
Intersection Types for λ-Trees
(Theoretical Computer Science 272 (Theories of Types and Proofs 1997): 3-40, 2002)

Steffen van Bakel1, Franco Barbanera2, Mariangiola Dezani-Ciancaglini3,

and Fer-Jan de Vries4

1: Department of Computing, Imperial College, 180 Queen’s Gate, London SW7 2BZ, U.K.
2: Dipartimento di Matematica, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania,

Italia.
3: Dipartimento di Informatica, Università degli Studi di Torino, Corso Svizzera 180, Torino, Italia.
4: Computer Science Division, Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305,

Japan
svb@doc.ic.ac.uk, barba@dipmat.unict.it, dezani@di.unito.it, ferjan@etl.go.jp

Abstract
We introduce a type assignment system which is parametric with respect to five families of
trees obtained by evaluating λ-terms (Böhm trees, Lévy-Longo trees, ...). Then we prove, in
an (almost) uniform way, that each type assignment system fully describes the observational
equivalences induced by the corresponding tree representation of terms. More precisely, for
each family of trees, two terms have the same tree if and only if they get assigned the same
types in the corresponding type assignment system.

keywords: Böhm trees, approximants, intersection types.

1 Introduction

A theory of functions like the λ-calculus, which provides a foundation for the functional pro-
gramming paradigm in computer science, can be seen, essentially, as a theory of ‘programs’.
This point of view leads naturally to the intuitive idea that the meaning of a λ-term (program)
is represented by the amount of ‘meaningful information’ we can extract from that term by
‘running it’. The formalization of ‘the information’ obtained from a term requires, first, the
definition of what is, in a λ-term, a ‘stable relevant minimal information’ that is directly ob-
servable in the term. This is the token of information which cannot be altered by further
reductions but can only be added upon. (As an example, the reader may think of the calcu-
lation of

√
2. The calculation process merely adds decimals to the already calculated decimal

expansion).
If one organizes the stable relevant minimal information produced during a computation

according to the order in which it is obtained, it is quite natural to get a tree representation
of the information implicitly contained in the original term. This tree then embodies the total
information hidden in the original term. There are many such tree representations in liter-
ature, depending on the possible notions of stable relevant minimal information; the most
commonly used being top trees (or Berarducci trees [6]), weak trees (or Lévy-Longo trees [25]),
head trees (or Böhm trees [4]), eta trees and infinite eta trees (infinite eta trees are in one-one
correspondence with Nakajima trees [23]). Hence, the various notions of tree represent differ-
ent notions of meaning of a term (in particular, they specify different notions of undefined value
[20]).



Theoretical Computer Science 272 (Theories of Types and Proofs 1997): 3-40, 2002 2

This apparently vague intuition is substantiated by results starting with [29], which show
that there exist precise correspondences between the tree representations of terms and the local
structures (or, equivalently, the λ-theories) of certain λ-models ([4], Chapter 19). In particular,
such correspondences amount to the fact that two λ-terms have the same tree representation
if and only if they are equal in the λ-model. For example,

• the infinite eta trees represent the local structure of Scott’s D∞ model as defined in [26]
(this result was proved in [29]);
• the eta trees represent the local structure of the inverse limit model defined in [12];
• the head trees represent the local structure of Scott’s Pω model as defined in [27] (a discus-

sion on this topic can be found in [4], Chapter 19);
• the weak trees were introduced by Longo in [22] (following [21]), who proved that they

represent the local structure of Engeler’s models as defined in [17].

Orthogonally, the results about observational equivalences confirm this operational intu-
ition of dynamically evolving meanings of terms incorporated in the tree representations. For
instance, in [29] Wadsworth showed that two λ-terms M, N have the same infinite eta tree if
and only if, for all contexts C[ ], the following holds:

C[M] has a head normal form if and only if C[N] has a head normal form.

The same property holds even considering eta trees and normal forms [18]. By adding a non-
deterministic choice operator and an adequate numeral system to the pure calculus, we obtain
a language which internally discriminates two λ-terms if and only if they have different head
trees [14]. Weak trees correspond to the observational equivalence with respect to weak head
normal forms in suitably enriched versions of the λ-calculus [25, 9, 16]. We can discriminate
terms in the same way that top trees do, using two powerful δ-rules [15].

It is clear that most of the relevant properties of terms pertain, more or less strongly, to the
field of dynamics, i.e., to their computational behaviour. This, however, does not mean that
we have to, staying into a ‘physics metaphor’, disregard the statics: the objects of a theory of
programs (before we ‘run’ them), are static entities and, as such, differently from the more or
less ineffable computations, they can be ‘handled’.

It would be very useful if these dynamic aspects could be analyzed with tools dealing with
static entities like, for instance, terms and types.

All the results recalled above show that our dynamic world can be partially reduced to
a world of trees. Trees are objects a bit more concrete than computations, but still not very
manageable. Type assignment disciplines are typical static tools, much used in the program-
ming practice to check decidable properties of programs. There are several results showing
how very powerful typing disciplines can be devised that, at the (of course expected) price
of being undecidable, can be used to analyze the dynamic world. For instance, the observa-
tional equivalences induced by a number of tree representations of terms can be mimicked by
suitable type theories:

• Each inverse limit λ-model is isomorphic to a filter model, i.e., to a model in which the
meaning of terms is a set of derivable intersection types [10].
• Two terms have the same head tree if and only if they have the same set of types in the

standard intersection type discipline [5], as proved in [24].
• Two terms have the same weak tree if and only if they have the same set of types in the

type discipline with union and intersection of [13], as proved in [16].
• Two terms have the same top tree if and only if they have the same set of types in a type

assignment system with applicative types [7].



Theoretical Computer Science 272 (Theories of Types and Proofs 1997): 3-40, 2002 3

In the present paper we will design one type assignment system for each of the five families
of trees mentioned above (more precisely, a type assignment system (almost) parametric with
respect to these five families). For each family of trees we will show that two terms have
the same tree, if and only if they get assigned the same types in the corresponding type
assignment system.

This is a new result for the eta trees and the infinite eta trees. Moreover, our proof method
unifies the earlier proofs mentioned above, while making the following improvements:

• we simplify the types of [24], since we do not consider type variables;
• we do not allow the union type constructor (which is considered in [16]);
• the applicative types are built starting from just one constant instead of two (this was the

choice of [7]).

All the type systems we will introduce (apart from those that represent top trees) induce
filter λ-models in the sense of [5]. Clearly, the theories of these filter models coincide with
the equalities of the corresponding trees. So as by-product we obtain alternative proofs of the
characterizations of the theories of Scott’s D∞ model [29] and of the filter λ-model [24]. Notice
that these new proofs (unlike the original ones) are constructive, in the sense that, whenever
two terms have different interpretations, we will build a compact element d of the model such
that d approximates only the interpretation of one of the two terms. Indeed, d is the principal
filter induced by a type which can be deduced only for one of the two terms.

The long-term goal of this research is to find answers to the question ‘what can be added
to the pure λ-calculus in order to internally discriminate terms having different trees?’, which
can be formulated for each family of trees.

Intersection type assignment systems played a crucial role in showing that observational
equivalences in suitable extensions of λ-calculus are equivalent to head and weak tree equality
[9, 14, 16]. We hope that similar results can be obtained for the other families of trees; this
would justify the present choices. A very limited number of type constants and type construc-
tors allows to search for a proof along the following lines. Suppose we were able to define,
for each type α, a test term Tα such that Tα M converges if and only if M has type α. Then we
would obtain an observational equivalence which coincides with the tree equality (see [8]).

Thisfor paper is organized as follows. In Section 2 we shall recall the various definitions of
tree. We will introduce the notion of approximant in Section 3. In Section 4 we will describe the
type assignment systems which will be used for our main result and we will give a theorem
of approximation stating that a term has a type if and only if there exists an approximant
of the term which has the same type. Section 5, instead, contains our main result: our type
assignment systems can be used to analyze the observational behaviour represented by trees.

A preliminary version of this paper has appeared in [3], where almost all proofs were
omitted.

Abbreviations

Below, we will use the following abbreviations for lambda terms.

Y ≡ λ f . f ((λx. f (xx))(λx. f (xx))) R ≡ λzxy.x(zzy)

I ≡ λx.x ∆n ≡ λx.
n︷ ︸︸ ︷

x . . . x

Ωn ≡
n︷ ︸︸ ︷

∆n . . . ∆n ∆

2 ≡ λxy.xxy



Theoretical Computer Science 272 (Theories of Types and Proofs 1997): 3-40, 2002 4

2 Trees

In this section we recall the various notions of trees which can be obtained by evaluating
λ-terms. As briefly discussed in the introduction, in order to describe trees, it is natural to
formalise first the intuitive possible notions of stable relevant minimal information coming out of
a computation (naturally inducing different notions of meaningless term [20]).

If during a computation the following terms appear, their underlined parts will remain
stable during the rest (if any) of the computation: xM1 . . . Mm, λx.M, P @ Q (where @ is the
explicit representation of the operation of application that is normally omitted, and P is a term
which will never reduce to an abstraction). Having a stable part in a computation, however,
does not necessarily mean that we consider it relevant. For instance, we could consider an
abstraction (λx.M) relevant only in case M is of the form λy1 . . . yn.zN1 . . . Nm (n,m ≥ 0). This
means that we can end up with different notions of stable relevant minimal information.

In order to formalise such notions it is possible to define for each notion a reduction relation
such that:

i) if a term can produce stable relevant minimal information, we can get it by means of the
given reduction relation;

ii) the computation process represented by the reduction relation stops once stable relevant
minimal information is obtained.

In the following we will give a number of reduction relations for λ-terms present in the
literature. All are proper restrictions of the usual βη-reduction relation. Syntax, basic notation
of the λ-calculus and the usual conventions on variables to avoid explicit α-conversion are as
in [4].

A term is a strong zero term if it is unsolvable and it cannot be reduced to a lambda ab-
straction by means of the reduction relation induced by the β-rule [6]. Such terms are called
unsolvables of order 0 in [22] and strongly unsolvables in [1].

Definition 2.1 Given the following axioms and rules:

(β) (λx.M)N → M[N/x]
(η) λx.Mx → M if x �∈ FV(M)
(ν) M→ N ⇒ ML→ NL
(ν)t M→ N ⇒ ML→ NL (provided M is not a strong zero term)
(ξ) M→ N ⇒ λx.M→ λx.N

we can define the following reduction relations (rr) on λ-terms.

(top reduction) →t is the rr induced by (β) and (ν)t
(weak head reduction) →w is the rr induced by (β) and (ν)

(head reduction) →h is the rr induced by (β), (ν) and (ξ)
(eta head reduction) →e is the rr induced by (β), (ν), (ξ) and (η).

The weak head reduction is better known as lazy reduction [1].

The sets of terms in normal form with respect to the above defined reduction relations can
be described syntactically. Such description makes the different intended notions of stable
minimal relevant information explicit.



Theoretical Computer Science 272 (Theories of Types and Proofs 1997): 3-40, 2002 5

Definition 2.2 i) A top normal form1 is a term of one of the following three kinds:
a) an application term of the form xM1 . . . Mm (m ≥ 0);
b) an abstraction term λx.M;
c) an application term of the form MN, where M is a strong zero term.

ii) A weak head normal form is a term of one of the following two kinds:
a) an application term of the form xM1 . . . Mm (m ≥ 0);
b) an abstraction term λx.M.

iii) A head normal form is a term of the following kind:
a) λx1 . . . xn.yM1 . . . Mm (m,n ≥ 0).

iv) An eta head normal form is a term of the following kind:
a) λx1 . . . xn.yM1 . . . Mm (m,n ≥ 0), where xn ∈ FV(yM1 . . . Mm−1) or xn �≡ Mm.

Notice that the sets of normal forms in the above definition are presented in a proper in-
clusion order, i.e., the set of top normal forms includes that of weak head normal forms,
etc.

Example 2.3 i) For each n ≥ 2, the term Ωn is an example of a strong zero term.
ii) Ω2 is not a top normal form, while all Ωn (for n ≥ 3) are top normal forms that cannot

reduce to weak head normal forms.
iii) λx.Ω2 is a weak head normal form that cannot reduce to head normal form.
iv) ∆


2 is a head normal form but not an eta head normal form.

v) Y and λxy.xRRy are eta head normal forms.

With this definition we can represent all the various related kinds of information we can
distract from a term in tree notation. Given a term M, for each of the four reduction relations
we can try to reduce M to normal form. If such a normal form does not exist, then no
information is obtainable out of M and its tree is ⊥. Otherwise, we will put the information
thus obtained in a node and build the children of this node by repeating this process on the
various subterms of the normal form. In case of head normal forms, this amounts to the usual
construction of Böhm trees.

Definition 2.4 i) The top tree Tt(M) of a term M is defined by cases as follows:

– if M→t xN1 . . . Nm (m ≥ 0), then

Tt(M) =
x

Tt(N1)

�����
. . . Tt(Nm)

�����

– if M→t λx.N, then

Tt(M) =
λx

Tt(N)

1 Called root stable form in [19].



Theoretical Computer Science 272 (Theories of Types and Proofs 1997): 3-40, 2002 6

– if M→t NP, where N is a strong zero term, then

Tt(M) =
@

Tt(N)

����
Tt(P)

����

– otherwise: Tt(M) = ⊥.

ii) The weak tree Tw(M) of a term M is defined by cases as follows:

– if M→w xN1 . . . Nm (m ≥ 0), then

Tw(M) =
x

Tw(N1)

�����
. . . Tw(Nm)

�����

– if M→w λx.N, then

Tw(M) =
λx

Tw(N)

– otherwise: Tw(M) = ⊥.

iii) The head tree Th(M) of a term M is defined by cases as follows:

– if M→h λx1 . . . xn.yN1 . . . Nm (n,m ≥ 0), then

Th(M) =
λx1 . . . xn.y

Th(N1)

����
. . . Th(Nm)

����

– otherwise: Th(M) = ⊥.

iv) Let T be a head tree, i.e., T ≡ Th(M), for some M. The η-normal form of T, η(T), is defined
as follows:

– η




λx1 . . . xn.y

T1

����
. . . Tm

����


 =




η




λx1 . . . xn−1.y

T1

				
. . . Tm−1










proviso Tm is
finite,
η(Tm) = xn �= y
and xn �∈ FV(Ti)
for 1≤ i ≤ m−1.

λx1 . . . xn.y

η(T1)

				
. . . η(Tm)





 otherwise

– η(⊥) = ⊥.

The eta tree Te(M) of a term M is defined as η(Th(M)).

The condition ‘Tm is finite’ in the above definition is obviously necessary in order to make
the latter sound, but it can be easily checked that, in its intended meaning, an η-normal form
of a head tree can be a variable only when the tree is finite.

One might wonder why the eta tree of M is defined through the η-normal form of the
head tree of M instead of using the η-normal form of M. As a matter of fact, considering
trees instead of terms allows to do more η-reductions, essentially since the set of variables



Theoretical Computer Science 272 (Theories of Types and Proofs 1997): 3-40, 2002 7

λzx.x(Pz)z →β λxz.x((λz.x(Pz))z)z
→β λxz.x(x(Pz))z
→β λxz.x(x((λz.x(Pz))z))z
→β λxz.x(x(x(Pz)))z
→β

. . .
→β λxz.x(x(x(x(· · ·))))z

λxz.x

x
����

z

����

x

x

...

λx.x

x

x

x

...

Figure 1: Reduction path, head tree and eta tree for λxz.x(Pz)z, where P→β λz.x(Pz).

which occur free in Th(M) is a subset of the set of variables which occur free in M. This was
already observed in [4], Remark 10.1.22. Borrowing the example given there, let P be such
that P→β λz.x(Pz), then λxz.x(Pz)z has the reduction behaviour and head tree as shown in
Figure 1. Now, since, as mentioned in [4], there “z is pushed into infinity”, this tree contains
only one z, and is therefore an η-redex. This is reflected by the fact that the eta tree of the term
λxz.x(Pz)z is as in Figure 1.

Finally, the fifth family of trees we shall consider in this paper is the family of the infinite
η-normal forms of head trees (and hence of eta trees as well), as defined in [4]. In order to give
the definition of infinite η-normal form, we need first to recall briefly the definition of infinite η-
expansion of a variable. Given a variable x, one can consider a (possibly infinite) tree resulting
by the limit of a series of expansions like the following:

x η← Th(λy0.xy0) η← Th(λy0.x(λy1.y0y1)) η← . . .

We denote that T is a (possibly infinite) η-expansion of x by T ≥η x.
The definition of ≥η requires a formalization of the notion of labeled tree which is given in

Definition 5.15 in the Appendix.

Definition 2.5 Let T be a head tree, i.e., T ≡ Th(M), for some M. The infinite η-normal form of
T, η∞(T), is defined as follows:

• η∞




λx1 . . . xn.y

T1

����
. . . Tm

����


 =




η∞




λx1 . . . xn−1.y

T1







. . . Tm−1

�����




proviso Tm ≥η xn,
xn �= y and
xn �∈ FV(Ti), for
1≤ i ≤ m−1

λx1 . . . xn.y

η∞(T1)







. . . η∞(Tm)

����� otherwise

• η∞(⊥) = ⊥.

The infinite eta tree Ti(M) of a term M is defined as η∞(Th(M)).

As mentioned in the introduction, the interest of the tree representations above is that they
mimic the local structure (or, equivalently, the λ-theory) of different λ-models.

Example 2.6 In Figure 2 we give a few examples of the trees defined above (using the terms of
Example 2.3). They show how trees become less discriminating as we use reduction relations
with more rules.



Theoretical Computer Science 272 (Theories of Types and Proofs 1997): 3-40, 2002 8

Tt(Ω3) = @
���

λx

x
����

x x

���
@
���

@
���

λx

x
����

x x

...

Tw(Ω3) = ⊥

Tw(λz.Ω2) =
λz

⊥
Th(λz.Ω2) = ⊥

Th(∆

2) =

λxy.x

x
����

y

���� Te(∆
2) =

λx.x

⊥

Te(RR) =

λxy.x

λy1.y

λy2.y1

...

Ti(RR) = λx.x

Figure 2: Trees for Example 2.6

We will use Tϕ, with ϕ ∈ {t,w,h,e,i}, to denote the set of trees Tϕ(M), for some M ∈ Λ.
Moreover, ‘ϕ-tree’ will be short for any tree belonging to Tϕ. Unless mentioned otherwise, we
will assume ϕ to range over {t,w,h,e,i}.

3 Approximants

It is possible to associate, for any possible notion of stable minimal relevant information, a set
of approximants to a λ-term. As usual when dealing with (possibly) infinite structures, one
can consider their finite approximations. Consider two possible approaches to the definition
of approximations of a term M.

• Consider all possible finite trees obtained by pruning the ϕ-tree of M ( constant ⊥ is used
to represent the (possibly infinite) parts of the trees that have been pruned). Call all these
pruned trees ϕ-approximants of M.
• Consider all possible terms that occur in ϕ-reduction sequences starting from M (for

ϕ ∈ {w,h}, we should also extend the notion of→ϕ-reduction to Λ⊥ by adding the clause
⊥M→ ⊥, and add λx.⊥ → ⊥ for ϕ ∈ {h}), and calculate their direct approximants (a
direct approximant for N is obtained from N by (recursively) replacing (potential) ϕ-
redexes, like ⊥M and λx.⊥, by ⊥; to clarify this, one could see this a generalization of
β⊥-reduction [4]). The ϕ-approximants of M are now all terms in normal form – with
respect to suitable notions of normal form – including ⊥ that are smaller than those direct
approximants.



Theoretical Computer Science 272 (Theories of Types and Proofs 1997): 3-40, 2002 9

In the context of β-reduction, these approaches coincide, i.e., for any term M yield the same
set.

In the presence of rule (η), both definitions give rise to problems. First of all, in a system
with η-reduction, no longer every pruned subtree of the normal form is in normal form itself, a
property that holds in a system with just β-reduction. This is caused by the fact that the number
of free occurrences of a variable will normally decrease by pruning, which affects whether or
not a term is an η-redex.

Example 3.1 Take the term λxy.xyy. The tree below on the left is the eta tree of this term, the
one on the right is obtained by pruning the first y.

λxy.x

y
����

y

����

λxy.x

⊥
����

y

����

The term in the right-hand tree, λxy.x⊥y, is η-reducible.

Also, in the context of η-reduction, the two approaches no longer coincide. For example,
take P as defined above. Collecting ‘all pruned subtrees’ of the eta tree of λxz.x(Pz)z yields
the set

{⊥,λx.x⊥,λx.x(x⊥),λx.x(x(x⊥)), . . .}
whereas ‘calculate the direct approximants of terms that occur in reduction sequences that
start from λzx.x(Pz)z’ would yield {⊥}. To understand this, notice that

• none of the reducts of λxz.x(Pz)z is an η-redex, since in all those terms, z appears twice,
and
• replacing the redex Pz by ⊥ in each reduct creates a term that is an η-redex; therefore, for

all terms in the sequence, its direct βη-approximant would be ⊥.

The first set is obviously a better collection of approximants of the infinite tree. Therefore
we choose the first approach to define the set of approximants.

Let Λ⊥ be the set of terms obtained by adding the symbol ⊥ to the syntax of the pure λ-
calculus. Clearly the tree representations generalise to terms in Λ⊥ by assuming Tϕ(⊥) = ⊥.
This leaves the set of trees unchanged, i.e., for all M ∈ Λ⊥, there is an M′ ∈ Λ such that
Tϕ(M) = Tϕ(M′). In fact, M′ can be obtained from M by substituting Ω2 for ⊥.

Definition 3.2 We inductively define the setAϕ⊆Λ⊥ of approximate normal forms as follows
i) At is the smallest subset of Λ⊥ such that

a) if A1, . . . , An ∈ At, then xA1 . . . An ∈ At and ⊥A1 . . . An ∈ At (n ≥ 0),
b) if A ∈ At, then λx.A ∈ At.

ii) Aw is the smallest subset of Λ⊥ such that
a) ⊥ ∈ Aw,
b) if A1, . . . , An ∈ Aw, then xA1 . . . An ∈ Aw (n ≥ 0),
c) if A ∈ Aw, then λx.A ∈ Aw.

iii) Ah is the smallest subset of Λ⊥ such that
a) ⊥ ∈ Ah,
b) if A1, . . . , An ∈ Ah, then λy1 . . . ym.xA1 . . . An ∈ Ah (m,n≥ 0).

iv) Ae = Ai = Ah.



Theoretical Computer Science 272 (Theories of Types and Proofs 1997): 3-40, 2002 10

We denote the set of approximate normal forms with at most n symbols by A(n)
ϕ .

Let (M)
(h)
ϕ , where M ∈ Λ⊥, denote the approximate normal form whose ϕ-tree is the tree

obtained out of Tϕ(M) by pruning it at height h and inserting the constant ⊥ as leaves at the

end of the cut edges. The formal definition of (M)
(h)
ϕ is given in the Appendix (Definition 5.16).

It is straightforward to verify that (M)
(h)
ϕ ∈ Aϕ, for all M. For instance, by looking at

Tt(∆3∆3) described above, it is easy to see that (∆3∆3)
(h)
t , for h = 0,1,2,3, are respectively ⊥,

⊥⊥, ⊥⊥(λx.⊥) and ⊥⊥(λx.⊥)(λx.x⊥⊥).
There is a natural partial order between approximants which can be easily formalised by

induction.

Definition 3.3 The relation 
ϕ is the least partial order on Aϕ, such that:
i) ⊥ 
ϕ A;

ii) if A
ϕ A′, then λx.A 
ϕ λx.A′;
iii) if A
ϕ A′ and B
ϕ B′, then AB 
ϕ A′B′.

It is easy to verify that (M)
(h)
ϕ 
ϕ (M)

(h+1)
ϕ , for all h. Moreover, pruning trees preserves this

order, i.e., if A
ϕ B, then (A)
(h)
ϕ 
ϕ (B)(h)ϕ , for all h.

It is possible to associate to a λ-term, for any possible notion of stable minimal relevant
information, the set of its approximants, that is the set of all the finite approximations of its
corresponding tree.

Definition 3.4 The set Aϕ(M) of approximants of M ∈Λ with respect to the reduction relation ϕ is
defined by:

Aϕ(M) = {A ∈ Aϕ | ∃h.A 
ϕ (M)
(h)
ϕ }.

Example 3.5 • At(x(Ω3I)(II)) contains, for example, approximants like

⊥, x⊥⊥, x(⊥I)I, x(⊥∆3I)I, x(⊥∆3∆3I)I.

• Aw(I) = {⊥,λx.⊥,I} while Ah(I) =Ae(I) = {⊥,I}.
• Ah(λxy.xy) = {⊥,λxy.x⊥,λxy.xy} while Ae(λxy.xy) = {⊥,I}.
• For any term P such that P→β λz.x(Pz),

Ae(λxz.x(Pz)z) = {⊥,λx.x⊥,λx.x(x⊥), . . .}

• Ai(RR) = {⊥,I}, while both sets Ah(RR) and Ae(RR) are infinite and contain, for in-
stance, ⊥,λxy.x⊥, and λxy.x(λy1.y⊥).

Lemma 3.6 The set Aϕ(M) is an ideal, i.e., it is downward closed and directed with respect to 
ϕ.

Proof: Aϕ(M) is downward closed by definition. The fact that Aϕ(M) is directed, for all M,

follows from the observation that (M)
(h)
ϕ 
ϕ (M)

(k)
ϕ whenever h ≤ k.

Lemma 3.7 If (M)
(h)
ϕ 
ϕ A where A ∈ Aϕ(M) then (M)

(h)
ϕ ≡ (A)

(h)
ϕ .

Proof: By Definition 3.4, A ∈ Aϕ(M) implies A 
ϕ (M)
(k)
ϕ , for some k ≥ h. By construction,

(M)
(h)
ϕ ≡ ((M)

(k)
ϕ )

(h)
ϕ . From (M)

(h)
ϕ 
ϕ A
ϕ (M)

(k)
ϕ we get (M)

(h)
ϕ 
ϕ (A)

(h)
ϕ 
ϕ ((M)

(k)
ϕ )

(h)
ϕ , so



Theoretical Computer Science 272 (Theories of Types and Proofs 1997): 3-40, 2002 11

we conclude (M)
(h)
ϕ ≡ (A)

(h)
ϕ .

It is natural to expect that our different notions of trees and approximants represent the
very same concepts, that is, they formalise the same observational behaviour of λ-terms.

Theorem 3.8 For any M, N:

Tϕ(M) = Tϕ(N) if and only if Aϕ(M) =Aϕ(N).

Proof: (⇐) : Reasoning towards a contradiction, we assume thatAϕ(M) =Aϕ(N) and (M)
(h)
ϕ �≡

(N)
(h)
ϕ , for some h. We get (M)

(h)
ϕ ∈ Aϕ(N), i.e., by definition (M)

(h)
ϕ 
 (N)

(k)
ϕ , for some

k. We can assume, without loss of generality, that h ≤ k. Since (N)
(k)
ϕ ∈ Aϕ(M), by

Lemma 3.7, we obtain (M)
(h)
ϕ ≡ ((N)

(k)
ϕ )

(h)
ϕ . Now h ≤ k implies (N)

(h)
ϕ ≡ ((N)

(k)
ϕ )

(h)
ϕ and

we are done.

(⇒) : Easy, by definition of Aϕ (Definition 3.4).

It is possible to show that Tϕ(M) is the least upper-bound of Aϕ(M) with respect to 
ϕ.
We omit the proof of this property here, since it plays no role in this paper.

It is possible to extend each partial order 
ϕ to a partial order �ϕ, by naturally inducing an
equivalence relation on sets of approximants. This can be proved to coincide with the identity
relation on sets of approximants and hence, by Theorem 3.8, to coincide with the identity on
trees.

Definition 3.9 i) The relation �t is the least partial order on At that satisfies clauses (a), (b),
and (c) of 
t and, moreover:
d) ⊥A1 . . . An �t x.

ii) For ϕ ∈ {w,h} the relation �ϕ is the least partial order on Aϕ which satisfies clauses (a),
(b), and (c) of 
ϕ and, moreover:
e) λy.xA1 . . . Any �ϕ xA1 . . . An, for all variables y �∈ FV(xA1 . . . An).

iii) For ϕ ∈ {e,i} the relation �ϕ is the least partial order on Aϕ that satisfies clauses (a), (b),
(c), and ( ii.e) of �w and, moreover:
f ) xA1 . . . An �ϕ λy.xA1 . . . An⊥, where x �= y.

Note that A→η B implies A �ϕ B, for ϕ ∈ {w,h,e,i} and B �ϕ A, for ϕ ∈ {e,i}. Moreover,
we can show that

xA1 . . . An �ϕ λy1 . . . ym.xA1 . . . An⊥ . . .⊥︸ ︷︷ ︸
m

whenever x �∈ {y1, . . . ,ym}, for ϕ ∈ {e,i}. In fact, by clause (f) above, for any k ≥ 0, we have

xA1 . . . An⊥ . . .⊥︸ ︷︷ ︸
k−1

�ϕ λyk.xA1 . . . An⊥ . . .⊥︸ ︷︷ ︸
k

.

By Definition 3.3(b) we get

λy1 . . . yk−1.xA1 . . . An⊥ . . .⊥︸ ︷︷ ︸
k−1

�ϕ λy1 . . . yk.xA1 . . . An⊥ . . .⊥︸ ︷︷ ︸
k

.

Then, by all such inequalities with k ≤ m, we are done by transitivity.



Theoretical Computer Science 272 (Theories of Types and Proofs 1997): 3-40, 2002 12

It is useful to remark that pruning trees does not preserve these new orders. For instance,
λy.xy �ϕ x, but

(λy.xy)(1)ϕ ≡ λy.x⊥ ��ϕ (x)(1)ϕ ≡ x
where ϕ ∈ {w,h,e,i}. We have a weaker property, namely that if h is the height of the ϕ-tree
of A and A�ϕ B, then (A)

(k)
ϕ �ϕ (B)(k)ϕ , for all k ≥ h.

Definition 3.10 For any two terms M and N, we define: Aϕ(M)�ϕ Aϕ(N) if and only if, for
all A ∈ Aϕ(M), there is B ∈ Aϕ(N) such that A �ϕ B.

Lemma 3.11 If A, B ∈ Aϕ(M) and A�ϕ B, then A
ϕ B.

Proof: If A, B∈Aϕ(M) then A
ϕ (M)
(h)
ϕ and B
ϕ (M)

(k)
ϕ , for some h,k≥ 0. Let p = max{h,k}.

Then A 
ϕ (M)
(p)
ϕ and B 
ϕ (M)

(p)
ϕ . This means that A and B can be obtained from (M)

(p)
ϕ

by replacing subterms by ⊥. Therefore, B cannot be obtained from A either by replacing an
occurrence of ⊥A1 . . . An with n ≥ 1 by x, or by η-reduction, or by replacing an occurrence of
xA1 . . . An by λy.xA1 . . . An⊥. So we can conclude that A 
ϕ B.

Lemma 3.12 If Aϕ(M) �ϕ Aϕ(N), then Aϕ(M) =Aϕ(N) and Tϕ(M) = Tϕ(N).

Proof: Reasoning towards a contradiction, assume that for all A ∈Aϕ(M) there is a B∈Aϕ(N)
such that A �ϕ B (and vice versa). Let A ∈ Aϕ(M) be such that A �∈ Aϕ(N). Without loss of

generality we can assume A≡ (M)
(h)
ϕ , for some h. By hypothesis we find B ∈Aϕ(N) such that

A �ϕ B and A′ ∈ Aϕ(M) such that B �ϕ A′. We get A �ϕ A′ which, by Lemma 3.11, implies

A
ϕ A′. Thus, by Lemma 3.7, A≡ (A′)(h)ϕ . From A�ϕ B�ϕ A′ we get A�ϕ (B)(h)ϕ �ϕ (A′)(h)ϕ .

Hence A ≡ (B)(h)ϕ and we can conclude A ∈ Aϕ(N).

The main motivation for the introduction of ‘�ϕ’ is that it is compatible with the typing that
we shall present in the next section.

4 Types and type assignment systems

As stated in the introduction, our static tools to analyze trees (or, equivalently, their corre-
sponding sets of approximants) will be type assignment systems, in particular type assign-
ment systems based on intersection type-like disciplines.

In type assignment systems one derives statements of the form M : α, where a term M gets
assigned a type α that represents a certain finite information about M. Roughly speaking,
a type will be used as a description of a particular notion of normal form. Hence, it is not
possible to use a unique set of types to deal with all the trees defined in the previous section.
We shall need, instead, three sets of types: Tt to characterize Tt, Twh to characterize Tw and Th,
and Tei to characterize Te and Ti.

After defining these sets of types, in this section we shall define an order ‘≤ϕ’ on types that
is parametrized by the notion of tree. Then – parametrized by this order – our type assignment
systems will be defined (almost) uniformly for all notions of tree. All these type assignment
systems deal correctly with a term that carries no information: Tϕ(M) = ⊥ if and only if the
universal type ω is the only type that the system related to Tϕ can assign to M.



Theoretical Computer Science 272 (Theories of Types and Proofs 1997): 3-40, 2002 13

In the following, we shall use the following notation: if ϕ ∈ {t,w,h,e,i}, then

ϕ̄ =




t if ϕ = t
wh if ϕ = w or ϕ = h
ei if ϕ = e or ϕ = i.

Again, unless mentioned otherwise, we will assume ϕ̄ ∈ {t,wh,ei}.

4.1 Types

We start with Tt. To describe a top normal form which is the application of two terms,
following [7] we will introduce a particular type constructor: the application αβ of two types
α and β. In the intended interpretation a term has type αβ if its top normal form is the
application of two terms, the first one of type α and the second one of type β. We differ
from [7] in that we will build types starting only from the unique constant ω, i.e., we won’t
introduce a new type constant to be interpreted as the set of all strong zero terms.

Some care has to be taken when introducing applicative types, since we have to prevent
the presence of inconsistent types. For example, ωω expresses that a top normal form is the
application of two terms, the first one being a strong zero term, whereas ω→ω expresses that a
top normal form is an abstraction. So we need to prevent their intersection ωω∧(ω→ω). Also
the type (ω→ω)ω is meaningless: no top normal form is the application of an abstraction to
a term.

We are thus lead to consider a set of ‘pretypes’ and a smaller set of ‘applicative-intersection
types’, where some obviously inconsistent types, like the ones above, are forbidden. The def-
inition of the set of types is not immediate since, after excluding ωω∧(ω→ω) and (ω→ω)ω,
we must still decide whether a finite intersection like (α1→β1)∧ . . .∧(αn→βn) is empty. The
decisive idea comes from Scott’s theory of information systems [28]: consistent inputs should
give consistent outputs. So, if we interpret the above intersection as the step function which
gives an output in

∧
i∈I βi whenever the input is in

∧
i∈I αi (where I is a subset of {1, . . . ,n}),

then we must require that if
∧

i∈I βi is empty, so is
∧

i∈I αi. The definition of types is then
obtained by restricting the set of pretypes according to Scott’s prescription. This excludes for
instance (ω→(ω→ω))∧(ω→ωω), because given an input in ω we would get an output in
(ω→ω)∧ωω, which is impossible since the latter is not a type.

Definition 4.1 (Pretypes) The set PT of pretypes is the set of syntactic expressions inductively
defined by:

i) ω ∈ PT (atomic type),
ii) If α, β ∈ PT, then (α→β), (αβ) and (α∧β) are in PT.

As usual, in writing types, we assume the following precedence between operators: applica-
tion, intersection, arrow; we will omit parentheses accordingly. Moreover, we will use α→βn→γ
as short-hand notation for α→β→ . . .→β︸ ︷︷ ︸

n

→γ, and βn→γ for β→ . . .→β︸ ︷︷ ︸
n

→γ.

Definition 4.2 (Tt) Given α∈ PT, we define two predicates ‘α∈ Tt’ and ‘α �∈ Tt’ by simultaneous
induction on α, by stipulating that α ∈ Tt if and only if one of the following conditions holds
(and α �∈ Tt if and only if all the conditions do not hold):



Theoretical Computer Science 272 (Theories of Types and Proofs 1997): 3-40, 2002 14

(Universal kind) α is ω.
(Arrow kind) α is a finite intersection of the form

∧
i∈I(αi→βi), where αi, βi ∈ Tt

and, for all J ⊆ I, either
∧

j∈J β j ∈ Tt or
∧

j∈J αj �∈ Tt.
(Applicative kind) α is ωβ, where β ∈ Tt, or α is a finite intersection of the form∧

i∈I αiβi, where
∧

i∈I βi ∈ Tt, and
∧

i∈I αi ∈ Tt is of applicative or
universal kind.

If α ∈ Tt, then ω∧α ∈ Tt: the kind of ω∧α is defined to be the kind of α.

In what follows, we will consider only types. Also, α, β,γ will range over types of any
kind, σ,τ,ρ will range over types of arrow kind (arrow types), π,µ,ν will range over types of
applicative kind (applicative types). Applicative types are only used in the definition of top
types.

Without applicative types all the intersections are meaningful. So the definition of Twh and
Tei can be given in a direct way. However, for weak head normal forms and head normal
forms, we need to have a new constant, ζ, representing λ-free terms: the constant ω is not
enough, as shown by Sangiorgi in [25]. In fact, [25] proves that ∆2 and λx.x(λy.xy) have the
same types when types are built starting from ω using arrow and intersection type construc-
tors. Clearly, these terms have different weak and head trees. Roughly speaking, ζ can be seen
as the collapse of all applicative types.

Definition 4.3 (Twh) The set of types Twh is inductively defined by
i) ω,ζ ∈ Twh (atomic types),

ii) α, β ∈ Twh imply (α→β), (α∧β) ∈ Twh.

In order to define Tei, since terms are considered modulo η, we are forced to equate all
atomic types ω,ζ to intersections of arrow types (see [12]). This means that another type
constant, ϑ, is needed. In fact, the equations ζ = ζ→ζ and ζ = ω→ζ give rise, respectively, to
Scott’s and Park’s D∞-models as proved in [10]. And the λ-theories of these models are both
different from the equality of eta trees.

Definition 4.4 (Tei) The set of types Tei is inductively defined by
i) ω,ζ,ϑ ∈ Tei (atomic types),

ii) α, β ∈ Tei imply (α→β), (α∧β) ∈ Tei.

4.2 Type preorders

On the sets of types of the previous subsection we will define five preorder relations which
all take the meaning of ω as universal type, of → as function space constructor, and of ∧ as
intersection into account. The particular properties of these five preorders make them suitable
to describe the different trees.

The preorder≤t, defined on Tt, reflects the interpretation of applicative types. The preorder
≤h, defined on Twh, equates ω to ω→ω, since we want to take the fact that a term like λx.⊥
can never be obtained from a head-tree into account. The preorders ≤e and ≤i equate all
atomic types to arrow types. They differ since, in ≤i, the left-hand subtype of such an arrow
type is always ω, while this is not true for ≤e. This difference is essential in order to be able
to mimic either infinite or finite η-reductions, as we shall see later.

Definition 4.5 i) We define ≤t as the smallest binary relation over Tt such that:



Theoretical Computer Science 272 (Theories of Types and Proofs 1997): 3-40, 2002 15

a) it is a preorder in which ∧ is the meet and ω is the top;2

the arrow satisfies:
b) α→ω ≤ ω→ω;
c) (α→β)∧(α→γ) ≤ α→β∧γ;
d) α ≥ α′ and β ≤ β′ imply α→β ≤ α′→β′;
the applicative types satisfy:
e) πα∧π′α′ ≤ (π∧π′)(α∧α′);
f ) π ≤ π′ and α≤ α′ imply πα≤ π′α′.

ii) We define ≤w as the smallest binary relation over Twh that satisfies the clauses ( i.a) to ( i.d)
above.

iii) We define ≤h as the smallest binary relation over Twh that satisfies the clauses ( i.a), ( i.c)
and ( i.d) above and, moreover:
g) ω ≤ ω→ω.

iv) We define ≤e as the smallest binary relation over Tei that satisfies the clauses ( i.a), ( i.c),
( i.d) and ( iii.g) above and, moreover:
h) ζ ≤ ϑ→ζ ≤ ζ;
i) ϑ ≤ ζ→ϑ ≤ ϑ.

v) Let ≤i be the smallest binary relation over Tei which satisfies the clauses ( i.a), ( i.c), ( i.d)
and ( iii.g) above and, moreover:
j) ζ ≤ ω→ζ ≤ ζ;
k) ϑ ≤ ω→ϑ ≤ ϑ.

‘α =ϕ β’ is short for ‘α ≤ϕ β and β ≤ϕ α’.

Notice that clause ( i.b) is derivable from clause ( iii.g), so it is safe to eliminate clause ( i.b)
from the definitions of ≤h,≤e, and ≤i.

Example 4.6 • ω∧α =ϕ α, for every type α ∈ Tϕ̄.
• (ω→ω)∧σ =t σ, for every arrow type σ ∈ Tt.
• (ω→ω)∧α =ϕ α, for every type α ∈ Tϕ̄ (but for the case α =w ω when ϕ = w) where ϕ ∈
{w,h,e,i}.
• ωω∧π =t π, for every applicative type π ∈ Tt.

We need to consider some properties of ≤t already proved in [7] for the sets of types and
the preorder relations there introduced.

Lemma 4.7 i) If
∧

i∈I(αi→βi) ≤t γ <t ω, or γ ≤t
∧

i∈I(αi→βi), then γ is an arrow type.
ii) If π ≤t α <t ω, or α≤t π, then α is an applicative type.

iii) πα≤t π′α′ implies π ≤t π′ and α≤t α′.
iv) πα∧π′α′ =t (π∧π′)(α∧α′).
v) For any applicative type π, π =t ωα1 . . . αn, for some n,α1, . . . ,αn.

vi) Assume β ≤t α1 and β ≤t α2. If β ∈ Tt, then α1∧α2 ∈ Tt.

Proof: i) – (iii) By induction on the definition of ≤t.

2 The explicit axioms and rules are α≤ α, α≤ β and β≤ γ imply α≤ γ, α≤ α∧α, α∧β≤ α, α∧β≤ β, α≤ α′ and
β ≤ β′ imply α∧β ≤ α′∧β′, and α ≤ ω.



Theoretical Computer Science 272 (Theories of Types and Proofs 1997): 3-40, 2002 16

iv) In fact, πα∧π′α′ ≤t (π∧π′)(α∧α′) follows from clause ( i.e) of Definition 4.5. The converse
follows from clause ( i.f ) of the same definition and the fact that β ≤t γ and β≤t δ imply
β ≤t γ∧δ.

v) First observe that ω∧π =t π for all types π. Then, by (iv), we are done.
vi) By cases, using (i) – (iii).

All the pre-orders we introduced enjoy the following two properties which can be shown
by induction on ≤ϕ. The first property says that an arrow type terminating with an atom is
∧-prime3. The second essentially says that the sets of types that are filters represent the space
of continuous functions (see [10]).

Lemma 4.8 i) If α∧β≤ϕ γ1→ . . .→γn→δ, where δ is atomic and n≥ 0, then either α≤ϕ γ1→ . . .→γn→δ
or β ≤ϕ γ1→ . . .→γn→δ.

ii) If
∧

i∈I(αi→βi) ≤ϕ α→β, where β �=ϕ ω, then for some J ⊆ I α≤ϕ
∧

j∈J αj and
∧

j∈J β j ≤ϕ β.

As an immediate consequence of Lemma 4.8(ii) we get that α→β ≤ϕ γ→δ implies γ ≤ϕ α
and β ≤ϕ δ.

4.3 Type assignment systems

For each preorder introduced in the previous subsection, we will define a type assignment
system associating λ-terms to types belonging to the domain of the preorder. As said at
the beginning of this section, these systems can be defined almost uniformly. In fact, there
are six rules which are common to all systems and which are standard in intersection type
disciplines. The type assignment systems �ϕ (ϕ ∈ {w,h,e,i}) are defined by six such rules,
and instantiating rule (≤ϕ) with the corresponding preorder. However, to define �t we have
to deal with applicative types, and hence we need two extra rules: (ωapp) and (app).

These rules for applicative types allow to deduce the type αβ for the application MN when
M has type α, N has type β and M is a strong zero term. Moreover, a rule (β−exp) is needed
as well, since applicative types are not invariant under β-expansion of subjects. For exam-
ple, without (β−exp) we derive �t Ω2I : ω(ω→ω), but we cannot derive �t (λxy.y∆2x)I∆2 :
ω(ω→ω).

A basis Γ is a (finite or infinite) set of statements of the shape x:α, with distinct variables as
subjects. In writing Γ, x:α we assume that x does not occur in Γ. We denote by Bt, Bwh, Bei
the sets of bases whose predicates belong to Tt, Twh, and Tei, respectively.

Definition 4.9 (Type assignment systems) Consider the rules of Figure 3:
i) The type assignment system �t is defined by the rules (Ax), (ω), (→I), (→E), (∧I),
(ωapp), (app), (β−exp), and (≤t), where Γ ∈ Bt, π ∈ Tt is an applicative type, and α, β ∈
Tt.

ii) The type assignment system �ϕ, for ϕ ∈ {w,h,e,i} is defined by the rules (Ax), (ω), (→I),
(→E), (∧I), and (≤ϕ), where Γ ∈ Bϕ̄ and α, β ∈ Tϕ̄.

Example 4.10 • �t Ω3 : ω(ω→ω), whereas, in all other systems, any type deducible for Ω3 is
equivalent to ω.
• �ϕ λx.Ω2 : ω→ω, for ϕ ∈ {t,w}, whereas, in all other systems, any type deducible for

λx.Ω2 is equivalent to ω.

3 A type γ is called ∧-prime, if and only if α∧β ≤ γ implies α ≤ γ or β ≤ γ.



Theoretical Computer Science 272 (Theories of Types and Proofs 1997): 3-40, 2002 17

(Ax)
Γ, x:α � x : α

(ω)
Γ � M : ω

(→I)
Γ, x:α � M : β

Γ � λx.M : α→β
(→E)

Γ � M : α→β Γ � N : α

Γ � MN : β

(∧I)
Γ � M : α Γ � M : β

Γ � M : α∧β
(≤ϕ)

Γ � M : α α ≤ϕ β

Γ � M : β

(β−exp)
Γ � N : α M →β N

Γ � M : α
(app)

Γ � M : π Γ � N : α

Γ � MN : πα

(ωapp)
M is a strong zero term Γ � N : α

Γ � MN : ωα

Note: M, N are terms of Λ⊥, and, in (β−exp), the relation→β is the full β-reduction, i.e., the symmetric,
transitive and compatible closure of rule (β).

Figure 3: Derivation rules

• �ϕ ∆2 : ζ∧(ζ→ζ)→ζ for ϕ ∈ {w,h,e,i}, and also �ϕ ∆2
η : ζ∧(ζ→ζ)→ζ, for ϕ ∈ {e,i},

whereas the latter statement is not deducible for ϕ ∈ {t,w,h}.
• �ϕ I : ζ→ζ, for ϕ ∈ {w,h,e,i}, and also �i RR : ζ→ζ, whereas the latter statement is not

deducible in all other systems.

Remark 4.11 At a first glance one could wonder whether, in the definition of �t, it is possible
to eliminate rule (β−exp) by replacing rule (ωapp) by a rule like

(ωapp′)
M→β ZN Z is a strong zero term Γ � N : α

Γ � M : ωα

This is not the case. In fact, it is easy to check that (λy.x(y∆2I))∆2→β x(Ω2I) and x:ωω→α�t
x(Ω2I) : α. However, without rule (β−exp), we cannot derive x:ωω→α �t (λy.x(y∆2I))∆2 : α.

Since terms are considered modulo α-conversion, the weakening rule is admissible. More-
over, as usual, we have Γ|M �ϕ M : α whenever Γ �ϕ M : α, where Γ|M = {x:β∈ Γ | x∈ FV(M)}4.

We define Dom(Γ) = {x | x:α ∈ Γ and α �= ω} and we assume x:ω ∈ Γ whenever x �∈Dom(Γ).
This is sound in view of rule (ω).

We want to consider unions of bases taking the intersections of the types with the same
subjects. Since not all intersections of types in Tt are types, we need to allow in this case only
unions of compatible bases, according to the following definition. For the other sets of types,
any two arbitrary bases are compatible.

Definition 4.12 We say that two bases Γ, Γ′ ∈ Bϕ̄ are compatible if and only if x:α ∈ Γ and
x:β ∈ Γ′ imply α∧β ∈ Tϕ̄. If Γ and Γ′ are compatible, we define their union � as

Γ � Γ′ = {x:α∧β | x:α ∈ Γ and x:β ∈ Γ′}.

Notice that x:α∧ω ∈ Γ � Γ′ whenever x:α ∈ Γ and x �∈ Dom(Γ′), since by convention we get
x:ω ∈ Γ′. Similarly, when x:β ∈ Γ′ and x �∈Dom(Γ).

4 For rule (β−exp) note that M →β N implies FV(N)⊆ FV(M).



Theoretical Computer Science 272 (Theories of Types and Proofs 1997): 3-40, 2002 18

As expected, we have generation lemmas for all the given type assignment systems. To
avoid the use of rule (β−exp), the generation lemma for �t considers approximate normal
forms instead of arbitrary terms.

Lemma 4.13 (Generation Lemma for �t) Let A ∈ At.
i) Γ �t ⊥ : α implies α =t ω;

ii) If Γ �t A : α, α �=t ω, and
a) A ≡ x, then x:β ∈ Γ for some β ≤t α;
b) A ≡ λx.A′, then α =t

∧
i∈I(αi→βi) and, for i ∈ I, Γ, x:αi �t A′ : βi;

c) A≡ xA1 . . . An A′, then there exists β such that Γ �t A′ : β, and either Γ �t xA1 . . . An : β→α,
or α ≥t πβ and Γ �t xA1 . . . An : π, for some π;

d) A ≡ ⊥A1 . . . An A′, then there is β such that Γ �t A′ : β, α ≥t πβ and Γ �t ⊥A1 . . . An : π,
for some π;

iii) If Γ �t A : α and Γ �t A : β, then α∧β ∈ Tt.

Proof: The proof for (i) is immediate. We prove (ii) and (iii) by simultaneous induction on A,
showing each time first (ii) by a secondary induction on derivations.

(A≡ x) : ( ii.a) : Follows easily by induction on derivations, using the transitivity of ≤t.
(iii) : Follows from ( ii.a) and Lemma 4.7(vi).

(A≡ λx.A′) : ( ii.b) : Proved by induction on derivations. If the last applied rule is (≤t

), α =t
∧

i∈I(αi→βi) follows from Lemma 4.7(i) and Γ, x:αi �t A′ : βi follows from
Lemma 4.8(ii).

(iii) : Let, by ( ii.b), α =t
∧

i∈I(αi→βi), β =t
∧

j∈J(αj→β j). Consider K ⊆ I ∪ J: if
∧

k∈K αk �∈ Tt
there is no problem. If

∧
k∈K αk ∈ Tt, we have by ( ii.b) that Γ, x:αk �t A′ : βk, for all k ∈ K,

therefore using rule ≤t we have Γ, x:
∧

k∈K αk �t A′ : βk, for all k ∈ K. This implies, by
induction,

∧
k∈K βk ∈ Tt, so we conclude α∧β ∈ Tt.

(A≡ xA1 . . . An A′) : (( ii.c)) : By induction on derivations. The only interesting case is when
the last applied rule is (∧I)

(∧I)
Γ �t A : α1 Γ �t A : α2

Γ �t A : α1∧α2
.

By the second induction, there are βi (i = 1,2), such that Γ �t A′ : βi, and either
Γ �t xA1 . . . An : βi→αi, or αi ≥t πiβi and Γ �t xA1 . . . An : πi, for some πi. By in-
duction on (iii), we cannot have Γ �t xA1 . . . An : β1→α1 and Γ �t xA1 . . . An : π2, or
Γ �t xA1 . . . An : β2→α2 and Γ �t xA1 . . . An : π1. Moreover, we get β1∧β2 ∈ Tt and
either (β1→α1)∧(β2→α2) ∈ Tt or π1∧π2 ∈ Tt. Therefore, using rules (≤t) and (∧I),
Γ �t A′ : β1∧β2 and either Γ �t xA1 . . . An : β1∧β2→α1∧α2 or Γ �t xA1 . . . An : π1∧π2.

(iii) : Let Γ �t A : α1 and Γ �t A : α2. By induction on ( ii.c) there are βi, for i = 1,2 such that
Γ �t A′ : βi, and either Γ �t xA1 . . . An : βi→αi, or Γ �t xA1 . . . An : πi and αi ≥t πiβi,, for
some πi. So we can conclude as above that β1∧β2 ∈ Tt and either (β1→α1)∧(β2→α2) ∈
Tt or π1∧π2 ∈ Tt. This implies either α1∧α2 ∈ Tt or (π1∧π2)(β1∧β2) ∈ Tt. In the
second case we get (π1∧π2)(β1∧β2) ≤t π1β1∧π2β2 by Lemma 4.7(iv). This implies
(π1∧π2)(β1∧β2) ≤t α1∧α2, so we can conclude α1∧α2 ∈ Tt by Lemma 4.7(vi).

The set of types deducible in �ϕ for approximate normal forms is not decreasing with respect
to the order relation 
ϕ between approximate normal forms. From this we easily obtain a
consistency property between the types deducible for the approximants of the same term in



Theoretical Computer Science 272 (Theories of Types and Proofs 1997): 3-40, 2002 19

�t.

Lemma 4.14 i) If Γ �ϕ A : α and A 
ϕ A′, then Γ �ϕ A′ : α.
ii) If A, A′ ∈ At(M), then a basis Γ ∈ Bt cannot assign an arrow type to A and an applicative type

to A′.

Proof: i) By induction on the definition of 
ϕ.
ii) Since ‘
t’ is directed (Lemma 3.6), reasoning towards a contradiction we would get a

single approximate normal form which has both an arrow and an applicative type. This
is impossible by Lemma 4.13(iii) because the intersection of an applicative type and an
arrow type is not a type.

Lemma 4.15 (Generation Lemma for �ϕ) Let ϕ ∈ {w,h,e,i}.
i) Γ �ϕ ⊥ : α implies α =ϕ ω;

ii) Γ �ϕ x : α if and only if x:β ∈ Γ, for some β ≤ϕ α;
iii) Γ �ϕ λx.M : α (and α �=w ω when ϕ = w) if and only if α =ϕ

∧
i∈I(αi→βi) and, for i ∈ I,

Γ, x:αi �ϕ M : βi;
iv) Γ �ϕ MN : α if and only if there is β such that Γ �ϕ M : β→α, and Γ �ϕ N : β.

Proof: All points can be shown by standard induction on the structure of derivations, using
Lemma 4.8(ii) for (iii).

With a standard proof we can show that rule (β−exp) is admissible in the systems �ϕ, for
ϕ ∈ {w,h,e,i}. Moreover, types are preserved by η expansion in �e and �i.

Theorem 4.16 i) Let ϕ ∈ {w,h,e,i}. Then Γ �ϕ M[N/x] : α implies Γ �ϕ (λx.M)N : α.
ii) Let ϕ ∈ {e,i}. Then Γ �ϕ M : α and x �∈ FV(M) imply Γ �ϕ λx.Mx : α.

iii) Let ϕ ∈ {w,h,e,i}. Then Γ �ϕ N : α and M→β N imply Γ �ϕ M : α.
iv) Let ϕ ∈ {e,i}. Then Γ �ϕ N : α and M→η N imply Γ �ϕ M : α.

Proof: i) Let Γi �ϕ N : βi, for 1 ≤ i ≤ n and n ≥ 0, be al the statements whose subject is N in
a derivation of Γ �ϕ M[N/x] : α. Notice that Γ ⊆ Γi but Γ|N = Γi|N , for all 1 ≤ i ≤ n. So
we can derive Γ �ϕ N :

∧
1≤i≤n βi, with the convention that

∧
1≤i≤n βi = ω whenever n = 0.

One can easily see, by induction on M, that Γ, x:
∧

1≤i≤n βi �ϕ M : α. Then, by rule (→I),
we get Γ �ϕ λx.M :

∧
1≤i≤n βi→α. Hence, by rule (→I), we can conclude Γ �ϕ (λx.M)N : α.

ii) By easy induction on α, taking into account that each atomic type is equal to an arrow
type in the preorders ≤e and ≤i.

iii) – (iv) By straightforward induction, using, respectively, (i) and (ii).

For the type assignment system �i we need a further property dealing with the types we
can deduce for the terms whose infinite eta tree is just one variable. The notion of strict types
comes in handy [2].

Definition 4.17 The set of strict types ST⊆ Tei is the minimal set such that:
i) ω,ζ,ϑ ∈ ST,

ii) α, β1, . . . , βn ∈ ST, n ≥ 1 ⇒ β1∧ . . .∧βn→α ∈ ST.

Property 4.18 For all types α ∈ Tei, there is a set of strict types β1, . . . , βn ∈ ST such that α =i
β1∧ . . .∧βn.



Theoretical Computer Science 272 (Theories of Types and Proofs 1997): 3-40, 2002 20

Proof: By induction on α. Observe that γ→δ1∧δ2 =i (γ→δ1)∧(γ→δ2).

We will now introduce a measure on types which gives us, for each equivalence class, the
number of symbols occurring in the shortest strict type.

Definition 4.19 i) Define | | : Tei→ IN by:
a) |ω| = |ζ| = |ϑ| = 1,
b) |α→β| = |α∧β| = |α|+ |β|+ 1.

ii) Define || || : Tei→ IN by ||α|| = min{|β| | β ∈ ST and β =i α}.

Theorem 4.20 Let Ti(M) ≥η x.
i) x:α �i M : α.

ii) If Γ �i x : α then Γ �i M : α.

Proof: i) By induction on ||α||. Notice that Ti(M)≥η x implies

M =β λy1 . . . yn.xM1 . . . Mn

where Ti(Mi) ≥η yi, for 1≤ i ≤ n and n ≥ 0.

– If ||α|| = 1 then α =i ω, α =i ζ or α =i ϑ. The case α =i ω is trivial. Otherwise, we
derive �i Mi : ω, for i≤ i ≤ n, by rule (ω) and we conclude x:ξ �i M : ξ, for ξ ∈ {ζ,ϑ},
using rules (≤i), (→E), and (→I), since ζ =i ωn→ζ and ϑ =i ωn→ϑ.

– For the induction step, by Proposition 4.18, we can assume, without loss of generality,
that α is a strict type. We distinguish two subcases.

∗ α=i β1→ . . .→βn→γ with ||α||= ||β1||+ . . .+ ||βn||+ ||γ||+ n By induction yi:βi �i
Mi : βi, for 1 ≤ i ≤ n, and so we obtain x:α �i M : α, using rules (≤i), (→E), and
(→I).
∗ α =i β1→ . . .→βm→ξ with m < n, ξ ∈ {ζ,ϑ} and ||α|| = ||β1||+ . . . + ||βm ||+ m+ 1.

Also, by induction, yi:βi �i Mi : βi, for 1 ≤ i ≤ m. Moreover, by rule (ω), we
get �i Mi : ω, for m + 1 ≤ i ≤ n. We conclude as in previous case, since α =
β1→ . . .→βm→ωn−m→ξ.

ii) Follows easily from (i) and Lemma 4.15(ii).

4.4 Approximation theorems

Our type assignment systems enjoy the approximation property, i.e., we can deduce a type for
a term M if and only if we can deduce this type for an approximant of M, with respect to the
relative notion of approximant (Theorem 4.25). Such a theorem, interesting in its own right,
will be used in the next section to show that our type assignment systems are tools to analyze
the observational behaviour represented by trees.

We prove the Approximation Theorem by means of a variant of Tait’s ‘computability’ tech-
nique. We define sets of ‘approximable’ and ‘computable’ terms. The computable terms are
defined by induction on types (Definition 4.21), and every computable term is shown to be
approximable (Lemma 4.23(ii)). Using induction on type derivations, we show that every term
is computable for the appropriate type (Lemma 4.24).

It is useful to have a short-hand notation for the property we want to show. We define
‘Appϕ (Γ,α, M)’ as an abbreviation for ‘∃A ∈ Aϕ(M).Γ �ϕ A : α’.



Theoretical Computer Science 272 (Theories of Types and Proofs 1997): 3-40, 2002 21

Definition 4.21 We define the predicate Compϕ (Γ,α, M) by induction on α ∈ Tϕ̄ as follows:
i) Compϕ (Γ,ω, M) is always true;

ii) Compt (Γ,π, M), if and only if Appt (Γ,π, M), for every type π of applicative kind;
iii) Compϕ (Γ,ζ, M), if and only if Appϕ (Γ,ζ, M), for ϕ ∈ {w,h};
iv) Compe (Γ,ζ, M), if and only if Appe (Γ,ζ, M) and, moreover, for all Γ′ and N, Appe (Γ′,ϑ, N)

implies Appe (Γ � Γ′,ζ, MN);
v) Compi (Γ,ζ, M), if and only if Appi (Γ,ζ, M) and, moreover, for all N, Appi (Γ,ζ, MN);

vi) Compe (Γ,ϑ, M), if and only if Appe (Γ,ϑ, M) and, moreover, for all Γ′ and N, Appe (Γ′,ζ, N)
implies Appe (Γ � Γ′,ϑ, MN);

vii) Compi (Γ,ϑ, M), if and only if Appi (Γ,ϑ, M) and, moreover, for all N, Appi (Γ,ϑ, MN);
viii) Compϕ (Γ,α→β, M), if and only if Appϕ (Γ,ω→ω, M), and, moreover, for all N and Γ′ such

that Γ and Γ′ are compatible bases, Compϕ (Γ′,α, N) implies Compϕ (Γ � Γ′, β, MN), when
ϕ ∈ {t,w};

ix) Compϕ (Γ,α→β, M), if and only if, for all Γ′ and N, Compϕ (Γ′,α, N) implies Compϕ (Γ �
Γ′, β, MN), when ϕ ∈ {h,e,i};

x) Compϕ (Γ,α∧β, M) if and only if Compϕ (Γ,α, M) and Compϕ (Γ, β, M).

The predicates Appϕ and Compϕ agree with the typing rule (≤ϕ) and depend only on the
equivalence classes of terms modulo β-conversion.

Lemma 4.22 i) If α ≤ϕ β and Compϕ (Γ,α, M), then Compϕ (Γ, β, M) 5.
ii) If M =β M′, then Appϕ (Γ,α, M) if and only if Appϕ (Γ,α, M′), and

Compϕ (Γ,α, M) if and only if Compϕ (Γ,α, M′).
iii) Let z �∈ FV(M) and Γ′ = Γ,z:α. Then Appϕ (Γ,α→β, M), provided both Appϕ (Γ′, β, Mz) and

Appϕ (Γ,ω→ω, M).

Proof: i) By easy induction on the definition of ≤ϕ.
ii) For Appϕ ( ), it suffices to observe that two β-convertible terms have the same approxi-

mants. For Compϕ ( ), we reason by induction on types.
iii) We consider only the case ϕ = t. The proof of the other cases is similar and simpler. Note

that Appϕ (Γ,ω→ω, M) is always true for ϕ ∈ {h,e,i}, since in this case ω =ϕ ω→ω.
Assume that A ∈ At(Mz), Γ′ �t A : β, and Γ �t A′ : ω→ω, for some A′ ∈ At(M). We

must prove that there exists an Â ∈ At(M) such that Γ �t Â : α→β.
If β =t ω, one has Γ �t A′ : α→ω, since α ≤t ω; hence Â ≡ A′. If M is β-convertible to

an abstraction, then λz.Mz =β M and we can choose Â≡ λz.A.
If A ≡ xA1 . . . AnZ, we take Â ≡ xA1 . . . An. Indeed, since Γ′ �t A : β, it follows from

Lemma 4.13( ii.c) that either β ≥t πγ and Γ′ �t Â : π, or Γ′ �t Â : γ→β, for some γ
with Γ′ �t Z : γ. Notice that z �∈ FV(M) implies z �∈ Â, so we get either Γ �t Â : π, or
Γ �t Â : γ→β. The condition Γ �t A′ : ω→ω forbids Γ �t Â : π by Lemma 4.14(ii). As an
approximant of z, the term Z is either z or ⊥, and in both cases we must have α ≤t γ.
Thus we get Γ �t Â : α→β, as desired.

The case A≡ ⊥A1 . . . AnZ is excluded by Lemmas 4.13( ii.d) and 4.14(ii).

We can now show that computability implies approximability.

5 The same property trivially holds for Appϕ ( ).



Theoretical Computer Science 272 (Theories of Types and Proofs 1997): 3-40, 2002 22

Lemma 4.23 For all Γ ∈ Bϕ̄, α ∈ Tϕ̄, L1, . . . , Ln (0≤ n), and M:
i) Appϕ (Γ,α, xL1 . . . Ln)⇒ Compϕ (Γ,α, xL1 . . . Ln);

ii) Compϕ (Γ,α, M)⇒ Appϕ (Γ,α, M).

Proof: We prove (i) and (ii) by simultaneous induction on α.

• α is an atomic or an applicative type. Both (i) and (ii) are true by definition of Comp and
the equalities ϑ =e ζ→ϑ, ζ =e ϑ→ζ, ϑ =i ω→ϑ, and ζ =i ω→ζ.
• α≡ α1→α2.

i) Assume Appϕ (Γ,α, xL1 . . . Ln). Then there is an A∈Aϕ(xL1 . . . Ln) with Γ �ϕ A : α1→α2.
This implies Γ �ϕ A : ω→ω by rule (≤ϕ), so, in particular, Appϕ (Γ,ω→ω, xL1 . . . Ln);
this will be useful when ϕ ∈ {t,w}. Clearly, A can be taken of the form xA1 . . . An,
where Ai is an approximant of Li (i ≤ n).
We need to show that Compϕ (Γ,α1→α2, xL1 . . . Ln). Let Γ′ be compatible with Γ, and
assume Compϕ (Γ′,α1, N), and Appϕ (Γ′,α1, N) follows by induction on (ii). Hence, there
is an approximant B∈Aϕ(N) of type α1 in the context Γ′. Then AB≡ xA1 . . . AnB is an
approximant of xL1 . . . LnN, and Γ � Γ′ � AB : α2. Thus Compϕ (Γ � Γ′,α2, xL1 . . . LnN)
follows by induction on (i).

ii) Suppose Compϕ (Γ,α1→α2, M). Now Appϕ (Γ,ω→ω, M) follows by definition (this is
necessary only for ϕ ∈ {t,w} and will be needed in the last of the following implica-
tions). Let Γ′ = Γ,z:α1, where z is fresh. Since {z:α1} �ϕ z : α1, and z ∈ Aϕ(z), we have
Compϕ ({z:α1},α1,z) by induction on(i). Then we have

Compϕ ({z:α1},α1,z) ⇒ (by definition of Comp)
Compϕ (Γ′,α2, Mz) ⇒ (by induction on ii)
Appϕ (Γ′,α2, Mz) ⇒ (by Lemma 4.22(iii))
Appϕ (Γ,α1→α2, M).

• α≡ α1∧α2.
i) We need that if Γ �ϕ A : α1∧α2, then Γ �ϕ A : α1 and Γ �ϕ A : α2, which follows by rule
(≤ϕ).

ii) We need that any two approximations have a common join (refinement) (see Lemma 3.6),
and that if A′ refines A, A′ has all the types of A in any basis (Lemma 4.14(i)).

Lemma 4.24 Let Γ = {x1:β1, . . . , xn:βn} ∈ Bϕ̄ and Γ �ϕ M : α. Assume, for i ≤ n, Compϕ (Γi, βi, Ni).
Define Γ′ =

⊎n
i=1 Γi . Then Compϕ (Γ′,α, M[N/x]), where [N/x] is shorthand for [N1/x1, . . . , Nn/xn].

Proof: By induction on the derivation for Γ �ϕ M : α. Cases (Ax) and (ω) are immediate. Cases
(→E) and (∧I) follow by induction. Case (≤ϕ) follows by induction and Lemma 4.22(i). For
ϕ = t, case (β−exp) follows by induction and Lemma 4.22(ii).

For (→I), let M ≡ λy.P and α≡ α1→α2, then Γ,y:α1 �ϕ P : α2. Since λy.⊥ is an approximant
of (λy.P)[N/x] of type ω→ω, we have Appϕ (Γ,ω→ω, M[N/x]) (this is useful only for ϕ ∈
{t,w}).

Suppose Compϕ (Γ′′,α1, Q). Then, by induction

Compϕ (Γ′ � Γ′′,α2, P[Q/y, N/x]).

We can assume, without loss of generality, that y �∈ FV(N1 . . . Nn) and, therefore,

P[Q/y, N/x] ≡ P[N/x][Q/y] and (λy.P[N/x])Q ≡ ((λy.P)[N/x])Q.



Theoretical Computer Science 272 (Theories of Types and Proofs 1997): 3-40, 2002 23

By the invariance of computability under β-conversion (Lemma 4.22(ii)), we have Compϕ (Γ′ �
Γ′′,α2, ((λy.P)[N/x])Q), and hence

Compϕ (Γ′,α1→α2, (λy.P)[N/x]).

For �t we need to consider also rules (ωapp) and (app). We will give the proof for (app),
the proof for (ωapp) is similar and simpler. For rule (app), assume M ≡ PQ and α ≡ πγ. We
get Compt (Γ′,π, P[N/x]) and Compt (Γ′,γ, Q[N/x]) by induction. Then, by Lemma 4.23(ii),
Appt (Γ′,π, P[N/x]) and Appt (Γ′,γ, Q[N/x]). This means Γ′ �t A : π for some A∈At(P[N/x])
and Γ′ �t A′ : γ for some A′ ∈ At(Q[N/x]). Notice that, by Lemma 4.13( ii.b), A cannot be
an abstraction, so AA′ ∈ At(M[N/x]). Moreover, we derive Γ′ �t AA′ : πγ, so we conclude
Compt (Γ′,πγ, M[N/x]).

We can now prove the approximation theorem.

Theorem 4.25 (Approximation Theorem) Γ �ϕ M : α if and only if there is A ∈ Aϕ(M) such
that Γ �ϕ A : α.

Proof: (⇒) : Since Appϕ ({x:β}, β, x) holds for any x and β, and, by Lemma 4.23(i), we have
Compϕ ({x:β}, β, x). We can apply Lemma 4.24 for the identity substitution to obtain
Compϕ (Γ,α, M). We conclude using Lemma 4.23(ii).

(⇐) : Without loss of generality we can assume that A ≡ (M)
(h)
ϕ , for some h.

– For ϕ ∈ {t,w,h}, this implies, by Definition 2.4, that there is M′ such that M→β M′

and A is obtained from M′ by replacing some subterm by ⊥. So we get Γ �ϕ M′ : α,
and Γ �ϕ M : α follows from rule (β−exp), which is admissible in �ϕ for ϕ ∈ {w,h} by
Theorem 4.16(iii).

– For ϕ = e, by Definition 2.4, there is M′ such that M→β M′ and A is obtained from M′

by replacing some subterm by ⊥ and by η-reduction. Then, since types are preserved
by η-expansion in �e as proved in Theorem 4.16(iv), Γ �e M′ : α. We conclude as in
previous case.

– For ϕ = i, by Definition 2.5, there is M′ such that M→β M′ and A is obtained from
M′ by:

∗ replacing some subterm by ⊥;
∗ η-reduction;
∗ replacing some subterm N such that Ti(N) ≥η x by x.

So we get Γ �i M′ : α, by Theorem 4.16(iv) and by Theorem 4.20(ii).

5 Correspondence between trees and typings

In this section we will present the main result of the paper, namely that our type assignment
systems can be used to analyze the observational behaviour represented by trees. As recalled
in the introduction, similar results are present in the literature for particular notions of tree.

Ronchi della Rocca [24] proved that two terms have the same Böhm tree if and only if they
have the same set of types in the standard intersection type discipline [5]. The proof of [24]
is based on the notion of principal type of an approximate normal form, which is a type
completely describing the approximate normal form. Principal types (as defined in [11] and
used in [24]) need an infinity of type variables and this agrees with the type syntax of [5].



Theoretical Computer Science 272 (Theories of Types and Proofs 1997): 3-40, 2002 24

Another related paper is [16]: it proves that two terms have the same Lévy-Longo tree [22] if
and only if they have the same set of types in the type discipline with union and intersection of
[13]. Also [16] uses the notion of principal types, but it gets rid of type variables by replacing
them by suitable constant types which depend on the terms involved. Lastly, [7] proves this
correspondence in the case of Berarducci trees for a type assignment system quite similar to
�t by taking advantage from the presence of applicative types.

In the following we shall provide an (almost) uniform proof for a theorem which considers
other trees besides those of the results recalled above. More precisely, we shall prove that �ϕ

derives the same types for two terms M, N if and only if M, N have the same ϕ-trees.
In order to prove this property, we follow an approach similar to [16] and to [7] in that we do

not allow an infinite set of type variables. The expressive power needed for our purposes and
that could be provided by an infinity of type variables can be obtained instead by defining,
as we shall do, an infinite set of constant types. These constants will also allow to define the
characteristic pairs 〈basis; type〉 for approximate normal forms.

The key idea is that characteristic pairs give sufficient information to discriminate between
approximate normal forms obtained by pruning (in a suitable way) different trees.

We introduce three different sets of type constants, one for each set of types (Tt, Twh and Tei).
It is easy to verify that each of these constants belong to the corresponding set of types.

Definition 5.1 i) Let θ = (ωω→ω→ω)∧((ω→ω)→ωω). We define φ0 as the type ωθ and,
for i ≥ 0, φi+1 ≡ ω(φiθ).

ii) Define ψ
(n)
i = (ζ→ωi→ζ→ωn−i→ζ)∧ζ, for all i ≤ n.

iii) Define χ
(n)
i = ζ→ϑi→ζ→ϑn−i→ζ→ϑ∧ζ, for all i ≤ n.

The following lemma states that for some properties we shall need in our proofs, the type
constants defined above behave as type variables.

Lemma 5.2 i) If φiα1 . . . αm ≤t φjβ1 . . . βn and αl �≤t θ, αl �≤t φkθ, where 1 ≤ l ≤ m and k ≥ 0, then
i = j, m = n and αl ≤t βl , for 1≤ l ≤ m.

ii) Let ϕ ∈ {w,h}, then
∧
i∈I

(α
(i)
1 → . . .→α

(i)
ni →ψ

(n)
i ) ≤ϕ β1→ . . .→βm→ψ

(n)
j ,

and ni ≤ n, for all i ∈ I, imply j ∈ I,nj = m and βl ≤ϕ α
(j)
l , for 1≤ l ≤ m.

iii) Let ϕ ∈ {e,i}, then
∧
i∈I

(α
(i)
1 → . . .→α

(i)
ni →ζn→χ

(n)
i ) ≤ϕ β1→ . . .→βm→ζn−k→χ

(n)
j

implies j ∈ I, nj = m− k, βh ≤ϕ α
(j)
h , for 1≤ h ≤ nj, and βh ≤ϕ ζ, for nj + 1≤ h ≤ m.

Proof: i) We first show that m = n. Assuming m > n, by Lemma 4.7(iii), we get φiα1 . . . αm−n ≤t

φj, which implies αm−n ≤t θ, whenever j = 0, and αm−n ≤t φj−1θ, whenever j > 0. Both
inequalities are false by assumption. Assuming m < n, we get φi ≤t φjβ1 . . . βn−m, which
implies ω ≤t φjβ1 . . . βn−m−1, which is false.

If m = n, we have αl ≤t βl , for 1 ≤ l ≤ m, and φi ≤t φj. If i = 0 and j > 0, we get
θ ≤t φj−1θ. If i > 0 and j = 0, we get φi−1θ ≤t θ. Both inequalities are false since arrow
types are incomparable with applicative types. If i > 0 and j > 0, we get φi−1θ ≤t φj−1θ,
i.e., φi−1 ≤t φj−1. We conclude that i = j.



Theoretical Computer Science 272 (Theories of Types and Proofs 1997): 3-40, 2002 25

ii) Note that ∧
i∈I

(α
(i)
1 → . . .→α

(i)
ni →ψ

(n)
i ) ≤ϕ β1→ . . .→βm→ψ

(n)
j

implies ∧
i∈I

(α
(i)
1 → . . .→α

(i)
ni →ψ

(n)
i ) ≤ϕ β1→ . . .→βm→ζ→ω j→ζ→ωn−j→ζ.

By Lemma 4.8(i) and clause ( i.c) of Definition 4.5, for some i either

α
(i)
1 → . . .→α

(i)
ni →ζ ≤ϕ β1→ . . .→βm→ζ→ω j→ζ→ωn−j→ζ (1)

or
lα(i)

1 → . . .→α
(i)
ni →ζ→ωi→ζ→ωn−i→ζ ≤ϕ

lβ1→ . . .→βm→ζ→ω j→ζ→ωn−j→ζ.

The type inclusion (1) is impossible, since, by Lemma 4.8(ii), it requires ni = m + n + 2.
To satisfy (5), we get ni + n = m + n, i.e., ni = m. Moreover, i = j: in fact, assuming
i �= j we obtain, by Lemma 4.8(ii), ω ≤ϕ ζ, which is false. The conclusion follows from
Lemma 4.8(ii).

iii) Notice that
∧
i∈I

(α
(i)
1 → . . .→α

(i)
ni →ζn→χ

(n)
i ) ≤ϕ β1→ . . .→βm→ζn−k→χ

(n)
j

implies, by Lemma 4.8(i), for some i,

α
(i)
1 → . . .→α

(i)
ni →ζn→χ

(n)
i ≤ϕ β1→ . . .→βm→ζn−k→χ

(n)
j .

By Definition 5.1(iii), we get

lα(i)
1 → . . .→α

(i)
ni →ζn→ζ→ϑi→ζ→ϑn−i→ζ→ϑ∧ζ ≤ϕ

lβ1→ . . .→βm→ζn−k→ζ→ϑj→ζ→ϑn−j→ζ→ϑ∧ζ.

To satisfy (5), we get ni = m − k, and i = j. In fact, assuming ni �= m − k or i �= j we
obtain, by Lemma 4.8(ii), ϑ ≤ϕ ζ, or ζ ≤ϕ ϑ, which are both false. The conclusion follows
from Lemma 4.8(ii).

We need to consider special kinds of bases which allow to distinguish occurrences of dif-
ferent variables or even different occurrences of the same variable. More precisely, in the
presence of applicative types it suffices to give different types to occurrences of different vari-
ables, but in all other cases we need to give also different types to different occurrences of the
same variable.

Definition 5.3 i) We define Γt ∈ Bt as the basis {xn :φn | n ∈ IN}.
ii) A basis Γ ∈ Bwh is a special basis (of degree n) if each type declaration in Γ has the form

x:
∧

i∈I(α
(i)
1 → . . .→α

(i)
ni →ψ

(n)
i ), where ni ≤ n, for all i ∈ I, and, moreover, each ψ

(n)
i occurs

only once as last type.
iii) Γ ∈ Bei is a generalised special basis (of degree n) if each type declaration in Γ has the form

x:ζ or x:
∧

i∈I(α
(i)
1 → . . .→α

(i)
ni →ζn→χ

(n)
i ), where ni ≤ n, for all i ∈ I, and, moreover, each

χ
(n)
i occurs only once as last type.



Theoretical Computer Science 272 (Theories of Types and Proofs 1997): 3-40, 2002 26

Notice that Γt contains only applicative types, while special bases and generalised special
bases contain only arrow types and atomic types. The feature of all these bases is that when
we deduce from them a type which behaves like a variable for an approximate normal form,
we can argue that the approximate normal form has a fixed shape, and that its components
have fixed types.

Lemma 5.4 i) If Γt �t xi A1 . . . An : α and α �=t ω, then α is an applicative type.
ii) For any approximate normal form A neither Γt �t A : θ, nor Γt �t A : φiθ, for i ≥ 0.

iii) If Γt �t A : φi, then A ≡ xi.

Proof: i) By induction on n. If n = 0, the thesis follows from Lemmas 4.13( ii.a) and 4.7(ii), since
all types in Γt are applicative. Otherwise, by induction, xi A1 . . . An−1 has only applicative
types, and we obtain the thesis by Lemma (4.13)( ii.c).

ii) Assume Γt �t A : θ. Then (i) forces A to be of the form λx.A′. Recalling the definition of θ,
we get, by Lemma 4.13( ii.b), Γt, x:ωω �t A′ : ω→ω and Γt, x:ω→ω �t A′ : ωω. Then, since
we can assign an applicative type to A′, Lemma 4.13(i) and ( ii.b) imply A′ ≡ yB1 . . . Bn, for
some y,n, B1, . . . , Bn. Hence, we get Γt, x:ωω �t y : α1→ . . .→αn→ω→ω, for some α1, . . . ,αn.
This is impossible by Lemma 4.13( ii.a) and Lemma 4.7(ii), since all types in Γt, x:ωω are
applicative.

Assume Γt �t A : φiθ, for some i. By Lemma 4.13( ii.b), we have A≡ xj A1 . . . An, for some
xj, A1, . . . , An. If n = 0 then, by Lemma 4.13( ii.a), we get φj ≤t φiθ, which is impossible
by Lemma 5.2(i). For n > 0, we have necessarily Γt �t An : θ, which is impossible by the
above.

iii) If Γt �t A : φi Lemma 4.13(ii) implies either ( .a) A ≡ ⊥A1 . . . An A′ or ( .b) A ≡ xA1 . . . An,
for some A1, . . . , An, A′, x.
a) Then Γt �t A′ : θ, if i = 0, and Γt �t A′ : φi−1θ, if i > 0, by Lemma 4.13( ii.d). Both cases

are impossible by (ii).
b) If n > 0, then, by Lemma 4.13( ii.c), either we must deduce an arrow type for x from Γt

– which is impossible by (i) – or A′ must have type θ or φi−1θ. We conclude that n = 0
and A≡ xi, because if A≡ xj we have φi ≤t φj by Lemma 4.13( ii.a), which implies i = j
by Lemma 5.2(i).

Lemma 5.5 i) Let ϕ ∈ {w,h}. If A ∈ Aϕ, Γ = Γ′ � {x:α1→ . . .→αm→ψ
(n)
i } is a special basis of

degree n, and Γ �ϕ A : ψ
(n)
i , then A ≡ xA1 . . . Am and, for 1≤ j ≤ m, Γ �ϕ Aj : αj.

ii) Let ϕ ∈ {e,i}. If A ∈ A(n)
ϕ , and Γ � {x:α1→ . . .→αm→ζn→χ

(n)
i } is a generalised special basis

of degree n, and Γ �ϕ A : ζn→χ
(n)
i , then, for some k ≥ 0, there are B1, . . . , Bk, such that A ≡

λy1 . . . yk.xA1 . . . AmB1 . . . Bk, with x �∈ {y1, . . . ,yk}, Γ�{y1:ζ, . . . ,yk:ζ} �ϕ Aj : αj, for 1≤ j≤m,
and Γ � {y1:ζ, . . . ,yk:ζ} �ϕ Bl : ζ, for 1≤ l ≤ k.

Proof: i) From Γ �ϕ A : ψ
(n)
i we get Γ �ϕ A : ζ, so, by Lemma 4.15(iii), A cannot be an abstrac-

tion. Assume A≡ yA1 . . . Ap. Then, by Lemma 4.15(iv), we have that Γ �ϕ yA1 . . . Ap : ψ
(n)
i

requires both Γ �ϕ y : β1→ . . .→βp→ψ
(n)
i as well as Γ �ϕ Aj : β j, for some β1, . . . , βp,

(1 ≤ j ≤ p). By definition of special bases, the statement with subject y must have a
predicate like

∧
l∈L(α

(l)
1 → . . .→α

(l)
nl →ψ

(n)
l ). By Lemma 4.15(ii),

∧
l∈L

(α
(l)
1 → . . .→α

(l)
nl →ψ

(n)
l ) ≤ϕ β1→ . . .→βp→ψ

(n)
i .



Theoretical Computer Science 272 (Theories of Types and Proofs 1997): 3-40, 2002 27

By Lemma 5.2(ii), this implies i ∈ L, ni = p and β j ≤ϕ α
(i)
j , for 1 ≤ j ≤ p. By definition of

special basis, ψ
(n)
i can occur only once as last type, hence we conclude x ≡ y, p = m and

β j ≤ αj, for 1≤ j ≤ p.

ii) Let A ≡ λy1 . . . yk.zA1 . . . Ap, where k ≤ n, since A ∈ A(n)
ϕ . Then, by Lemma 4.15(iii), Γ �

{y1:ζ, . . . ,yk:ζ} �ϕ zA1 . . . Ap : ζn−k→χ
(n)
i . Now, to obtain Γ� {y1:ζ, . . . ,yk:ζ} �ϕ zA1 . . . Ap :

ζn−k→χ
(n)
i , by Lemma 4.15(iv) we need both

Γ � {y1:ζ, . . . ,yk :ζ} �ϕ z : β1→ . . .→βp→ζn−k→χ
(n)
i

and
Γ � {y1:ζ, . . . ,yk:ζ} �ϕ Aj : β j,

for some β1, . . . , βp (1 ≤ j ≤ p). With a proof similar to that of the previous point, using
Lemma 5.2(iii) instead of Lemma 5.2(ii), we conclude x ≡ z, p = m + k, β j ≤ϕ αj, for
1≤ j ≤ m, and β j ≤ϕ ζ, for m + 1≤ j ≤ p.

We now associate to each approximate normal form A ∈ Aϕ a basis Γ ∈ Bϕ̄ and a type
γ ∈ Tϕ̄. We call the pair 〈Γ;γ〉 the ϕ-characteristic pair of A.

Definition 5.6 Let A ∈ At.
i) The t-characteristic type of A, ctt(A), is defined as follows.

a) ctt(λxi.A) = φi→ctt(A),
b) ctt(⊥A1 . . . An) = ωctt(A1) . . . ctt(An),
c) ctt(xi A1 . . . An) = φictt(A1) . . . ctt(An).

ii) The t-characteristic pair of A, cpt(A), is 〈Γt;ctt(A)〉.

It is easy to verify that Γt �ϕ A : ctt(A).

Definition 5.7 Let A ∈ A(n)
ϕ , for ϕ ∈ {w,h,e,i}. The ϕ-characteristic pair of degree n of A,

pp
(n)
ϕ (A), is defined as follows.

i) pp
(n)
ϕ (⊥) = 〈∅;ω〉

ii) If pp
(n)
ϕ (A) = 〈Γ, x:β;α〉, then pp

(n)
ϕ (λx.A) = 〈Γ; β→α〉.

iii) If pp
(n)
ϕ (A) = 〈Γ;α〉 and x does not occur in Γ, then pp

(n)
ϕ (λx.A) is equal to 〈Γ;ω→α〉.

iv) For ϕ ∈ {w,h}: assume pp
(n)
ϕ (Ai) = 〈Γi;αi〉, for i ≤ k, and let

Γ =
k⊎

i=1

Γi � {x:α1→ . . .→αk→ψ
(n)
j }

be a special basis of degree n. Then

pp
(n)
ϕ (xA1 . . . Ak) = 〈Γ;ψ(n)

j 〉.

In particular, when k = 0, we obtain pp
(n)
ϕ (x) = 〈{x:ψ(n)

j };ψ
(n)
j 〉.



Theoretical Computer Science 272 (Theories of Types and Proofs 1997): 3-40, 2002 28

v) For ϕ ∈ {e,i}: assume pp
(n)
ϕ (Ai) = 〈Γi;αi〉, for i ≤ k, and let

Γ =
k⊎

i=1

Γi � {x:α1→ . . .→αk→ζn→χ
(n)
j }

be a generalised special basis of degree n, then

pp
(n)
ϕ (xA1 . . . Ak) = 〈Γ;ζn→χ

(n)
j 〉.

In particular, when k = 0, we get pp
(n)
ϕ (x) = 〈{x:ζn→χ

(n)
j };ζn→χ

(n)
j 〉.

Notice that the ϕ-characteristic pair of an approximant, as defined above, is not uniquely
determined. In fact, in order not to give too cumbersome a definition, we assumed that the
definition comes implicitly equipped with a procedure for choosing names of type variables
(the ‘j’-subscripts), whenever needed. This choice can always be made in such a way the
definition is uniquely determined and sound.

It is easy to verify that, if A ∈ A(n)
ϕ and pp

(n)
ϕ (A) = 〈Γ;α〉, then Γ �t A : α, for ϕ ∈ {w,h,e,i}.

We can now prove that, in all cases, if the ϕ-characteristic pair of A is 〈Γ;γ〉 and Γ �ϕ B : γ

(and some conditions on the number of symbols of B or of (B)(h)ϕ , where h is the height of the
tree of A, hold), then A �ϕ B, with �ϕ as defined in Definition 3.9.

Lemma 5.8 i) If Γt �t A : α then α �≤t θ, α �≤t φiθ, for all i ≥ 0.
ii) If Γt �t A : πα and φi �≤t πα, for all i, then A ≡ A1A2 with Γt �t A1 : π and Γt �t A2 : α.

iii) If Γt �t A : φi→α, then A≡ λxi.A′ and Γt �t A′ : α.
iv) If Γt �t B : ctt(A) then A�t B.

Proof: i) Assume, reasoning towards a contradiction, that α ≤t β, where either β = θ, or β =
φiθ. Then we get Γt �t A : β, which is impossible by Lemma 5.4(ii).

ii) The approximate normal form A cannot be a variable by Lemma 4.13( ii.a), since φi �≤t

πα, for all i. It cannot be an abstraction by Lemma 4.13( ii.b). Therefore A must be an
application, i.e., A ≡ A1A2. Notice that A1 cannot have an arrow type by Lemma 5.4(i).
So we get the thesis using Lemma 4.13( ii.c), ( ii.d) and ( ii.d).

iii) By Lemma 5.4(i) and Lemma 4.13( ii.d), A can neither be a variable nor an application. So
A≡ λxi.A′ and we get the thesis by Lemma 4.13( ii.b).

iv) Suppose Γt �t B : ctt(A). We prove that A �t B by induction on the structure of A.

– The crucial case is when A≡⊥A1 . . . An (n≥ 0). Then ctt(A) has the form ωα1 . . . αn. If
B has type ctt(A) in the basis Γt, then, by (ii) and Lemma 4.13(ii), B must be of the form
xB1 . . . Bm or xB1 . . . BpB′1 . . . B′n or ⊥B1 . . . BpB′1 . . . B′n where 0 ≤ m < n and 0≤ p. In the
first case, by (ii), for i = 1, . . . ,m, Bi has type αn−m+i in Γt. By induction, for i = 1, . . . ,m,
An−m+i �t Bi. Since ⊥A1 . . . An−m �t x we infer that A �t B. In the remaining cases,
for i = 1, . . . ,n, B′i has type αi in Γt. By induction, for i = 1, . . . ,n, Ai �t B′i . Since
⊥ �t xB1 . . . Bp and ⊥ �t ⊥B1 . . . Bp, we conclude again that A �t B.

– If A≡ xi A1 . . . An (n≥ 0), then ctt(A) has the form φiα1 . . . αn. If B has type ctt(A) in the
basis Γt, then by (2) and Lemma 4.13(ii), B must be either of the form ( .c.1) xjB1 . . . Bm
or ( .c.2) ⊥B1 . . . Bm.
1) Then Γt �t B : φiα1 . . . αn implies φjβ1 . . . βm ≤t φiα1 . . . αn, by Lemma 4.13( ii.c), for

some βl such that Γt �t Bl : βl (1≤ l ≤ m). Notice that βl �≤t θ and βl �≤t φkθ by (i).
From this, by Lemma 5.2(i), we infer i = j, m = n and βl ≤t αl for 1≤ l ≤ n. Hence,



Theoretical Computer Science 272 (Theories of Types and Proofs 1997): 3-40, 2002 29

by induction, Al �t Bl, for 1≤ l ≤ n, and this implies A �t B.
2) Then ωβ1 . . . βm≤t φiα1 . . . αn, for some βl (1≤ l≤m) such that Γt �t Bl : βl . This case

is impossible. In fact, if m > n we get βm−n≤t θ, whenever i = 0 and βm−n≤t φi−1θ,
whenever i > 0. If m ≤ n, we get ω ≤t φiα1 . . . αn−m.

– If A ≡ λxi.A′, then ctt(A) has the form φi→α. If B has type ctt(A) in Γt then B must
be an abstraction λy.B′ by Lemma 5.8(iii) and by a renaming of bound variables we
can assume y ≡ xi. Then Γt �t B′ : α and induction applies.

– If A≡ ⊥ there is nothing to prove.

Lemma 5.9 Let ϕ ∈ {w,h}, A ∈ A(n)
ϕ and pp

(n)
ϕ (A) = 〈Γ;α〉. Then B ∈ Aϕ and Γ �ϕ B : α imply

A �ϕ B.

Proof: We prove by induction on A a stronger claim:

Let A ∈ A(n)
ϕ , pp

(n)
ϕ (A) = 〈∆;α〉 and Γ be a special basis of degree n which contains ∆. Then B ∈ Aϕ

and Γ �ϕ B : α imply A �ϕ B.

The desired property is then obtained by taking Γ = ∆.

• A ≡ λx.A′. Then pp
(n)
ϕ (A) = 〈∆; β→α〉 and 〈∆, x:β;α〉 = pp(A′), if β �=ϕ ω, or 〈∆;α〉 =

pp(A′), otherwise. If B ≡ λx.B′, then Γ �ϕ B : β→α implies Γ, x:β �ϕ B′ : α and we apply
the induction hypothesis. If B ≡ yB1 . . . Bm, then Γ �ϕ B : β→α implies Γ �ϕ λz.Bz : β→α,
where z �∈ FV(B). Therefore, from a previous case, A �ϕ λz.Bz and, by definition,
λz.Bz �ϕ B.

• A ≡ xA1 . . . Am. Then pp
(n)
ϕ (A) = 〈∆′ � {x:α1→ . . .→αm→ψ

(n)
i };ψ

(n)
i 〉, where pp

(n)
ϕ (Aj) =

〈∆ j;αj〉, for 1≤ j≤m and ∆′=
⊎m

j=1 ∆ j. So, by Lemma 5.5(i), B≡ xB1 . . . Bm and Γ �ϕ Bj : αj,
for 1≤ j≤m. This implies, by induction, Aj�ϕ Bj, for 1≤ j≤m, so we conclude A�ϕ B.

Lemma 5.10 Assume ϕ ∈ {e,i}, A, B ∈ Aϕ. Let h be the height of Tϕ(A), and n be such that

A, (B)(h)ϕ ∈ A(n)
ϕ . Then pp

(n)
ϕ (A) = 〈Γ;α〉 and Γ �ϕ B : α imply A �ϕ B.

Proof: We prove by induction on A a stronger claim:

Assume A, B ∈ Aϕ. Let h be such that (A)
(h)
ϕ ≡ A, and n be such that A, (B)(h)ϕ ∈ A(n)

ϕ .

Moreover, let pp
(n)
ϕ (A) = 〈∆;α〉 and Γ be a generalised special basis of degree n that contains ∆.

Then Γ �ϕ B : α implies A�ϕ B.

The desired property is then obtained by taking Γ = ∆.

• A ≡ λx.A′. Then pp
(n)
ϕ (A) = 〈∆; β→α〉, and, if β �=ϕ ω, then 〈∆, x:β;α〉 = pp(A′), and

〈∆;α〉 = pp(A′) otherwise. If B ≡ λx.B′, then Γ �ϕ B : β→α implies Γ, x:β �ϕ B′ : α and
we are done by induction. If B ≡ yB1 . . . Bm, then Γ �ϕ B : β→α implies Γ �ϕ λz.Bz :
β→α, where z �∈ FV(B). Notice that, by Definitions 2.4 and 2.5, Tϕ(λz.Bz) = Tϕ(B), and,

therefore, (λz.Bz)(h)ϕ = (B)(h)ϕ ∈ A(n)
ϕ . From the previous case we get A �ϕ λz.Bz and, by

definition, λz.Bz �ϕ B.
• A≡ xA1 . . . Am. Then

pp
(n)
ϕ (A) = 〈∆′ � {x:α1→ . . .→αm→ζn→χ

(n)
i };ζn→χ

(n)
i 〉,

where pp
(n)
ϕ (Aj) = 〈∆ j;αj〉 (1 ≤ j ≤ m), and ∆′ =

⊎m
j=1 ∆ j. Then, by Lemma 5.5(ii), B ≡



Theoretical Computer Science 272 (Theories of Types and Proofs 1997): 3-40, 2002 30

λy1 . . . yk.xB1 . . . BmC1 . . . Ck, Γ�{y1:ζ, . . . ,yk:ζ} �ϕ Bj : αj, for 1≤ j≤m, and Γ�{y1:ζ, . . . ,yk :ζ} �ϕ

Cj : ζ, for 1 ≤ j ≤ k. This implies, by induction, Aj �ϕ Bj, for 1 ≤ j ≤ m, so we conclude,
by definition, A �ϕ B.

Theorem 5.11 (Main Theorem) The following conditions are equivalent:
i) Tϕ(M) = Tϕ(N);

ii) Γ �ϕ M : α if and only if Γ �ϕ N : α, for all Γ,α.

Proof: ((i)⇒ (ii)) : If M and N have the same trees, then they have the same sets of approxi-
mate normal forms, and, therefore, the same types by the Approximation Theorem (The-
orem 4.25).

((ii)⇒ (i)) : If Tϕ(M) �= Tϕ(N), then by Lemma 3.12 we can find an A ∈ Aϕ(M) such that
there is no B ∈ Aϕ(N) such that A �ϕ B (or vice versa).

– For ϕ = t, Γt �t M : ctt(A) and Γt ��t N : ctt(A), by the Approximation Theorem (The-
orem 4.25) and Lemma 5.8(iv).

– For ϕ ∈ {w,h}, let n be so big that A ∈ A(n)
ϕ and 〈Γ;α〉 = pp

(n)
ϕ (A). We have by the

Approximation Theorem (Theorem 4.25) and Lemma 5.9 that Γ �ϕ M : α and Γ ��ϕ N : α.

– For ϕ ∈ {e,i}, let h be the height of Tϕ(A) and n be so big that A, (N)
(h)
ϕ ∈ A(n)

ϕ .

This implies (B)(h)ϕ ∈ A(n)
ϕ , for all B ∈ A(N). Moreover, let 〈Γ;α〉 = pp

(n)
ϕ (A). Then we

have, by the Approximation Theorem (Theorem 4.25) and Lemma 5.10, Γ �ϕ M : α and
Γ ��ϕ N : α.

In all cases, we get a discrimination algorithm, i.e., for two arbitrary terms M, N with dif-
ferent ϕ-trees, we can always find Γ and α such that Γ �ϕ M : α and Γ ��ϕ N : α, or vice versa.
The least easy case is that of ϕ ∈ {e,i}. In this case we take an approximate normal form A
such that A ∈ Aϕ(M) and there is no B ∈ Aϕ(N) such that A �ϕ B (or vice versa). Let h be

the height of Tϕ(A) and n be so big that A, (N)
(h)
ϕ ∈ A(n)

ϕ . This implies (B)(h)ϕ ∈ A(n)
ϕ , for all

B ∈ A(N). Now we can choose 〈Γ;α〉 = pp
(n)
ϕ (A).

Example 5.12 • ⊥⊥ ∈ At(Ω3) and At(λz.Ω2) = {⊥,λz.⊥}. Then ctt(⊥⊥) = ωω, and Γt �t
Ω3 : ωω, while Γt ��t λz.Ω2 : ωω.
• λz.⊥ ∈ At(λz.Ω2) and, for all A ∈ At(Ω3), λz.⊥ ��ϕ A. We observe that ctt(λz.⊥) =

ω→ω and Γt �t λz.Ω2 : ω→ω, while Γt ��t Ω3 : ω→ω.

• λz.⊥ ∈ Aw(λz.Ω2) and Aw(Ω3) = {⊥}. We get pp
(3)
w (λz.⊥) = 〈∅;ω→ω〉 and �w λz.Ω2 :

ω→ω, while ��w Ω3 : ω→ω.
• ∆2 ∈ Ah(∆2) and, for all A ∈ Ah(λx.x(λy.xy)), ∆2 ��h A. We get

pp
(4)
w (∆2) = 〈∅;ψ(4)

1 ∧(ψ
(4)
1 →ψ

(4)
2 )→ψ

(4)
2 〉,

�h ∆2 : ψ
(4)
1 ∧(ψ

(4)
1 →ψ

(4)
2 )→ψ

(4)
2 , and

��h λx.x(λy.xy) : ψ
(4)
1 ∧(ψ

(4)
1 →ψ

(4)
2 )→ψ

(4)
2 .

• I ∈ Ae(I) and, for all A ∈ Ae(RR), I ��e A. We get

pp
(3)
e (I) = 〈∅; (ζ(3)→χ

(3)
1 )→ζ(3)→χ

(3)
1 〉,

�e I : (ζ(3)→χ
(3)
1 )→ζ(3)→χ

(3)
1 , and

��e RR : (ζ(3)→χ
(3)
1 )→ζ(3)→χ

(3)
1 .



Theoretical Computer Science 272 (Theories of Types and Proofs 1997): 3-40, 2002 31

• I ∈ Ai(RR) and, for all A ∈ Ai(Y), I ��i A. We get

pp
(3)
i (I) = 〈∅; (ζ(3)→χ

(3)
1 →ζ(3)→χ

(3)
1 〉),

�i RR : (ζ(3)→χ
(3)
1 →ζ(3)→χ

(3)
1 ), and

��i Y : (ζ(3)→χ
(3)
1 )→ζ(3)→χ

(3)
1 .

Acknowledgements

The authors are grateful to the anonymous referees for their helpful comments. The second
author wishes to thank also Antonio Tinelli and Federica Lotti.

References

[1] Samson Abramsky and C.-H. Luke Ong. Full abstraction in the lazy lambda calculus. Information
and Computation, 105(2):159–267, 1993.

[2] Steffen van Bakel. Principal type schemes for the strict type assignment system. Journal of Logic
and Computation, 3(6):643–670, 1993.

[3] Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Fer-Jan de Vries. Types for trees. In
PROCOMET’98, pages 6–29. Chapman & Hall, London, 1998.

[4] Henk Barendregt. The lambda calculus. Its syntax and semantics. North-Holland, Amsterdam, revised
edition, 1984.

[5] Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A filter lambda model and
the completeness of type assignment. Journal of Symbolic Logic, 48(4):931–940, 1983.

[6] Alessandro Berarducci. Infinite λ-calculus and non-sensible models. In Logic and algebra (Pontig-
nano, 1994), pages 339–377. Dekker, New York, 1996.

[7] Alessandro Berarducci and Mariangiola Dezani-Ciancaglini. Infinite λ-calculus and types. Theo-
retical Computer Science, 212(1-2):29–75, 1999.

[8] Gérard Boudol. Lambda-calculi for (strict) parallel functions. Information and Computation,
108(1):51–127, 1994.

[9] Gérard Boudol and Cosimo Laneve. The discriminating power of multiplicities in the λ-calculus.
Information and Computation, 126(1):83–102, 1996.

[10] Mario Coppo, Mariangiola Dezani-Ciancaglini, Furio Honsell, and Giuseppe Longo. Extended
type structures and filter lambda models. In Logic colloquium ’82, pages 241–262. North-Holland,
Amsterdam, 1984.

[11] Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. Principal type schemes and
λ-calculus semantics. In To H. B. Curry: essays on combinatory logic, lambda calculus and formalism,
pages 535–560. Academic Press, London, 1980.

[12] Mario Coppo, Mariangiola Dezani-Ciancaglini, and Maddalena Zacchi. Type theories, normal
forms, and D∞-lambda-models. Information and Computation, 72(2):85–116, 1987.

[13] Mariangiola Dezani-Ciancaglini, Ugo de’Liguoro, and Adolfo Piperno. A filter model for concur-
rent λ-calculus. SIAM Journal of Computation, 27(5):1376–1419, 1998.

[14] Mariangiola Dezani-Ciancaglini, Benedetto Intrigila, and Marisa Venturini-Zilli. Böhm’s theorem
for Böhm trees. In ICTCS’98, pages 1–23. World Scientific, Oxford, 1998.

[15] Mariangiola Dezani-Ciancaglini, Paula Severi, and Fer-Jan de Vries. Böhm’s theorem for Berar-
ducci trees. In CATS’00.

[16] Mariangiola Dezani-Ciancaglini, Jerzy Tiuryn, and Paweł Urzyczyn. Discrimination by parallel
observers: the algorithm. Information and Computation, 150(2):153–186, 1999.

[17] Erwin Engeler. Algebras and combinators. Algebra Universalis, 13(3):389–392, 1981.
[18] Martin Hyland. A syntactic characterization of the equality in some models for the lambda calcu-

lus. Journal of the London Mathematical Society (2), 12(3):361–370, 1975/76.
[19] Richard Kennaway, Jan Willem Klop, Ronan Sleep, and Fer-Jan de Vries. Infinitary lambda calcu-

lus. Theoretical Computer Science, 175(1):93–125, 1997.



Theoretical Computer Science 272 (Theories of Types and Proofs 1997): 3-40, 2002 32

[20] Richard Kennaway, Vincent van Oostrom, and Fer-Jan de Vries. Meaningless terms in rewriting.
Journal of Functional and Logic Programming, Article 1, 35 pp. (electronic), 1999.

[21] Jean-Jacques Lévy. An algebraic interpretation of the λβK-calculus, and an application of a labelled
λ-calculus. Theoretical Computer Science, 2(1):97–114, 1976.

[22] Giuseppe Longo. Set-theoretical models of λ-calculus: theories, expansions, isomorphisms. Annals
of Pure and Applied Logic, 24(2):153–188, 1983.

[23] Reiji Nakajima. Infinite normal forms for the λ-calculus. In λ-calculus and computer science theory,
Lecture Notes in Computer Science, Vol. 37, pages 62–82. Springer Verlag, Berlin, 1975.

[24] Simonetta Ronchi della Rocca. Characterization theorems for a filter lambda model. Information
and Control, 54(3):201–216, 1982.

[25] Davide Sangiorgi. The lazy lambda calculus in a concurrency scenario. Information and Computa-
tion, 111(1):120–153, 1994.

[26] Dana Scott. Continuous lattices. In Toposes, algebraic geometry and logic, pages 97–136. Lecture
Notes in Mathematics., Vol. 274. Springer Verlag, Berlin, 1972.

[27] Dana Scott. Data types as lattices. SIAM Journal of Computing, 5(3):522–587, 1976.
[28] Dana Scott. Domains for denotational semantics. In Automata, languages and programming (Aarhus,

1982), pages 577–613. Springer Verlag, Berlin, 1982.
[29] Christopher P. Wadsworth. The relation between computational and denotational properties for

Scott’s D∞-models of the lambda-calculus. SIAM Journal of Computing, 5(3):488–521, 1976.

Appendix

Definition 5.13 (Trees) i) A tree is a prefix-closed set of sequences of non-zero natural
numbers such that, if s.(n + 1) belongs to a tree, then so does s.n.

ii) A labeled tree is a tree T equipped with a label function LT : T→ L, where L is the set of
labels.

The set formed only by the empty sequence will denote the one-node tree, whereas the
empty tree is denoted by the empty set. In the above definition, a node is identified with the
path connecting it to the root.

We denote by |s| the length of the sequence s. If |s| = k and h ≤ k, we can define s|h as the
prefix of s of length h.

Definition 5.14 (Tree pruning) i) Given a tree T, we define T|n, the pruning of T at level n,
as the set of sequences in T of length ≤ n, i.e.:

T|n = {s ∈ T | |s| ≤ n}.

Let T be a labeled tree. The label function LT|n of T|n is the obvious restriction of the label
function of T.

ii) Given a labeled tree T and a function f : L→ L, where L is the set of labels of T, we define
T|n, f as follows:

– the set of nodes of T|n, f coincides with that of T|n.
– the label function LT|n, f is defined by LT|n, f (s) = LT|n(s) if |s| ≤ n− 1, LT|n, f (s) = f (s)

otherwise.

Let Lt = {⊥,@, x,λx | x is a variable }, Lw = {⊥, x,λx | x is a variable }, and Lh = Le = Li =
{⊥,λy1 . . . yn.x | y1, . . . ,yn, x are variables and n ≥ 0}. Then the ϕ-trees are labeled trees with
sets of labels Lϕ.



Theoretical Computer Science 272 (Theories of Types and Proofs 1997): 3-40, 2002 33

Definition 5.15 (Infinite η-expansion) Let T and T′ be two head-trees and define f (λy1 . . . yn.x) =
x (n ≥ 0), f (⊥) = ⊥. Then 6

T ≥η T′ ⇔ ∀n.η(T|n, f ) = T′|n, f .

Given a finite ϕ-tree T, it is easy to find the approximate normal form A ∈ Aϕ such that
Tϕ(A) is T. For example, in the case of top trees we have the following mapping mt : Tt→At:f

mt


 x

T1

����
. . . Tm

����


 = xmt(T1) . . .mt(Tm) mt


 λx

T


 = λx.mt(T)

mt


 @

T
���

T′
���


 = mt(T)mt(T′) mt(⊥) = ⊥.

The definitions of mϕ : Aϕ→Tϕ for ϕ �= t are similar.

Definition 5.16 (Cut with ⊥) If g is the constant function always returning ⊥, then (M)
(h)
ϕ ,

i.e., the approximate normal form whose tree is Tϕ(M)|h,g, is defined by (M)
(h)
ϕ =mϕ(Tϕ(M)|h,g).

6 The present definition of ≥η differs from the original ([4], Definition 10.2.10), but they coincide when T′

is a single node whose label is a variable, and this is the only case used in the definition of infinite eta trees
(Definition 2.5).


