
Semantic Types and Approximation
for Featherweight Java

(Theoretical Computer Science, 517:34-74, 2014)

R.N.S. Rowe and S.J. van Bakel

Department of Computing, Imperial College London, 180 Queen’s Gate, London SW7 2BZ, UK
rnr07@doc.ic.ac.uk svb@doc.ic.ac.uk

Abstract

We consider semantics for the class-based object-oriented calculus Featherweight Java (with-
out casts) based upon approximation. We also define an intersection type assignment system for
this calculus and show that it satisfies subject reduction and expansion, i.e. types are preserved
under reduction and its converse. We establish a link between type assignment and the
approximation semantics by showing an approximation result, which leads to a sufficient
condition for the characterisation of head-normalisation and termination.
We show the expressivity of both our calculus and our type system by defining an encoding
of Combinatory Logic into our calculus and showing that this encoding preserves typeabil-
ity. We also show that our system characterises the normalising and strongly normalising
terms for this encoding. We thus demonstrate that the great analytic capabilities of intersec-
tion types can be applied to the context of class-based object orientation.

keywords: Featherweight Java, Intersection Types, Approximation Semantics, Derivation
Reduction, Strong Normalisation

Introduction

In this paper we will study semantics for Featherweight Java (fj) [48] through both a notion
of intersection type assignment [31, 32, 21, 7] and of approximation [67]. Our types are functional
(expressing the types of methods, in particular, as functions, and assigned to untyped expres-
sions, as common in functional programming), contain field and method information, and
characterise how a typeable object can be accessed by a context in which it is placed. Our
type system will be shown to be closed for conversion, i.e. closed for both subject reduction and
subject expansion which implies that types give a complete characterisation of the execution
behaviour of programs; as a consequence, type assignment is undecidable.

The notion of type assignment we develop can be seen as a notion of ‘flow analysis’ in
that assignable types express how expressions can interact with a context; as such, the types
express run-time behaviour of expressions. On the other hand, our notion of approximation is
defined similarly to Wadsworth’s notion [67, 68] for the λ-calculus (lc) [28, 20]: masking out
computationally active subterms on a reduction sequence (all the terms created by the execution
of a term) creates a notion of approximation for terms that induces a semantics. We will show
that these two approaches lead essentially to the same model by establishing a strong link
between typeable terms and their approximants: we will show that every type that can be
assigned to a term can be assigned to one of its approximants, and vice versa. We will then
explore these results further and fully characterise normalisation and termination of terms
through assignable types.

Theoretical Computer Science, 517:34-74, 2014 2

Semantics for object-oriented programming The object-oriented (oo) programming para-
digm, as exemplified by languages such as C++ [63], Java [45], C# [1], Ruby [43], ECMAscript
(or Javascript) [2] and Python [61], has been the subject of extensive theoretical study over the
last two decades. oo-languages come in two broad flavours: the object (or prototype) based,
and the class based. A number of formal models has been developed [25, 55, 26, 41, 42, 4,
48] which attempt to distill the many features of oo into a core set of primitive operations.
Of these, the ς-calculus [4] and Featherweight Java (fj) have been well received as elementary
models for object based and class-based oo, respectively.

Most of the previous work on semantics for oo dates from quite some time back, but there
is some more recent work on denotational semantics for Java. Two major contributions are
Abadi and Cardelli’s denotational PER model for the ς-calculus [3] and Bruce’s semantics
mapping his oo-languages to F-bounded second order λ-models [22]. Since both consider the
language explicitly typed, programs and their types are strongly linked; Abadi and Cardelli
used their semantics to show that the type system for the ς-calculus is sound. Bruce used his
for the same purpose: he relates the interpretation of programs to that of types by making
sure that the interpretation of a term is an element of the interpretation of its type, and also
Abadi and Cardelli consider an interpretation of types as well as terms. However, neither of
these papers state a result relating the semantic model to reduction. The subtyping relation
is also proven to be semantic under this interpretation - i.e. if σ ≤ τ, then ��σ�� ⊆ ��τ��, and
this is used to show that well-typed expressions do not correspond to the Error value in the
semantic domain.

We believe our work to be the first to define a semantic model for oo that gets related to
the model induced by the reduction relation (i.e. conversion) - it is certainly the first to study
an approximation model of oo.

Other related work includes Cook and Palsberg’s denotational treatment of inheritance and
method lookup [29, 30]. Reddy [59] also gives a denotational semantics to object-oriented
concepts, in which objects are viewed as closures (i.e. let-bound functions). The main point
of this work is to give a more fundamental view of what objects really are, rather than to
consider their reduction behaviour - the paper does not consider reduction and its relationship
to the semantics at all. A similar semantics is defined for the language SmallTalk by Kamin
[51], but differs in that the interpretation of an object is simply a record of its field values;
Reddy and Kamin together compared their two semantics and proving them equivalent [52].
Additionally, Castagna [27] has done work on defining an oo-calculus and a denotational PER
semantics for it.

Using an alternative approach, semantics for oo has been studied by encoding oo-calculi
in various typed λ-calculi. Cardelli, Bruce and Pierce [23] gave a survey of some of the main
approaches in this direction, and compare four different encodings. Glew [44] builds on this,
and presents a different typed encoding and gives a very comprehensive overview of previous
and related encodings. Viswanathan [66] uses an encoding of oo into a λ-calculus in order to
study the observational equivalence/full abstraction issue.

More recently, and more immediately relevant to our work, some papers were published
that consider denotational semantics for (Featherweight) Java. Studer [64] defined a semantics
for Featherweight Java using a model based on Feferman’s Explicit Mathematics formalism
[40]. Studer mentions that his model is theoretically weaker than other models that have pre-
viously been considered (as mentioned above), and his result is that his semantics is adequate
with respect to the Java nominal class type system. Alves-Foss [5] has done work on giving
a denotational semantics to the full Java language; his system is impressively comprehensive
but, as far as we can see, is not used for any kind of analysis - at least not in [5]. Finally, Burt

Theoretical Computer Science, 517:34-74, 2014 3

in his PhD thesis [24] builds a denotational model for a featherweight model of Java with state
based on game semantics, via a translation to a PCF-like language.

Intersection types Over the years, many expressive type systems have been defined and
investigated for a variety of calculi. Amongst those, the intersection type discipline (itd), first
defined for lc, stands out as a powerful system, closed under β-equality and giving rise to a
filter model and semantics; it is defined as an extension of Curry’s basic type system for lc,
by allowing term-variables to have many, potentially non-unifiable, types. This generalisation
leads to a very expressive system: for example, termination (i.e. strong normalisation) of terms
can be characterised by assignable types. Furthermore, intersection-type-based filter models
and approximation results show that intersection types describe the semantical behaviour of
typeable terms in full. Intersection type systems have also been employed successfully in
analyses for dead code elimination [35], strictness analysis [50], and control-flow analysis [19],
proving them a versatile framework for reasoning about programs.

Inspired by this expressive power, investigations have taken place into the suitability of
intersection type assignment for other computational models: for example, van Bakel and
Fernández [14, 15, 16] have studied intersection types in the context of Term Rewriting Sys-
tems (trs) [53, 36] and van Bakel studied them [10, 12] in the context of sequent calculi [33,
17]. In addition, van Bakel and de’Liguoro [13] have developed a system for the ς-calculus,
bringing intersection types to the context of oo; the main characteristic of that system is that
it sees assignable types as an execution predicate, or applicability predicate, rather than as a func-
tional characterisation as is the view in the context of lc and, as a result, recursive calls are
typed individually, with different types. This is also the case in our system.

In this paper we aim to develop denotational semantics for class-based oo; in order to
be able to concentrate on the essential difficulties, we focus on Featherweight Java [48], a
restriction of Java defined by removing all but the most essential features of the full language;
Featherweight Java bears a similar relation to Java as lc does to languages such as ml [54]
and Haskell [47]. We will use two approaches, by defining both an approximation based and
type-based semantics for fj; to achieve the latter, we introduce a notion of intersection type
assignment. For that notion, we will show that the expected properties of a system based on
intersection hold, i.e.:

(subject reduction) : if e has type σ and e reduces to e’, then also e’ has type σ, and
(subject expansion) : if e’ has type σ and e reduces to e’, then also e has type σ.

Approximation The notions of approximant and approximation were first introduced by
Wadsworth in [67] for lc, where they are used in order to better express the relation between
equivalence of meaning in Scott’s models and the usual notions of conversion and reduction.
Wadsworth defines approximation of terms through the replacement of any parts of a term
remaining to be evaluated (i.e. β-redexes) by ⊥. Repeatedly applying this process over a re-
duction sequence starting with M gives a set of approximants, each giving some - in general
incomplete - information about the reduction behaviour of M. Once this reduction produces
λx.yN1· · ·Nn, all remaining redexes occur in N1, . . . , Nn, which then in turn will be approxi-
mated. Following this approach, [67] defines A(M) (similar to Definition 2.7 below) as the set
of approximants of the λ-term M, which forms a meet semi-lattice. In [68], the connection is
established between approximation and semantics, by showing

��M��D∞ p =
⊔{��A��D∞ p | A ∈ A(M)}.

So, essentially, approximants are partially evaluated expressions in which the locations of
incomplete evaluation (i.e. where reduction may still take place) are explicitly marked by the

Theoretical Computer Science, 517:34-74, 2014 4

element ⊥; thus, they approximate the result of computations. Intuitively, an approximant can
be seen as a ‘snapshot’ of a computation, where we focus on that part of the resulting program
which will no longer change, which corresponds to the (observable) output.

A notion of approximants for fj-programs is defined similarly. This is used to show an
approximation result which states that, for every intersection type assignable to a term in our
system, an approximant of that term exists which can be assigned the same type; for lc,
this result was shown by Ronchi della Rocca [60] (see also [7]). Interpreting a fj-program
by its set of approximants gives an approximation semantics and the approximation result then
relates the approximation and the type-based semantics; it demonstrates that our type system
is sound and complete with respect to the approximation semantics, allowing a type-based
analysis of termination. As is also the case for lc and trs, in our system this result is shown
using a notion of computability; since the notion of reduction we consider is weak (in the
sense that methods have a fixed arity, and all arguments need to be present before they can
be invoked and are all ‘consumed’ in one go1), the traditional approach to the proof of the
approximation result does not work and, as in [16], we need to resort to a proof of the much
stronger property that reduction on type derivations is strongly normalising, from which the
approximation result follows.

Expressivity That fj is Turing-complete seems to be a well-accepted fact; we illustrate the
expressive power of our calculus by embedding Combinatory Logic (cl) [34] – and thereby
also lc – into it, thus confirming explicitly that (our variant of) fj is Turing-complete. To show
that our type system provides more than a semantical tool and can be used in practice as well,
we define a restriction of our system by restricting to a notion of Curry type assignment and
show a type preservation result: types assignable to cl-terms in the Curry system correspond
to types in our system that can be assigned to the interpreted cl-terms. This could then easily
be extended to the strict intersection type assignment system for lc [6]; combined with the
results we show in this paper, this then implies that the collection of typeable oo-expressions
correspond to the terms that are typeable using intersection types, i.e. all λ-terms that are
semantically meaningful (terms having a head-normal form).

Contents of this paper In Section 1, we present the calculus fj �c, Featherweight Java with-
out casts, for which in Section 2 we define an approximation semantics. In Section 3, we
define our notion of intersection type assignment, and show subject reduction and expan-
sion. In Section 4 we define a notion of reduction on derivations that follows reduction on
fj �c-expressions, and show that this notion is strongly normalisable. The two approaches of
approximation and intersection types are linked in Section 5, where we show the approx-
imation result and show that this is a direct consequence of the strong normalisability of
derivation reduction; we also show some characterisation results for head-normalisation and
strong normalisation. In Section 6 we present a restriction using Curry types and show how
to encode Combinatory Logic into fj �c, whilst preserving assignable Curry types. In Section 7,
we give some detailed examples and observations, followed by our conclusions.

An extended abstract of this paper has appeared as [62]. In [18] we presented a similar
system which here has been simplified. In particular, we have removed the (functional) field
update feature (which can be modelled using method calls,2) which gives a more straightfor-
ward presentation of system and proofs. We have also decoupled our intersection type system

1 This is also the case for reduction in combinator systems, and trs in general. This differs from, for example,
the notion of reduction in calculi like lc, where arguments are ‘consumed’ one-at-the-time. Also, it differs from
the notion of weak reduction in lc, which prohibits reduction under an abstraction.

2 One possible solution is to add to every class C, for each field f i belonging to the class, a method
C update f i (x) { return new C(this.f1,...,x,...,this.fn); }.

Theoretical Computer Science, 517:34-74, 2014 5

from the existing nominal type system, as was used in [18, 13], which shows that the approxi-
mation result does not depend on the class type system in any way. Moreover, we moved away
from late self typing (where the type for the receiver is checked when invoking the method),
which was making the proofs of our results unnecessarily complex, towards early self typing
(where the type for the receiver is checked when assigning a method type to an object).

1 Featherweight Java without casts

In this section, we will define the variant of Featherweight Java we consider in this paper. As
in other class-based object-oriented languages, it defines classes, which represent abstractions
encapsulating both data (stored in fields) and the operations to be performed on that data
(encoded as methods). Sharing of behaviour is accomplished through the inheritance of fields
and methods from parent classes. Computation is mediated by instances of these classes (called
objects), which interact with one another by calling (also called invoking) methods on each other
and accessing each other’s (or their own) fields. We have removed cast expressions since they
introduce the possibility of certain run-time errors meaning that they are, in a certain sense,
‘unsafe’; for this reason we call our calculus fj �c. We discuss the motivations behind this
decision more fully in Section 7.3. We also leave constructors3 as implicit, as they plays no
role in the reduction semantics.

Before defining the calculus itself, we introduce some notational conventions that we will
use in the remainder of this paper.

Definition 1.1 (Notation) i) We use n (where n is a natural number) to represent the set
{1, . . . ,n}.

ii) A sequence s of n elements a1, . . . , an is denoted by an; the subscript can be omitted when
the exact number of elements in the sequence is not relevant.

iii) We write a ∈ an whenever there exists some i ∈ n such that a = ai.
iv) The empty sequence is denoted by ε, and concatenation on sequences by s1 · s2.
v) We use familiar meta-variables in our formulation to range over class names (C and D),

field names (f), method names (m) and variables (x).
vi) We use roman teletype font for concrete fj �c-code, and italicised teletype font for meta-

code.

We distinguish the class name Object (which denotes the root of the class inheritance
hierarchy in all programs) and treat the self reference this (used to refer to the receiver object
in method bodies) as a separate syntactic entity rather than a variable4.

Definition 1.2 (fj �c Syntax) i) Assuming countably infinite sets of class, field, method, and
variable names (not necessarily disjoint), expressions are defined by the following gram-
mar:

3 In [48], each class has an explicit constructor which has as many parameters as the fields of the class and
explicitly assigns the passed parameters e in new C(e) to the fields.

4 Note that this is not a variable in the traditional sense, since it is not used to mark the position in the
method’s body where a parameter can be passed, nor for the position in a term that can be replaced by another
term. Were we to define an interpretation of expressions into an appropriate domain, via ��e��ξ , using the valuation
ξ that maps variables to arbitrary terms, then the fact that this can only be mapped to the receiver would need
to be treated directly in the definition of ��e��ξ , and cannot be dealt with by ξ; so this, formally, is not a variable.
However, whenever convenient, we will treat this as a variable, so will normally not mention it separately when
replacing variables in an expression. Formally, there is no need to stipulate that there is no variable called this,
although for parsing purposes this may be useful.

Theoretical Computer Science, 517:34-74, 2014 6

e ::= x | this | new C(e) | e.f | e.m(e)

ii) The function vars returns the set of variables used in an expression (notice that this set
does not include this even if it occurs in the method body, since in our formalism this

is not a variable).
iii) An fj �c program P consists of a class table CT , and an expression e to be run (corresponding

to the body of the main method in a real Java program). Programs are defined by the
following grammar:

fd ::= C f;
md ::= D m(C1 x1, . . . , Cn xn) {return e;}
cd ::= class C extends C’ {fd md} (C �= Object)

CT ::= cd

P ::= (CT ,e)

Thus, class tables are comprised of a number of class declarations cd, which themselves
contain field declarations fd, and method declarations md. For a method declaration

D m(C1 x1, . . . , Cn xn) {return e;},

we call D m(C1 x1, . . . , Cn xn) the signature of the method, and e the method body. The
variables x1, . . ., xn are called the formal parameters of the method.

The remaining concepts that we will define below are dependent (or, more precisely, para-
metric) on a given class table. For example, the reduction relation we will define uses the class
table to look up fields and method bodies in order to direct reduction and our type assign-
ment system will do likewise. Thus, there is a reduction relation and type assignment system
for each program. However, since the class table is a fixed entity (i.e. it is not changed during
reduction, or during type assignment), it will be left as an implicit parameter in the definitions
that follow. This is done in the interests of readability, and is a standard simplification in the
literature (see, e.g., [48]).

As mentioned above, the sequence of (class) declarations that comprises the class table in-
duces a family of lookup functions. In order to ensure that these functions are well defined,
we only consider programs which conform to the following well-formedness criteria, which
are standard for class-based oo: that there are no cycles in the inheritance hierarchy; that each
class is declared only once; that fields in any given branch of the inheritance hierarchy are
uniquely named; and that each formal parameter in a method declaration must be unique
in that declaration. Two further well-formedness criteria deserve more detailed explanation.
Firstly, if there are multiple method declarations containing the same method name in any
given branch of the inheritance hierarchy, then each of those declarations must have the same
signature (modulo renaming of formal parameters). Each such method re-declaration is per-
mitted to have a different method body, however. This is known in the parlance of class-based
oo as method override. Secondly, the formal parameters of a method must constitute a su-
perset of the variables used in the method body, so method definitions correspond to closed
functions, thus avoiding dynamic linking issues.

We define the following functions to look up elements of class definitions.

Definition 1.3 (Lookup Functions) The following lookup functions are defined to extract the
names of fields and bodies of methods belonging to (and inherited by) a class.

i) The following functions retrieve the name of a class or field from its definition:

Theoretical Computer Science, 517:34-74, 2014 7

CN (class C extends D{fd md}) = C

FN (C f;) = f

MN (D m(C1 x1, . . . , Cn xn) {return e;}) = m

ii) By abuse of notation, we will treat the class table, CT , as a partial map from class names to
class definitions:

CT (C) = cd if CN (cd) = C and cd ∈ CT

iii) The list of fields belonging to a class C (including those it inherits) is given by the function
F , which is defined as follows:

F (Object) = ε

F (C) = F (C’) ·fn if CT (C) = class C extends C’ {fdn md}
and FN (fdi) = fi for all i ∈ n

iv) The function Mb, given a class name C and method name m, returns a tuple (x,e), consist-
ing of a sequence of the method’s formal parameters and its body:

Mb(C,m) = (xn,e) if CT (C) = class C extends C’ {fd md} and there exist C0,Cn

such that C0 m(C1 x1, . . . ,Cn xn) {return e;} ∈ md

Mb(C,m) = Mb(C’,m) if CT (C) = class C extends C’ {fd md}
and m �=MN (md) for all md ∈ md

Substitution of expressions for variables is the basic mechanism for reduction in our calculus:
when a method is invoked on an object (the receiver) the invocation is replaced by the body
of the method that is called, each of the variables is replaced by the corresponding argument,
and this is replaced by the receiver.

Definition 1.4 (Reduction) i) A term substitution S = 〈this 	→e’,x1 	→e1, . . . ,xn 	→en 〉 is de-
fined in the standard way as a total function on expressions that systematically replaces
all occurrences of the variables xi and this by their corresponding expression. We write
eS for S(e).

ii) The reduction relation → is the smallest contextually closed relation on expressions satis-
fying:

new C(en).fi → ei for class name C with F(C) = fn and i ∈ n.

new C(e).m(e’n) → eS for class name C and method m with Mb(C,m) = (xn,e),
where S = 〈this 	→new C(e), x1 	→e’1, . . . , xn 	→e’n 〉

We call the left-hand term the redex (reducible expression) and the right hand the con-
tractum. We write →∗ for the reflexive and transitive closure of →.

This notion of reduction is confluent, which is easily shown by a standard ‘colouring’ argu-
ment (as is done in [20] for lc).

The lc view is that all normal forms are meaningful (in a semantic sense). However, note
that in our system there are some normal forms which are clearly problematic for this point
of view. Take, for example, new C().m() with method m not existing in class C. It seems
obvious that this is not an expression which we should treat as meaningful. Indeed, in real
Java running such a program would result in a NoSuchMethodError. One approach we could
have taken would have been to model runtime errors explicitly. Although it would be straight-
forward to extend the system in this way, for simplicity we chose not to take this approach.
Instead, we will consider such normal forms to be not well-formed (see Definition 5.5), and

Theoretical Computer Science, 517:34-74, 2014 8

(new) :
Γ
 ei : Ci (∀i ∈ n)

(F (C) = f & FT (C,f i) =D i &C i <:D i (∀i ∈ n))
Γ
 new C(e) : C

(invk) :
Γ
 e : E Γ
 ei : Ci (∀i ∈ n)

(MT (E,m) = D→C &C i <:D i (∀i ∈ n))
Γ
 e.m(e) : C

(var) : Γ,x:C
 x : C (fld) :
Γ
 e : D

(FT (D,f) =C)
Γ
 e.f : C

(u-cast) :
Γ
 e : D

(D <:C)
Γ
 (C)e : C

(d-cast) :
Γ
 e : D

(C <:D, C �=D)
Γ
 (C)e : C

(s-cast) :
Γ
 e : D

(C �<:D, D �<:C)
Γ
 (C)e : C

Figure 1: Type assignment rules for the Nominal Type Assignment system.

ensure that they are mapped to the bottom element of our semantic domain in Section 2.
The nominal5 type system as presented in [48], adapted to our version of Featherweight

Java, is defined as follows.

Definition 1.5 (Member type lookup) The field table FT and method table MT are functions
which return type information about the elements of a given class in an execution. These
functions allow to retrieve the types of any given field f or method m declared in a particular
class C:

FT (C,f) =

{
D if CT (C) = class C extends C’ {fd md} and D f ∈ fd

FT (C’,f) if CT (C) = class C extends C’ {fd md} and f not in fd

MT is defined similarly:

MT (C,m) =




E→D if CT (C) = class C extends C’ {fd md} and D m(E x){e} ∈ md

MT (C’,m) if CT (C) = class C extends C’ {fd md}
and m �=MN (md) for all md ∈ md

Notice both are not defined on Object.

Nominal type assignment in fj is a relatively easy affair, and more or less guided by the
class hierarchy.

Definition 1.6 (Nominal type assignment for fj) i) The set of expressions of fj is defined
as in Definition 1.2, but adding the alternative (C)e (cast).

ii) The sub-typing relation6 <: on class types is generated by the extends construct, and is
defined as the smallest pre-order satisfying: if class C extends D {fd md} ∈ CT , then
C <: D.

iii) Statements are pairs of expression and type, written as e : φ; contexts Γ are defined as sets
of statements of the shape x:φ, where all variables are distinct, and possibly containing a
statement for this.

iv) Expression type assignment for the nominal system for fj is defined in [48] through the
rules of Figure 1, where (var) is applicable to this as well.

5 This notion is called nominal since the set of types is taken to be the set of class names in the class table,
and compatibility and equivalence of types is determined based on identity of names only; in particular, two class
types with different names are incompatible, even if they have identical field and method declarations.

6 Notice that this relation depends on the class-table, so the symbol <: should be indexed by CT ; as mentioned
above, we leave this implicit.

Theoretical Computer Science, 517:34-74, 2014 9

class IntList extends Object {
IntList square() { return new IntList(); }
IntList removeMultiplesOf(int n) { return new IntList(); }
IntList sieve() { return new IntList(); }
IntList listFrom(int n) { return new NonEmpty(n, this.listFrom(n+1)); }
IntList primes() { return this.listFrom(2).sieve(); }

}

class NonEmpty extends IntList {
int val;
IntList next;
IntList square() { return new NonEmpty(this.val * this.val, this.next.square()); }
IntList removeMultiplesOf(int n) {

if (this.val % n == 0) {
return this.next.removeMultiplesOf(n);

} else {
return new NonEmpty(this.val, this.next.removeMultiplesOf(n));

}
}
IntList sieve() {

return new NonEmpty(this.val, this.next.removeMultiplesOf(this.val).sieve(););
}

}

Figure 2: The class table for the Sieve of Eratosthenes in fj �c

v) A declaration of method m is well typed in C when the type returned by MT (m,C) deter-
mines a type assignment for the method body.

(meth) :
x:C,this:C
 eb : D

(MT (m,D) = C→E &D <:E & class C extends D {· · ·})
E m(C x) { return eb; } OK IN C

vi) Classes are well typed when all their methods are and a program is well typed when all
the classes are and the expression is typeable.

(class) :
md i OK IN C (∀i ∈ n)

class C extends D{fd; mdn} OK
(prog) :

cd OK Γ
 e : C

(cd,e) OK

Notice that in the nominal system, classes are typed (or rather type-checked) once, and the
types declared for their fields and methods are static, unique, and used at invocation. We
will see below (Definition 3.4) that this is not the case for our notion of intersection type
assignment; rather than typing classes, it has two rules (newF) and (newM) that create a field
or method type for an object (essentially stating that this field or method is available, and
what its current type is). Using that approach, method bodies are typed every time the context
requires that an object has a specific method type, and the various types constructed for a
method that are used throughout a program need not be the same.

As mentioned above, we have decided to not consider casts in this paper, since they create
run-time problems, as already observed in [48].

2 An Approximation Semantics for fj � c

In this section, we define a notion of approximation for fj �c, as a generalisation of a similar
notion first introduced by Wadsworth in [67] for lc, which we will use to define an approxima-
tion semantics for fj �c. Essentially, approximants are partially evaluated expressions in which
the locations of incomplete evaluation (i.e. where reduction may still take place) are explicitly
marked by the element ⊥; thus, they approximate the result of computations; intuitively, an
approximant can be seen as a ‘snapshot’ of a computation, where we focus on that part of the
resulting program which will no longer change.

We first illustrate this concept.

Theoretical Computer Science, 517:34-74, 2014 10

Example 2.1 Consider fj �c extended with numerals, arithmetic operators, and an if-then-else
construct, and take the class table given in Figure 2. Let the notation n1:n2:...:nk:[] be
shorthand for the fj �c expression:

new NonEmpty(n1, new NonEmpty(n2, . . . new NonEmpty(nk, new IntList()) . . .))

Then which has the approximant
(1:2:3:[]).square() ⊥

→∗ 1:(2:3:[]).square() 1:⊥
→∗ 1:4:(3:[]).square() 1:4:⊥
→∗ 1:4:9:([]).square() 1:4:9:⊥
→∗ 1:4:9:[] 1:4:9:[]

In this case, the output is finite, and the final approximant is the end-result itself. The class
table in Figure 2 is also able to calculate the (infinite) list of prime numbers using the well
known ‘sieve of Eratosthenes’.
Then (where we abbreviate removeMultiplesOf by rMO) which has the approximant

new IntList().primes() ⊥
→∗ (2:3:4:5:6:7:8:...).sieve() ⊥
→∗ 2:(3:(4:5:6:7:8:...).rMO(2)).sieve() 2:⊥
→∗ 2:3:(((5:6:7:8:...).rMO(2)).rMO(3)).sieve() 2:3:⊥
→∗ 2:3:5:((((7:8:...).rMO(2)).rMO(3)).rMO(5)).sieve() 2:3:5:⊥

...
...

In this case, the computation is infinite, and so is the output - there is no final approximant
since the ‘result’ is never reached and thus ⊥ is in every approximant.

Notice that, under reduction, more and more information about the structure of the end result
of the computation is revealed.

Approximate expressions and approximate normal forms for fj �c are defined below.

Definition 2.2 (Approximate Expressions) i) The set A of approximate fj �c expressions is de-
fined, essentially adding ⊥ as an expression, by the grammar:

a ::= ⊥ | x | this | a.f | a.m(an) | new C(an) (n ≥ 0)

ii) The set of approximate normal forms (apn for short), A, ranged over by A, is a strict subset of
the set of approximate expressions and is defined by the following grammar:

A ::= ⊥ | x | this | new C(An)

| A.f | A.m(An) (A �= ⊥, A �= new C(An))

The notion of approximation is formalised through an approximation relation on approxi-
mate expressions.

Definition 2.3 (Approximation Relation) The approximation relation �⊆A2 is defined as the
smallest preorder satisfying:

⊥ � a

a � a’ & ∀i ∈ n [ai � a’i] ⇒




a.f � a’.f
new C(an) � new C(a’n)

a.m(an) � a’.m(a’n)

If a � e, we call a a direct approximant of e.

Theoretical Computer Science, 517:34-74, 2014 11

As mentioned above, the idea behind approximation is to cover up incomplete evaluation
with the element ⊥. Thus, for example, if the expression new C(e) can reduce to new C(e’)

via a reduction in the subexpression e, then we may cover this reduction with ⊥, obtaining
new C(⊥)� new C(e).

The other crucial aspect that we require of approximants is that they represent information
about the result of a computation that cannot change through further reduction. It is for this
purpose that we have defined approximate normal forms. Notice that we do not consider
⊥.f or ⊥.m(An) to be apns: for such expressions it can be that ⊥ hides an expression that
reduces to an object new C(An), in which case the field or method invocation can run and
thereby disappears. Moreover, if in the apn A[⊥] the bottom gets replaced by e, an expression
is created that can possibly reduce but only inside the subexpression e, creating A[e’], thus
maintaining the outer shape A[·].

This is expressed by the following result, which characterises the relationship between the
approximation relation and reduction.

Lemma 2.4 If A � e and e →∗ e’, then A � e’.

Proof : By induction on the length of reduction sequences; we only show the base case, which
gets shown by induction on the structure of apns, of which we show only one illuminating
case.

(A = A’.m(An)) : Then e = e0.m(en) with A’ � e0 and Ai � ei for each i ∈ n. Since A’ �=
new C(A) it follows that e0 �= new C(e’). Since e is not a redex, there are only two possi-
bilities for the reduction step:

a) e0 →e’0 and e’=e’0.m(en). Then by induction A’�e’0 and so also A’.m(An)�e’0.m(en).
b) e j → e’j for some j ∈ n and e’ = e0.m(e’n) with e’k = ek for each k ∈ n such that k �= j.

Then, clearly Ak � e’k for each k ∈ n such that k �= j. Also, by induction A j � e’j. Thus
A’.m(An)� e0.m(e’n).

As desired, this property expresses that the observable behaviour of a program can only
increase (in terms of �) through reduction, corresponding to the idea that while running a
program we discover more about its result. For A � e, the apn A corresponds to that part of
the result that will no longer change during reduction.

Notice that while we have called A the set of approximate normal forms, as per the discussion
of the previous section they do not correspond exactly to the set of normal forms with respect
to reduction. As pointed out above, the expression new C().m(), with method m not existing
in class C, is a normal form but is not a well-formed one; thus, we exclude it as an apn. Despite
this, we have chosen to name the members of A approximate normal forms in order to draw
an explicit parallel between our notion of approximants, and that of other systems (namely
lc and trs). In the lc for example, the reduction relation can be extended with the rules
⊥M → ⊥ and λx.⊥ → ⊥. With respect to this extended reduction relation, the syntactically
defined approximate normal forms are precisely the terms which cannot be further reduced.

We also define a join operation on approximate expressions, which will be needed to prove
the approximation result of Section 5.

Definition 2.5 (Join Operation) The join operation � on approximate expressions is a partial
operator defined as the reflexive and contextual closure of: ⊥�a = a �⊥ = a. We extend the
join operation to sequences of approximate expressions by: � ε =⊥ and �a ·an = a � (�an).

Notice that the join of two approximate expressions is not always defined.
The following lemma shows that �, if defined, acts as an upper bound on approximate

Theoretical Computer Science, 517:34-74, 2014 12

expressions, and that it is closed over apns in that the join of two apns, if defined, is itself an
apn.

Lemma 2.6 i) Let a1,a2 and a3 be approximate expressions, then

a1 � a3 & a2 � a3 ⇒ a1 �a2 � a3 & a1 � a1 �a2 & a2 � a1 �a2

(a1 �a2) �a3 = a1 � (a2 �a3)

a1 �a2 = a2 �a1

ii) A1 �A2 ∈ A (when defined).

Proof : i) By induction on the structure of approximate expressions; we show a more illustrat-
ing case.

(a1 = a’1.f, a2 = a’2.f, a’1 � a’, a’2 � a’) : By induction, a’1 �a’2 �a’,a’1 �a’1 �a’2, and a’2 �
a’1 �a’2. Then, by Definition 2.3, (a’1 �a’2).f � a’.f, a’1.f � (a’1 �a’2).f, and a’2.f �
(a’1 �a’2).f. Then, by Definition 2.5, a1 � a2 = (a’1 �a’2).f.

ii) By induction on the structure of apns; again, we only show one case.

(A1 = A’1.f, A2 = A’2.f, A’1 � A’, A’2 � A’) : By definition A’1 ∈ A and A’2 ∈ A, with both A’1

and A’2 being neither ⊥, nor of the form new C(A’’). Then by induction A’1 � A’2 ∈ A,
and by Definition 2.5 the join is neither equal to ⊥ nor of the form new C(A’’n). Thus,
by Definition 2.3, (A’1 �A’2).f = A1 �A2 ∈ A.

Notice that, in particular, the first part shows that if a1 � e & a2 � e, then a1 �a2 � e.
We now define the set of approximants of a term.

Definition 2.7 (Approximants) The symbol A also is used for a function that returns the set
of approximants of an expression e and is defined by:

A(e) = {A | ∃e’ [e →∗ e’ & A � e’]}

Thus, an approximant of some expression e is an apn that approximates some (intermediate)
stage of execution of e.

We will now show that A(·) induces an approximation semantics in that it equates pairs of
expressions that are in the reduction relation, as shown by the following theorem.

Theorem 2.8 Let e1 →∗ e2; then A(e1) =A(e2).

Proof : (⊇) : e1 →∗ e2 & A ∈ A(e2) ⇒ (Definition 2.7)
e1 →∗ e2 & ∃e3 [e2 →∗ e3 & A � e3] ⇒
∃e3 [e1 →∗ e3 & A � e3] ⇒ (Definition 2.7)
A ∈ A(e1)

(⊆) : e1 →∗ e2 & A ∈ A(e1) ⇒ (Definition 2.7)
e1 →∗ e2 & ∃e3 [e1 →∗ e3 & A � e3] ⇒ (Church-Rosser)
∃e3,e4 [e1 →∗ e2 & e2 →∗ e4 & e1 →∗ e3 & e3 →∗ e4 & A � e3] ⇒ (Lemma 2.4)
∃e4 [e2 →∗ e4 & A � e4] ⇒ (Definition 2.7)
A ∈ A(e2)

Since this result states that terms that are related through reduction have the same interpre-
tation, we can even reverse the reduction order; this allows us to define a semantics for fj �c
by interpreting expressions by the set of their approximants:

Definition 2.9 (Approximation Semantics) The approximation model for fj �c expressions
(given a class table) is a structure 〈℘(A),��·��A〉, where ��e��A =A(e).

Theoretical Computer Science, 517:34-74, 2014 13

That this indeed gives a semantics follows from Theorem 2.8; notice that an abstract notion
of model for fj �c does not exist (as it does for lc), so we have no other means to verify that
〈℘(A),��·��A〉 does indeed give a model.

Before moving on to describe our type assignment system and its relationship to the seman-
tics we have just defined, we will make one final point concerning our treatment non-well-
formed normal forms such as new C().m(), where method m does not exist in class C. We
have explained above why we consider such normal forms to be meaningless, even though
we have chosen not to reflect this in the reduction system. Notice that the only apn which
approximates this expression is ⊥ and thus its semantic denotation is the set {⊥}, the bottom
element of the semantic domain. Of course, it is exactly these kinds of results that the nominal
type system of Definition 1.6 rejects. This might give the impression that we will implicitly
only be considering those expressions which are nominally well-typed, however this is not
the case. The type system which we consider in the remainder of this paper assigns types to
all expressions. Note that there are programs which are rejected by the nominal type system
but which nevertheless have meaningful results and thus are typeable in our semantic system.
We examine in detail an example of such a program in Section 7.3.

3 Semantic Type Assignment

Having defined a semantics for fj �c, we continue by considering a type system for fj �c which
is sound and complete with respect to this semantics in the sense that every type assignable to
an expression is also assignable to an approximant of that expression and vice-versa. Notice
that, since in approximants redexes are replaced by ⊥, this result is not an immediate conse-
quence of a subject reduction result; moreover, as we will see in the next section, it is the type
derivation itself which determines the approximant in question.

The type assignment system defined below follows in the intersection type discipline; it is
influenced by the predicate system for the ς-calculus [13], and is ultimately based upon the
strict intersection type system for lc [6, 7] (see [11] for a survey). Our types can be seen
as describing the capabilities of an expression (or rather, the object to which that expression
evaluates) in terms of i) the operations that may be performed on it (i.e. accessing a field or invoking
a method), and ii) the outcome of performing those operations, where dependencies between the
inputs and outputs of methods are tracked using (type) variables. In this way, our types
express detailed properties about the contexts in which expressions can safely be used. More
intuitively, they capture a certain notion of observational equivalence: two expressions with
the same set of assignable types will be observationally indistinguishable. Our types thus
constitute semantic predicates.

Definition 3.1 (Functional Types) The set of functional intersection types (or types for short),
ranged over by φ, ψ, and its subset of strict types, ranged over by σ,τ are defined by the
following grammar (where ϕ ranges over a denumerable set of type variables, C ranges over
the set of class names, and ω is a type constant):

φ,ψ ::= ω | σ | φ∩ψ

σ ::= ϕ | C | 〈f :σ〉 | 〈m :(φ1, . . . ,φn)→ σ〉 (n ≥ 0)

We call 〈f :σ〉 a field type and 〈m :(φ1, . . . ,φn)→ σ〉 a method type, and, in these, f and m are labels;
labels are ranged over by �.

Notice that our types do not depend on the types that would be assigned in the nominal
system; in fact, we could have presented our results for an untyped variant of fj, where all

Theoretical Computer Science, 517:34-74, 2014 14

(newM) :
this:ψ,x1:φ1, . . . ,xn :φn
 eb : σ Π
 new C(e) : ψ

(Mb(C,m) = (x n,eb), n ≥ 0)
Π
 new C(e) : 〈m:(φn)→σ〉

(newF) :
Π
 e1 : φ1 . . . Π
 en : φn

(F (C) = f n, i ∈ n, σ = φi, n ≥ 1)
Π
 new C(en) : 〈f i:σ〉

(obj) :
Π
 e1 : φ1 . . . Π
 en : φn

(F (C) = f n, n ≥ 0)
Π
 new C(en) : C

(var) : (φ � σ)
Π,x:φ
 x : σ

(invk) :
Π
 e : 〈m:(φn)→σ〉 Π
 e1 : φ1 . . . Π
 en : φn

Π
 e.m(en) : σ
(fld) :

Π
 e : 〈f :σ〉
Π
 e.f : σ

(join) :
Π
 e : σ1 . . . Π
 e : σn

(n ≥ 2)
Π
 e : σ1 ∩ . . . ∩σn

(ω) :
Π
 e : ω

Figure 3: Type assignment rules for the Functional Type Assignment system.

class annotations on parameters and return types are omitted. We have decided not to do so
for reasons of compatibility with other work, and to avoid leaving the (incorrect) impression
that our results would somehow then depend on the fact that expressions carry no type
information.

The key feature of types is that they may group information about many operations together
into intersections from which any specific one can be selected for an expression as demanded
by the context in which it appears. In particular, an intersection may combine two or more
different (even non-unifiable) analyses of the same field or method. Types are therefore not
records: records can be characterised as intersection types of the shape 〈�1:σ1, · · ·,�n:σn〉 where
all σi are intersection free, and all labels �i are distinct; in other words, records are intersection
types, but not vice-versa; see also Definition 6.1.

In the language of intersection type systems, our types are strict in the sense of [7], since they
must describe the outcome of performing an operation in terms of a(nother) single operation
rather than an intersection. We include a type constant for each class, which we can use to
type objects which therefore always have a type, like for the case when an object does not
contain any fields or methods (as is the case for Object) or, more generally, because no fields
or methods can be safely invoked. The type constant ω is a top (maximal) type, assignable
to all expressions and serves typically to type subterms that do not contribute to the normal
form of an expression.

The following subtype relation facilitates the selection of individual behaviours from an
intersection.

Definition 3.2 (Subtype Relation) The subtype relation � is induced by the fact that an in-
tersection type is smaller than each of its components, and is defined is the smallest preorder
satisfying:

φ � ω for all φ

φ∩ψ � φ

φ∩ψ � ψ

φ � ψ & φ � ψ′ ⇒ φ � ψ∩ψ′

We write ∼ for the equivalence relation generated by �, extended by

σ ∼ σ′ ⇒ 〈f :σ〉 ∼ 〈f :σ′〉
∀i ∈ n [φ′

i ∼ φ′
i] & σ ∼ σ′ ⇒ 〈m :(φ1, . . . ,φn)→ σ〉 ∼ 〈m :(φ′

1, . . . ,φ′
n)→ σ′〉

Note that φ∩ω ∼ φ.

Theoretical Computer Science, 517:34-74, 2014 15

We will consider types modulo ∼; in particular, all types in an intersection are different and
ω does not appear in an intersection. It is easy to show that ∩ is associative and commutative
with respect to ∼, so we will abuse notation slightly and write σ1 ∩ . . .∩σn (where n ≥ 2) to
denote a general intersection, where all σi are distinct and the order is unimportant. In a
further abuse of notation, φ1 ∩ . . .∩φn will denote the type φ1 when n = 1, and ω when n = 0.

Definition 3.3 (Type Environments) i) A type statement is of the form e : φ, where e is called
the subject of the statement.

ii) An environment Π is a set of type statements with variables (and possibly this) as sub-
jects, and with subjects pairwise distinct; for ease of notation, we will let x range over this
as well as variables in type statements of the form x:φ. Π,x:φ stands for the environment
Π ∪ {x:φ} (so then either x does not appear in Π or x:φ ∈ Π) and x:φ stands for ∅,x:φ.

iii) We extend � to environments by: Π′ � Π ⇔ ∀x:φ ∈ Π ∃φ′ � φ [x:φ′ ∈ Π′].
iv) If Πn is a sequence of environments, then

⋂
Πn is the environment defined as follows:

x:φ1 ∩ . . .∩φm ∈
⋂

Πn, if and only if {x:φ1, . . . ,x:φm } is the non-empty set of all statements
in the union of the environments that have x as subject.

We will now define our notion of type assignment, which is a slight variant of the system
defined in [18].

Definition 3.4 (Functional Type Assignment) Functional type assignment for fj �c is defined
by the natural deduction system of Figure 3.

We will give extended examples for our system in Section 7. For now, we can make the
following observations on the type assignment rules:

• Rule (newM) expresses that we consider new C(e) typeable with 〈m :(φn)→ σ〉 only if m’s
method body eb (in C) can be typed with σ, where the type used for each variable xi is
exactly φi, and assuming that the expression new C(e) itself is typeable with the type
ψ needed for this when typing eb. Notice that this is required in order to be able to
show subject reduction; moreover, it introduces a kind of ‘recursion’ into our notion of
type assignment: in order to type new C(e), we need first to type new C(e), a fact we
will investigate in Section 7.2. Notice that, for typeable method bodies, this means that,
eventually, we end up not needing a type for this (for example, when it does not occur,
or occurs in a subexpression typed using rule (ω)), or we only need to know that it has
type C.

• Rule (newF) expresses that the same expression new C(e) can be typed with 〈fi :σ〉,
provided we can type the expression ei with type σ; we demand that all other expressions
are typeable as well (their types are not relevant) mainly to be able to prove Theorem 5.9.

• Rule (obj) states that C is a type for new C(e) as well. Crucially, these three rules ensure
that the correct number of arguments are provided for the constructor.

• Rule (invk) expresses that, if an expression e has a method type, then that method can
be invoked on e, provided the arguments have the correct demanded types. Similar for
rule (fld).

• Rule (join) allows us to group several types in an intersection, and rule (ω) says that
every expression has type ω; this rule is used whenever the type of an expression is not
relevant and can be ignored as far as type assignment is concerned.

The rules of our type assignment system are fairly straightforward generalisations of the
rules of the strict intersection type assignment system for lc to oo, whilst making the step
from a higher order to a first-order language: for example, (fld) and (invk) are analogous to

Theoretical Computer Science, 517:34-74, 2014 16

(→E); (newF) and (newM) are a form of (→I); and (obj) can be seen as a universal (ω)-like
rule for objects only.

The only non-standard rule from the point of view of similar work for trs and traditional
nominal oo-type systems is (newM), which derives a type for an object that presents an analy-
sis of a method that is invokable on that object. Note that the analysis involves typing the body
of the method, and the assumptions (i.e. requirements) on the formal parameters are encoded
in the derived type (to be checked on invocation). However, a method body may also make
requirements on the receiver as well as the formal method parameters, through the use of the
variable this. In our system we check that these hold at the same time as typing the method
body, so-called early self typing, whereas with late self typing (as used in [13]) we would check
the type of the receiver at the point of method invocation. This checking of requirements on
the object itself is where the expressive power of our system resides. If a method calls itself
recursively, this recursive call must be checked, but – crucially – carries a different type if a
valid derivation is to be found. Thus only recursive calls which terminate at a certain point
(i.e. which can then be assigned ω or C, and thus ignored) will be typeable in the system.

We will accept

(newM′) :
x1:φ1, . . . , xn :φn
 eb : σ Π
 e1 : φ′

1 . . . Π
 en : φ′
n
(this not in eb,Mb(C,m) = (x n,eb), n ≥ 0)

Π
 new C(e) : 〈m :(φn)→ σ〉

as a variant of rule (newM), since this rule is admissible:

this:C, x1:φ1, . . . xn :φn
 eb : σ

Π
 e1 : φ′
1 . . . Π
 en : φ′

n

Π
 new C(e) : C
(Mb(C,m) = (x n,eb), n ≥ 0)

Π
 new C(e) : 〈m :(φn)→ σ〉

The type assignment rules in fact operate on the larger set of approximate expressions, but
we abuse notation slightly and use the meta-variable e for expressions rather than a. Note
that there is no special rule for typing ⊥, meaning that if ⊥ appears in a term, then some part
of that term, containing that ⊥, is typed with ω.

We should perhaps emphasise that, as remarked above, we explicitly do not type classes;
instead, the rules (newF) and (newM) create a field or method type for an object. This entails
that method bodies are checked every time we need that an object has a specific method type,
and the various types for a particular method used throughout a program need not be the
same; they have to be in the nominal system.

Example 3.5 Take the fj �c program

class List

{

List cons(Object o) { return new NonEmptyList(o, this); }

List append(Object o) { return new NonEmptyList(o, new EmptyList()); }

}

class EmptyList extends List { }

class NonEmptyList extends List

{

Object head;

List tail;

List append(Object o) {

return new NonEmptyList(this.head, this.tail.append(o)); }

}

Theoretical Computer Science, 517:34-74, 2014 17

We can assign new NonEmptyList() any of the type schemes

• ω,
• NonEmptyList,
• 〈cons : φ→NonEmptyList〉,
• 〈cons : φ1→〈cons : φ2→NonEmptyList〉〉, . . .
• 〈append : φ→NonEmptyList〉,
• 〈append : φ1→〈append : φ2→NonEmptyList〉〉, etc.

We can even assign it any ‘combination’ of these types, like for example

〈cons : φ1→〈append : φ2→〈cons : φ3→NonEmptyList〉〉〉

So, in our system, we would have, in principle, an infinite type for each class,7 which
we cannot establish when typing the class separately; rather, we let the context of each object
declaration (of the shape new C(e)) decide which type is needed, so the type for an occurrence
of new C(e) is ‘constructed’ by need, and not from a complete analysis of the class.

As is standard for intersection type assignment systems, our system is set up to satisfy both
subject reduction and subject expansion, which we will show below. First we show:

Lemma 3.6 (Weakening) Let Π′ � Π and φ � ψ; then Π
 e : φ ⇒ Π′
 e : ψ.

Proof : By easy induction on the structure of derivations. The base case of (ω) follows imme-
diately, and for (var) it follows by transitivity of the subtype relation.

The next result forms the basis for the proof of Theorem 3.8; notice that, for brevity, we
treat this as a variable here, which need not appear amongst the x.

Lemma 3.7 (Replacement and Extraction) i) If x:φn
 e : φ and there exists Π and en such
that Π
 ei : φi for each i ∈ n, then Π
 eS : φ where S = 〈x 	→en 〉.

ii) For an expression e and term substitution S = 〈x 	→en 〉 with vars(e)⊆ {x}, if Π
 eS : φ, then
there are φn such that Π
 ei : φi for each i ∈ n and x:φn
 e : φ.

Proof : By induction on the structure of derivations; we show only one case for the second part:

((newM)) : Then eS = new C(e’n′) and φ = 〈m :(φ′
n′)→ σ〉 for some m, φ′

n′ and σ; also, there
are eb and x’n′ such that Mb(C,m) = (x’n′ ,eb). Without loss of generality, assume that
this appears in eb, then there exists some ψ such that this:ψ,x’1:φ′

1, . . . ,x’n′ :φ′
n′
 eb : σ

and Π
 new C(e’n′) : ψ - that is Π
 eS : ψ. Then by induction, there exists some φn such
that Π
 ei : φi for each i ∈ n, and x1:φ1, . . . ,xn:φn
 e : ψ. Now, there are two cases to
consider for e:

(e = new C(e’’n′)) : then we have x1:φ1, . . . ,xn:φn
 new C(e’’n′) : ψ and by rule (newM) it
follows that x1:φ1, . . . ,xn:φn
 new C(e’’n′) : 〈m :(φ′

n′)→ σ〉; that is x1:φ1, . . . ,xn:φn
 e :
φ.

(e = x j for some j ∈ n) : then e j = new C(e’n′), and so we have x1:φ1, . . . ,xn:φn
 x j : ψ.
From rules (join) and (var) it follows that φj � ψ. Since Π
 ei : φi for each i ∈ n, it
follows that Π
 new C(e’n′) : φj and then by Lemma 3.6 that Π
 new C(e’n′) : ψ.
From this and rule (newM) we then have that Π
 new C(e’n′) : 〈m :(φ′

n′)→ σ〉; that

7 This has the flavour of polymorphism, but is in fact more general: it is, for example, not possible to define a
finite principal pair for each typeable term.

Theoretical Computer Science, 517:34-74, 2014 18

is Π
 e j : 〈m :(φ′
n′)→ σ〉. Now take φ′′

n such that φ′′
j = 〈m :(φ′

n′)→ σ〉 and φ′′
k = φk

for each k ∈ n such that k �= j. Notice that by rule (var) we have x1:φ′′
1 , . . . ,xn:φ′′

n
 x j :
〈m :(φ′

n′)→ σ〉; that is x1:φ′′
1 , . . . ,xn:φ′′

n
 e : φ.

We can now show that type assignment is closed under reduction as well as under expan-
sion.

Theorem 3.8 (Subject reduction and expansion) Let e → e’; then Π
 e : φ if, and only if,
Π
 e’ : φ.

Proof : By induction on the definition of reduction. We show the cases for the two kinds of
redex (the inductive cases are easy) and only for φ is strict; when φ = ω the result follows
immediately since we can always type both e and e’ using the (ω) rule, and when φ is an
intersection we can reason that the result holds for each strict type in the intersection, and
then apply the (join) rule.

(F(C) = fn ⇒ new C(en).f j → e j, j ∈ n) :

(if) : Assume Π
 new C(en).f j : σ. The last rule applied must be (fld) so Π
 new C(en) :
〈f j :σ〉. This in turn must have been derived using the (newF) rule and so there are
φ1, . . . ,φn such that Π
 ei : φi for each i ∈ n. Furthermore, σ � φj and so it must be that
φj = σ. Therefore Π
 e j : σ.

(only if) : Assume Π
 e j : σ. Notice that using (ω) we can derive Π
 ei : ω for each i ∈ n
such that i �= j. Then, using the (newF) rule, we can derive Π
 new C(en) : 〈f j :σ〉 and
by (fld) also Π
 new C(en).f j : σ.

(Mb(C,m) = (xn,eb)⇒ newC(e’).m(en)→ eb
S, S = 〈this 	→newC(e’),xi 	→ei 〉) :

(if) : Assume Π
 new C(e’).m(en) : σ. The last rule applied must be (invk), so there is
φn such that Π
 new C(e’) : 〈m :(φn)→ σ〉 and Π
 ei : φi for each i ∈ n. Furthermore,
the last rule applied in the derivation of Π
 new C(e’) : 〈m :(φn)→ σ〉 must be (newM)

and so there is some type ψ such that Π
 new C(e’) : ψ and Π′
 eb : σ where Π′ =
this:ψ,x1:φi, . . . ,xn:φn. Then Π
 eb

S : σ by Lemma 3.7((i)).
(only if) : Assume that Π
 eb

S : σ. Then by Lemma 3.7((ii)) there is ψ, φn such that Π′

eb : σ where Π′ = this:ψ,x1:φi, . . . ,xn:φn with Π
 new C(e’) : ψ and Π
 ei : φi for
each i ∈ n. By the (newM) rule we can then derive Π
 new C(e’) : 〈m :(φn)→ σ〉, and
by applying (invk) rule that Π
 new C(e’).m(en) : σ.

Notice that, as usual, computational equality between expressions in fj �c is undecidable;
as a consequence, through Theorem 3.8 we obtain that type assignment in our system is
undecidable as well. In fact, we can use our types to build a semantics for fj �c programs:
following [21], we can define a filter d as a set of types that contains ω, and is closed for ∩
and � (so if φ,ψ ∈ d, then also φ∩ψ ∈ d, and if φ ∈ d, and φ � ψ, then also ψ ∈ d). It is then
straightforward to show that, for every e, the set {φ | ∃Π [Π
 e : φ]} is a filter; we could
use Theorem 3.8 to define a filter semantics for fj �c, defining ��e�� = {φ | ∃Π [Π
 e : φ]}. In
Section 5 we will show, essentially, that this semantics would coincide with our approximation
semantics, so we will not develop the line of filter semantics in this paper any further.

4 Strong Normalisation of Derivation Reduction

The approximation result we show in the next section is, as in other systems [8, 16], a direct
consequence of the strong normalisability of derivation reduction which we will define in this
section. As in [16], we need to consider derivation reduction to achieve the approximation

Theoretical Computer Science, 517:34-74, 2014 19

result; since reduction on expressions is weak (the language is first order, methods have an
arity, and equality between expressions is non-extensional), the ‘normal’ approach (as used,
for example, in [60, 7]) to show the approximation result does not work. The traditional
computability approach is not expressive enough, since, as argued in [16], it depends strongly
on the presence of abstraction which FJ lacks. Also, as can be seen in [6], that approach is
inherently extensional (so closed for η-reduction), a property our system lacks; that is why also
for the strict system of [6], also non-extensional, the characterisation of strong normalisation
has to be shown using the derivation reduction technique; see [8, 11] for details of this result.

In [16] an approximation result is shown for combinator systems (that have weak reduction),
for which an encompassment relation on terms is used; this technique is standard in the context
of term rewriting, and was also used in [14, 15]. Since our notion of reduction is weak as
well, and one might think that a similar approach would be necessary for fj �c. This is not the
case however, since our approach differs in that method bodies are typed for each individual
invocation, and are part of the overall derivation. Thus, there will be sub-derivations for
the constituents of each redex that will appear during reduction. The consequence of this is
that we are able to prove our main result by straightforward induction on the structure of
derivations.

Definition 4.1 (Notation for Derivations) The meta-variable D ranges over derivations.
We will use the notation 〈D1, . . . ,Dn,r〉 :: Π
 e : φ to represent the derivation concluding
with the judgement Π
 e : φ where the last rule applied is (r) and D1, . . . ,Dn are the (sub)
derivations for each of that rule’s premises. By abuse of notation, we may sometimes write
D :: Π
 e : φ for 〈D1, . . . ,Dn,r〉 :: Π
 e : φ when the structure of the derivation is not relevant,
and simply write 〈D1, . . . ,Dn,r〉 when the conclusion of the derivation is not relevant or is
implied by the context.

The notion of derivation reduction is essentially a form of cut-elimination on type derivations,
diagrammatically defined through the following two basic ‘cut’ rules:

D1

Π
 e1 : φ1 · · ·
Dn

Π
 en : φn
(newF)

Π
 new C(en) : 〈fi :σ〉
(fld)

Π
 new C(en).fi : σ

→D

Di

Π
 ei : σ

and

Db

this:ψ,x1:φ1, . . . ,xn :φn
 eb : σ

Dself

Π
 new C(e’) : ψ
(newM)

Π
 new C(e’) : 〈m :(φn)→ σ〉
D1

Π
 e1 : φ1 · · ·
Dn

Π
 en : φn
(invk)

Π
 new C(e’).m(en) : σ

→D

Db
S

Π
 eb
S : σ

(so (newF) followed by (fld), or (newM) followed by (invk)); here Db
S is the derivation ob-

tained from Db by replacing all sub-derivations of the form 〈Q〉var :: Π,xi:φi
 xi : σ by a
derivation constructed out of sub-derivations of Di, and replacing sub-derivations of the form
〈Q〉var :: Π,this:ψ
 this : σ by a derivation constructed out of sub-derivations of Dself. This
induces eb

S, obtained from eb by replacing each variable xi by the expression ei, and this

by new C(e’). This reduction creates exactly the derivation for a contractum as suggested by
the proof of the subject reduction, but is explicit in all its details, which gives the expressive
power to show the approximation result. An important feature of derivation reduction is that
sub-derivations of the form 〈Q〉ω :: Π
 e : ω do not reduce, since they are already in normal

Theoretical Computer Science, 517:34-74, 2014 20

form; however, notice that the expression involved, e, need not be in normal form. This is
crucial for the strong normalisability of derivation reduction, since it decouples the reduction
of a derivation from the possibly infinite reduction sequence of the expression which it types.

We now introduce some further notational concepts to aid us in describing and reasoning
about the structure and reduction of derivations. The first of these is the notion of position
in an expression or derivation. We then extend expressions and derivations with a notion of
placeholder, so that we can refer to and reason about specific subexpressions and subderiva-
tions.

Definition 4.2 (Position) The position pq of one (sub) expression – similarly of one (sub)
derivation – in another, denoted by pos (e, e’) – or pos (D, D′) – is a partial function on a pair
of expressions or derivations, and returns, if defined, a non-empty sequence of integers:

i) Positions in expressions are defined inductively as follows:

pos (e, e) = 0

pos (e’, e) = p ⇒
{

pos (e’, e.f) = 0 · p
pos (e’, e.m(e)) = 0 · p

pos (e’, e j) = p with j ∈ n ⇒
{

pos (e’, e.m(en)) = j · p
pos (e’, new C(en)) = j · p

ii) Positions in derivations are defined inductively as follows:

pos (D, D) = 0
pos (D, D′) = pos (D, 〈Db,D′,newM〉)

pos (D, Dj) = p with j ∈ n ⇒ pos (D, 〈Dn, join〉) = p

pos (D, D′) = p ⇒
{

pos (D, 〈D′,fld〉) = 0 · p
pos (D, 〈D′,Dn, invk〉) = 0 · p

pos (D, Dj) = p with j ∈ n ⇒




pos (D, 〈D′,Dn, invk〉) = j · p
pos (D, 〈Dn,obj〉) = j · p
pos (D, 〈Dn,newF〉) = j · p

Notice that due to the (join) rule, sub-derivations indicated by positions in derivations are
not necessarily unique.

iii) We define the following terminology:

– We say that e’ (or D′) appears at position p in e (D) if pos (e’, e) = p (pos (D′, D) = p).
– We say that position p exists in e (D) if there exists some e’ (D′) that appears at position

p in e (D).

Notice that different occurrences of a sub-expression have different positions.

Definition 4.3 (Expression Contexts) i) An expression context C is an expression containing
a unique ‘hole’ (denoted by []) defined by the following grammar:

C ::= [] | C.f | C.m(e) | e.m(. . . ,ei−1,C,ei+1, . . .) | new C(. . . ,ei−1,C,ei+1, . . .)

ii) C[e] denotes the expression obtained by replacing the hole in C with e.
iii) We write Cp to indicate that the hole in C appears at position p.
iv) Contexts Cp where p = 0n, for some n ≥ 1, are called neutral.
v) Expressions of the form C[x] where C is neutral are also called neutral.

Neutral expressions are simply those expressions consisting of a (possibly empty) sequence

Theoretical Computer Science, 517:34-74, 2014 21

of successive method invocations and field accesses on a variable. Neutral expressions, along
with the following property which is easy to show, are a crucial element to the computability
technique that we use to prove our strong normalisation result for derivation reduction, the
details of which can be seen in the appendix.

Proposition 4.4 Approximate normal forms of the form A.f and A.m(A) are neutral.

We also use the notion of derivation context that is like a derivation, but concluding with a
statement assigning a strict type to a neutral context. We need to extend our notion of type
assignment for that:

Definition 4.5 (Derivation Contexts) i) We add the inference rule:
([])

Π
 [] : σ

ii) A derivation context D(p,σ) (where with p we mark at which position the hole appears and
which strict type σ it gets assigned) is straightforwardly defined as a generalisation over
derivations.

iii) For a derivation D :: Π
e : σ and derivation context D(p,σ) :: Π
 C : σ′, we write D(p,σ)[D] ::
Π
 C[e] : σ′ to denote the derivation obtained by replacing the hole in D by D.

We now define an explicit derivation weakening operation on derivations, which is straight-
forwardly extended to derivation contexts. This will be crucial in defining our notion of
computability which we will use to show that derivation reduction is strongly normalising.

Definition 4.6 (Weakening) A weakening, written [Π′ � Π] where Π′ � Π, is an operation on
derivations that replaces environments by smaller environments (with respect to �).

We now define two sets of derivations: strong and ω-safe derivations. The idea behind these
kinds of derivation is to restrict the use of the (ω) rule in order to preclude non-termination
(i.e. guarantee normalisation). In strong derivations, we do not allow the (ω) rule to be used
at all. This restriction is relaxed slightly for ω-safe derivations in that ω may be used to
type the arguments to a method call. The idea behind this is that when those arguments
disappear during reduction it is ‘safe’ to type them with ω since non-termination at these
locations can be ignored. We will show later that our definitions do indeed entail the desired
properties, since expressions typeable using strong derivations are strongly normalising, and
expressions which can be typed with ω-safe derivations using an ω-safe environment, while
not necessarily being strongly normalising, have a normal form.

Definition 4.7 (Strong and ω-safe Derivations) i) Strong derivations are defined as in Def-
inition 3.4, but by excluding rule (ω).

ii) ω-safe derivations are defined inductively as follows:

– 〈Q〉var :: x:φ
 x : σ is ω-safe for any φ and σ.
– 〈Dn, join〉, 〈Dn,obj〉 and 〈Dn,newF〉 are ω-safe, if each derivation Di is ω-safe.
– 〈D,fld〉 is ω-safe, if D is ω-safe.
– 〈D,Dn, invk〉 is ω-safe, if D is ω-safe and for each Di either Di is ω-safe or Di is of the

form 〈Q〉ω :: Π
 e : ω.
– 〈D,D′,newM〉 is ω-safe, if both D and D′ are ω-safe.

iii) We call a type φ strong if it does not contain ω. We call a type environment Π strong if for
all x:φ ∈ Π, φ is strong. Similarly we call Π ω-safe if, for all x:φ ∈ Π, either φ is strong or
φ = ω.

Theoretical Computer Science, 517:34-74, 2014 22

Notice that ω can appear in ω-safe derivations, but can never be the derived type, and that
an ω-safe derivation can have subderivations that are not ω-safe. In Section 6 below we give
examples of each kind of derivation (strong, ω-safe and non-ω-safe).

The following lemma is used in the proof of Theorem 5.9.

Lemma 4.8 If D :: Π
A : φ with ω-safe D and Π, then A does not contain ⊥; moreover, if A is neutral,
then φ does not contain ω.

Proof : By induction on the structure of derivations; we only show one interesting case.

(〈D′,Dn, invk〉) : Then A = A’.m(An) and φ is strict, hereafter called σ. Also D′ :: Π
 A’ :
〈m :(φn)→ σ〉 with D′ ω-safe, and Di :: Π
 Ai : φi for each i ∈ n. By induction, A’ does
not contain ⊥. Also, notice that A must be neutral, and therefore so must A’. Then it also
follows by induction that 〈m :(φn)→ σ〉 does not contain ω. This means that no φi is equal
to ω, and so it must be that each Di is ω-safe; thus by induction, no Ai contains ⊥ either.
Consequently, A’.m(An) does not contain ⊥ and σ does not contain ω.

Continuing with the definition of derivation reduction, we point out that, just as term
substitution is the main engine for reduction on expressions, a notion of substitution for
derivations, in which instances of the (var) rule are replaced by derivations, will form the
basis of derivation reduction. It is formally defined as follows:

Definition 4.9 (Derivation Substitution) Let D1 :: Π′
 e1 : φ1, . . . , Dn :: Π′
 en : φn be
derivations, then S = 〈x1:φ1 	→D1, . . . ,xn:φn 	→Dn 〉 is a derivation substitution (based on Π′; when
each Di is strong (ω-safe) then we say that S is also strong (ω-safe)), a partial function from
derivations to derivations, characterised by its effect on subderivations of 〈Q〉var, and is de-
fined by:

i) If D :: Π
 e : φ, and Π ⊆ dom(S), then S is applicable to D.
ii) If D :: Π
 e : φ, S is applicable to D and based on Π′, then S(D) (we normally write

DS) is defined inductively as follows (where S is the term substitution induced by S ,
i.e. S = 〈x1 	→e1, . . . ,xn 	→en 〉):
(D = 〈Q〉var :: Π
 x : σ) : Then there are two cases to consider:

1) either x:σ ∈ Π and so x = xi for some i ∈ n with Di :: Π′
 ei : σ: then DS = Di; or
2) x:φ ∈ Π with φ = σ1 ∩ . . .∩σn′ and σ = σj for some j ∈ n′. Also in this case, x = xi for

some i ∈ n, so then Di = 〈D′
1, . . . ,D′

n′ , join〉 :: Π′
 ei : φ and DS =D′
j :: Π′
 ei : σj.

(D = 〈Db,D′,newM〉 :: Π
 new C(e) : 〈m :(φ)→ σ〉) : Then

DS = 〈Db,D′S ,newM〉 :: Π
 new C(e)S : 〈m :(φ)→ σ〉

(D = 〈D1, . . . ,Dn,r〉 :: e : φ,r /∈{(var), (newM)}) : Then DS = 〈D1
S , . . . ,Dn

S ,r〉 :: Π′
 eS : φ.

Notice that the last case includes the base case of derivations of the form 〈Q〉ω :: Π
 e : ω

as a special case.
iii) We extend the weakening operation to derivation substitutions as follows: for a derivation

substitution S = 〈x:ψ 	→D :: Π
 e : φ〉, we write S [Π′ � Π] for the derivation substitution
〈x:ψ 	→D[Π′ � Π]〉.

Example 4.10 Consider the derivations below for two expressions e1 and e2:

D1

Π
 e1 : 〈m :(ϕ1∩ ϕ2)→ σ〉 D2 ::
D′

2

Π
 e2 : ϕ1

D′′
2

Π
 e2 : ϕ2
(join)

Π
 e2 : ϕ1 ∩ ϕ2

and also the following derivation of x.m(y), where Π′ = x:〈m :(ϕ1 ∩ ϕ2)→ σ〉,y:ϕ1 ∩ ϕ2:

Theoretical Computer Science, 517:34-74, 2014 23

D :: (var)
Π′
 x : 〈m :(ϕ1 ∩ ϕ2)→ σ〉

(var)
Π′
 y : ϕ1

(var)
Π′
 y : ϕ2

(join)
Π
 y : ϕ1 ∩ ϕ2

(invk)
Π′
 x.m(y) : σ

Take S = 〈x:〈m :(ϕ1 ∩ ϕ2)→ σ〉 	→D1,y:ϕ1 ∩ ϕ2 	→D2 〉; then the result of applying the substitu-
tion to D is the following derivation, where instances of the (var) rule in D have been replaced
by the appropriate (sub) derivations in D1 and D2:

DS :: D1

Π
 e1 : 〈m :(ϕ1 ∩ ϕ2)→ σ〉

D′
2

Π
 e2 : ϕ1

D′′
2

Π
 e2 : ϕ2
(join)

Π
 e2 : ϕ1 ∩ ϕ2
(invk)

Π
 e1.m(e2) : σ

Notice that the collection of derivations used in the (join) of derivation D2 ‘distributes.’

Derivation substitution is sound, preserves strong and ω-safe derivations, and the opera-
tions of weakening and derivation substitution are commutative.

Lemma 4.11 (Soundness of Derivation Substitution) i) Let D :: Π
 e : φ and S be based on
Π′ and applicable to D; then DS :: Π′
 eS : φ, where S is the term substitution induced by S .

ii) If D is strong (ω-safe) then, for any strong (ω-safe) derivation substitution S applicable to D, DS

is also strong (ω-safe).
iii) Let D :: Π′′
 e : φ be a derivation and S be a derivation substitution based on Π and applicable

to D, and let [Π′ � Π] be a weakening. Then DS [Π′ � Π] = DS [Π′�Π].

Proof : By easy induction on the structure of derivations.

Definition 4.12 (Identity Substitutions) Each environment Π induces a derivation substi-
tution IdΠ which is called the identity substitution for Π. Let Π = x:φn; then IdΠ � 〈x:φ 	→Dn 〉
where for each i ∈ n:

• If φi = ω then Di = 〈Q〉ω :: Π
 xi : ω;
• If φi is a strict type σ then Di = 〈Q〉var :: Π
 xi : σ;
• If φi = σ1 ∩ . . .∩σmi for some mi ≥ 2 then Di = 〈D′

mi , join〉 :: Π
 xi : σ1 ∩ . . .∩σmi , with D′
j =

〈Q〉var :: Π
 xi : σj for each j ∈ mi.

Notice that for every environment Π, the identity substitution IdΠ is also based on Π.

We can of course show that IdΠ is indeed the identity for the substitution operation on
derivations using Π.

Proposition 4.13 Let D :: Π
 e : φ, then DIdΠ = D.

Before defining the notion of derivation reduction itself, we first define the auxiliary notion
of advancing a derivation. This is an operation which contracts redexes at some given position
in expressions covered by ω in derivations. This operation will be used to reduce derivations
which introduce intersections.

Definition 4.14 (Advancing) i) The advance operation� on expressions contracts the redex
at a given position p in e if it exists, and is undefined otherwise. It is defined as the smallest
relation on tuples (p,e) and expressions satisfying the following properties (where we
write e �p e’ to mean ((p,e),e’) ∈�):

Theoretical Computer Science, 517:34-74, 2014 24

e �p e’ ⇒ D :: Π
 e : ω �p 〈Q〉‘w:: Π
 e’ : ω

D :: Π
 e : 〈f:σ〉 �p D′ :: Π
 e’ : 〈f:σ〉 ⇒ 〈D,fld〉 �0 · p 〈D′,fld〉
D :: Π
 e : 〈m:(φn)→σ〉 �p D′ :: Π
 e’ : 〈m:(φn)→σ〉& ∀ i ∈ n [Di :: Π
 ei : φi]

⇒ 〈D,Dn, invk〉 �0 · p 〈D′,Dn, invk〉
Mb(C,m) = (xn,eb) & this:ψ,x1:φ1, . . . ,xn:φn
 eb : σ & D :: Π
 new C(e) : ψ �p D′

⇒ 〈Db,D,newM〉 �p 〈Db,D′,newM〉 :: Π
 new C(e) : 〈m:(φn)→σ〉
∀ i ∈ n (n ≥ 2) [Di :: Π
 e : σi �p D′

i :: Π
 e’ : σi]

⇒ 〈Dn, join〉 �p 〈D′
n, join〉

D :: Π
 e : 〈m:(φn)→σ〉& ∃ j ∈ n [Dj :: Π
 e j : φj �p D′
j & ∀ i �= j ∈ n [Di :: Π
 ei : φi]]

⇒ 〈D,Dn, invk〉 �j · p 〈D,D′
n, invk〉 :: Π
 e.m(e’n) : σ

F (C) = fn & ∃ j ∈ n [Dj :: Π
 e j : φj �p D′
j & ∀ i �= j ∈ n [Di :: Π
 ei : φi]]

⇒ 〈Dn,obj〉 �j · p 〈D′
n,obj〉 :: Π
 new C(e’n) : C

F (C) = fn & ∃ j ∈ n [Dj :: Π
 e j : φj �p D′
j & ∀ i �= j ∈ n [Di :: Π
 ei : φi] & φj ∼ σ]

⇒ 〈Dn,newF〉 �j · p 〈D′
n,newF〉 :: Π
 new C(e’n) : 〈f j:σ〉

For the last three cases, e j �p e’j and ∀ i �= j ∈ n [D′
i = Di &e’i = ei].

Figure 4: The advance operation on derivations

F (C) = fn & e = Cp[new C(en).fi] with i ∈ n ⇒ e �p Cp[ei]

Mb(C,m) = (xn,eb) & e = Cp[new C(e’).m(en)] ⇒ e �p Cp[eb
S]

where S = 〈this 	→new C(e’),x1 	→e1, . . . ,xn 	→en 〉

ii) We extend � to derivations via the rules in Figure 4 (where we write D �p D′ to mean
((p,D),D′) ∈�).

Notice that the advance operation does not change the structure of derivations. Exactly the
same rules are applied and the same types derived; only subexpressions which are typed with
ω are altered.

The following lemma states that this always generates a correct derivation and that the
advance operation preserves strong (and ω-safe) typeability.

Lemma 4.15 (Soundness of Advancing) i) Let D :: e : φ; if a redex appears at position p in e (so
e �p e’ for some e’) and no derivation redex appears at p in D, then there exists D′ such that
D �p D′, and D′ :: Π
 e’ : φ.

ii) If D �p D′ is defined, and D is strong (ω-safe), then D′ is also strong (ω-safe).

Proof : i) By well-founded induction on pairs of position and derivation (p,D).
ii) By induction on the definition of the advance operation for derivations.

The notion of derivation reduction is defined in two stages. First, the more specific notion
of reduction at a certain position (i.e. in a given subderivation) is introduced. The full notion of
derivation reduction is then a straightforward generalisation of this position-specific reduction
over all positions.

Definition 4.16 (Derivation Reduction) i) The reduction of a derivation D at position p to
D′ is denoted by D �

p D′, and is defined inductively using the rules in Figure 5.
ii) The reduction relation on derivations →D is defined by:

D →D D′ =
∆ ∃ p [D �

p D′]

The reflexive and transitive closure of →D is denoted by →∗
D.

Theoretical Computer Science, 517:34-74, 2014 25

〈〈Dn,newF〉,fld〉 :: Π
 new C(e).fi : σ �
0 Di (F (C) = fn,∀i ∈ n)

〈〈Db :: this:ψ,x:φn
 eb : σ,D′,newM〉,Dn, invk〉 :: Π
 new C(e’).m(en) : σ

�
0 Db

S

(Mb(C,m) = (xn,eb) & S = 〈this:ψ 	→D′,x:φ 	→Dn 〉)
D :: Π
 e : 〈f:σ〉 �

p D′ :: Π
 e’ : φ ⇒
〈D,fld〉 :: Π
 e.f : σ �

0 · p 〈D′,fld〉 :: Π
 e’.f : σ

D �
p D′ :: Π
 e’ : φ ⇒

〈D,Dn, invk〉 :: Π
 e.m(en) : σ �
0 · p 〈D′,Dn, invk〉 :: Π
 e’.m(en) : σ

∃ j ∈ n [Dj �
p D′

j :: Π
 e’j : φ] ⇒
〈D,D1, . . . ,Dn, invk〉 :: Π
 e.m(en) : σ �

j · p 〈D,D′
1, . . . ,D′

n, invk〉 :: Π
 e.m(e’n) : σ

(∀ i �= j ∈ n [D′
i = Di &e’i = ei])

∃ j ∈ n [Dj :: Π
 e j : φj �
p D′

j :: Π
 e’j : φ′
j & φj ∼ σ] ⇒

〈Dn,newF〉 :: Π
 new C(en) : 〈f:σ〉 �
j · p 〈D′

n,newF〉 :: Π
 new C(e’n) : 〈f:σ〉
(∀ i �= j ∈ n [D′

i = Di &e’i = ei])

D :: Π
 new C(e) : ψ �
p D′ :: Π
 e : ψ′ ⇒

〈Db,D,newM〉 :: Π
 new C(e) : 〈m:(φ)→σ〉 �
p 〈Db,D′,newM〉 :: Π
 e : 〈m:(φ)→σ〉

(Db :: this:ψ,x1:φ1, . . . ,xn:φn
 eb : σ)

∃ j ∈ n [Dj :: Π
 e j : φj �
p D′

j :: Π
 e’j : φ′
j] ⇒

〈Dn,obj〉 :: Π
 new C(en) : C �
j · p 〈D′

n,obj〉 :: Π
 new C(e’n) : C
(∀ i �= j ∈ n [D′

i = Di &e’i = ei])

∃ j ∈ n [Dj �
p D′

j & ∀ i �= j ∈ n [Di �
p D′

i ∨ Di �p D′
i]] ⇒

〈D1, . . . ,Dn, join〉 :: Π
 e : σ1∩ . . .∩σn �
p 〈D′

1, . . . ,D′
n, join〉

Figure 5: Derivation reduction

iii) We write SN (D) whenever the derivation D is strongly normalising with respect to →D.
Similarly to reduction for expressions, if D �

0 D′ then we call D a derivation redex and D′

its derivation contractum.

Our notion of derivation reduction is not only sound (i.e. produces valid derivations) but,
most importantly, we can show that it corresponds to reduction on expressions. We can also
show that strong and ω-safe derivations are preserved by derivation reduction.

Theorem 4.17 (Soundness of Derivation Reduction) i) If D :: e : φ and D �
p D′, then D′ is

a well-defined derivation, that is there exists some e’ such that D′ :: Π
 e’ : φ; moreover, then
e �p e’.

ii) If D is strong (ω-safe) and D →D D′, then D′ is strong (ω-safe).

Proof : By induction on the definition of derivation reduction; for the second part, notice that
derivation reduction does not introduce instances of rule (ω) and that, by Lemma 4.11, deriva-
tion substitution preserves strong and ω-safe derivations.

We can also show that derivation reduction is strongly normalisable; the (full construction
of the) proof can be found in the appendix. The main result shown there is:

Theorem 4.18 (Strong Normalisation for Derivation Reduction) If D :: Π
 e : φ then D
is strongly normalisable with respect to →D.

5 Linking Types with Semantics: The Approximation Result

We will now study the relationship that the type system from Section 3 has with the semantics
that we defined in Section 2. This takes the form of an approximation theorem, which states that

Theoretical Computer Science, 517:34-74, 2014 26

every type we can assign to an approximant of an expression can be assigned to the expression
itself, and vice-versa:

Π
 e : φ ⇔ ∃ A ∈ A(e) [Π
 A : φ]

This expresses that every type we can derive for an expression describes a finite part of its
(potentially infinite) head normal form and execution behaviour by describing that part of
the output that is reached after a finite amount of steps. We will show that this result is a
direct consequence of the strong normalisability of derivation reduction we achieved in the
previous section: the structure of the normal form of a given derivation exactly corresponds
to the structure of the approximant of the term that is typed. This is a very strong property
since, as it implies that typeability provides a sufficient condition for the (head) normalisation
of expressions, i.e. a termination analysis for fj �c.

The following properties of approximants and type assignment lead to the approximation
result itself.

Lemma 5.1 If D :: Π
 a : φ (with D ω-safe) and a � a’ then there exists D′ :: Π
 a’ : φ (where D′

is ω-safe).

Proof : By induction on the definition of �. The main case is ⊥�a’: then φ = ω, and the result
follows.

Lemma 5.2 Let An be apns with n ≥ 2 and e be an expression such that Ai � e for each i ∈ n. Then
�An is also an apn and �An � e, and if there are (ω-safe) derivations Di :: Π
 Ai : φi for each i ∈ n,
there are (ω-safe) derivations D′

i :: Π
 �An : φi for each i ∈ n.

Proof : By induction on the number of approximants. We just deal with the base case n = 2.

(n = 2) : Then there are A1 and A2 such that A1 � e and A2 � e. By Lemma 2.6, A1 �A2 � e,
with A1 �A2 an apn, and also A1 � A1 �A2 and A1 � A2 �A2. Therefore, given that D1 :: Π

A1 : φ1 and D2 :: Π
 A2 : φ2 (with ω-safe D1 and D2), by Lemma 5.1 there exist derivations
D′

1 and D′
2 (both ω-safe) such that D′

1 :: Π
 A1 �A2 : φ1 and D′
2 :: Π
 A1 �A2 : φ2. Then

by Lemma 2.6, �A2 = A1 �A2.

The following lemma states that a derivation in normal form corresponds to a derivation
for an apn.

Lemma 5.3 If D :: e : φ (with D ω-safe) and D is in →D-normal form, then there exists A and (ω-safe)
D′ such that A � e and D′ :: Π
 A : φ, and D and D′ have the same structure in terms of applied rules
and types.

Proof : By induction on the structure of derivations.

((ω)) : Take A = ⊥. Notice that ⊥ � e, by Definition 2.3, and by (ω) we can take D′ =
〈Q〉ω :: Π
 ⊥ : ω. (In the ω-safe version of the result, this case is vacuously true since the
derivation D = 〈Q〉ω :: Π
 e : ω is not ω-safe.)

((var)) : Then e = x and D = 〈Q〉var :: Π
 x : σ (notice that this is a derivation in normal
form). By Definition 2.2, x is already an apn and x � x, by Definition 2.3. So we take A = x

and D′ = D. Moreover, notice that, by Definition 4.7, D is an ω-safe derivation.
((join)) : Then D = 〈Dn, join〉 :: Π
 e : σ1 ∩ . . .∩σn with n ≥ 2 and Di :: Π
 e : σi for each

i ∈ n. Since D is in normal form it follows that each Di (i ∈ n) is in normal form too (and
also, if D is ω-safe then, by Definition 4.7, each Di is ω-safe too). By induction, there
exist An and (ω-safe) derivations D′

n such that, for each i ∈ n, Ai � e and D′
i :: Π
 Ai : σi.

Now, by Lemma 5.2 it follows that �An � e with �An normal and that there are (ω-safe)
derivations D′′

n such that D′′
i :: Π
 � An : σi for each i ∈ n. Finally, by the (join) rule we

Theoretical Computer Science, 517:34-74, 2014 27

can take (ω-safe) D′ = 〈D′′
n, join〉 :: Π
 �An : σ1 ∩ . . .∩σn.

((fld)) : Then e = e’.f and D = 〈D′,fld〉 :: Π
 e’.f : σ with D′ :: Π
 e’ : 〈f :σ〉. Since D
is in normal form, so too is D′. Furthermore, if D is ω-safe then, by Definition 4.7, so
too is D′. By induction, there is some A and (ω-safe) derivation D′′ such that A � e’

and D′′ :: Π
 A : 〈f :σ〉. Then by rule (fld), 〈D′′,fld〉 :: Π
 A.f : σ and, by Definition 2.3,
A.f � e’.f. Moreover, by Definition 4.7, when D′′ is ω-safe, so too is 〈D′′,fld〉.

((invk), (obj), (newF), (newM)) : These cases follow straightforwardly by induction similar to
(fld).

Lemma 5.1 above simply states the soundness of type assignment with respect to the ap-
proximation relation. Lemma 5.3 is the more interesting, since it expresses the relationship
between the structure of a derivation and the typed approximant. The derivation D′ is con-
structed from D by replacing sub-derivations of the form 〈Q〉ω :: Π
e : ω by 〈Q〉ω :: Π
⊥ : ω

(thus covering any redexes appearing in e). Since D is in normal form, there are also no typed
redexes, ensuring that the expression typed in the conclusion of D′ is an apn. The ‘only if’
part of the approximation result itself then follows easily from the fact that →D corresponds
to reduction of expressions, so A is also an approximant of e. The ‘if’ part follows from the first
property above and subject expansion.

Theorem 5.4 (Approximation Theorem) Π
 e : φ if and only if there exists A ∈ A(e) such that
Π
 A : φ.

Proof : (if) : There is an approximant A of e such that Π
 A : φ, so e→∗ e’ with A � e’. Then,
by Lemma 5.1, Π
 e’ : φ, and then by subject expansion (Theorem 3.8), also Π
 e : φ.

(only if) : Let D :: Π
 e : φ, then, by Theorem 4.18, D is strongly normalising, with normal
form D′, say; by the soundness of derivation reduction (Theorem 4.17), D′ :: Π
 e’ : φ

and e →∗ e’. By Lemma 5.3, there is some apn A such that Π
 A : φ and A � e’. Also, by
Definition 2.7, A ∈ A(e).

Termination Analysis As in other intersection type systems [8, 16, 9, 11], the approximation
theorem underpins characterisation results for various forms of termination. Our type system
is sound with respect to the approximation semantics (as shown by the Approximation Theo-
rem), and so typeability gives a guarantee of termination since our normal approximate forms
of Definition 2.2 correspond in structure to standard expressions in (head) normal form.

Definition 5.5 ((Head) Normal Forms) i) The set of (well-formed) head-normal forms (ranged
over by H) is defined by:

H ::= x | new C(en) | H.f | H.m(e) (H �= new C(e))

ii) The set of (well-formed) normal forms (ranged over by N) is defined by:

N ::= x | new C(Nn) | N.f | N.m(N) (N �= new C(N))

Notice that the difference between these two notions sits in the second and fourth alternatives,
where head-normal forms allow arbitrary expressions to be used.

Lemma 5.6 i) If A �= ⊥ and A � e, then e is a head-normal form.
ii) If A � e and A does not contain ⊥, then e is a normal form.

Proof : By straightforward induction on the structure of apns using Definition 2.3.

From the approximation result, the following characterisation of head-normalisation fol-
lows easily.

Theoretical Computer Science, 517:34-74, 2014 28

Lemma 5.7 (Typeability of (head) normal forms) i) If e is a head-normal form then there exists
a strict type σ and type environment Π such that Π
 e : σ; moreover, if e is not of the form
new C(en) then for any arbitrary strict type σ there is an environment such that Π
 e : σ.

ii) If e is a normal form then there exist strong strict type σ, type environment Π and derivation D
such that D :: Π
 e : σ; moreover, if e is not of the form new C(en) then for any arbitrary strong
strict type there exist strong D and Π such that D :: Π
 e : σ.

Proof : i) By induction on the structure of head-normal forms; we only show some of the
cases:

(new C(en)) : Notice that F(C) = fn, by definition of the head-normal form. Notice that
by rule (ω) we have ∅
 ei : ω for each i ∈ n; by rule (obj) we have ∅
 new C(en) : C.

(H.f) : Take σ′ a strict type, then, in particular, 〈f :σ′〉 is strict. Notice that, by definition, H
is a head-normal expression not of the form new C(en), thus by induction there exists
Π such that Π
 H : 〈f :σ′〉. Thus, by rule (fld) we have Π
 H.f : σ′ for any arbitrary
strict type σ′.

ii) By induction on the structure of normal forms.

(x) : By the (var) rule, x:σ
 x : σ for any arbitrary strict type (in particular, for any
arbitrary strong strict type). Also, notice that derivations of the form 〈Q〉var are strong
by Definition 4.7.

(new C(Nn)) : Notice that F(C) = fn by the definition of normal forms. Since each Ni is
a normal form, by induction there are strong strict types σn, Πn and Dn such that
Di :: Πi
 Ni : σi for each i ∈ n. Let Π′ =

⋂
Πn; notice that, by Definition 3.3, Π′ � Πi

for each i ∈ n, and also that since each Πi is strong so is Π′. Thus, [Π′ � Πi] is a
weakening for each i ∈ n and thus Di[Π

′ � Πi] :: Π′
 Ni : σi for each i ∈ n. Notice that,
by Definition 4.6, weakening does not change the structure of derivations, therefore
for each i ∈ n, Di[Π

′ � Πi] is a strong derivation. Now, by rule (obj) we can derive

〈D1[Π
′ � Π1], . . . ,Dn[Π′ � Πn],obj〉 :: Π′
 new C(Nn) : C

Notice that C is a strong strict type, and that since each derivation Di[Π
′ � Πi] is strong

then, by Definition 4.7, so is 〈D1[Π
′ � Π1], . . . ,Dn[Π′ � Πn],obj〉.

(N.f) : Notice that, by definition, N is a normal expression not of the form new C(Nn),
thus by induction, with σ′ a strong strict type, there are strong Π and D such that
D :: Π
 N : 〈f :σ′〉. Thus, by rule (fld) we have 〈D,fld〉 :: Π
 N.f : σ′. Notice that since
D is strong, by Definition 4.7 also 〈D,fld〉 is strong.

(N.m(Nn)) : Since each Ni for i ∈ n is a normal form, by induction there are strong strict
types σn, Πn and Dn such that Di :: Πi
Ni : σi for each i ∈ n. Take σ′ a strong strict type,
then 〈m :(σn)→ σ′〉 is also strong. Notice that, by definition, N is a normal expression
not of the form new C(Nn), thus by induction there is a strong environment Π and
derivation D such that D :: Π
 N : 〈m :(σn)→ σ′〉. Let Π′ =

⋂
Π · Πn notice that, by

Definition 3.3, Π′ � Π and Π′ � Πi for each i ∈ n, and also that since Π is strong and
each Πi is strong then so is Π′. Thus, [Π′ � Π] is a weakening and [Π′ � Πi] is a
weakening for each i ∈ n. Then D[Π′ � Π] :: Π′
 N : 〈m :(σn)→ σ′〉 and Di[Π

′ � Πi] ::
Π′
 Ni : σi for each i ∈ n. Notice that, by Definition 4.6, weakening does not change the
structure of derivations, therefore D[Π′ � Π] is strong and for each i ∈ n, Di[Π

′ � Πi]

is also strong. Now, by rule (invk)

〈D[Π′ � Π],D1[Π
′ � Π1], . . . ,Dn[Π′ � Πn], invk〉 :: Π′
 N.m(Nn) : σ′

for any arbitrary strong strict type σ′. Furthermore, by Definition 4.7, we have that

Theoretical Computer Science, 517:34-74, 2014 29

〈D[Π′ � Π],D1[Π
′ � Π1], . . . ,Dn[Π′ � Πn], invk〉

is a strong derivation.

Theorem 5.8 (Head-normalisation) Π
 e : σ if and only if e has a head-normal form.

Proof : (if) : Let e’ be a head-normal of e. By Lemma 5.7(1) there exists a strict type σ and
a type environment Π such that Π
 e’ : σ. Then by subject expansion (Theorem 3.8) it
follows that Π
 e : σ.

(only if) : By the approximation theorem, there is an approximant A of e such that Π
 A : σ.
Thus e →∗ e’ with A � e’. Since σ is strict, it follows that A �= ⊥, so by Lemma 5.6 e’ is a
head-normal form.

For lc, normalisability can be characterised in itd as follows:

Γ
 M : σ with Γ and σ strong ⇔ M has a normal form

An analogous result does not hold for fj �c (see the third example in Example 6.12 for a
counterexample); however, we can obtain such a result modulo certain kinds of derivations –
namely the ω-safe derivations (and also, as we will explain, modulo certain kinds of programs
– namely oocl ones).

One half of the implication holds in general:

Theorem 5.9 (Normalisation) If D :: Π
 e : σ with D and Π ω-safe then e has a normal form.

Proof : By the approximation theorem, there is an approximant A of e and derivation D′ such
that D′ :: Π
 A : σ and D →∗

D D′. Thus e →∗ e’ with A � e’. Also, since derivation reduction
preserves ω-safe derivations (Lemma 4.17), it follows that D′ is ω-safe and thus by Lemma 4.8
that A does not contain ⊥. Then by Lemma 5.6 we have that e’ is a normal form.

The reverse implication does not hold in general since our notion of ω-safe typeability is too
fragile: it is not preserved by (derivation) expansion. Consider that while an ω-safe derivation
may exist for Π
 ei : σ, no ω-safe derivation may exist for Π
 new C(en).fi : σ (due to non-
termination in the other expressions e j with j �= i) even though this expression has the same
normal form as ei. Such a completeness result can hold for certain particular programs, and
we consider such an example in the following section.

We can however show that the set of strongly normalising expressions are exactly those ty-
peable using strong derivations. This follows from the fact that in such derivations, all redexes
in the typed expression correspond to redexes in the derivation, and then any reduction step
that can be made by the expression (via →) is then matched by a corresponding reduction of
the derivation (via →D).

Theorem 5.10 (Strong Normalisation for Expressions) e is strongly normalisable if and only
if D :: Π
 e : σ with D strong.

Proof : (if) : Since D is strong, all redexes in e are typed with a strict type and therefore each
possible reduction of e is matched by a corresponding derivation reduction of D. By
Lemma 4.17 it follows that no reduction of D introduces subderivations of the form 〈Q〉ω,
and so since D is strongly normalising (Theorem 4.18) so too is e.

(only if) : By induction on the maximum lengths of left-most outer-most reduction sequences
for strongly normalising expressions, using the fact that all normal forms are typeable
with strong derivations and that strong typeability is preserved under left-most outer-
most redex expansion.

Theoretical Computer Science, 517:34-74, 2014 30

6 Curry type assignment

Although the nominal type system for Java is so far the accepted standard, many researchers
are looking for more expressive type systems that deal with intricate details of object oriented
programming and in particular with side effects. It will be clear that through the system we
presented above, we propose a different path, an alternative to the nominal approach. We
illustrate the strength of our approach in this section by briefly studying a basic (decidable)
functional system, that allows for us to show a preservation result with respect to a notion of
Curry type assignment for cl. This basic system is a true restriction of our semantical type
system; the restriction consists of removing the type constant ω as well as intersection types
from the type language, but not completely: we will still allow for types to be combined as by
rule (join) above, but only if they are of the shape 〈f : ·〉 or 〈m : ·〉, and the labels involved are
different: the intersection types we allow, thereby, correspond to records.

It is worthwhile to point out that, above, the fact that we allow more than just record types
is crucial for the results: without allowing arbitrary intersections (and ω) we could not show
that type assignment is closed under conversion.

Definition 6.1 (Curry type assignment for fj �c) i) Curry (object) types for fj are defined by:

σ,τ ::= C | ϕ | 〈f1:σ, . . . , fn:τ, m1:(α)→β, . . . , mk:(γ)→δ〉 (n + k ≥ 1)

We will call a type of the shape 〈· · ·〉 a record type, and let ρ range over those; we write �

for arbitrary labels, 〈�:σ〉 ∈ ρ when �:σ occurs in ρ, and assume that all labels are distinct
in records.

ii) A Curry context is a mapping from term variables (including this) to Curry types.
iii) Curry type assignment for fj is defined through the rules:

(newM) :
this:τ,x1:σ1, . . . ,xn :σn
 eb : σ Π
 new C(e) : τ

(Mb(C,m) = (x n ,eb))
Π
 new C(e) : 〈m :(σn)→ σ〉

(newF) :
Π
 e1 : σ1 . . . Π
 en : σn

(F (C) = f n, i ∈ n, n > 0)
Π
 new C(en) : 〈fi :σi〉

(obj) :
Π
 f1 : σ1 . . . Π
 fn : σn

(F (C) = f n)
Π
 new C(en) : C

(var) : Π,x:σ
 x : σ

(invk) :
Π
 e : 〈m :(σn)→ σ〉 Π
 e1 : σ1 . . . Π
 en : σn

Π
 e.m(en) : σ
(fld) : Π
 e : 〈f :σ〉

Π
 e.f : σ

(rec) :
Γ
 e : 〈�1:σ1〉 · · · Γ
 e : 〈�n :σn〉

Γ
 e : 〈�1:σ1, . . . , �n :σn〉
(proj) :

Γ
 e : ρ
(�:σ ∈ ρ)

Γ
 e : 〈�:σ〉

We write Γ
c e : σ for statements derivable using those rules; the last two rules could be
omitted without affecting the obtainable results.

We will normally drop the adjective “Curry”.

It is straightforward to check that this system is a true restriction of our intersection type
system by translating record types into intersections, as described above, and then noting that
the (rec) rule corresponds to (join) and (proj) corresponds to a derivable subsumption rule
with respect to �; for the other rules, in case that σ is a record type, the premise can be
translated into an appropriate intersection constructed from all the strict types contained in
the record type σ. The normalisation results as shown above therefore still hold. In particular,
since ω is not used, all typeable terms are strongly normalisable.

We make no claim about the possibility to define a notion of principal pair for fj �c ex-
pressions for this system, nor how to show completeness and decidability of (Curry) type

Theoretical Computer Science, 517:34-74, 2014 31

assignment. Since we focus in this paper on semantics, and not on implementation, we do not
study such properties. Notice that this system, as the one of Definition 3.4, does not associate
types to classes, as does the nominal system of Definition 1.6;8 however, a decidable restriction
would need to do this, as well as switch to early self typing.

We can, however, relate this notion of type assignment to one from the world of functional
programming, by defining an encoding of Combinatory Logic [34] (cl) into fj �c, and showing
that assignable types are preserved by this encoding.

Definition 6.2 (Combinatory Logic) cl consists of the function symbols S,K with terms de-
fined over the grammar:

t ::= x | S | K | t1 t2

and the reduction is defined via the rewrite rules:
K x y → x
S x y z → x z (y z)

cl can be seen as a higher-order trs.
Through our embedding - and the results we have shown above - we can achieve a type-

based characterisation of all (terminating) computable functions in oo (see Theorem 6.11).
Since cl is a Turing-complete model of computation, as a side effect we show that fj �c is
Turing-complete.9 Although we are sure this does not come as a surprise, it is a nice formal
property for our calculus to have, and comes easily as a consequence of our encoding.

Our encoding of cl in fj �c is based on a Curryfied first-order version of the system above
(see [15] for details), where the rules for S and K are expanded so that each new rewrite rule
has a single operand, allowing for the partial application of function symbols. Application,
the basic engine of reduction in trs, is modelled via the invocation of a method named app.
The reduction rules of Curryfied cl each apply to (or are ‘triggered’ by) different ‘versions’ of
the S and K combinators; in our encoding these rules are implemented by the bodies of five
different versions of the app method which are each attached to different classes representing
the different versions of the S and K combinators.

In order to make our encoding a valid (typeable) program in full Java, we have defined
a Combinator class containing an app method from which all the others inherit, essentially
acting as an interface to which all encoded versions of S and K must adhere.

Definition 6.3 The encoding of Combinatory Logic (cl) into the fj �c program oocl (Object-
Oriented Combinatory Logic) is defined using the class table given in Figure 6 and the function
��·�� which translates terms of cl into fj �c expressions, and is defined as follows:

��x �� = x

��t1 t2 �� = ��t1 ��.app(��t2 ��)
��K�� = new K()

��S�� = new S()

We can show that the reduction behaviour of oocl mirrors that of cl.

8 We will leave a system based on this one, that types classes as well and has polymorphic method types, for
future research.

9 As a remark, it is not straightforward to embed the higher-order abstraction of lc into fj �c without resorting
to bracket abstraction, as is used for the encoding of lc into cl. The approach we follow here seems to be the most
straightforward.

Theoretical Computer Science, 517:34-74, 2014 32

class Combinator extends Object {
Combinator app(Combinator x) { return this; }

}
class K extends Combinator {

Combinator app(Combinator x) { return new K1(x); }
}
class K1 extends K {

Combinator x;

Combinator app(Combinator y) { return this.x; }
}
class S extends Combinator {

Combinator app(Combinator x) { return new S1(x); }
}
class S1 extends S {

Combinator x;

Combinator app(Combinator y) { return new S2(this.x, y); }
}
class S2 extends S1 {

Combinator y;

Combinator app(Combinator z) { return this.x.app(z).app(this.y.app(z)); }
}

Figure 6: The class table for Object-Oriented Combinatory Logic (oocl) programs

Theorem 6.4 (Soundness of ��·��) If t1, t2 are terms of cl and t1 →∗ t2, then ��t1 �� →∗ ��t2 �� in
oocl.

Proof : By induction on the definition of reduction in cl; we only show the case for S:

��S t1 t2 t3 �� =
∆

((new S().app(��t1 ��)).app(��t2 ��)).app(��t3 ��) →
((new S1(��t1 ��)).app(��t2 ��)).app(��t3 ��) →
(new S2(this.x,y)).app(��t3 ��) [this 	→new S1(��t1 ��), y 	→��t2 ��] =

(new S2(new S1(��t1 ��).x,��t2 ��)).app(��t3 ��) →
new S2(��t1 ��,��t2 ��).app(��t3 ��) →
this.x.app(z).app(this.y.app(z)) [this 	→new S2(��t1 ��,��t2 ��), z 	→��t3 ��] =

(new S2(��t1 ��,��t2 ��).x.app(��t3 ��)).app(new S2(��t1 ��.��t2 ��).y.app(��t3 ��)) →∗

(��t1 ��.app(��t3 ��)).app((��t2 ��).app(��t3 ��)) =
∆

��t1 t3 (t2 t3)��

The case for K is similar, and the rest is straightforward.

The reverse of this result also holds, that is if ��t1 �� →∗ ��t2 �� in oocl, then t1 →∗ t2 in cl.
Notice that this only relates reduction between oocl expressions which are the images of cl
terms. Consider that there are oocl expressions (and typeable ones, at that) which have no
counterpart in cl, such as newS2(newK(),newK()).x; see also Example 7.1; this implies that
we cannot show an operational completeness result.

Our type system can perform the same ‘functional’ analysis as itd does for lc and cl. This
is illustrated by a type preservation result. We present Curry’s type system for cl and then
show we can give equivalent types to oocl programs.

Definition 6.5 (Curry Type Assignment for cl [46]) i) The set of simple types (also known

Theoretical Computer Science, 517:34-74, 2014 33

(var)
this:〈x:σ〉,y:τ
 this : 〈x:σ〉

(fld)
this:〈x:σ〉,y:τ
 this.x : σ

(var)
x:σ
 x : σ

(newF)
x:σ
 new K1(x) : 〈x:σ〉

(newM)
x:σ
 new K1(x) : 〈app:(τ)→σ〉

(newM)
∅
 new K() : 〈app:(σ)→〈app:(τ)→σ〉〉

Let σ1 = 〈app:(σ)→〈app:(τ)→µ〉〉, and σ2 = 〈app:(σ)→τ〉, Π′ = this:〈x:σ1〉,y:σ2, and Π =
this:〈x:σ1,y:σ2〉,z:σ. Then

..

..

..

..

..

..

..

.

(var)
Π
 this : 〈x:σ1,y:σ2〉

(proj)
Π
 this : 〈x:〈app:(σ)→〈app:(τ)→µ〉〉〉

(fld)
Π
 this.x : 〈app:(σ)→〈app:(τ)→µ〉〉

(var)
Π
 z : σ

..

..

..

.

(invk)
Π
 this.x.app(z) : 〈app:(τ)→µ〉

(var)
Π
 this : 〈x:σ1,y:σ2〉

(proj)
Π
 this : 〈y:〈app:(σ)→τ〉〉

(fld)
Π
 this.y : 〈app:(σ)→τ〉

(var)
Π
 z : σ

(invk)
Π
 this.y.app(z) : τ

(invk)
Π
 this.x.app(z).app(this.y.app(z)) : µ

(var)
Π′
 this : 〈x:σ1〉

(fld)
Π′
 this.x : σ1

(var)
Π′
 y : σ2

(newF)
Π′
 new S2(this.x,y) : 〈x:σ1〉

(var)
Π′
 this : 〈x:σ1〉

(fld)
Π′
 this.x : σ1

(var)
Π′
 y : σ2

(newF)
Π′
 new S2(this.x,y) : 〈y:σ2〉

(rec)
Π′
 new S2(this.x,y) : 〈x:σ1,y:σ2〉

(newM)
Π′
 new S2(this.x,y) : 〈app:(σ)→µ〉

(var)
x:σ1
 x : σ1

(newF)
x:σ1
 new S1(x) : 〈x:σ1〉

(newM)
x:σ1
 new S1(x) : 〈app:(σ2)→〈app:(σ)→µ〉〉

(newM)
∅
 new S() : 〈app:(σ1)→〈app:(σ2)→〈app:(σ)→µ〉〉〉

Figure 7: Derivation schemes for the translations of S and K

as Curry types) is defined by the following grammar:

A, B ::= ϕ | A → B

ii) A basis Γ is a mapping from variables to Curry types, written as a set of statements of the
form x:A in which each of the variables x is distinct.

iii) Simple types are assigned to cl-terms using the following natural deduction system:

(Ax) : (x:A ∈ Γ)
Γ
cl x : A (→E) :

Γ
cl t1 : A → B Γ
cl t2 : A

Γ
cl t1t2 : B

(K) : Γ
cl K : A → B → A (S) : Γ
cl S : (A → B → C)→ (A → B)→ A → C

The elegance of this approach is that we can now link types assigned to combinators to
types assignable to object-oriented programs. To show this type preservation, we need to
define what the equivalent of Curry’s types are in terms of our fj �c types.

Definition 6.6 (Type Translation) The function ��·��, which transforms Curry types,10 is de-
fined as follows:

��φ�� = φ

��A→B�� = 〈app:(��A��)→��B��〉

It is extended to contexts as follows: ��Γ��= {x:��A�� | x:A ∈ Γ}.

We can now show the type preservation result.

10 Note we have overloaded the notation ��·��, which we also use for the translation of cl terms to fj �c expressions.

Theoretical Computer Science, 517:34-74, 2014 34

..

..

(var)
this:〈x:ϕ1〉,y:ϕ2
 this : 〈x:ϕ1〉

(fld)
this:〈x:ϕ1〉,y:ϕ2
 this.x : ϕ1

(var)
this:K,x:ϕ1
 x : ϕ1

(newF)
this:K,x:ϕ1
 new K1(x) : 〈x:ϕ1〉

(newM)
this:K,x:ϕ1
 new K1(x) : 〈app:(ϕ2)→ϕ1〉

(var)
x:ϕ1,y:ϕ2
 new K() : K

(newM)
x:ϕ1,y:ϕ2
 new K() : 〈app:(ϕ1)→〈app:(ϕ2)→ϕ1〉〉

(var)
x:ϕ1,y:ϕ2
 x : ϕ1

..

.

(invk)
x:ϕ1,y:ϕ2
 new K().app(x) : 〈app:(ϕ2)→ϕ1〉

(var)
x:ϕ1,y:ϕ2
 y : ϕ2

(invk)
x:ϕ1,y:ϕ2
 new K().app(x).app(y) : ϕ1

..

(var)
this:〈x:ϕ〉,y:ω
 this : 〈x:ϕ〉

(fld)
this:〈x:ϕ〉,y:ω
 this.x : ϕ

(var)
this:K,x:ϕ
 x : ϕ

(newF)
this:K,x:ϕ
 new K1(x) : 〈x:ϕ〉

(newM)
this:K,x:ϕ
 new K1(x) : 〈app:(ω)→ϕ〉 (obj)

x:ϕ
 new K() : K
(newM)

x:ϕ
 new K() : 〈app:(ϕ)→〈app:(ω)→ϕ〉〉
(var)

x:ϕ
 x : ϕ
(invk)

x:ϕ
 new K().app(x) : 〈app:(ω)→ϕ〉

(ω)
x:ϕ
 ��δδ�� : ω

..

..

..

.

(invk)
x:ϕ
 new K().app(x).app(��δδ��) : ϕ

(ω)
this:K1,x:ω
 x : ω

(obj)
this:K,x:ω
 new K1(x) : K1

(obj)
∅
 new K() : K

(newM)
∅
 new K() : 〈app:(ω)→K1〉

(ω)
∅
 ��δδ�� : ω

(invk)
∅
 new K().app(��δδ��) : K1

where δ is the cl-term S (S K K) (S K K) – i.e. δδ has no head-normal form.

Figure 8: Derivations for Example 6.12

Theorem 6.7 (Preservation of Types) If Γ
cl t : A then ��Γ��
 ��t �� : ��A��.

Proof : By induction on the derivation of Γ
cl t : A. The cases for (var) and (→E) are trivial.
For the rules (K) and (S), Figure 7 gives derivation schemas for assigning the translation of
the respective Curry type schemes to the oocl translations of K and S.

Notice that, in the nominal system, we can at most show
 new K() : K and
 new S() : S, and
that those types do not express an applicative character.

Furthermore, since Curry’s well-known translation of the simply typed lc into cl preserves
typeability (see [16]), we can also construct a type-preserving encoding of lc into fj �c; it is
straightforward to extend this preservation result to full-blown strict intersection types. We
stress that this result really demonstrates the validity of our approach. Indeed, our type
system actually has more power than intersection type systems for cl as presented in [16],
since there not all normal forms are typeable using strict types, whereas in our system they
are; this is mainly because we can assign types to encoded terms that do not correspond to
encoded types.

First we will illustrate our termination results by applying them in the context of oocl.

Definition 6.8 (oocl normal forms) Let the set of oocl-normal forms be the set of expres-
sions

{e | there exists a cl-term t such that e is the normal form of ��t �� }

Notice that oocl-normal forms can be defined by the following grammar:

n ::= x | new K() | new K1(n) | new S() | new S1(n) | new S2(n1,n2) |
n.app(n’) (n �= new C(en))

Theoretical Computer Science, 517:34-74, 2014 35

Each oocl normal form corresponds to a cl normal form, the translation of which can also
by typed with an ω-safe derivation for each type assignable to the normal form.

Lemma 6.9 If e is an oocl normal form, then there exists a cl normal form t such that ��t �� →∗ e
and for all ω-safe D and Π such that D :: Π
 e : σ, there exists an ω-safe derivation D′ such that
D′ :: Π
 ��t �� : σ.

Proof : By induction on the structure of oocl normal forms.

We can also show that ω-safe typeability is preserved under expansion for the images of
cl-terms in oocl.

Lemma 6.10 Let t1 and t2 be cl-terms such that t1 → t2; if there is an ω-safe derivation D and envi-
ronment Π, and a strict type σ such that D :: Π
 ��t2 �� : σ, then there exists another ω-safe derivation
D′ such that D′ :: Π
 ��t1 �� : σ.

Proof : By induction on the definition of reduction for cl.

This property of course also extends to multi-step reduction.
Together with the lemma preceding it (and the fact that all normal forms can by typed with

an ω-safe derivation), this leads to both a sound and complete characterisation of normalisabil-
ity for the images of cl-terms in oocl.

Theorem 6.11 Let t be a cl-term: then t is normalisable, if and only if, there are ω-safe D and Π, and
strict type σ such that D :: Π
 ��t �� : σ.

Proof : (if) : Directly by Theorem 5.9.
(only if) : Let t’ be the normal form of t; then, by Theorem 6.4, ��t �� → ��t’ ��. Since reduction

in cl is confluent, ��t’ �� is normalisable as well; let n be the normal form of ��t’ ��. Then
by Lemma 5.7(2) there are strong strict type σ, environment Π and derivation D such that
Π
 n : σ. Since D and Π are strong, they are also ω-safe. Then, by Lemma 6.9 and 6.10,
there exists ω-safe D′ such that D′ :: Π
 ��t �� : σ.

To conclude this section, we give some example derivations of oocl programs that demon-
strate these results.

Example 6.12 Figure 8 shows, respectively,

• a strong derivation typing a strongly normalising expression of oocl;
• an ω-safe derivation of a normalising (but not strongly normalising) expression of oocl;

and
• a non-ω-safe derivation deriving a non-trivial type for a head-normalising (but not nor-

malising) oocl expression,

7 Some Worked Examples

We will now give a more concrete idea of the concepts outlined above, by giving a couple
of examples. The first is based upon the familiar concept of a fixed-point combinator from
the world of functional programming: we will show how a simple yet non-trivial type can be
derived for our construction, and then demonstrate how this derivation reduces to a normal
form whose structure directly corresponds to an approximant of the original term. The second
example is actually a non-example demonstrating how a non-terminating program (i.e. one
having no approximants other than ⊥) is not typeable. The third will show that, in our system,
we catch the ‘message not understood’ run-time error.

Theoretical Computer Science, 517:34-74, 2014 36

D1 ::

(var)
Π2
 x : 〈app:(ω)→ϕ〉

(ω)
Π2
 this.app(x) : ω

(invk)
Π2
 x.app(this.app(x)) : ϕ

(newM′)
Π1
 new T() : 〈app:(〈app:(ω)→ϕ〉)→ϕ〉

(var)
Π1
 z : 〈app:(ω)→ϕ〉

(invk)
Π1
 new T().app(z) : ϕ

D2 ::
(var)

Π1
 z : 〈app:(ω)→ϕ〉
(ω)

Π1
 new T().app(z) : ω
(invk)

Π1
 z.app(new T().app(z)) : ϕ

D3 ::
(var)

Π1
 z : 〈app:(ω)→ϕ〉
(ω)

Π1
 ⊥ : ω
(invk)

Π1
 z.app(⊥) : ϕ

Π1 = z:〈app:(ω)→ϕ〉, Π2 = x:〈app:(ω)→ϕ〉

Figure 9: Type Derivations for the Fixed-Point Construction Example

7.1 A Fixed-point Construction

The fixed point of a function F is a term M such that M = F(M); a fixed-point combinator is
a (higher-order) function that returns a fixed-point of its argument (another function). Thus,
a fixed-point combinator F has the property that F f = f (F f) for any function f . Turing’s
well-known fixed-point combinator in lc is the following term:

Tur = ΘΘ = (λxy.y(xxy))(λxy.y(xxy))

That Tur provides a fixed-point constructor is easy to check:

Tur M = (λxy.y(xxy))ΘM →∗
β M(ΘΘM) = M(Tur M)

Tur itself has the reduction behaviour

Tur = (λxy.y(xxy))Θ →β λy.y(ΘΘy)
→β λy.y((λz.z(ΘΘz))y)
→β λy.y(y(ΘΘy))
→β λy.y(y(y(ΘΘy)))

...

which implies it has the following set of approximants:

{⊥, λy.y⊥, λy.y(y⊥), λy.y(y(y⊥)), . . .}

Thus, if z is a term variable, the approximants of Tur z are ⊥,z⊥,z(z⊥), etc. Based on this, it
is straightforward to define an fj �c program which mirrors this behaviour:

class T extends Combinator {

combinator app(Combinator x) { return x.app(this.app(x)); }

}

The body of the app method in the class T encodes the reduction behaviour we saw for Tur
above: for any fj �c expression e we have:

new T().app(e) → e.app(new T().app(e))

So, taking t = new T().app(e), we have t → e.app(t). Thus, by Theorem 2.8, the fixed
point t of e (as returned by the fixed-point combinator class T) is semantically equivalent to
e.app(t), and so new T().app(·) does indeed represent a fixed-point constructor.

The (executable) expression new T().app(z) has the reduction behaviour

Theoretical Computer Science, 517:34-74, 2014 37

(var)
this:ψ
 this : 〈m:()→ϕ〉

(invk)
this:ψ
 this.m() : ϕ

D′

∅
 new C() : ψ
(newM)

∅
 new C() : 〈m:()→ϕ〉
(invk)

∅
 new C().m() : ϕ

(var)
this:〈m:()→ϕ〉
 this : 〈m:()→ϕ〉

(invk)
this:〈m:()→ϕ〉
 this.m() : ϕ

(var)
this:〈m:()→ϕ〉
 this : 〈m:()→ϕ〉

(invk)
this:〈m:()→ϕ〉
 this.m() : ϕ

does not exist

∅
 new C() : 〈m:()→ϕ〉
(newM)

∅
 new C() : 〈m:()→ϕ〉

..

..

.

(newM)
∅
 new C() : 〈m:()→ϕ〉

(invk)
∅
 new C().m() : ϕ

Figure 10: Type Derivations for a Non-Terminating Program

new T().app(z) → z.app(new T.app(z))

→ z.app(z.app(new T.app(z)))
...

so has the following (infinite) set of approximants:

{⊥, z.app(⊥), z.app(z.app(⊥)), . . .}

Notice that these exactly correspond to the set of the approximants for the λ-term Tur z that
we considered above.

D1 in Figure 9 shows a possible derivation assigning the type ϕ to new T().app(z). In
fact, the normal form of this derivation corresponds to the approximant z.app(⊥). Ob-
serve that the derivation D1 comprises a typed redex, in this case a derivation of the form
〈〈·, ·,newM〉, ·, invk〉, thus it will reduce, creating the derivation D2. This is now in normal
form since although the expression that it types still contains a redex, that redex is covered by
ω and so no further (derivation) reduction can take place there. The structure of this deriva-
tion therefore dictates the structure of an approximant of e: the approximant is formed by
replacing all sub-expressions typed with ω by the element ⊥. When we do this, we obtain the
derivation D3.

Although this example is relatively simple (we chose the derivation corresponding to the
simplest non-trivial approximant), it does demonstrate the central concepts involved in the
approximation theorem.

7.2 A program without head-normal form

We now examine how the type system deals with programs that do not have a head-normal
form. The approximation theorem states that any type which we can assign to an expres-
sion is also assignable to an approximant of that expression. As we mentioned in Section 2,
approximants are snapshots of evaluation: they represent the information computed during
evaluation. But by their very nature, programs which do not have a head-normal form do not
compute any information as they have no observable behaviour. Formally, then, the character-
istic property of expressions without a head-normal form is that they do not have non-trivial
approximants: their only approximant is ⊥. From the approximation result therefore follows
that we cannot build any derivation for these expressions that assigns a type other than ω

(since that is the only type assignable to ⊥).
To illustrate this, consider the following program which constitutes perhaps the simplest

Theoretical Computer Science, 517:34-74, 2014 38

example of a term without head-normal form in oo:

class C extends Object {

C m() { return this.m(); }

}

This program has a method m which simply calls itself recursively, and new C().m() loops:

new C().m() → this.m()[new C()/this] = new C().m()

so, in particular, new C().m() has no normal form, not even a head-normal form.
Figure 10 shows two candidate derivations assigning a non-trivial type to the expression

new C().m(), the first of which we can more accurately call a derivation schema since it spec-
ifies the form that any such derivation must take. The second derivation of Figure 10 is an
attempt at instantiating the schema that we have just constructed, which clearly fails: the re-
quirements for this derivation to exist is that it is identical to a proper sub-derivation, which
is impossible. Notice however, that the receiver new C() itself is a head normal form – in-
deed, it is a normal form – and so we can assign to it a non-trivial type: using the (obj) rule,
∅
 new C() : C.

7.3 Cops and Cars

To give the reader a more intuitive understanding of both the differences and advantages of
our approach over the conventional nominal approach to object-oriented static analysis (as
exemplified in Featherweight Java), we will now consider an example which presents certain
challenges to the nominal approach, but is handled by our type system naturally since it is a
semantics-based one.

We will model a situation involving cars and drivers so we write classes Car and Driver;
we will focus on a single aspect: the action of the driver starting the car. For our purposes, we
will assume that a car is started when its driver turns the ignition key and so the classes Car
and Driver might contain the following code:

class Car {

Driver driver;...
Car start() { return this.driver.turnIgnition(this); }

}

class Driver {...
Car turnIgnition(Car c) { return c; }

}

Since we are working with a featherweight model of the language, we have had to abstract
away some detail and are subject to certain restrictions. For instance, since in Featherweight
Java we do not have a void return type, we return the Car object itself from the start and
turnIgnition methods.

We define a special type of car - a police car: it may chase other cars, however in order
to do so the police officer driving the car must report to the headquarters. Thus, only police
officers may initiate car chases. We write a PoliceCar class that extends Car and make the Cop
class extend Driver so that police officers are capable of driving cars (including police cars).
Here we run into a problem, however: the nominal approach imposes that when we override
method definitions we must use the same type signature (we are not allowed to specialise or
change the argument or return types, nor are we allowed to specialise the types of fields that

Theoretical Computer Science, 517:34-74, 2014 39

are inherited11). Thus, we must define our new classes as follows:

class PoliceCar extends Car {

PoliceCar chaseCar(Car c) { return this.driver.reportChase(this); }...
}

class Cop extends Driver {...
PoliceCar reportChase(PoliceCar c) { return c; }

}

Before considering the type safety of our extra classes, let us examine their behaviour from
a purely operational point of view. As desired, a police car driven by a police officer is able to
chase another car (the method invocation results in an object, i.e. a well-formed normal form):

new PoliceCar(new Cop()).chaseCar(new Car(new Driver()))

→ new PoliceCar(new Cop()).driver.reportChase(new PoliceCar(new Cop()))

→ new Cop().reportChase(new PoliceCar(new Cop()))

→ new PoliceCar(new Cop())

However, if a police car driven by a Driver attempts to chase a car we run into trouble:

new PoliceCar(new Driver()).chaseCar(new Car(new Driver()))

→ new PoliceCar(new Driver()).driver.reportChase(new PoliceCar(new Driver()))

→ new Driver().reportChase(new PoliceCar(new Driver()))

Here, we get stuck trying to invoke the reportChase method on a Driver object since the
Driver class does not contain such a method. This is the infamous ‘message not understood’
error.

The nominal approach to static type analysis is twofold: firstly, to ensure that the values
assigned to the fields of an object match their declared type; and then secondly, to enforce
within the bodies of the methods that the fields are used in a way consistent with their de-
clared type. Thus, while it is type safe to assign a Cop object to the driver field of a PoliceCar

(since Cop is a subtype of Driver), trying to invoke the reportChase method on the driver field
in the body of the chaseCar method is not type safe since such an action is not consistent with
the declared type (Driver) of the driver field. In such a situation, where a method body uses
a field inconsistently, the nominal approach is to brand the entire class unsafe and prevent
any instances being created. Thus, in Featherweight Java (as in full Java), the subexpression
new PoliceCar(new Driver()) is not well-typed, consequently entailing that the full expres-
sion new PoliceCar(new Driver()).chaseCar(new Car(new Driver())) is not well typed.

This leaves us in an uncomfortable position, since we have seen that some instances of the
PoliceCar class (namely, those that have Cop drivers) are perfectly safe, and thus preventing
us from creating any instances at all seems a little heavy-handed. There are two solutions to
this problem. The first is to rewrite the PoliceCar and Cop classes so that they do not extend
the classes Car and Driver. That way, we are free to specify the constructor (and any setter
methods) to take an argument of Cop. However, this would mean having to reimplement all the
functionality of Car and Driver. The other solution is to use casts: in the body of the chaseCar

11 The full Java language allows fields to be declared in a subclass with the same name as fields that exists in the
superclasses, however the semantics of this construction is that a new field is created which hides the previously
declared field; while this serves to mitigate the specific problem we are discussing here, it does introduce its own
new problems.

Theoretical Computer Science, 517:34-74, 2014 40

(var)
Π1
 this : 〈Drvr :〈reportChase :PolCar→ PolCar〉〉

(fld)
Π1
 this.Drvr : 〈reportChase :PolCar→ PolCar〉

(var)
Π1
 this : PolCar

(invk)
Π1
 this.Drvr.reportChase(this) : PolCar

..

.

(var)
Π2
 c : PolCar

(newO)

 new Cop() : Cop

(newM)

 new Cop() : 〈reportChase :PolCar→ PolCar〉

(newF)

 new PolCar(new Cop()) : 〈Drvr :〈reportChase :PolCar→ PolCar〉〉

(newO)

 new Cop() : Cop

(newO)

 new PolCar(new Cop()) : PolCar

(join)

 new PolCar(new Cop()) : 〈Drvr :〈reportChase :PolCar→ PolCar〉〉∩PolCar

..

..

..

..

.

(newM)

 new PolCar(new Cop()) : 〈chaseCar :Car→ PolCar〉

where Π1 = {this : 〈Drvr:〈reportChase:PolCar→ PolCar〉〉∩PolCar, c : Car}
Π2 = {this : Cop, c : PolCar}

Figure 11: Typing derivation for the chaseCar method of a PolCar object with a Cop Drvr.

method we cast the driver, telling the type system that it is safe to consider the driver field
to be of type Cop:

class PoliceCar extends Car {...
PoliceCar chaseCar(Car c) { return ((Cop) this.driver).reportChase(this); }

}

Now, the PoliceCar class is type safe: we can create instances of it and PoliceCar objects with
Cop drivers can chase cars:

new PoliceCar(new Cop()).chaseCar(new Car(new Driver()))

→ ((Cop) new PoliceCar(new Cop()).driver).reportChase(new PoliceCar(new Cop()))

→ ((Cop) new Cop()).reportChase(new PoliceCar(new Cop()))

→ new Cop().reportChase(new PoliceCar(new Cop()))

→ new PoliceCar(new Cop())

However, we are not entirely home and dry, since to regain type soundness in the presence of
casts we now have to check at run-time that the cast is valid:

new PoliceCar(new Driver()).chaseCar(new Car(new Driver()))

→ ((Cop) new PoliceCar(new Driver()).driver)

.reportChase(new PoliceCar(new Driver()))

→ ((Cop) new Driver()).reportChase(new PoliceCar(new Driver()))

As the above reduction sequence shows, the ‘message not understood’ error from before has
merely been transformed into a run-time ‘cast exception’ which occurs when we try to cast
the new Driver() object to a Cop object. Using the nominal approach to static typing, we are
forced to choose the ‘lesser of many evils’, as it were: being unable to write typeable programs
that implement what we desire; being unable to share implementations between classes; or
having to allow some run-time exceptions (albeit only with the explicit permission of the
programmer). We should point out here that some other solutions to this particular problem
have been proposed in the literature (see the work on family polymorphism [39, 49]), but these
solutions persist in the nominal typing approach and can thus only be achieved by extending
the language itself.

The fj �c intersection type system we have presented in this paper has two main character-
istics that distinguish it from the traditional (nominal) type systems for object-orientation: i)

Theoretical Computer Science, 517:34-74, 2014 41

(var)
Π1
 this : 〈Drvr :〈strtIgn :PolCar→ PolCar〉〉

(fld)
Π1
 this.Drvr : 〈strtIgn :PolCar→ PolCar〉

(var)
Π1
 this : PolCar

(invk)
Π1
 this.Drvr.strtIgn(this) : PolCar

..

.

(var)
Π2
 c : PolCar

(newO)

 new Drvr() : Drvr

(newM)

 new Drvr() : 〈strtIgn :PolCar→ PolCar〉

(newF)

 new PolCar(new Drvr()) : 〈Drvr :〈strtIgn :PolCar→ PolCar〉〉

(newO)

 new Drvr() : Drvr

(newO)

 new PolCar(new Drvr()) : PolCar

(join)

 new PolCar(new Drvr()) : 〈Drvr :〈strtIgn :PolCar→ PolCar〉〉∩PolCar

..

..

..

..

..

(newM)

 new PolCar(new Drvr()) : 〈start :()→ PolCar〉

where Π1 = {this : 〈Drvr:〈strtIgn:PolCar→ PolCar〉〉∩PolCar}
Π2 = {this : Drvr, c : PolCar}

Figure 12: Typing derivation for the start method of a PolCar object with a Drvr driver.

our types are structural and so provide a fully functional analysis of the behaviour of objects; ii) we keep
the analysis of methods and fields independent from one another, allowing for a fine-grained analysis.
This means that not all methods need be typeable - we do not reject instances of a class as
ill-typed simply because they cannot satisfy all of the interface specified by the class (in terms
of being able to safely - in a semantic sense - invoke all the methods). In other words, if we
cannot assign a type to any particular method body from a given class, then this does not
prevent us from creating instances of the class if other methods may be safely invoked and
typed.

In Figure 11 we can see a typing derivation in our system that assigns a type for the chaseCar

method to a PoliceCar object with Cop driver. Now consider replacing the Cop object in this
derivation with a Driver object, as we would have to do if we wanted to try and assign this
type to a PoliceCar object with a Driver driver. In doing so, we would run into problems since
we would ultimately have to assign a type for the reportChase method to the driver (as has
been done in the topmost subderivation in Figure 11) - an obviously impossible task seeing as
no such method exists in the Driver class. This does not mean however that we should not be
able to create such PoliceCar objects. After all, PoliceCars are supposed to behave in all other
respects as ordinary cars, so perhaps we might want ordinary Drivers to be able to use them
as such. In Figure 12 we can see a typing derivation assigning a type for the start method to
a PoliceCar object with a Driver driver, showing that this is indeed possible. Notice that this
is also sound from an operational point of view:

new PoliceCar(new Driver()).start()

→ new PoliceCar(new Driver()).driver.turnIgnition(new PoliceCar(new Driver()))

→ new Driver().turnIgnition(new PoliceCar(new Driver()))

→ new PoliceCar(new Driver())

The second characteristic is that our type system is a true type inference system - that is,
no type annotations are required in the program itself in order for the type system to verify
its correctness.12 In the type checking approach, the programmer specifies the type that their
program must satisfy. As our example shows, this can sometimes lead to inflexibility: in

12 It is true that our calculus retains class type annotations, however this is a syntactic legacy due to the fact
that we would like our calculus to be considered a true sibling of Featherweight Java, and nominal class type no
longer constitute true types in our system.

Theoretical Computer Science, 517:34-74, 2014 42

some cases, multiple types may exist for a given program (as in a system without finitely
representable principal types) and then the programmer is forced to choose just one of them;
in the worst case, a suitable type may not even be expressible in the language. This is the
case for our nominally typed cars example: the same PoliceCar class may give rise to objects
which behave differently depending on the particular values assigned to their fields; this
should be expressed through multiple different typings, however in the nominal system there
is no way to express them. Our system does not force the programmer to choose a type for
the program, thus retaining flexibility. Moreover, since our system is semantically complete,
all safe behaviour is typeable and so it provides the maximum flexibility possible. Lastly, and
more importantly, we have achieved this result without having to extend the programming
language in any way.

7.4 Some Observations

In this paper we have shown how the itd approach can be applied to class-based oo, pre-
serving the main expected properties of intersection type systems. There are however some
notable differences between our type system and previous work on lc and trs upon which
our research is based.

Firstly, we point out that when considering the encoding of cl (and via that, lc) in fj �c, our
system provides more than the traditional analysis of terms as functions: there are untypeable
lc and cl-terms which have typeable images in oocl.

Example 7.1 Let δ be the cl-term S (S K K) (S K K). Notice that δ δ →∗ δ δ, i.e. has no head-
normal form, and thus can only be given the type ω (this is also true for ��δ δ��). Now, consider
the term t = S (K δ) (K δ). Notice that it is a normal form (��t �� has a normal form also), but
that for any term t’ , S (K δ) (K δ) t’ →∗ δ δ. In a strict system, no functional analysis is
possible for t since φ → ω is not a type and so we can only type t with ω.13

In our type system however, we may assign several forms of type to ��t ��. Most simply,
we can derive ∅
 ��t �� : S2, but even though a ‘functional’ analysis via the app method is
impossible, it is still safe to access the fields of the object resulting from running ��t �� – both
∅
 ��t �� : 〈x :K1〉 and ∅
 ��t �� : 〈y :K1〉 are also easily derivable statements. In fact, we can
derive even more informative types: the expression ��K δ�� can be assigned types of the form
σKδ = 〈app:(σ1)→ 〈app :(σ2 ∩ 〈app:(σ2)→ σ3〉)→ σ3〉〉, and so we can also assign 〈x :σKδ〉 and
〈y :σKδ〉 to ��t ��. Notice that the λ-term equivalent to t is λy.(λx.xx)(λx.xx), which is a weak
normal form without a head-normal form. The ‘functional’ view is that such terms are ob-
servationally indistinguishable from terms without head-normal form. When encoded in fj �c
however, our type system shows that these terms become meaningful (head-normalisable).

The second observation concerns principal types. In lc, each normal form has a unique most-
specific type: i.e. a principal type from which all the other assignable types may be generated
(this property is important for practical type inference). It is not clear if our intersection type
system for fj �c does enjoy such a property. Consider the following program:

class D extends Object {

D m() { return new D(); }

}

13 In other intersection type systems (e.g. [21]) φ → ω is a permissible type, but is equivalent to ω (that is
ω ≤ (φ → ω)≤ ω) and so semantics based on these type systems identify terms of type φ → ω with terms that do
not have a head-normal form.

Theoretical Computer Science, 517:34-74, 2014 43

(obj)
∅
 new D() : D

(obj)
this:D
 new D() : D

(obj)
∅
 new D() : D

(newM)
∅
 new D() : 〈m:()→D〉

(obj)
this:D
 new D() : D

(obj)
this:D
 new D() : D

(newM)
this:D
 new D() : 〈m:()→D〉

(obj)
this:D
 new D() : D

(newM)
∅
 new D() : 〈m:()→〈m:()→D〉〉

(obj)
this:D
 new D() : D

(obj)
this:D
 new D() : D

(newM)
this:D
 new D() : 〈m:()→D〉

(obj)
this:D
 new D() : D

(newM)
this:D
 new D() : 〈m:()→〈m:()→D〉〉

(obj)
∅
 new D() : D

(newM)
∅
 new D() : 〈m:()→〈m:()→〈m:()→D〉〉〉

Figure 13: Type Derivations for a Program without a Principal Type

The expression new D() is a normal form, and so we can assign it a non-trivial type, but
observe that the set of all types which may be assigned to this expression is the infinite set
{D, 〈m:()→ D〉, 〈m :()→ 〈m:()→ D〉〉, . . .}, as illustrated in Figure 13.14 None of these types
may be considered the most specific one, since whichever type we pick we can always derive
a more informative (larger) one. On the one hand, this is exactly what we want: we may
make a series of any finite number of calls to the method m and this is expressed by the
types. On the other hand, this seems that a practical type inference for our system will
not be straightforwardly defined. Notice however that these types are not unrelated to one
another: they each approximate the ‘infinite’ type 〈m :()→ 〈m :()→ . . .〉〉, which can be finitely
represented by the recursive type µX.〈m :()→ X〉. This type concisely captures the reduction
behaviour of new D(), showing that when we invoke the method m on it we again obtain our
original term. In lc such families of types arise in connection with fixed-point operators. This
is not a coincidence: the class D was recursively defined, and in the face of such self-reference
it is then not surprising that this is reflected in our type analysis.

Conclusions & Future Work

We have considered an approximation-based denotational semantics for class-based oo-pro-
grams and related this to a type-based semantics defined using an intersection type approach.
Our work shows that the techniques and strong results of this approach can be transferred
straightforwardly from other programming formalisms (lc and trs) to the oo-paradigm.
Through our characterisation results we have shown that our type system is powerful enough
(at least in principle) to form the basis for expressive analyses of oo-programs.

Our approach constitutes a subtle shift in the philosophy of static analysis for class-based
oo. In the traditional (nominal) approach, the programmer specifies the class types that each
input to the program (field values and method arguments) should have, on the understanding
that the type checking system will guarantee that the inputs do indeed have these types. Since a
class type represents the entire interface defined in the class declaration, the programmer acts
on the assumption that they may safely call any method within this interface. Consequently,
to keep up their end of the ‘bargain’, the programmer is under an obligation to ensure that
the value returned by their program safely provides the whole interface of its declared type.

14 That principal types can be infinitely large is also the case in lc, typically for terms with an infinite number
of approximants (like a fixed-point combinator).

Theoretical Computer Science, 517:34-74, 2014 44

In the approach suggested by our type system, by firstly removing the requirement to
safely implement a full collection of methods regardless of the input values, the programmer
is afforded a certain expressive freedom. Secondly, while they can no longer rely on the fact
that all objects of a given class provide a particular interface, this apparent problem is obviated
by type inference, which presents the programmer with an ‘if-then’ input-output analysis of
class constructors and method calls. If a programmer wishes to create instances of some
particular class (perhaps from a third party) and call its methods in order to utilise some
given functionality, then it is then up to them to ensure that they pass appropriate inputs
(either field values or method arguments) that guarantee the behaviour they require.

We point out that our type system is not the only type system for oo in the literature
with these characteristics: for example, the work of Palsberg for the ς-calculus, who showed
decidable type inference [57], and that of Eifrig, Smith and Trifonov [38, 37]. But our system
is, we believe, the first such system which is faithful to a semantic model of the language, and
this is the main contribution of our work.

The case for the nominal type checking approach, based as it is on providing sound, de-
cidable static analyses is a strong one. Our full semantic system is obviously undecidable but
we believe that decidable restrictions of our system exist which could give it the edge over
current approaches.

Our work has also highlighted where the oo-programming style differs from its functional
cousin. In particular, we have noted that because of oo’s facility for self-reference, it is no
longer clear if all normal forms have a most specific (or principal) type. The types assignable
to such normal forms do however seem to be representable using recursive definitions. This
observation further motivates and strengthens the case (by no means a new concept in the
analysis of oo) for the use of recursive types in this area. Some recent work by Nakano [56]
shows that a restricted but still highly expressive form of recursive types can still guarantee
head normalisation, and we hope to fuse this approach with our own to come to an equally
precise but more concise and practical type-based treatment of oo.

We would also like to reintroduce more features of full Java back into our calculus, to see if
our system can accommodate them whilst maintaining the strong theoretical properties that
we have shown for the core calculus. For example, similar to λµ [58], it seems natural to
extend our simply typed system to analyse the exception handling features of Java.

References
[1] The C# Language Specification (ECMA-334), 4th Edition. ECMA International, June 2006.
[2] ECMA Language Specification (ECMA-262). ECMA International, June 2011.
[3] M. Abadi and L. Cardelli. A Semantics of Object Types. In Proceedings of the Ninth Annual Sym-

posium on Logic in Computer Science (LICS ’94), Paris, France, July 4-7, 1994, pages 332–341. IEEE
Computer Society Press, 1994.

[4] M. Abadi and L. Cardelli. A Theory of Objects. Springer Verlag, 1996.
[5] J. Alves-Foss and F.S. Lam. Dynamic Denotational Semantics of Java. In J. Alves-Foss, editor,

Formal Syntax and Semantics of Java, volume 1523 of Lecture Notes in Computer Science, pages 201–
240. Springer Verlag, 1999.

[6] S. van Bakel. Complete restrictions of the Intersection Type Discipline. Theoretical Computer Science,
102(1):135–163, 1992.

[7] S. van Bakel. Intersection Type Assignment Systems. Theoretical Computer Science, 151(2):385–435,
1995.

[8] S. van Bakel. Cut-Elimination in the Strict Intersection Type Assignment System is Strongly Nor-
malising. Notre Dame journal of Formal Logic, 45(1):35–63, 2004.

[9] S. van Bakel. The Heart of Intersection Type Assignment; Normalisation proofs revisited. Theoret-
ical Computer Science, 398:82–94, 2008.

Theoretical Computer Science, 517:34-74, 2014 45

[10] S. van Bakel. Completeness and Partial Soundness Results for Intersection & Union Typing for
λµµ̃. Annals of Pure and Applied Logic, 161:1400–1430, 2010.

[11] S. van Bakel. Strict intersection types for the Lambda Calculus. ACM Computing Surveys, 43:20:1–
20:49, April 2011.

[12] S. van Bakel. Completeness and Soundness results for X with Intersection and Union Types.
Fundamenta Informaticae, 121:1–41, 2012.

[13] S. van Bakel and U. de’Liguoro. Logical equivalence for subtyping object and recursive types.
Theory of Computing Systems, 42(3):306–348, 2008.

[14] S. van Bakel and M. Fernández. Strong Normalisation of Typeable Rewrite Systems. In J. Heering,
K. Meinke, B. Möller, and T. Nipkow, editors, Proceedings of HOA’93. First International Workshop
on Higher Order Algebra, Logic and Term Rewriting, Amsterdam, the Netherlands. Selected Papers,
volume 816 of Lecture Notes in Computer Science, pages 20–39. Springer Verlag, 1994.

[15] S. van Bakel and M. Fernández. Normalisation Results for Typeable Rewrite Systems. Information
and Computation, 2(133):73–116, 1997.

[16] S. van Bakel and M. Fernández. Normalisation, Approximation, and Semantics for Combinator
Systems. Theoretical Computer Science, 290:975–1019, 2003.

[17] S. van Bakel and P. Lescanne. Computation with Classical Sequents. Mathematical Structures in
Computer Science, 18:555–609, 2008.

[18] S. van Bakel and R. Rowe. Semantic Predicate Types for Class-based Object Oriented Program-
ming. In Proceedings of the 11th International Workshop on Formal Techniques for Java-like Programs
(FTfJP’09), 2009. Article No. 3.

[19] A. Banerjee and T.P. Jensen. Modular Control-Flow Analysis with Rank 2 Intersection Types.
Mathematical Structures in Computer Science, 13(1):87–124, 2003.

[20] H. Barendregt. The Lambda Calculus: its Syntax and Semantics. North-Holland, Amsterdam, revised
edition, 1984.

[21] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and the complete-
ness of type assignment. Journal of Symbolic Logic, 48(4):931–940, 1983.

[22] K.B. Bruce. A Paradigmatic Object-Oriented Programming Language: Design, Static Typing and
Semantics. Journal of Functional Programming, 4(2):127–206, 1994.

[23] K.B. Bruce, L. Cardelli, and B.C. Pierce. Comparing Object Encodings. Information and Computation,
155(1-2):108–133, 1999.

[24] M.T. Burt. Games, Call-by-Value and Featherweight Java. PhD thesis, Department of Computing,
Imperial College of Science, Technology and Medicine, London, England, 2004.

[25] L. Cardelli. A Semantics of Multiple Inheritance. In G. Kahn, D.B. MacQueen, and G.D. Plotkin,
editors, Semantics of Data Types, International Symposium, Sophia-Antipolis, France, volume 173 of
Lecture Notes in Computer Science, pages 51–67. Springer Verlag, June 27-29 1984.

[26] L. Cardelli and J.C. Mitchell. Operations on Records. Mathematical Structures in Computer Science,
1(1):3–48, 1991.

[27] G. Castagna. Object-Oriented Programming: A Unified Foundation. Progress in Theoretical Computer
Science Series. Birkäuser, Boston, 1997.

[28] A. Church. A Note on the Entscheidungsproblem. Journal of Symbolic Logic, 1(1):40–41, 1936.
[29] W.R. Cook and J. Palsberg. A Denotational Semantics of Inheritance and its Correctness. In

G. Bosworth, editor, Object-Oriented Programming: Systems, Languages, and Applications (OOP-
SLA’89), pages 433–443, New Orleans, Louisiana, USA, 1989. ACM.

[30] W.R. Cook and J. Palsberg. A Denotational Semantics of Inheritance and Its Correctness. Informa-
tion and Computation, 114(2):329–350, 1994.

[31] M. Coppo and M. Dezani-Ciancaglini. An Extension of the Basic Functionality Theory for the
λ-Calculus. Notre Dame journal of Formal Logic, 21(4):685–693, 1980.

[32] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functional characters of solvable terms.
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 27:45–58, 1981.

[33] P.-L. Curien and H. Herbelin. The Duality of Computation. In Proceedings of the 5th ACM SIGPLAN
International Conference on Functional Programming (ICFP’00), volume 35.9 of ACM Sigplan Notices,
pages 233–243. ACM, 2000.

[34] H.B. Curry. Grundlagen der Kombinatorischen Logik. American Journal of Mathematics, 52:509–536,
789–834, 1930.

[35] F. Damiani and F. Prost. Detecting and Removing Dead-Code using Rank 2 Intersection. In
Proceedings of International Workshop TYPES’96, Selected Papers, volume 1512 of Lecture Notes in
Computer Science, pages 66–87. Springer Verlag, 1998.

[36] N. Dershowitz and J.P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor, Handbook of

Theoretical Computer Science, 517:34-74, 2014 46

Theoretical Computer Science, volume B, chapter 6, pages 245–320. North-Holland, 1990.
[37] J. Eifrig, S.F. Smith, and V. Trifonov. Sound Polymorphic Type Inference for Objects. In R. Wirfs-

Brock, editor, Proceedings of the Tenth Annual Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’95), Austin, Texas, USA, pages 169–184. ACM, October 15-19
1995.

[38] J. Eifrig, S.F. Smith, and V. Trifonov. Type inference for recursively constrained types and its
application to OOP. Electronic Notes in Theoretical Computer Science, 1:132–153, 1995.

[39] E. Ernst. Family polymorphism. In J. Lindskov Knudsen, editor, Object-Oriented Programming, 15th
European Conference, volume 2072 of Lecture Notes in Computer Science, pages 303–326, Budapest,
Hungary, 2001. Springer Verlag.

[40] S. Feferman. A language and axioms for explicit mathematics. In J. Crossley, editor, Algebra and
Logic, volume 450 of Lecture Notes in Mathematics. Springer Verlag, 1975.

[41] K. Fisher, F. Honsell, and J.C. Mitchell. A Lambda Calculus of Objects and Method Specialization.
Nordic Journal of Computing, 1(1):3–37, 1994.

[42] K. Fisher and J.C. Mitchell. A Delegation-based Object Calculus with Subtying. In Fundamentals
of Computation Theory, 10th International Symposium, FCT ’95, Dresden, Germany, August 22-25, 1995,
Proceedings, volume 965 of Lecture Notes in Computer Science, pages 42–61. Springer Verlag, 1995.

[43] D. Flanagan and Y. Matsumoto. The Ruby programming language - everything you need to know: covers
Ruby 1.8 and 1.9. O’Reilly, 2008.

[44] N. Glew. An efficient class and object encoding. In M.B. Rosson and D. Lea, editors, Proceed-
ings of the 2000 ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages &
Applications (OOPSLA’00), Minneapolis, Minnesota, USA, October 15-19, 2000, pages 311–324. ACM,
2000.

[45] J. Gosling, W.N. Joy, and G.L. Steele Jr. The Java Language Specification. Addison-Wesley, 1996.
[46] J.R. Hindley. The principal type scheme of an object in combinatory logic. Transactions of the

American Mathematical Society, 146:29–60, 1969.
[47] P. Hudak, S. Peyton Jones, P. Wadler, B. Boutel, J. Fairbairn, J. Fasel, K. Hammond, J. Hughes,

T. Johnsson, D. Kieburtz, R. Nikhil, W. Partain, and J. Peterson. Report on the Programming
Language Haskell. ACM SIGPLAN Notices, 27(5):1–64, 1992.

[48] A. Igarashi, B.C. Pierce, and P. Wadler. Featherweight Java: a minimal core calculus for Java and
GJ. ACM Trans. Program. Lang. Syst., 23(3):396–450, 2001.

[49] A. Igarashi, C. Saito, and M. Viroli. Lightweight family polymorphism. In K. Yi, editor, Pro-
gramming Languages and Systems, Third Asian Symposium, APLAS 2005, Tsukuba, Japan, November
2-5, 2005, Proceedings, volume 3780 of Lecture Notes in Computer Science, pages 161–177. Springer
Verlag, 2005.

[50] T.P. Jensen. Types in Program Analysis. In The Essence of Computation, Complexity, Analysis, Trans-
formation. Essays Dedicated to Neil D. Jones [on occasion of his 60th Birthday], volume 2566 of Lecture
Notes in Computer Science, pages 204–222. Springer Verlag, 2002.

[51] S.N. Kamin. Inheritance in Smalltalk-80: A Denotational Definition. In POPL’88, pages 80–87,
1988.

[52] S.N. Kamin and U.S. Reddy. Two semantic models of object-oriented languages. In C.A. Gunter
and J.C. Mitchell, editors, Theoretical aspects of object-oriented programming, pages 463–495. MIT
Press, Cambridge, MA, USA, 1994.

[53] J.W. Klop. Term Rewriting Systems: a tutorial. EATCS Bulletin, 32:143–182, 1987.
[54] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press, 1990.
[55] J.C. Mitchell. Type Systems for Programming Languages. In J. van Leeuwen, editor, Handbook of

Theoretical Computer Science, volume B, chapter 8, pages 415–431. North-Holland, 1990.
[56] H. Nakano. A Modality for Recursion. In 15th Annual IEEE Symposium on Logic in Computer Science,

pages 255–266, Santa Barbara, California, USA, 2000. IEEE Computer Society.
[57] Jens Palsberg. Efficient Inference of Object Types. Information and Computation, 123(2):198–209,

1995.
[58] M. Parigot. An algorithmic interpretation of classical natural deduction. In Proceedings of 3rd

International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR’92),
volume 624 of Lecture Notes in Computer Science, pages 190–201. Springer Verlag, 1992.

[59] U.S. Reddy. Objects as Closures: Abstract Semantics of Object-Oriented Languages. In LISP and
Functional Programming, pages 289–297, 1988.

[60] S. Ronchi Della Rocca. Principal type scheme and unification for intersection type discipline.
Theoretical Computer Science, 59:181–209, 1988.

[61] G. van Rossum and F.L. Drake, editors. Python Language Reference. PythonLabs, 2003.

Theoretical Computer Science, 517:34-74, 2014 47

[62] R.N.S. Rowe and S.J. van Bakel. Approximation Semantics and Expressive Predicate Assignment
for Object-Oriented Programming. In L. Ong, editor, Proceedings of 10th International Conference
on Typed Lambda Calculi and Applications (TLCA’11), volume 6690 of Lecture Notes in Computer
Science, pages 229–244. Springer Verlag, 2011.

[63] B. Stroustrup. The C++ programming language (3. ed.). Addison-Wesley-Longman, 1997.
[64] Th. Studer. Constructive Foundations for Featherweight Java. In R. Kahle, P. Schroeder-Heister,

and R.F. Stärk, editors, Proof Theory in Computer Science, International Seminar, PTCS’01, Dagstuhl
Castle, Germany, volume 2183 of Lecture Notes in Computer Science, pages 202–238. Springer Verlag,
October 7-12 2001.

[65] W. Tait. Intensional Interpretations of Functionals of Finite Type I. Journal of Symbolic Logic,
32(2):198–212, 1967.

[66] R. Viswanathan. Full Abstraction for First-Order Objects with Recursive Types and Subtyping.
In Thirteenth Annual IEEE Symposium on Logic in Computer Science, Indianapolis, Indiana, USA, June
21-24, 1998, pages 380–391. IEEE Computer Society, 1998.

[67] C.P. Wadsworth. The relation between computational and denotational properties for Scott’s D∞-
models of the lambda-calculus. SIAM Journal on Computing, 5:488–521, 1976.

[68] C.P. Wadsworth. Approximate Reduction and Lambda Calculus Models. SIAM Journal on Com-
puting, 7(3):337–356, 1978.

Appendix A Proof of the approximation result

The following properties hold of derivation reduction. They are used in the proofs of Theo-
rem A.4 and Lemma A.10.

Lemma A.1 i) SN (〈D,fld〉 :: Π
 e.f : σ) ⇔ SN (D :: Π
 e : 〈f :σ〉).
ii) SN (〈D,D1, . . . ,Dn, invk〉 :: Π
 e.m(en) : σ) ⇒ SN (D) & ∀ i ∈ n [SN (Di)].

iii) For neutral contexts C, SN (D :: Π
 C[x] : 〈m :(φn)→ σ〉) & ∀ i ∈ n [SN (Di :: Π
 ei : φi)] ⇒
SN (〈D,D1, . . . ,Dn, invk〉 :: Π
 C[x].m(en) : σ).

iv) SN (〈Dn,obj〉 :: Π
 new C(en) : C) ⇔ ∃φn [∀ i ∈ n [SN (Di :: Π
 ei : φi)]].

v) SN (〈D1, . . . ,Dn, join〉 :: Π
 e : σ1 ∩ . . .∩σn) ⇔ ∀ i ∈ n [SN (Di :: Π
 e : σi)].

vi) SN (D[Π′ � Π] :: Π′
 e : φ) ⇔ SN (D :: Π
 e : φ) .

vii) Let C be a class such that F(C) =fn, then for all j ∈ n: SN (〈Dn,newF〉 :: Π
 new C(en) : 〈f j :σ〉) ⇔
∃φn [σ � φj & ∀ i ∈ n [SN (Di :: Π
 ei : φi)]].

viii) B Let C be such that F(C) = fn, then for all j ∈ n: SN (D(p,σ′)[Dj] :: Π
 Cp[e j] : σ) & ∀i �= j ∈ n
[∃φ [SN (Di :: Π
 ei : φ)]] ⇒ SN (D(p,σ′)[〈〈Dn,newF〉,fld〉] :: Π
 Cp[new C(en).f j] : σ).

ix) Let C be such that Mb(C,m) = (xn,eb) and Db :: this :ψ,x:φn
 eb : σ′, then for all derivation
contexts D(p,σ′) and expression contexts C: SN (D(p,σ′)[Db

S] :: Π
 Cp[eb
S] : σ) & SN (D0 :: Π

new C(e’) : ψ) &
∀ i ∈ n [SN (Di :: Π
 ei : φi)]⇒ SN (D(p,σ′)[〈D,Dn, invk〉] :: Π
 Cp[new C(e’).m(en)] : σ).
where D = 〈Db,D0,newM〉 :: Π
 new C(e’) : 〈m :(φn)→ σ′〉,

S = 〈this 	→D0,x1 	→D1, . . . ,xn 	→Dn 〉, and
S = 〈this 	→new C(e’),x1 	→e1, . . . ,xn 	→en 〉.

Proof : These all follow straightforwardly from Definition 4.16.

Our proof uses the well-known technique of computability [65]. As is standard, our notion
is defined inductively over the structure of types (predicates), and is defined in such a way as
to guarantee that computable derivations are strongly normalising.

Definition A.2 (Computability) i) The set of computable derivations is defined as the small-
est set satisfying the following conditions (where Comp(D) denotes that D is a member of

Theoretical Computer Science, 517:34-74, 2014 48

the set of computable derivations):

Comp(〈Q〉ω :: Π
 e : ω)

Comp(D :: Π
 e : ϕ) ⇔ SN (D :: Π
 e : ϕ)

Comp(D :: Π
 e : C) ⇔ SN (D :: Π
 e : C)

Comp(D :: Π
 e : 〈f :σ〉) ⇔ Comp(〈D,fld〉 :: Π
 e.f : σ)

Comp(D :: Π
 e : 〈m :(φn)→ σ〉) ⇔ (∀Dn [∀ i ∈ n [Comp(Di :: Πi
 ei : φi)] ⇒
Comp(〈D[

⋂
Π · Πn � Π],Di[

⋂
Π · Πn � Πi], invk〉 ::

⋂
Π · Πn
 e.m(en) : σ)])

Comp(〈D1, . . . ,Dn, join〉 :: Π
 e : σ1 ∩ . . .∩σn)

⇔ ∀ i ∈ n [Comp(Di)]

ii) A derivation substitution S is computable in Π, if and only if, Comp(S(x:φ)) for all x:φ ∈ Π.

Computability is preserved by weakening:

Lemma A.3 Comp(D :: Π
 e : φ) ⇔ Comp(D[Π′ � Π] :: Π′
 e : φ).

Proof : By straightforward induction on the structure of predicates; for the base case, we use
Lemma A.1((vi)).

The key property of computable derivations is that they are strongly normalising as shown
in the first part of the following theorem.

Theorem A.4 i) Comp(D :: Π
 e : φ) ⇒ SN (D :: Π
 e : φ).

ii) For neutral contexts C, SN (D :: Π
 C[x] : φ) ⇒ Comp(D :: Π
 C[x] : φ).

Proof : By simultaneous induction on the structure of predicates.

(ω) : By Definition 4.16 in the case of (1), and by Definition A.2 in the case of (2).
(ϕ, C) : Immediate, by Definition A.2.
(〈f :σ〉) : a) Comp(D :: Π
 e : 〈f :σ〉) ⇒ (Def. A.2) Comp(〈D,fld〉 :: Π
 e.f : σ) ⇒ (IH(1))

SN (〈D,fld〉 :: Π
 e.f : σ) ⇒ (Lem. A.1) SN (D :: Π
 e : 〈f :σ〉)
b) Assume SN (D :: Π
 C[x] : 〈f :σ〉) with C a neutral context. Then SN (〈D,fld〉 :: Π

C[x].f : σ) by Lemma A.1. Now, let C′ = C.f; notice that, by Definitions 4.2 and 4.3,
C′ is neutral, and C[x].f = C′[x]. Thus SN (〈D,fld〉 :: Π
 C′[x] : σ), and, by induc-
tion, Comp(〈D,fld〉 :: Π
 C′[x] : σ). Then, from the definition of C′, it follows that
Comp(〈D,fld〉 :: Π
 C[x].f : σ), and by Definition A.2, we have Comp(D :: Π
 C[x] :
〈f :σ〉).

(〈m :(φn)→ σ〉) : a) Assume Comp(D :: Π
 e : 〈m :(φn)→ σ〉). For each i ∈ n, we take a fresh
variable xi and construct a derivation Di as follows:

∗ If φi = ω then Di = 〈Q〉ω :: Πi
 xi : ω, with Πi = ∅;
∗ If φi is a strict predicate σ then Di = 〈Q〉var :: Πi
 xi : σ, with Πi = xi:σ;
∗ If φi = σ1 ∩ . . .∩σn′ for some n′ ≥ 2 then Di = 〈D′

1, . . . ,D′
n′ , join〉 :: Πi
x : σ1 ∩ . . .∩σn′ ,

with Πi = xi:φi and D′
j = 〈Q〉var :: Πi
 xi : σj for each j ∈ n′.

Notice that each Di is in normal form, so SN (Di) for each i ∈ n. Notice also that
Di :: Πi
 C[xi] : φi for each i ∈ n where C is the neutral context []. So, by the second
induction Comp(Di) for each i ∈ n.
Then, by Definition A.2,

Theoretical Computer Science, 517:34-74, 2014 49

Comp(〈D′,D′
n, invk〉 :: Π′
 e.m(xn) : σ)

where D′ =D[Π′ � Π] and D′
i =Di[Π

′ � Πi] for each i ∈ n with Π′ =
⋂

Π · Πn. So, by
the first induction, SN (〈D′,D′

n, invk〉). Lastly, by Lemma A.1((ii)) we have SN (D′),
and by Lemma A.1((vi)), SN (D).

b) Assume SN (D :: Π
 C[x] : 〈m :(φn)→ σ〉) with C a neutral context. Also, assume that
there exist derivations D1, . . . ,Dn such that: Comp(Di :: Πi
 ei : φi) for each i ∈ n. Then,
by the first induction, SN (Di :: Πi
 ei : φi) for each i ∈ n. Let Π′ =

⋂
Π · Πn; notice

that, by Definition 3.3, Π′ � Π and Π′ � Πi for each i ∈ n. Then, by Lemma A.1((vi)),
SN (D[Π′ � Π]) and SN (Di[Π

′ � Πi]) for each i ∈ n. By Lemma A.1((iii)) we then
have

SN (〈D′,D′
1, . . . ,D′

n, invk〉 :: Π′
 C[x].m(en) : σ)

where D′ = D[Π′ � Π] and D′
i = Di[Π

′ � Πi] for each i ∈ n. Take the context C′ =
C.m(en); notice that, since C is neutral, by Definitions 4.2 and 4.3, C′ is also a neutral
context and C[x].m(en)= C′[x]. Thus, by the second induction,

Comp(〈D′,D′
1, . . . ,D′

n, invk〉 :: Π′
 C[x].m(en) : σ).

So, by Definition A.2, we have Comp(D :: Π
 e : 〈m :(φn)→ σ〉).
(σ1 ∩ . . .∩σn,n ≥ 2) : By induction.

A consequence of Theorem A.4 is that identity (derivation) substitutions are computable in
their own environments.

Lemma A.5 Let Π be a predicate environment; then IdΠ is computable in Π.

Proof : Let Π = x:φ, then IdΠ = 〈x 	→ D :: Π
 x : φ〉 with each Di in normal form and thus
SN (Di). Notice also that, since xi = C[xi] where C is the empty context [], SN (Di :: Π
 C[x] :
φi) for each i ∈ n. Then Comp(Di) by Theorem A.4(2). Thus, for each x:φ ∈ Π, Comp(S(x:φ))
and so, by Definition A.2, IdΠ is computable in Π.

Also using Theorem A.4, we can show that computability is closed for derivation expansion
- that is, if D′ is computable and D →D D′, then also D is computable. This property will be
important when showing the replacement lemma (Lemma A.10) below. We first show two
auxiliary expansion lemmas, that are needed for the proof of that lemma.

Lemma A.6 (Field expansion) Let C be a class such that F(C) =fn, then for all j ∈ n: if Comp(D(p,σ′)[Dj] ::
Π
Cp[e j] : σ) and ∀ i �= j ∈ n [∃φ [Comp(Di :: Π
ei : φ)]], then Comp(D(p,σ′)[〈〈Dn,newF〉,fld〉] ::
Π
 Cp[new C(en).f j] : σ).

Proof : By induction on the structure of strict predicates.

(ϕ) : Assume Comp(D(p,σ′)[Dj] :: Π
 Cp[e j] : ϕ) and ∃φ [Comp(Di :: Π
 ei : φ)] for each i ∈ n
such that i �= j. By Theorem A.4, SN (D(p,σ′)[Dj] :: Π
Cp[e j] : ϕ) and ∃φ [SN (Di :: Π
 ei : φ)

] for each i ∈ n such that i �= j. Then by Lemma A.1((viii)) we have

SN (D(p,σ′)[〈〈Dn,newF〉,fld〉] :: Π
 Cp[new C(en).f j] : ϕ)

And, by Definition A.2, Comp(D(p,σ′)[〈〈Dn,newF〉,fld〉] :: Π
 Cp[new C(en).f j] : ϕ).
(C) : Similar to the previous case.
(〈f :σ〉) : Assume Comp(D(p,σ′)[Dj] :: Π
 Cp[e j] : 〈f :σ〉) and ∃φ [Comp(Di :: Π
 ei : φ)] for

each i ∈ n such that i �= j. By Definition A.2, Comp(〈D(p,σ′)[Dj],fld〉 :: Π
 Cp[e j].f : σ). Take
the contexts C′ and D′ such that: C′

0·p = Cp.f and D′
(0·p,σ′) = 〈D(p,σ′),fld〉 :: Π
 Cp.f : σ.

Notice that

Theoretical Computer Science, 517:34-74, 2014 50

〈D(p,σ′)[Dj],fld〉 :: Π
 Cp[e j].f : σ = D′
(0·p,σ′)[Dj] :: Π
 C′

0·p[e j] : σ,

so we have Comp(D′
(0·p,σ′)[Dj] :: Π
 C′

0·p[e j] : σ). Then by induction we have

Comp(D′
(0·p,σ′)[〈〈Dn,newF〉,fld〉] :: Π
 C′

0·p[new C(en).f j] : σ),

so by the definition of derivation contexts,

Comp(〈D(p,σ′)[〈〈Dn,newF〉,fld〉],fld〉 :: Π
 Cp[new C(en).f j].f : σ).

Then, by Definition A.2, we have Comp(D(p,σ′)[〈〈Dn,newF〉,fld〉] :: Π
 Cp[new C(en).f j] :
〈f :σ〉).

(〈m :(φn′)→ σ〉) : Assume Comp(D(p,σ′)[Dj] :: Π
Cp[e j] : 〈m :(φn′)→ σ〉) and that ∃φ [Comp(Di ::
Π
 ei : φ)]for each i �= j ∈ n. Now, take arbitrary derivations D′

1, . . . ,D′
n′ such that, for

each k ∈ n′, Comp(D′
k :: Πk
 e’k : φk). By Definition A.2,

Comp(〈D′,D′′
n′ , invk〉) :: Π′
 Cp[e j].m(e’n′) : σ,

where Π′ =
⋂

Π · Πn′ , D′ =D(p,σ′)[Dj][Π
′ � Π], and D′′

k = D′
k[Π

′ � Πk] for each k ∈ n.
By Lemma A.9, D′ =D(p,σ′)[Dj][Π

′ � Π] =D(p,σ′)[Π
′ � Π][Dj [Π

′ � Π]]; take the contexts
C′ and D′ such that: C′

0·p = Cp.m(e’n′) and D′
(0·p,σ′) = 〈D(p,σ)[Π

′ � Π],D′′
n′ , invk〉 :: Π′

Cp.m(e’n′) : σ. Notice that

〈D′,D′′
n′ , invk〉 = D′

(0·p,σ′)[Dj[Π
′ � Π]] :: Π′
 C′

0·p[e j] : σ,

then we have Comp(D′
(0·p,σ′)[Dj[Π

′ � Π]]). Now, by Lemma A.3, ∃φ [Comp(Di[Π
′ � Π] :: Π′
 ei : φ)

] for each i �= j ∈ n. Then by induction,

Comp(D′
(0·p,σ′)[〈〈D1[Π

′ � Π], . . . ,Dn[Π′ � Π],newF〉,fld〉] :: Π′
 C′
0·p[new C(en).f j] : σ)

So by the definition of D′,

Comp(〈D(p,σ′)[Π
′ � Π][〈〈D1[Π

′ � Π], . . . ,Dn[Π′ � Π],newF〉,fld〉],D′′
n′ , invk〉

:: Π′
 Cp[new C(en).f j].m(e’n′) : σ)

And then, by Definition 4.6,

Comp(〈D(p,σ′)[Π
′ � Π][〈〈Dn,newF〉,fld〉[Π′ � Π]],D′′

n′ , invk〉
:: Π′
 Cp[new C(en).f j].m(e’n′) : σ)

And by Lemma A.9

Comp(〈D(p,σ′)[〈〈Dn,newF〉,fld〉][Π′ � Π],D′′
n′ , invk〉 :: Π′
 Cp[new C(en).f j].m(e’n′) : σ)

Since the derivations D′
1, . . . ,D′

n′ were arbitrary, the following implication holds:

∀D′
n′ [∀ i ∈ n′ [Comp(D′

i :: Πi
 e’i : φi)] ⇒
Comp(〈D,D′′

n′ , invk〉 :: Π′
 Cp[new C(en).f j].m(e’n′) : σ)]

where D =D(p,σ)[〈〈Dn,newF〉,fld〉][Π′ � Π]. Thus, by Definition A.2,

Comp(D(p,σ′)[〈〈Dn,newF〉,fld〉] :: Π
 Cp[new C(en).f j] : 〈m :(φn′)→ σ〉)

Lemma A.7 (Method expansion) Let Mb(C,m) = (xn,eb) and Db :: Π′
eb : σ′ with Π′ =this :ψ,x:φ,
then for contexts D(p,σ′) and C: if Comp(D(p,σ′)[Db

S] :: Π
 Cp[eb
S] : σ), Comp(Di :: Π
 ei : φi) for

all i ∈ n, and Comp(D0 :: Π
 new C(e’) : ψ), then

Comp(D(p,σ′)[〈D,Dn, invk〉] :: Π
 Cp[new C(e’).m(en)] : σ),

where D = 〈Db,D0,newM〉 :: Π
 new C(e’) : 〈m :(φn)→ σ′〉, S = 〈this :ψ 	→D0,x:φ 	→D〉, and
S is the term substitution induced by S .

Theoretical Computer Science, 517:34-74, 2014 51

Proof : By induction on the structure of strict predicates.

(ϕ) : Assume Comp(D(p,σ′)[Db
S] :: Π
 Cp[eb

S] : ϕ), Comp(D0 :: Π
 new C(e’) : ψ), and, for
each i ∈ n, Comp(Di :: Π
 ei : φi). Then by Theorem A.4

SN (D(p,σ′)[Db
S] :: Π
 Cp[eb

S] : ϕ), SN (D0 :: Π
 new C(e’) : ψ), and SN (Di :: Π
 ei : φi)

for each i ∈ n. Then SN (D(p,σ′)[〈D,Dn, invk〉] :: Π
Cp[new C(e’).m(en)] : ϕ) by Lemma A.1((ix)),
where

D = 〈Db,D0,newM〉 :: Π
 new C(e’) : 〈m :(φn)→ σ〉

And, by Definition A.2, Comp(D(p,σ)[〈D,Dn, invk〉]).
(C) : Similar to the previous case.
(〈f :σ〉) : Assume Comp(D(p,σ′)[Db

S] :: Π
 Cp[eb
S] : 〈f :σ〉), Comp(D0 :: Π
 new C(e’) : ψ),

and Comp(Di :: Π
ei : φi) for all i ∈ n. By Definition A.2, it follows that Comp(〈D(p,σ′)[Db
S],fld〉 ::

Π
 Cp[eb
S].f : σ). Take the contexts C′ and D′ such that C′

0·p = Cp.f and D′
(0·p,σ′) =

〈D(p,σ′),fld〉 :: Π
 Cp.f : σ. Notice that

〈D(p,σ′)[Db
S],fld〉 :: Π
 Cp[eb

S].f : σ = D′
(0·p,σ′)[Db

S] :: Π
 C′
0·p[eb

S] : σ

So we have Comp(D′
(0·p,σ′)[Db

S] :: Π
 C′
0·p[eb

S] : σ), and then by induction

Comp(D′
(0·p,σ′)[〈D,Dn, invk〉] :: Π
 C′

0·p[new C(e’).m(en)] : σ)

where D = 〈Db,D0,newM〉 :: Π
 new C(e’) : 〈m :(φn)→ σ′〉. So by the definition of D′,

Comp(〈D(p,σ′)[〈D,Dn, invk〉],fld〉 :: Π
 Cp[new C(e’).m(en)].f : σ)

Then, by Definition A.2, Comp(D(p,σ′)[〈D,Dn, invk〉]).
(〈m′ :(φ′

n′)→ σ〉) : Assume Comp(D(p,σ′)[Db
S] :: Π
 Cp[eb

S] : 〈m′ :(φ′
n′)→ σ〉),, Comp(D0 :: Π

new C(e’) : ψ), and, for all i ∈ n, Comp(Di :: Π
 ei : φi). Now, take D′
1, . . . , D′

n′ such
that Comp(D′

k :: Πk
 e’’k : φ′
k) for each k ∈ n′. By Definition A.2, Comp(〈D′,D′′

n′ , invk〉 ::
Π′
 Cp[eb

S].m′(e’’n′) : σ), where Π′′ =
⋂

Π · Πn′ , D′ = D(p,σ′)[Db
S][Π′′ � Π], and D′′

k =

D′
k[Π

′′ � Πk] for each k∈ n′. Then, by Lemma A.9, D′ =D(p,σ′)[Db
S][Π′′ � Π] =D(p,σ′)[Π

′′ �
Π][Db

S [Π′′ � Π]]. Take the contexts C′ and D′ such that C′
0·p = Cp.m′(e’’n′) and D′

(0·p,σ′) =

〈D(p,σ′)[Π
′′ � Π],D′′

n′ , invk〉 :: Π′′
 Cp.m′(e’’n′) : σ.
Notice that

〈D′,D′′
n′ , invk〉 = D′

(0·p,σ′)[Db
S [Π′′ � Π]] :: Π′′
 C′

0·p[eb
S] : σ

So we have

Comp(D′
(0·p,σ′)[Db

S [Π′′ � Π]] :: Π′′
 C′
0·p[eb

S] : σ)

So, by Lemma 4.11 Comp(D′
(0·p,σ′)[Db

S [Π′′�Π]]). Now, by Lemma A.3, Comp(D0[Π′′ �

Π] :: Π′′
 new C(e’) : ψ) and Comp(Di[Π
′′ � Π] :: Π′′
 ei : φi) for all i ∈ n. Thus, by

induction,

Comp(D′
(0·p,σ′)[〈D′′,D1[Π

′′ � Π], . . . ,Dn[Π′′ � Π], invk〉] :: Π′′
 C′
0·p[new C(e’).m(en)] : σ)

where D′′ = 〈Db,D0[Π′′ � Π],newM〉 :: Π′′
 new C(e’) : 〈m :(φn)→ σ′〉. So by the defini-
tion of D′

Comp(〈D(p,σ′)[Π
′′ � Π][〈D′′,D1[Π

′′ � Π], . . . ,Dn[Π′′ � Π], invk〉],
D′′

n′ , invk〉 :: Π′′
 Cp[new C(e’).m(en)].m′(e’’n′) : σ)

Then, by Definition 4.6,

Theoretical Computer Science, 517:34-74, 2014 52

Comp(〈D(p,σ′)[Π
′′ � Π][〈D,Dn, invk〉[Π′′ � Π]],D′′

n′ , invk〉
:: Π′′
 Cp[new C(e’).m(en)].m′(e’’n′) : σ)

where D = 〈Db,D0,newM〉 :: Π
 new C(e’) : 〈m :(φn)→ σ′〉. And by Lemma A.9

Comp(〈D(p,σ′)[〈D,Dn, invk〉][Π′′ � Π],D′′
n′ , invk〉 :: Π′′
 Cp[new C(e’).m(en)].m ′(e’’n′) : σ)

So, by Definition A.2, we have Comp(D(p,σ′)[〈D,Dn, invk〉]).

The following two basic properties of the weakening operation on derivations will be
needed later when showing that it preserves computability.

Proposition A.8 Let Π1,Π2,Π3 and Π4 be type environments such that Π2 � Π1, and Π3 � Π1;
Π4 � Π2, and Π4 � Π3; and D be a derivation such that D :: Π1
 e : φ. Then

i) (D[Π2 � Π1])[Π4 � Π2] = D[Π4 � Π1].
ii) (D[Π2 � Π1])[Π4 � Π2] = (D[Π3 � Π1])[Π4 � Π3].

We also show the following property of weakening for derivation contexts and substitu-
tions, which will be used in the proof of Lemma A.6 to show that computability is preserved
by derivation expansion.

Lemma A.9 Let D(p,σ) :: Π
 Cp : φ be a derivation context and D :: Π
 e : σ be a derivation. Also,
let [Π′ � Π] be a weakening. Then

D(p,σ)[D][Π′ � Π] = D(p,σ)[Π
′ � Π][D[Π′ � Π]]

Proof : By induction on the structure of derivation contexts.

The final piece of the strong normalisation proof is the derivation replacement lemma,
which shows that when we perform derivation substitution using computable derivations
we obtain a derivation that is overall computable. In [16], where an approximation result is
shown for combinator systems, this lemma must be proved using an encompassment relation
on terms. Since we have sub-derivations for the constituents of each redex that will appear
during reduction, we are able to prove the replacement lemma by straightforward induction
on the structure of derivations.

Lemma A.10 (Replacement) If D :: Π
 e : φ and S is a derivation substitution computable in Π,
then Comp(DS).

Proof : By induction on the structure of derivations. The (newF) and (newM) cases are par-
ticularly tricky, and use Lemmas A.6 and A.7 respectively. Let Π = x1:φ′

1, . . . ,xn
′:φ′

n′ and
S = 〈x’ 	→ D′ :: Π′
 e’’ : φ′′

n′′ 〉 with {xn′ } ⊆ {x’n′′ }. Also, let S be the term substitution in-
duced by S .

(ω) : Immediately by Definition A.2, since DS = 〈Q〉ω :: Π′
 eS : ω.
(var) : Then D :: Π
 x : σ. We examine the different possibilities for DS :

– x:σ ∈ Π, so x = x’i for some i ∈ n′′ and D′
i :: Π′
 e’’i : σ. Then DS = D′

i. Since S is
computable in Π it follows that Comp(D′

i), and so Comp(DS).
– x:φ ∈ Π for some φ � σ, so φ = σ1 ∩ . . .∩σn with σ = σi for some i ∈ n. Also, x = x’j

for some j ∈ n′′ and D′
j :: Π′
 e’’j : φ, so D′

j = 〈D′′
n, join〉 with D′′

k :: Π′
 e’’j : σk for
each k ∈ n. Now, by Definition 4.9, DS =D′′

i :: Π′
 e’’j : σi. Since S is computable in Π,
Comp(D′

j) and then, by Definition A.2, Comp(D′′
k) for each k ∈ n. Thus, in particular

Comp(D′′
i) and so Comp(DS).

(fld) : Then D = 〈D′,fld〉 :: Π
 e.f : σ and D′ :: Π
 e : 〈f :σ〉. By induction, Comp(D′S ::

Theoretical Computer Science, 517:34-74, 2014 53

Π′
 eS : 〈f :σ〉).
Then, by Definition A.2, Comp(〈D′S ,fld〉 :: Π′
 eS.f : σ). Notice that 〈D′S ,fld〉 = DS

and so Comp(DS).
(invk) : Then D = 〈D0,Dn, invk〉 :: Π
 e0.m(en) : σ with D0 :: Π
 e0 : 〈m :(φn)→ σ〉 and Di ::

Π
 ei : φi for each i ∈ n. By induction, we have Comp(D0
S :: Π′
 e0

S : 〈m :(φn)→ σ〉) and
∀ i ∈ n [Comp(Di

S :: Π′
 ei
S : φi)]. Then, by Definition A.2,

Comp(〈D0
S [Π′′ � Π′],D1

S [Π′′ � Π′], . . . ,Dn
S [Π′′ � Π′], invk〉 :: Π′′
 e0

S.m(e1
S, . . . ,en

S) : σ)

where Π′′ =
⋂

Π′ · Πn and Πi = Π′ for each i ∈ n. Notice that Π′′ = Π′ and that for all D ::
Π
e : φ, D[Π � Π] =D, so Comp(〈D0

S ,D1
S , . . . ,Dn

S , invk〉). Notice that 〈D0
S ,D1

S , . . . ,Dn
S , invk〉=

DS .
(join), (obj) : By induction.
(newF) : Then D = 〈Dn,newF〉 :: Π
 new C(en) : 〈f j :σ〉 with F(C) = fn and j ∈ n, and there

is some φn such that Di :: Π
 ei : φi for each i ∈ n with φj = σ. By induction, Comp(Di
S ::

Π
 ei : φi) for each i ∈ n. Now, take D(0,σ) = 〈Q〉[] and C = []. Notice that D(0,σ)[Dj
S] ::

Π
 C[e j
S] : σ = Dj

S :: Π
 e j
S : φj and so Comp(D(0,σ)[Dj

S]). Then by Lemma A.6,

Comp(D(0,σ)[〈〈Di
S , . . . ,Dn

S ,newF〉,fld〉] :: Π
 C[new C(e1
S, . . . ,en

S).f j] : σ),

and from the definitions of D(0,σ) and C that

Comp(〈〈Di
S , . . . ,Dn

S ,newF〉,fld〉 :: Π
 new C(e1
S, . . . ,en

S).f j : σ)

Then, by Definition A.2, Comp(〈Di
S , . . . ,Dn

S ,newF〉 :: Π
 new C(e1
S, . . . ,en

S) : 〈f j :σ〉).
Notice that 〈Di

S , . . . ,Dn
S ,newF〉 = DS and so Comp(DS).

(newM) : Then D = 〈Db,D0,newM〉 :: Π
 new C(e) : 〈m :(φn)→ σ〉 with Mb(C,m) = (x’’n,eb)

such that both Db :: Π′′
 eb : σ and D0 :: Π
 new C(e) : ψ where Π′′ = this:ψ,x’’:φn. By
induction, we have Comp(D0

S :: Π′
 new C(e)S : ψ). Now, assume that for every i ∈ n
there exist a derivation Di :: Πi
 e’i : φi such that Comp(Di). Let Π′′′ =

⋂
Π′ · Πn; notice

that Π′′′ � Πi for each i ∈ n so by Lemma A.8 Comp(Di[Π
′′′ � Πi] :: Π′′′
 e’i : φi) for each

i ∈ n. Also Π′′′ � Π′ and so then too by Lemma A.8 we have

Comp(D0
S [Π′′′ � Π′] :: Π′′′
 new C(e)S : ψ).

Now consider the derivation substitution

S′ = 〈this:ψ 	→ D0
S [Π′′′ � Π′], x’’:φ 	→ D[Π′′′ � Π]n 〉

Notice that S′ is computable in Π′′ and applicable to Db. So by induction, Comp(Db
S′

::
Π′′′
 eb

S′
: σ) where S′ is the term substitution induced by S′. Taking the derivation con-

text D(0,σ) = 〈Q〉[] and the expression context C= [], notice that D(0,σ)[Db
S′
] :: Π′′′
C[eb

S′
] :

σ = Db
S′

:: Π′′′
 eb
S′

: σ and so Comp(D(0,σ)[Db
S′
] :: Π′′′
 C[eb

S′
] : σ). From Lemma A.7

we then have

Comp(D(0,σ)[〈D′,D1[Π
′′′ � Π1], . . . ,Dn[Π′′′ � Πn], invk〉] :: Π′′′
 C[new C(e)S.m(e’n)] : σ)

where D′ = 〈Db,D0
S [Π′′′ � Π′],newM〉. So, from the definitions of D(0,σ) and C,

Comp(〈D′,D1[Π
′′′ � Π1], . . . ,Dn[Π′′′ � Πn], invk〉 :: Π′′′
 new C(e)S.m(e’n) : σ).

Notice that D′ = DS [Π′′′ � Π′]. So, by Definition A.2, it follows that Comp(DS :: Π′

new C(e)S : 〈m :(φn)→ σ〉).

Using this result, we can show that all valid derivations are computable.

Lemma A.11 D :: Π
 e : φ ⇒ Comp(D :: Π
 e : φ).

Theoretical Computer Science, 517:34-74, 2014 54

Proof : Suppose Π = x1:φ1, . . . ,xn:φn, and take the identity substitution IdΠ which is com-
putable in Π by Lemma A.5. Then from Lemma A.10 we have Comp(DIdΠ), and since by
Proposition 4.13 DIdΠ = D it follows that Comp(D).

Then the strong normalisation result for derivation reduction follows directly.

Theorem A.12 (Strong Normalisation for Derivation Reduction) If D :: Π
 e : φ then
SN (D).

Proof : By Lemma A.11 and Theorem A.4(1).

