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Abstract

In this paper we study normalization properties of rewrite systems that are typeable using
intersection types with ω and with sorts. We prove two normalization properties of typeable
systems. On one hand, for all systems that satisfy a variant of the Jouannaud-Okada Recur-
sion Scheme, every term typeable with a type that is not ω is head normalizable. On the
other hand, non-Curryfied terms that are typeable with a type that does not contain ω, are
normalizable.

Introduction

In the study of termination of reduction systems, the notion of types has played an important
role. A well explored area in this aspect is that of the Lambda Calculus (LC). For LC, there
exists a well understood notion of type assignment, known as the Curry Type Assignment Sys-
tem [8], which expresses abstraction and application, and introduces →-types. A well-known
result for this system is that all typeable terms are strongly normalizable. Another notion
of type assignment for LC for which the relation between typeability and normalization has
been studied profoundly, is the Intersection Type Discipline (the BCD-system), as presented
in [7], that is an extension of Curry’s system. The extension consists of allowing more than
one type for term-variables and adding a type constant ‘ω’, and, next to the type constructor
‘→’, the type constructor ‘∩’. The set of lambda terms having a head normal form, the set of
lambda terms having a normal form, and the set of strongly normalizable lambda terms can
all be characterized by the set of their assignable types.

In this paper, instead of studying the problem of termination using types in the setting
of LC, the approach taken will be to study the desired property directly on the level of a
programming language with patterns, i.e. in the world of term rewriting systems (TRS). For
this purpose, in this paper we define a notion of type assignment on Curryfied TRS (CTRS)
that uses intersection types (the system without the type constructors ∩ and ω is a particular
case; more rules and terms are typeable in the intersection system). CTRS are defined as a
slight extension of the TRS defined in [9, 12]. The language of the CTRS is first order (i.e. every
function symbol has a fixed arity) but CTRS are assumed to contain a notion of application
Ap, that allows partial application (Curryfication) of function symbols in the setting of a first
order language.

Unlike typeable terms in LC, typeable terms in CTRS need not be normalizable (consider
a typeable term t and a rule t → t). In order to ensure head normalization of typeable terms
in CTRS we will impose some syntactical restrictions on recursive rules, inspired by the re-
cursive scheme defined by Jouannaud and Okada in [11]. This kind of recursive definitions
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was presented for the incremental definition of higher order functionals based on first order
definitions, such that the whole system is terminating. The general scheme of Jouannaud and
Okada was also used in [5] and [6] for defining higher order functions compatible with differ-
ent lambda calculi, as well as in [4] to obtain a strong normalization result for CTRS that are
typeable using ω-free intersection types. The main difference between the recursive scheme
for CTRS defined in [4] and the one defined in this paper, is that here the patterns of recursive
rules are constructor terms, which have sorts as types. It is worth noticing that without this
condition, the recursive scheme of [4] does not ensure head normalization of typeable terms
in intersection systems with ω (see examples in Section 3.1).

We will prove (using the well-known method of Computability Predicates [13, 10]) that for
all typeable CTRS satisfying the variant of the scheme that is defined in this paper, every
typeable term has a head normal form. We will also show that if Curryfication is not allowed,
then terms whose type does not contain ω are normalizable. These results, together with
the strong normalization result of [4], complete the study of the normalization properties of
typeable CTRS in intersection type systems.

In [3] and [2] two partial intersection type assignment systems for TRS are presented. Apart
from differences in syntax, the system we present here is the first one extended with type
constants (called sorts). The system of [2] is a decidable restriction of the one presented here
(the restriction lies in the structure of types). In [5] a partial type assignment system for higher
order rewrite systems that uses intersection types and sorts (but not ω) is defined. It differs
from ours in that function symbols are strongly-typed with sorts only, whereas we allow for
types to contain type-variables as well, and in this way we can model polymorphism.

We define CTRS in Section 1, and the intersection type assignment system in Section 2. In
Section 3 we study head normalization and normalization of typeable CTRS.

1 Curryfied Term Rewriting Systems

We will define Curryfied Term Rewriting Systems (CTRS) (an extension of the TRS defined in
[9, 12]), as first order TRS that allow partial application of function symbols. They were first
defined in [4].

Definition 1.1 An alphabet or signature Σ consists of:
i) A countable infinite set X of variables x1, x2, x3, . . . (or x, y, z, x′, y′, . . . ).

ii) A non-empty set F of function symbols F, G, . . . , each equipped with an ‘arity’.
iii) A special binary operator, called application (Ap).

Definition 1.2 The set T(F,X ) of terms (or expressions) is defined inductively:
i) X ⊆ T(F,X ).

ii) If F ∈ F ∪ {Ap} is an n-ary symbol (n≥ 0), and t1, . . . , tn ∈ T(F,X ), then F(t1, . . . , tn) ∈ T(F,X ).
The ti (i = 1, . . . , n) are the arguments of the last term.

Definition 1.3 A replacement R is a map from T(F,X ) to T(F,X ) satisfying R(F(t1, . . . , tn)) =
F (R(t1), . . . , R(tn)) for every n-ary function symbol F (here n ≥ 0). So, R is determined by
its restriction to the set of variables, and sometimes we will use the notation {x1 �→ t1, . . . ,
xn �→ tn} to denote a replacement. We also write tR instead of R(t).

Definition 1.4 i) A rewrite rule is a pair (l, r) of terms in T(F,X ). Often, a rewrite rule will
get a name, e.g. r, and we write r : l → r. Three conditions will be imposed: l is not a
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variable, the variables occurring in r are contained in l, and if Ap occurs in l, then r is of
the shape:

Ap (Fn−1 (x1, . . . , xn−1), xn) → F (x1, . . . , xn).
ii) The systems we consider are Curry-closed, i.e. for every rewrite rule with left hand-side

F(t1, . . . , tn) there are n additional rewrite rules:
Ap (Fn−1 (x1, . . . , xn−1), xn) → F (x1, . . . , xn)

...
Ap (F0, x1) → F1 (x1)

Fn−1, . . . , F0 are the Curryfied versions of F.
iii) A rewrite rule r : l → r determines a set of reductions lR → rR for all replacements R. The

left hand side lR is called a redex; it may be replaced by its ‘contractum’ rR inside a context
C[ ]; this gives rise to rewrite steps: C[ lR ] →r C[ rR ]. Concatenating rewrite steps we have
rewrite sequences t0 → t1 → t2 → ·· ·. If t0 → ·· · → tn we also write t0 →∗ tn, and tn is a
rewrite or reduct of t0.

iv) A Curryfied Term Rewriting System (CTRS) is a pair (Σ, R) of an alphabet Σ and a set R
of rewrite rules. We write t →R t′, if there is a r ∈ R such that t →r t′. The symbol →∗

R

denotes the reflexive and transitive closure of →R . Terms that contain neither Curryfied
versions of symbols, nor Ap, will be called non-Curryfied terms.

In this paper we will restrict ourselves to CTRS that satisfy the Church-Rosser property (also
known as confluence), that is formulated by:

If t →∗ u, and t →∗ v, then there exists w such that u →∗ w, and v →∗ w.

There are several syntactic restrictions that can be posed in rules and reduction strategies so
that this property is obtained (see e.g. [12]).

We take the view that in a rewrite rule a certain symbol is defined; it is this symbol to which
the structure of the rewrite rule gives a type.

Definition 1.5 i) In a rewrite rule, the leftmost, outermost symbol in the left hand side that
is not an Ap, is called the defined symbol of that rule.

ii) If the symbol F is the defined symbol of the rewrite rule r, then r defines F.
iii) F is a defined symbol, if there is a rewrite rule that defines F.
iv) Q ∈ F is called a constructor or constant symbol if Q is not a defined symbol.

Definition 1.6 We assume that rewrite rules are not mutually recursive. A TRS whose depen-
dency-graph is an ordered cycle-free graph, is called a hierarchical TRS. The rewrite rules of a
such a TRS can be regrouped such that they are incremental definitions of the defined symbols
F1, . . . , Fk, so that the rules defining Fi only depend on F1, . . . , Fi−1.

Example 1.7 Our definition of recursive symbols, using the notion of defined symbols, is dif-
ferent from the one normally considered. Since Ap is never a defined symbol, the following
rewrite system

D (x) → Ap (x, x)
Ap (D0, x) → D (x)

is not considered a recursive system. Notice that, for example, the term D (D0) has no normal
form (these terms play the role of (λx.xx)(λx.xx) in the LC). This means that, in the formalism
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of this paper, there exist non-recursive first-order rewrite systems that are not normalizing.

Definition 1.8 i) A term is neutral if it is not of the form Fi (t1, . . . , ti), where Fi is a Curryfied
version of a function symbol F.

ii) A term is in normal form if it is irreducible.
iii) A term t is in head normal form if for all t′ such that t →∗ t′:

a) t′ is not itself a redex, and
b) if t′ = Ap(v,u) then v is in head normal form.

iv) A term is in constructor-hat normal form if either
a) it has the form Ap(t1, t2) and t1 is in constructor-hat normal form, or
b) it has the form C[u1, . . . ,un] where C is a context (possibly empty) that contains only

constructor symbols, and for 1≤ i≤n, ui cannot be reduced to a term of the form
C′(s1, . . . , si) where C′ is a constructor.

v) A term is (head, respectively constructor-hat) normalizable if it can be reduced to a term in
(head, respectively constructor-hat) normal form. A rewrite system is strongly normalizing
(or terminating) if all the rewrite sequences are finite; it is (head, respectively constructor-hat)
normalizing if every term is (head, respectively constructor-hat) normalizable.

Example 1.9 Take the rules F (G, H) → A, and B (C) → G, then F (B (C), H) is not a redex.
But it is neither a head-normal form nor a constructor-hat normal form, since it reduces to
F (G, H), which is a redex and reduces to A which is a constructor.

The notations In-Chnf (t), In-Hnf (t) and In-Nf (t) will indicate that t is in constructor-hat
normal form, in head normal form, and in normal form, respectively. The notations CHN (t),
HN (t) and N (t) will indicate that t is constructor-hat normalizable, head normalizable, and
normalizable, respectively.

Lemma 1.10 i) HN (Ap (t, x)) ⇒ HN (t), and CHN (Ap (t, x)) ⇒ CHN (t).
ii) t is neutral & In-Hnf (t) ⇒ ∀ u [In-Hnf (Ap (t,u))].

t is neutral & In-Chnf (t) ⇒ ∀ u [In-Chnf (Ap (t,u))]
iii) t is neutral ⇒ ∀ u [Ap (t,u) is neutral].

2 Intersection types and type assignment

Strict types are the types that are strictly needed to assign a type to a term in the system
presented in [7] (see also [1]). In the set of strict types, intersection type schemes and the type
constant ω play a limited role. We will assume that ω is the same as an intersection over
zero elements: if n = 0, then σ1 ∩ · · · ∩ σn ≡ω, so ω does not occur in an intersection subtype.
Moreover, intersection type schemes (so also ω) occur in strict types only as subtypes of the
left hand side of an arrow type scheme. In this paper we will consider strict types over a set
S of sorts (constant types).

Definition 2.1 i) Ts, the set of strict types, is inductively defined by:
a) All type-variables ϕ0, ϕ1, . . . ∈ Ts.
b) All sorts s1, . . . , sn ∈ Ts.
c) If τ, σ1, . . . ,σn ∈ Ts (n ≥ 0), then σ1 ∩ · · · ∩ σn→τ ∈ Ts.

ii) TS is defined by: If σ1, . . . ,σn ∈ Ts (n ≥ 0), then σ1 ∩ · · · ∩ σn ∈ TS.
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iii) On TS, the relation ≤S is defined by:
a) ∀ 1≤ i≤n (n ≥ 1) [ σ1 ∩ · · · ∩ σn ≤S σi ].
b) ∀ 1≤ i≤n (n ≥ 0) [ σ ≤S σi ] ⇒ σ ≤S σ1 ∩ · · · ∩ σn.
c) σ ≤S τ ≤S ρ ⇒ σ ≤S ρ.

iv) We define ≤ on TS like ≤S , by adding an extra alternative.
d) ρ ≤ σ & τ ≤ µ ⇒ σ→τ ≤ ρ→µ.

v) We define the relation ∼ by: σ ∼ τ ⇐⇒ σ ≤ τ ≤ σ.

TS may be considered modulo ∼ . Then ≤ becomes a partial order, and in this paper we
consider types modulo ∼ .

Throughout this paper, the symbol ϕ (often indexed) will be a type-variable. Greek symbols
like α, β, γ, µ, ν, η, ρ, σ and τ will range over types. Unless stated otherwise, if σ1 ∩ · · · ∩ σn
is used to denote a type, then all σ1, . . . ,σn are assumed to be strict. Notice that Ts is a proper
subset of TS.

Definition 2.2 A basis is a set of statements of the shape ‘x:σ’, where x is a term-variable, and
σ ∈ TS\ω. If B1, . . . Bn are bases, then Π{B1, . . . Bn} is the basis defined as follows: x:σ1∩· · ·∩σm ∈
Π{B1, . . . Bn} if and only if {x:σ1, . . . , x:σm} is the set of all statements about x that occur in
B1 ∪ · · · ∪ Bn.

We will often write B∪ {x:σ} for the basis Π{B, {x:σ}}, when x does not occur in B.

Partial intersection type assignment on a CTRS CuTRS will be defined as the labelling of
nodes and edges in the tree-representation of terms and rewrite rules with types in TS. All
function symbols are assumed to have a type, that is produced by an environment.

Our notion of type assignment is based on the definition of (chains of) three operations on
types (pairs of basis and type), called substitution, expansion and lifting. Substitution is the
operation that instantiates a type (i.e. that replaces type variables by types). The operation of
expansion replaces types by the intersection of a number of copies of that type. The operation
of lifting replaces basis and type by a smaller basis and a larger type, in the sense of ≤. See
[3] for formal definitions.

Definition 2.3 Let CuTRS be a CTRS, and E an environment.
i) We say that t ∈ T(F,X ) is typeable by σ ∈ TS with respect to E , if there exists an assignment

of types to edges and nodes that satisfies the following constraints:
a) The root edge of t is typed with σ; if σ = ω, then the root edge is the only thing in the

term-tree that is typed.
b) The type assigned to a function node containing F ∈ F ∪{Ap} (where F has arity

n ≥ 0) is τ1∩· · ·∩τm, if and only if for every 1≤ i≤m there are σi
1, . . . , σi

n ∈ TS, and
σi ∈ Ts, such that τi = σi

1→·· ·→σi
n→σi, the type assigned to the j-th (1≤ j≤n) out-

going edge is σ1
j ∩· · ·∩σm

j , and the type assigned to the incoming edge is σ1∩· · ·∩σm.

�
σ1∩· · ·∩σm

F:(σ1
1→·· ·→σ1

n→σ1) ∩· · ·∩ (σm
1 →·· ·→σm

n →σm)
�����

σ1
1∩· · ·∩σm

1 �
�

�
��

σ1
2∩· · ·∩σm

2

�
�
�
��
σ1

n−1∩· · ·∩σm
n−1

����	
σ1

n∩· · ·∩σm
n. . .
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c) If the type assigned to a function node containing F ∈ F ∪{Ap} is τ, then there is a
chain C, such that C (E (F)) = τ.

ii) Let t ∈ T(F,X ) be typeable by σ with respect to E . If B is a basis such that for every
statement x:τ occurring in the typed term-tree there is a x:τ′ ∈ B such that τ′ ≤ τ, we
write B �E t:σ.

Example 2.4 For every occurrence of Ap in a term-tree, there are σ1, . . . ,σn and τ1, . . . ,τn such
that the following is part of the term-tree.

�τ1∩· · ·∩τn
Ap: ((σ1→τ1)→σ1→τ1) ∩ · · · ∩ ((σn→τn)→σn→τn)



�(σ1→τ1) ∩ · · · ∩ (σn→τn) �� σ1 ∩ · · · ∩ σn

As in [3] we can prove:

Lemma 2.5 i) If B �E t:σ, and B′ ≤ B, then B′ �E t:σ.
ii) If B �E t:σ, and σ ≤ τ, then B �E t:τ.

iii) If B �E Ap (t,u):σ, σ ∈ Ts, then there exist τ, such that B �E t:τ→σ, and B �E u:τ.
iv) B �E t:σ1 ∩ · · · ∩ σn ⇐⇒ ∀ 1≤ i≤n [B �E t:σi].
v) B �E Fn(t1, . . . , tn):σ & σ ∈ Ts ⇒ ∃ α ∈ TS, β ∈ Ts [σ = α→β].

In [3] a sufficient condition was formulated in order to ensure the subject reduction property:
type assignment on rewrite rules was there defined using the notion of principal pair for a
typeable term.

Definition 2.6 Let t ∈ T(F,X ). A pair 〈P,π〉 is called a principal pair for t with respect to E , if
P �E t:π and for every B, σ such that B �E t:σ there is a chain C such that C (〈P,π〉) = 〈B,σ〉.

Definition 2.7 Let (Σ, R) be a CTRS, and E an environment.
i) We say that l → r ∈ R with defined symbol F is typeable with respect to E , if there are basis

P, type π ∈ Ts, and an assignment of types to nodes and edges such that:
a) 〈P,π〉 is a principal pair for l with respect to E , and P �E r:π.
b) In P �E l:π and P �E r:π, all nodes containing F are typed with E (F).

ii) We say that (Σ, R) is typeable with respect to E , if every r ∈ R is typeable with respect to E .

To guarantee the subject reduction property, in this paper we accept only those rewrite rules
l → r, that are typeable according to the above definition. As in [3], it is then possible to prove:

Theorem 2.8 (Subject Reduction) For all replacements R, bases B and types σ: if B �E lR:σ, then
B �E rR:σ, so: if B �E t:σ, and t →∗

R t′, then B �E t′:σ.

3 Normal Forms and Head Normal Forms

In [4] we introduced a class of CTRS that are strongly normalizing on terms that are typeable
without using the constant ω. In this section we will study normalization properties of CTRS
in a type assignment system with ω and sorts.

Since typeability alone is not sufficient to ensure any normalization property, we will impose
syntactic restrictions on the rules. As a consequence of the results of this section, the class of
typeable non-recursive CTRS is head-normalizing on terms whose type is not ω, and normaliz-
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ing on non-Curryfied terms whose type does not contain ω. To appreciate the non-triviality of
this statement, remember Example 1.7: a non-recursive CTRS may be not head-normalizing.
In fact, the main result of this section (every term whose type is not ω is head-normalizable)
shows that the term D (D0) is only typeable with ω.

But we will actually prove a stronger result: we will characterize a class of recursive def-
initions for which the same normalization properties hold. These results, together with the
previous strong normalization result presented in [4], complete the study of the normalization
properties of typeable rewrite systems in the intersection type assignment system.

The converse of our result does not hold: not every (head-)normalizable term is typeable.
Take for example the strongly normalizing rewrite system

I (x) → x,
K (x,y) → x,
F (I0) → I0,
F (K0) → K0.

It is not possible to give an environment such that these rules can be typed, since there is no
type σ that is a type for both I and K.

3.1 Head-normalization

In [4] we studied systems that define recursive functions satisfying the general scheme be-
low. This scheme was inspired by [11] where generalized primitive recursive definitions were
shown strongly normalizing when combined with typed LC. The same results were shown in
[5] in the context of type assignment systems for LC and in [6] for the Calculus of Construc-
tions.

Definition 3.1 (General scheme) Let Fn = Q∪{F1, . . . , Fn}, where F1, . . . , Fn are the defined
symbols of the signature that are not Curryfied-versions, and assume that F1, . . . , Fn are
defined in an incremental way. Suppose, moreover, that the rules defining F1, . . . , Fn satisfy
the general scheme:

Fi (C
⇀
[x⇀],y⇀) → C′[Fi (C

⇀
1[x
⇀
],y⇀), . . . , Fi (C

⇀
m[x

⇀
],y⇀), x⇀,y⇀],

where x⇀, y⇀ are sequences of variables, and x⇀ ⊆ y⇀. Also, C
⇀

[ ], C′[ ], C
⇀

1[ ], and C
⇀

m[ ] are
sequences of contexts in T(Fi−1,X ), and C

⇀
[x⇀] >mul C

⇀

j[x
⇀
] (1≤ j≤m), where < is the strict

subterm ordering and mul denotes multiset extension.
The rules defining F1, . . . , Fn and their Curry-closure together form a safe recursive system.

This general scheme imposes some restrictions on the definition of functions: the terms
in every Cj

⇀
[x⇀] are subterms of terms in C

⇀
[x⇀] (this is the ‘primitive recursive’ aspect of the

scheme), and the variables x⇀ must also appear as arguments in the left-hand side of the rule.
It is worthwhile noting that the rewrite rules of Combinatory Logic are not recursive, so, in

particular, satisfy the scheme. Therefore, although the severe restriction imposed on rewrite
rules, the systems satisfying the scheme still have full Turing-machine computational power,
a property that first-order systems without Ap would not possess.

In a type assignment system without ω, the conditions imposed by the general scheme are
sufficient to ensure strong normalization of typeable terms [4]. Unfortunately, the general
scheme is not enough to ensure head normalization of typeable terms in a type system with
ω: take the rewrite system
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F (C (x)) → F (x),
A (x,y) → Ap (y, Ap (Ap (x, x),y))

that is typeable with respect to the environment

E (F) = ω→σ,
E (C) = ω→σ,
E (A) = ((α→µ→β)∩α)→((β→ρ)∩µ)→ρ,

Then B �E F (A (A0,C0)):σ, but F (A (A0,C0))→∗
R F (C (A (A0,C0)))→R F (A (A0,C0)). The

underlying problem is that, using full intersection types, there are two kinds of typeable
recursion in CTRS: the one explicitly present in the syntax, as well as the one obtained by the
so-called fixed-point combinators; for every G that has type ω→σ, the term A (A0, G0) has type
σ, and A (A0, G0)→∗

R G (A (A0, G0)).
So, we need to impose stronger conditions on the scheme. We will consider those CTRS

having an alphabet with a set C of constructors, such that constructors are given arrow-ground
types in all the environments, i.e. for all environment E , if C ∈ C then E (C) = s1→ . . .→sn→s
where s1, . . . , sn, s are sorts.

Definition 3.2 (Safety-scheme) A rewrite rule

Fi (C
⇀
[x⇀],y⇀) → C′[Fi (C1

⇀
[x⇀],y⇀), . . . , Fi (Cm

⇀
[x⇀],y⇀), x⇀,y⇀]

satisfies the Safety-scheme in the environment E , if it satisfies the conditions of the general
scheme, where we replace the condition:

‘for 1≤ j≤m, C
⇀

[x⇀] >mul Cj
⇀

[x⇀]’
by the condition:

‘for 1≤ j≤m, C
⇀

[x⇀] >mul Cj
⇀

[x⇀], C
⇀

[x⇀], Cj
⇀

[x⇀] ∈ T(C,X ), and the “patterns” C
⇀

[x⇀] appear at
positions where E(Fi) requires arguments of sort type’

From now on, we will call the systems that satisfy the Safety-scheme safe.

The rest of this section will be devoted to the proof of the head normalization theorem. We
will use the well-known method of Computability Predicates [13, 10]. We will prove simul-
taneously that every typeable term is head normalizable and constructor-hat normalizable.
The proof has two parts; in the first one we give the definition of a predicate Comp on bases,
terms, and types, and prove some properties of Comp. The most important one states that if
for a term t there are a basis B and type σ �= ω such that Comp (B, t,σ) holds, then HN (t) and
CHN (t). In the second part Comp is shown to hold for each typeable term.

In the following we assume that CuTRS is a typeable and safe CTRS in the environment E .

Definition 3.3 i) Let B be a basis, t a term, and σ a type such that B �E t:σ. We define the
Computability Predicate Comp (B, t,σ) recursively on σ by:
a) σ = ϕ, or σ = s (sort).

Comp (B, t,σ) ⇐⇒ HN (t) & CHN (t).
b) σ = α→β.

Comp (B, t,α→β) ⇐⇒ ∀ u ∈ T(F,X ) [ Comp (B′,u,α) ⇒
Comp (Π{B, B′}, Ap (t,u), β) ]

c) σ = σ1 ∩ · · · ∩ σn (n ≥ 0).
Comp (B, t,σ1 ∩ · · · ∩ σn) ⇐⇒ ∀ 1≤ i≤n [ Comp (B, t,σi) ].

ii) We say that a replacement R is computable in a basis B if there is a basis B′ such that for
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every x:σ ∈ B, Comp (B′, xR,σ) holds.

Notice that Comp (B, t,ω) holds as special case of part (i.c). Also, since we use intersection
types, and because of Definition 2.2, in part (ii) we need not consider the existence of different
bases for each x:σ ∈ B.

Property 3.4 C1) Comp (B, t,σ) & σ �= ω ⇒ HN(t) & CHN (t).
C2) If Comp (B, t,σ), and t →∗

R t′, then Comp (B, t′,σ).
C3) Let t be neutral. If B �E t:σ, and there is a v such that Comp (B,v,σ) and t →∗

R v, then
Comp (B, t,σ).

C4) Let t be neutral. If B �E t:σ, In-Hnf (t), and In-Chnf (t), then Comp (B, t,σ).

Proof: By simultaneous induction on the structure of types.
i) σ = ϕ, or σ = s ∈ S. By Definition 3.3. (i.a), using Theorem 2.8 and the Church-Rosser

property for C2, and Theorem 2.8 for C3 and C4.
ii) σ = α→β.

C1) Comp (B, t,α→β) & x does not occur in B ⇒ (IH.C4)
Comp (B, t,α→β) & Comp ({x:α}, x,α) ⇒ (3.3. (i.b))
Comp (B ∪ {x:α}, Ap (t, x), β) ⇒ (IH.C1)
HN (Ap (t, x)) & CHN (Ap (t, x)) ⇒ (1.10.(i))
HN (t) & CHN (t).

C2) Comp (B, t,α→β) ⇒ (3.3. (i.b))
( Comp (B′,u,α) ⇒ Comp (Π{B, B′}, Ap (t,u), β) ) ⇒ (IH.C2)
( Comp (B′,u,α) ⇒ Comp (Π{B, B′}, Ap (t′,u), β) ) ⇒ (3.3. (i.b))
Comp (B, t′,α→β).

C3) t is neutral & B �E t:α→β & ∃ v [t →∗
R v & Comp (B,v,α→β)] ⇒

(3.3. (i.b))
(Comp (B′,u,α) ⇒ ∃ v[t →∗

R v & Comp (Π{B, B′}, Ap(v,u), β)]) ⇒
(1.10.(iii))

(Comp (B′,u,α) ⇒ ∃ v[Ap(t,u)→∗
R v & Comp (Π{B, B′},v, β)]) ⇒

(IH.C3)
( Comp (B′,u,α) ⇒ Comp (Π{B, B′}, Ap (t,u), β) ) ⇒ (3.3. (i.b))
Comp (B, t,α→β).

C4) t is neutral & B �E t:α→β & In-Hnf (t) & In-Chnf (t) ⇒ (1.10.(ii))
( Comp (B′,u,α) ⇒ Ap (t,u) neutral & Π{B,B′} �E Ap (t,u):β &

In-Hnf (Ap (t,u)) & In-Chnf (Ap (t,u)) ) ⇒ (IH.C4)
( Comp (B′,u,α) ⇒ Comp (Π{B, B′}, Ap (t,u), β) ) ⇒ (3.3. (i.b))
Comp (B, t,α→β).

iii) σ = σ1 ∩ · · · ∩ σn.
C1) Comp (B, t,σ1 ∩ · · · ∩ σn) ⇒ (3.3. (i.c))

∀ 1≤ i≤n [Comp (B, t,σi)] ⇒ (IH.C1 & n �= 0)
HN (t) & CHN (t).

C2) Comp (B, t,σ1 ∩ · · · ∩ σn) & t →∗ t′ ⇒ (3.3. (i.c))
∀ 1≤ i≤n [Comp (B, t,σi)] & t →∗ t′ ⇒ (IH.C2)
∀ 1≤ i≤n [Comp (B, t′,σi)] ⇒ (3.3. (i.c))
Comp (B, t′,σ1 ∩ · · · ∩ σn).

C3) t is neutral & B �E t:σ1 ∩ · · · ∩ σn & ∃ v [t →R v &
Comp (B,v,σ1 ∩ · · · ∩ σn)] ⇒ (2.5.(iv) & 3.3. (i.c))

∃ v [t →R v & ∀ 1≤ i≤n [Comp (B,v,σi) & B �E t:σi]] ⇒ (IH.C3)
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∀ 1≤ i≤n [Comp (B, t,σi)] ⇒ (3.3. (i.c))
Comp (B, t,σ1 ∩ · · · ∩ σn).

C4) t is neutral & B �E t:σ1 ∩ · · · ∩ σn & In-Hnf (t) & In-Chnf (t) ⇒ (2.5.(iv))
t is neutral & ∀ 1≤ i≤n [B �E t:σi & In-Hnf (t) & In-Chnf (t)] ⇒ (IH.C4)
∀ 1≤ i≤n [Comp (B, t,σi)] ⇒ (3.3. (i.c))
Comp (B, t,σ1 ∩ · · · ∩ σn).

In order to prove the head normalization theorem we shall prove a stronger property, for
which we will need the following ordering and lemma.

Definition 3.5 Let CuTRS be a CTRS.
i) Let >IIN denote the standard ordering on natural numbers, >· stand for the well-founded

encompassment ordering, (i.e. u>· v if u �= v and u|p = vR for some position p ∈ u and
replacement R), and lex, mul denote respectively the lexicographic and multiset extension
of an ordering. Note that encompassment contains strict subterm (denoted by >).

ii) We define the ordering � on triples – consisting of a pair of natural numbers, a term,
and a multiset of terms – as the object ((>IIN,>IIN)lex ,>· , ( → Chnf ∪>Chnf )mul)lex , where
a) t → Chnf t′ if t →∗

R t′, ¬In − Chnf (t) and In-Chnf (t′),
b) t>Chnf t′ if t>t′, In-Chnf (t), In-Chnf (t′).

iii) For computable R, we interpret a term tR by the triple I(tR) = [(i,j),t,{R}], where
a) i is the maximal super-index of the function symbols belonging to t,
b) j is the minimum of the differences arity(Fi)− arity(Fi

k) such that Fi
k occurs in t,

c) {R} is the multiset {xR | x ∈ Var (t) & the type of x in t is not ω}.
These triples are compared in the ordering �, which is well-founded because R is com-
putable, and we are taking the elements of its image that have a type different from ω.

Lemma 3.6 Comp (B, t,σ), σ ≤ ρ ⇒ Comp (B, t,ρ).

We now come to the main theorem of this section, in which we show that for any typeable
term and computable replacement R such that the term tR is typeable, tR is computable.

Property 3.7 Let t be a term such that B �E t:σ, and R a computable replacement in B. Then there
exists B′ such that Comp (B′, tR,σ).

Proof: We will prove that tR is computable or reduces to a computable term, by noetherian
induction on �:

If t is a variable then tR is computable by Lemma 3.6, since R is. Also, if σ is ω then tR is
trivially computable. Then, without loss of generality we assume that t is not a variable and
that σ �= ω. Also, because of part (i.c) of Definition 3.3, we can restrict the proof to the case
σ ∈ Ts. We consider separatedly the cases:

i) tR is neutral.
a) If In-Hnf (tR) and In-Chnf (tR) then tR is computable by C4.
b) If In-Hnf (tR) but not In-Chnf (tR), then tR = C(t1, . . . , tn) where C ∈ C (constructor) or

tR = Ap(t1, t2) (in other case we would have In-Chnf (tR)). For 1 ≤ i ≤ n, ti is com-
putable, either because it is in R or by induction. In case tR = C(t1, . . . , tn), t1, . . . , tn
have a type different from ω, then they have a constructor-hat normal form by C1,
which implies CHN (tR). In case tR = Ap(t1, t2), t1 has a type different from ω, then
by C1, CHN (t1), which implies CHN (tR). In both cases, tR reduces to a neutral term
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t′ such that In-Chnf (t′) and In-Hnf (t′). By C3, t′ is computable, and again by C3, tR is
computable.

c) If not In-Hnf (tR), then there exists v such that tR →∗
R v and v is itself a redex or

v = Ap(v1,v2) and v1 is a redex. Without loss of generality, we can assume that tR →∗
R

v is the shortest derivation that satisfies this condition, then v can be decomposed into
a non-variable term u = F(z1, . . . ,zn) (F ∈ F ∪ {Ap}) and a computable replacement
R′, i.e. v = uR′. Note that R′ is computable by induction and C2, since none of the
reduction steps in the derivation tR →∗

R v takes place at the root position (because it
has minimal length).
1) If t �= u modulo renaming of variables, then I(tR)�2 I(uR′), then by induction, uR′

is computable and so is tR by C3.
2) If t = u modulo renaming of variables (without loss of generality, we can assume

t = u); since tR is neutral, v is neutral too, then only two cases are possible for u:
A) t = u = Ap(z1,z2).

In this case, tR →∗
R v = Ap(z1,z2)R′. By the Subject Reduction Theorem, v has

a type different from ω, then z1R′ must have an arrow type, and since R′ is
computable, v is computable by 3.3. (i.b). Then tR is computable by C3.

B) t = u = Fk(z1, . . . ,zn), and v = tR′ is reducible at the root position. Then, there is
a rewrite rule

Fk(C
⇀

[x⇀], y⇀) → C’[Fk (C1
⇀

[x⇀], y⇀), . . . , Fk (Cm
⇀

[x⇀], y⇀), x⇀, y⇀]
such that tR →∗ v = tR′ = Fk(C

⇀
[M
⇀

], N
⇀

). By definition of safe CTRS, the patterns
C
⇀

[x⇀] are constructor terms, and the terms M
⇀

have sorts as types. Also, since x⇀ ⊆
y⇀, we know that M

⇀
⊆ N

⇀
, and then M

⇀
are computable because N

⇀
are (they are in

R’). Then CHN (M
⇀
). Let R” be the computable replacement obtained from R’ by

putting M
⇀

in CHNF (note that R” is computable by C2). There are two possible
cases: either I(tR) �3 I(tR′′

), and then tR′′
is computable by induction, and so

is tR by C3, or
tR = tR′′

= Fk(C
⇀

[M
⇀

], N
⇀

) →R

C’[Fk (C1
⇀

[M
⇀

],N
⇀

),. . . ,Fk (Cm
⇀

[M
⇀

],N
⇀

), M
⇀

, N
⇀

].
Since N

⇀
is computable (because it is in the image of R) and M

⇀
is computable

(because it is a subset of N
⇀

), the terms Ci
⇀

[M
⇀

] are computable by induction (since
by definition of the scheme, all function symbols in Ci have a superindex smaller
than k). Also, by definition of the scheme, and because In-Chnf (M

⇀
), C

⇀
[M
⇀

]
(>Chnf )mul Ci

⇀
[M
⇀

], then Fk (Ci
⇀

[M
⇀

,N
⇀

], N
⇀

) is computable by induction. Again, by

definition of the scheme and induction, C’[Fk (C1
⇀

[M
⇀

], N
⇀

), . . . , Fk (Cm
⇀

[M
⇀

], N
⇀

), M
⇀

, N
⇀

]
is computable, since C’ does not contain Fk. Then, by C3, tR is computable since
it is neutral.

ii) tR is not neutral. Then t = Fi(t1, . . . , ti), where Fi is the Curryfied version of some func-
tion symbol. In this case, since the type of t is not ω, t must have an arrow type,
α→β. We have to prove that Ap(Fi(t1, . . . , ti),z)R′ is computable for any replacement
R′ = R ∪ {z �→ u} such that u is computable of type α. But since Ap(Fi(t1, . . . , ti),z)R′ is a
neutral term, it is sufficient to prove that it reduces to a computable term (C3). Now, by
definition of CTRS, Ap(Fi(t1, . . . , ti),z)R′ →R Fi+1(t1, . . . , ti,z)R′, and I(Ap(Fi(t1, . . . , ti),z)R′)
�1 I(Fi+1(t1, . . . , ti,z)R′), then Fi+1(t1, . . . , ti,z)R′ is computable by induction, and we are
finished.
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Theorem 3.8 (Head Normalization Theorem) If CuTRS is typeable in �E , and safe, then every
term t such that B �E t:σ and σ �= ω has a head normal form.

Proof: The theorem follows from Prop.3.7 and C1, taking R such that xR = x, which is com-
putable by Prop.C4.

3.2 Normalization

In the intersection system for LC, it is well-known that terms that are typeable without ω
in base and type are normalizable. This is not true in the rewriting framework, even if one
considers safe recursive systems only. Take for instance the safe system:

Z (x,y) → y,
D (x) → Ap (x, x).

The term Z1 (D (D0)) has type β→β in an environment where Z is typed with α→β→β and
D with α∩(α→α)→α, but is not normalizable.

We will then only study normalization of non-Curryfied terms in CTRS. Actually, to get a
normalization result similar to that of LC we will also need to impose the following condition
on CTRS:

Definition 3.9 A CTRS is complete if whenever a typeable non-Curryfied term t is reducible at
a position p such that t|p has a type containing ω, t is reducible also at some q < p such that
t|q has a type without ω.

In order to be complete, a rewrite system must have rules that enable a reduction of
F(t1, . . . , tn) at the root whenever there is a redex ti the type of which contains ω. This means
that the rules defining F cannot have non-variable patterns that have types with ω, and also
that a constructor cannot accept arguments having a type which contains ω.

Constructors and recursive function symbols of safe systems satisfy these conditions. So, a
safe recursive system is complete whenever the non-recursive defined symbols do not distin-
guish patterns that have a type containing ω.

From now on, we will consider only non-Curryfied CTRS that are safe and complete. This
section will be devoted to the proof of the normalization theorem. We could use the method
of Computability Predicates, as in the previous section, but since only non-Curryfied terms
are considered, a direct proof is simpler. We will prove the theorem by noetherian induction,
for which we will use the following ordering:

Definition 3.10 Let CuTRS be a CTRS. Let � denote the following well-founded ordering be-
tween terms: t � t′ if t>t′ or t′ is obtained from t by replacing the subterm t|p = F(t1, . . . , tn)
by the term F(s1, . . . , sn) where {t1, . . . , tn}>mul{s1, . . . , sn}. We define the ordering � on triples
composed of a natural number and two terms, as the object (>IIN,>· ,�)lex .

Theorem 3.11 (Normalization Theorem) Let t be a non-Curryfied term in a typeable, complete,
and safe CTRS. If B �E t:σ and ω does not appear in σ, then t is normalizable.

Proof: By noetherian induction on �. We will interpret the term u by the triple I(u) = [i,u’,u]
where i is the maximum of the super-indexes of the function symbols belonging to u that
do not appear only in subterms in normal form or having a type with ω, and u′ is the term
obtained from u by replacing subterms in normal form with fresh variables. These triples are
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compared using �.
Assume t is not in normal form. All its strict subterms that have a type without ω are

either already in normal form, or smaller than t with respect to � and then normalizable by
induction. Let v be the term obtained from t by reducing these subterms to normal form.

If v �= t then I(t)�2 I(v). Then v is normalizable by induction, and so is t.
If v = t and it is a normal form, we are done. Otherwise, since the system is complete, t

must be reducible at the root, and since it is a non-Curryfied term, the only possible reduction
is:

t = Fi (C
⇀
[M
⇀
], N
⇀
)→R C′[Fi (C

⇀

1[M
⇀
], N
⇀
), . . . , Fi (C

⇀
m[M

⇀
], N
⇀
), M

⇀
, N
⇀
]

Now, the subterms of the right hand side of the form:

Fi (C
⇀

1[M
⇀
], N
⇀
), . . . , Fi (C

⇀
m[M

⇀
], N
⇀
), M

⇀
, N
⇀

that have a type without ω are normalizable by induction. Let C′′[u⇀] be the term obtained
after normalizing those subterms, and including in the context the subterms that have a type
with ω. By the Subject Reduction Theorem, this term has a type without ω, and by definition
of the general scheme, it is smaller than t. Then, by the induction, it is normalizable.
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