σ′〉) = 〈D〈n,B,σ〉 (B′), D〈n,B,σ〉 (σ′)〉.

Instead of D〈n,B,σ〉, we will write 〈n, B, σ〉.

This definition satisfies the same properties as in lemma 8.3.2.2.

Lemma 12.1.3 Let D = 〈n, B, σ〉.

i) If σ ≤R τ , then D (σ) ≤R D (τ ).

ii) D (〈B′, σ′〉) = 〈Π{B1, . . . , Bn}, σ1∩· · ·∩σn〉 with, for every 1≤ i≤n, there is a

substitution Si such that Si (〈B′, σ′〉) = 〈Bi, σi〉.

iii) D (〈B, σ〉) = 〈Π{B1, . . . , Bn}, σ1∩· · ·∩σn〉 with, for every 1≤ i≤n, 〈Bi, σi〉 is a trivial

variant of 〈B, σ〉, and the 〈Bi, σi〉 are disjoint in pairs.

iv) If τ ∈ TC (T1, T2, TR), then D (τ ) ∈ T1 (T1, TR, TR).

Proof: Immediately by definition 12.1.2.

We now come to the definition of the operation of weakening; it replaces a basis by a more

informative one.

Definition 12.1.4 A weakening W is an operation characterized by a pair of bases 〈B0, B1〉

such that B1 ≤R B0, and it is defined by:

i) W (σ) = σ.

ii) W (〈B, σ〉) = 〈B1, σ〉, if B = B0.

iii) W (〈B, σ〉) = 〈B, σ〉, if B ,= B0.
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Notice that a weakening 〈B0, B1〉 corresponds to a lifting 〈〈B0, σ〉, 〈B1, σ〉〉, although they

are not equivalent.

Similar to definition 8.3.3.1 we will define:

Definition 12.1.5 i) A type-chain is a chain of operations of substitution and duplication only.

ii) A Rank 2 chain is a type-chain concatenated with one operation of weakening.

This notion of type-chains also satisfies lemma 8.3.3.2.

12.2 Rank 2 type assignment in ATRS’s
Rank 2 type assignment on an ATRS (Σ, R) will be defined as the labelling of nodes (except

those containing Ap) and edges in the tree-representation of terms and rewrite rules with types

in TR. In this labelling, as before, we will use that there is a map that provides a type in T2 for

every F ∈F . Such a map is called a Rank 2 environment.

Definition 12.2.1 Let (Σ, R) be an ATRS.

i) A map E : F → T2 is called a Rank 2 environment if for every F ∈F with arity n, E (F )

= E (Fn−1) = · · · = E (F0).

ii) For F ∈F with arity n ≥ 0, σ ∈ T2, and E an environment, the environment E[F := σ] is

defined by:

a) E[F :=σ] (G) = σ, if G∈ {F , Fn−1, . . . , F0}.

b) E[F :=σ] (G) = E (G), otherwise.

Rank 2 type assignment on Applicative Term Rewriting Systems will be defined, like be-

fore, in two stages. In the next definition we define Rank 2 type assignment on terms, and in

definition 12.2.6 we will define Rank 2 type assignment on term rewrite rules.

Definition 12.2.2 Let (Σ, R) be an ATRS, and E a Rank 2 environment.

i) We say that T ∈ T(F,X ) is Rank 2 typeable by σ ∈ TR with respect to E , if there exists an

assignment of types to edges and nodes that satisfies the following constraints:

a) The root edge of T is typed with σ.

b) The type µ1∩· · ·∩µm is assigned to the in-going edge of an application node, if and

only if there are σ1, . . . , σm ∈ T1 such that (σ1→µ1)∩· · ·∩ (σm→µm) is the type
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assigned to the left out-going edge, and the type assigned to the right out-going edge

is σ1∩· · ·∩σm.

+
µ1∩· · ·∩µm

Ap

,
,,-

(σ1→µ1) ∩· · ·∩ (σm→µm) .
../
σ1∩· · ·∩σm

c) The type assigned to a function node containing F ∈F (where F has arity n ≥ 0) is

τ1∩· · ·∩τm, if and only if, for every 1≤ i≤m, there are σi
1, . . . , σi

n ∈ T1 and σi ∈ T2,

such that τi = σi
1→· · ·→σi

n→σi, the type assigned to the j-th (1≤ j ≤n) out-going

edge is σ1
j∩· · ·∩σ

m
j , and the type assigned to the in-going edge is σ1∩· · ·∩σm.

+
σ1∩· · ·∩σm

F :(σ1
1→· · ·→σ1

n→σ1)∩· · ·∩ (σm
1 →· · ·→σm

n →σm)
000001

σ1
1∩· · ·∩σ

m
1 4

4
4

445
σ1
2∩· · ·∩σ

m
2

6
6
6
667
σ1
n−1∩· · ·∩σ

m
n−1

222223
σ1
n∩· · ·∩σ

m
n

. . .

d) If the type assigned to a function node containing F is τ , then there is a type-chain C

such that C (E (F )) = τ .

ii) Let T ∈ T(F,X ) be Rank 2 typeable by σ with respect to E . If B is a basis such that for

every statement x:τ occurring in the typed term-tree, there is a x:τ ′ ∈B such that

τ ′ ≤R τ , we write B !RE T :σ.

Notice that if B !RE T :σ, then B can contain more statements than needed to obtain T :σ.

A Rank 2 environment does not provide a type for Ap; instead, in part (i.b) of definition

12.2.2 it will be defined how the edges attached to an application node should be typed. So

the node containing Ap itself is not typed; this is because although we know that, for every

1≤ i≤m, σi→µi, µi ∈ T2, and σi ∈ T1, not necessarily (σi→µi)→σi→µi ∈ T2.

By definition 12.2.2 (i.d), the definition of TR as in definition 8.2.1 is more general than

actually needed. It would be sufficient to define TR by:

iii) TR, the set of intersection types of Rank 2 is defined by: if σ, σ1, . . . , σn ∈ T2, and for

every 1≤ i≤n there is a substitution Si such that Si (σ) = σi, then σ1∩· · ·∩σn ∈ TR.

but this would have complicated the presentation of this chapter unnecessarily.

For the notion of type assignment as defined in definition 12.2.2, the following properties hold:
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Lemma 12.2.3 i) B !RE T :σ1∩· · ·∩σn if and only if for every 1≤ i≤n, B !RE T :σi.

ii) If x:τ is a statement occurring in the typed term-tree for B !RE T :σ, then B ≤R {x:τ}.

Proof: Immediately from definition 12.2.2.

Because of part (i) of this lemma, in most proofs over B !RE T :σ we will only show the

part that assumes σ ∈ T2.

As in chapter ten in defining type assignment on rewrite rules, we will restrict the possible

bases for rewrite rules to those that contain nothing but the statements needed to type the left

hand side. In the next definition we will introduce the notion of Rank 2 used bases, which is

similar to that of used bases. This notion will be convenient in several proofs and definitions in

the rest of this chapter.

Definition 12.2.4 i) The Rank 2 used bases of B !RE T :σ are inductively defined by:

a) σ ∈ T2.

1) T ≡ x. Take {x:σ}.

2) T ≡ Ap (t1, t2). Then there is a τ such that B !RE t1:τ→σ, and B !RE t2:τ . Let

B1 be a Rank 2 used basis of B !RE t1:τ→σ, and B2 be a Rank 2 used basis of

B !RE t2:τ . Take Π{B1, B2}.

3) T ≡ F (t1, . . . , tn). Then there are σ1, . . . , σn such that, for every 1≤ i≤n,

B !RE ti:σi. Let, for 1≤ i≤n, Bi be a Rank 2 used basis of B !RE ti:σi.

Take Π{B1, . . . , Bn}.

b) If σ = σ1∩· · ·∩σn, then, by lemma 12.2.3 (i), for every 1≤ i≤n, B !RE T :σi. Let, for

every 1≤ i≤n, Bi be a Rank 2 used basis of B !RE T :σi. Take Π{B1, . . . , Bn}.

ii) A basis B is Rank 2 used for T :σ with respect to E if and only if there is a basis B′ such

that B′ !RE T :σ, and B is a Rank 2 used basis of B′ !RE T :σ.

We will say ‘B is Rank 2 used for T :σ’ instead of ‘B is Rank 2 used for T :σ with respect to E’.

As before, a Rank 2 used basis for a statement T :σ is not unique, but, again, the results of

this chapter do not depend on the actual structure of a Rank 2 used basis, only on its existence.

For Rank 2 used bases, the following properties hold.

Lemma 12.2.5 i) If B is Rank 2 used for T :σ, then B !RE T :σ.

ii) B !RE T :σ ⇐⇒ ∃ B′ [ B ≤R B′ & B′ is Rank 2 used for T :σ ].

Proof: By induction on definition 12.2.4.
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Thanks to the notion of Rank 2 used basis, we can give a clear definition of a typeable

rewrite rule and a typeable rewrite system. Notice that this notion plays the same role in this

definition as the notion of ‘essentially used basis’ did in definition 10.1.7.

Definition 12.2.6 Let (Σ, R) be an ATRS, and E a Rank 2 environment.

i) We say that Lhs → Rhs ∈ R with defined symbol F is Rank 2 typeable with respect to

E , if there are basis B, type σ ∈ T2, such that

a) B is Rank 2 used for Lhs:σ and B !RE Rhs:σ.

b) In B !RE Lhs:σ and B !RE Rhs:σ, all nodes containing F are typed with E (F ).

ii) We say that (Σ, R) is Rank 2 typeable with respect to E , if every r ∈ R is Rank 2 typeable

with respect to E .

Proposition 12.2.7 Let x be a term-variable occurring in the rewrite rule r: Lhs → Rhs, and

let r be typeable with basis B and type σ. If σ1, . . . , σm are all and nothing but the types

assigned to the nodes containing x in the typed term-tree for B !RE Lhs:σ, and τ1, . . . , τn are

those for B !RE Rhs:σ, then x:σ1∩· · ·∩σm ∈B and σ1∩· · ·∩σm ≤R τ1∩· · ·∩τn.

Proof: By definition 12.2.4 and lemma 12.2.3 (ii).

Notice that, in the above case, not necessarily σ1∩· · ·∩σm = τ1∩· · ·∩τn.

12.3 Soundness of operations on pairs
In this section we will prove that the three operations on pairs of basis and type (substitution,

duplication and weakening) are sound on typed term-trees. We will also show that part (i.d) of

definition 12.2.2 is sound: if there is a type-chain C such that C (E (F )) = σ, then, for every type

τ ∈ T2 such that σ ≤R τ , the rewrite rules that define F are typeable with respect to a changed

environment, in which E (F ) is replaced by τ .

The following lemma will show that Rank 2 substitution is a sound operation on typed term-

trees and rewrite rules.

Theorem 12.3.1 Soundness of Rank 2 substitution. Let S be a Rank 2 substitution.

i) If B !RE T :σ, then S (B) !RE T :S (σ).

ii) If B is Rank 2 used for T :σ, then S (B) is Rank 2 used for T :S (σ).
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iii) Let r: Lhs→ Rhs be a rewrite rule typeable with respect to the environment E , and let F

be the defined symbol of r. Then r is typeable with respect to E [F := S (E (F ))].

Proof: Very much like the one for theorem 10.2.2. We will, therefore, only show the proof of

part (i), which is given by induction on the structure of T . (Assume σ ∈ T2.)

a) T ≡ x. Then by lemma 12.2.3 (ii) B ≤R {x:σ}.

By lemma 8.3.1.2 (i) S (B) ≤R S ({x:σ}), so by 12.2.2 (ii) S (B) !RE x:S (σ).

b) T ≡ Ap (t1, t2). As part (i.c) of the proof of theorem 8.3.1.3.

c) T ≡ F (t1, . . . , tn). By definition 12.2.2 (i) there are σ1, . . . , σn ∈ T1, and a type-chain C

such that C (E (F )) = σ1→· · ·→σn→σ, and, for every 1≤ i≤n, B !RE ti:σi.

By induction for every 1≤ i≤n, S (B) !RE ti:S (σi), and, by lemma 8.3.1.2 (ii),

S (σi) ∈ T1. Since C ∗ 〈S〉 is also a type-chain, and S (σ1→· · ·→σn→σ) =

S (σ1)→· · ·→ S (σn)→ S (σ), we have S (B) !RE F (t1, . . . , tn):S (σ).

We will now prove that the operation of duplication is sound on typed term-trees and rewrite

rules.

Theorem 12.3.2 Soundness of duplication. Let D be a duplication such that D (〈B′, σ′〉) =

〈B′′, σ′′〉.

i) If B′ !RE T :σ′, then B′′ !RE T :σ′′.

ii) If B′ is Rank 2 used for T :σ′, then B′′ is Rank 2 used for T :σ′′.

iii) Let r: Lhs→ Rhs be a rewrite rule typeable with respect to the environment E , and let F

be the defined symbol of r. If D (E (F )) = τ ∈ TR, then, for every µ ∈ T2 such that

τ ≤R µ, r is typeable with respect to E [F :=µ].

Proof: Very much like the proof of theorem 10.2.5, but easier since duplication is a simplified

version of strict expansion.

i) By lemma 12.1.3 (i), there are B1, . . . , Bn, σ1, . . . , σn such that

〈B′, σ′〉 = 〈Π{B1, . . . , Bn}, σ1∩· · ·∩σn〉,

and for every 1≤ i≤n there is a substitution Si such that Si (〈B, σ〉) = 〈Bi, σi〉.

Notice that for all F ∈F occurring in T by definition 12.2.2 (i.d), there is a type-chain C

such that F is typed with C (E (F )). Since C ∗ 〈D〉 is also a type-chain, F can be typed

with the type D (C (E (F ))).

The proof is completed by theorem 12.3.1 (i) and lemma 12.2.3 (i).

ii) As the proof of part (i).
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iii) For every µ ∈ T2 such that τ ≤R µ, by definition 12.1.2 there is a substitution S such that

µ = S (E (F )). The proof is completed by theorem 12.3.1 (iii).

The next theorem states that a weakening performed on a arbitrary pair, will produce a

correct result.

Theorem 12.3.3 Soundness of weakening. For every T ∈ T(F,X ): if B !RE T :σ, then for

every weakening W: if W (〈B, σ〉) = 〈B′, σ′〉, then B′ !RE T :σ′.

Proof: By definition 12.2.2 (ii), for every x:τ occurring in the typed term-tree for T :σ there is

a x:µ ∈B such that µ ≤R σ. By definition 12.1.4, B′ ≤R B, and σ′ = σ. For every x:α ∈B

there is a x:α′ ∈B′ such that α′ ≤R α. But then for every x:τ occurring in the typed term-tree

for T :σ, there is a x:µ′ ∈B′ such that µ′ ≤R τ , so B′ !RE T :σ.

Combining the results proved above, we know that Rank 2 chains and type-chains will have

the following effect on pairs and rewrite rules:

Lemma 12.3.4 i) If B !RE T :σ, and C is a Rank 2 chain such that C (〈B, σ〉) = 〈B′, σ′〉, then

B′ !RE T :σ′.

ii) If B is Rank 2 used for T :σ, C is a type-chain, and C (〈B, σ〉) = 〈B′, σ′〉, then B′ is

Rank 2 used for T :σ′.

iii) Let r: Lhs→ Rhs be a rewrite rule typeable with respect to the environment E , and let F

be the defined symbol of r. If C is a type-chain and C (E (F )) = τ ∈ TR, then, for every

µ ∈ T2 such that τ ≤R µ, r is typeable with respect to E[F :=µ].

Proof: By theorems 12.3.1, 12.3.2 and 12.3.3.

12.4 Principal type property
In this section we will show that the partial Rank 2 type assignment system has the principal type

property, by defining, for every typeable term T , a principal pair with respect to the environment

E , PPRE (T ), and by showing that, for all pairs 〈B, σ〉 such that B !RE T :σ, there is a Rank 2

chain C such that C (PPRE (T )) = 〈B, σ〉.

We will define the principal pair for a term T with respect to E , consisting of basis P and

type π, by defining PPRE (T ) using the operations unify1 and unifyR. In theorem 12.4.8 we will

show that, for every term, this is indeed the principal one.
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Definition 12.4.1 For every T ∈ T(F,X ) we define (using unify1, unifyR, and toTC) the Rank 2

principal pair with respect to E by defining the notion PPRE (T ) = 〈P , π〉 by:

i) T ≡ x. Then 〈P , π〉 = 〈{x:ϕ}, ϕ〉.

ii) T ≡ Ap (t1, t2). Let PPRE (t1) = 〈P1, π1〉, PPRE (t2) = 〈P2, π2〉, (we choose if necessary

trivial variants such that these are disjoint in pairs), and S2 = toTC (π2), then:

a) If π1 = ϕ, then:

PPRE (Ap (t1, t2)) = 〈S2, S1〉 (〈Π{P1, P2}, ϕ′〉),

where S1 = unifyR (ϕ, S2 (π2)→ϕ′).

and ϕ′ is a type-variable not occurring in any other type.

b) If π1 = σ→τ , then:

PPRE (Ap (t1, t2)) = 〈S2〉 ∗ C (〈Π{P1, P2}, τ〉),

where C = unify1 (σ, S2 (π2), S2 (P2)).

iii) T ≡ F (t1, . . . , tn). If E (F ) = γ1→· · ·→γn→γ, and for every 1≤ i≤n,

PPRE (ti) = 〈Pi, πi〉, (we choose if necessary trivial variants such that the 〈Pi, πi〉 are

disjoint in pairs and these pairs share no type-variables with γ1→· · ·→γn→γ), then:

PPRE (F (t1, . . . , tn)) = C (〈Π{P1, . . . , Pn}, γ〉),

where C = 〈S1, . . . , Sn〉 ∗ C1 ∗ · · · ∗ Cn,

Si = toTC (πi),

Ci = unify1 (C1 ∗ · · · ∗ Ci−1 (γi), Si (πi), Si (Pi)).

Notice that part (ii) of this definition is the same as part (iii) of definition 8.4.2.1.

Example 12.4.2 The typed rules for F (as in example 10.1.9) seem perhaps somewhat ad hoc,

but using the environment:

E (K) = 1→2→1

E (Z) = 3→4→4

E (I) = 5→5

E (F ) = 7∩(6→7)∩6→7

where Z is defined by Z(x, y) → y, and using definition 12.4.1, the following can easily be

checked:

i) F (I0) is typeable by 8→8, which is a type for both I0 and I (I0).

ii) F (Z0) is typeable by (8→8)→8→8, which is a type for both Z0 and Z1 (Z0).

iii) F (K0) is typeable by (8→9)→9→8→9, which is a type for both K0 and K1 (K0).
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The given types are the principal types for respectively F (I0), F (Z0), and F (K0).

Example 12.4.3 Using Rank 2 intersection types, the term S (K0, S0, I0) has a smaller

principal type than using Curry types. With the environment

E (S) = (1→2→3)→(4→2)→1∩4→3

E (K) = 5→6→5

E (I) = 7→7

and definition 12.4.1 the following can easily be checked:

+8→8

S:((8→8)→(((9→10)→9)→(9→10)→10)→8→8) →
(((9→10)→9→10)→((9→10)→9)→(9→10)→10) →

(8→8)∩((9→10)→9→10) → 8→8

,,-
K0:(8→8)→(((9→10)→9)→(9→10)→10)→8→8

+
S0:((9→10)→9→10)→((9→10)→9)→(9→10)→10

../
I0:(8→8)∩((9→10)→9→10)

If we define D (x) → Ap (x, x), then we can even check that, for example,

D (S (K0, S0, I0)) and D (I0) are typeable by 11→11.

The following lemma will be used in the proofs of the next section.

Lemma 12.4.4 If PPRE (T ) = 〈P , π〉, then P is Rank 2 used for T :π, and π ∈ T2.

Proof: By induction on the definition of PPRE (T ), using lemma 12.3.4 (ii).

A direct consequence of this lemma is that if PPRE (T ) = 〈P , π〉, then P !RE T :π.

The following lemmas will be needed in the proofs of theorem 12.4.7 and lemma 12.5.3.

The first will give a result similar to the one of lemma 8.4.2.4: if a type-chain maps the principal

pairs of terms in an application to pairs that allow the application itself to be typed, then these

pairs can also be obtained by first performing a unification. The second will generalize this

result to arbitrary function applications.

Lemma 12.4.5 Let σ ∈ T2, and for i = 1, 2 PPRE (ti) = 〈Pi, πi〉 such that the pairs are disjoint,

and let C be a type-chain such that C (PPRE (t1)) = 〈B1, τ→σ〉, and C (PPRE (t2)) = 〈B2, τ〉.

Then there are type-chains Cg and C′ and type α ∈ T2 such that
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PPRE (Ap (t1, t2)) = Cg (〈Π{P1, P2}, α〉), and

C′ (PPRE (Ap (t1, t2))) = 〈Π{B1, B2}, σ〉.

Proof: Like the one for lemma 8.4.2.4.

Lemma 12.4.6 Let σ ∈ T2, and for every 1≤ i≤n, PPRE (ti) = 〈Pi, πi〉, such that the pairs

〈Pi, πi〉 and the type E (F ) = γ1→· · ·→γn→γ are disjoint, and let C be a type-chain such that

C (E (F )) = σ1→· · ·→σn→σ and, for every 1≤ i≤n, C (〈Pi, πi〉) = 〈Bi, σi〉.

Then there are type-chains Cg and Cp such that

PPRE (F (t1, . . . , tn)) = Cg (〈Π{P1, . . . , Pn}, γ〉), and

Cp (PPRE (F (t1, . . . , tn))) = 〈Π{B1, . . . , Bn}, σ〉.

Proof: Let, for 1≤ i≤n, Si = toTC (πi). Since for every 1≤ i≤n, C (πi) = σi ∈ T1, by lemma

8.4.1.2 (i), for every 1≤ i≤n there is a Ci
′ such that C = 〈Si〉 ∗ Ci

′. Since the πi are disjoint,

the Si do not interfere, so, without loss of generality we can assume that there is a C′ such that

C = 〈S1, . . . , Sn〉 ∗ C′, and for 1≤ i≤n, C′ (γi) = σi.

We will finish the proof by showing by induction on i that for every 0≤ i≤n there are

type-chains Ci, Cu
1 , . . . , Cu

i such that C′ = Cu
1 ∗ · · · ∗ Cu

i ∗ Ci, and for 1≤ j≤ i the Cu
j are not

defined on type-variables occurring in Sk (πk), with k.

i) i = 0. Take C0 = C′.

ii) Since C′ (γi) = C′ (Si (πi)), by induction:

Ci−1 (Cu
1 ∗ · · · ∗ Cu

i−1 (γi)) = Ci−1 (Cu
1 ∗ · · · ∗ Cu

i−1 (Si (πi))) = Ci−1 (Si (πi)).

Si (Pi) shares no type-variables with Cu
1 ∗ · · · ∗ Cu

i−1 (γi), so by lemma 8.4.1.2 (ii) there is

a type-chain Ci such that Ci−1 = unify1 (Cu
1 ∗ · · · ∗ Cu

i−1 (γi), Si (πi), Si (Pi)) ∗ Ci.

Take Cu
i = unify1 (Cu

1 ∗ · · · ∗ Cu
i−1 (γi), Si (πi), Si (Pi)).

Take Cg = 〈S1, . . . , Sn〉 ∗ Cu
1 ∗ · · · ∗ Cu

n, then by definition 12.4.1 (iii) we have

PPRE (F (t1, . . . , tn)) = Cg (〈Π{P1, . . . , Pn}, γ〉).

Take Cp = Cn.

The following theorem will show that type-chains are sufficient to generate all possible

pairs 〈B, σ〉 for a typeable term T such that B is Rank 2 used for T :σ.

Theorem 12.4.7 If B is Rank 2 used for T :σ, then there are a basis P , type π and a type-chain

C such that PPRE (T ) = 〈P , π〉, and C (〈P , π〉) = 〈B, σ〉.

Proof: i) σ ∈ T2. By induction on the structure of T .
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a) T ≡ x. Then B = {x:σ}. Then σ ∈ TC, and PPRE (x) = 〈{x:ϕ}, ϕ〉.

Take C = 〈(ϕ := σ)〉.

b) T ≡ Ap (t1, t2). Then, by definition 12.2.4 (i.a.2), there are τ ∈ T1 and B1, B2 such

that B1 is Rank 2 used for t1:τ→σ, B2 is Rank 2 used for t2:τ , and B = Π{B1, B2}.

By induction for i = 1, 2, there are Pi, πi, and type-chains Ci such that

PPRE (t1) = 〈P1, π1〉, C1 (PPRE (t1)) = 〈B1, τ→σ〉, and

PPRE (t2) = 〈P2, π2〉, C2 (PPRE (t2)) = 〈B2, τ〉.

Since the pairs 〈Pi, πi〉 are disjoint, the type-chains Ci do not interfere, so

C1 ∗ C2 (PPRE (t1)) = 〈B1, τ→σ〉, and C1 ∗ C2 (PPRE (t2)) = 〈B2, τ〉.

Then, by lemma 12.4.5, there are type-chains C and Cu, and type α such that

PPRE (Ap (t1, t2)) = Cu (〈Π{P1, P2}, α〉), and C (PPRE (Ap (t1, t2))) = 〈B, σ〉.

c) T ≡ F (t1, . . . , tn). By definition 12.2.4 (i.a.3), there are B1, . . . , Bn, and σ1, . . . , σn

such that B = Π{B1, . . . , Bn}, and, for every 1≤ i≤n, Bi is Rank 2 used for ti:σi.

By definition 12.2.2 (i.d), there is a type-chain CF such that

CF (E (F )) = σ1→· · ·→σn→σ.

By induction for 1≤ i≤n, there are 〈Pi, πi〉 (disjoint in pairs) and type-chains Ci,

such that

PPRE (ti) = 〈Pi, πi〉, and Ci (PPRE (ti)) = 〈Bi, σi〉.

Since the pairs 〈Pi, πi〉 are disjoint, the type-chains Ci do not interfere. Assume,

without loss of generality, that none of the type-variables occurring in E (F ) occur in

any of the pairs 〈Pi, πi〉. Let C′ = CF ∗ C1 ∗ · · · ∗ Cn. Since, for every 1≤ i≤n,

C′ (〈Pi, πi〉) = 〈Bi, σi〉, and C′ (E (F )) = σ1→· · ·→σn→σ, then, by lemma 12.4.6,

there are type-chains C and Cu such that

PPRE (F (t1, . . . , tn)) = Cu (〈Π{P1, . . . , Pn}, γ〉),

and C (PPRE (F (t1, . . . , tn))) = 〈B, σ〉.

ii) σ = σ1∩· · ·∩σn. By lemma 12.2.4 (i.b), for every 1≤ i≤n there is a Bi such that Bi is

Rank 2 used for T :σi, and B = Π{B1, . . . , Bn}. Take 〈Bi
′, σi

′〉, trivial variants of

〈Bi, σi〉 that are disjoint in pairs. Take S such that

S (〈Π{B1
′, . . . , Bn

′}, σ1
′∩· · ·∩σn′〉) = 〈Π{B1, . . . , Bn}, σ1∩· · ·∩σn〉.

By induction there are P , π, such that PPRE (T ) = 〈P , π〉. Let D = 〈n, P , π〉, then

D (〈P , π〉) = 〈Π{P1, . . . , Pn}, π1∩· · ·∩πn〉, with PPRE (T ) = 〈Pi, πi〉.
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By induction there are type-chains C1, . . . , Cn such that

for 1≤ i≤n, Ci (〈Pi, πi〉) = 〈Bi
′, σi

′〉.

Since the 〈Pi, πi〉 and the 〈Bi
′, σi

′〉 are disjoint in pairs, the Ci do not interfere.

Take C = 〈D〉 ∗ C1 ∗ · · · ∗ Cn ∗ 〈S〉.

Theorem 12.4.8 Principal pair property.

i) Soundness. If PPRE (T ) = 〈P , π〉, and C a Rank 2 chain such that C (〈P , π〉) = 〈B, σ〉,

then B !RE T :σ.

ii) Completeness. If B !RE T :σ, then there are P and π, such that PPRE (T ) = 〈P , π〉, and a

Rank 2 chain C such that C (〈P , π〉) = 〈B, σ〉.

Proof: i) By lemmas 12.2.5 and 12.4.4 and theorem 12.3.4 (i).

ii) If B !RE T :σ, then there is a B′ such that B ≤R B′ and B′ is Rank 2 used for T :σ.

By theorem 12.4.7 there exist P , π, and a type-chain C′ such that PPRE (T ) = 〈P , π〉, and

C′ (〈P , π〉) = 〈B′, σ〉. Take the weakening W = 〈B′, B〉, then W (〈B′, σ〉) = 〈B, σ〉. Take

C = C′ ∗ 〈W〉.

12.5 A sufficient condition for subject reduction
In this section we will formulate a condition typeable rewrite rules should satisfy in order to

obtain subject reduction. This condition will be the same as the one formulated for the type

assignment system presented in the previous chapter. We will show that this condition is suffi-

cient.

Definition 12.5.1 i) We call a rewrite rule Lhs→ Rhs safe if:

If PPRE (Lhs) = 〈P , π〉, then P !RE Rhs:π.

ii) The definition of ‘safely Rank 2 typeable with respect to E ′ is the same as given in

definition 12.2.2 and 12.2.6, by replacing condition (i.a) of definition 12.2.6 by:

If 〈P , π〉 = PPRE (Lhs), then P !RE Rhs:π.

Notice that the notion PPRE (T ) is defined independently from the definition of typeable

rewrite rules. Moreover, since type assignment as defined in this chapter is decidable, this

safeness constraint on rewrite rules is decidable too.
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Before we come to the proof that the condition is sufficient, we will prove some preliminary

results.

The following lemmas will formulate the relation between replacements performed on a

term that is the left hand side of a rewrite rule, and possible type assignments for that term.

The construction of the proof of lemma 12.5.3 will in fact be one of the motivations for the

limitation of the possible left hand sides, as given in definition 9.3.2 (ii.a).

Lemma 12.5.2 If B !RE T :σ, and R is a replacement and B′ a basis such that for every

statement x:α ∈B B′ !RE xR:α, then B′ !RE TR:σ.

Proof: By easy induction on the structure of T (see the proof of lemma 11.3.4 (ii)).

Lemma 12.5.3 If T ∈ LHS, for the replacement R there are B and σ such that B is Rank 2

used for TR:σ, and PPRE (T ) = 〈P , π〉, then there is a type-chain C, such that C (π) = σ, and,

for every statement x:α ∈ P , B !RE xR:C (α).

Proof: By induction on the structure of LHS.

i) T ≡ Ap (t1, t2). Since Ap (t1, t2)
R = Ap (t1

R, t2
R), by definition 12.2.4 (i.a.2) there are

τ ∈ T1, and B1, B2 such that B1 is Rank 2 used for t1
R:τ→σ, and B2 is Rank 2 used for

t2
R:τ . By theorem 12.4.7 for i = 1, 2, there are disjoint 〈Pi, πi〉 = PPRE (ti).

Since t1 ∈ LHS, by induction there is a type-chain C1 such that C1 (π1) = τ→σ, and, for

every statement x:α ∈ P1, B1 !RE xR:C1 (α). For t2 we have either:

a) t2 ≡ x, so 〈P2, π2〉 = 〈{x:ϕ}, ϕ〉 for some ϕ. Take C2 = unify1 (τ , ϕ, {x:ϕ}), then τ =

C2 (ϕ). B2 is Rank 2 used for xR:τ , so by lemma 12.2.5 (i), for every statement

x:α ∈ P2, B2 !RE xR:C2 (α).

b) t2 ∈ LHS, so by induction there is a type-chain C2 such that C2 (π2) = τ , and, for

every statement x:α ∈ P2, B2 !RE xR:C2 (α).

Since the pairs 〈Pi, πi〉 are disjoint, the chains Ci do not interfere. Let

C1 ∗ C2 (〈P1, π1〉) = 〈B1
′, τ→σ〉 and C1 ∗ C2 (〈P2, π2〉) = 〈B2

′, τ〉.

Let Cg and π be such that

PPRE (Ap (t1, t2)) = 〈Cg (Π{P1, P2}), π〉,

then by lemma 12.4.5 there is a C such that

C (〈Cg (Π{P1, P2}), π〉) = 〈Π{B1
′, B2

′}, σ〉.

Also: ∀ x:α ∈ P1 [ B1 !RE xR:C1 (α) ] & ∀ x:α ∈ P2 [ B2 !RE xR:C2 (α) ] ⇒

∀ x:α ∈Π{P1, P2} [ Π{B1, B2} !RE xR:Cg ∗ C (α) ] ⇒
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∀ x:α ∈ Cg (Π{P1, P2}) [ Π{B1, B2} !RE xR:C (α) ].

ii) T ≡ F (t1, . . . , tn). Since F (t1, . . . , tn)R = F (t1
R, . . . , tn

R), by definition 12.2.4 (i.a.3),

there are B1, . . . , Bn, σ1, . . . , σn such that, for every 1≤ i≤n, Bi is Rank 2 used for

ti
R:σi, and B = Π{B1, . . . , Bn}. By definition 12.2.2 (i.d) there is a type-chain CF such

that CF (E (F )) = σ1→· · ·→σn→σ.

Let E (F ) = γ1→· · ·→γn→γ. By theorem 12.4.7 and definition 12.4.1 (iii) there is a

type-chain Cg and 〈Pi, πi〉 (1≤ i≤n, disjoint in pairs) such that, for every 1≤ i≤n,

PPRE (ti) = 〈Pi, πi〉, and PPRE (F (t1, . . . , tn)) = Cg (〈Π{P1, . . . , Pn}, γ〉).

Assume that none of the type-variables occurring in γ1→· · ·→γn→γ occur in any of the

pairs 〈Pi, πi〉. Then for every 1≤ i≤n either:

a) ti ≡ x, so 〈Pi, πi〉 = 〈{x:ϕ}, ϕ〉 for some ϕ. Take Ci = unify1 (σi, ϕ, {x:ϕ}), then σi

= Ci (ϕ). Bi is Rank 2 used for xR:σi, so, by lemma 12.2.5 (i), for every statement

x:α ∈ Pi, Bi !RE xR:Ci (α).

b) ti ∈ LHS, so by induction there is a type-chain Ci such that Ci (πi) = σi, and, for every

statement x:α ∈ Pi, Bi !RE xR:Ci (α).

In any case, for every 1≤ i≤n there is a type-chain Ci such that Ci (πi) = σi, and for

every statement x:α ∈ Pi, Bi !RE xR:Ci (α).

Let C′ = CF ∗ C1 ∗ · · · ∗ Cn. Since for every 1≤ i≤n, C′ (〈Pi, πi〉) = 〈Bi, σi〉, and

C′ (γ1→· · ·→γn→γ) = σ1→· · ·→σn→σ,

by lemma 12.4.6 there is a type-chain C such that

C (PPRE (F (t1, . . . , tn))) = 〈Π{B1, . . . , Bn}, σ〉.

Also: If for every 1≤ i≤n, x:α ∈Pi, Bi !RE xR:Ci (α) then

for every x:α ∈Π{P1, . . . , Pn}, Π{B1, . . . , Bn} !RE xR:Cg ∗ C (α)

so for every x:α ∈ Cg (Π{P1, . . . , Pn}), Π{B1, . . . , Bn} !RE xR:C (α).

In the following theorem, we will prove that our solution is sufficient.

Theorem 12.5.4 The condition is sufficient. Let r : Lhs → Rhs be a safe rewrite rule. Then

for every replacement R, basis B and type µ: if B !RE LhsR:µ, then B !RE RhsR:µ.

Proof: (Assume µ ∈ T2.) Let PPRE (Lhs) = 〈P , π〉. Since r is safe, P !RE Rhs:π.

Suppose R is a replacement such that there are B, µ such that B !RE LhsR:µ. By lemma

12.2.5 (ii) we can assume that B is Rank 2 used for LhsR:µ, so by lemma 12.5.3 there is a

type-chain C such that C (π) = µ & ∀ x:α ∈ P [ B !RE xR:C (α) ].

By lemma 12.3.4 (i) C (P ) !RE Rhs:C (π), so C (P ) !RE Rhs:µ, and
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∀ x:α ∈ P [ B !RE xR:C (α) ] ⇒ ∀ x:α ∈ C (P ) [ B !RE xR:α ].

So by lemma 12.5.2 B !RE RhsR:µ.

In the previous chapter it was also shown that the condition formulated in that chapter is

necessary. This result was achieved by extending the set of types with type constants, and for

every rewrite rule that was not safe, a specific replacement that gives the counterexample was

created. In this construction it was used that every type σ can be inhabited in a trivial way: just

pick a constant Q, not already used, and assume that E (Q) = σ.

In the notion of type assignment as defined in this chapter we cannot give this construction,

because we cannot let every type be trivially inhabited. The environment of this chapter returns

types in T2, and a function symbol F can only have an intersection type α∩β if there exists

a type chain C such that C (E (F )) = α∩β. This means that we cannot show that there is, for

example, a function symbol that can be assigned the type ϕ0∩(ϕ1→ϕ0).

12.6 Implementation aspects of Rank 2 type assignment in

ATRS’s
The results of this chapter could be used to implement a type-check algorithm for ATRS’s. It

should be noted that the notion of type assignment as defined here is really a type-check system.

Take, for example, the rewrite rule

I (x) → x.

The smallest environment possible for this rule maps I to the type 1→1. We have shown

that all types that can be obtained from this one by substitution or duplication are allowed for

the rewrite rule, but the set of types that can be used is larger that just the set obtained by those

operations. For example, the rewrite rule can also be typed using the type 1∩2→1. To obtain

a type-inference algorithm an operation should be inserted that allows of more specific types

than generated by substitution and duplication. Take, for example, the rewrite rules:

F (x) → x

F (x) → Ap (x, x).

A type-inference algorithm could, for example, type both alternatives separately and com-

bine the results found. For the first rule it would find E (F ) = 1→1, for the second E (F ) =

(2→3)∩2→3. These types cannot be unified using operations defined in this chapter. To obtain

the correct type for F , 6∩(5→6)∩5→6, an operation is needed that inserts extra types in the left
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hand side of the top arrow type constructor. It is not at all easy to define such an operation that

is sound in all cases.

Another thing to notice is that, although type assignment (and type-checking) by the notion

of type assignment defined here is decidable, the complexity of type-checking is bigger than for

a system based on Curry-types. The biggest problem will arise when checking a type provided

for a function symbol. Suppose Lhs → Rhs is a rewrite rule. One way to implement type-

checking for this rule would be to construct the principal pair 〈P , π〉 for the term Lhs, and to

try and type Rhs using this pair. Let σ1∩· · ·∩σn be the type assigned to the term-variable x in

P . Then, for every occurrence of x in Rhs, some selection of the types in σ1∩· · ·∩σn should

be made. In the worst case, the number of possibilities that must be tried is huge: 2n. There are

some more efficient ways to type-check a rule, but the complexity is still exponential. However,

in every day programming life n will rarely be larger than 2.

The concept of overloading in programming languages is normally used to express that dif-

ferent objects (typically procedures) can have the same identifier. (For another approach to

overloading, see [Castagna et al. ’92].) At first sight, it seems to be nothing but a tool to obtain

programming convenience, but the implementational aspects of languages with overloading are

not at all trivial. In functional programming languages, functions are first order citizens, which

means that they can be handled as any object, like, for example, numbers. In particular, a func-

tion can be passed as an argument to another one, or could constitutes its result. Especially

in the first case it can occur that, at compile time, it cannot be decided which of the several

function definitions for an overloaded identifier is really needed. If this decision cannot be

made, the compiler should generate code that contains all possible functions, and some kind

of case-construct that makes it possible to select at runtime which is the code to use. For rea-

sons of efficiency, and to avoid run-time checks on function types, it seems natural to allow of

overloaded objects only if at compile time, it can be decided which of the different function

definitions is meant, since then the compiler can decide for every occurrence of an overloaded

symbol which of the several function definitions should be linked into the object code.

The intersection type constructor is a good candidate to express this kind of overloading

(see also [Pierce ’91]). It seems natural to say, for example, that the type for addition Add

is (int→int→int)∩(real→real→real). Incorporating the notion of overloading into a formal

system for type assignment as defined in this chapter implies that the restriction on types that can

be provided by a Rank 2 environment should be dropped; in such a formalism, types provided

by the environment should be in TR, not just T2.

Selection of one of the function definitions for an overloaded identifier can be accomplished

by defining, similar to definition 12.2.2 (i.d) how a type for a function symbol can be obtained
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from the one provided by the environment, in the following way:

If the type assigned to a function node containing F is τ , then there is a σ ∈ T2 such

that E (F ) ≤R σ, and a type chain C such that C (σ) = τ .

This selection will then be reflected in the way intersection types are unified. Since only

one of the types in an ‘overloaded’ type can be used, the unification should try to unify the

demanded type with each individual type occurring in the provided type. Using this definition,

the notion of ‘principal pair’ becomes slightly more complicated. This is best explained by

discussing the implementation of the type-checker that is looking for such a pair. Take the

function foldr that is defined by

foldr f i [] = i

foldr f i (a:b) = f a (foldr f i b)

and can be typed by (1→2→2)→2→[1]→2. If we take the term ‘foldr Add 1 [2, 3, 4]’, then it is

clear that this term should be typeable by the type int. When constructing the type assignment

for this term, the subterm ‘foldr Add’ is typed. As such, the type needed for Add cannot be

uniquely determined for this term: it is the second argument of foldr that forces the selection.

Since there is a chance of success, the type-checker should postpone the decision to reject

the term, and consider both possibilities simultaneously. This means that, formally, the term

foldr Add has two principal types (which is not the same as saying that its principal type is an

intersection).
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Summary

”When you know how to do it, Zuck, it’s very easy.

It’s like riding a bike.”

”No, no, people tend to devalue the sophistication of

their own special field.

It’s easy only because of all you know.”

– Philip Roth, The Anatomy Lesson (1983)

This thesis deals with a number of different notions of

type assignment that use intersection types, and it can

roughly be divided in three parts. The first part briefly

discusses definitions and properties of a number of

type assignment systems that were developed in the

past by other authors. The second and third part

contain results of the author’s research; notions of type

assignment defined for the lambda calculus are

presented in the second part and for Term Rewriting

Systems in the third part.

In the first chapter, Curry’s Type Assignment

System is discussed, the oldest en most elementary

type assignment system, in which type assignment is

decidable and all typeable terms are strongly

normalizable. This system has the principal type

property: all possible types for a term can be generated

from a specific type, by means of operations chosen

from a predefined collection. For Curry’s system this

collection consists entirely of type substitutions.

In chapter two a number of intersection type

assignment systems is discussed. The Coppo-Dezani

Type Assignment System (CD) in section 2.1 is a

generalization of Curry’s system in which it is possible

to type term-variables with more than one type. If the

set of terms is limited to those from the λI-calculus,

type assignment in this system is closed for

beta-equality. In section 2.2 three different

Coppo-Dezani-Venneri Type Assignment Systems

(CDV) are discussed; the main difference between

these and the CD-system is the addition of the type

constant ω. These systems are closed for beta-equality

for the full lambda calculus, and, therefore, type

assignment in these systems is undecidable. It is

possible to characterize the normalizing terms and the

terms that have a head normal form by means of the

assignable types. For one of these systems the

principal type property is proved; in order to do so,

restrictions have to be made. Next to type substitutions

the collection of operations allowed for this system

contains expansions on types as well.

In section 2.3 the Barendregt-Coppo-Dezani Type

Assignment System (BCD) is discussed, a

generalization of the CDV-systems in which it is

possible to give the same characterization of typeable

terms as in the CDV-systems. The generalization made

consists of treating ‘∩’ as a normal type constructor

and introducing a partial type inclusion relation (≤),

and it is made in order to prove completeness of type

assignment. The set of typeable terms is exactly the

same as in the CDV-systems, only the set of types that

can be assigned to a term is significantly bigger. The

construction of a filter lambda model and the definition

of a map from types to elements of this model (a

simple type interpretation) make the proof of

completeness possible: if the interpretation of the term

M is an element of the interpretation of the type σ,

then M is typeable with σ. Also, the BCD-system has

the principal type property. Next to type substitutions

and expansions on types the collection of operations

allowed for the BCD-system contains rises as well.

In chapter three two notions of type assignment are

discussed, the Milner Type Assignment System and

the Mycroft Type Assignment System, that are defined

for a primitive applicative (functional) programming

language. They differ from Curry’s system in the

extension of the lambda calculus with new syntactic

constructors that enable to express recursion and

polymorphism. Both systems have the principal type

property. Type assignment in Milner’s system is

decidable, in Mycroft’s system it is not.

The second part of this thesis starts with chapter

four, which contains the presentation of the Strict

Intersection Type Assignment System. It is a slight
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restriction of one of the CDV-systems and at the same

time a subsystem of the BCD-system: the set of

typeable terms is the same as in both the other systems,

and typeability in the strict system is therefore

undecidable too. All possible derivations in the

BCD-system can be built by first constructing a

derivation in the strict system and to use the type

inclusion relation ≤ afterwards. This system gives rise

to the definition of a strict filter lambda model, and

completeness of type assignment is proved using an

inference type interpretation instead of a simple type

interpretation. In chapter six it is proved that the strict

system too has the principal type property. The

collection of operations allowed for the strict system

consists of, next to type substitutions and expansions

on types, liftings as well, which is a restricted kind of

rise.

Chapter five contains the presentation of the

Essential Intersection Type Assignment System, a

small extension of the strict system and also a

restriction of the BCD-system. This notion of type

assignment is equivalent to BCD-type assignment, and

for this system it is even possible to prove

completeness of type assignment using a simple type

interpretation. The essential system also has the

principal type property; the collection of operations

allowed for is the same as for the strict system; only

the order in which operations can be used is different.

Chapter seven contains the presentation of a type

assignment system that, like the strict system, is a

restriction of the BCD-system. The restriction consists

of the elimination of the type constant ω, and gives rise

to the definition of a filter λI-model. Completeness of

type assignment for terms from the λI-calculus is

proved using this model, using a simple type

interpretation. Since the set of terms from the

complete λK-calculus that is typeable in this system is

exactly the set of strongly normalizable terms, type

assignment in this system is undecidable as well.

In chapter eight a Rank 2 Intersection Type

Assignment System is presented, that is based on the

CD-system and has a strong similarity with Milner’s

system. This system too has the principal type

property, and the operations allowed of are type

substitutions and type duplications, i.e. a simple kind

of expansion on types. Type assignment in this system

is decidable.

The third part of this thesis starts with the definition

of Applicative Term Rewriting Systems in chapter

nine, a kind of term rewriting systems that has a special

predefined function symbol (Ap). Terms in this class

of rewriting systems are not only constructed by means

of application, but also by supplying a function symbol

that has a certain arity with sufficient arguments.

The first notion of type assignment on the tree

representation of these rewriting systems is defined in

chapter ten, and is based on the Essential Type

Assignment System for the lambda calculus and

Milner’s way of dealing with recursion. The definition

of type assignment consists of defining an environment

that returns a type for every function symbol, and the

formulation of conditions that types assigned to the

tree representation of terms and rewrite rules have to

meet. Types that can be assigned to function symbols

in terms can be obtained from the types supplied by

the environment: they can be obtained by application

of the operations of type substitutions, expansions on

types, or liftings as defined for the strict system and the

essential system for the lambda calculus. In general,

the notion of type assignment in Term Rewriting

Systems does not have the property that types

assignable to terms are also assignable to terms that are

obtained by applying a rewrite rule (the

subject-reduction property).

In chapter eleven a notion of type assignment on

Left Linear Applicative Term Rewriting Systems is

defined in the same way as in chapter ten. This one,

however, uses Curry types and Mycroft’s way of

dealing with recursion and is, therefore, not a

restriction of the system in that chapter. This notion of

type assignment has the principal type property, and,

using the principal type of the left hand side of a

rewrite rule, a condition is formulated that is necessary

and sufficient to obtain the subject-reduction property.

The thesis is concluded with the presentation of a

notion of type assignment on Applicative Term

Rewriting Systems that uses Rank 2 intersection types,

and is a real restriction of the system defined in chapter
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ten. This notion of type assignment too has the

principal type property, and, using the principal type of

the left hand side of a rewrite rule, a condition is

formulated that is sufficient to obtain the

subject-reduction property.

Comparing the

different notions of type

assignment

In this thesis fifteen different notions of type

assignment are defined. As mentioned in the

introduction, there exists a very precise relation

between the various systems.
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There is an arrow in this picture from one turnstyle

to another if the system at the end of the arrow is an

extension of the system at the start: if B "M :σ holds

in the system at the start of the arrow, then B " M :σ

holds in the system at the end; the latter M is

sometimes obtained from the former one by

bracket-abstraction. To summarize the general

differences and similarities between the systems, we

emphasize the following:

• The set of typeable terms is the same in the

systems "CD and "−ω , and in the systems

"CDVR
, "CDVP

, "CDV , "S , "E and

"BCD , although, of course, the set of types

assignable to those terms differ.



178

• Type assignment is decidable in the systems

"C , "R , "ML , "CE
, and "RE

, and is

undecidable in the systems "CD , "CDVR
,

"CDVP
, "CDV , "S , "E , "−ω , "BCD ,

"Myc , and "E .

• For the systems "C , "R , "CDVP
, "S , "E ,

"−ω , "BCD , "ML , "Myc , "CE
, and

"RE
the principal type property is proved.

As mentioned in chapters four and five, a type

assignment system is called conservative over another

if the following is true:

Suppose all types occurring in B and σ are

in the set of types of the latter system.

Then, B " M :σ will hold in the former

system if and only if B " M :σ holds in

the latter.

Most of the extensions in the picture above are not

conservative extensions. In the following picture we

will show the true extensions that are not conservative.
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We will illustrate this picture by a list of examples.

The statements mentioned are derivable in the first

system, and not in the second. Let D = λx.xx, I =

λx.x, S = λxyz.xz(yz), K = λxy.x, R =

Fix r.λxy.(r (r y (λab.a))x), M = (let x = (λy.y) in

(xx)) ( ∼DI).

"BCD over "CDV : I :(σ→τ )→σ∩ρ→τ

"CDV over "CDVP
: K:σ→τ→σ

"BCD over "−ω : SK:τ→σ→σ

"−ω over "CD : I :(σ→τ )→σ∩ρ→τ

"CD over "R : ID:(σ→τ )∩σ→τ

"R over "C : DI :σ→σ

"E over "S : I :(σ→τ )→σ∩ρ→τ

"S over "CD : K:σ→ω→σ

"S over "CDVR
: K:σ→τ→σ

"Myc over "ML : RKI :ϕ

"ML over "C : M :σ→σ

"E over "RE
: I0:(σ→τ )→σ∩ρ→τ

In the following we will give a list of examples to

show the differences between incomparable systems.

As before, the statements mentioned are derivable in

the first system, and not in the second. Let E =

λxy.xy, R′ (x, y)→ R′ (R′ (y,K0), x), D
′ (x)→

Ap (x, x)

"ML versus "R : M :σ→σ

"R versus "ML : D:(σ→τ )∩σ→τ

"CE
versus "RE

: R′ (K0, I0):ϕ

"RE
versus "CE

: D′(I0):σ→σ

"CDVR
versus "CD : SK:τ→σ→σ

"CD versus "CDVR
: E:(σ→τ )→σ∩ρ→τ

"E versus "CDV : I :(σ→τ )→σ∩ρ→τ

"CDV versus "E : I :σ→ω

"CDVP
versus "CD : K:σ→ω→σ

"CD versus "CDVP
: I :(σ→τ )→σ∩ρ→τ

"CDVP
versus "S : I :σ→ω

"S versus "CDVP
: K:σ→τ→σ
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Using Intersection

Types for Term Graph

Rewriting Systems

As was remarked in the introduction, one of the

reasons to use intersection types is that we aim to

extend the notion of type assignment defined here to

one for Term Graph Rewriting Systems. Those

systems, presented in [Barendregt et al. ’87], are a

restricted kind of graph rewriting systems. In general,

graph rewriting is defined via presenting graph rewrite

rules: each rule consists of a left hand side graph, an

optional right hand side, and one or more redirections.

The main restriction made from general graph

rewriting systems to Term Graph Rewriting Systems is

to allow for only one redirection in a rewrite rule. A

term graph rewrite rule is a pair of rooted graphs, and

the only rewrite that is permitted by this rule is that of

replacing a graph that matches the left hand side graph

entirely by a copy of the right hand side in which

term-variables are replaced. So this kind of graph

rewriting corresponds to term rewriting, but allows of

sharing and cyclic structures.

Term graphs can be obtained from terms through

lifting them to graphs. This lifting consists of writing

terms as trees and of sharing variables that occur more

than once in the term that is lifted. Term graph rewrite

rules are obtained from term rewrite rules in very

much the same way: the left- and right hand side terms

of every term rewrite rule are lifted to term graphs, and

the nodes that represent variables occurring in both

terms are shared. If a variable appears in both the left

and right hand side, this operation will generate a

connected graph. Of course it is also possible to define

term graphs and term graph rewrite rules directly,

without first taking a term or term rewrite rule and

lifting it.

The extension of the notion of type assignment as

presented in this thesis for Applicative Term Rewriting

Systems to a system for Term Graph Rewriting

Systems is straightforward. Problems only arise when

properties of such a notion should be proved, like, for

example, the principal type property. Since graphs

cannot be defined inductively (not even the subclass of

term graphs can), it is not possible to define the

principal pair for a graph inductively as done in, for

example, chapter twelve. However, there exists an

easy, straightforward translation of term graphs to

(possibly infinite) trees that is called unraveling, and

type assignment on term graphs could be defined via

type assignment on the (unravelled) trees the same way

as in this thesis. The concept of sharing itself causes

no difficulties, since a shared node can be typed in the

same way as in the corresponding tree, and when the

graph is reconstructed, types assigned to

corresponding nodes should be intersected. In an

implementation this will imply that the type

assignment algorithm need not care about types that

are already assigned to a node when it is visited.

The only problem arises when the graph itself is

allowed to have a cyclic structure, which causes the

unraveling to generate an infinite tree. Then it is

possible that the (infinite number of) copies of a node

are all typed with different types, thus creating an

intersection over an infinite number of types for the

type assignment to the term graph. One solution for

this problem would be to detect cyclic structures while

unraveling. Cyclic nodes could then be typed with, at

the most, the same number of types as the number of

in-going edges.



180

Conclusion

There is a great number of intersection type

assignment systems defined in this thesis. For the

greater part, only the syntactical aspects of type

assignment are investigated, like the set of typeable

terms, the principal type property, and decidability of

type assignment.

We have seen that Curry’s Type Assignment System

has the principal type property, type assignment is

decidable, and all typeable terms are strongly

normalizable; unfortunately, however, the set of

typeable terms is rather small.

The various intersection type assignment systems

(like the Coppo-Dezani system, the three different

Coppo-Dezani-Venneri systems, and the

Barendregt-Coppo-Dezani system) are all far more

general type assignment systems than Curry’s system.

The set of terms typeable in the latter two with a type

different from the type constant ω is just the set of

terms having a head normal form, and the set of terms

typeable without ω in basis and conclusion is the set of

normalizable terms. Moreover, the CDV- and

BCD-systems are closed for β-equality. The results of

chapter seven show that, if ω is not used at all (like in

the CD-system), the set of terms typeable is exactly the

set of strongly normalizable terms. We have seen the

development of those intersection type assignment

systems of which the BCD-system was the final one,

and it is also the most frequently used and quoted.

From the functional languages point of view the

disadvantages of these intersection systems are,

however, great. Type assignment in all those systems is

undecidable, and especially the BCD-system is very

general: because of the ≤-relation on types it is not

easy to really understand the relation between all types

assignable to a term. The Strict Type Assignment

System, which is defined as a restriction of the

BCD-system a couple of years after the BCD-paper

was published, is in fact closer to the CDV-systems

than to the BCD-system. It is strict in more than one

aspect: it is strict in the sense that it has just enough

power to type all CDV- and BCD-typeable terms, and

is restricted since it is not closed for η-reduction.

The results of chapters four and six actually show

that the extension made in the CDV-systems to obtain

the BCD-system was to general. To obtain the major

results of the BCD-paper, it is sufficient to treat ω not

as a type-variable as done in the CDV-systems but as

an empty intersection, and to use a relation on types

that is induced in a natural way by intersections and by

defining ω as the universal type. To prove

completeness of type assignment it is sufficient to use

the strict filter lambda model (Engeler’s model DA)

and the inference type semantics. The results of

chapter five for the Essential Type Assignment System

show that even if the simple type semantics are

preferred, the completeness result can be obtained via

a filter lambda model that is defined using a relation on

types that is just a small extension of the relation

defined for the strict system.

Even the fact that the BCD-system has the principal

type property does not speak in its favour, since both

the strict system and the essential one have the same

property.

Implementation of type inference algorithms using

intersection types is complicated. Even implementing

a partial type assignment algorithm that is only

supposed to terminate on terms that have a normal

form is not as straightforward as in other systems; the

main source of the problems is the operation of

expansion. There are various ways of restricting

intersection type assignment systems in order to obtain

decidable type assignment. The one studied in this

thesis, the Rank 2 system, is the smallest restriction

imaginable to have intersection types. It has the

following advantages: the complexity of this system is

manageable, it has the principal type property, type

assignment is decidable, it is close to Milner’s notion

of type assignment, it is sufficiently powerful to

express overloading operators, and it can type a larger

class of objects. Therefore, it seems reasonable to use

this notion of type assignment in (functional)
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programming languages.

The notions of type assignment on Applicative Term

Rewriting Systems as defined in this thesis use the

approach for similar systems for the lambda calculus.

They show that it is possible to define such a notion for

reduction systems that are more general than that

calculus, and that are more close to (functional)

programming languages. The Applicative Term

Rewriting Systems differ from these languages in that

there are almost no restrictions on the structure of

possible left hand sides of function definitions. The

results of chapter ten show that defining such a notion

is straightforward, but that, unfortunately, the

subject-reduction property is lost. Since this property

is vital for reduction systems, two less general notion

of type assignment are defined in chapters eleven and

twelve. The first is very close to notions of type

assignment used for functional programming

languages at this moment and a condition is

formulated that typeable rewrite rules should satisfy in

order to obtain subject reduction. In these systems type

assignment is decidable, both these notions of type

assignment have the principal type property, and, using

the principal type of the left hand side of a rewrite rule,

a condition is formulated that is sufficient to obtain the

subject-reduction property.
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Samenvatting

Dit proefschrift behandelt een aantal verschillende

noties van typering die gebruik maken van

intersectietypes en kan ruwweg worden opgedeeld in

drie onderdelen. Het eerste deel behandelt in het kort

de definities en eigenschappen van een aantal

typeringssystemen die door andere auteurs in het

verleden zijn ontwikkeld. Het tweede en derde deel

bevatten het resultaat van eigen onderzoek en

presenteren noties van typering gedefinieerd voor de

lambda calculus in het tweede deel en noties voor

termherschrijfsystemen in het derde deel.

In het eerste hoofdstuk wordt Curry’s

typeringssysteem besproken, het oudste en meest

simpele typeringssysteem, waarin typering beslisbaar

is en alle typeerbare termen strek normaliserend zijn.

Dit systeem heeft de voornaamste typeëigenschap

(principal type property): alle mogelijke types voor

een term kunnen uit een zeker gegeven type worden

gegenereerd door middel van operaties gekozen uit een

vooraf gedefinieerde collectie. Voor Curry’s systeem

bestaat deze collectie volledig uit typesubstituties.

In hoofdstuk twee worden een aantal

intersectietyperingssystemen besproken. Het Coppo -

Dezani systeem (CD) in sectie 2.1 is een generalisatie

van Curry’s systeem waarin het mogelijk is

termvariabelen met meer dan één type te typeren.

Wanneer de verzameling termen beperkt wordt tot die

uit de λI-calculus, is typering in dit systeem gesloten

voor beta-gelijkheid. In sectie 2.2 worden drie

verschillende Coppo - Dezani - Venneri systemen

(CDV) besproken; het belangrijkste verschil tussen

deze en het CD-systeem is de toevoeging van de

typeconstante ω. Deze systemen zijn gesloten voor

beta-gelijkheid voor de volledige lambda calculus, en

daarmee is typering binnen deze systemen

onbeslisbaar. Het is mogelijk de normaliserende

termen en de termen die een kop-normaal vorm (head

normal form) hebben, te karakteriseren door middel

van de toewijsbare types. Voor één van deze systemen

wordt de voornaamste typeëigenschap bewezen;

daartoe moeten echter aan het systeem beperkingen

worden opgelegd. De collectie van toegestane

operaties voor dit systeem bestaat buiten

typesubstituties ook uit expansies op types.

In sectie 2.3 wordt het Barendregt - Coppo - Dezani

systeem (BCD) besproken, een generalisatie van de

CDV-systemen waarin het mogelijk is eenzelfde

karakterisering van typeerbare termen te geven. De

uitgevoerde generalisatie bestaat uit het behandelen

van ‘∩’ als een volwaardige typeconstructor en het

introduceren van een partiële type inclusie relatie (≤)

en wordt gemaakt teneinde volledigheid van

typetoekenning te bewijzen. De verzameling van

typeerbare termen is exact gelijk aan die van de

CDV-systemen, alleen de verzameling van de types die

kunnen worden toegekend aan een term is beduidend

groter. De constructie van een filter lambda model en

de definitie van een afbeelding van types naar

elementen van dit model (een simpele

typeı̈nterpretatie) maakt het bewijs voor volledigheid

mogelijk: als de interpretatie van de term M een

element is van de interpretatie van het type σ, dan is

M typeerbaar met σ. Ook het BCD-systeem bezit de

voornaamste typeëigenschap. De collectie van

toegestane operaties voor het BCD-systeem bestaat

buiten typesubstituties en expansies op types ook uit

typeverheffingen.

In hoofdstuk drie worden twee noties van typering

besproken, het Milner systeem en het Mycroft

systeem, die gedefinieerd zijn voor een primitieve

applicatieve (functionele) programeertaal. Ze

onderscheiden zich van Curry’s systeem door de

uitbreiding van de lambda calculus met nieuwe

syntactische constructoren voor het kunnen uitdrukken

van recursie en polymorfie. Beide systemen bezitten de

voornaamste typeëigenschap. Typering binnen Milners

systeem is beslisbaar, binnen Mycrofts systeem niet.

Het tweede deel van dit proefschrift begint met

hoofdstuk vier, dat de presentatie van het stricte

intersectietype systeem bevat, welk een lichte

beperking vormt van één van de CDV-systemen en
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daarmee een deelsysteem is van het BCD-systeem: de

verzameling van de typeerbare termen is dezelfde als

in beide andere systemen en typeerbaarheid in het

stricte systeem is daarmee dan ook onbeslisbaar. Alle

mogelijke afleidingen binnen het BCD-systeem

kunnen worden opgebouwd door eerst een afleiding in

het stricte systeem te maken en daarna de type inclusie

relatie ‘≤’ te gebruiken. Dit systeem geeft aanleiding

tot de definitie van een strict filter lambda model en

volledigheid van typetoekenning wordt bewezen door

in plaats van een simpele typeı̈nterpretatie de inferentie

typeı̈nterpretatie te gebruiken. In hoofdstuk zes wordt

aangetoond dat ook het stricte systeem de voornaamste

typeëigenschap bezit. De collectie van toegestane

operaties voor het stricte systeem bestaat buiten

typesubstituties en expansies op types ook uit

typeoptillingen, een beperkte vorm van

typeverheffingen.

Hoofdstuk vijf bevat de presentatie van het

essentiële intersectie systeem, een kleine uitbreiding

van het stricte systeem en eveneens een beperking van

het BCD-systeem. Deze notie van typering is

equivalent aan BCD-typering en het is mogelijk zelfs

voor dit systeem volledigheid van typetoekenning te

bewijzen met behulp van een simpele typeı̈nterpretatie.

Eveneens het essentiële systeem bezit de voornaamste

typeëigenschap; de collectie van toegestane operaties

is dezelfde als voor het stricte systeem, alleen de

volgorde waarin operaties mogen worden toegepast

verschilt.

Hoofdstuk zeven bevat de presentatie van een

typeringssysteem dat, zoals het stricte systeem, een

beperking vormt van het BCD-systeem. De beperking

bestaat uit het verwijderen van de typeconstante ω, en

geeft aanleiding tot de definitie van een filter

λI-model. Volledigheid van typetoekenning voor

termen uit de λI-calculus wordt met behulp van dit

model bewezen, gebruikmakend van een simpele

typeı̈nterpretatie. De verzameling termen uit de

volledige λK-calculus die typeerbaar zijn binnen dit

systeem is precies de verzameling van de sterk

normaliserende termen, en daarmee is ook binnen dit

systeem typering onbeslisbaar.

In hoofdstuk acht wordt een rang 2

intersectietyperingssysteem gepresenteerd, dat

gebaseerd is op het CD-systeem en sterke

overeenkomst vertoont met het Milner systeem. Ook

dit systeem heeft de voornaamste typeëigenschap, en

de toegestane operaties zijn typesubstituties en

typeduplicaties, een eenvoudige vorm van expansie

van types. Typering binnen dit systeem is beslisbaar.

Het derde deel van dit proefschrift begint met de

definitie van applicatieve termherschrijfsystemen in

hoofdstuk negen, een soort termherschrijfsystemen die

een speciaal, voorgedefinieerd functiesymbool (Ap)

bevatten. Termen in deze klasse van

herschrijfsystemen worden niet alleen door middel van

applicatie geconstrueerd, maar ook door een

functiesymbool met een zekere ariteit van voldoende

argumenten te voorzien.

De eerste notie van typering op de

boomrepresentatie van deze herschrijfsystemen wordt

gedefinieerd in hoofdstuk tien, en is gebaseerd op het

essentiële typeringssysteem voor de lambda calculus

en de manier van omgaan met recursie zoals gebruikt

in Milners systeem. De definitie van typering bestaat

uit het geven van een omgeving die voor elk

functiesymbool een type levert en het formuleren van

condities waaraan types toegekend aan de

boomrepresentatie van termen en herschrijfregels

moeten voldoen. De types die kunnen worden

toegekend aan functiesymbolen in termen kunnen

worden verkregen uit de types geleverd door de

omgeving: ze kunnen worden verkregen door

toepassing van de operaties typesubstituties, expansies

op types en typeoptillingen zoals gedefinieerd voor het

stricte systeem en het essentiële systeem voor de

lambda calculus. In het algemeen bezit de notie van

typering in termhershrijf systemen niet de eigenschap

dat types toekenbaar aan termen ook toekenbaar zijn

aan termen die ontstaan door het toepassen van een

herschrijfregel (de subject-reductie eigenschap).

In hoofdstuk elf wordt op dezelfde manier als in

hoofdstuk tien een notie van typering op links lineaire

applicatieve termherschrijfsystemen gedefinieerd.

Deze maakt echter gebruik van Curry types en de

manier van omgaan met recursie zoals gebruikt in

Mycrofts systeem en vormt daarom dan ook geen
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beperking van het systeem uit dat hoofdstuk. Deze

notie van typering bezit de voornaamste

typeëigenschap en met behulp van het voornaamste

type van de linkerkant van een herschrijfregel wordt

een conditie geformuleerd die noodzakelijk en

voldoende is voor het verkrijgen van de

subject-reductie eigenschap.

Het proefschrift wordt afgesloten met de presentatie

van een notie van typering op applicatieve

termherschrijfsystemen dat gebruik maakt van rang 2

intersectietypes en een echte beperking is van het

systeem gedefinieerd in hoofdstuk twaalf. Ook deze

notie van typering bezit de voornaamste

typeëigenschap en met behulp van het voornaamste

type van de linkerkant van een herschrijfregel wordt

een conditie geformuleerd die voldoende is voor het

verkrijgen van de subject-reductie eigenschap.
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