
Approximation Semantics and Expressive Predicate
Assignment for Object-Oriented Programming

(Extended Abstract)
(TLCA’11, LNCS 6690, pages 213-228, 2011)

R.N.S. Rowe and S.J. van Bakel
{r.rowe,s.vanbakel}@imperial.ac.uk

Department of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2BZ, UK

s.vanbakel@imperial.ac.uk

Abstract

We consider a semantics for a class-based object-oriented calculus based upon approximation;
since in the context of lc such a semantics enjoys a strong correspondence with intersection
type assignment systems, we also define such a system for our calculus and show that it is sound
and complete. We establish the link with between type (we use the terminology predicate here)
assignment and the approximation semantics by showing an approximation result, which
leads to a sufficient condition for head-normalisation and termination.
We show the expressivity of our predicate system by defining an encoding of Combinatory
Logic (and so also lc) into our calculus. We show that this encoding preserves predicate-
ability and also that our system characterises the normalising and strongly normalising terms
for this encoding, demonstrating that the great analytic capabilities of these predicates can be
applied to oo.

1 Introduction

Semantics is a well established area of research for both functional and imperative languages;
for the functional programming language side, semantics is mainly denotational, based on
Scott’s domain theory [25], whereas for imperative languages it is mainly operational [24]. In
this paper, we present the first results of our research in the direction of denotational, type-
based semantics for object-oriented (oo) calculi, which we aim to extend towards semantics-
based systems of abstract interpretation.

Over the years many expressive type systems have been defined and investigated. Amongst
those, the intersection type discipline (itd) [14, 15, 11, 2] stands out as a system that is closed
under β-equality and gives rise to a filter model; it is defined as an extension of Curry’s ba-
sic type system for the Lambda Calculus (lc) [10], by allowing term-variables to have many,
potentially non-unifiable types. This generalisation leads to a very expressive system: for
example, termination (i.e. normalisation) of terms can be characterised by assignable types.
Furthermore, intersection type-based models and approximation results show that intersec-
tion types describe the full semantical behaviour of typeable terms. Intersection type systems
have also been employed successfully in analyses for dead code elimination [17], strictness
analysis [20], and control-flow analysis [9], proving them a versatile framework for reasoning
about programs. Inspired by this expressive power, investigations have taken place of the
suitability of intersection type assignment for other computational models: for example, van
Bakel and Fernández have studied [6, 7] intersection types in the context of Term Rewriting
Systems (trs) and van Bakel studied them in the context of sequent calculi [4].

TLCA’11, LNCS 6690, pages 213-228, 2011 2

Also the object-oriented programming paradigm has been the subject of extensive theoretical
study over the last two decades. oolanguages come in two broad flavours: the object (or
prototype) based, and the class based. A number of formal models has been developed [13, 12,
21, 18, 1, 19]; for example, the ς-calculus [1] and Featherweight Java (FJ) [19] give elementary
models for object based and class-based oorespectively. In an attempt to bring intersection
types to the context of oo, in [5] van Bakel and de’Liguoro presented a system for the ς-cal-
culus; it sees assignable types as an execution predicate, or applicability predicate, rather than as
a functional characterisation as is the view in the context of lcand, as a result, recursive calls
are typed individually, with different types. This is also the case in our system.

In the current paper we aim to define type-based semantics for class-based oo, so introduce
a notion of intersection type assignment for such languages (we will use the terminology
predicates here, to distinguish our notion of types from the traditional notion of class types).
In order to be able to concentrate on the essential difficulties, we focus on Featherweight
Java [19], a restriction of Java defined by removing all but the most essential features of the full
language; Featherweight Java bears a similar relation to Java as lcdoes to languages such as
ML and Haskell; in fact, we will show it to be Turing complete. We will show that the expected
properties of a system based on intersection predicates (i.e. soundness and completeness) hold,
opening up the possibility to define a predicate-based semantics for fj. In future work, we
will look at adding the normal programming features, and investigate which of the main
properties we show in this paper are still achievable.

We also define a notion of approximant for fj-programs as a finite, rooted segment – that
cannot be reduced – of a [head] normal form; we go on to show an approximation result which
states that, for every predicate assignable to a term in our system, an approximant of that term
exists which can be assigned the same predicate. Interpreting a term by its set of approximants
gives an approximation semantics and the approximation result then relates the approximation
and the predicate-based semantics. This has, as far as we are aware, not previously been
shown for a model of oo. The approximation result allows for a predicate-based analysis of
termination.

As is also the case for lcand trs, in our system this result is shown using a notion of
computability; since the notion of reduction we consider is weak, as in [7] to show the ap-
proximation result we need to consider a notion of reduction on predicate derivations. We
illustrate the expressive power of our calculus by showing that it is Turing complete through
an embedding of Combinatory Logic – and thereby also the embedding of lc. We also recall
the notion of Curry type assignment, for which we can easily show a principal predicate prop-
erty and show a predicate preservation result: types assignable to λ-terms in Curry’s system
of simple type assignment correspond to predicates in our system that can be assigned to the
interpreted λ-terms. This is easily extended to the strict intersection type assignment system
for lc[2]; this then implies that the collection of predicate-able ooexpressions correspond to
the λ-terms that are typeable using intersection types, i.e. all semantically meaningful terms.

In [8] we presented a similar system which here has been simplified. In particular, we have
removed the field update feature (which can be modelled using method calls1), which gives a
more straightforward presentation of system and proofs. We have decoupled our intersection
predicate system from the existing class type system, which shows that the approximation
result does not depend on the class type system in any way.

For lack of space, proofs are omitted from this paper; we refer the interested reader to
http://www.doc.ic.ac.uk/˜rnr07 for a version of this paper with detailed proofs.

1 We can simulate field update by adding to every class C, for each field f i belonging to the class, a method
C update f i(x) { return new C(this.f1,...,x,...,this.fn); }.

TLCA’11, LNCS 6690, pages 213-228, 2011 3

2 The Calculus fj � c

In this section, we will define our variant of Featherweight Java. It defines classes, which
represent abstractions encapsulating both data (stored in fields) and the operations to be per-
formed on that data (encoded as methods). Sharing of behaviour is accomplished through the
inheritance of fields and methods from parent classes. Computation is mediated by instances of
these classes (called objects), which interact with one another by calling (or invoking) methods
and accessing each other’s (or their own) fields. We have removed cast expressions since, as
the authors of [19] themselves point out, the presence of downcasts is unsound2; for this reason
we call our calculus fj �c. We also leave the constructor method as implicit.

Before defining the calculus itself, we introduce notation to represent and manipulate se-
quences of entities which we will use in this paper.

Definition 2.1 (Sequence Notation) We use n (n ∈ IN) to represent the list 1, . . . ,n. A se-
quence a1, . . . , an is denoted by an; the subscript can be omitted when the exact number of ele-
ments in the sequence is not relevant. We write a ∈ an whenever there exists some i ∈ {1, . . . ,n}
such that a = ai. The empty sequence is denoted by ε, and concatenation on sequences by a · a′.

We use familiar meta-variables in our formulation to range over class names (C and D),
field names (f), method names (m) and variables (x). We distinguish the class name Object
(which denotes the root of the class inheritance hierarchy in all programs) and the variable
this (which is used to refer to the receiver object in method bodies).

Definition 2.2 (fj �c Syntax) fj �c programs P consist of a class table CT , comprising the class
declarations, and an expression e to be run (corresponding to the body of the main method in a
real Java program). They are defined by:

e ::= x | new C(e) | e.f | e.m(e)
fd ::= Cf;
md ::= Dm(C1 x1, ..., Cn xn) { return e; }
cd ::= class C extends C’ { fd md } (C �= Object)

CT ::= cd
P ::= (CT ,e)

From this point, all the concepts defined are program dependent (parametric on the class
table); however, since a program is essentially a fixed entity, it will be left as an implicit
parameter in the definitions that follow. This is done in the interests of readability, and is
a standard simplification in the literature (e.g. [19]). Here, we also point out that we only
consider programs which conform to some sensible well-formedness criteria: no cycles in the
inheritance hierarchy, and fields and methods in any given branch of the inheritance hierarchy
are uniquely named. An exception is made to allow the redeclaration of methods, providing
that only the body of the method differs from the previous declaration (in the parlance of
class-based oo, this is called method override).

Definition 2.3 (Lookup Functions) The following lookup functions are defined to extract
the names of fields and bodies of methods belonging to (and inherited by) a class.

2 In the sense that typeable expressions can get stuck at runtime.

TLCA’11, LNCS 6690, pages 213-228, 2011 4

i) The function F(C) returns the list of fields fn belonging to class C (including those it
inherits).

ii) The function Mb(C,m) returns a tuple (x,e), consisting of a sequence of the method m’s
(as defined in the class C) formal parameters and its body.

As usual, substitution is at the basis of reduction in our calculus: when a method is invoked
on an object (the receiver) the invocation is replaced by the body of the method that is called,
and each of the variables is replaced by a corresponding argument.

Definition 2.4 (Reduction) i) A term substitution S = {x1 �→e1, . . . ,xn �→en} is defined in
the standard way, as a total function on expressions that systematically replaces all occur-
rences of the variables x i by their corresponding expression e i. We write eS for S(e).

ii) The reduction relation → is the smallest relation on expressions satisfying:

– new C(en).f j →e j, for class name C with F(C) =fn and j ∈ n .

– new C(e).m(e’n)→eS, where S = {this �→new C(e), x1 �→e’1, . . . , xn �→e’n}, for
class name C and method m with Mb(C,m) = (xn,e).

and the usual congruence rules for allowing reduction in subexpressions.
iii) If e →e’, then e is the redex and e’ the contractum; →∗ is the reflexive, transitive closure

of →.
This notion of reduction is confluent.

3 Approximation Semantics

In this section we define an approximation semantics for fj �c. The notion of approximant was
first introduced in [27] for lc. Essentially, an approximant is a partially evaluated expression
in which the locations of incomplete evaluation (i.e. where reduction may still take place)
are explicitly marked by the element ⊥; thus, they approximate the result of computations.
Intuitively, an approximant can be seen as a ‘snapshot’ of a computation, where we focus on
that part of the resulting program which will no longer change (i.e. the observable output).

Definition 3.1 (Approximants) i) The set of approximants fj �c is defined by the following
grammar:

a ::= x | ⊥ | a.f |a.m(an) | new C(an) (n ≥ 0)
A ::= x | ⊥ | new C(An) (n ≥ 0)

|A.f | A.m(A) (A �= ⊥,A �= new C(An))

Note that approximate normal forms approximate expressions in (head) normal form. In
addition, if we were to extend the notion of reduction so that field accesses and method calls
on ⊥ reduce to ⊥, then we would find that the approximate normal forms are exactly the
normal forms with respect to this extended reduction relation.

The notion of approximation is formalised as follows.

Definition 3.2 (Approximation Relation) The approximation relation 	 is the contextual clo-
sure of the smallest preorder on approximants satisfying: ⊥ 	a, for all a.

The relationship between the approximation relation and reduction is:

TLCA’11, LNCS 6690, pages 213-228, 2011 5

Lemma 3.3 If A 	e and e →∗ e’, then A 	 e’.

Notice that this property expresses that the observable behaviour of a program can only in-
crease (in terms of) through reduction.

Definition 3.4 (Approximants) The set of approximants ofe is defined as A(e) = {A | ∃e’ [e→∗

e’ &A 	e’]}.

Thus, an approximant (of some expression) is a approximate normal form that approximates
some (intermediate) stage of execution. This notion of approximant allows us to define what
an approximation model is for fj �c.

Definition 3.5 (fj �c Semantics) An approximation model for an fj �c program is a structure
〈℘(A),��·A〉, where the interpretation function ��·A, mapping expressions to elements of
the domain, ℘(A), is defined by ��eA =A(e).

As for models of lc, our approximation semantics equates expressions which have the same
reduction behaviour, as shown by the following theorem.

Theorem 3.6 e →∗ e’ ⇒A(e) = A(e’).

4 Predicate Assignment

We will now define a notion of predicate assignment which is sound and complete with re-
spect to the approximation semantics defined above in the sense that every predicate assignable
to an expression is also assignable to an approximant of that expression, and vice versa. No-
tice that, since in approximants redexes are replaced by ⊥, this result is not an immediate
consequence of subject reduction; we will see that it is the predicate derivation itself which
specifies the approximant in question. This relationship is formalised in the next section.

The predicate assignment system defined below uses intersection predicates; it is influenced
by the predicate system for the ς-calculus as defined in [5], and can ultimately be seen as based
upon the strict intersection type system for lc(see [2] for a survey). Our predicates describe
the capabilities of an expression (or rather, the object to which that expression evaluates) in
terms of i) the operations that may be performed on it (i.e. accessing a field or invoking a method),
and ii) the outcome of performing those operations. In this way, our predicates express detailed
properties about the contexts in which expressions can be safely used.

More intuitively, our predicates capture the notion of observational equivalence: two expres-
sions with the same (non-empty) set of assignable predicates will be observationally indistin-
guishable. Our predicates thus constitute semantic predicates, so for this reason (and also to
distinguish them from the already existing Java class types) we do not call them types.

Definition 4.1 (Predicates) The set of predicates (ranged over by φ, ψ) and its subset of strict
predicates (ranged over by σ) are defined by the following grammar (where ϕ ranges over
predicate variables, and as for syntax C ranges over class names):

φ,ψ ::= ω | σ | φ∩ψ

σ ::= ϕ | C | 〈f :σ〉 | 〈m :(φ1, . . . ,φn)→ σ〉 (n ≥ 0)

It is possible to group information stated for an expression in a collection of predicates into

TLCA’11, LNCS 6690, pages 213-228, 2011 6

(var) : (φ � σ)
Π,x:φ � x : σ (fld) :

Π � e : 〈f :σ〉
Π �e.f : σ

(join) :
Π � e : σ1 . . . Π � e : σn

(n ≥ 2)
Π �e : σ1 ∩ . . . ∩ σn

(ω) :
Π � e : ω

(invk) :
Π � e : 〈m :(φn)→ σ〉 Π � e1 : φ1 · · · Π �en : φn

Π �e.m(e n) : σ

(newO) :
Π � e1 : φ1 . . . Π �en : φn

(F(C) = fn)
Π � new C(e n) :C

(newF) :
Π � e1 : φ1 . . . Π �en : φn

(F(C) = fn, i ∈ n, φi = σ,φj �= ω (j �= i ∈ n))
Π � new C(e n) : 〈f i :σ〉

(newM) :
{this:ψ,x1:φ1, . . . ,xn:φn} � eb : σ Π � new C(e) : ψ

(Mb(C,m) = (xn,eb))
Π � new C(e) : 〈m :(φn)→ σ〉

Figure 1: Predicate Assignment for fj �c

intersections from which any specific one can be selected as demanded by the context in
which the expression appears. In particular, an intersection may combine different (even
non-unifiable) analyses of the same field or method.

Our predicates are strict in the sense of [2] since they must describe the outcome of perform-
ing an operation in terms of a(nother) single operation rather than an intersection. We include
a predicate constant for each class, which we can use to type objects when a more detailed
analysis of the object’s fields and methods is not possible3. The predicate constant ω is a top
(maximal) predicate, assignable to all expressions.

Definition 4.2 (Subpredicate Relation) The subpredicate relation � is the smallest preorder
satisfying the following conditions:

φ � ω for all φ φ∩ψ � φ
φ � ψ & φ � ψ′ ⇒ φ � ψ∩ψ′ φ∩ψ � ψ

We write ∼ for the equivalence relation generated by �, extended by

σ ∼ σ′ ⇒ 〈f :σ〉 ∼ 〈f :σ′〉
∀i ∈ n [φ′

i ∼ φ′
i] & σ ∼ σ′ ⇒ 〈m :(φ1, . . . ,φn)→ σ〉 ∼ 〈m :(φ′

1, . . . ,φ′
n)→ σ′〉

We consider predicates modulo ∼; in particular, all predicates in an intersection are different
and ω does not appear in an intersection. It is easy to show that ∩ is associative, so we write
σ1 ∩ . . .∩σn (where n ≥ 2) to denote a general intersection.

Definition 4.3 (Predicate Environments) i) A predicate statement is of the forme:φ, where
e is called the subject of the statement.

ii) An environment Π is a set of predicate statements with (distinct) variables as subjects;
Π,x:φ stands for Π ∪ {x :φ} where x does not appear in Π.

iii) If Πn is a sequence of environments, then
⋂

Πn is the environment defined as follows:
x:φ1 ∩ . . .∩φm ∈ ⋂

Πn if and only if {x:φ1, . . . ,x:φm} is the non-empty set of all statements
in the union of the environments that have x as the subject.

We will now define our notion of intersection predicate assignment, which is a slight variant

3 This may be because the object does not contain any fields or methods (as is the case for Object) or more
generally because no fields or methods can be safely invoked.

TLCA’11, LNCS 6690, pages 213-228, 2011 7

of the system defined in [8]:

Definition 4.4 (Predicate Assignment) Predicate assignment for fj �c is defined by the nat-
ural deduction system given in Fig. 1. The rules in fact operate on the larger set of approxi-
mants, but for clarity we abuse notation slightly and use the meta-variable e for expressions
rather than a. Note that there is no special rule for typing ⊥, meaning that the only predicate
which may be assigned to (a subterm containing) ⊥ is ω.

The rules of our predicate assignment system are fairly straightforward generalisations of
the rules of the strict intersection type assignment system for lcto oo: e.g. (fld) and (invk)
are analagous to (→E); (newF) and (newM) are a form of (→I); and (obj) can be seen as
a universal (ω)-like rule for objects only. The only non-standard rule from the point of view
of similar work for term rewriting and traditional nominal ootype systems is (newM), which
derives a predicate for an object that presents an analysis of a method. It makes sense however
when viewed as an abstraction introduction rule. Like the corresponding lctyping rule (→I),
the analysis involves typing the body of the abstraction (i.e. the method body), and the as-
sumptions (i.e. requirements) on the formal parameters are encoded in the derived predicate
(to be checked on invocation). However, a method body may also make requirements on the
receiver, through the use of the variable this. In our system we check that these hold at the
same time as typing the method body (so-called early self typing). This checking of requirements
on the object itself is where the expressive power of our system resides. If a method calls itself
recursively, this recursive call must be checked, but – crucially – carries a different predicate if
a valid derivation is to be found. Thus only recursive calls which terminate at a certain point
(i.e. which can be assigned ω, and thus ignored) will be permitted by the system.

As is standard for intersection type assignment systems, our system exhibits both subject
reduction and subject expansion; the proof is standard.

Theorem 4.5 (Subject reduction and expansion) Let e → e’; then Π � e’ : φ if and only if
Π � e : φ.

5 Linking Predicates with Semantics: the Approximation Result

We will now describe the relationship between the predicate system and the approximation
semantics, which is expressed through an approximation theorem: this states that for every
predicate-able approximant of an expression, the same predicate can be assigned to the ex-
pression itself, and vice-versa: Π �e : φ ⇔ ∃ A ∈ A(e) [Π �A : φ]. As for other systems [3, 7],
this result is a direct consequence of the strong normalisability of derivation reduction: the
structure of the normal form of a given derivation exactly corresponds to the structure of
the approximant. As we see below, this implies that predicate-ability provides a sufficient
condition for the (head) normalisation of expressions, i.e. a termination analysis for fj �c; it also
immediately puts into evidence that predicate assignment is undecidable.

Since reduction on expressions is weak, we need to consider derivation reduction, as in [7].
For lack of space, we will skip the details of this reduction; suffice to say that it is essentially
a form of cut-elimination on predicate derivations, defined through the following two basic
‘cut’ rules:

TLCA’11, LNCS 6690, pages 213-228, 2011 8

D1

Π �e1 : φ1 . . .

Dn

Π � en : φn

Π � new C(en) : 〈f i :σ〉
Π � new C(e n).f i : σ

→D

Di

Π � e i : σ

..

.

Db

this:ψ,x1:φ1, . . . ,xn:φn � eb : σ

Dself

Π � new C(e ′) : ψ

Π � new C(e ′) : 〈m :(φn)→ σ〉 D1

Π � e1 : φ1 . . .

Dn

Π �en : φn

Π � new C(e’).m(e n) : σ →D

Db
S

Π �eb
S : σ

where Db
S is the derivation obtained from Db by replacing all sub-derivations of the form

〈Q〉var :: Π,x i:φi �x i : σ by (a sub-derivation of4) Di, and sub-derivations of the form 〈Q〉var ::
Π,this:ψ � this : σ by (a sub-derivation of) Dself. Similarly, eb

S is the expression obtained
fromeb by replacing each variable x i by the expressione i, and the variable this by new C(e’).
This reduction creates exactly the derivation for a contractum as suggested by the proof of the
subject reduction, but is explicit in all its details, which gives the expressive power to show
the approximation result.

Notice that sub-derivations of the form 〈Q〉ω :: Π � e : ω do not reduce (although e might)
- they are already in normal form with respect to derivation reduction. This is crucial for the
strong normalisation result, since it decouples the reduction of a derivation from the possibly
infinite reduction sequence of the expression which it assigns a predicate to.

This notion of derivation reduction is not only sound (i.e. produces valid derivations) but,
most importantly, we have that it corresponds to reduction on expressions.

Theorem 5.1 (Soundness of Derivation Reduction) If D :: Π � e : φ and D →D D′, then D′

is a well-defined derivation, in that there exists some e’ such that D′ :: Π �e’ : φ, and e →e’.

The key step in showing the approximation result is proving that this notion of derivation
reduction is terminating, i.e. strongly normalising. In other words, all derivations have a normal
form with respect to →D. Our proof uses the well-known technique of computability [26];
the formal definition of the Comp(D) predicate is, as standard, defined inductively over the
structure of predicates:

Definition 5.2 (Computability) The set of computable derivations is defined as the smallest
set satisfying the following conditions (where Comp(D) denotes that D is a member of the set
of computable derivations):

i) Comp(〈Q〉ω :: Π �e : ω).
ii) Comp(D :: Π �e : ϕ)⇔SN (D :: Π �e : ϕ).

iii) Comp(D :: Π �e :C)⇔SN (D :: Π � e :C).
iv) Comp(D :: Π �e : 〈f :σ〉)⇔ Comp(〈D,fld〉 :: Π �e.f : σ).
v) Comp(D :: Π �e : 〈m :(φn)→ σ〉)⇔

∀Dn [∀ i ∈ n [Comp(Di :: Πi � ei : φi)]⇒
Comp(〈D′,D′

1, . . . ,D′
n, invk〉 :: Π′ �e.m(en) : σ)]

4 Note that φi could be an intersection, containing σ.

TLCA’11, LNCS 6690, pages 213-228, 2011 9

where D′ = D[Π′ � Π] and D′
i = Di[Π

′ � Πi] for each i ∈ n with Π′ =
⋂

Π · Πn, and
D[Π′ � Π] denotes a derivation of exactly the same shape as D in which the environment
Π is replaced with Π′ in each statement of the derivation.

vi) Comp(〈D1, . . . ,Dn, join〉 :: Π � e : σ1 ∩ . . .∩σn)⇔ ∀ i ∈ n [Comp(Di)].

As can be expected, we show that computable derivations are strongly normalising, and that
all valid derivations are computable.

Theorem 5.3 i) Comp(D :: Π � e : φ) ⇒ SN (D :: Π � e : φ) .
ii) D :: Π � e : φ ⇒ Comp(D :: Π � e : φ)

Then the key step to the approximation theorem follows directly.

Theorem 5.4 (Strong Normalisation) If D :: Π � e : φ then SN (D).

Finally, the following two properties of approximants and predicate assignment lead to the
approximation result itself.

Lemma 5.5 i) If D :: Π �a : φ and a 	a’ then there exists a derivation D′ :: Π � a’ : φ.
ii) If D :: Π � e : φ and D is in normal form with respect to →D, then there exists A and D′ such

that A 	e and D′ :: Π �A : φ.

The first of these two properties simply states the soundness of predicate assignment with
respect to the approximation relation. The second is the more interesting, since it expresses
the relationship between the structure of a derivation and the approximant. The derivation D′

is constructed from D by replacing sub-derivations of the form 〈Q〉ω :: Π � e : ω by 〈Q〉ω ::
Π �⊥ : ω (thus covering any redexes appearing in e). Since D is in normal form, there are also
no redexes that carry a non-trivial predicate, ensuring that the expression in the conclusion
of D′ is a (normal) approximant. The ‘only if’ part of the approximation result itself then
follows easily from the fact that →D corresponds to reduction of expressions, so A is also an
approximant of e. The ‘if’ part follows from the first property above and subject expansion.

Theorem 5.6 (Approximation) Π � e : φ iff there exists A ∈ A(e) such that Π � A : φ.

In other intersection type systems [3, 7], the approximation theorem underpins character-
isation results for various forms of termination. Like the lc(and in contrast to the system
in [7] for trs) our predicate system gives a full characterisation of normalisability. So predicate-
ability gives a guarantee of termination since our normal approximate forms of Definition 3.1
correspond in structure to expressions in (head) normal form.

Definition 5.7 ((Head-)Normal Forms) i) The set of expressions in head-normal form (ranged
over by H) is defined by:

H ::= x | new C(e) |H.f | H.m(e) (H �= new C(e))

ii) The set of expressions in normal form (ranged over by N) is defined by:

N ::= x | new C(N) |N.f | N.m(N) (N �= new C(N))

Notice that the difference between these two notions sits in the second and fourth alterna-
tive, where head-normal forms allow arbitrary expressions to be used.

TLCA’11, LNCS 6690, pages 213-228, 2011 10

Lemma 5.8 i) If A �= ⊥ and A 	e, then e is a head-normal form.
ii) If A 	 e and A does not contain ⊥, then e is a normal form.

Thus any predicate, or, more accurately, any predicate derivation other than those of the
form 〈Q〉ω :: Π � e : ω (which correspond to the approximant ⊥) specifies the structure of a
(head) normal form via the normal form of its derivation.

Definition 5.9 i) A derivation is strong if it contains no instances of the rule (ω).
ii) If the only instances of the (ω) rule in a derivation are those typing the arguments to

method invocations, then we say it is ω-safe.
iii) For a predicate environment Π, if for all x:φ ∈ Π either φ = ω or φ does not contain ω at

all, then we say Π is ω-safe.

From the approximation result, the following normalisability guarantees are easily achieved.

Theorem 5.10 (Normalisation) i) Π �e : σ if and only if e has a head-normal form.
ii) D :: Π � e : σ with ω-safeD and Π only if e has a normal form.

iii) D :: Π � e : σ with D strong if and only if e is strongly normalisable.

Notice that we currently do not have an ‘if and only if’ result for Theorem 5.10(2), whereas
terms with normal forms can be completely characterised in lc. This is because deriva-
tion expansion does not preserve ω-safety in general. To see why this is the case consider
that while an ω-safederivation may exist for Π � e i : σ, no ω-safederivation may exist for
Π � new C(en).f i : σ (due to non-termination in the other expressions e j) even though this
expression has the same normal form as e i.

6 Expressivity

In this section we consider the formal expressivity of our oocalculus and predicate system.
We show that fj �c is Turing complete by considering an encoding of Combinatory Logic (cl).
Through the approximation result of the previous section all normal forms of the clprogram
can be assigned a non-trivial predicate in our system. Thus, we have a predicate-based char-
acterisation of all (terminating) computable functions in oo.

Combinatory Logic is a model of computation defined by H. Curry [16] independently of
lc. It defines a higher-order term rewriting system over of the function symbols {S,K} and
the following rewrite rules:

K x y → x
S x y z → x z (y z)

Our encoding of clin fj �c is based on a curryfied first-order version of the system above (see [6]
for details), where the rules for S and K are expanded so that each new rewrite rule has a
single operand, allowing for the partial application of function symbols. Application, the basic
engine of reduction in term rewriting systems, is modelled via the invocation of a method
named app belonging to a Combinator interface. Since we do not have interfaces proper in
fj �c, we have defined a Combinator class but left the body of the app method unspecified to
indicate that in a full-blown Java program this would be an interface. The reduction rules of
curryfied cleach apply to (or are ‘triggered’ by) different ‘versions’ of the S and K combina-
tors; in our encoding these rules are implemented by the bodies of five different versions of

TLCA’11, LNCS 6690, pages 213-228, 2011 11

class Combinator extends Object {
Combinator app(Combinator x) { return this; } }

class K1 extends Combinator {
Combinator app(Combinator x) { return new K2(x); } }

class K2 extends K1 { Combinator x;
Combinator app(Combinator y) { return this.x; } }

class S1 extends Combinator {
Combinator app(Combinator x) { return new S2(x); } }

class S2 extends S1 { Combinator x;
Combinator app(Combinator y) { return new S3(this.x, y); } }

class S3 extends S2 { Combinator y;
Combinator app(Combinator z) {

return this.x.app(z).app(this.y.app(z)); } }

Figure 2: The class table for Object-Oriented Combinatory Logic (oocl) programs

the app method which are each attached to different subclasses (i.e. different versions) of the
Combinator class.

Definition 6.1 The encoding of Combinatory Logic (cl) into the fj �c program oocl (Object-
Oriented cl) is defined using the class table in Figure 2 and the function ��· which translates
terms of clinto fj �c expressions, and is defined as follows:

��x = x ��t1t2 = ��t1 .app(��t2)
��K = new K1() ��S = new S1()

The reduction behaviour of oocl mirrors that of cl.

Theorem 6.2 For clterms t1, t2: t1 →∗ t2 if and only if ��t1 →∗ ��t2 .

Given the Turing completeness of cl, this result shows that our model of class-based oois
also Turing complete. Although this certainly does not come as a surprise, it is a nice formal
property for our calculus to have. In addition, our predicate system can perform the same
‘functional’ analysis as itddoes for lcand cl. This is illustrated by a type preservation result. We
focus on Curry’s type system for cland show we can give equivalent types to oocl programs.

Definition 6.3 (Curry Types) The set of simple types is defined by the grammar:

σ ::= ϕ | σ → σ

Definition 6.4 (Curry Type Assignment for cl) i) A basis Γis a set of statements of the
form x:σ in which each of the variables x is distinct.

ii) Simple types are assigned to cl-term using the following natural deduction system:

(var) : (x:σ ∈ Γ)
Γ �cl x : σ

(→E) :
Γ �cl t1 : σ → σ′ Γ �cl t2 : σ

Γ �cl t1t 2 : σ′

(K) :
Γ �cl K : σ → σ′ → σ

(S) : Γ �cl S : (σ → σ′ → σ′′)→ (σ → σ′)→ σ → σ′′

To show type preservation, we first define what the equivalent of Curry’s types are in terms
of predicates.

TLCA’11, LNCS 6690, pages 213-228, 2011 12

Definition 6.5 (Type Translation) The function ��·, which transforms Curry types into
predicates5, is defined as follows:

��ϕ = ϕ
��σ → σ′ = 〈app :��σ → ��σ′〉

It is extended to bases by: ��Γ = {x:��σ | x:σ ∈ Γ}.

We can now show the following type preservation result.

Theorem 6.6 (Preservation of Types) If Γ �cl t : σ then ��Γ � ��t : ��σ.

Furthermore, since the well-known encoding of the lcinto clpreserves typeability, we also
have a type-preserving encoding of lcinto fj �c; it is straightforward to extend this preservation
result to full-blown strict intersection types. We stress that this result really demonstrates
the validity of our approach. Indeed, our predicate system actually has more power than
intersection type systems for cl, since there not all normal forms are typeable using strict
types, whereas in our system they are.

Lemma 6.7 If e is a ⊥-free approximate normal form of oocl, then there are ω-safeD and Π and
strict predicate σ such that D :: Π �e : σ.

Since our system has a subject expansion property (and ω-safetypeability is preserved under
expansion for the images of clterms in oocl), this leads to a complete characterisation of
termination for oocl.

Theorem 6.8 Let e be an expression such that e = ��t for some clterm t; then e has a normal form
if and only if there are ω-safeD and Π and strict predicate σ such that D :: Π � e : σ.

7 Some Observations

In this paper we have shown how the itdapproach can be applied to class-based oo, pre-
serving the main expected properties of intersection type systems. There are however some
notable differences between our type system and previous work on lcand trs upon which
our research is based.

Firstly, we point out that when considering the encoding of cl(and via that, lc) in fj �c,
our system provides more than the traditional analysis of terms as functions: there are unty-
peable lcand clterms which have typeable images in oocl. Let δ be the following clterm:
S (S K K) (S K K). Notice that δ δ →∗ δ δ, i.e. it is unsolvable, and thus can only be given the
type ω (this is also true for ��δ δ). Now, consider the term t = S (K δ) (K δ). Notice that it is
a normal form (��t has a normal form also), but that for any term t’ , S (K δ) (K δ) t’ →∗ δ δ.
In a strict system, no functional analysis is possible for tsince φ → ω is not a type and so
the only way we can type this term is using ω 6. In our type system however we may assign
several forms of predicate to ��t . Most simply we can derive ∅ � ��t : S3, but even though
a ‘functional’ analysis via the app method is impossible, it is still safe to access the fields of

5 Note we have overloaded the notation ��·, which we also use for the translation of clterms to fj �c expressions.
6 In other intersection type systems (e.g. [11]) φ → ω is a permissible type, but is equivalent to ω (that is

ω ≤ (φ → ω) ≤ ω) and so semantics based on these type systems identify terms of type φ → ω with unsolvable
terms.

TLCA’11, LNCS 6690, pages 213-228, 2011 13

the value resulting from ��t – both ∅ � ��t : 〈x :K2〉 and ∅ � ��t : 〈y :K2〉 are also easily deriv-
able statements. In fact, we can derive even more informative types: the expression ��K δ
can be assigned predicates of the form σKδ = 〈app :(σ1)→ 〈app :(σ2 ∩ 〈app :(σ2)→ σ3〉)→ σ3〉〉,
and so we can also assign 〈x :σKδ〉 and 〈y :σKδ〉 to ��t . Notice that the equivalent λ-term
to tis λy.(λx.xx)(λx.xx), which is a weak head normal form without a (head) normal form.
The ‘functional’ view is that such terms are observationally indistinguishable from unsolv-
able terms. When encoded in fj �c however, our type system shows that these terms become
meaningful (head-normalisable).

The second observation concerns principal types. In the lc, each normal form has a unique
most-specific type: i.e. a type from which all the other assignable types may be generated. This
property is important for practical type inference. Our intersection type system for fj �c does not
have such a property. Consider the following program: class C extends Object {C m() {return new C();}}.
The expression new C() is a normal form, and so we can assign it a non-trivial predicate, but
observe that the set of all predicates which may be assigned to this expression is the infinite
set {C, 〈m :()→ C〉, 〈m :()→ 〈m :()→ C〉〉, . . .}. None of these types may be considered the most
specific one, since whichever predicate we pick we can always derive a more informative
(larger) one. On the one hand, this is exactly what we want: we may make a series of any
finite number of calls to the method m and this is expressed by the predicates. On the other
hand, this seems to preclude the possibility of practical type inference for our system. Notice
however that these predicates are not unrelated to one another: they each approximate the
‘infinite’ predicate 〈m :()→ 〈m :()→ . . .〉〉, which can be finitely represented by the recursive
type µX.〈m :()→ X〉. This type concisely captures the reduction behaviour of new C(), show-
ing that when we invoke the method m on it we again obtain our original term. In lcsuch
families of types arise in connection with fixed point operators. This is not a coincidence: the
class C was recursively defined, and in the face of such self-reference it is not then suprising
that this is reflected in our type analysis.

8 Conclusions & Future Work

We have considered an approximation-based denotational semantics for class-based ooprograms
and related this to a predicate-based semantics defined using an intersection type approach.
Our work shows that the techniques and strong results of this approach can be transferred
straightforwardly from other programming formalisms (i.e. lcand term rewriting systems)
to the ooparadigm. Through characterisation results we have shown that our predicate sys-
tem is powerful enough (at least in principle) to form the basis for expressive analyses of
ooprograms.

Our work has also highlighted where the ooprogramming style differs from its functional
cousin. In particular we have noted that because of the oofacility for self-reference, it is no
longer the case that all normal forms have a most-specific (or principal) type. The types
assignable to such normal forms do however seem to be representable using recursive def-
initions. This observation futher motivates and strengthens the case (by no means a new
concept in the analysis of oo) for the use of recursive types in this area. Some recent work [22]
shows that a restricted but still highly expressive form of recursive types can still characterise
strongly normalising terms, and we hope to fuse this approach with our own to come to an
equally precise but more concise and practical predicate-based treatment of oo.

We would also like to reintroduce more features of full Java back into our calculus, to see if
our system can accommodate them whilst maintaining the strong theoretical properties that
we have shown for the core calculus. For example, similar to λµ [23], it seems natural to

TLCA’11, LNCS 6690, pages 213-228, 2011 14

extend our simply typed system to analyse the exception handling features of Java.

References

[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer Verlag, 1996.
[2] S. van Bakel. Intersection Type Assignment Systems. TCS, 151(2):385–435, 1995.
[3] S. van Bakel. Cut-Elimination in the Strict Intersection Type Assignment System is Strongly Nor-

malising. NDJFL, 45(1):35–63, 2004.
[4] S. van Bakel. Completeness and Partial Soundness Results for Intersection & Union Typing for

λµµ̃. APAL, 161:1400–1430, 2010.
[5] S. van Bakel and U. de’Liguoro. Logical equivalence for subtyping object and recursive types.

ToCS, 42(3):306–348, 2008.
[6] S. van Bakel and M. Fernández. Normalisation Results for Typeable Rewrite Systems. IaC,

2(133):73–116, 1997.
[7] S. van Bakel and M. Fernández. Normalisation, Approximation, and Semantics for Combinator

Systems. TCS, 290:975–1019, 2003.
[8] S. van Bakel and R. Rowe. Semantic Predicate Types for Class-based Object Oriented Program-

ming. In FTfJP’09, 2009.
[9] A. Banerjee and T.P. Jensen. Modular Control-Flow Analysis with Rank 2 Intersection Types.

MSCS, 13(1):87–124, 2003.
[10] H. Barendregt. The Lambda Calculus: its Syntax and Semantics. North-Holland, 1984.
[11] H. Barendregt, M. Coppo, and M Dezani-Ciancaglini. A filter lambda model and the completeness

of type assignment. JSL, 48(4):931–940, 1983.
[12] L. Cardelli and J.C. Mitchell. Operations on Records. MSCS, 1(1):3–48, 1991.
[13] L. Cardelli. A Semantics of Multiple Inheritance. IaC, 76(2/3):138–164, 1988.
[14] M. Coppo and M Dezani-Ciancaglini. An Extension of the Basic Functionality Theory for the

λ-Calculus. NDJFL, 21(4):685–693, 1980.
[15] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functional characters of solvable terms.

Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 27:45–58, 1981.
[16] H.B. Curry. Grundlagen der Kombinatorischen Logik. AJM, 52:509–536, 789–834, 1930.
[17] F. Damiani and F. Prost. Detecting and Removing Dead-Code using Rank 2 Intersection. In

TYPES’96, LNCS 1512, pp 66–87, 1998.
[18] K. Fisher, F. Honsell, and J.C. Mitchell. A lambda Calculus of Objects and Method Specialization.

NJ, 1(1):3–37, 1994.
[19] A. Igarashi, B.C. Pierce, and P. Wadler. Featherweight Java: a minimal core calculus for Java and

GJ. ACM Trans. Program. Lang. Syst., 23(3):396–450, 2001.
[20] T.P. Jensen. Types in Program Analysis. In LNCS 2566, pp 204–222. Springer, 2002.
[21] J.C. Mitchell. Type Systems for Programming Languages. In Handbook of TCS, volume B, chapter 8,

pages 415–431, 1990.
[22] Hiroshi Nakano. A Modality for Recursion. In LICS, pages 255–266, 2000.
[23] M. Parigot. An algorithmic interpretation of classical natural deduction. In LPAR’92, LNCS 624,

pp 190–201, 1992.
[24] G.D. Plotkin. The origins of structural operational semantics. JLAP, 60-61:3–15, 2004.
[25] D. Scott. Domains for Denotational Semantics. In ICALP’82, LNCS 140, pp 577–613, 1981.
[26] W.W. Tait. Intensional interpretation of functionals of finite type I. JSL, 32(2):198–223, 1967.
[27] C.P. Wadsworth. The relation between computational and denotational properties for Scott’s D∞-

models of the lambda-calculus. SIAM J. Comput, 5:488–521, 1976.

