
Normalization, Approximation, and Semantics for
Combinator Systems∗

(Theoretical Computer Science, 290:975-1019, 2003)

Steffen van Bakel1 and Maribel Fernández2

1 Department of Computing, Imperial College, 180 Queen’s Gate, London SW7 2BZ, U.K.
2 LIENS (CNRS UMR 8548), École Normale Supérieure, 45 rue d’Ulm, 75005 Paris, France.

svb@doc.ic.ac.uk, maribel@di.ens.fr

Abstract
This paper studies normalization of typeable terms and the relation between approximation
semantics and filter models for Combinator Systems. It presents notions of approximants
for terms, intersection type assignment, and reduction on type derivations; the last will be
proved to be strongly normalizable. With this result, it is proved that every typeable term has
an approximant with the same type, and a characterization of the normalization behaviour of
terms using their assignable types is given. Then the two semantics are defined and compared,
and it is shown that the approximants semantics is fully abstract but the filter semantics is
not.

keywords: Intersection types, approximants, filter semantics, combinators

Introduction

In this paper we will focus on the relation between two approaches for semantics in the
framework of Combinator Systems (cs), being the filter semantics, obtained by interpreting
terms by the set of intersection types that can be assigned to them, and the approximants
semantics, where terms are interpreted by the set of their approximants. Approximants are
defined as rooted finite sub-trees of the (possibly infinite) normal form, based on the notion
of Ω-normal forms of Huet and Lévy [16].

The relation between the filter semantics and the approximation semantics has been studied
extensively in the setting of the Lambda Calculus (lc) [6] (see [8, 7, 1, 3]), where it has been
proved that they coincide [19, 3]. But, perhaps surprisingly, this has never been studied for
more general notions of rewriting, such as Term Rewriting Systems (trs) [12, 17].

Within the framework of orthogonal first-order trs, a term-like model is defined in [21],
interpreting terms by the set of their approximants [18]. For these trs it is also possible
to define a semantics where types are interpreted as multi-sorted algebras [12]. Although
these types are enough to describe manipulations of objects of an algebraic data-type, they
do not provide an account for polymorphism, or higher order functions, which are standard
in functional programming languages. A more general and expressive type system, using
intersection types, has been developed in [5] for Curryfied Term Rewriting Systems (CuTRS,
first-order trs extended with application). This type system is inspired by the Intersection
Type Discipline for lc, defined in [8] (see also [7, 1]): an extension of Curry’s system [10, 11] in
that, essentially, terms are allowed to have more than one type (using the type constructor ‘∩’).

∗ Partially supported by NATO Collaborative Research Grant CRG 970285 ‘Extended Rewriting and Types’.

Theoretical Computer Science, 290:975-1019, 2003 2

By introducing also the type constant ‘ω’ a type system for lc is obtained that is closed under
β-equality, and interpreting terms by their assignable types gives a filter lambda model [7, 3].

In this paper, based on the approach of [21], we will define a notion of approximation for
cs and show the following approximation result: for all terms that can be assigned a type in the
intersection system, there exists an approximant of that term that can be assigned the same
type. For lc, such an approximation result is relatively easy to obtain, because of the presence
of explicit abstraction, but in order to prove these results for abstraction-free calculi, like cs, a
new technique had to be developed. This technique is that of defining reduction on derivations
as a generalization of cut-elimination, that will be proven to be strongly normalizing. This
same technique can then also be applied to other formalisms, as done for example in [4],
where similar results are obtained for trs. Strong normalization of cut-elimination has been
studied in the past for several systems, but in the context of intersection types this topic had
not yet been tackled.

Using the approximation result, we will show the following properties of typeable combi-
nator terms in the intersection system:

• terms typeable without using ω are strongly normalizable,
• non-Curryfied terms that are typeable with σ from a basis B, such that ω does not occur

in B and σ, are normalizable, and
• terms typeable with type σ �= ω have a head-normal form.

A similar characterization of the normalization properties of terms using types in the in-
tersection system holds for trs, provided that the rewrite rules satisfy certain conditions [5].
In lc, these results are well-known (there is a difference though: the characterization of nor-
malization holds for all terms, whereas in cs it holds for non-Curryfied terms only, which
are terms where each combinator of arity n is applied to at least n arguments). Perhaps less
known is the fact that the notion of approximant can be useful to study the relation between
typeability and normalization: in this paper we will show that the approximation result al-
lows for a relatively easy proof of last of the results mentioned above for cs (a similar result
for lc was shown in [3], and an abbreviated proof for more general trs appeared in [4]).

Inspired by the approximation result, we will then focus on approximation and filter se-
mantics of cs, as a preparation for future studies of the same semantics in the context of
more general rewriting systems. There are several advantages to keeping the computational
framework relatively easy at first: confluence comes for free, and a direct relation between
cs and lc facilitates definitions and insight. However, note that the normalization proper-
ties of lc do not translate directly to cs, since the mappings between lc and Combinatory
Logic (a particular cs defined by Curry [9]) do not preserve normal forms nor reductions (see
Exp. 1.10).

Although trs are very popular in the area of programming language design and their
normalization properties are well-studied, there is still no thorough semantic analysis of trs.
As we have already mentioned, there exists some work in this direction, either supported
by types [14] or not [21], but, for example, the relation between these models has not been
studied. This paper is a first step towards filling that void, by studying two approaches to
semantics for cs, the approximation semantics and the filter semantics, and comparing their
expressiveness. We aim to bring these approaches to the context of trs in future work.

Summarizing, the main contributions of this paper are:

• a strong normalization result for cut-elimination for a system with intersection types,
• a characterization of normalization properties of typeable combinator systems,
• the definition of a filter semantics for cs where terms are interpreted by their assignable

Theoretical Computer Science, 290:975-1019, 2003 3

types, and an approximation semantics where terms are interpreted by their approxi-
mants,

• a proof that these semantics are adequate, and
• a study of the conditions needed to obtain a full-abstraction result.

Outline

In this paper, we will, in Section 1, define Combinator Systems, for which we will develop a
notion of type assignment that uses intersection types in Section 2. The intersection type as-
signment system we use in this paper is just the essential type assignment system for CuTRS [5],
restricted to cs. We will show a subject reduction result in Section 3.

In Section 7, we will define the set of approximants of a term in cs, by introducing a special
symbol ⊥ into our systems and defining approximate normal forms. In Sections 4 to 8, we
present the formal construction needed to show that any typeable term in a typeable cs has
an approximant of the same type (Thm. 8.2). In order to prove this theorem, we will modify
the type system slightly in Section 4 and introduce, in Section 5, a notion of reduction on type-
derivations in this modified system. We will show that this derivation reduction is strongly
normalizing (Thm. 6.6). A consequence of this result will be that every term typeable without
using the universal type constant ω is strongly normalizable (Thm. 8.7).

Using the approximation result, we will then prove two normalization properties of ty-
peable combinator systems, the first of which is a head-normalization theorem (Thm. 8.4).
The combinatorial equivalent of the characterization of normalisation in lc no longer holds
(see Section 8). However, we will prove a normalization theorem (Thm. 8.5) for the class of
typeable non-Curryfied terms.

In Section 9, we give the definition of a filter semantics for cs, where terms are interpreted
by their assignable types, and an approximation semantics, where terms are interpreted by
their approximants. The approximation semantics gives a model for cs, whereas the filter
semantics gives a semi-model only, except for special cases, when it gives a model.

Section 10 contains the conclusions.

1 Combinator Systems

In this section, we will give a detailed presentation of Combinator Systems (cs). cs will be
defined as a special kind of applicative trs [17], with the restriction that formal parameters
of function symbols are not allowed to have structure, and right-hand sides of term rewriting
rules are constructed of term-variables only. We have chosen this kind of presentation in view
of a future extension of the results of this paper to full trs, in the spirit of [5]. Notice that
our treatment differs from, for example, that of [13], where only combinatory complete cs are
considered.

Definition 1.1 (Combinator terms) i) An alphabet or signature Σ= (C,X) consists of a count-
able infinite set X of variables ranged over by x,y,z, . . ., a non-empty set C = {D,Z, . . .} of
combinators, ranged over by C, D, E, . . ., each equipped with an arity greater than 0, and
the binary function symbol Ap (application).

ii) The set T(C,X) of terms, ranged over by t, is defined by:

t ::= x | C | Ap(t1, t2)

As usual, since ‘Ap’ is the only function symbol, we will write (t1 t2) instead of Ap(t1, t2),

Theoretical Computer Science, 290:975-1019, 2003 4

and left-most, outermost brackets will be omitted, so t1 t2 t3 · · · tn stands for

Ap(· · ·Ap(Ap(t1, t2), t3)· · ·, tn).

The following is the usual notion of substitution in combinator systems.

Definition 1.2 (Term-substitutions) A term-substitution R is a map from T(C,X) to T(C,X),
determined by its restriction to a finite set of variables, satisfying R(t1 t2) = R(t1)R (t2). We
will write tR instead of R (t). If R maps xi to ui, for 1≤ i≤n, we also write {x1 �→u1, . . . , xn �→un}
for R, and write t�u for tR.

Combinator Systems, and the notion of rewriting on combinator terms, are defined by the
following:

Definition 1.3 (Combinator Systems) i) A combinator rule on Σ = (C,X) is a pair (l,r) of
terms in T(C,X), such that:
a) There are C and distinct x1, . . . , xn, such that l = C x1 · · · xn, where n = arity(C).
b) The variables occurring in r are contained in l, and r contains no symbols from C.

ii) A Combinator System (cs) is a pair of an alphabet Σ and a set R of combinator rules on
Σ = (C,X), such that there is exactly one rule in R for each combinator C ∈ C. This rule
(l,r) is called the combinator rule for C; we will use the symbol C also as name for this rule
and write l →C r.

iii) A combinator rule l →C r determines a set of reductions lR →C rR for all term-substitutions
R. The left-hand side lR is called a redex; it may be replaced by its ‘contractum’ rR inside
any context C[]; this gives rise to reduction steps: C[lR]→C C[rR].

iv) We will write t →R t′ if there is a rule l →C r in R such that t →C t′, and call →R the one-
step rewrite relation generated by R, and →+

R (respectively →∗
R) the transitive (respectively

reflexive and transitive) closure of →R (the index R will be omitted when it is clear from
the context). If t0 →+ tn, then tn is a reduct of t0.

Example 1.4 (Combinatory Logic) The standard example of a cs is Combinatory Logic (cl)
– defined by Curry independently of lc [9] – that is, in our notation, formulated as follows:
cl = ((S,K, I),X),R), where R contains the rules

S xyz → xz(yz)
K xy → x
I x → x

The last rule was not part of the original definition, but is nowadays normally added.

We will assume that no two combinators have the same interpretation in lc (see Def. 1.7),
so a cs like

Ix → x
J x → x

is excluded, since it would give an immediate counter example against any full-abstraction
result with respect to the filter semantics (see Section 9).

This notion of reduction on combinator terms as in Def. 1.3 is also known as weak reduction
and satisfies the Church-Rosser Property (see [6]).

Theoretical Computer Science, 290:975-1019, 2003 5

Property 1.5 (Church-Rosser) If t →∗ u and t →∗ v, then there exists a w such that u →∗ w and
v →∗ w.

We now define (head-)normal forms, (head-)normalizability, strongly normalizability, un-
solvable and neutral terms.

Definition 1.6 ((Head-)normal forms) Let ((C,X),R) be a cs.
i) A term is in normal form with respect to R if it is irreducible.

ii) A term t is in head-normal form with respect to R if either
a) there are a variable x and terms t1, . . . , tn (n ≥ 0) such that t ≡ xt1 · · · tn, or
b) there are a combinator C ∈ C and terms t1, . . . , tn ∈ T(C,X) such that t ≡ Ct1 · · · tn, and

n < arity(C).
iii) A term is (head-)normalizable if it can be reduced to a term in (head-)normal form. A

rewrite system is strongly normalizing (or terminating) if all rewrite sequences are finite; it
is (head-)normalizing if every term is (head-)normalizable.

iv) A term is called unsolvable if it has no head-normal form.
v) A term t is neutral if there are a variable x and terms t1, . . . , tn, such that t ≡ xt1 · · · tn.

We now focus on the relation between reduction in cs and in lc.

Definition 1.7 Let C = ((C,X),R) be a cs. 〈 〉C
λ : T(C,X)→ Λ, the interpretation of combinator

terms over C in lc, is defined by:

〈x〉C
λ = x, for all x ∈X ,

〈t1 t2〉C
λ = 〈t1〉C

λ 〈t2〉C
λ ,

〈C〉C
λ = λx1· · ·xn.〈r〉C

λ , where C x1 · · · xn → r ∈ R

Notice that, since we assume the set of term variables for cs and lc to be the same, as well as
the two notions of application on terms, 〈r〉C

λ = r for every r that is the right-hand side of a
combinator rule.

Property 1.8 Let C = ((C,X),R) be a cs, then, for all t, t′ ∈ T(C,X): if t →∗ t′, then 〈t〉C
λ →→β 〈t′〉C

λ .

Proof: By induction on the definition of →∗. We only consider the case of
(C x1 · · · xn)R →C rR, where R = {x1 �→u1, . . . , xn �→un}. Let

R′ = {x1 �→〈u1〉C
λ , . . . , xn �→〈un〉C

λ}.

Then 〈(C x1 · · · xn)R〉C
λ = 〈C u1 · · ·un〉C

λ

= 〈C〉C
λ 〈u1〉C

λ · · · 〈un〉C
λ

= (λx1· · ·xn.r)〈u1〉C
λ · · · 〈un〉C

λ

→→β rR′

= 〈rR〉C
λ .

The proof is completed by induction on the number of steps in →∗, and by induction on the
structure of contexts.

Although the interpretation in lc of a cs, 〈 〉C
λ , respects reduction, in general, the length

of the reduction sequence increases significantly. Only for particular cs it is possible to also
define an interpretation of lc, [[]]C; the standard example is that of cl (see also [11, 6, 13];
in [13] also other combinatory complete cs are discussed).

Theoretical Computer Science, 290:975-1019, 2003 6

Definition 1.9 The mapping [[]]cl : Λ → T({S,K, I},X) is defined by:

[[x]]cl = x,
[[λx.M]]cl = λ∗x.[[M]]cl,
[[MN]]cl = [[M]]cl [[N]]cl.

where λ∗x.t, with t ∈ T({S,K, I},X), is defined by induction on the structure of t:

λ∗x.x = I,
λ∗x.t = K t, if x not in t,
λ∗x.t1t2 = S(λ∗x.t1)(λ

∗x.t2).

As for the accuracy of the above definitions, take:

(λ∗x.x) t = I t → t
(λ∗x.t1) t2 = K t1 t2 = t1, if x not in t
(λ∗x.t1t2) t3 = S(λ∗x.t1)(λ

∗x.t2) t3 = ((λ∗x.t1) t3)((λ∗x.t2) t3)

One important property of these two translations is that

〈[[M]]cl〉cl
λ →→β M,

for all M ∈Λ. There exists no converse of this property; moreover, the mapping 〈 〉cl
λ does not

preserve normal forms or reductions:

Example 1.10 ([6]) i) SK is a normal form, but 〈SK〉cl
λ →→β λxy.y,

ii) t = S(K(SII))(K(SII)) is a normal form, but 〈t〉cl
λ →→β λc.(λx.xx)(λx.xx), which does not

have a β-normal form,
iii) t = SK(SII(SII)) has no normal form, while 〈t〉cl

λ →→β λx.x.

We will show in Section 8 that the combinatorial equivalent of a well-known result for
intersection type assignment in the lc, i.e. the property that normalising terms can be typed
with a type not containing ω, no longer holds. Take for example the cs

Z xy → y,
D x → x x,

then Z(DD) is typeable with a type not containing ω (see the example before Thm. 8.5).
Notice that, since DD → DD → ·· ·, the term Z(DD) has no normal form. We will, however, in
Section 8, prove this normalization result for ‘Non-Curryfied’ terms.

Definition 1.11 (Non-Curryfied terms) The set TNC(C,X) of non-Curryfied terms is defined
inductively by:

t ::= xt1 · · · tn (n ≥ 0) | Ct1 · · · tn (arity(C)≤ n)
Notice that TNC(C,X) is a subset of T(C,X).

Note that Z(DD) �∈ TNC({Z,D},X), since Z has arity 2, and is applied here to only one sub-
term, DD. Also, none of the terms in Exp. 1.10 are in TNC({S,K, I},X).

As these examples show, normalization results of lc do not transfer easily to cs. In this
paper, we will study the normalization properties of cs directly in the cs framework.

Theoretical Computer Science, 290:975-1019, 2003 7

2 Intersection type assignment

It is well-known that in the study of normalization of reduction systems, the notion of type
plays an important role, and that many of the now existing type assignment systems for
functional programming languages are based on (extensions of) the Curry type assignment
system for lc [10, 11]. The Intersection Type Discipline (itd) presented in [8] (see also [7, 1])
is an extension of Curry’s system, in that, essentially, terms are allowed to have more than
one type (using the type constructor ‘∩’). By introducing also the type constant ‘ω’ a system
is obtained that is closed under β-equality, and interpreting terms by their assignable types
gives a filter lambda model [7, 3].

In this section, we will develop a notion of type assignment on cs that uses intersection
types. It is inspired by similar definitions presented in [13] and [5]. As in [13], we will
assume that, for every combinator C, there is a basic type from which all types needed for
an occurrence of C in a term can be obtained. The extension with respect to [13] is that we
will not limit ourselves to basic types that are the principal type of the corresponding lambda
term (see [19, 2]). The differences with [5] are on the level of the language considered. In
this paper, patterns are not used, i.e. rewrite rules cannot impose structure on arguments of
function symbols; moreover, no function symbol is allowed to appear in the right-hand side
of rewrite rules.
We will not consider general intersection types, as were defined in [7] and used in [13]. In-
stead, as in [5], we are going to use a restricted subset (the set of strict types, see [1]), that has
the same expressive power: strict types are the representatives for equivalence classes of the
types considered in the system of [7]. In the set of strict types, intersection type schemes and
the type constant ω play a limited role. We will assume that ω is the same as an intersection
over zero elements: if n = 0, then σ1∩· · ·∩σn ≡ ω, so ω does not occur in an intersection sub-
type. Moreover, intersection type schemes (so also ω) occur in strict types only as subtypes at
the left-hand side of an arrow type scheme.

Definition 2.1 (Strict types) i) Let Φ be a countable infinite set of type-variables, ranged
over by ϕ. Ts, the set of strict types, ranged over by σ,τ, . . ., is defined by:

σ ::= ϕ | ((σ1∩· · ·∩σn)→ σ), (n ≥ 0)

The set T of strict intersection types is defined by:

T = {(σ1∩· · ·∩σn) | n ≥ 0 & ∀1≤ i≤n [σi ∈ Ts]}

As usual in the notation of types, right-most, outermost brackets will be omitted, and, as
in logic, ∩ binds stronger than →. The type ω is defined as an intersection of zero strict
types.

ii) On T , the relation ≤ is defined as the smallest relation satisfying:

∀1≤ i≤n [σ1∩· · ·∩σn ≤ σi] (n ≥ 1)
∀1≤ i≤n [σ ≤ σi] ⇒ σ ≤ σ1∩· · ·∩σn (n ≥ 0)

σ ≤ τ ≤ ρ ⇒ σ ≤ ρ

ρ ≤ σ & τ ≤ µ ⇒ σ→τ ≤ ρ→µ

iii) We define the relation ∼ by: σ ∼ τ ⇐⇒ σ ≤ τ ≤ σ.

We will work with types modulo ∼ .

Theoretical Computer Science, 290:975-1019, 2003 8

Lemma 2.2 ([3]) For all σ,τ ∈ T :

σ ≤ τ ⇐⇒ σ = σ1∩· · ·∩σn,τ = τ1∩· · ·∩τm, for some σ1, . . . ,σn,τ1, . . . ,τm,
and, for every 1≤ j≤m, there is a 1≤ i≤n such that σi ≤ τj.

Notice that, by definition, in σ1∩· · ·∩σn, all σ1, . . . ,σn are strict; sometimes we will deviate
from this by writing σ∩τ also for σ,τ not in Ts.

Definition 2.3 (Bases) i) A statement is an expression of the form t:σ, where t is the subject
and σ is the predicate of t:σ.

ii) A basis B is a set of statements with (distinct) variables as subjects, and, if x:σ ∈ B, then
σ �= ω.

iii) If B1, . . . , Bn are bases, then
⋂
{B1, . . . , Bn} is the basis defined as follows:

x:σ1∩· · ·∩σm ∈
⋂
{B1, . . . , Bn}

if and only if m ≥ 1 and {x:σ1, . . . , x:σm} is the set of all statements that have x as subject
that occur in B1∪· · ·∪Bn.

iv) The relations ≤ and ∼ are extended to bases by:

B ≤ B′ ⇐⇒ ∀x:σ′ ∈ B′ ∃x:σ ∈ B [σ ≤ σ′]
B ∼ B′ ⇐⇒ B ≤ B′ ≤ B.

We will often write B, x:σ (or B∪{x:σ}) for the basis
⋂
{B,{x:σ}}, when x does not occur in

B. Notice that, in part (iii), if n = 0, then
⋂
{B1, . . . , Bn} = ∅, and that B ≤ ∅, for all B.

We will now recall three operations on types that are needed in the definition of type assign-
ment and are standard in intersection systems. Substitution is the operation that instantiates
a type (i.e. that replaces type-variables by types). The operation of expansion replaces a type
by the intersection of a number of copies of that type. The operation of lifting replaces a type
by a larger one, in the sense of ≤.

These three operations are of use in Def. 2.13, when we want to specify how, for a specific
combinator, a type required by the context can be obtained from the type provided for that
combinator by the environment (Def. 2.12). It is possible to define type assignment with fewer
or less powerful operations on types, but in order to obtain enough expressive power to prove
Thm. 2.19:(i), all three operations are needed.

Definition 2.4 (Type-substitution) i) The type-substitution (α/ϕ) : T → T , that replaces oc-
currences of ϕ by α, where ϕ ∈ Φ and α ∈ Ts ∪ {ω}, is defined by:

(α/ϕ) (ϕ) = α

(α/ϕ) (ϕ′) = ϕ′, if ϕ′ �= ϕ

(α/ϕ) (σ→τ) = ω, if (α/ϕ) (τ) = ω

(α/ϕ) (σ→τ) = (α/ϕ) (σ)→ (α/ϕ) (τ), if (α/ϕ) (τ) �= ω

(α/ϕ) (σ1∩· · ·∩σn) = (α/ϕ) (σ′
1)∩· · ·∩ (α/ϕ) (σ′

m),where
{σ′

1, . . . ,σ′
m} = {σi ∈ {σ1, . . . ,σn} | (α/ϕ) (σi) �= ω}

ii) The set of type-substitutions is closed under composition: if S1 and S2 are type-substitutions,
then so is S1◦S2, where S1◦S2(σ) = S1(S2(σ)).

iii) S(B) = {x:S(α) | x:α ∈ B & S(α) �= ω}.
iv) S(〈B,σ, E〉) = 〈S(B),S(σ),{S(ρ) | ρ ∈ E}〉.

Theoretical Computer Science, 290:975-1019, 2003 9

Note that the definition of substitution in an arrow type ensures that the resulting type is still
in T .

It is possible to define a notion of type-substitution that just replaces type variables by strict
types (so where α ∈ Ts); using such a definition, we would be forced to use the extra operation
of covering that deals with the introduction of ω (see also [3]. To keep the set of operations
small, we have decided not to follow that direction here.

Lemma 2.5 ([2]) Let S be a type-substitution. If σ ≤ τ, then S(σ)≤ S(τ), and if B ≤ B′, then
S(B)≤ S(B′).

Our definition of expansion is inspired by the one given in [19] for the full intersection
system in lc, we just need to make some minor changes to make sure that the type obtained
is always in T . For this, we have to check the last type-variable in arrow types (for a detailed
discussion of the complexity of this operation, see [2]).

Definition 2.6 The last type-variable of a strict type, last (σ), is defined by:

last (ϕ) = ϕ,
last (σ→τ) = last (τ).

Definition 2.7 (Expansion) For every µ ∈ T and n ≥ 2, the pair 〈µ,n〉 determines an expansion
Ex : T → T which is computed with respect to 〈B,σ, E〉 as follows (where B is a basis, σ ∈ T ,
and E is a finite set of types).

Affected variables : The set V〈B,σ,E〉
µ of type-variables is defined by:

a) If ϕ occurs in µ, then ϕ ∈ V〈B,σ,E〉
µ .

b) If last (τ) ∈ V〈B,σ,E〉
µ , with τ ∈ Ts and τ (a subtype) in 〈B,σ, E〉, then for all type-variables

ϕ that occur in τ: ϕ ∈ V〈B,σ,E〉
µ .

Renamings : Let V〈B,σ,E〉
µ = {ϕ1, . . . , ϕm}. Choose m × n different type-variables ϕ1

1, . . . , ϕ1
n, . . . ,

ϕm
1 , . . . , ϕm

n , such that each ϕ
j
i does not occur in 〈B,σ, E〉, for 1≤ i≤n and 1≤ j≤m. Let Si

be such that Si(ϕj) = ϕ
j
i.

Expansion of a type : Ex (τ) is defined by:

Ex (τ1∩· · ·∩τn) = Ex (τ1)∩· · ·∩Ex (τn)

Ex (τ) = S1(τ)∩· · ·∩Sn(τ), if last (τ)∈ V〈B,σ,E〉
µ .

Ex (ϕ) = ϕ, if ϕ �∈ V〈B,σ,E〉
µ .

Ex (σ→ρ) = Ex (σ) → Ex (ρ), if last (ρ) �∈ V〈B,σ,E〉
µ .

Expansion of B : Ex (B) = {x:Ex (ρ) | x:ρ ∈ B}.

Expansion of 〈B,σ, E〉 : Ex (〈B,σ, E〉) = 〈Ex (B),Ex (σ),{Ex (ρ) | ρ ∈ E}〉.
When an expansion operation Ex is applied to a type τ without specifying 〈B,σ, E〉 we assume
that the expansion is computed with respect to 〈∅,τ,∅〉.

The proofs of the following properties are similar to those in [2].

Lemma 2.8 Let Ex be the expansion determined by 〈µ,n〉. Then
i) a) For 1≤ i≤n, there are ρi and Si such that Si(ρ) = ρi and Ex(ρ) = ρ1∩· · ·∩ρn, or

b) Ex(ρ) ∈ Ts.

Theoretical Computer Science, 290:975-1019, 2003 10

ii) a) For 1≤ i≤n, there are Bi,σi, and Si such that Si(〈B,σ〉) = 〈Bi,σi〉, and Ex(〈B,σ, E〉) =
〈
⋂
{B1, . . . , Bn},σ1∩· · ·∩σn, E′〉, or

b) Ex(〈B,σ, E〉) = 〈B′,σ′, E′〉, with σ′ ∈ Ts.

Lemma 2.9 Let Ex be the expansion determined by 〈µ,n〉 and computed with respect to 〈B,σ, E〉.
i) If ρ appears as (sub)-type in B, σ or E, and ρ ≤ τ, then Ex(ρ)≤ Ex(τ).

ii) If B ≤ B′, then Ex(B)≤ Ex(B′).

Definition 2.10 (Lifting) A lifting L is an operation denoted by 〈〈B0,τ0〉, 〈B1,τ1〉〉, a pair of
pairs such that τ0 ≤ τ1 and B1 ≤ B0, and is defined by:

L(σ) = τ1, if σ = τ0

L(σ) = σ, otherwise
L (B) = B1, if B = B0

L (B) = B, otherwise

Definition 2.11 (Chains of operations on types) A chain Ch on types is an object [O1, . . . ,On],
where each Oi is an operation of type-substitution, expansion or lifting, and

[O1, . . . ,On] (σ) = On (· · ·(O1 (σ))· · ·)

We will use ∗ to denote the operation of concatenation of chains.

To complete the definition of type assignment, we present now the type assignment rules
that are used to assign types in T to terms and combinator rules. In order to type the com-
binators, we use an environment that provides a type in Ts for every C ∈ C, and use chains of
operations to obtain the type for an occurrence of the combinator from the type provided for
it by the environment.

Definition 2.12 (Environment) Let C = ((C,X),R) be a cs.
i) An environment for C is a mapping E : C → Ts.

ii) For C ∈ C, τ ∈ Ts, and E an environment, the environment E [C �→τ] is defined by:

E [C �→τ] (D) = τ, if D = C,
E [C �→τ] (D) = E(D), otherwise.

Since an environment E maps all C ∈ C to types in Ts, no combinator is mapped to ω.

We define now type assignment on terms and combinator rules.

Definition 2.13 (Type assignment) Let C = ((C,X),R) be a cs and E an environment for C.
i) Type assignment for terms in T(C,X) and derivations are defined by the following natural

deduction system (where all types displayed are in Ts, except for τ in rules (≤) and
(→E)):

(E) : (∃Ch [Ch(E (C)) = σ))]
B �E C:σ (→E) :

B �E t1:τ→σ B �E t2:τ

B �E t1 t2:σ

(≤) : (τ ≤ σ)
B, x:τ �E x:σ (∩I) :

B �E t:σ1 · · · B �E t:σn
(n ≥ 0)

B �E t:σ1∩· · ·∩σn

If B �E t:σ is derivable using a derivation D, we write D :: B �E t:σ. We write B �E t:σ to
express that there exists a derivation D such that D :: B �E t:σ, and �E t:σ when ∅ �E t:σ.
We will write B �ω

E t:σ if ω is not used in the derivation.

Theoretical Computer Science, 290:975-1019, 2003 11

ii) Let C ∈ C, with arity(C) = n. The combinator rule C x1 · · · xn → r ∈ R is typeable with respect
to E , if there are σ1, . . . ,σn ∈ T and σ ∈ Ts, such that E(C) = σ1→·· ·→σn→σ, and {xi:σi |
∀1≤ i≤n [σi �= ω]} �E r:σ.

iii) C is typeable with respect to E , if every rule in R is typeable with respect to E .

At first sight, the formulation ‘is typeable with respect to E ’ might seem a restriction on the
class of systems that are considered in this paper, but it is not. Notice that an environment
just maps combinators to types, without regard for the structure of their rewrite rules. The
condition is added above just to ascertain that the type provided by the environment actually
makes sense, and respects the structure of the rules involved.

Notice that if B �E t:σ, then B can contain more statements than needed to obtain t:σ. More-
over, by part (ii) of this definition, also {x1:σ1, . . . , xn:σn} �E C x1 · · · xn:σ. However, just stating

‘The combinator rule l → r is typeable with respect to the environment E , if and only if
there exist basis B and type σ, such that B �E l:σ and B �E r:σ.’

would give a notion of type assignment that is not comparable to intersection type assignment
for lc. For an example, take the combinator rule E xy → xy. Let E(E) = ϕ1→ϕ2→ϕ3. Take
B = {x:ϕ1∩(ϕ2→ϕ3),y:ϕ2}, then both B �E E xy:ϕ3 and B �E xy:ϕ3 are easy to derive. Notice
that this combinator rule for E corresponds to the lambda term λxy.xy, but ϕ1→ϕ2→ϕ3 is not
a correct type for this term.

The reason not to allow environments to provide types outside of Ts is purely practical,
to obtain easier definitions. Notice that it is possible to derive an intersection type for a
combinator, using rule (E) a number of times, followed by (∩I).

The following result follows immediately.

Lemma 2.14 B �E x:σ if and only if there is x:τ ∈ B such that τ ≤ σ.

Proof: Straightforward.

Example 2.15 The rules of cl (see Exp. 1.4) are typeable with respect to the environment Ecl:

Ecl(S) = (ϕ1→ϕ2→ϕ3)→(ϕ4→ϕ2)→ϕ1∩ϕ4→ϕ3,
Ecl(K) = ϕ5→ω→ϕ5,
Ecl(I) = ϕ6→ϕ6.

The term SKSI can be typed with the type α→α with respect to Ecl: take

Ch1 = [(ϕ1 �→α→α), (ϕ2 �→ω), (ϕ3 �→α→α), (ϕ4 �→ω)],
Ch2 = [(ϕ5 �→α→α)],
Ch3 = [(ϕ6 �→α)],

then (notice that Ch1 (ϕ4→ϕ2) = ω and Ch1 (ϕ1∩ϕ4) = α→α)

Ch1 (Ecl(S)) = ((α→α)→ω→α→α)→ω→(α→α)→α→α

Ch2 (Ecl(K)) = (α→α)→ω→α→α

Ch3 (Ecl(I)) = α→α

Theoretical Computer Science, 290:975-1019, 2003 12

and

�ECL
S:Ch1 (Ecl(S)) �ECL

K:Ch2 (Ecl(K))

�ECL
SK:ω→(α→α)→α→α �ECL

S:ω

�ECL
SKS:(α→α)→α→α �ECL

I:Ch3 (Ecl(I))

�ECL
SKSI:α→α

The definition of type assignment on cs as presented in this paper allows for the formulation
of a precise relation between types assignable to terms, and those assignable to equivalent
lambda terms. In fact, a result similar to part of the following property has already been
proved in [13].

Definition 2.16 Let �λ∩ stand for the notion of intersection type assignment on lc, as de-
fined in [3] by the following derivation rules (where all types displayed are in Ts, except for τ
in rules (→I), (→E) and (≤)):

(→I) :
B, x:τ �λ∩ M:σ

B �λ∩ λx.M:τ→σ
(→E) :

B �λ∩ M:τ→σ B �λ∩ N:τ

B �λ∩ MN:σ

(≤) : (τ ≤ σ)
B, x:τ �λ∩ x:σ (∩I) :

B �λ∩ M:σ1 · · · B �λ∩ M:σn

B �λ∩ M:σ1∩· · ·∩σn

The following states the relation between type assignment in cs and in lc (recall that [[·]]cl
is the interpretation of λ-terms in cl given in Def. 1.9).

Property 2.17 If B �λ∩ M:σ, then B �ECL [[M]]cl:σ.

Proof: Similar to Thm. 3.7 of [13].

A more general formulation of Property 2.17, of course, only holds for cs that are expressive
enough to encode lc. However, even for those the property is only provable if the environment
assigns to the combinator symbols the principal types [19, 2] of the corresponding lambda
terms. For example, take �λ∩ λx.x:α→α and notice that [[λx.x]]cl = I. If E (I) = (α→α)→α→α,
then it is not possible to assign α→α to I in �E (see also Section 9).

However, we can show the following two results for cs equipped with principal environ-
ments.

Definition 2.18 Let C = ((C,X),R) be a cs. The environment E is called principal for C, if for
all C ∈ C, E (C) is the principal type for 〈C〉C

λ in �λ∩ . 1

Theorem 2.19 Let C = ((C,X),R) be a cs.
i) If E is principal for C, then B �λ∩ 〈t〉C

λ :σ implies B �E t:σ.
ii) B �E t:σ implies B �λ∩ 〈t〉C

λ :σ.

Proof: Assume (without loss of generality), that σ ∈ Ts.

1 Since for every l → r ∈ R, r is in normal form, not containing combinators, it is possible to define the notion
of principal environment directly for cs, without side-stepping to lc, but that would significantly increase the
complexity of the proofs of this paper. It would not affect any of the results; in fact, the definition above would
become a provable property.

Theoretical Computer Science, 290:975-1019, 2003 13

i) By induction on the structure of terms in T(C,X). The only case that needs attention is
that of t = C ∈ C, so B �λ∩ 〈C〉C

λ :σ. Since E is principal for C, E(C) is the principal type for
〈C〉C

λ in �λ∩ and there exists (see [2]) a chain of operations Ch such that Ch(E(C)) = σ.
But then B �E C:σ by rule (E).

ii) By induction on the definition of 〈 〉C
λ ; the only alternative that needs consideration is

that of t = C ∈ C, and then the last rule in the derivation for B �E t:σ is (E). Then there
is a chain Ch such that Ch(E(C)) = σ. Let C x1 · · · xn → r be the rule for C. Then, by
Def. 2.13:(ii), there are τ1, . . . ,τn ∈ T and τ ∈ Ts, such that {x1:τ1, . . . , xn:τn} �E r:τ and
E(C) = τ1→·· ·→τn→τ. Then, by induction, {x1:τ1, . . . , xn:τn} �λ∩ r:τ (notice that 〈r〉C

λ =
r). Then, by rule (→I) of �λ∩ , �λ∩ λx1 . . . xn.r : τ1→·· ·→τn→τ; since �λ∩ is closed
for all three operations of substitution, expansion, and lifting (see [3]), we also have
�λ∩ λx1 . . . xn.r : σ, so �λ∩ 〈C〉C

λ : σ.

3 Subject reduction

In this section we will show that the notion of type assignment defined here on cs satisfies
the subject reduction property (Thm. 3.7). In order to achieve this, we first show that the
three operations (type-substitution, expansion, and lifting) defined in the previous section can
be applied to type-derivations, and are sound (the result is a well-defined derivation). We
will also show that the type assignment rule (E) is sound in the following sense: if there is an
operation O such that O (E(C)) = σ, then, for every type τ ∈ Ts such that σ ≤ τ, the combinator
rule for C is typeable with respect to the changed environment E [C �→τ].

Property 3.1 (Soundness of type-substitution) Let S be a type-substitution.
i) If B �E t:σ, then S(B) �E t:S(σ).

ii) If C x1 · · · xn → r is a rule typeable with respect to the environment E , and S(E(C)) �= ω, then it
is typeable with respect to E [C �→ S(E(C))].

Proof: i) By easy induction on the structure of derivations.
ii) By Def. 2.13:(ii), there are σ1, . . . ,σn,σ, such that E(C) = σ1→·· ·→σn→σ, and {xi:σi |

∀1≤ i≤n [σi �= ω]} �E r:σ. Since S(E(C)) �= ω, by definition of substitution, S(E(C)) =
S(σ1)→·· ·→S(σn)→S(σ). By (i), we have S({x1:σ1, . . . , xn:σn}) �E r:S(σ), that is, {xi:S(σi) |
S(σi) �= ω} �E r:S(σ). Therefore the rule is typeable.

The following essentially shows that lifting is sound:

Lemma 3.2 i) If B �E t:σ and B′ ≤ B, then B′ �E t:σ.
ii) If B �E t:σ and σ ≤ τ, then B �E t:τ.

iii) If B �ω
E t:σ, σ ≤ τ, and τ is ω-free, then B �ω

E t:τ.

Proof: We will only give the proof for the second part; the third is similar, and the first is
straightforward. We will prove it in two stages: first for σ,τ both in Ts, then for σ,τ in T .

(σ,τ ∈ Ts) : This is proven by induction on the structure of terms.
(t ≡ x) : Then, by Lem. 2.14, there exists x:ρ ∈ B such that ρ ≤ σ. Since also ρ ≤ τ, B �E x:τ.
(t ≡ C) : Then there is a chain Ch such that Ch(E(C)) = σ. Since σ ≤ τ, L = 〈〈∅,σ〉, 〈∅,τ〉〉

is a lifting, then Ch∗ [L] is a chain, therefore also B �E C:τ.
(t ≡ t1 t2) : So B �E t1:ρ→σ, and B �E t2:ρ, for a certain ρ. Since σ ≤ τ, also ρ→σ ≤ ρ→τ;

notice that both ρ→σ and ρ→τ ∈ Ts. Then B �E t1:ρ→τ by induction, so, by (→E),

Theoretical Computer Science, 290:975-1019, 2003 14

B �E t1 t2:τ.

(σ = σ1∩· · ·∩σm,τ = τ1∩· · ·∩τn) : Then, for every 1≤ j≤m, B �E t:σj. Then, by Lem. 2.2, for
every 1≤ i≤n, there is a 1≤ ji ≤m such that σji ≤ τi and σji ,τi ∈ Ts. Since the result has al-
ready been proved for Ts, for every 1≤ i≤n, B �E t:τi. Then by (∩I), B �E t:τ1∩· · ·∩τn.

Property 3.3 (Soundness of lifting) Let L be a lifting.
i) If B �E t:ρ, then L(B) �E t:L (ρ).

ii) If C x1 · · · xn → r is a combinator rule, typeable with respect to E , and
L(E(C)) ∈ Ts, then it is typeable with respect to E [C �→ L(E(C))].

Proof: i) By Lem. 3.2.
ii) By Def. 2.13:(ii), there are σ1, . . . ,σn,σ, such that E(C) = σ1→·· ·→σn→σ and

{xi:σi | ∀1≤ i≤n [σi �= ω]} �E r:σ. Since

σ1→·· ·→σn→σ ≤ L (σ1→·· ·→σn→σ),

by Def. 2.1:(ii), there are τ1, . . . ,τn,τ, such that

L (σ1→·· ·→σn→σ) = τ1→·· ·→τn→τ,

and for 1≤ i≤n, τi ≤ σi, and σ ≤ τ. Hence L′ =

〈〈{xi:σi | ∀1≤ i≤n [σi �= ω]},σ〉, 〈{xi:τi | ∀1≤ i≤n [τi �= ω]},τ〉〉

is a lifting, and by part (i), we obtain

L′ ({xi:σi | ∀1≤ i≤n [σi �= ω]}) �E r:L′ (σ),

so {xi:τi | ∀1≤ i≤n [τi �= ω]} �E r:τ.

Property 3.4 (Soundness of expansion) Let Ex be an expansion operation determined by 〈µ,n〉,
such that Ex〈B,σ, E〉 = 〈B′,σ′, E′〉.

i) If B �E t:σ using a set E of types for the occurrences of combinators in t, then B′ �E t:σ′.
ii) If C x1 · · · xn → r is a rule, typeable with respect to E , and Ex (E(C)) = τ1∩· · ·∩τm ∈ T (m ≥ 1),

then, for every 1≤ j≤m, the rule is typeable with respect to E [C �→τj].

Proof: i) By induction on T . We will only show the part σ ∈ Ts. Then, by Lem. 2.8 either:
(σ′ = τ1∩· · ·∩τm) : Then B′ =

⋂
{B1, . . . , Bm}, and for 1≤ j≤m, there is a type-substitution S

such that S(〈B,σ〉) = 〈Bj,τj〉. Then, by Thm. 3.1:(i), for every 1≤ j≤m, Bj �E t:τj. Since
B′ ≤ Bj for every 1≤ j≤m, by Thm. 3.3, B′ �E t:τj, and by (∩I), B′ �E t:σ′.

(σ′ ∈ Ts) : This part is proved by induction on the structure of terms.
(t ≡ x) : Then, by (≤), there is x:τ ∈ B, such that τ ≤ σ. By Lem. 2.9:(i), Ex (τ)≤ σ′, so

B′ �E x:σ′.
(t ≡ C) : Then, by (E), there is a chain Ch such that Ch(E(C)) = σ. Let Ex′ be the ex-

pansion operation determined by 〈µ′,n〉, where µ′ is the intersection of the type-
variables in V〈B,σ,E〉

µ , that is, the variables affected by Ex when computing Ex(〈B,σ, E〉).
Since Ex′(σ) = σ′, then Ch∗ [Ex′] is a chain such that Ch∗ [Ex′] (E(C)) = σ′. There-
fore B′ �E C:σ′.

(t ≡ t1 t2) : Then, by (→E), there is τ such that B �E t1:τ→σ and B �E t2:τ. Let Ex′ be the
expansion defined by 〈µ′,n〉, where µ′ is the intersection of the type-variables in
V〈B,σ,E〉

µ . Note that Ex′(B) = B′ and Ex′(σ) = σ′. By induction, B′ �E t1:Ex′(τ→σ)

Theoretical Computer Science, 290:975-1019, 2003 15

and B′ �E t2:Ex′(τ). Since σ′ ∈ Ts, Ex′(τ→σ) =Ex′(τ)→σ′, and we obtain B′ �E t1 t2:σ′.
ii) Since E(C) ∈ Ts, by Lem. 2.8 either:
(m > 1) : By Def. 2.7, for every 1≤ j≤m, there is a type-substitution S such that S(E(C)) =

τj. The proof is completed by Thm. 3.1:(ii).
(m = 1) : By Def. 2.13:(ii), there are σ1, . . . ,σn,σ, such that σ1→·· ·→σn→σ = E(C), {xi :σi |

∀1≤ i≤n [σi �= ω]} �E r:σ. Since m = 1,

Ex (σ1→·· ·→σn→σ) = Ex (σ1)→·· ·→Ex (σn)→Ex (σ) ∈ Ts.

By part (i), we obtain {xi:Ex (σi) | ∀1≤ i≤n [Ex (σi) �= ω]} �E r:Ex (σ) as required.

We then have:

Theorem 3.5 (Soundness of Chains) i) The set of derivations is closed under chains of operations.
ii) Let l →C r be a combinator rule typeable with respect to the environment E . If Ch(E(C)) = τ ∈ T ,

then, for every µ ∈ Ts such that τ ≤ µ, C is typeable with respect to E [C �→µ].

Proof: By Propositions 3.1, 3.3, and 3.4.

Using this soundness result, we will now show that the notion of type assignment as defined
in this paper satisfies the subject reduction property: if B �E t:σ, and t can be rewritten to
t′, then B �E t′:σ. Of course, this result can be obtained through the mappings [[]]C and
〈 〉C

λ , using the relations between the systems mentioned in the previous section, but only for
combinatory complete cs and principal environments. For other cs, we must give a direct
proof, for which we need the following term-substitution result.

Lemma 3.6 i) If B �E t:σ, then, for every term-substitution R and basis B′, if for every x:τ ∈ B,
B′ �E xR:τ, then B′ �E tR:σ.

ii) Let C x1 · · · xn → r be a combinator rule, typeable with respect to E . For every term-substitution
R, basis B and type µ: if B �E (C x1 · · · xn)R:µ, then B �E rR:µ.

Proof: i) By induction on �E .
(≤) : Then t = x. Then there is x:τ ∈ B, such that τ ≤ σ. Then, by Thm. 3.3, B′ �E xR:τ

implies B′ �E xR:σ.
(E) : Then t = C. Immediate, since CR = C, and C:σ does not depend on the basis.
(→E), (∩I) : By induction.

ii) If C x1 · · · xn → r is a typeable combinator rule, then by Def. 2.13:(ii), there are σ1, . . . ,σn,σ,
such that

E(C) = σ1→·· ·→σn→σ and {xi :σi | ∀1≤ i≤n [σi �= ω]} �E r:σ.
Also, (C x1 · · · xn)R = C x1R· · ·xnR. Since B �E C x1R· · ·xnR:µ, there are two cases:

(µ ∈ Ts) : then there are µ1, . . . ,µn, and a chain Ch such that Ch(E(C)) = µ1→·· ·→µn→µ,
and, for 1≤ i≤n, B �E xiR:µi. Since

{xi:σi | ∀1≤ i≤n [σi �= ω]} �E r:σ,

we have, by Thm. 3.5:(i), {xi:µi | ∀1≤ i≤n [mui �= ω]} �E r:µ. Then, by part (i), also
B �E rR:µ.

(µ = ρ1 ∩ . . . ∩ ρn) : then we apply the above reasoning to each ρi and conclude using (∩I).

Theoretical Computer Science, 290:975-1019, 2003 16

Using this result, the following becomes easy.

Theorem 3.7 (Subject reduction) Let C = ((C,X),R) be a cs. For all t, t′ ∈ T(C,X): if B �E t:σ
and t →∗ t′, then B �E t′ :σ.

Proof: By induction on the length of the reduction path; the case of length 1 is proved by
induction on the structure of t. Of this double induction, only the case that t itself is the
term-substitution instance of a left-hand side of a combinator rule is of interest; all other cases
are straightforward. Then, let C ∈ C and term-substitution R be such that l →C r, t = lR, and
t′ = rR. The result follows from Lem. 3.6:(ii).

One should remark that a subject expansion theorem, i.e. the converse of the subject reduc-
tion result:

If B �E t:σ, and t′ → t, then B �E t′ :σ,

does not hold in general. Take for example the following cs, that is typeable with respect to
the given environment

K xy → x
Ix → x

E(K) = ϕ1→ω→ϕ1

E(I) = (ϕ2→ϕ2)→ϕ2→ϕ2

The term IK reduces to the (head-)normal form K, but can only be typed by ω with respect to
E . Of course, (ϕ2→ϕ2)→ϕ2→ϕ2 is not the principal type for 〈I〉cl

λ in �λ∩ . In fact, we have
the following result:

Theorem 3.8 (Subject expansion) Let C = ((C,X),R) be a cs, and E be principal for C, then, for
all t, t′ ∈ T(C,X): if B �E t:σ and t′ → t, then B �E t′:σ.

Proof: If B �E t:σ, then by Lem. 2.19:(ii), also B �λ∩ 〈t〉C
λ :σ. Since t′ → t, by Propostion 1.8

also 〈t′〉C
λ →→β 〈t〉C

λ . Since �λ∩ is closed for β-expansion, we have B �λ∩ 〈t′〉C
λ :σ. Then, by

Thm. 2.19:(i), we have B �E t′:σ.

4 Restricted type assignment

Our aim is to define, in Section 5, a strongly normalizing notion of reduction on type deriva-
tions, that will be, as can be expected, a kind of Cut Elimination, guided by the appearance of
typeable redexes of →R in the conclusion of the type derivation. That this notion of deriva-
tion reduction is strongly normalizable will be used in Section 8 to obtain approximation and
normalization results for typeable cs.

It might seem somewhat ‘overkill’ to define strong normalisation of derivation reduction in
order to come to the usual intersection type assignment characterisations of approximation
and normalisation, since, in the context of lc, these are all obtained more or less ‘directly’, i.e.
reasoning about terms and their types: the structure of the derivations involved plays no role
in proofs.

For example, the approximation result that will be proved in this paper for cs has been
reached in [3] for �λ∩ in lc. A problem with that result, however (or better, with the there
used technique), is that it cannot be transferred to the context of cs, with its notion of weak
reduction. The crucial point in the problem is that the property (for a definition of the set of
approximants of a term M, A (M), see [3] or Def. 7.8):

‘there is an A ∈A (Mz) such that B,z:α �λ∩ A:β, and z �∈ FV(M)’
implies

Theoretical Computer Science, 290:975-1019, 2003 17

‘there is an A ∈A (M) such that B �λ∩ A:α→β’.

is relatively easy to prove in lc, since the following holds:

If A ∈A (Mz) and z �∈ FV(M), then either:
A ≡ A′z with z �∈ FV(A′) and A′ ∈ A (M), or λz.A ∈A (M).

The first of these properties is hard to prove in arbitrary cs, because there is no known way
to express abstraction adequately in cs that are not combinatory complete. Moreover, even in
combinatory complete systems like cl, using the existence of a bijection through the mappings
〈 〉cl

λ and [[]]cl, it is not possible to prove this first property using the second. Take, for
instance, the term SKy, the environment Ecl of Exp. 1.4, B = {z:α}, and

Ch = [(ϕ1 �→α), (ϕ2 �→ω), (ϕ3 �→α), (ϕ4 �→α), (ϕ5 �→α)]

then
Ch(Ecl(S)) = (α→ω→α)→ω→α→α

Ch(Ecl(K)) = α→ω→α

and we can derive the following:

B �ECL
S:Ch(Ecl(S)) B �ECL

K:Ch(Ecl(K))

B �ECL
SK:ω→α→α B �ECL

y:ω

B �ECL
SKy:α→α B �ECL

z:α

B �ECL SKy z:α

Notice that Acl (SKyz) = {⊥,z} and that {z:α} �ECL z:α. Following the above property, since
none of the approximants of SKyz is an application, we would like to obtain something like

[[λz.〈z〉C
λ]]cl ∈Acl (SKy) and ∅ �ECL [[λz.〈z〉C

λ]]cl:α→α.

However, this fails, since

[[λz.〈z〉C
λ]]cl = I and Acl (SKy) = {⊥,S⊥⊥,SK⊥,S⊥y,SKy}.

Therefore, a new approach to the problem of approximation and normalisation results is
needed. In fact, the strong normalization result proved in Section 6 for derivation reduction
deals with all these problems in one go: all normalisation results, as well as the approximation
result, turn out to be corollaries of the main result (Thm. 6.6).

Since derivation reduction creates a new type derivation, some care is needed to make sure
that all necessary sub-derivations are contracted, and no reduction is attempted where it is
not possible. Moreover, derivation reduction is not a ‘Cut and Paste’ operation as in the lc, in
the sense that, for combinator systems, the derivation that is created for the contractum is not
completely constructed out of parts of the derivation for the redex: additional structure needs
to be introduced, possibly increasing the size of the derivation.

In order to simplify the definition of the reduction relation, we will first define a notion of
type assignment, denoted by �rE , that is a slight variant of the one given in Def. 2.13. The
variation consists, essentially, of restricting bases to their relevant contents, i.e. to contain only
the types actually used for the variables of a term. In the next section, we will prove that deriva-
tions in this system are strongly normalizable; for this we will use the well-known method
of Computability Predicates [20]. Then, in Section 8, we will show that the approximation
theorem

If B �E t:σ, then there exists a ∈AC (t) such that B �E a:σ,

Theoretical Computer Science, 290:975-1019, 2003 18

as well as the three normalization properties stated in the introduction of this paper, are
consequences of this strong normalization result for �rE .

Definition 4.1 (Restricted type assignment) Let C be a cs and E an environment. Restricted
type assignment and restricted derivations are defined by the following natural deduction system
(where all types displayed are in Ts, except for τ in rule (→E)):

(E) : (∃Ch [Ch(E (C)) = σ))]
∅ �rE C:σ (→E) :

B1 �rE t1:τ→σ B2 �rE t2:τ
⋂
{B1, B2} �rE t1 t2:σ

(Ax) : {x:σ} �rE x:σ (∩I) :
B1 �rE t:σ1 · · · Bn �rE t:σn
⋂
{B1, . . . , Bn} �rE t:σ1∩· · ·∩σn

We will write D :: B �rE t:σ if and only if there is a restricted derivation D that has B �rE t:σ as
conclusion, and B �rE t:σ if there exists a D such that D :: B �rE t:σ.

Notice that, in rule (∩I), if n = 0, then
⋂
{B1, . . . , Bn}= ∅ and σ1∩· · ·∩σn = ω. Notice also that

the main difference between �E and �rE lies in the fact that rule (≤) has been replaced by
rule (Ax). Also, in rule (→E) for �E , the bases used in left- and right-hand subderivation
have to be the same, whereas for that rule in �rE , this need not be the case: the respective
bases are combined, using the operation

⋂
{ }. We could have used this restricted system

throughout this paper, without losing any important result (see also the next lemma). But
since one of the objectives was to obtain at least the expressive power of the intersection type
assignment system for lc (Thm. 2.19:(i)), the choice for the full system has been to allow also
types in bases that are not relevant to the type assigned to the term, i.e. for derivation rule (≤)
rather than (Ax). Bases are more restrictive in �rE because then the operation of derivation
substitution (Def. 5.1) is easier to define.

The relation between the two notions of type assignment �rE and �E is strong:

Lemma 4.2 i) If B �rE t:σ, then B �E t:σ.
ii) If B �E t:σ, then there is a B′ such that B ≤ B′ and B′ �rE t:σ.

iii) If B �E t:σ without using ω, then there is a B′ such that B ≤ B′ and B′ �rE t:σ without using ω.

Proof: By straightforward induction on the structure of derivations.

Using these relations, the following lemma, that shows a subject-reduction result for re-
stricted type assignment, becomes easy.

Theorem 4.3 If B �rE t:τ and t →∗ v, then there exist B′ such that B ≤ B′ and B′ �rE v:τ.

Proof: If B �rE t:τ, by Lem. 4.2:(i), also B �E t:τ. Since t →∗ v, by Thm. 3.7, also B �E v:τ. Then,
by Lem. 4.2:(ii), there exists a B′ such that B ≤ B′ and B′ �rE v:τ.

Example 4.4 Let Ch be such that Ch(E (K)) = σ→τ→σ, then, using Ch, we have {x:σ∩τ} �rE K x x:σ,
K x x → x, and {x:σ} �rE x:σ. Notice that {x:σ∩τ} ≤ {x:σ}.

Lemma 4.5 If D :: B �rE t:σ and σ ≤ τ, then there are D′ and B′, such that B ≤ B′ and D′ :: B′ �rE t:τ.

Proof: We will prove this lemma in two stages: first for σ,τ both in Ts, then for σ,τ in T .

(σ,τ ∈ Ts) : This is proven by induction on the structure of terms.
(t ≡ x) : Then D = 〈Ax〉 :: {x:σ} �rE x:σ. Notice that {x:σ} ≤ {x:τ}, and that also 〈Ax〉 :: {x:τ} �rE x:τ.

Theoretical Computer Science, 290:975-1019, 2003 19

(t ≡ C) : Then D = 〈E〉 :: ∅ �rE C:σ, so there is a chain Ch such that Ch(E(C)) = σ. Since
σ ≤ τ, L= 〈〈∅,σ〉, 〈∅,τ〉〉 is a lifting, Ch∗ [L] is a chain, and therefore also 〈E〉 :: ∅ �rE C:τ.

(t ≡ t1 t2) : Then, for a certain ρ,

D = 〈D1 :: B1 �rE t1:ρ→σ,D2 :: B2 �rE t2:ρ,→E〉 ::
⋂
{B1, B2} �rE t1 t2:σ,

Since σ ≤ τ, also ρ→σ ≤ ρ→τ; notice that both ρ→σ and ρ→τ ∈ Ts. Then, by induction,
there exists B′

1 such that B1 ≤ B′
1 and D′

1 :: B′
1 �rE t1:ρ→τ. Then

⋂
{B1, B2} ≤

⋂
{B′

1, B2},
and, by (→E),

〈D′
1,D2,→E〉 ::

⋂
{B′

1, B2} �rE t1 t2:τ.

(σ = σ1∩· · ·∩σm,τ = τ1∩· · ·∩τn) : Then, by (∩I), B=
⋂
{B1, . . . , Bm} and, for every 1≤ j≤m, Bj �rE t:σi.

Then by Lem. 2.2, for every 1≤ i≤n, there is a 1≤ ji ≤m such that σji ≤ τi, and notice that
σji ,τi ∈ Ts). Therefore we can use the previous part: for every 1≤ i≤n, there is a Bji such
that Bi ≤ Bji and Dji :: Bji �

r
E t:τi. Then

⋂
{B1, . . . , Bn} ≤

⋂
{Bj1 , . . . , Bjn}, and, by (∩I),

〈Dji , . . . ,Dji ,∩I〉 ::
⋂
{Bj1 , . . . , Bjn} �rE t:τ1∩· · ·∩τn.

Notice that τ = ω is a special case (where n = 0); then, by construction, B′ = ∅.

We will use a short-hand notation for derivations.

Definition 4.6 i) We write D = 〈Ax〉 if and only if the type derivation D consists of nothing
but an application of rule (Ax), i.e. there are x and σ such that D :: {x:σ} �rE x:σ.

ii) We write D = 〈E〉 if and only if D consists of nothing but an application of rule (E), i.e.
there are C and σ such that D :: ∅ �rE C:σ.

iii) We write D = 〈D1,D2,→E〉 if and only if D is obtained from D1 and D2 by applying rule
(→E), i.e. if there are B1, B2, t1, t2,σ, and τ such that

D1 :: B1 �rE t1:τ→σ, D2 :: B2 �rE t2:τ, and D ::
⋂
{B1, B2} �rE t1 t2:σ.

iv) We write D = 〈D1, . . . ,Dn,∩I〉 if and only if D is obtained from D1, . . . ,Dn by apply-
ing rule (∩I), i.e., for every 1≤ i≤n, there are Bi and σi such that Di :: Bi �rE t:σi, and
D ::

⋂
{B1, . . . Bn} �rE t:σ1∩· · ·∩σn.

5 Derivation reduction

In this section, we will introduce a notion of reduction on derivations D :: B �rE t:σ. The effect
of this reduction will be that a subderivation D′ :: B′ �rE t′ :σ′ �= ω for a redex t′ occurring in t
(due to the presence of derivation rule (∩I) there may be more than one subderivation for t′)
will be replaced by the derivation for its contractum, and the whole derivation for t will be
updated accordingly. We will show that this notion of reduction is strongly normalizing.

Before formally defining reduction on derivations, we will define a notion of substitution on
derivations, that will consist of replacing a type derivation for a variable by another derivation.

Definition 5.1 (Derivation substitution) Substituting Dv :: B′ �rE v:σ for x:σ in a derivation
D :: B �rE t:τ, denoted by

D′ = D [Dv/x:σ] :: B′′ �rE t{x �→v}:τ,
is inductively defined as follows:

i) D = 〈Ax〉 :: {y:τ} �rE y:τ. If x = y, then σ = τ, and D′ = Dv :: B′ �rE v:τ; otherwise, D′ = D.

Theoretical Computer Science, 290:975-1019, 2003 20

ii) D = 〈E〉 :: ∅ �rE C:τ. Then D′ = D.
iii) D = 〈D1,D2,→E〉 :: B �rE t1 t2:τ. We distinguish three cases:

– If x occurs in both t1 and t2, then σ = σ1∩σ2, and

D1 :: B1, x:σ1 �rE t1:ρ→τ,
D2 :: B2, x:σ2 �rE t2:ρ, and

B =
⋂
{B1, B2}, x:σ.

Assume (without loss of generality) that there exist α1, . . . ,αm ∈ Ts such that σ1 =
α1∩ . . .∩αj and σ2 = αj+1∩ . . .∩αm and

Dv = 〈D1
v :: B′

1 �rE v:α1, . . . ,Dm
v :: B′

m �rE v:αm,∩I〉.

Let
D1 = 〈D1

v, . . . ,Dj
v,∩I〉 :: B1 �rE v:σ1, and

D2 = 〈Dj+1
v , . . . ,Dm

v ,∩I〉 :: B2 �rE v:σ2.
Let

D′
1 = D1 [D1/x:σ1] :: B′′

1 �rE t{x �→v}
1 :ρ→τ, and

D′
2 = D2 [D2/x:σ2] :: B′′

2 �rE t{x �→v}
2 :ρ.

Then D′ = 〈D′
1,D′

2,→E〉 ::
⋂
{B′′

1 , B′′
2 } �rE (t1 t2){x �→v}:τ.

– If x occurs just in t1 (the case of x occurring only in t2 is similar) then

D1 :: B1, x:σ �rE t1:ρ→τ,
D2 :: B2 �rE t2:ρ, and

B =
⋂
{B1, B2}, x:σ.

Let D′
1 = D1 [Dv/x:σ], then D′ = 〈D′

1,D2,→E〉.
– If x does not occur in t1 t2 then D′ = D.

iv) D= 〈D1, . . . ,Dn,∩I〉 ::
⋂
{B1, . . . , Bn}, x:σ1∩· · ·∩σn �rE t:τ1∩· · ·∩τn, with, for 1≤ i≤n, Di :: Bi, x:σi �rE t:τi.

Since Dv :: B′ �rE v:σ1∩· · ·∩σn, reasoning as above in part (iii), for 1≤ i≤n, there are Di, Bi,
such that Di :: Bi �rE v:σi. Let D′

i = Di [Di/x:σi] :: B′
i �

r
E t{x �→v}:τi, then

D′ = 〈D′
1, . . . ,D′

n,∩I〉 ::
⋂
{B′

1, . . . B′
n} �rE t{x �→v}:τ1∩· · ·∩τn.

Before coming to the definition of derivation-reduction, we need to define the concept of
‘the position of a sub-derivation in a derivation’.

Definition 5.2 Let D be a derivation, and D′ be a sub-derivation of D. The position p of D′ in
D is defined by:

i) If D′ = D, then p = ε.
ii) If the position of D′ in D1 is q and D = 〈D1,D2,→E〉, then p = 1q.

iii) If the position of D′ in D2 is q and D = 〈D1,D2,→E〉, then p = 2q.
iv) If the position of D′ in Di, for some 1≤ i≤n, is q, and D = 〈D1, . . . ,Dn,∩I〉, then p = q.

Notice that if p is the position of a sub-derivation D′ :: B′ �rE t′ :σ′ in D :: B �rE t:σ, then p is
also the position of an occurrence of t′ in t.

Let 〈D1, . . . ,Dn,∩I〉 :: B �rE t:σ1∩· · ·∩σn. Notice that, if D0 :: B′ �rE u:ρ is a sub-derivation of
Dj (1≤ j≤n) at position p, then, for 1≤ i �= j≤n, either:

Theoretical Computer Science, 290:975-1019, 2003 21

• there is no sub-derivation in Di at position p, or
• Di has a sub-derivation 〈∩I〉 :: ∅ �rE u:ω at position p, or
• Di has a sub-derivation D′

0 :: B′′ �rE u:ρ′ (with ρ′ ∈ Ts) at position p.

We can now give a definition of reduction on derivations in �rE ; this reduction corresponds
to contracting a redex in the term that appears in the conclusion, and building a derivation
for the contractum. The soundness of the definition is shown below.

Let D :: B �rE t:σ be a derivation such that

• there is at least one subderivation Dp :: Bp �rE tp:σp at position p in D with σp ∈ Ts, and
• tp = (C x1 · · · xn)R, and there is a rule C x1 · · · xn → r such that t →C t′ at position p.

For each such subderivation, let B′, B′
p be such that B′ �rE t′:σ, and B′

p �rE rR:σp (these exist by
Thm 4.3). We say that D reduces at position p to D′ :: B′ �rE t′:σ, denoted D →p D′, if D′ is
a derivation with the same tree-structure as D (that is, the same rules are applied) except
for the positions p in D where a subderivation Dp :: Bp �rE tp:σp with σp ∈ Ts occurs; those
subderivations are replaced by D′

p :: B′
p �rE rR:σp in D′.

Formally:

Definition 5.3 (Derivation reduction) The relation D :: B �rE t:σ →p D′ is defined by induc-
tion on (p,σ):

(σ ∈ Ts) : There are three cases depending on p:
(p = ε) : If t = C t1 · · · tn and there is a rule C x1 · · · xn → r, then

D →ε D′ = D′
0 [D

′
1/x1:α1, . . . ,D′

n/xn:αn] ::
⋂
{B′

1, . . . , B′
n} �rE t′ : σ,

where

∗ R = {x1 �→ t1, . . . , xn �→ tn}, t′ = rR,
∗ for every 1≤ i≤n, D′

i :: B′
i �

r
E ti:αi, for some α1, . . . ,αn,

∗ D′
0 :: {xi:αi | ∀1≤ i≤n [αi �= ω]} �rE r:σ.

(p = 1q) : Then D = 〈D1 :: B1 �rE t1:τ→σ,D2,→E〉 ::
⋂
{B1, B2} �rE t1t2:σ, and

D →1q D′ = 〈D′
1,D2,→E〉 ::

⋂
{B′, B2} �rE t′1 t2:σ

if D1 →q D′
1 :: B′ �rE t′1:τ→σ.

(p = 2q) : Then D = 〈D1,D2 :: B2 �rE t2:τ,→E〉 ::
⋂
{B1, B2} �rE t1 t2:σ, and

D →2q D′ = 〈D1,D′
2,→E〉 ::

⋂
{B1, B′} �rE t1 t′2:σ

if D2 →q D′
2 :: B′ �rE t′2:τ.

(σ = σ1∩· · ·∩σn) : Then D = 〈D1, . . . ,Dn,∩I〉 ::
⋂
{B1, . . . , Bn} �rE t:σ1∩· · ·∩σn, where, for every

1≤ i≤n, Di :: Bi �rE t:σi. If there is some 1≤ j≤n such that Dj →p D′
j :: B′

j �
r
E t′:σj, then

D →p D′ = 〈D′
1, . . . ,D′

n,∩I〉 ::
⋂
{B′

1, . . . , B′
n} �rE t′ :σ1∩· · ·∩σn,

where, for 1≤ i �= j≤n,
a) either Di →p D′

i :: B′
i �

r
E t′:σi, or

b) there is no sub-derivation in Di at position p, or Di has a sub-derivation 〈∩I〉 :: ∅ �rE u:ω
at position p; then D′

i :: B′
i �

r
E t′ :σi is a derivation with the same structure as Di, and

B′
i = Bi.

We will write D →D D′ if there is a p such that D reduces to D′ at position p, and denote
by →∗

D its reflexive and transitive closure.

Theoretical Computer Science, 290:975-1019, 2003 22

Notice that D is reducible if and only if it contains a subderivation

D′ :: B′ �rE Cu1· · ·un:ρ,

with ρ ∈ Ts and n = arity(C). We show now that D′ is indeed a type-derivation in �rE .

Theorem 5.4 (Soundness of Derivation Reduction) If D :: B �rE t:σ →p D′, then D′ is a well-
defined derivation in �rE .

Proof: We interpret a reduction step D :: B �rE t:σ →p D′ by the pair (p,σ), and proceed by
induction on (p,σ).

(σ = σ1∩· · ·∩σn) : Then, for 1≤ i≤n, there are Di, Bi, such that Di :: Bi �rE t:σi, B=
⋂
{B1, . . . , Bn},

and D = 〈D1, . . . ,Dn,∩I〉. Moreover, since D →p D′, there is some 1≤ j≤n such that
Dj →p D′

j :: B′
j �

r
E t′:σj. Then, by the remark after Def. 5.2, for 1≤ i �= j≤n, either

a) there is no sub-derivation in Di at position p, or Di has a sub-derivation 〈∩I〉 :: �rE u:ω
at position p; then D′ has a subderivation D′

i :: B′
i �

r
E t′:σi, with the same structure as

Di, and Bi = B′
i, by Def. 5.3. D′

i is a well-defined derivation, because t and t′ coincide
in the positions disjoint with p, and for p either there is no subderivation or it is a
derivation for the type ω.

b) Di has a sub-derivation at position p such that Di →p D′
i :: B′

i �
r
E t′:σi, and D′

i is a well-
defined derivation by induction.

So D→p D′ = 〈D′
1, . . . ,D′

n,∩I〉 ::
⋂
{B′

1, . . . , B′
n} �rE t′ :σ1∩· · ·∩σn which is a well-defined deriva-

tion.

(σ ∈ Ts) : There are three cases depending on p.
a) If p = ε then t = (C x1 · · · xn)R = Ct1 · · · tn and there is a combinator rule C x1 · · · xn → r.

Then D has the form:

∅ �rE C:σ1→·· ·→σn→σ

D1

B1 �rE t1:σ1

B1 �rE C t1:σ2→·· ·→σn→σ

Dn

Bn �rE tn:σn
⋂
{B1, . . . , Bn} �rE C t1 · · · tn:σ

Then, by Def. 2.13:(ii) and Thm. 3.5, {xi:σi | ∀1≤ i≤n [σi �= ω]} �E r:σ, and, by Lem.
4.2:(ii), there are D′

0, and α1, . . . ,αn, such that, for every 1≤ i≤n, σi ≤ αi (αi might be
ω), and

D′
0 :: {xi:αi | ∀1≤ i≤n [αi �= ω]} �rE r:σ.

Then, by Lem. 4.5, there are D′
i, B′

i ≥ Bi such that D′
i :: B′

i �
r
E ti:αi, for every 1≤ i≤n.

Let R = {x1 �→ t1, . . . , xn �→ tn}, t′ = rR, then, by Def. 5.3, D reduces at position ε to

D′ = D′
0 [D

′
1/x1:α1, . . . ,D′

n/xn :αn] ::
⋂
{B′

1, . . . , B′
n} �rE t′ : σ,

which is a well-defined derivation.
b) If p = 1q, then D = 〈D1 :: B1 �rE t1:τ→σ,D2,→E〉 ::

⋂
{B1, B2} �rE t1t2:σ, and, by in-

duction, D1 reduces to a well-defined D′
1 :: B′ �rE t′1:τ→σ at position q. By Def. 5.3,

D →1q D′ = 〈D′
1,D2,→E〉 ::

⋂
{B′, B2} �rE t′1 t2:σ, which is a well-defined derivation.

c) If p = 2q: similar to the previous part.

Theoretical Computer Science, 290:975-1019, 2003 23

6 Strong normalization

In this section, we will prove that derivations in the restricted type assignment system are
strongly normalizable with respect to the notion of reduction defined in the previous section.
We will write SN (D) to indicate that D is strongly normalizable with respect to →D .

The following properties hold:

Lemma 6.1 i) If D :: B �rE t:σ →D D′ :: B′ �rE t′:σ, then B ≤ B′, and t → t′.
ii) Let D = 〈D1,D2,→E〉 ::

⋂
{B1, B2} �rE t1 t2:σ. Then: SN (D) implies SN (D1) and SN (D2).

iii) If both SN (D1 :: B1 �rE xt1 · · · tn:σ→τ), and SN (D2 :: B2 �rE u:σ), then also SN (〈D1,D2,→E〉).
iv) If D= 〈D1 :: B1 �rE t:σ1,D2 :: B2 �rE t:σ2,∩I〉 ::

⋂
{B1, B2} �rE t:σ1∩σ2, and D →D D′ :: B′ �rE t′:σ

then there are B′
1 ≥ B1, B′

2 ≥ B2 such that B′ =
⋂
{B′

1, B′
2}, and D1 →D D′

1 :: B′
1 �rE t′:σ1 or D2 →D

D′
2 :: B′

2 �rE t′:σ2.
v) If D = 〈D1 :: B1 �rE t:σ1,D2 :: B2 �rE t:σ2,∩I〉 ::

⋂
{B1, B2} �rE t:σ1∩σ2, then SN (D) if and only

if SN (D1) and SN (D2).

Proof: Straightforward.

We will use the well-known method of Computability Predicates [20].

Definition 6.2 (Computability predicate) i) Let B be a basis, t ∈ T(C,X), and σ a type. We
define Comp(D :: B �rE t:σ) recursively on σ by:
a) Comp(D :: B �rE t:ϕ) ⇐⇒ SN (D).
b) Comp(D :: B �rE t:σ→τ) ⇐⇒

(Comp(D′ :: B′ �rE u:σ) ⇒ Comp(〈D,D′,→E〉 ::
⋂
{B, B′} �rE tu:τ)).

c) Comp(〈D1, . . . ,Dn,∩I〉 ::
⋂
{B1, . . . , Bn} �rE t:σ1∩· · ·∩σn) ⇐⇒

∀1≤ i≤n [Comp (Di :: Bi �rE t:σi)].
ii) We say that a term-substitution R is computable in a basis B if, for every x:σ ∈ B, there are

Bx and Dx such that Comp (Dx :: Bx �rE xR:σ).

Notice that Comp(〈∩I〉 :: ∅ �rE t:ω) holds for all t by part (i.c) when n = 0.
We will prove that Comp satisfies the standard properties of computability predicates.

Lemma 6.3 i) Comp (D :: B �rE t:σ) ⇒ SN (D).
ii) SN (D :: B �rE xt1 · · · tm:σ) ⇒ Comp(D).

Proof: By simultaneous induction on the structure of types. The case σ = ϕ is immediate,
σ = σ1∩· · ·∩σn follows from Def. 6.2: (i.c) and Lem. 6.1:(v) (note that for σ = ω the property
SN (D) holds trivially since D is irreducible), and for σ = α→β:

i) Let x be a variable not appearing in B and t.

{x:α} �rE x:α & Comp (D :: B �rE t:α→β) ⇒ (IH:(ii))
Comp (D′ :: {x:α} �rE x:α) & Comp (D :: B �rE t:α→β) ⇒ (6.2: (i.b))

Comp(D′′ = 〈D,D′,→E〉 :: B, x:α �rE t x:β) ⇒ (IH:(i))
SN (D′′) ⇒ (6.1:(ii))
SN (D).

Theoretical Computer Science, 290:975-1019, 2003 24

ii) SN (D :: B �rE xt1 · · · tm:α→β) ⇒ (IH:(i))
(Comp (D′ :: B′ �rE u:α) ⇒ SN (D) & SN (D′)) ⇒ (6.1:(iii))

(Comp (D′) ⇒ SN (〈D,D′,→E〉 ::
⋂
{B, B′} �rE xt1 · · · tm u:β)) ⇒ (IH:(ii))

(Comp (D′) ⇒ Comp (〈D,D′,→E〉)) ⇒ (6.2: (i.b))
Comp(D).

We will now come to the term-substitution theorem, the final construction in the proof of
our strong normalization result, for which we need the following ordering:

Definition 6.4 i) > stands for the well-founded encompassment ordering: u> v if u �= v mod-
ulo renaming of variables, and vR = u|p for some position p in u and term-substitution
R.

ii) We define the ordering � on pairs – consisting of a natural number and a term – as the
object (>IIN,>)lex, where lex denotes lexicographic extension.

iii) Given a term t and a term-substitution R, the interpretation I(tR) of tR is defined as the
pair 〈n, t〉 where n is the number of combinators appearing in t.

Note that encompassment contains the strict superterm relation.

We can now prove the term-substitution theorem.

Theorem 6.5 If D :: B �rE t:σ and R is computable in B, then there exists a D′ such that
Comp(D′ :: B′ �rE tR:σ).

Proof: We will consider the interpretation of tR, and prove the theorem by Nötherian induction
on � (which is well-founded). If t is a variable, then B = {x:σ}, and since R is assumed to be
computable in B, there exists a D′ such that

Comp (D′ :: B′ �rE xR:σ).

Also, the case σ = ω is trivially computable. So, without loss of generality, we can assume
that t is not a variable (so neither is tR). Also, if σ = σ1∩· · ·∩σn, then the last rule applied is
(∩I), and we can reason on each σi separately, so we can focus on the case where σ ∈ Ts.

We distinguish the following cases for tR:

(tR is neutral) : Then there are x ∈X , t1, . . . , tn (n > 0) such that tR = xt1 · · · tn; also t is neutral,
so there exist z ∈X and u1, . . . ,um (m > 0) such that t = zu1 · · ·um, and zR = xt1 · · · tk
(k ≥ 0,k + m = n). Since B �rE t:σ, there exist σ1, . . . ,σm, B1, . . . , Bm,D1, . . . ,Dm such that

D0 :: {z:σ1→·· ·→σm→σ} �rE z:σ1→·· ·→σm→σ, and Dj :: Bj �rE uj:σj,

for every 1≤ j≤m, and B =
⋂
{B1, . . . , Bm}. Since I(tR)�I(ujR), by induction, there exist

D′
j such that Comp(D′

j :: B′
j �

r
E ujR:σj), for every 1 ≤ j ≤ m. Also, since R is computable in

B, there exists D′
0 such that

Comp(D′
0 :: B′

0 �rE zR:σ1→·· ·→σm→σ).

Then, by Def. 6.2: (i.b),

Comp(〈· · ·〈D′
0,D′

1,→E〉, · · ·,D′
n,→E〉 ::

⋂
{B′

0, B′
1, . . . , B′

n} �rE tR:σ).

(tR is not neutral) : Then there are C ∈ C, t1, . . . , tn (n ≥ 0) with tR = Ct1 · · · tn. Now, three cases
are possible:

Theoretical Computer Science, 290:975-1019, 2003 25

a) t = zs1 . . . sm (m ≤ n), or t = Cs1 · · · sn], and at least one of the si is not a variable.
Since I(tR)� I(siR), by induction the type-derivation for siR is computable, for every
1≤ i≤m, or 1≤ i≤n, respectively. Let y be a fresh variable, and R′ = R ∪ {y �→ siR}.
Then tR = (t[y]i)R′, and I(tR) � I((t[y]i)R′

). Then the type-derivation for tR is com-
putable by induction.

b) t = zz1 · · · zm (m ≤ n). Then zR = Ct1 · · · tk (k + m = n). In this case we can proceed as
for the case that tR is neutral.

c) t = Cz1 · · · zn.
(n �= 0) : Then I(tR)�I(CR), and D0 :: ∅ �rE C:σ1→·· ·→σn→σ, for certain σ1, . . . ,σn, and

Comp(D0 :: ∅ �rE C:σ1→·· ·→σn→σ) by induction. Since R is computable in B, for
every 1≤ i≤n there is Di such that Comp(Di :: Bi �rE ziR:σi), so by Def. 6.2: (i.b), also

Comp(〈· · ·〈D0,D1,→E〉· · ·,Dn,→E〉 ::
⋂
{B1, . . . , Bn} �rE tR:σ).

(n = 0) : Then B = ∅ and D = 〈E〉. Let σ = σ1→·· ·→σn→ϕ; in order to prove that there
exists a D′ such that Comp(D′ :: B′ �rE C:σ) it is sufficient to prove

∀1≤ i≤n ∃Di [Comp(Di :: Bi �rE ui:σi)] ⇒
Comp(〈· · · 〈D,D1,→E〉, · · ·,Dn,→E〉 :: B �rE Cu1 · · ·un:ϕ).

with B =
⋂
{B1, . . . , Bn}. Take D0 = 〈· · ·〈D,D1,→E〉· · ·,Dn,→E〉, then by Def. 6.2: (i.a)

it suffices to prove

∀1≤ i≤n ∃Di [Comp (Di :: Bi �rE ui:σi)] ⇒ SN (D0).

We will proceed by induction on the sum of the maximal lengths of the reduction
paths on the derivations Di :: B �rE ui:σi to their normal forms (notice that these
derivations are strongly normalizable by Lem. 6.3:(i), since they are computable).
Consider all possible rewrite steps out of D0.
A) D0 →D D′ :: B′ �rE Cu1 . . . ui−1u′

iui+1 . . . un:ϕ, where the reduction took place in
ui. Then by the inner induction SN (D′).

B) D0 →D D′ :: B′ �rE v:ϕ at the outermost level. Then there are a rule C x1 · · · xi → r
where i = arity(C), term-variables xi+1, . . . , xn, and term-substitution R1 = {x1 �→u1, . . . , xn �→un}
such that v = (r xi+1 · · · xn)R1. Since Comp (D :: Bi �rE ui:σi) for all 1≤ i≤n, R1 is
computable in {x1:σ1, . . . , xn:σn}. Then

I((C x1· · ·xn)R)� I((r xi+1 · · · xn)R1),

so by the external induction Comp(D′ :: B′ �rE v:ϕ), and SN (D′) by Def. 6.2: (i.a).
Since for all D′ such that D0 →D D′ we have proved SN (D′), we deduce SN (D0)
as required.

The main result of this section is then the strong normalization theorem for derivation
reduction in �rE .

Theorem 6.6 (Strong normalisation) If D :: B �rE t:σ, then SN (D).

Proof: Let D :: B �rE t:σ. Take R such that xR = x, then R is computable in B by Lem. 6.3:(ii).
Then Comp(D :: B �rE t:σ) follows from Thm. 6.5, and, by Lem. 6.3:(i), SN (D).

Theoretical Computer Science, 290:975-1019, 2003 26

7 Approximants

Now we will develop, essentially following [22] (see also [6]), a notion of approximant for
combinator terms. This will be done by introducing a special symbol ⊥ into the definition of
terms.

Definition 7.1 (Combinator terms with ⊥) Let C = ((C,X),R) be a cs.
i) The set T(C,X,⊥) is defined by:

t ::= ⊥ | x | C | Ap(t1, t2)

ii) The notion of rewriting of Def. 1.3 extends naturally to terms in T(C,X,⊥), and we will
use the same symbol ‘ →R ’ to denote the rewriting relation induced by C on T(C,X,⊥).

The relation � on terms, as given in the following definition, takes ⊥ to be the smallest
term.

Definition 7.2 i) We define the relation � on T(C,X,⊥) inductively by:

⊥ � t,
t � t,

t1 � u1 & t2 � u2 ⇐⇒ t1 t2 � u1 u2.

ii) t and u are called compatible if there exists a v such that t � v and u � v.

We will now come to the definition of approximate normal forms and of direct approxi-
mants. The general idea is that a direct approximant of a term t is constructed out of t by
replacing all redexes and potential redexes in t by ⊥ (a potential redex is a subterm that could
be a redex if ⊥ were to be replaced by an appropriate term).

Definition 7.3 (Approximate normal forms) Let C = ((C,X),R) be a cs.
i) AC , the set of approximate normal forms of T(C,X,⊥), ranged over by a, is defined by:

a ::= ⊥ | x a1 · · · an (n ≥ 0) | C a1 · · · an (n < arity(C)).

ii) DA (t), the direct approximant of t with respect to C is defined by:

DA (x) = x
DA (C) = C

DA (t1 t2) = ⊥, if DA (t1) = ⊥ or
DA (t1) = C a1 · · · an, and arity(C) = n+1

= DA (t1)DA (t2),otherwise

Notice that every normal form in T(C,X) is also an approximate normal form.

For � , the following properties hold:

Lemma 7.4 i) t � u � v ⇒ t � v.
ii) t is a head-normal form ⇐⇒ ∃a ∈AC [a � t & a �= ⊥].

iii) If a ∈AC and a � t, then a �DA (t).

Proof: By induction on the definition of � .

Theoretical Computer Science, 290:975-1019, 2003 27

The relation between reduction and � is expressed by:

Lemma 7.5 i) a ∈AC & v →∗ w & a � v ⇒ a � w.
ii) t0 � t & t0 → t1 ⇒ ∃ t′[t → t′ & t1 � t′].

Proof: By induction on the structure of terms.

We will now introduce a notion of ‘join’ on terms containing ⊥, that is of use in the proof
of Lem. 8.1.

Definition 7.6 On T(C,X,⊥), the partial mapping � : T(C,X,⊥) × T(C,X,⊥) → T(C,X,⊥) is
defined by:

⊥� t = t�⊥ = t
t� t = t

(t1 t2)� (u1 u2) = (t1�u1)(t2 �u2)

The last alternative defines the join on applications in a more general way than that of [15],
which would state that (t1 t2)� (u1 u2) � (t1�u1)(t2 �u2), since it is not always sure that a
join of two arbitrary terms exists. However, we will use our more general definition only on
terms that are compatible, so the conflict is only apparent. So, when we write a term as v�u,
we assume v and u to be compatible.

The following lemma shows that � acts as least upper bound for compatible terms.

Lemma 7.7 If t1 � t and t2 � t, then t1� t2 is defined, and: t1 � t1� t2, t2 � t1� t2, and t1� t2 � t.

Proof: By induction on the structure of terms.

Approximants of terms are defined by:

Definition 7.8 (Approximants) AC (t) = {a ∈AC | ∃u [t →∗ u & a � u]} is the set of approxi-
mants of t.

In Section 9, using this definition, we will define a semantics for cs, and we will need the
following properties relating approximants and reduction.

Lemma 7.9 i) t →∗ t′ ⇒ AC (t) =AC (t′).
ii) a, a′ ∈ AC (t) ⇒ a� a′ ∈ AC (t).

Proof: i)(⊆) : t →∗ t′ & a ∈AC (t) ⇒
t →∗ t′ & ∃v [t →∗ v & a � v] ⇒ (Prop. 1.5)

∃v,w [t →∗ v & v →∗ w & t′ →∗ w & a � v] ⇒ (Lem. 7.5:(i))
∃w [t′ →∗ w & a � w] ⇒ a ∈AC (t′).

(⊇) : t →∗ t′ & a ∈AC (t′) ⇒
t →∗ t′ & ∃v [t′ →∗ v & a � v] ⇒

∃v [t →∗ v & a � v] ⇒ a ∈AC (t).

ii) a ∈AC (t) & a′ ∈ AC (t) ⇒ (Def. 7.8)
∃u,u′ [t →∗ u & a � u & t →∗ u′ & a′ � u′] ⇒ (Prop. 1.5 & 7.5:(i))

∃u,u′,v [t →∗ u →∗ v & t →∗ u′ →∗ v & a � v & a′ � v] ⇒ (Lem. 7.7)
∃v [t →∗ v & a� a′ � v] ⇒ a� a′ ∈ AC (t).

Theoretical Computer Science, 290:975-1019, 2003 28

Lemma 7.10 If AC (t) = {⊥}, then t is unsolvable.

Proof: If AC (t) = {⊥}, then, for all v such that t →∗ v, and a ∈AC , if a � v, then a = ⊥. So,
in particular, there is no v such that t →∗ v and v is of the shape x a1 · · · an, with (n ≥ 0) or
C a1 · · · an with (n<arity(C)), since otherwise x⊥· · ·⊥� v or C⊥· · ·⊥� v. Therefore, t does
not reduce to a term in head normal form: it is unsolvable.

The following result is crucial for the proof of Lem. 9.4:

Lemma 7.11 Let t1, t2 ∈ T(C,X), a ∈AC (t1 t2), then there exist a1 ∈AC (t1), a2 ∈AC (t2) and u′ such
that a1 a2 →∗ u′ and a � u′.

Proof: The case a = ⊥ is trivial. For a �= ⊥: assume t1 t2 →∗ u and a � u, then either:
i) u = u1 u2, and tj →∗ uj, for j = 1,2. Since a � u1 u2 and a �= ⊥, there are a1, a2 such that

a = a1 a2, and aj � uj, for j = 1,2. Notice that a1 a2 ∈AC , and take u′ = a.
ii) There exist C, p1, . . . , pn such that C x1 · · · xn → r,

t1 t2 →∗ C p1 · · · pn → r�p →∗ u,

and none of the reductions in the first part of this sequence take place at the root position.
Since some of the reductions that take place after contracting the redex C p1 · · · pn are in
fact residuals of redexes already occurring in p1, . . . , pn, we can take the reduction se-
quence that first contracts all redexes (and their residuals) that already occur in p1, . . . , pn.
Then, since the rewrite system is orthogonal (i.e. rules are left linear and without super-
positions), there exists p′1, . . . , p′n and v such that

t1 t2 →∗ C p1 · · · pn →∗ C p′1· · · p′n → r�p
′ →∗ v and u →∗ v

and in the reduction sequence r�p
′ →∗ v we mimic r�p →∗ u, but only contract redexes that

are created after the redex C p′1 · · · p′n was contracted. Take ai = DA (p′i), for 1≤ i≤n, then
the redexes that are erased have no relevance to the sequence r�p

′ →∗ v; moreover, there is
only one redex in C a1 · · · an, being that term itself, and both C a1 · · · an−1 and an are in AC .
Notice that t1 →∗ C p′1· · · p′n−1, and C a1 · · · an−1 � C p′1· · · p′n−1, and t2 →∗ p′n, an � p′n.

We now focus on the reduction sequence

C p′1· · · p′n → r�p
′ →∗ v

Notice that, by the construction sketched above, only redexes that are newly created are
contracted, and that any redex created in this sequence corresponds to a redex being
created for a sequence starting with C a1· · · an, therefore

C a1· · · an → r�a →∗ u′,

and each term created in this reduction is smaller than (in the sense of �) the correspond-
ing term in the reduction sequence above (hence u′ � v), and each redex in u′ corresponds
to a redex in v. Take a′ = DA (v), then a′ � v, and all redexes are masked by ⊥. Since
u′ � v by masking all the ‘old’ redexes, we also have that a′ = DA (u′). Since a � u, also
a � v (by Lem. 7.5:(i)), and therefore a � a′ (by Lem. 7.4:(iii)). We then deduce a � u′.

To come to a notion of type assignment on T(C,X,⊥), the definition of type assignment as
given in Def. 2.13 and 4.1 need not be changed, it suffices that the terms are allowed to be
in T(C,X,⊥). In particular, E does not produce a type for ⊥; since ⊥ �∈ C, and because of
Def. 2.13, this implies that ⊥ can only appear in (sub)terms that are typed with ω.

Theoretical Computer Science, 290:975-1019, 2003 29

The following property is needed in the proof of Thm. 8.5:

Lemma 7.12 If B �E t:σ, where B,σ are ω-free, and t is a combinator-free normal form, then t is ⊥-free.

Proof: By induction on t.

(t = ⊥ t1 · · · tn, n ≥ 0) : Impossible, since σ �= ω.

(t = xt1 · · · tn, n ≥ 0) : Without loss of generality, we can assume σ ∈ Ts. Then there are σ1, . . . ,σn
such that B �E x:σ1→·· ·→σn→σ, and B �E ti:σi, for every 1≤ i≤n. Therefore, there are
σ′

1, . . . ,σ′
n+1 with x:σ′

1→ . . .→σ′
n→σ′

n+1 ∈ B, all σ′
1, . . . ,σ′

n+1 are ω-free, σi ≤ σ′
i for 1≤ i≤n,

and σ′
n+1 ≤ σ. Then, by Lem. 3.2:(ii), B �E ti:σ′

i , for 1≤ i≤n. Then, by induction, ti does
not contain ⊥, for 1≤ i≤n.

(t = Ct1 · · · tn) : Impossible, since t is combinator-free.

In Lem. 8.1, we will need the following result.

Lemma 7.13 i) If D :: B �rE t:σ, t � v, then there exists D′ :: B �rE v:σ, where the type-derivation D′

has the same tree-structure as D (that is, the same rules are applied).
ii) If D :: B �E t:σ, and t � v, then there exists D′ :: B �E v:σ.

Proof: i) By induction on the structure of derivations.
(→E) : D= 〈D1 :: B1 �rE t1:ρ→τ,D2 :: B2 �rE t2:ρ,→E〉 :: B �rE t1 t2:τ, with B=

⋂
{B1, B2}. Then

there are v1 � t1,v2 � t2 such that v = v1 v2, and D′
1 :: B1 �rE v1:ρ→τ and D′

2 :: B2 �rE v2:ρ
by induction. Therefore there exists

〈D′
1,D′

2,→E〉 ::
⋂
{B1, B2} �rE v1 v2:τ,

which has the same structure as D.
(∩I) : D = 〈D1 :: B1 �rE t:σ1, . . . ,Dn :: Bn �rE t:σn,∩I〉 :: B �rE t:σ1∩· · ·∩σn, with n ≥ 0, and B =

⋂
{B1, . . . , Bn}. Then, by induction, for 1≤ i≤n, Di :: Bi �rE v:σi, so also

〈D1, . . . ,Dn,∩I〉 ::
⋂
{B1, . . . , Bn} �rE v:σ1∩· · ·∩σn.

(Ax), (E) : Immediate.
Notice that the only interesting case is hidden in the last part: n = 0. Then, in particular,

t can be ⊥, so B = ∅, and v can be any term; remember that ∅ �rE v:ω for all v.
ii) If D :: B �E t:σ, then, by Lem. 4.2:(ii), there is B′ ≥ B such that D′ :: B′ �rE t:σ. Since t � v,

by the first part also D′ :: B′ �rE v:σ. Then also D′ :: B �E v:σ.

8 Approximation and normalization

In this section we will give the proofs for the approximation and normalisation results.
We will need the following intermediate result.

Lemma 8.1 Let C = ((C,X),R) be a cs, then, for all t ∈ T(C,X): if D :: B �rE t:σ is in normal form
with respect to →D, then there exists an a ∈AC and D′ such that a � t and D′ :: B �rE a:σ.

Proof: By induction on the structure of derivations.

(→E) : Then D =

〈D1 :: B1 �rE t1:τ→σ,D2 :: B2 �rE t2:τ,→E〉 ::
⋂
{B1, B2} �rE t1 t2:σ.

Theoretical Computer Science, 290:975-1019, 2003 30

Then, by induction, there are a1 � t1, a2 � t2 such that D′
1 :: B1 �rE a1:τ→σ, and D′

2 :: B2 �rE a2:τ,
and

〈D′
1 :: B1 �rE a1:τ→σ,D′

2 :: B2 �rE a2:τ,→E〉 ::
⋂
{B1, B2} �rE a1 a2:σ.

By Def. 7.2 we know that a1 a2 � t1 t2.
Now a1 a2 �∈ AC if there is a C ∈ C such that a1 = C a1

1· · ·an−1
1 and arity(C) = n. But then

there are t1
1, . . . , tn−1

1 with t1 = C t1
1· · ·tn−1

1 , and t = Ct1
1· · ·tn−1

1 t2. In particular, by the remark
after Def. 5.3, D is reducible, which is impossible. So a1 a2 ∈AC .

(∩I) : D = 〈D1 :: B1 �rE t:σ1, . . . ,Dn :: Bn �rE t:σn,∩I〉 :: B �rE t:σ1∩· · ·∩σn, with B =
⋂
{B1, . . . , Bn}.

By induction, for 1≤ i≤n, there is an ai � t in AC such that D′
i :: Bi �rE ai:σi. Take a =

a1�· · · �an. Since, for 1≤ i≤n, ai � a, by Lem. 7.13 also D′′
i :: Bi �rE a:σi, so we get

〈D′′
1 :: B1 �rE a:σ1, . . . ,D′′

n :: Bn �rE a:σn,∩I〉 :: B �rE a:σ1∩· · ·∩σn.

Since ai � t for all 1≤ i≤n, by Lem. 7.7 also a � t. Notice that if n = 0, then a = ⊥.

The cases (E) and (Ax) are immediate.

Theorem 8.2 (Approximation) Let C = ((C,X),R) be a cs, then: if B �E t:σ, then there exists an
a ∈AC (t) such that B �E a:σ, for all t ∈ T(C,X).

Proof: By Lem. 4.2:(ii), for D such that D :: B �E t:σ, there are D′ and B′ such that D′ :: B′ �rE t:σ,
and B ≤ B′. Then, by Thm. 6.6, SN (D′). Let D′′ :: B′′ �rE v:σ be a normal form of D′ with re-
spect to →D . Then by Lem. 8.1, there is an a ∈AC such that a � v and D′′′ :: B′′ �rE a:σ. Then,
by Lem. 6.1, B′ ≤ B′′, and t →∗ v, therefore a ∈AC (t). Also, by Lem. 4.2:(i) and Lem. 3.2:(i),
B �E a:σ.

For principal environments we can show that the converse of this result also holds.

Theorem 8.3 Let C = ((C,X),R) be a cs, and E be principal for C, then, for all t ∈ T(C,X): if there
is an a ∈AC (t) such that B �E a:σ, then B �E t:σ.

Proof: If a ∈AC (t) such that B �E a:σ, then there exists a v such that t →∗ v and a � v. But
then, by Lem. 7.13, also B �E v:σ. Since E is principal for C, by Thm. 3.8, also B �E t:σ.

Theorem 8.4 (Head-normalisation) Let t ∈ T(C,X). If B �E t:σ, and σ �= ω, then t has a head-
normal form.

Proof: If B �E t:σ, then by Thm. 8.2, there is an a ∈AC (t) such that B �E a:σ. Since σ �= ω,
a �= ⊥, and since a ∈AC , there are x or C, and terms a1, . . . , an such that a = x a1 · · · an, or
a = C a1 · · · an with arity(C) < n. Also, since a ∈AC (t), there is a v such that t →∗ v and a � v.
Since a � v, there are t1, . . . , tn such that either v = xt1 · · · tn, or v = Ct1 · · · tn, with arity(C)< n.
But then v is in head-normal form, so t has a head-normal form.

The combinatorial equivalent of another well-known result for intersection type assignment
in the lc, i.e. the property

If B �E t:σ, and B,σ are ω-free, then t has a normal form

no longer holds. Take for example the cs

Z xy → y
D x → x x

E (Z) = ω→ϕ1→ϕ1,
E (D) = ((ϕ2→ϕ3)∩ϕ2)→ϕ3

then Z(DD) is typeable with a type not containing ω, but the term Z(DD) has no normal form.

Theoretical Computer Science, 290:975-1019, 2003 31

However, we can prove this result for the class of typeable non-Curryfied terms.

Theorem 8.5 (Normalisation) Let t ∈ TNC(C,X). If B �E t:σ, and B,σ are ω-free, then t has a
normal form.

Proof: By Thm. 8.2, there is an a ∈AC (t) such that B �E a:σ. Notice that if t ∈ TNC(C,X), and
t′ is a reduct of t then also t′ ∈ TNC(C,X). Therefore, a cannot contain any C ∈ C. Then a =
x a1 · · · an, where each ai contains only variables and possibly ⊥. But, by Lem. 7.12, a does not
contain ⊥. Now, since a ∈AC (t), there exists v ∈ T(C,X) such that t →∗ v and a � v. Since a
does not contain ⊥, v = a, and since a is in normal form, t has a normal form.

We will now show that, using Thm. 6.6, all terms typeable in the subsystem of �E that
does not use ω (�ω

E), are strongly normalizable.

Lemma 8.6 i) If D is a derivation in �ω
E , and D →D D′, then also D′ is a derivation in �ω

E .
ii) D :: B �ω

E t:σ →D D′ :: B′ �ω
E t′ :σ, if and only if t → t′.

Proof: By Def. 5.3, and Lem. 4.2:(iii).

Thus, in the type system �ω
E , →D mimics → and vice-versa. This observation immedi-

ately leads to the following result.

Theorem 8.7 Let t ∈ T(C,X). If B �ω
E t:σ, then t is strongly normalizable.

Proof: Let D be such that D :: B �ω
E t:σ. Since also D :: B �E t:σ, by Lem. 4.2:(iii), there are D′, B′

such that B ≤ B′, and D′ :: B′ �rE t:σ without using ω. By Thm. 6.6, D′ is strongly normalizable
with respect to →D. By Lem. 8.6:(ii), all derivation redexes in D′ correspond to redexes in t and
vice-versa, a property that is preserved under reduction. So also t is strongly normalizable.

It is worthwhile to notice that, unlike for lc with �λ∩ , the reverse implication of the three
theorems does not hold in general. For this, it is sufficient to note that a subject expansion
theorem does not hold (see also the last remark of Section 3).

Another aspect worth noting is that, unlike in lc, no longer every term in normal form is
typeable without ω in basis and type. Take for example

t = S(K(SII))(K(SII)),

and note that, by Property 2.19 every type assignable to t (regardless of the environment used)
is a type assignable to λy.(λx.xx)(λx.xx) in �λ∩ . Since this last term has no head-normal
form, only ω can be assigned to it.

9 Semantics

In this section, we will define two semantics for cs. The first is a filter model, where terms
will be interpreted by the set of their assignable types; the second an approximation model,
where terms will be interpreted by the set of their approximants.

Definition 9.1 (Filters) i) A subset d of T is a filter if and only if:
a) If σ1, . . . ,σn ∈ d (n ≥ 0), then σ1∩· · ·∩σn ∈ d.
b) If σ ∈ d and σ ≤ τ, then τ ∈ d.

ii) If V is a subset of T , then ↑V is the smallest filter that contains V, and ↑σ = ↑{σ}.

Theoretical Computer Science, 290:975-1019, 2003 32

iii) F = {d ⊆ T | d is a filter}.

Notice that a filter is never empty, since by part (i.a), for all d, ω ∈ d. 〈F ,⊆〉 is a cpo and
henceforward it will be considered with the corresponding Scott topology.

Definition 9.2 i) Application on ℘AC , · : ℘AC × ℘AC → ℘AC , is defined by:

A1 · A2 = {a ∈AC | ∃a1 ∈ A1, a2 ∈ A2,u [a1 a2 →∗ u & a � u]}.

ii) Application on F , · : F ×F →F , is defined by:

d · e = ↑{σ | ∃ τ ∈ e [τ→σ ∈ d]}.

We will define two interpretations of terms:

Definition 9.3 i) The interpretation of terms in the domain of approximants over C is defined
as: [[t]]AC =AC (t) = {a ∈AC | ∃u [t →∗ u & a � u]}.

ii) Let ξ be a valuation of term variables in F ; we write ξ |= B if and only if, for all x:σ ∈ B,
σ ∈ ξ(x). [[t]]Fξ,E , the interpretation of terms in F via ξ and E is defined by: [[t]]Fξ,E = {σ |
∃B [ξ |= B & B �E t:σ]}.

Notice that [[]]F , by rule (∩I) and Thm. 3.3, {σ | ∃B [B �E t:σ]} ∈ F .
Both applications are well-defined, in the sense that they respect application on terms.

Lemma 9.4 i) [[t1]]AC · [[t2]]AC = [[t1 t2]]AC .
ii) [[t1]]Fξ,E · [[t2]]Fξ,E = [[t1 t2]]Fξ,E .

Proof: i) (⊆) : [[t1]]AC · [[t2]]AC = (Def. 9.2:(i))
{a ∈AC | ∃a1 ∈ [[t1]]AC , a2 ∈ [[t2]]AC ,u[a1 a2 →∗ u & a � u]} =

{a ∈AC | ∃a1, a2 ∈AC ,u [∃u1 [t1 →∗ u1 & a1 � u1] &
∃u2 [t2 →∗ u2 & a2 � u2] & a1 a2 →∗ u & a � u]} ⊆ (Lem. 7.5:(ii))
{a ∈AC | ∃u [t1 t2 →∗ u & a � u]} = [[t1 t2]]AC

(⊇) : [[t1 t2]]AC = {a ∈AC | ∃u [t1 t2 →∗ u & a � u]} ⊆ (Lem. 7.11)
{a ∈AC | ∃a1 ∈ [[t1]]AC , a2 ∈ [[t2]]AC ,u[a1 a2 →∗ u & a � u]} = [[t1]]AC · [[t2]]AC

ii) [[t1]]Fξ,E · [[t2]]Fξ,E =

↑{σ | ∃ τ ∈ [[t2]]Fξ,E [τ→σ ∈ [[t1]]Fξ,E]} =

↑{σ | ∃τ [∃B1 [B1 �E t1:τ→σ] & ∃B2 [B2 �E t2:τ]]} = (⊆: B =
⋂
{B1, B2})

↑{σ | ∃τ, B [B �E t1:τ→σ & B �E t2:τ]} =

↑{σ | ∃B [B �E t1 t2:σ]} =

{σ | ∃B [B �E t1 t2:σ]} = [[t1 t2]]Fξ,E

As seen above in Lem. 7.9:(i), if t →∗ t′, then AC (t) =AC (t′), which implies that, at least, if
t →∗ t′, then [[t]]AC = [[t′]]AC . The converse does not hold, since unsolvable terms that are not in
→∗ , still have the same image under [[]]AC , namely ⊥. We now formalize these properties.

The relation =R is the reflexive, symmetric and transitive closure of →R :

Definition 9.5 Let ((C,X),R) be a cs. We define the equivalence relation =R ⊆ T(C,X) ×

Theoretical Computer Science, 290:975-1019, 2003 33

T(C,X) by:

t →∗
R v ⇒ t =R v

t =R v ⇒ v =R t
t =R v & v =R w ⇒ t =R w

Lemma 9.6 If t =R v, then there exists u such that t →∗
R u and v →∗

R u.

Proof: By induction on the definition of =R . If t =R v & v =R w ⇒ t =R w, then, by induction
there are u1 and u2 such that t →∗

R u1 and v →∗
R u1, and v →∗

R u2 and w →∗
R u2. Since v →∗

R u1
and v →∗

R u2, by Property 1.5, there exist a u3 such that u1 →∗
R u3 and u2 →∗

R u3. But then, in
particular, t →∗

R u3 and w →∗
R u3. The other cases are straightforward.

The approximant semantics is adequate, in that it equates terms that are equal in the theory
R.

Theorem 9.7 (Adequacy of the Approximation Model) If t =R v, then [[t]]AC = [[v]]AC .

Proof: Consequence of Lem. 9.6 and 7.9:(i).

The converse of this result, ‘If [[t]]AC = [[v]]AC , then t =R v’ does not hold.

Example 9.8 Take the cs

S xyz → xz(yz)
K xy → x
D x → x x
W x → x x x

Notice that SK(DD) and SK(WW) both have only one redex, and that this property is pre-
served under reduction. Then

SK(DD) → SK(DD) → SK(DD) → ·· ·

and
SK(WW) → SK(WWW) → SK(WWWW) → ·· ·,

so
[[SK(DD)]]AC = {⊥,S⊥⊥,SK⊥} = [[SK(WW)]]AC ,

but there is no u such that both SK(DD)→∗ u and SK(WW)→∗ u.

We could modify the relation =R to identify all unsolvable terms, so as to obtain SK(DD)≈R SK(WW)
(this is used also for lc).

Definition 9.9 Let ((C,X),R) be a cs. We define the equivalence relation ≈R ⊆ T(C,X) ×
T(C,X) by:

t →∗
R v ⇒ t ≈R v

t,v are unsolvable ⇒ t ≈R v
t ≈R v ⇒ v ≈R t

t ≈R v & v ≈R w ⇒ t ≈R w
t ≈R v ⇒ wt ≈R wv & tw ≈R vw

Notice that SK(DD)≈R SK(WW).

Theoretical Computer Science, 290:975-1019, 2003 34

Theorem 9.10 If t ≈R v, then [[t]]AC = [[v]]AC .

Proof: By induction on the definition of ≈R. The case t →∗
R v follows from Lem. 7.9:(i). If t,v

are unsolvable, then [[t]]AC = {⊥}= [[v]]AC . The last case is a consequence of Lem. 9.4. The other
two cases follow by inductiona.

Although, by ≈R , terms are equated that are unsolvable, still we do not get a full-abstraction
result, since it can be that solvable terms have the same infinite set of approximants, whilst
sharing no terms during reduction.

Example 9.11 Take
T xy → y(x xy)
Y xy → y(xy(xy))
X xy → x(yy)

Then we have the following reduction sequences:

YXz → z(Xz(Xz))
→ z(z(X z(Xz)))
→ z(z(z(X z(Xz))))
· · ·
→ z(z(z(z(z(z · · ·)))))

TTz → z(TTz)
→ z(z(TTz))
→ z(z(z(T Tz)))
· · ·
→ z(z(z(z(z(z · · ·)))))

In particular,
[[YXz]]AC = {⊥,z⊥,z(z⊥),z(z(z⊥)), . . .} = [[TTz]]AC ,

but not YXz ≈R TTz.

We can obtain a full-abstraction result for the approximation semantics using the following
relation:

Definition 9.12 Let ((C,X),R) be a cs. The relation ≈hnf
R is defined coinductively as follows:

t ≈hnf
R u if and only if either

i) t and u are both unsolvable, or
ii) if Ct1 · · · tn is a head normal form of t (resp. u), then there is a head normal form Cu1 · · ·un

of u (resp. t) such that, for 1≤ i≤n, ti ≈hnf
R ui, or

iii) if xt1 · · · tn is a head normal form of t (resp. u), then there is a head normal form xu1 · · ·un

of u (resp. t) such that, for 1≤ i≤n, ti ≈hnf
R ui.

Theorem 9.13 (Full Abstraction of the Approximation Model)
t ≈hnf

R u if and only if [[t]]AC = [[u]]AC .

Proof: (if) : By coinduction. It is sufficient to show that if [[t]]AC = [[u]]AC then either
a) t,u are unsolvable, or
b) if Ct1 · · · tn is a head normal form of t (resp. u), then Cu1 · · ·un is a head normal form

of u (resp. t), and [[ti]]
A
C = [[ui]]

A
C for 1≤ i≤n, or

c) if xt1 · · · tn is a head normal form of t (resp. u), then xu1 · · ·un is a head normal form
of u (resp. t), and [[ti]]

A
C = [[ui]]

A
C for 1≤ i≤n.

This is a straightforward consequence of the fact that u and t have the same set of ap-
proximants.

Theoretical Computer Science, 290:975-1019, 2003 35

(only if) : We take a ∈ [[t]]AC and show a ∈ [[u]]AC by induction on the depth of a.
(a = ⊥) : Trivial.
(a = Ca1 . . . an) : Then t has a head normal form Ct1 · · · tn, and therefore u has a head normal

form C u1 · · ·un such that ti ≈hnf
R ui for 1≤ i≤n. Since ai ∈ [[ti]]

A
C and its depth is smaller

than that of a, by induction we conclude that ai ∈ [[ui]]
A
C . Therefore a ∈ [[u]]AC .

(a = xa1 . . . an) : Similar.

The filter semantics gives a semi-model with respect to →R , as the following theorem
shows.

Theorem 9.14 If t →∗
R v, then [[t]]Fξ,E ⊆ [[v]]Fξ,E .

Proof: Take σ ∈ [[t]]Fξ,E . Then ∃B [B �E t:σ], and, since t →∗
R v, by Thm. 3.7, also ∃B [B �E v:σ],

so σ ∈ [[v]]Fξ,E .

In view of the fact that type assignment in �E is not closed for subject-expansion (see the
remark at the end of Section 3), it is, in general, not possible to show a stronger result like ‘If
t =R v, then [[t]]Fξ,E = [[v]]Fξ,E ’. However, when using a principal environment, this result holds.

Theorem 9.15 (Adequacy of the Filter Model) Let C = ((C,X),R) be a cs, and E be principal
for C, then t =R v implies [[t]]Fξ,E = [[v]]Fξ,E .

Proof: By Thm. 3.7 and 3.8.

We even have the following result easily.

Theorem 9.16 Let C = ((C,X),R) be a cs, and E be principal for C, then, for all t,v ∈ T(C,X):
t ≈R v implies [[t]]Fξ,E = [[v]]Fξ,E .

Proof: By induction on the definition of ≈R. The case t →∗
R v is covered by Thm. 3.7 and 3.8.

If t,v are unsolvable, then by Thm. 8.4, [[t]]Fξ,E = {ω} = [[v]]Fξ,E . The last case is a consequence
of Lem. 9.4. The other two cases follow by straightforward induction.

The converse of these results do not hold.

Example 9.17 Take T,Y,X as in Exp. 9.11, and let

E(T) = ((ϕ1→ϕ2→ϕ3)∩ϕ1)→((ϕ3→ϕ4)∩ϕ2)→ϕ4,
E(Y) = ((ϕ3→ϕ5→ϕ1)∩(ϕ4→ϕ5))→((ϕ1→ϕ2)∩ϕ3∩ϕ4)→ϕ2,
E(X) = (ϕ1→ϕ2)→((ϕ3→ϕ1)∩ϕ3)→ϕ2,

then

[[YX]]Fξ,E = {ω, (ω→ϕ1)→ϕ1, ((ω→ϕ1)∩(ϕ1→ϕ2))→ϕ2,
((ω→ϕ1)∩(ϕ1→ϕ2)∩(ϕ2→ϕ3))→ϕ3, . . .} = [[TT]]F ,

(notice that these types correspond directly to the approximants of Exp. 9.11) but neither
YX =R TT, nor YX≈R TT.

For the filter semantics, we have, as can be expected:

Theoretical Computer Science, 290:975-1019, 2003 36

Theorem 9.18 Let C = ((C,X),R) be a cs, and E be principal for C, then, for all t,u ∈ T(C,X):
t ≈hnf

R u implies [[t]]Fξ,E = [[u]]Fξ,E .

Proof: If t ≈hnf
R u, then, by Thm. 9.13, [[t]]AC = [[u]]AC . Let σ ∈ [[t]]Fξ,E (the other case is similar),

then there exists a B such that B �E t:σ. Then, by Thm. 8.2, there exists an a ∈AC (t) such
that B �E a:σ. Since AC (t) = [[t]]AC = [[u]]AC = AC (u), a ∈AC (u), and by Thm. 8.3, B �E u:σ, so
σ ∈ [[u]]Fξ,E .

Perhaps surprisingly (at least for lc, the approximation and the filter semantics coincide [19,
3]), we do not have a full-abstraction result with respect to filter semantics.

Example 9.19 Take

Exy → xy
Ix → x

and
E(E) = (ϕ1→ϕ2)→ϕ1→ϕ2

E(I) = ϕ1→ϕ1

Then
[[EI]]Fξ,E = [[I]]Fξ,E ,

but neither EI =R I, nor EI≈R I, nor EI ≈hnf
R I.

The relation between the two semantics is formulated by:

Theorem 9.20 [[t]]Fξ,E ⊆ ⋃
a ∈ [[t]]AC

[[a]]Fξ,E .

Proof: If σ ∈ [[t]]Fξ,E , then there is a B such that B �E t:σ. Then, by Thm. 8.2, there is an a ∈AC (t)
such that B �E a:σ.

Note that the inclusion is strict, since the Subject Expansion property does not hold in
general. Also, as can be expected:

Theorem 9.21 Let C = ((C,X),R) be a cs, E principal for C. For all t ∈ T(C,X),
⋃

a ∈ [[t]]AC
[[a]]Fξ,E ⊆

[[t]]Fξ,E .

Proof: If σ ∈ ⋃
a ∈ [[t]]AC

[[a]]Fξ,E , then there exists a ∈ [[t]]AC , B such that B �E a:σ. Then, by Thm. 8.3,

also B �E t:σ, so σ ∈ [[t]]Fξ,E .

10 Conclusions

The approximation result has important consequences both from a computational point of
view, since it allows us to characterize the normalization properties of typeable terms, and
from a semantic point of view, since it allows us to study the relations between filter models
and approximantion models. This is true both for lc and for cs, but the characterizations
of normalization and the relations between the models are different in each case. The most
striking difference is probably the fact that the models do not coincide in general in the case
of cs (the filter model is only a semi-model in general) whereas they do coincide for the lc. Of
course, the lack of Subject Expansion in cs explains the fact that we only have a semi-model.
However, the fact that for cs the approximation model is fully abstract, but the filter model is
not, is related to the fact that we have a “weak” form of reduction in cs, compared with the
reduction in lc.

Theoretical Computer Science, 290:975-1019, 2003 37

The proof of the approximation result uses a notion of Cut Elimination (Derivation Reduc-
tion) which is new in the context of intersection types. It could be adapted to other rewriting
systems (in particular, the lc and trs), where it also helps to obtain easier proofs of the char-
acterisation of normalisation properties of typeable terms. In the case of lc this remains an
open issue, whereas for trs the proof was sketched in [4]. In the future we hope to be able to
extend the semantic study presented in this paper to the more general trs studied in [4].

Acknowledgments

We would like to thank Mariangiola Dezani and Felice Cardone for many inspiring discus-
sions on the subject of this paper, and the anonymous referees for their useful comments.

References

[1] S. van Bakel. Complete restrictions of the Intersection Type Discipline. Theoretical Computer Science,
102(1):135–163, 1992.

[2] S. van Bakel. Principal type schemes for the Strict Type Assignment System. Logic and Computation,
3(6):643–670, 1993.

[3] S. van Bakel. Intersection Type Assignment Systems. Theoretical Computer Science, 151(2):385–435,
1995.

[4] S. van Bakel and M. Fernández. Approximation and Normalization Results for Typeable Term
Rewriting Systems. In Gilles Dowek, Jan Heering, Karl Meinke, and Bernhard Möller, editors, Pro-
ceedings of HOA ’95. Second International Workshop on Higher Order Algebra, Logic and Term Rewriting,
Paderborn, Germany. Selected Papers, volume 1074 of Lecture Notes in Computer Science, pages 17–36.
Springer-Verlag, 1996.

[5] S. van Bakel and M. Fernández. Normalization Results for Typeable Rewrite Systems. Information
and Computation, 133(2):73–116, 1997.

[6] H. Barendregt. The Lambda Calculus: its Syntax and Semantics. North-Holland, Amsterdam, revised
edition, 1984.

[7] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and the completeness
of type assignment. Journal of Symbolic Logic, 48(4):931–940, 1983.

[8] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functional characters of solvable terms.
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 27:45–58, 1981.

[9] H.B. Curry. Grundlagen der Kombinatorischen Logik. American Journal of Mathematics, 52:509–536,
789–834, 1930.

[10] H.B. Curry. Functionality in Combinatory Logic. In Proc. Nat. Acad. Sci. U.S.A., volume 20, pages
584–590, 1934.

[11] H.B. Curry and R. Feys. Combinatory Logic, volume 1. North-Holland, Amsterdam, 1958.
[12] N. Dershowitz and J.P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook of Theo-

retical Computer Science, volume B, chapter 6, pages 245–320. North-Holland, 1990.
[13] M. Dezani-Ciancaglini and J.R. Hindley. Intersection types for combinatory logic. Theoretical Com-

puter Science, 100:303–324, 1992.
[14] K. Futatsugi, J. Goguen, J.P. Jouannaud, and J. Meseguer. Principles of OBJ2. In Proceedings 12th

ACM Symposium on Principles of Programming Languages, pages 52–66, 1985.
[15] C.A. Gunter and D.S. Scott. Semantic domains. In J. van Leeuwen, editor, Handbook of Theoretical

Computer Science, pages 633–674. North-Holland, 1990.
[16] G. Huet and J.J. Lévy. Computations in Orthogonal Rewriting Systems. In J.-L. Lassez and

G. Plotkin, editors, Computational Logic. Essays in Honour of Alan Robinson. MIT Press, 1991.
[17] J.W. Klop. Term Rewriting Systems. In S. Abramsky, Dov.M. Gabbay, and T.S.E. Maibaum, editors,

Handbook of Logic in Computer Science, volume 2, chapter 1, pages 1–116. Clarendon Press, 1992.

Theoretical Computer Science, 290:975-1019, 2003 38

[18] J.W. Klop and A. Middeldorp. Sequentiality in Orthogonal Term Rewriting Systems. Journal of
Symbolic Computation, 12:161–195, 1991.

[19] S. Ronchi Della Rocca and B. Venneri. Principal type schemes for an extended type theory. Theo-
retical Computer Science, 28:151–169, 1984.

[20] W.W. Tait. Intensional interpretation of functionals of finite type I. Journal of Symbolic Logic,
32(2):198–223, 1967.

[21] S.R. Thatte. Full Abstraction and Limiting Completeness in Equational Languages. Theoretical
Computer Science, 65:85–119, 1989.

[22] C.P. Wadsworth. The relation between computational and denotational properties for Scott’s D∞-
models of the lambda-calculus. SIAM J. Comput., 5:488–521, 1976.

