
Functional Type Assignment for Featherweight Java
To Rinus Plasmeijer, in honour of his 61st birthday

(The Beauty of Functional Code, LNCS 8106, pp. 27-46, 2013)

S.J. van Bakel and R.N.S. Rowe

Department of Computing, Imperial College London, 180 Queen’s Gate, London SW7 2BZ, UK
s.vanbakel@imperial.ac.uk, r.rowe@doc.ic.ac.uk

s.vanbakel@imperial.ac.uk

Abstract

We consider functional type assignment for the class-based object-oriented calculus Feather-
weight Java. We start with an intersection type assignment systems for this calculus for which
types are preserved under conversion. We then define a variant for which type assignment is
decidable, and define a notion of unification as well as a principal typeing algorithm.
We show the expressivity of both our calculus and our type system by defining an encoding
of Combinatory Logic into our calculus and showing that this encoding preserves typeability.
We thus demonstrate that the great capabilities of functional types can be applied to the
context of class-based object orientated programming.

Introduction

In this paper we will study a notion of functional type assignment for Featherweight Java
(fj) [15]. We will show its elegance and expressiveness, and advocate its use in type assign-
ment systems for fully fledged Java; of course it would need to be extended in order to fully
deal with all the features of that language, but through the system we present here we show
that that should be feasible, giving a better notion of types.

Type assignment has more than shown its worth in the context of functional programming,
like ml, Clean [11, 17], and Haskell. Not only are types essential for efficient code generation,
they provide an excellent means of (an abstract level of) error checking: it is in most pro-
grammers’ experience that once the type checker has approved of a functional program, said
program will be almost error free.1 But, more importantly, the approach to types in functional
programming is that of type assignment: programmers have the freedom to not specify types
for any part of their code. A type inference algorithm embedded in the compiler guarantees
a partial correctness result: the type found for a program is also the type for the result of
running the program, a property most commonly known as subject reduction or type soundness,
although that latter term has different meaning as well.

In the context of imperative programming, which contains the Object-Oriented approach
(oo) as well, the reality is very different. There it is more common to demand that all types are
written within the code; then type checking is almost trivial, and mainly concerns checking if
special features like inheritance are well typed. The difference between the functional approach
and the imperative one then boils down to the difference between untyped and typed calculi.
Often, in the untyped approach, if a term has a type, it has infinitely many, a feature that is
exploited when introducing polymorphism into a programming language’s type system. In the

1 Almost, yes, not completely; we can but dream of static error checking systems that only approve of error
free code, and catch all errors.

The Beauty of Functional Code, LNCS 8106, pp. 27-46, 2013 2

typed approach, each term has (normally) only one type. This implies that it is difficult, if not
impossible, to express polymorphism in imperative languages.

With that in mind, we set out to investigate if the functional approach is feasible for im-
perative languages as well. The results presented in this paper are part of the results of that
investigation, but in the more concrete setting of functional type assignment for object orienta-
tion. In order to be able to concentrate on the essential difficulties, we focus on Featherweight
Java [15], a restriction of Java which can be regarded as the minimal core fragment of Java,
defined by removing all but the most essential features of the full language; Featherweight
Java bears a similar relation to Java as the λ-calculus (lc) [12, 9] does to languages such as ml
and and Haskell.

But rather than defining a notion of type assignment that is implementable, we thought
it necessary to first verify that the kernel of our approach made sense, i.e. accords to some
particular kind of abstract semantics.2 Normally, just operational semantics is used: then the
only check is that subject reduction is satisfied. This is certainly the minimal requirement for
type assignment systems (although variants are proposed that do not even satisfy this), but
normally much more can be achieved.

Rather, in [19] we proposed an approach that has strong links with denotational semantics,
in that it gives a full equational semantics for fj-programs. The best-known way to achieve
that is through setting up a notion of types inspired by Coppo and Dezani’s intersection type
discipline (itd) [13, 10, 2] and this was the path we followed in [19]. itd, first defined for lc,
is a system that is closed under β-equality and gives rise to a filter model and semantics; it is
defined as an extension of Curry’s basic type system for lc by allowing term-variables to have
many, potentially non-unifiable, types. This generalisation leads to a very expressive system:
for example, strong normalisation of terms can be characterised by assignable types.

Inspired by this expressive power, investigations have taken place of the suitability of in-
tersection type assignment for other computational models: for example, van Bakel and
Fernández have studied intersection types in the context of Term Rewriting Systems (trs) [7, 8]
and van Bakel studied them in the context of sequent calculi [3, 5]. In an attempt to bring
intersection types to the context of oo, van Bakel and de’Liguoro presented a system for the
ς-calculus [6]; the main characteristic of that system is that it sees assignable types as an exe-
cution or applicability predicate, rather than as a functional characterisation as is the view in the
context of lc and, as a result, recursive calls are typed individually, with different types. This
is also the case in our system.

The system we presented there is essentially based on the strict system of [1]; the decidable
system we present here, a system with simple record types, is likewise essentially based on
Curry types. Our system with intersection types has been shown to give a semantics in [19]
of which we will state the main results here; that paper also defined a notion of approximation,
inspired by a similar notion defined for the λ-calculus [20], and showed an approximation
result. 3

Our types are functional, contain field and method information, and characterise how a ty-
peable object can interact with a context in which it is placed. The notion of type assignment
we developed can be seen as a notion of ‘flow analysis’ in that assignable types express how

2 Too often ad-hoc changes to type systems are proposed that only solve a specific problem; the proposer
typically gives an example of an untypeable term that in all reasonability should be typeable, and gives a change
to the type system in order to make that example typeable.

3 Although the latter firmly rooted our system semantically, it plays no role when implementing, so we will
skip its details here. Suffice that say that, because the language of fj is first order, we had to define derivation
reduction and show it strongly normalisable in order to prove the approximation result and the normalisation
results that follow as a consequence.

The Beauty of Functional Code, LNCS 8106, pp. 27-46, 2013 3

expressions can be approached; as such, the types express run-time behaviour of expressions.
Our type system was shown to be closed for conversion, i.e. closed for both subject reduction and
subject expansion, which implies that types give a complete characterisation of the execution
behaviour of programs; as a consequence, type assignment in the full system is undecidable.

That fj is Turing complete seems to be a well accepted fact; we illustrate the expressive
power of our calculus by embedding Combinatory Logic (cl) [14] – and thereby also lc – into
it, thus establishing that our calculus is Turing complete as well. To show that our type system
provides more than a semantical tool and can be used in practice as well, in this paper we will
define a variant of our system by restricting to a notion of Curry type assignment; the variant
consists of dealing with recursion differently. We show a principal type property and a type
preservation result for this system.

The Curry system we propose here is a first, and certainly not the most expressive, illustra-
tive, or desirable system imaginable. We allow intersection types only in the form of records;
for fj this is natural, since a class should be seen as a combination of all its capabilities. As
a special property, our principal typeing algorithm calculates (normally) records as types for
classes, and the return type of a method can be a record as well. And thirdly, the way the
system types recursive classes could be improved by using recursive types.

1 Featherweight Java without casts

In this section, we will define the variant of Featherweight Java we consider in this paper. As
in other class-based object-oriented languages, it defines classes, which represent abstractions
that encapsulate both data (stored in fields) and the operations to be performed on that data
(encoded as methods). Sharing of behaviour is accomplished through the inheritance of fields
and methods from parent classes. Computation is mediated by instances of these classes (called
objects), which interact with one another by calling (also called invoking) methods on each other
and accessing each other’s (or their own) fields. We have removed cast expressions since, as
the authors of [15] themselves point out, the presence of downcasts is unsound4, so cannot be
modelled semantically; for this reason we call our calculus fj �c. We also leave constructors as
implicit.

Notation We use n (where n is a natural number) to represent the set {1, . . . ,n}. A sequence s
of n elements a1, . . . , an is denoted by an; the subscript can be omitted when the exact number
of elements in the sequence is not relevant. We write a ∈ an whenever there exists some i ∈ n
such that a = ai. The empty sequence is denoted by ε, and concatenation on sequences by
s1 · s2.

We use familiar meta-variables in our formulation to range over class names (C and D),
field names (f), method names (m) and variables (x). 5 We distinguish the class name Object
(which denotes the root of the class inheritance hierarchy in all programs) and the self variable
this, used to refer to the receiver object in method bodies.

Definition 1.1 (fj �c Syntax) An fj �c program P consist of a class table CT , comprising the class
declarations, and an expression e to be run (corresponding to the body of the main method in
a real Java program). Programs are defined by the grammar:

4 In the sense that typeable expressions can get stuck at runtime by reducing to an expression containing stupid
casts.

5 We use roman teletype font for concrete fj �c-code, and italicised teletype font for meta-code.

The Beauty of Functional Code, LNCS 8106, pp. 27-46, 2013 4

e ::= x | this | new C(e) | e.f | e.m(e)
fd ::= C f;
md ::= D m(C1 x1, . . . , Cn xn) {return e;}
cd ::= class C extends C’ { fd md} (C �= Object)
CT ::= cd

P ::= (CT ;e)

The remaining concepts that we will define below are dependent (or, more precisely, para-
metric) on a given class table. For example, the reduction relation we will define uses the class
table to look up fields and method bodies in order to direct reduction and our type assign-
ment system will do likewise. Thus, there is a reduction relation and type assignment system
for each program. However, since the class table is a fixed entity (i.e. it is not changed during
reduction, or during type assignment), as usual it will be left as an implicit parameter in the
definitions that follow.

As we have just mentioned, the sequence of (class) declarations that comprises the class table
induces a family of lookup functions. In order to ensure that these functions are well defined,
we only consider programs which conform to some sensible well-formedness criteria: that
there are no cycles in the inheritance hierarchy, that each class is declared only once, that
fields and methods in any given branch of the inheritance hierarchy are uniquely named, and
that method definitions correspond to closed functions. An exception is made to allow method
override, i.e. the redeclaration of methods, providing that only the body of the method differs
from the previous declaration.

We define the following functions to look up elements of class definitions.

Definition 1.2 (Lookup Functions) The following lookup functions are defined to extract
the names of fields and bodies of methods belonging to (and inherited by) a class.

i) The following retrieve the name of a class, method, or field from its definition:
CN (class C extends D{fd md}) = C

MN (C m(x).e;) = m
FN (C f;) = f

ii) By abuse of notation, we will treat the class table, CT , as a partial map from class names
to class definitions:

CT (C) = cd (CN (cd) =C, cd ∈ CT)

iii) The list of fields belonging to a class C (including those it inherits) is given by:
F (Object) = ε

F (C) = F (C’) ·fn (CT (C) = class C extends C’ {fdn md},
FN (fd i) =f i (i ∈ n))

iv) The list of methods belonging to a class C is given by:
M(Object) = ε

M(C) = M(C’) ·mn (CT (C) = class C extends C’ {fdn md},
MN (mdi) =mi (i ∈ n))

(notice that method names can appear more than once in M(C)).
v) The function Mb, given a class name C and method name m, returns a tuple (x,e), con-

sisting of a sequence of the method’s formal parameters and its body:
Mb(C,m) = (xn,e) (CT (C) = class C extends C’ {fd md}

& C0 m(C1 x1, . . . ,Cn xn) {return e;} ∈md)
Mb(C,m) = Mb(C’,m) (CT (C) = class C extends C’ {fd md}

& m not in md)

The Beauty of Functional Code, LNCS 8106, pp. 27-46, 2013 5

(new) :
Γ � e i : C i (∀i ∈ n)

(F (C) = f & FT (C,f i) =D i &C i <:D i (∀i ∈ n))
Γ � new C(e) : C

(invk) :
Γ � e : E Γ � e i : C i (∀i ∈ n)

(MT (E,m) = D→C &C i <:D i (∀i ∈ n))
Γ � e.m(e) : C

(var) : Γ,x :C � x : C (fld) :
Γ � e : D

(FT (D,f) =C)
Γ � e.f : C

(u-cast) :
Γ � e : D

(D <:C)
Γ � (C)e : C

(d-cast) :
Γ � e : D

(C <:D, C �=D)
Γ � (C)e : C

(s-cast) :
Γ � e : D

(C �<:D, D �<:C)
Γ � (C)e : C

Figure 1: Type assignment rules for the nominal system for fj �c

vi) The function fv (e) returns the set of variables used in e.

Substitution of expressions for variables is the basic mechanism for reduction in our calculus:
when a method is invoked on an object (the receiver) the invocation is replaced by the body of
the method that is called, and each of the variables is replaced by a corresponding argument,
and this is replaced by the receiver.

Definition 1.3 (Reduction) i) A term substitution
S = 〈this �→e’,x1 �→e1, . . . ,xn �→en 〉

is defined in the standard way as a total function on expressions that systematically
replaces all occurrences of the variables x i and this by their corresponding expression.
We write eS for S(e).

ii) The single-step reduction → is defined by:
new C(en).f i → e i (F (C) =fn, i ∈ n)

new C(e).m(e’n) → eS (Mb(C,m) = (xn,e), where S =
〈this �→new C(e), x1 �→e’1, . . . , xn �→e’n 〉)

We call the left-hand term the redex (reducible expression) and the right hand the con-
tractum. As usual, we define →∗ as the pre-congruence generated by →.

The nominal system as presented in [15], adapted to our version of Featherweight Java, is
defined as follows.

Definition 1.4 (Member type lookup) The field table FT and method table MT are functions
which return type information about the elements of a given class in an execution. These func-
tions allow us to retrieve the types of any given field f or method m declared in a particular
class C:

FT (C,f) =

{
D (CT (C) = class C extends C’ {fd md}, D f ∈ fd)
FT (C’,f) (CT (C) = class C extends C’ {fd md}, f not in fd)

MT is defined similarly:

MT (C,m) =



Cn→D (CT (C) = class C extends C’ {fd md},

D m(C x){e } ∈md)
MT (C’,m) (CT (C) = class C extends C’ {fd md}, m not in md)

Notice both are not defined on Object.

Nominal type assignment in fj �c is a relatively easy affair, and more or less guided by the
class hierarchy.

The Beauty of Functional Code, LNCS 8106, pp. 27-46, 2013 6

Definition 1.5 (Nominal type assignment for fj �c [15]) i) The sub-typing relation on class
types is generated by the extends construct, and is defined as the smallest pre-order
satisfying: if class C extends D {fd md} ∈ CT , then C <:D. 6

ii) Statements are pairs of expression and type, written as e :C; contexts Γ are defined as sets
of statements of the shape x:C, where all variables are distinct, and possibly containing a
statement for this.

iii) Expression type assignment for the nominal system for fj is defined through the rules
given in Figure 1, where (var) is applicable to this as well.

iv) A declaration of method m is well typed in C when the type returned by MT (m,C) deter-
mines a type assignment for the method body.7

(meth) :
x :C,this:C � eb : D

E m(C x) { return eb; } ok in C

(MT (m,D) = C→E, D <:E, class C extends D {· · ·})
v) Classes are well typed when all their methods are and a program is well typed when all

the classes are and the expression is typeable.

(class) :
md i ok in C (∀i ∈ n)

class C extends D{fd; mdn} ok
(prog) :

cd ok Γ � e : C

(cd;e) ok

Notice that in the nominal system, classes are typed (or rather type-checked) once, and the
types declared for their fields and methods are static, unique, and used at invocation.

As mentioned above, we have decided to not consider casts in our work; using a cast is com-
parable to a promise by the programmer that the casted expression will at run time evaluate
to an object having the specified class (or a subclass thereof), and so (for soundness) requires
doing a run-time check of the shape

(C) new D(...) → new D(...) (D <: C)

Once this check has been carried out the cast disappears. Of course, for full programming
convenience, and to be able to obtain the correct behaviour in overloaded methods, casts are
essential.

2 Semantic Type Assignment

In [19], we defined a type system for fj �c that is loosely based on the strict intersection type
assignment system for the λ-calculus [1, 2] (see [4] for a survey) and is influenced by the
predicate system for the ς-calculus [6]; we showed that it satisfies both subject reduction and
subject expansion. Our types can be seen as describing the capabilities of an expression (or
rather, the object to which that expression evaluates) in terms of i) the operations that may be
performed on it (i.e. accessing a field or invoking a method), and ii) the outcome of performing those
operations, where dependencies between the inputs and outputs of methods are tracked using
(type) variables. In this way, our types express detailed properties about the contexts in which
expressions can safely be used. More intuitively, they capture a certain notion of observational
equivalence: two expressions with the same set of assignable types will be observationally
indistinguishable. Our types thus constitute semantic predicates.

6 Notice that this relation depends on the class-table, so the symbol <: should be indexed by CT ; as mentioned
above, we leave this implicit.

7 Notice that, by the well-formedness criterion, eb has no other variables than x, so all variables are bound in
a method declaration, thus avoiding dynamic linking issues.

The Beauty of Functional Code, LNCS 8106, pp. 27-46, 2013 7

Definition 2.1 (Semantic Types [19]) The set of intersection types (or types for short), ranged
over by φ, ψ, and its subset of strict types, ranged over by σ, τ are defined by the following
grammar (where ϕ ranges over a denumerable set of type variables, C ranges over the set of
class names, and ω is a type constant, the universal type and the top element of the type
hierarchy):

φ,ψ ::= ω | σ | φ∩ψ

σ ::= ϕ | C | 〈f :σ〉 | 〈m :(φ1, . . . ,φn)→σ〉 (n ≥ 0)

Notice that our types do not depend on the types that would be assigned in the nominal
system; in fact, we could have presented our results for an untyped variant of fj, where all
class annotations on parameters and return types are omitted. We have decided not to do so
for reasons of compatibility with other work, and to avoid leaving the (incorrect) impression
that our results would somehow then depend on the fact that expressions carry no type
information.

The key feature of types is that they may group information about many operations together
into intersections from which any specific one can be selected for an expression as demanded
by the context in which it appears. In particular, an intersection may combine two or more
different (even non-unifiable) analyses of the same field or method. Types are therefore not
records: records can be characterised as intersection types of the shape 〈�1:σ1, · · ·,�n :σn〉 where
all σi are intersection-free, and all labels �i are distinct; in other words, records are intersection
types, but not vice-versa (see Definition 3.1).

We include a type constant for each class, which we can use to type objects which therefore
always have a type, like for the case when an object does not contain any fields or methods (as
is the case for Object) or, more generally, because no fields or methods can be safely invoked.
The type constant ω is a top (maximal) type, assignable to all expressions and serves typically
to type subterms that do not contribute to the normal form of an expression. The following
subtype relation facilitates the selection of individual behaviours from an intersection.

Definition 2.2 (Subtype Relation) The subtype relation � is induced by the fact that an in-
tersection type is smaller than each of its components, and is defined is the smallest preorder
satisfying:

φ � ω φ∩ψ � φ φ∩ψ � ψ φ � ψ & φ � ψ′ ⇒ φ � ψ∩ψ′

We write ∼ for the equivalence relation generated by �, extended by

σ ∼ σ′ ⇒ 〈f :σ〉 ∼ 〈f :σ′〉
∀i ∈ n [φ′

i ∼ φ′
i] & σ ∼ σ′ ⇒ 〈m :(φ1, . . . ,φn)→σ〉 ∼ 〈m :(φ′

1, . . . ,φ′
n)→σ′〉

We consider types modulo ∼; in particular, all types in an intersection are different and ω
does not appear in an intersection. It is easy to show that ∩ is associative and commutative
with respect to ∼, so we will abuse notation slightly and write σ1 ∩ . . .∩σn (where n ≥ 2) to
denote a general intersection, where all σi are distinct and the order is unimportant. In a
further abuse of notation, φ1 ∩ . . .∩φn will denote the type φ1 when n = 1, and ω when n = 0.

Definition 2.3 (Type Contexts [19]) i) A type statement is of the form e : φ, with e as subject.
ii) A context Π is a set of type statements with (distinct) variables as subjects; Π,x:φ stands

for the context Π ∪ {x:φ} (so then either x does not appear in Π or x:φ ∈ Π) and x:φ for
∅,x:φ.

The Beauty of Functional Code, LNCS 8106, pp. 27-46, 2013 8

(newM) :
this:ψ,x1:φ1, . . . ,xn:φn � eb : σ Π � new C(e) : ψ

Π � new C(e) : 〈m :(φn)→σ〉
(Mb(C,m) = (xn,eb), n ≥ 0)

(newF) :
Π � e1 : φ1 . . . Π � en : φn

(F(C) = f n, i ∈ n, σ = φi, n ≥ 1)
Π � new C(en) : 〈f i :σ〉

(obj) :
Π � e1 : φ1 . . . Π � en : φn

(F(C) = f n, n ≥ 0)
Π � new C(en) : C

(ω) :
Π � e : ω

(invk) :
Π � e : 〈m :(φn)→σ〉 Π � e1 : φ1 . . . Π � en : φn

Π � e.m(en) : σ
(fld) :

Π � e : 〈f :σ〉
Π � e.f : σ

(join) :
Π � e : σ1 . . . Π � e : σn

(n ≥ 2)
Π � e : σ1 ∩ . . . ∩ σn

(var) : (φ � σ)
Π,x:φ � x : σ

Figure 2: Type assignment rules for the semantical system for fj �c

iii) We extend � to contexts: Π′ � Π ⇔ ∀x:φ ∈ Π ∃φ′ � φ [x:φ′ ∈ Π′].
iv) If Πn is a sequence of contexts, then

⋂
Πn is the context defined as follows: x:φ1 ∩ . . .∩φm ∈⋂

Πn, if and only if {x :φ1, . . . ,x:φm} is the non-empty set of all statements in the union of
the contexts that have x as subject.

We will now define our notion of type assignment.

Definition 2.4 (Semantic Type Assignment [19]) Semantical type assignment for fj �c is de-
fined by the natural deduction system of Figure 2.

Notice that new objects like new C(· · ·) can be dealt with by both the rules (obj) and
(newM); then the context Π can be any. Moreover, we do not need any of the information of
the nominal type system here, other than that provided by the rule (Obj).

We should perhaps emphasise that, as remarked above, we explicitly do not type classes;
instead, the rules (newF) and (newM) create a field or method type for an object, essentially
stating that this field or method is available, and what its current type is. So method bodies
are checked every time we need that an object has a specific method type, and the various
types for a particular method used throughout a program need not be the same, as is the case
for the nominal system (see Definition 1.5). So, in our system, we would have, in principle,
an infinite type for each class, which we cannot establish when typing the class separately;
rather, we let the context of each new D() decide which type is needed, so the type for an
occurrence of new D() is ‘constructed’ by need, and not from an analysis of the class.

The rules of our type assignment system are fairly straightforward generalisations of the
rules of the strict intersection type assignment system for lc to oo, whilst making the step
from a higher order to a first order language: for example, (fld) and (invk) are analogous to
(→E); (newF) and (newM) are a form of (→I); and (obj) can be seen as a universal (ω)-like
rule for objects only.

The only non-standard rule from the point of view of similar work for trs and traditional
nominal oo-type systems is (newM), which derives a type for an object that presents an
analysis of a method that is available in that object. Note that the analysis involves typing the
method body and the assumptions (i.e. requirements) on the formal parameters are encoded
in the derived type (to be checked on invocation). However, a method body may also make
requirements on the receiver, through the use of the variable this. In our system we check
that these hold at the same time as typing the method body (so-called early self typing; with
late self typing, as used in [6], we would check the type of the receiver at the point of method

The Beauty of Functional Code, LNCS 8106, pp. 27-46, 2013 9

invocation). This checking of requirements on the object itself is where the expressive power
of our system resides. If a method calls itself recursively, this recursive call must be checked,
but – crucially – carries a different type if a valid derivation is to be found. Thus only recursive
calls which terminate at a certain point (i.e. which can then be assigned ω or C, and thus
ignored) will be typeable in the system.

As is standard for intersection type assignment systems, our system is set up to satisfy both
subject reduction and subject expansion.

Theorem 2.5 (Subject reduction and expansion [19]) Let e → e’; then Π � e : φ if and only
if Π � e’ : φ.

Notice that, as usual, computational equality between expressions in fj �c is undecidable;
as a consequence, through Theorem 2.5 we obtain that type assignment in our system is
undecidable as well.

We have also shown (variants of) the characterisation of normalisation properties:

Theorem 2.6 ([19]) i) If e is a head-normal form then there exists a strict type σ and type context Π
such that Π � e : σ; moreover, if e is not of the form new C(en) then for any arbitrary strict
type σ there is a context such that Π �e : σ.

ii) Π � e : σ if and only if e has a head-normal form.
iii) If D :: Π � e : σ with D and Π ω-free then e has a normal form.

3 Curry type assignment

The nominal type system for Java is so far the accepted standard, but many researchers are
looking for more expressive type systems that deal with intricate details of object oriented
programming and in particular with side effects. It will be clear that through the system
we presented above, we propose a different path, an alternative to the nominal approach.
We illustrate the strength of our approach in this section by presenting a basic (decidable)
functional system, that allows for us to show a preservation result with respect to a notion of
Curry type assignment for cl. This basic system is based on a true restriction of our semantical
type system; the restriction consists of removing the type constant ω as well as intersection
types from the type language, but not completely: we will still allow for types to be combined
as by rule (join) above, but only if the labels involved are different: the intersection types we
allow, thereby, correspond to records. The additional change we made was to type classes (and
the class table and programs) explicitly, and in that use a different approach when dealing
with recursive classes.

It is worthwhile to point out that, above, the fact that we allow more than just record types is
crucial for the results: without allowing arbitrary intersections (and ω) we could not show that
type assignment is closed under conversion. The undecidability of type inference in our type
assignment system follows as a consequence of the conversion result shown in the previous
section. Thus, to be of practical use for program analysis we must restrict the type assignment
system in a decidable fashion.

The notion of the type assignment system we present here is based on Curry’s type system
for cl (or simply-typed lc), and is inspired by Milner’s system for ml [16]. As such, it is
not a true restriction of the system we defined above, and therefore different from the Curry
system we presented in [19]. However, we can show that our encoding of cl into fj �c (Section
3) preserves typeability; this is mainly because cl is a notion of computation defined without

The Beauty of Functional Code, LNCS 8106, pp. 27-46, 2013 10

recursion. The basic approach of our restriction is to only assume a single behaviour for each
element of a program - that is, we remove intersections. So, for example, when deriving a type
for a method each argument and each field of the receiver may only have one type. While
this may seem overly restrictive, we show that our system is expressive enough to type those
programs that correspond to computable functions, λ-terms typeable in Curry’s system of
simple types.

We demonstrate the decidability of this restricted form of type assignment by first showing
that the system has a principal typings property, and then arguing that there is a terminating al-
gorithm which computes these typings. A principal typings property for a type system states
that for each typeable term there is a typing (an context-type pair) which is most general, in
the sense that all other typings assignable to that term can be generated from it. Typeability is
decidable, then, if there is a (terminating) algorithm which computes whether a principal typ-
ing exists for any given term. In the latter half of this section, we discuss the implementation
of such an algorithm for our restricted type assignment system, which we will now define.

Definition 3.1 (Curry types for fj �c) i) Curry (object) types for fj are defined by:
σ,τ ::= φ | 〈f1:σ, . . . , fn:τ, m1:(α)→β, . . . , mk:(γ)→δ〉 (n + k ≥ 1)

ii) We will call a type of the shape 〈f:σ〉 a field type, one of the shape 〈m:(α)→β〉 a method
type, and 〈· · ·〉 with 2 or more components a record type and let ρ range over those. We
write � for arbitrary labels and, by abuse of notation, will also use 〈�:σ〉 to represent 〈m:σ〉,
even though in 〈m:(α)→β〉, the structure (α)→β is not a type. We write 〈�:σ〉∈ ρ (or � ∈ ρ)
when �:σ occurs in ρ, and assume that all labels are unique in records.

iii) We call two types ρ and ρ′ compatible when: if 〈�:σ〉∈ ρ and 〈�:σ′〉 ∈ ρ′, then either: σ and
σ′ are compatible types, or σ = σ′.

iv) We define the operator � (join) on types by: ρ1�ρ2 is the type composed out of the union
of two compatible types, defined as: 〈�:σ〉∈ ρ1�ρ2 if and only if either:

– 〈�:σ〉∈ ρ1 and � �∈ ρ2; or
– 〈�:σ〉∈ ρ2 and � �∈ ρ1; or
– σ = σ1�σ2, with 〈�:σ1〉∈ ρ1, 〈�:σ2〉∈ ρ2 and σ1 and σ2 are compatible; or
– σ = σ1, with 〈�:σ1〉∈ ρ1 and 〈�:σ2〉∈ ρ2 and σ1 = σ2.

v) When we write a record type as 〈�:σ〉�ρ, then � �∈ ρ.

Notice that compatible records can have different labels, even distinct. Moreover, even when
we allow for the notation 〈m:σ〉 for a method type, then σ is never a record type: we can only
derive those for variables, fields, and objects; see Definition 3.7. As an example of compatible
types, consider 〈f1:〈f2:σ,f3:τ〉〉 and 〈f1:〈f3:τ,f4:ρ〉〉; on the other hand, 〈f1:〈f2:σ,f3:τ〉〉 and
〈f1:〈f3:µ,f4:ρ〉〉 with τ �= µ are not compatible.

Definition 3.2 (Curry contexts and environments) i) A Curry context is a mapping from
term variables (including this) to Curry types.

ii) We call two contexts Γ1 and Γ2 compatible whenever: if x:σ ∈ Γ1 and x:τ ∈ Γ2, then σ and
τ are compatible record types.

iii) The operation of � can be extended to compatible contexts as follows:
Join Γ,x :σ Γ′,x:τ = (Join Γ Γ′),x:σ�τ

Join Γ,x :σ Γ′ = (Join Γ Γ′),x:σ (x �∈ Γ′)
Join ∅ Γ′ = Γ′

The Beauty of Functional Code, LNCS 8106, pp. 27-46, 2013 11

(newr) :
∅;E ,C:ρ � e i : σi (i ∈ n)

(〈f:σi〉∈ ρ)
Γ;E ,C:ρ � new C(e) : ρ

(var) : Γ,x:σ;E � x : σ

(newc) :
∅;E ,C:ρ � e i : σi (i ∈ n)

(〈f:σi〉∈ Sρ)
Γ;E ,C:ρ � new C(e) : Sρ

(proj) :
Γ;E � e : ρ

(〈�:σ〉∈ ρ)
Γ;E � e : 〈�:σ〉

(invk) :
Γ;E � e : 〈m :(σn)→σ〉 Γ;E � e i : σi (i ∈ n)

Γ;E � e.m(e i) : σ
(fld) :

Γ;E � e : 〈f:σ〉
Γ;E � e.f : σ

(CT) :

this:ρ,x:σn1 ;E ,C:ρ � e1 : τ1 (Mb(C,m1) = (xn1 ,e1)) · · ·
this:ρ,x:σnm ;E ,C:ρ � em : τm (Mb(C,mm) = (xnm ,em)) E ,C:ρ � CT : �

E ,C:ρ � class C extends C’ {fd md } ; CT : �
(ρ = 〈f :φn,m1:(σn1)→τ1, . . . ,mm:(σnm)→τm〉, F (C) = f n, M(C) = mm)

(ε) :
Π � ε : � (Prog) :

E � CT : � Γ;E � e : σ

Γ;E � (CT ,e) : σ

Figure 3: Type assignment rules for the Curry type system for fj �c

iv) An environment E is a mapping from class names to types (normally records).

Notice that compatible contexts can have different variables, even distinct; but even if a vari-
able appears in both, the labels in its types can be different as well.

The operation of substitution, which replaces type variables with types (and type variables
with simple types), allows one type (or record) to be generated from another.

Definition 3.3 (Substitution) i) The type substitution 〈ϕ �→ σ〉, which is a function from
types to types, is defined as follows:

(ϕ �→σ) ϕ = σ
(ϕ �→σ) ϕ′ = ϕ′ ϕ �= ϕ′

(ϕ �→σ) 〈f :σ′〉 = 〈f :(ϕ �→σ) σ′〉
(ϕ �→σ) 〈m : σn→σ′〉 = 〈m :((ϕ �→σ) σ1, . . . , (ϕ �→σ) σn)→(ϕ �→σ) σ′〉

The extension to records (ϕ �→σ) ρ is defined as can be expected.
ii) If S1 and S2 are substitutions, then so is S2◦S1 where (S2◦S1) σ = S2 (S1 σ)); we write Sn

for Sn◦· · ·◦S1.
iii) S Γ = {x :Sσ | x:σ ∈ Γ}.
iv) Id denotes the identity substitution.
v) For two types σ1 and σ2, if there exists a substitution S such that Sσ1 = σ2 then we say

that σ2 is an instance of σ1.
vi) We say that a type variable is fresh if it does not occur in any type we are considering at

that moment; we also say that a fresh instance of σ is the type created out of σ by substitu-
tion each type variable in σ by a fresh one.

Simple type assignment is defined through:

Definition 3.4 (Curry type assignment for fj �c) Curry type assignment for fj �c-expressions is
defined through the rules in Figure 3.

Notice that judgements depend not only on contexts, but also on environments; the first six
rules type expressions, whereas the others deal with the class table and the program.

Rule (CT) comes in place of the rules deriving ok for the nominal system. It checks the
occurrence of C:ρ in the environment for class C. By using this:ρ when typeing the methods,

The Beauty of Functional Code, LNCS 8106, pp. 27-46, 2013 12

it insists that the types derived for the methods and fields in a class are the same as used for
the receivers; also rule (newr) is used for occurrences of new C(e) inside the definition of C
which insists that the same record type is used for the ‘recursive’ instances of C as well. This
corresponds to the usual way of dealing with recursion as in ml’s rule (fix) (note that oo
languages have two types of recursion) and corresponds to the nominal rule (class) above.

Notice that ρ is not unique; the rule accepts any type that fits. Below, in the algorithm
PT , we will calculate the smallest; then when we use a type for C, as in rule (newc) which is
used for occurrences of new C(e) outside the definition of C, this type will be a substitution
instance of the one calculated. Thereby, this introduces a notion of polymorphism into our
system; each instance of class C will be typed differently, but any of its types can be generated
from E(C) by (projection and) substitution.

Also, (newr) and (newc), in combination with rule (proj), come in place of the rules (newF)
and (newM) of the semantical system. We could have removed the separation of the two
new rules and only used rule (newc); this would give a ‘Mycroft’-like way of dealing with
recursion, which is only semi-decidable, rather than a ‘Milner’-like way as we do now; it
could be used for a type-check system, however.

Note also that rules (ε) and (CT) checks the typeability of a class table, and rule (Prog)
specifies how to type a fj �c program.

We can show that type substitution is sound for expressions.

Theorem 3.5 For all substitutions S, if Γ;E �e : σ then S(Γ;E) �e : S σ.

We will now show that simple type assignment has a principal typings property. At the heart
of type inference lies the problem of unification - finding a common instance of two types; since
we deal with records, we will also need to join those, after we have made them compatible
through unification.

Definition 3.6 (Type Unification) The operation of unification is defined on types, and ex-
tended to contexts as follows:

i) The function Unify, which takes two simple types and returns a substitution, is defined
by cases through:

Unify ϕ ϕ′ = (ϕ �→ϕ′)

Unify ϕ σ = (ϕ �→σ) (ϕ not in σ)

Unify σ ϕ = (ϕ �→σ) (ϕ not in σ)

Unify 〈f :σ〉 〈f :α〉 = Unify σ α

Unify 〈m :(σn)→τ〉 〈m :(αn)→β〉 = Sn

where S1 = Unify τ β

Si+1 = Unify (Si σi) (Si αi) (i ∈ n−1)
These are the cases where unification is defined, i,e, where either a substitution is created,
or unification fails (when ϕ occurs in σ in the second and third case). This implies that
no action is taken when unifying two method types that have different method names;
rather, those are joined in a record.

ii) On records, unification is defined through:
Unify 〈�:σ〉�ρ 〈�:τ〉�ρ′ = S2◦S1

where S1 = Unify σ τ

S2 = Unify (S1 ρ) (S1 ρ′)
Unify 〈�:σ〉�ρ ρ′ = Unify ρ ρ′ (� �∈ ρ′)

The Beauty of Functional Code, LNCS 8106, pp. 27-46, 2013 13

iii) Unification can be extended to contexts as follows:
Unify Γ,x :σ Γ′,x:τ = S′ ◦S

where S = Unify σ τ

S′ = Unify (S Γ) (S Γ′)

Unify Γ,x :σ Γ′ = Unify Γ Γ′ (x �∈ Γ′)

Unify ∅ Γ′ = Id
iv) By abuse of notation, we will allow also the unification of any number of types or contexts

‘at one fell swoop’, by defining
Unify σ1 σ2 . . . σn = Unify (Sσ2) (S σ3) . . . (Sσn) ◦ S

where S = Unify σ1 σ2

Notice that unification on records (as specified in the last two cases of the first part) recurses
on the number of types in the record, ending up with the unification of simple types, which
is dealt with in the first five cases.

It is easy to show that unification creates compatible contexts, which it is designed to do;
it is, however, not fully satisfactory for use in our principal typing algorithm, since it does
not always adequately checks that the ‘offered type’ of the argument is not less specific that
the ‘demanded type’ of the parameter of a method invocation in terms of labels that occur.
For example, as can be seen in the algorithm, for the expression e.m(e’), it can be that we
infer that the principal type of e is 〈m:〈f:σ,f ′:σ′〉→ρ〉, and the principal type of e’ is 〈f:τ〉.
Assuming σ and τ are unifiable,

Unify 〈m:〈f:σ,f ′:σ′〉→ρ〉 〈m:(〈f:τ〉)→ϕ〉
would succeed; however, there is no guarantee that e’ has type 〈f′:τ′〉 as well.

We could have amended the unification algorithm, but that would have made it a great deal
more intricate. Rather, in the principal typing algorithm, we add an additional test that checks
if the offered type matches the demanded type, by checking that the labels in the demanded
type all occur in the offered type. This implies, of course, that type assignment can fail not
just because unification fails.

Using the concepts of substitution and unification, we can now define what principal typ-
ings are for our system. Since our types express information about fields and methods, and
since objects may have many different fields and methods (each with their own unique be-
haviours), our principal types must actually be records. This makes defining the principal
typings somewhat complicated, as can be seen below.

Also, we in fact calculate the principal typing for a program, by traversing the class table,
building up the environment that contains the types for the classes, and type the final expres-
sion in that environment.

Definition 3.7 (Principal Typing) i) A typing is a pair 〈Γ ; σ〉 of a context (including this)
and a type.

ii) The function PT (principal typing), from expressions and environments to typings and
environments, is defined inductively as follows:

PT (x; E) = 〈x:ϕ ; ϕ〉 ; E (ϕ fresh)

PT (this; E) = 〈this:ϕ ; ϕ〉 ; E (ϕ fresh)

PT (e.f; E) = S〈Γ ; ϕ〉 ; SE′

where PT (e; E) = 〈Γ ; ρ〉 ; E′

S = Unify 〈f:ϕ〉 ρ (ϕ fresh)

The Beauty of Functional Code, LNCS 8106, pp. 27-46, 2013 14

PT (e.m(en); E0) = S2 〈Γ�Γ1�· · ·�Γn ; ϕ〉 ; S2 En+1

where PT (e; E0) = 〈Γ ; ρ〉 ; E1

PT (e i; Ei) = 〈Γi ; γi〉 ; Ei+1 (i ∈ n)
S1 = Unify 〈m:(γn)→ϕ〉 ρ (ϕ fresh,

all labels in σi in 〈m:(σn)→τ〉∈ ρ appear in γi)

S2 = Unify (S1Γ) (S1Γ1) · · · (S1Γn)

PT (new C(en); E1) = S′ ◦Sn〈Γ1�· · ·�Γn ; ρ〉 ; S′ ◦SnEn+1

where ρ =

{
E1C (definition of C depends on this)
fresh instance of E1C (otherwise)

PT (e i; Ei) = 〈Γi ; σi〉 ; Ei+1 (i ∈ n)
Si = Unify (Si−1〈f i:σi〉) (Si−1 ρ) (i ∈ n, S0 = Id,

all labels fn appear in ρ)

S′ = Unify (SnΓ) (SnΓ1) · · · (SnΓn)

iii) We use PT also for the function that calculates the principal type for a each class defini-
tion in the class table, and builds the environment:

PT (ε :e; E) = PT (e; E)
PT (class C extends C’ {fdn mdm},CT : e; E) = PT (CT :e; E ,C:ρ)

where PT (ebj ; Ej) = 〈xi:σi,this:αj ; τj〉 ; Ej+1
(∗)

Mb(C,m j) = (xi,ebj) ∈md
E1 = E ,C:ϕ (ϕ fresh)
S = Unify αj (Em+1C) 〈f:ϕ,m:(σ)→τ〉
ρ = S αj � S (Em+1C) � S〈f:ϕ,m:(σ)→τ〉

(F (C) =f, ϕn fresh)
(∗) σi or αj are fresh variables whenever xi �∈ fv (ebj) or this does not occur in ebj ; of

course the assumption is here that all free variables in a method body are mentioned in
the parameters list: methods have no free variables. Notice that if new C(en) occurs in
ebj , then the type stored in the environment is taken itself, rather than instantiated, so
might be affected by the unifications that are calculated.

Notice that, in the case for PT (new C(en); E), we have to take a fresh instance of the type
calculated for C. We have stored the principal type for C into the environment in PT (CT ; E)
and need to access it when creating a new object; however, we have to work from a copy:
otherwise, we would change EC during the unification process, making it change before a
new access. Thereby, this operation introduces a notion of polymorphism into our system; each
instance of class C will be typed differently, but any of its types can be generated from EC
by (projection and) substitution; the substitutions will be calculated by PT , as demanded by
the context in which the object appears, and depending on exactly what expressions it gets
initialised with.

We can show the expected properties for PT :

Theorem 3.8 (Soundness of PT) If PT (e; E) = 〈Γ ; σ〉 ; E′, then Γ;E′ �c e : σ.

Theorem 3.9 (Completeness of PT) If Γ;E �c e : σ (where e is not part of a class definition), then
there exists a typing 〈Γ′ ; σ′〉 ; E such that PT (e; E) = 〈Γ′ ; σ′〉 ; E and a substitution S such that
S Γ′ ⊆ Γ, and σ = S σ′.

As an example of a program we can type, consider the following which constitutes perhaps

The Beauty of Functional Code, LNCS 8106, pp. 27-46, 2013 15

the simplest example of a term without head-normal form in oo:

class C extends Object {
C m() { return this.m(); }

}

This program has a method m which simply calls itself recursively, and new C().m() loops:

new C().m() → this.m()[new C()/this] = new C().m()

so, in particular, new C().m() has no normal form, not even a head-normal form; this cor-
respond to the ml-program (fixx.x). Running PT returns C:〈m:()→ϕ〉 and therefore running
PT (new C().m(); E) gives (∅; ϕ) which is also the typing for (fixx.x). Notice that, since
new C().m() has no head-normal form, it is not typeable in our intersection system, so we
cannot show ‘Γ �c e : σ ⇒ Γ � e : σ’; the same observation can be made with respect to type
assignment for the λ-calculus and ml.

4 oocl

We will now relate this notion of type assignment to one from the world of functional pro-
gramming, by defining an encoding of Combinatory Logic [14] (cl) into fj �c, and showing that
assignable types are preserved by this encoding.

Definition 4.1 Combinatory Logic consists of the function symbols S,K where terms are de-
fined over the grammar

t ::= x | S | K | t1 t2

and the reduction is defined via the rewrite rules:

K x y → x
S x y z → x z (y z)

cl can be seen as a higher-order trs.
Our encoding of cl in fj �c is based on a Curryfied first-order version of the system above

(see [7] for details), where the rules for S and K are expanded so that each new rewrite rule
has a single operand, allowing for the partial application of function symbols. We model
application, the basic engine of reduction in trs, via the invocation of a method named app.
The reduction rules of Curryfied cl each apply to (or are ‘triggered’ by) different ‘versions’ of
the S and K combinators; in our encoding these rules are implemented by the bodies of five
different versions of the app method which are each attached to different classes representing
the different versions of the S and K combinators. In order to make our encoding a valid
(typeable) program in full Java, we have defined a Combinator class containing an app
method from which all the others inherit, essentially acting as an interface to which all encoded
versions of S and K must adhere.

Definition 4.2 ([19]) The encoding of Combinatory Logic (cl) into the fj �c program oocl
(Object-Oriented Combinatory Logic) is defined using the execution context given in Fig-
ure 4 and the function ��·�� which translates terms of cl into fj �c expressions, and is defined as
follows:

The Beauty of Functional Code, LNCS 8106, pp. 27-46, 2013 16

class Combinator extends Object {
Combinator app(Combinator x) { return this; }

}
class K extends Combinator {

Combinator app(Combinator x) { return new K_1(x); }
}
class K_1 extends K {

Combinator x;
Combinator app(Combinator y) { return this.x; }

}
class S extends Combinator {

Combinator app(Combinator x) { return new S_1(x); }
}
class S_1 extends S {

Combinator x;
Combinator app(Combinator y) { return new S_2(this.x, y); }

}
class S_2 extends S_1 {

Combinator y;
Combinator app(Combinator z) { return this.x.app(z).app(this.y.app(z)); }

}

Figure 4: The class table for Object-Oriented Combinatory Logic (oocl) programs

��x �� = x
��t1 t2 �� = ��t1 ��.app(��t2 ��)
��K�� = new K()
��S�� = new S()

We can show that the reduction behaviour of oocl mirrors that of cl.

Theorem 4.3 ([19]) If t1, t2 are terms of cl and t1 →∗ t2, then ��t1 �� →∗ ��t2 �� in oocl.

Through this encoding - and the results we have shown above - we can achieve a type-based
characterisation of all (terminating) computable functions in oo. Since cl is a Turing-complete
model of computation, as a side effect we show that fj �c is Turing-complete. Although we are
sure this does not come as a surprise, it is a nice formal property for our calculus to have, and
comes easily as a consequence of our encoding.

In addition, our type system can perform the same ‘functional’ analysis as itd does for lc
and cl. This is illustrated by a type preservation result. We present Curry’s type system for cl
and then show we can give equivalent types to oocl programs.

Definition 4.4 (Curry Type Assignment for cl [19]) i) The set of simple types (also known
as Curry types) is defined by the grammar: A, B ::= ϕ | A→B .

ii) A basis Γ is a mapping from variables to Curry types, written as a set of statements of the
form x:A in which each of the variables x is distinct.

iii) Simple type assignment to cl-terms is defined by the following system:

(Ax) : (x:A ∈ Γ)
Γ �cl x : A (→E) :

Γ �cl t1 : A→B Γ �cl t2 : A

Γ �cl t1t2 : B

(K) : Γ �cl K : A→B→A (S) : Γ �cl S : (A→B→C)→(A→B)→A→C

The elegance of our approach is that we can now link types assigned to combinators to
types assignable to object-oriented programs. To show this type preservation result, we need

The Beauty of Functional Code, LNCS 8106, pp. 27-46, 2013 17

to define what the equivalent of Curry’s types are in terms of our fj �c types. To this end, we
define the following translation of Curry types.

Definition 4.5 (Type Translation [19]) The function ��·��, which transforms Curry types8, is
defined as follows:

��φ�� = φ
��A→B�� = 〈app:(��A��)→��B��〉

It is extended to contexts as follows: ��Γ��= {x:��A�� | x:A ∈ Γ}.

We can now show the type preservation results.

Theorem 4.6 (Preservation of Types (cf. [19])) i) If Γ �cl t : A then ��Γ�� � ��t �� : ��A��
ii) Let Ecl be defined as: Ecl S = ��(ϕ1→ϕ2→ϕ3)→(ϕ1→ϕ2)→ϕ1→ϕ3��

Ecl K = ��ϕ1→ϕ2→ϕ1��
If Γ �cl t : A then ��Γ��;Ecl �c ��t �� : ��A��.

Furthermore, since Curry’s well-known translation of the simply typed lc into cl preserves
typeability (see [8]), we can also construct a type-preserving encoding of lc into fj �c; it is
straightforward to extend this preservation result to full-blown strict intersection types. We
stress that this result really demonstrates the validity of our approach.

Conclusions & Future Work

We have considered a type-based semantics defined using an intersection type approach for
fj. Our approach constitutes a subtle shift in the philosophy of static analysis for class-based
oo: in the traditional (nominal) approach, the programmer specifies the class types that each
input to the program (field values and method arguments) should have, on the understanding
that the type checking system will guarantee that the inputs do indeed have these types.

In the approach suggested by our type system, the programmer is afforded expressive free-
dom. Thanks the polymorphic character of our types and to type inference, which presents the
programmer with an ‘if-then’ input-output analysis of class constructors and method calls, if
a programmer wishes to create instances of some particular class (perhaps from a third party)
and call its methods in order to utilise some given functionality, then it is then up to them
to ensure that they pass appropriate inputs (either field values or method arguments) that
guarantee the behaviour they require.

We will reintroduce more features of full Java back into our calculus, to see if our system can
accommodate them whilst maintaining the strong theoretical properties that we have shown
for the core calculus. For example, similar to λµ [18], it seems natural to extend our simply
typed system to analyse the exception handling features of Java.

References
[1] S. van Bakel. Complete restrictions of the Intersection Type Discipline. Theoretical Computer Science,

102(1):135–163, 1992.
[2] S. van Bakel. Intersection Type Assignment Systems. Theoretical Computer Science, 151(2):385–435,

1995.

8 Note we have overloaded the notation ��·��, which we also use for the translation of cl terms to fj �c expressions.

The Beauty of Functional Code, LNCS 8106, pp. 27-46, 2013 18

[3] S. van Bakel. Completeness and Partial Soundness Results for Intersection & Union Typing for
λµµ̃. Annals of Pure and Applied Logic, 161:1400–1430, 2010.

[4] S. van Bakel. Strict intersection types for the Lambda Calculus. ACM Computing Surveys, 43:20:1–
20:49, April 2011.

[5] S. van Bakel. Completeness and Soundness results for X with Intersection and Union Types.
Fundamenta Informaticae, 121:1–41, 2012.

[6] S. van Bakel and U. de’Liguoro. Logical equivalence for subtyping object and recursive types.
Theory of Computing Systems, 42(3):306–348, 2008.

[7] S. van Bakel and M. Fernández. Normalisation Results for Typeable Rewrite Systems. Information
and Computation, 2(133):73–116, 1997.

[8] S. van Bakel and M. Fernández. Normalisation, Approximation, and Semantics for Combinator
Systems. Theoretical Computer Science, 290:975–1019, 2003.

[9] H. Barendregt. The Lambda Calculus: its Syntax and Semantics. North-Holland, Amsterdam, revised
edition, 1984.

[10] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and the completeness
of type assignment. Journal of Symbolic Logic, 48(4):931–940, 1983.

[11] T. Brus, M.C.J.D. van Eekelen, M.O. van Leer, and M.J. Plasmeijer. Clean - A Language for Func-
tional Graph Rewriting. In ICFP’86, LNCS 274, pp 364–368, 1987.

[12] A. Church. A Note on the Entscheidungsproblem. Journal of Symbolic Logic, 1(1):40–41, 1936.
[13] M. Coppo and M. Dezani-Ciancaglini. An Extension of the Basic Functionality Theory for the

λ-Calculus. Notre Dame journal of Formal Logic, 21(4):685–693, 1980.
[14] H.B. Curry. Grundlagen der Kombinatorischen Logik. American Journal of Mathematics, 52:509–536,

789–834, 1930.
[15] A. Igarashi, B.C. Pierce, and P. Wadler. Featherweight Java: a minimal core calculus for Java and

GJ. ACM Trans. Program. Lang. Syst., 23(3):396–450, 2001.
[16] R. Milner. A Theory of Type Polymorphism in Programming. Journal of Computer and System

Sciences, 17:348–375, 1978.
[17] E.G.J.M.H. Nöcker, J.E.W. Smetsers, M.C.J.D. van Eekelen, and M.J. Plasmeijer. Concurrent Clean.

In PARLE’91, LNCS 506-II, pp 202–219, 1991.
[18] M. Parigot. An algorithmic interpretation of classical natural deduction. LPAR’92, LNCS 624,

pp. 190-201, 1992.
[19] R.N.S. Rowe and S.J. van Bakel. Approximation Semantics and Expressive Predicate Assignment

for Object-Oriented Programming. In TLCA’11, LNCS 6690, pp 229–244, 2011.
[20] C.P. Wadsworth. The relation between computational and denotational properties for Scott’s D∞-

models of the lambda-calculus. SIAM Journal on Computing, 5:488–521, 1976.

