
Complete restrictions of the intersection type discipline

Corrected version∗

(Theoretical Computer Science, 102:135-163, 1992)

Steffen van Bakel †

Department of Informatics, Faculty of Mathematics and Informatics,
University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands.

steffen@cs.kun.nl

Abstract

In this paper the intersection type discipline as defined in [2] is studied. We will present two
different and independent complete restrictions of the intersection type discipline.
The first restricted system, the strict type assignment system, is presented in section two. Its
major feature is the absence of the derivation rule (≤) and it is based on a set of strict types.
We will show that these together give rise to a strict filter lambda model that is essentially
different from the one presented in [2]. We will show that the strict type assignment system
is the nucleus of the full system, i.e. for every derivation in the intersection type discipline
there is a derivation in which (≤) is used only at the very end. Finally we will prove that
strict type assignment is complete for inference semantics.
The second restricted system is presented in section three. Its major feature is the absence
of the type ω. We will show that this system gives rise to a filter λI-model and that type
assignment without ω is complete for the λI-calculus. Finally we will prove that a lambda
term is typeable in this system if and only if it is strongly normalisable.

Introduction

The popularity of functional programming has increased over the last decade. A large and

still increasing number of people, computer scientists as well as manufacturers and logicians

is becoming interested in functional programming languages.

A large number of functional programming languages already exist, many of them based

on the lambda calculus. The calculus itself is type free, whereas it is common use to assign

types to algorithms. Since the lambda calculus is a fundamental basis for functional program-

ming languages, a type assignment system for the pure untyped lambda calculus, capable of

deducing meaningful types, has been a topic of research for many years.

One of the first and most primitive ones was introduced by H.B. Curry in [8]. (See also

[9]). His system expresses abstraction and application and has as its major advantage that

it is decidable to determine whether a lambda term is typeable by this system. Because

of this decidability it is used as a basis for type checkers used in functional programming

languages. The functional programming language ML [18] for example, is in fact an extended

lambda calculus and it contains a type checker based on Curry’s system. Miranda, a functional

programming language designed and implemented by D. Turner [25], contains a type checker

based on the ML type assignment system.

∗ See appendix
† Research performed at the Department of Computer Science, Turin, Italy, and supported by the Netherlands

Organisation for the advancement of pure research (N.W.O.).

Theoretical Computer Science, 102:135-163, 1992 2

Curry’s type assignment system has however drawbacks. It is not capable of assigning a

type to λx.xx, and although the lambda terms λcd.d and (λxyz.xz(yz))(λab.a) are β-equal,

the principal type schemes for these terms are different. Principal type schemes for Curry’s

system are defined by J.R. Hindley [13].

The intersection type discipline as presented in [2] does not contain these drawbacks. It

is based on the Curry type assignment system: in addition to the type constructor ‘→’ it

contains a type constructor ‘∩’ and a type constant ‘ω’. These extensions were introduced

to obtain a system that is closed under β-equality. The main problem of course is that of β-

expansion: suppose we have derived B ⊢ M[N/x] : σ1 and also want to derive B ⊢ (λx.M)N : σ.

This problem is solved by the introduction of the type constant ω and the intersection types.

The type constant ω is the universal type, i.e. each term can be typed by ω. It can be used

in the expansion to type N if N does not occur in M[N/x] and there is no other type ρ such

that B ⊢ N : ρ. The intersection types are used for the cases that N occurs more than once in

M[N/x] and these occurrences were typed in the derivation for B ⊢ M[N/x] : σ with different

types. A first introduction of a type assignment system with intersection types can be found

in [3], a system with intersection types and ω is introduced in [6] and in [24].

In [2] the system as presented in [6] was strengthened further by introducing a partial order

relation ‘≤’ on types as well as adding the type assignment rule (≤), and a more general form

of the rules concerning intersection. The rule (≤) is introduced mainly to prove completeness

of type assignment. This is achieved by showing that the set of types derivable for a lambda

term in this extended system is a filter, i.e. a set closed under intersection and right closed for

≤ (if σ ≤ τ and σ ∈ d where d is a filter, then τ ∈ d.) The interpretation of a lambda term by

the set of types derivable for it gives a filter lambda model F . Using this model, completeness

is proved. Other interesting use of filter lambda models can be found in [4], [7], [11] and [12].

For the system as defined in [2], principal type schemes can be defined as in [23]. Instances

of types can be obtained by substitution, operations of rise (applying (≤)) or expansion (in-

troducing intersection types by replacing a sub-derivation by more than one sub-derivation

with the same structure, followed by an intersection introduction).

The intersection type discipline has a great expressive power: all solvable terms have types

other than ω and a term has a normal form if and only if it has a type without ω occurrences.

The system however is too powerful: it is closed under β-conversion. If a lambda term M is

typeable by σ and M =β N, then also N is typeable by σ. Because it is in general undecidable

whether two terms are β-convertible, it is not possible to decide whether a lambda term can be

typed by a type suitable for λx.x. Moreover there are several ways to deduce a desired result,

due to the presence of the derivation rules (∩I), (∩E) and (≤), which allow superfluous steps

in derivations. In the system as presented in [6], these rules are not present and there is a

one-one relationship between terms and derivations. In other words: the system is syntax

directed.

The first restriction presented in this paper is the strict type assignment system, a type

assignment system in which the ≤-relation and the derivation rule (≤) are no longer present.

The elimination of ≤ induces a set of strict types, a restriction of the set of types used in the

intersection type assignment system.

Strict types are the types that are strictly needed to assign a type to terms. The strict type

assignment system is constructed from the set of strict types and a minor extension of the

derivation rules as defined in [6]. In this way we obtain a syntax directed system. It turns out

to be the nucleus of the intersection type assignment system. The strict system gives rise to a

1 Unlike in [2], we will use the notation ‘M : σ’ for the statement ‘σ is a type for M’.

Theoretical Computer Science, 102:135-163, 1992 3

strict filter lambda model FS that satisfies all major properties of the filter lambda model F
as presented in [2], but is an essentially different lambda model.

In constructing a complete system, the semantics of types play a crucial role. As in [12],

[19] and essentially following [14], a distinction can be made between several notions of type

interpretations and semantic satisfiability. There are roughly three notions of type semantics

that differ in the meaning of an arrow type scheme: inference type interpretations, simple

type interpretations and F type interpretations. These different notions of type interpretations

induce of course different notions of semantic satisfiability.

The intersection type assignment as presented in [2], is sound and complete with respect

to the simple type semantics. In this paper we will show that soundness is lost if instead of

simple type semantics, the inference type semantics is used. With the use of the latter we

are able to prove soundness and completeness without having the necessity of introducing ≤.

This will be done using the strict filter lambda model FS.

The second restriction presented is a type assignment system without ω. It is not difficult

to see that, while building a derivation B ⊢ M : σ (where ω does not occur in σ and B) for a

lambda term M that has a normal form, the type ω is only needed to type sub-terms that

will be erased while reducing M to its normal form and that cannot be typed starting from

B. This gives rise to the idea that if we limit ourselves to the set of lambda terms where no

sub-terms will be erased, i.e. the λI-calculus, the type ω is not really needed for terms that

have a normal form. The type assignment system without ω yields a λI-model and turns out

to be complete for the λI-calculus with respect to the simple type semantics. The set of terms

typeable by this system is just the set of all strongly normalisable lambda terms.

Because of its undecidability properties the intersection type discipline is at the present

time not used in type checkers. In order to obtain a type checker based on this system, some

restrictions have to be made. In this paper two restrictions of the intersection type discipline

are studied, which both yield undecidable systems. So these attempts to restrict the system in

preparation for the construction of a type checker, fail.

1 The intersection type discipline

The intersection type assignment system is an extension of the Curry type assignment system.

It introduces intersection types and a type constant ω. Originally the system was called the

‘extended type assignment system’, but since a lot of different extensions of the Curry system

exist, we prefer to use the name that highlights its major feature: the intersection types. In this

section we give the definition of the intersection type discipline as presented in [2], together

with its major features.

Definition 1.1 i) T , the set of types is inductively defined by:

a) All type variables ϕ0, ϕ1, . . . ∈ T .

b) ω ∈ T .

c) If σ and τ ∈ T , then (σ→τ) and (σ∩τ) ∈ T .

ii) On T the type inclusion relation ≤ is inductively defined by:

a) σ ≤ σ.

b) σ ≤ ω.

c) ω ≤ ω→ω.

d) σ∩τ ≤ σ.

e) σ∩τ ≤ τ.

Theoretical Computer Science, 102:135-163, 1992 4

f) (σ→τ)∩(σ→ρ) ≤ σ→(τ∩ρ).

g) σ ≤ τ ≤ ρ ⇒ σ ≤ ρ.

h) σ ≤ τ & σ ≤ ρ ⇒ σ ≤ τ∩ρ.

i) ρ ≤ σ & τ ≤ µ ⇒ σ→τ ≤ ρ→µ.

iii) σ ∼ τ ⇐⇒ σ ≤ τ ≤ σ.

iv) A statement is an expression of the form M : σ where M ∈ Λ and σ ∈ T . M is the subject

and σ the predicate of M : σ.

v) A basis is a set of statements with only variables (not necessarily distinct) as subjects.

T may be considered modulo ∼. Then ≤ becomes a partial order.

Notice that in the original paper [2] the type inclusion relation is defined in a slightly

different way. Instead of rule 1.1 (ii.h) the rules

h’) σ ≤ τ & µ ≤ ρ ⇒ σ∩µ ≤ τ∩ρ.

h”) σ ≤ σ∩σ.

are given. It is not difficult to show that these definitions are equivalent.

Throughout this paper, the symbol ϕ will be a type variable and the symbols µ, ν, η, ρ, σ,

and τ will range over types.

Definition 1.2 i) Intersection type assignment is defined by the following natural deduction

system.

(→ I) :

[x:σ]
...

M : τ
(a)

λx.M : σ→τ

(→E) :
M : σ→τ N : σ

MN : τ

(∩I) :
M : σ M : τ

M : σ∩τ
(∩E) :

M : σ∩τ

M : σ

M : σ∩τ

M : τ

(≤) :
M : σ

(σ ≤ τ)
M : τ

(ω) :
M : ω

(a) If x:σ is the only statement about x on which M : τ depends.

ii) If M : σ is derivable from a basis B, we write B ⊢ M : σ.

In [2] several properties of this type assignment system are proved. Some of the more

important are:

• The set of types derivable for a lambda term is a filter, i.e. a set closed under intersection

and right closed for ≤.

• The interpretation of a lambda term by the set of types derivable for it, gives a filter

lambda model F . Using this model, completeness is proved.

• The set of normalisable terms can be characterised in the following way:

∃B, σ [B ⊢ M : σ & B,σ ω-free]⇐⇒ M has a normal form.

• The set of terms having a head normal form can be characterised in the following way:

∃B, σ [B ⊢ M : σ & σ 6= ω]⇐⇒ M has a head normal form.

Definition 1.3 The following properties are used in this paper and are listed here to be able

to refer to them easily:

i) [2].2.8(i): B ⊢ MN : τ ⇒ ∃σ ∈ T [B ⊢ M : σ→τ & B ⊢ N : σ].

Theoretical Computer Science, 102:135-163, 1992 5

ii) [2].2.8(iii): B ⊢ λx.M : σ→τ ⇐⇒ B\x∪{x:σ} ⊢ M : τ.2

iii) [2].4.13(i): ∃B,σ [B ⊢ M : σ & σ 6= ω]⇒ M has a head normal form.

iv) [2].4.13(ii): ∃B,σ [B ⊢ M : σ & B,σ ω-free]⇐⇒ M has a normal form.

v) [2].2.7(ii): B ⊢ x : τ ⇒ ∃ x:τ1, . . . , x:τn ∈ B [τ1∩ · · ·∩τn ≤ τ].

vi) [12].5.6: ρ ≤ (τ1∩ · · ·∩τn)→σ ⇒ ρ = (τ1
1 →·· ·→τs

n →σ1)∩ · · ·∩(τs
1 →·· ·→τs

n →σs)∩ρ′, for

some τ
j
1, . . . ,τ

j
n,σj,ρ

′ such that τ
j
i ≥ τi with i ≤ i ≤ n, 1 ≤ j ≤ s and σ1∩ · · ·∩σs ≤ σ.

2 The system without derivation rule (≤)

In this section we will give an extension (without the (≤)-rule) of the Curry type assignment

system, which in fact will be a combination of both the systems as presented in [3] and [6],

and is almost the same as the one presented in [5]. We will prove that this system also yields

a filter lambda model (subsection 2.1) and that type assignment in this system is complete

(subsection 2.3). To achieve the completeness result we will have to use inference semantics

as defined in [19] as a notion of type interpretation, instead of the simple semantics as used

in [2]. Furthermore we will show that if in a derivation for M : σ the derivation rule (≤) is

used, the same statement can be derived using a derivation in which the derivation rule (≤)

is at the most only used at the very end of the derivation (subsection 2.2).

2.1 Strict derivations

In this subsection we present a restricted version of the intersection type assignment system,

in which the derivation rule (≤) is no longer present, together with a restricted set of types.

These together will yield a lambda model, with which we prove completeness of type assign-

ment without the derivation rule (≤).

Strict types and strict derivations are closely related. Strict derivations are syntax directed

and yield strict types. The type constant ω plays a limited role in the strict type assignment

system. It does not occur in an intersection subtype and occurs only on the left-hand side

of an arrow type scheme. Moreover, intersection type schemes occur in strict types only as

subtypes at the left hand side of an arrow type scheme.

Definition 2.1 i) Ts, the set of strict types, is inductively defined by:

a) All type variables ϕ0, ϕ1, . . . ∈ Ts.

b) If σ, σ1, . . . ,σn, τ ∈ Ts, then σ→τ, ω→τ, (σ1∩ · · ·∩σn)→τ ∈ Ts.

ii) TS is defined as the union of {ω} and the closure of Ts under intersection.

iii) On TS, the relation ≤s is defined by:

a) σ ≤s σ.

b) σ ≤s ω.

c) σ∩τ ≤s σ & σ∩τ ≤s τ.

d) σ ≤s τ ≤s ρ ⇒ σ ≤s ρ.

e) σ ≤s ρ & σ ≤s τ ⇒ σ ≤s ρ∩τ.

iv) σ ∼s τ ⇐⇒ σ ≤s τ ≤s σ.

v) A statement is an expression of the form M : σ where σ ∈ TS and M ∈ Λ. M is the subject

and σ the predicate of M : σ.

vi) A basis is a set of statements with only variables as subjects.

2 B\x is the basis obtained from B by erasing the statements that have x as subject.

Theoretical Computer Science, 102:135-163, 1992 6

TS may be considered modulo ∼s. Then ≤s becomes a partial order.

It is an easy exercise to show that the definition of ≤s is equivalent to:

i) σ ≤s ω.

ii) If σ = σ1∩ · · ·∩σn (n ≥ 1), τ = τ1∩ · · ·∩τm (m ≥ 1) and {σ1, . . . ,σn} ⊆ {τ1, . . . ,τm}, then

τ ≤s σ.

It is also easy to show that if σ ≤s τ, then either τ = ω or τ = σ or σ is an intersection

type scheme in which τ occurs. Notice moreover that if σ ∼s τ, then either σ = τ or σ is an

intersection type scheme and τ can be obtained from σ by permuting its strict components. In

fact the differences affect none of our proofs and in the rest of the paper σ = τ means σ ∼s τ.

Definition 2.2 i) Strict type assignment and strict derivations are defined by the following

natural deduction system (where all types displayed are strict, except σ in rule (→ I)):

(→ I) :

[x:σ] (σ ∈ TS)
...

M : τ
(a)

λx.M : σ→τ

(∩E) :
x : σ∩τ

x : σ

(→E) :
M : (σ1∩ · · ·∩σn)→τ N : σ1 · · · N : σn

MN : τ

M : ω→τ

MN : τ

(a) : If x:σ is the only statement about x on which M : τ depends.

(b) : Notice that rule (→E) consists of two parts.

If M : σ is derivable from B using a strict derivation, we write B ⊢s M : σ.

ii) We define ⊢s by: B ⊢s M : σ if and only if: σ = ω or there are σ1, . . . ,σn (n ≥ 1) such that

σ = σ1∩ · · ·∩σn and for every i ∈ {1, . . . ,n} B ⊢s M : σi.

Notice that in B ⊢s M : σ the basis can contain types that are not strict, and that B ⊢s M : σ is

only defined for σ ∈ TS.

Notice also that the derivation rule (∩E) is only performed on variables and that the deriva-

tion rules (ω) and (∩I) are implicitly present in the derivation rule (→E). Moreover, we cannot

compose a derivation in the ⊢s system with conclusion M : ω with any other derivation.

The introduction of two different notions of derivability seems somewhat superfluous. No-

tice that we could limit ourselves to one, by stating:

We define ⊢s by: B ⊢s M : σ if and only if: σ = ω or there are σ1, . . . ,σn (n ≥ 1) such

that σ = σ1∩ · · ·∩σn and for every i ∈ {1, . . . ,n} M : σi is derivable from B using a

strict derivation.

This definition would cause a lot of words in the proofs and perhaps also a lot of confusion.

We therefore prefer two different notions of derivability.

Apart from the presence of ω, the type assignment defined by ⊢s is in fact the same as

the one presented in [3]. Also, the one defined by ⊢s is in fact the same as in [6]. The type

assignment defined by ⊢s is in fact the same as the one presented in [5], it is only different in

a standard way of writing bases.

Lemma 2.3 For these notions of type assignment, the following properties hold:

i) If σ 6= ω, then B ⊢s M : σ ⇐⇒ ∃σ1, . . . ,σn [B ⊢s M : σi & σ = σ1∩ · · ·∩σn].

ii) B ⊢s MN : σ ⇐⇒ ∃ τ [B ⊢s M : τ→σ & B ⊢s N : τ].

iii) B ⊢s M : σ ⇐⇒ B ⊢s M : σ & σ ∈ Ts.

iv) B ⊢s λx.M : σ ⇐⇒ ∃ ρ ∈ TS,µ ∈ Ts [σ = ρ→µ & B\x∪{x:ρ} ⊢s M : µ].

Theoretical Computer Science, 102:135-163, 1992 7

v) B ⊢s M : σ ⇐⇒ {x:τ ∈ B | x ∈ fv (M)} ⊢s M : σ.

vi) ∀σ,τ ∈ TS [(B∪{x:σ} ⊢s M : τ ⇒ B∪{x:σ} ⊢s N : τ) & x not in B]⇒
∀ ρ ∈ TS [B ⊢s λx.M : ρ ⇒ B ⊢s λx.N : ρ].

Proof : Easy.

As in [2] we aim to construct a filter lambda model. By use of names we will distinguish

between the definition of filters in that paper and the ones given here.

Definition 2.4 i) A subset d of TS is called a strict filter if and only if:

a) ω ∈ d.

b) σ,τ ∈ d ⇒ σ∩τ ∈ d.

c) τ ∈ d & τ ≤s σ ⇒ σ ∈ d.

ii) If V is a subset of TS, then ↑
s
V is the smallest strict filter that contains V, and ↑

s
σ = ↑

s
{σ}.

If no confusion is possible, we will omit the subscript on ↑.

iii) FS = {d ⊆ TS | d is a strict filter}. We define application on FS, · : FS ×FS →FS by: d · e =

↑{τ | ∃σ ∈ e [σ→τ ∈ d]}.

The application on filters as defined in [2] is not useful in our approach, since it would not be

well defined. We must force the application to yield filters, since in each arrow type scheme

σ→τ ∈ TS, τ is strict.

〈FS,⊆〉 is a cpo and henceforward we will consider it with the corresponding Scott topol-

ogy.

Because of the remark made after 2.1, condition 2.4 (i.c) can be replaced by:

2.4.i.c’) σ∩τ ∈ d ⇒ σ ∈ d & τ ∈ d.

Notice that a strict filter generated by a finite number of types is finite. Let for example σ

be a strict type, then ↑
s
σ = {σ,ω} (where by ∼s we identify σ and σ∩σ). If σ is an intersection

of strict types, σ = σ1∩ · · ·∩σn, then ↑
s
σ contains 2n elements, namely {σ1, . . . ,σn,σ1∩σ2,σ1∩σ3,

. . . ,σn−1∩σn,σ1∩σ2∩σ3, . . . ,σ1∩ · · ·∩σn,ω }. Of course FS contains also infinite elements.

Lemma 2.5 For strict filters the following properties hold:

i) σ 6= ω & σ ∈ ↑V & V ⊆ Ts ⇐⇒ ∃σ1, . . . ,σn [σ = σ1∩ · · ·∩σn & ∀ i ∈ {1, . . . ,n} [σi ∈ V]].

ii) σ ∈ Ts & σ ∈ ↑V & V ⊆ Ts ⇒ σ ∈ V.

iii) σ ∈ ↑τ ⇐⇒ τ ≤s σ.

iv) σ ∈ ↑{τ | B ⊢s M : τ} ⇐⇒ σ ∈ {τ | B ⊢s M : τ}.

v) {x:σ} ⊢s x : τ ⇐⇒ σ ≤s τ.

Proof : Easy.

Theorem 2.6 i) If B ⊢s M : σ and σ ≤s τ, then B ⊢s M : τ.

ii) {σ ∈ TS | B ⊢s M : σ} ∈ FS.

Proof : i) By induction on ≤ s.

ii) By 2.5 (iv).

Definition 2.7 We define F : FS →[FS →FS] and G : [FS →FS]→FS by:

i) F d e = d · e.

ii) G f = ↑{σ→τ ∈ TS | τ ∈ f (↑σ)}.

It is easy to check that F and G are continuous.

Theoretical Computer Science, 102:135-163, 1992 8

Theorem 2.8 〈FS, ·〉 with F and G as defined in 2.7 is a lambda model.

Proof : By [1].5.4.1 it is sufficient to prove that F◦G = id[FS→FS].

F◦G f d = F G(f)d = G(f) · d = ↑{σ→τ ∈ TS | τ ∈ f (↑σ)} · d =

↑{µ | ∃ ρ ∈ d [ρ→µ ∈ ↑{σ→τ | τ ∈ f (↑σ)}]} = (2.5(ii))

↑{µ | ∃ ρ ∈ d [µ ∈ f (↑ρ)]} =

f (d).

Remark that FS and the filter lambda model F defined in [2] are not isomorphic as complete

lattices, since for example in F the filter ↑(σ∩τ)→σ is contained in ↑σ→σ but in FS the strict

filter ↑
s
(σ∩τ)→σ is not contained in ↑

s
σ→σ. Moreover they are not isomorphic as lambda

models since in F the meaning of λxy.xy is contained in the meaning of λx.x, while this does

not hold in FS (see the examples after 2.11). Another difference is that while the analogue of

G in F chooses the minimal representative of functions, this is not the case in FS.

Definition 2.9 Let ξ be a valuation of term variables in FS.

i) ⌈⌈M⌋⌋ξ , the interpretation of terms in FS via ξ is inductively defined by:

a) ⌈⌈x⌋⌋ξ = ξ(x).

b) ⌈⌈MN⌋⌋ξ = F ⌈⌈M⌋⌋ξ ⌈⌈N⌋⌋ξ .

c) ⌈⌈λx.M⌋⌋ξ = G (λλ v ∈ FS.⌈⌈M⌋⌋ξ(v/x)).

ii) Bξ = {x:σ | σ ∈ ξ(x)}.

Theorem 2.10 For all M, ξ: ⌈⌈M⌋⌋ξ = {σ ∈ TS | Bξ ⊢s M : σ}.

Proof : By induction on the structure of lambda terms.

i) ⌈⌈x⌋⌋ξ = ξ(x). Since {y:ρ | ρ ∈ ξ(y)} ⊢s x : σ ⇐⇒ σ ∈ ξ(x).

ii) ⌈⌈MN⌋⌋ξ = ↑{τ | ∃σ [Bξ ⊢s N : σ & Bξ ⊢s M : σ→τ]} = (2.3(ii) & (iii))

↑{τ | Bξ ⊢s MN : τ} = (2.6(ii))

{τ | Bξ ⊢s MN : τ}

iii) ⌈⌈λx.M⌋⌋ξ = ↑{σ→τ | Bξ(↑σ/x) ⊢s M : τ}= (2.3(iii))

↑{σ→τ | Bξ(↑σ/x) ⊢s M : τ} = (B′
ξ = Bξ\x)

↑{σ→τ | B′
ξ ∪{x:µ | µ ∈ ↑σ} ⊢s M : τ} =

↑{σ→τ | B′
ξ ∪{x:σ} ⊢s M : τ}= (2.3(iv))

↑{σ→τ | B′
ξ ⊢s λx.M : σ→τ}= (2.3(v))

↑{σ→τ | Bξ ⊢s λx.M : σ→τ}= (2.3(iv) & 2.5(iv))

{ρ | Bξ ⊢s λx.M : ρ}.

Corollary 2.11 If M =β N and B ⊢s M : σ, then B ⊢s N : σ, so the following rule is a derived rule in ⊢s:

(=β) :
M : σ

(M =β N)
N : σ

Proof : Since FS is a lambda model, we know that if M =β N, then ⌈⌈M⌋⌋ξ = ⌈⌈N⌋⌋ξ ; so

{σ ∈ TS | Bξ ⊢s M : σ} = {σ ∈ TS | Bξ ⊢s N : σ}.

Notice that because of the way in which ⊢s is defined, Corollary 2.11 also holds if ⊢s is

replaced by ⊢s.

Example 2.12 By using 2.3 and 2.5 we can show the following:

Theoretical Computer Science, 102:135-163, 1992 9

i) If M is a closed term, then for all ξ, ⌈⌈M⌋⌋ξ = {σ ∈ TS | ⊢s M : σ}. So for closed terms we

can omit the subscript ξ.

ii) ⌈⌈λxy.xy⌋⌋ξ = ↑{ρ→σ→τ | ∃σ′ [ρ ≤s σ′→τ & σ ≤s σ′]}.

iii) ⌈⌈λx.x⌋⌋ξ = ↑{σ→τ | σ ≤s τ}.

iv) ⌈⌈λx.xy⌋⌋ξ = ξ(y).

If we take for example µ = (σ→τ)→(σ∩ρ)→τ, then it is easy to check that µ ∈ ⌈⌈λxy.xy⌋⌋ξ

and µ 6∈ ⌈⌈λx.x⌋⌋ξ , so ⌈⌈λxy.xy⌋⌋ξ is not contained in ⌈⌈λx.x⌋⌋ξ .

Notice that if M is a closed term, ⌈⌈M⌋⌋ξ is infinite. If M is not closed, it can be that ⌈⌈M⌋⌋ξ

is finite since ξ can select also finite filters. However, we can limit FS by selecting only infinite

strict filters. Notice that this would still give us a lambda model that is different from F .

Theorem 2.13 If M is in normal form, then there are B and σ such that B ⊢s M : σ, and in this

derivation ω does not occur.

Proof : By induction on the structure of lambda terms in normal form.

i) M ≡ x. Take σ strict, such that ω does not occur in σ. Then {x:σ} ⊢s x : σ.

ii) M ≡ λx.M’, with M’ in normal form. By induction there are B and τ such that B ⊢s M′ : τ

and ω does not occur in this derivation. In order to perform the (→ I)-step, B must

contain (whether or not x is free in M’) a statement with subject x and predicate, say, σ.

But then of course B\x ⊢s λx.M′ : σ→τ and ω does not occur in this derivation.

iii) M ≡ xM1 . . . Mn, with M1, . . . , Mn in normal form. By induction there are B1, . . . , Bn and

σ1, . . . ,σn such that for every i ∈ {1, . . . ,n}, Bi ⊢s Mi : σi and ω does not occur in these

derivations.

Take τ strict, such that ω does not occur in τ, and B= ∩i∈{1,...,n}Bi∩{x:σ1→·· ·→σn →τ}.

Then B ⊢s xM1 . . . Mn : τ and in this derivation ω does not occur.

Theorem 2.14 If M is in head normal form, then there are B and σ such that B ⊢s M : σ.

Proof : By induction on the structure of lambda terms in head normal form.

i) M ≡ x. Take σ strict, then x:σ ⊢s x : σ.

ii) M ≡ λx.M’, with M’ in head normal form. By induction there are B and τ such that

B ⊢s M′ : τ. As in the previous theorem, B must contain a statement with subject x and

predicate, say, σ. But then of course B\x ⊢s λx.M′ : σ→τ.

iii) M ≡ xM1 . . . Mn, with M1, . . . , Mn lambda terms. Take τ strict, then also

ω→ω→·· ·→ω→τ is strict, and {x:ω→ω→·· ·→ω→τ} ⊢s xM1 . . . Mn : τ.

Theorem 2.15 ∃B,σ [B ⊢s M : σ & B,σ ω-free]⇐⇒ M has a normal form.

Proof : (⇒) : If B ⊢s M : σ and B, σ ω-free, then B ⊢s M : σ and B, σ ω-free. Then by 1.3 (iv) M

has a normal form.

(⇐) : By 2.13 and 2.11.

Notice that in part (ii) of the proof, because of Corollary 2.11 we can only state that if

M =β N and B ⊢s M : σ, then B ⊢s N : σ. From 2.13 we can conclude that B and σ do not contain

ω, but the property that ω does not occur at all in the derivation is, in general, lost.

Theorem 2.16 ∃B,σ [B ⊢s M : σ]⇐⇒ M has a head normal form.

Proof : (⇒) : If B ⊢s M : σ, then B ⊢ M : σ and σ 6= ω. Then by 1.3 (iii) M has a head normal

form.

(⇐) : By 2.14 and 2.11.

Theoretical Computer Science, 102:135-163, 1992 10

Corollary 2.17 i) ∃B,σ [B ⊢s M : σ & B,σ ω − f ree] ⇐⇒ M has a normal form.

ii) ∃B,σ [B ⊢s M : σ & σ 6= ω]⇐⇒ M has a head normal form.

2.2 The relation between ⊢s and ⊢

The intersection type assignment is not conservative over the strict type assignment. So the

following does not hold:

Suppose all types occurring in B and σ are elements of TS. Then B ⊢s M : σ ⇐⇒ B ⊢
M : σ.

As a counter example for ⇐, take {x:σ→σ} ⊢ x : (σ∩τ)→σ. It is not possible to derive x :

(σ∩τ)→σ form the basis {x:σ→σ} in ⊢s.

Of course the implication in the other direction holds: B ⊢s M : σ implies B ⊢ M : σ. The

relation between the two systems is however stronger. Theorem 2.23 states that every state-

ment obtainable in the intersection type assignment system can be obtained by a derivation in

which the rule (≤) is, if necessary, only performed as the last step. The proof is based on the

fact that for every σ ∈ T there is a σ′ ∈ TS such that σ ∼ σ′ (Lemma 2.19; the same result has

been stated in [14], $4), and the approximation theorem as given in [23].

Definition 2.18 i) The set N of λ⊥-normal forms or approximate normal forms is inductively

defined by:

a) All term variables are in N , ⊥ is in N .

b) If A is in N , A 6= ⊥, then λx.A is in N .

c) If A1, . . . , An are in N , then xA1 · · · An is in N .

ii) A ∈ N is a direct approximant of M ∈ λ if A matches M except for occurrences of ⊥.

iii) A ∈N is an approximant of M ∈ λ (notation: A ≤ M) if there is an M′ =β M such that A

is a direct approximant of M’.

iv) A(M) = {A ∈ N | A ≤ M}.

v) The type assignment rules of Definition 1.2 (i) and 2.2 (i) are generalised to elements of

N by allowing the terms to be elements of λ⊥.

Lemma 2.19 (cf. [14]) For every σ ∈ T there is a σ′ ∈ TS such that σ ∼ σ′.

Proof : By induction on the structure of types in T .

i) σ = ω, or σ is a type variable: trivial.

ii) σ = ρ→τ. By induction there are ρ′ and τ′ ∈ TS such that ρ ∼ ρ′ and τ ∼ τ′.

a) τ′ = ω. Take σ′ = ω.

b) τ′ = τ1∩ · · ·∩τm, each τi ∈ Ts. Take σ′ = (ρ′→τ1)∩ · · ·∩(ρ′→τ1).

c) τ′ is strict, then take σ′ = ρ′→τ′

iii) σ = ρ∩τ. By induction there are ρ′ and τ′ ∈ TS such that ρ ∼ ρ′ and τ ∼ τ′.

a) ρ′ = ω. Take σ′ = τ′.

b) τ′ = ω. Take σ′ = ρ′.

c) ρ′ 6= ω & τ′ 6= ω. Take σ′ = ρ′∩τ′.

Notice that Lemma 2.19 is not a proof for the statement that TS modulo ∼s is isomorphic to

T modulo ∼. For example, take σ1 = (ρ∩τ)→ρ and σ2 = (τ∩ρ)→ρ. Then obviously σ1 ∼ σ2,

σ′
1 = σ1, σ′

2 = σ2, but not σ′
1∼s σ′

2. By proving Lemma 2.19 we only prove that we can find a σ′

for each σ, not that this σ′ is unique. In fact, by replacing 2.19 (iii.c) by

c. ρ′ 6= ω & τ′ 6= ω. Take σ′ = ρ′∩τ′ or σ′ = τ′∩ρ′.

Theoretical Computer Science, 102:135-163, 1992 11

we would be able to find both σ′
1 and σ′

2 as types in TS that fit our purpose. See also the

remark after 2.28.

We will now prove the main theorem of this subsection, by showing that the ⊢s system is

in fact the nucleus of the intersection type discipline. We will do this by proving first for

terms in N that the derivation rule (≤) can be transferred to the very end of a derivation and

afterwards generalising this result to arbitrary lambda terms.

Definition 2.20 We write B ≥ B’, if the following is true. If x occurs in B, then x occurs

in B’, and if σ1, . . . ,σn are all predicates of statements that have x as subject in B then there

are τ1, . . . ,τm, predicates of statements that have x as subject in B′, such that σ1∩ · · ·∩σn ≥
τ1∩ · · ·∩τm.

Theorem 2.21 If A is in λ⊥-normal form and B ⊢ A : σ then there are B’, σ′ ∈ TS such that B′ ⊢s A : σ′,

σ′ ≤ σ and B′ ≥ B.

Proof : The proof is given by induction on the structure of terms in λ⊥-normal form. All cases

where σ ∼ ω are trivial, because then we can take B′ = ∅ and σ′ = ω. Therefore in the rest of

the proof, we will assume σ 6= ω.

i) B ⊢ x : σ. By 1.3 (v) there are x:σ1, . . . , x:σn in B such that σ1∩ · · ·∩σn ≤ σ. By Lemma 2.19

there is an σ′ ∈ TS such that σ1∩ · · ·∩σn ∼ σ′. Then {x:σ′} ≥ B and σ′ ≤ σ.

ii) B ⊢ λx.A′ : σ, with A′ 6= ⊥. Then there are ρ1, . . . , ρn, µ1, . . . , µn such that σ = (ρ1→µ1)∩

· · ·∩(ρn →µn). So, by (∩E) and 1.3 (ii) for every i ∈ {1, . . . ,n} we have B∪{x:ρi} ⊢ A′ : µi.

We can assume, without loss of generality, that each µi is an element of Ts. By induc-

tion there are Bi and ρ′i, µ′
i ∈ TS such that Bi∪{x:ρ′i} ⊢s A′ : µi

′, µ′
i ≤ µi and Bi∪{x:ρ′i} ≥

B∪{x:ρi}. We can assume, without loss of generality, that each µ′
i is an element of Ts.

Then for all i ∈ {1, . . . ,n} Bi ⊢s λx.A′ : ρi
′→µ′

i, ρ′i →µ′
i ≤ ρi →µi and Bi ≥ B. So

∪i∈{1,...,n}Bi ⊢s λx.A′ : (ρ′1→µ′
1)∩ · · ·∩(ρ

′
n →µ′

n),

(ρ′1→µ′
1)∩ · · ·∩(ρ

′
n →µ′

n) ≤ σ and ∪i∈{1,...,n}Bi ≥ B.

iii) B ⊢ xA1 . . . An : σ. By 1.3 (i) there are τ1, . . . ,τn ∈ T such that B ⊢ x : τ1→·· ·→τn →σ, B ⊢
A1 : τ1, . . . , and B ⊢ An : τn. By induction Bi ⊢s Ai : τ′

i , τ′
i ≤ τi and Bi ≥ B. Take B′ =

∪i∈{1,...,n}Bi, then B′ ≥ B. By Lemma 2.19 there is a σ′ ∈ TS such that σ ∼ σ′. Let σ′ =

σ1∩ · · ·∩σk where each σi ∈ Ts and k ≥ 1. Because of

τ1→·· ·→τn →σ ≤ (τ′
1→·· ·→τ′

n →σ1)∩ · · ·∩(τ′
1→·· ·→τ′

n →σk)

and 1.3 (v), we have

B′∩{x:(τ′
1→·· ·→τ′

n →σ1)∩ · · ·∩(τ′
1→·· ·→τ′

n →σk)} ≥ B.

Also for every f ∈ {1, . . . ,k} B′∩{x:τ′
1→·· ·→τ′

n →σf } ⊢s xA1 · · · An : σf .

So B′∩{x:(τ′
1→·· ·→τ′

n →σ1)∩ · · ·∩(τ′
1→·· ·→τ′

n →σk)} ⊢s xA1 . . . An : σ′.

Theorem 2.22 i) B ⊢ M : σ ⇐⇒ ∃ A ∈ A(M) [B ⊢ A : σ].

ii) B ⊢s M : σ ⇐⇒ ∃ A ∈ A(M) [B ⊢s A : σ].

Proof : i) [23].2.13.

ii) The structure of the proof of [23].2.13 is the same as the structure of the proof for this

part.

Theorem 2.23 If B ⊢ M : σ then there are B’, σ′ ∈ TS such that B′ ⊢s M : σ′, σ′ ≤ σ and B′ ≥ B.

Proof : If B ⊢ M : σ then, by 2.22 (i) there is an A ∈ A(M) such that B ⊢ A : σ. Then by Definition

2.18 there is an M’ such that M′ =β M and A is a direct approximant of M′. By Theorem

2.21 there are B’, σ′ ∈ TS such that B′ ⊢s A : σ′, σ′ ≤ σ and B′ ≥ B. Then by Theorem 2.22 (ii)

Theoretical Computer Science, 102:135-163, 1992 12

B′ ⊢s M : σ′.

2.3 Soundness and completeness of strict type assignment

In this subsection we will prove completeness for the ⊢s system. This is done in a way very

similar to the one used in [2], using the strict filter lambda model as defined in subsection 2.1.

At one very crucial point the completeness proof in this subsection differs from the one in [2].

In that paper the simple type semantic is inductively defined whereas our approach will be

to give a map from TS to ℘(FS) and prove that it is a type interpretation. It will be a different

kind of type interpretation than the one used in [2], because the latter would not suffice in

our case.

Following essentially [19], we distinguish between several kinds of type interpretations.

Definition 2.24 i) Let M= 〈D, ·, ε〉 be a continuous lambda model. A mapping υ : T → ℘(D)

is a type interpretation if and only if:

a) {ε · d | ∀ e [e ∈ υ(σ) ⇒ d · e ∈ ν(τ)]} ⊆ υ(σ→τ).

b) υ(σ→τ) ⊆ {d | ∀ e [e ∈ υ(σ) ⇒ d · e ∈ υ(τ)]}.

c) υ(σ∩τ) = υ(σ)∩υ(τ).

ii) Following [15] we say that a type interpretation is simple if and only if:

υ(σ→τ) = {d | ∀ e [e ∈ υ(σ) ⇒ d · e ∈ υ(τ)]}.

iii) On the other hand, a type interpretation is called an F type interpretation if it satisfies:

υ(σ→τ) = {ε · d | ∀ e [e ∈ υ(σ)⇒ d · e ∈ υ(τ)]}.

Notice that in part (ii) the containment relation ⊆ of part (i.b) is replaced by =, and that in

part (iii) the same is done with regard to part (i.a).

These notions of type interpretation lead naturally to the following definitions for semantic

satisfiability (called respectively inference, simple and F-semantics).

Definition 2.25 We define |= by: (where M is a lambda model, ξ a valuation and υ a type

interpretation)

i) M,ξ,υ |= M : σ ⇐⇒ ⌈⌈M⌋⌋Mξ ∈ υ(σ).

ii) M,ξ,υ |= B ⇐⇒M,ξ,υ |= x:σ for every x:σ ∈ B.

iii) a) B |= M : σ ⇐⇒ ∀M,ξ,υ [M,ξ,υ |= B ⇒M,ξ,υ |= M : σ].

b) B |=s M : σ ⇐⇒ ∀M,ξ, simple type interpretations υ [M,ξ,υ |= B ⇒M,ξ,υ |= M : σ].

c) B |=F M : σ ⇐⇒ ∀M,ξ,F type interpretations υ [M,ξ,υ |= B ⇒M,ξ,υ |= M : σ].

If no confusion is possible, we will omit the superscript on [[· · ·]].

Theorem 2.26 Soundness: B ⊢s M : σ ⇒ B |= M : σ.

Proof : By induction on the structure of derivations.

The notion of derivability ⊢ as defined in 1.2 is not sound for |=. Take for example the

statement λx.x : (σ→σ)→(σ∩τ)→σ. This statement is derivable in the system ⊢, but it is not

valid in the strict filter lambda model.

Definition 2.27 i) We define a map ν0 : TS → ℘(FS) by ν0(σ) = {d ∈ FS | σ ∈ d}.

ii) ξB(x) = {σ ∈ TS | B ⊢s x : σ}.

Theorem 2.28 The map ν0 is a type interpretation.

Proof : We check the conditions of 2.24 (i).

Theoretical Computer Science, 102:135-163, 1992 13

i) ∀ e [e ∈ ν0(σ)⇒ d · e ∈ ν0(τ)] ⇒

∀ e [e ∈ ν0(σ)⇒ ε · d · e ∈ ν0(τ)] ⇒ (take e = ↑σ)

τ ∈ ε · d · ↑σ ⇒ (2.5(ii))

∃ ρ ∈ ↑σ,ν ∈ d,η [ν ≤ sη→τ & ρ ≤s η] ⇒ (2.5(iii))

∃ ν ∈ d,η [ν ≤s η→τ & σ ≤s η] ⇒

σ→τ ∈ ↑{ρ→µ | ∃ ν ∈ d,η [ν ≤s η→µ & ρ ≤s η]} ⇒

σ→τ ∈ ↑{η | ∃ ν ∈ d [ν→η ∈ e]} ⇒

e · d ∈ ν0(σ→τ).

ii) Easy.

iii) Trivial.

Notice that although ν0(σ∩τ) = ν0(τ∩σ), the sets ν0((σ∩τ)→σ) and ν0((τ∩σ)→σ) are in-

compatible. We can only show that both contain

{ε · d | ∀ e [e ∈ ν0(σ)∩ν0(τ)⇒ d · e ∈ ν0(σ)]}

and are both contained in

{d | ∀ e [e ∈ ν0(σ)∩ν0(τ)⇒ d · e ∈ ν0(σ)]}.

However, it is not difficult to prove that ε · ↑(σ∩τ)→σ = ε · ↑(τ∩σ)→σ, so the filters ↑(σ∩τ)→σ

and ↑(τ∩σ)→σ represent the same function.

Lemma 2.29 i) B ⊢s M : σ if and only if BξB
⊢s M : σ.

ii) FS,ξB,ν0 |= B.

Proof : i) Because for every x, ξB(x) is a strict filter.

ii) x:σ ∈ B ⇒ (i) σ ∈ {τ | BξB
⊢s x : τ} ⇒ σ ∈ ⌈⌈x⌋⌋ξB

. So ⌈⌈x⌋⌋ξB
∈ {d ∈ FS | σ ∈ d} = ν0(σ).

The system of [2] has been proved complete with respect to the simple type semantics. The

system ⊢s however is not complete in this semantics. This is due to the fact that if we take υ

to be a type interpretation from TS to ℘(FS), the set

{d | ∀ e [e ∈ υ(σ)⇒ d · e ∈ υ(τ)]}

is not contained in υ(σ→τ), since we don’t allow ω or an intersection type scheme at the

right hand side of an arrow type scheme. If instead we use the notion of type interpretation

as defined in 2.24 (i), because of Theorem 2.28 completeness can be proved.

Theorem 2.30 Completeness: Let σ ∈ TS, then B |= M : σ ⇒ B ⊢s M : σ.

Proof : B |= M : σ ⇒ (2.25 (iii.a), 2.29(i) & 2.28)

FS,ξB,ν0 |= M : σ ⇒ (2.25(i) & 2.28)

⌈⌈M⌋⌋ξB
∈ ν0(σ) ⇒ (2.27(i))

σ ∈ ⌈⌈M⌋⌋ξB
⇒ (2.10)

BξB
⊢s M : σ ⇒ (2.29(i))

B ⊢s M : σ.

3 The system without ω

In this section we present a type assignment system that is a restriction of the intersection type

assignment system. The restriction is the elimination of the type constant ω. We will show

that the intersection type assignment system without ω yields a filter model for the λI-calculus

Theoretical Computer Science, 102:135-163, 1992 14

(subsection 3.1), show that for the λI-calculus the intersection type assignment is conservative

over the one without ω (subsection 3.2) and prove that this type assignment is complete for the

λI-calculus with respect to the simple type semantics (subsection 3.3). Furthermore we will

prove that each term typeable by the system without ω is strongly normalisable (subsection

3.4).

While obtaining these results we could of course use the result of the previous section and

look at the system without ≤ and without ω, but since this is a more restricted system we

prefer the approach we use in this section. Also the proofs of various lemmas in subsection

3.4 are greatly facilitated by the presence of derivation rule (≤). In fact, the strong normali-

sation property for the system without ≤ and ω follows immediately from the results of 3.4.

Moreover we could prove a completeness result for this system with respect to the inference

semantics.

3.1 ω-free derivations

In this subsection we present a restriction of the intersection type assignment system in which

the type ω is removed. This system yields a filter λI-model.

Definition 3.1 i) T−ω−, the set of ω-free types is inductively defined by:

a) All type variables ϕ0, ϕ1, . . . ∈ T−ω−.

b) If σ, τ ∈ T−ω−, then σ∩τ, σ→τ ∈ T−ω−.

ii) On T−ω− the type inclusion relation ≤ is as defined in 1.1 (ii), but without rules 1.1 (ii.b)

and 1.1 (ii.c).

iii) If M : σ is derivable from a basis B, using only ω-free types and the derivation rules (∩I),

(∩E), (→ I), (→E) or (≤) of the system in 1.2 (i), we write B ⊢−ω− M : σ.

Lemma 3.2 i) B ⊢−ω− MN : σ ⇐⇒ ∃ τ [B ⊢−ω− M : τ→σ & B ⊢−ω− N : τ].

ii) B ⊢−ω− λx.M : σ→τ ⇐⇒ B\x∪{x:σ} ⊢−ω− M : τ.

iii) If B ⊢−ω− λx.M : ρ, then there are σ1, . . . ,σn, τ1, . . . ,τn such that ρ = (σ1→τ1)∩ · · ·∩(σn →τn).

iv) If B\z∪{z:σ} ⊢−ω− Mz : τ and z 6∈ fv (M), then B ⊢−ω− M : σ→τ.

Proof : By induction on the structure of derivations, using 1.3 (ii) to prove (ii). The proof given

for this part in [2] does not depend on ω.

Definition 3.3 i) A subset d of T−ω− is called an I-filter if

a) σ, τ ∈ d ⇒ σ∩τ ∈ d.

b) σ ≥ τ ∈ d ⇒ σ ∈ d.

ii) F−ω = {d ⊆ T−ω− | d is an I-filter}. We define application on F−ω, · : F−ω ×F−ω →F−ω by:

d · e = {τ | ∃σ ∈ e [σ→τ ∈ d]}.

iii) If V is a subset of T−ω−, then ↑ωV is the smallest I-filter that contains V. Also ↑ωσ = ↑ω{σ}.

If no confusion is possible, we will omit the subscript on ↑.

Notice that the empty set, ∅ is the bottom element of F−ω.

Lemma 3.4 Suppose f is a continuous function from F−ω to F−ω. Then for every ρ, µ ∈ T−ω−:

if ρ→µ ∈ ↑{σ→τ | τ ∈ f (↑σ)}, then µ ∈ f (↑ρ).

Proof : By definition of filters and the fact that f is continuous.

Let 〈D,≤〉 be a cpo with least element ⊥. The set of strict functions is defined as usual, i.e.

as the set of continuous functions that at least map ⊥ onto ⊥. We denote by [D→⊥D] the set

of strict functions from D to D.

Theoretical Computer Science, 102:135-163, 1992 15

Definition 3.5 We define F : F−ω → [F−ω →⊥ F−ω] and G : [F−ω →⊥ F−ω]→F−ω by:

i) F d e = d · e.

ii) G f = ↑{σ→τ ∈ T−ω− | τ ∈ f (↑σ)}.

It is again easy to check that F and G are continuous.

Definition 3.6 ([16]) Let D be a set and · a binary relation on D. The structure 〈D, ·, ε〉 is

called a λI-model if and only if in D there are five elements i, b, c, s and ε that satisfy the

following conditions:

i) i · d = d.

ii) ((b · d) · e) · f = d · (e · f).

iii) ((c · d) · e) · f = (d · f) · e.

iv) ((s · d) · e) · f = (d · f) · (e · f).

v) (ε · d) · e = d · e & ∀ d ∈ D [e · d = f · d ⇒ ε · e = ε · f] & ε · ε = ε.

Moreover, in [10] the following is stated:

Proposition 3.7 ([10]) If 〈D,≤〉 is a cpo and there are continuous maps F : D → [D →⊥ D] and

G : [D →⊥ D]→D such that:

i) F◦G = id[D→⊥D]

ii) G◦F ∈ [D→⊥D]

Then D is a λI-model.

Theorem 3.8 F and G as defined in 3.5 yield a λI-model.

Proof : It is sufficient to check that the conditions of 3.7 are fulfilled.

i) (F◦G(f))(d) =

{µ | ∃ ρ ∈ d[ρ→µ ∈ ↑{σ→τ | τ ∈ f (↑σ)}]} = (3.4)

{µ | ∃ ρ ∈ d[µ ∈ f (↑ρ)]} =

f (d).

ii) G◦F (∅) = ↑{ρ→µ | µ ∈ {σ | ∃ τ ∈ ↑ρ[τ→σ ∈ ∅]}} = ∅.

That the type discipline without ω gives rise to a model for the λ I-calculus, is also proved

in [16]. The technique used there is to build, using Scott’s inverse limit construction, a model

M2 satisfying the equation D ≃ Pω × [D→⊥D], with D0 = Pω (where Pω is the powerset of

natural numbers) and i : D0→Pω × [D0 → ⊥D0] is defined by i(d) = 〈d,λx.⊥〉 (see also [1],

exercise 18.4.26 and [20].)

It is straightforward to verify that F−ω is a solution of the same domain equation.

Definition 3.9 Let ξ be a valuation of term variables in F−ω.

i) ⌈⌈M⌋⌋ξ , the interpretation of λI-terms in F−ω via ξ is inductively defined by:

a) ⌈⌈x⌋⌋ξ = ξ(x).

b) ⌈⌈MN⌋⌋ξ = F ⌈⌈M⌋⌋ξ ⌈⌈N⌋⌋ξ .

c) ⌈⌈λx.M⌋⌋ξ = G (λλ v ∈ F−ω.⌈⌈M⌋⌋ξ(v/x)).

ii) Bξ = {x:σ | σ ∈ ξ(x)}.

Notice that λλ is well defined in λI-models, since (λλ v ∈ F−ω.⌈⌈M⌋⌋ξ(v/x))∅ = ∅.

Theorem 3.10 For all M ∈ λI, ξ : ⌈⌈M⌋⌋ξ = {σ | Bξ ⊢−ω− M : σ}.

Theoretical Computer Science, 102:135-163, 1992 16

Proof : By induction on the structure of lambda terms.

i) ⌈⌈x⌋⌋ξ = ξ(x). Since {y:ρ | ρ ∈ ξ(y)} ⊢−ω− x : σ ⇐⇒ σ ∈ ξ(x).

ii) ⌈⌈MN⌋⌋ξ =

{τ | ∃σ [Bξ ⊢−ω− N : σ & Bξ ⊢−ω− M : σ→τ]} = (3.2(i))

{τ | Bξ ⊢−ω− MN : τ}.

.

iii) ⌈⌈λx.M⌋⌋ξ =

↑{σ→τ | τ ∈ {ρ | Bξ(↑σ/x) ⊢−ω− M : ρ}} =

↑{σ→τ | Bξ(↑σ/x) ⊢−ω− M : τ} = (B′
ξ = Bξ\x)

↑{σ→τ | B′
ξ ∪{x:ρ | ρ ∈ ↑σ} ⊢−ω− M : τ} =

↑{σ→τ | ∃µ ∈ ↑σ[B′
ξ ∪{x:µ} ⊢−ω− M : τ]} = (3.2(ii))

↑{σ→τ | ∃µ ∈ ↑σ[B′
ξ ⊢−ω− λx.M : µ→τ]} = (≤)

↑{σ→τ | B′
ξ ⊢−ω− λx.M : σ→τ} = (3.2(iii))

{ρ | B′
ξ ⊢−ω− λx.M : ρ}.

Remark that F and G do not yield a lambda model. For example: take Z = λxy.y, D = λx.xx

and I = λx.x. Then clearly Z(DD) =β I and ⊢−ω− I : σ→σ but we cannot give a derivation

without ω for Z(DD) : σ→σ.

3.2 The relation between ⊢−ω and ⊢

Type assignment in the intersection type assignment system is not fully conservative over the

type assignment without ω. If for example we have B ⊢ M : σ such that B and σ are ω-free,

but M contains a sub-term that has no normal form, ω is needed in the derivation. (See the

final remark of the previous subsection.)

However, we can prove that for every lambda-term M such that B ⊢ M : σ with B and σ

ω-free, there is an M’ such that M reduces to M’ and B ⊢−ω− M′ : σ. We will show this by

proving for terms in normal form that each ω-free predicate, starting from a ω-free basis,

can be derived in ⊢−ω−, and afterwards use 1.3 (iii). We will use the same technique to prove a

conservativity result.

Lemma 3.11 If M is in normal form and B ⊢ M : σ such that B and σ are ω-free, then B ⊢−ω− M : σ.

Proof : The proof is given by induction on the structure of terms in normal form.

i) B ⊢ x : σ. Then by 1.3 (v) there are x:σ1, . . . , x:σn in B such that σ1∩ · · ·∩σn ≤ σ.

Then obviously B ⊢−ω− x : σ.

ii) B ⊢ λx.M′ : σ. Then σ ≡ (ρ1→µ1)∩ · · ·∩(ρn →µn) for some n ≥ 1, and by 1.3 (ii) for every

i ∈ {1, . . . ,n}: B∪{x:ρi} ⊢ M′ : µi. By induction for every i ∈ {1, . . . ,n}: B∪{x:ρi} ⊢−ω−
M′ : µi. So B ⊢−ω− λx.M′ : σ.

iii) B ⊢ xM1 . . . Mn : σ. By 1.3 (i) there are τ1, . . . ,τn such that B ⊢ x : τ1→·· ·→τn →σ, B ⊢
M1 : τ1, . . . , and B ⊢ Mn : τn.

By 1.3 (v) there are x:ρ1, . . . , x:ρn in B such that ρ1∩ · · ·∩ρn ≤ τ1→·· ·→τn →σ.

By 1.3 (vi) this implies ρ1∩ · · ·∩ρn = (τ1
1 →·· ·→τ1

n →σ1)∩ · · ·∩(τs
1 →·· ·→τs

n →σs)∩ρ′,

for τ
j
1, . . . , τ

j
n, σj such that τ

j
i ≥ τi with i ≤ i ≤ n, 1 ≤ j ≤ s and σ1∩ · · ·∩σs ≤ σ.

Then by (≤) and (∩I) for every i ∈ {1, . . . ,n} we have B ⊢ Mi : τ1
i ∩ · · ·∩τs

i .

Since each τ
j
i occurs in a statement in the basis, the induction hypothesis is applicable

and for every i ∈ {1, . . . ,n} we have B ⊢−ω− Mi : τ1
i ∩ · · ·∩τs

i . Also

(τ1
1 →·· ·→τ1

n →σ1)∩ · · ·∩ (τs
1 →·· ·→τs

n →σs) ≤

(τ1
1 ∩ · · ·∩τs

1)→·· ·→(τ1
n∩ · · ·∩τs

n)→(σ1∩ · · ·∩σs),

Theoretical Computer Science, 102:135-163, 1992 17

so B ⊢ x : (τ1
1∩ · · ·∩τs

1)→·· ·→(τ1
n∩ · · ·∩τs

n)→(σ1∩ · · ·∩σs) and by part (i)

B ⊢−ω− x : (τ1
1 ∩ · · ·∩τs

1)→·· ·→(τ1
n∩ · · ·∩τs

n)→(σ1∩ · · ·∩σs).

But then by (→E) B ⊢−ω− xM1 . . . Mn : σ1∩ · · ·∩σn and by (≤) B ⊢−ω− xM1 . . . Mn : σ.

Theorem 3.12 If B ⊢ M : σ where ω does not occur in B and σ, then there is an M’ such that M

reduces to M’ and B ⊢−ω− M′ : σ.

Proof : If B ⊢ M : σ where ω does not occur in B and σ, then by 1.3 (iii), M has a normal form

M’. Then also B ⊢ M′ : σ. By the previous lemma we have that B ⊢−ω− M′ : σ.

As remarked in the introduction, if we are interested in deriving types without ω occur-

rences, the type constant ω is only needed in the intersection type discipline to type sub-terms

N of M that will be erased while reducing M. In fact, if there is a type ρ such that B ⊢−ω− N : ρ,

then even for this N we would not need to use ω. Unfortunately there are lambda terms M

that contain a sub-term N that must be typed with ω in B ⊢ M : σ, even if ω does not occur in

B and σ. We can even find strongly normalisable lambda terms that contain such a sub-term

(see also the remark made after 3.20). So to prove Theorem 3.12 we have to go down all the

way to the set of lambda terms in normal form, since only these do not contain sub-terms that

will be erased.

Theorem 3.13 Conservativity: If M is a λI-term and B ⊢ M : σ where ω does not occur in B and σ,

then B ⊢−ω− M : σ.

Proof : If B ⊢ M : σ and B, σ are ω-free, then by 1.3 (iii), M has a normal form M’. Then also

B ⊢ M′ : σ. By Lemma 3.11 we have B ⊢−ω− M′ : σ. Because M and M’ are λI-terms, by Corollary

3.25 we obtain B ⊢−ω− M : σ.

3.3 The type assignment without ω is complete for the λI-calculus

In this subsection completeness of type assignment without ω for the λI-calculus is proved

using the method of [2]. The notions of type interpretation as defined in 2.24 lead also in the

case of the λI-calculus in a natural way to the following definitions for semantic satisfiability.

Definition 3.14 As in 2.25 we define |= by: (where M is a λI-model, ξ a valuation and υ a

type interpretation)

i) M,ξ,υ |= M : σ ⇐⇒ ⌈⌈M⌋⌋Mξ ∈ υ(σ).

ii) M,ξ,υ |= B ⇐⇒M,ξ,υ |= x:σ for every x:σ ∈ B.

iii) a) B |= M : σ ⇐⇒ ∀M,ξ,υ [M,ξ,υ |= B ⇒M,ξ,υ |= M : σ].

b) B |=s M : σ ⇐⇒
∀M,ξ, simple type interpretations υ [M,ξ,υ |= B ⇒M,ξ,υ |= M : σ].

c) B |=F M : σ ⇐⇒ ∀M,ξ,F type interpretations υ [M,ξ,υ |= B ⇒M,ξ,υ |= M : σ].

We consider only the simple type semantics, since ⊢−ω− is not sound for all type interpreta-

tions. For example {y:((ϕ1∩ϕ2)→ ϕ3)→ ϕ4, x:ϕ1→ ϕ3} ⊢−ω− yx : ϕ4 but this is not semantically

valid for all type interpretations.

Theorem 3.15 Soundness: If B ⊢−ω− M : σ then B |=s M : σ.

Proof : By induction on the structure of derivations.

Definition 3.16 i) We define a map ν0 : T−ω− → ℘(F−ω) by ν0(σ) = {d ∈ F−ω | σ ∈ d}.

ii) ξB(x) = {σ ∈ T−ω− | B ⊢−ω− x : σ}

Theoretical Computer Science, 102:135-163, 1992 18

Theorem 3.17 i) The map ν0 is a simple type interpretation.

ii) B ⊢−ω− M : σ if and only if BξB
⊢−ω− M : σ.

iii) F−ω,ξB,ν0 |=s B.

Proof : i) Easy.

ii) Because for every x, ξB(x) is an I-filter.

iii) x:σ ∈ B ⇒ σ ∈ {τ | BξB
⊢−ω− x : τ} ⇒ σ ∈ ⌈⌈x⌋⌋ξB

. So ⌈⌈x⌋⌋ξB
∈ {d ∈ F−ω | σ ∈ d}.

Theorem 3.18 Completeness: Let M be a λI-term and suppose ω does not occur in B and σ. If

B |=s M : σ then B ⊢−ω− M : σ.

Proof : B |=s M : σ ⇒ (3.14(iii), 3.17(i) & 3.17(iii))

F−ω,ξB,ν0 |=s M : σ ⇒ (3.14(i) & 3.17(i))

⌈⌈M⌋⌋ξB
∈ ν0(σ) ⇒ (3.16(i))

σ ∈ ⌈⌈M⌋⌋ξB
⇒ (3.10)

BξB
⊢−ω− M : σ ⇒ (3.17(ii))

B ⊢−ω− M : σ.

3.4 Strong normalisation result for the system without ω

In this subsection we show that the set of lambda terms typeable by means of the derivation

rules (∩I), (∩E), (→I) and (→E) is exactly the set of strongly normalisable terms.

The same result has been given in [6], [17] and [21]. However, the proof in [17] is too brief,

the proof in [21] gives few details and the proof in [6] is not complete. In this subsection we

present a complete and formal proof. In [22] a similar result is proved: B ⊢−ω− M : σ ⇐⇒ M is

strongly normalisable.

To prove that each term typeable by the rules (∩I), (∩E), (→ I) and (→E) is strongly nor-

malisable, we will prove even more: we will show that if B ⊢−ω− M : σ (i.e. using also rule (≤)),

then M is strongly normalisable. In [22] this result is given in Corollary 6.3 and is obtained

from the theorem that the procedure PP’ (as defined in [22], Section 6) finds a principal pair for

all and nothing but the strongly normalisable terms. In this subsection we present a proof for

the same result, different from the one given in [22]. The proof that all strongly normalisable

terms are typeable in the system without ω and (≤) is given in Corollary 3.26.

Notice that an I-filter can be empty. A direct result of the main theorem of this subsection

will be that [[· · ·]] as defined in 3.9 will map all unsolvable terms (‘unsolvable’ is in the λI-

calculus exactly the same as ‘not having a normal form’, as well as that ‘normalisable’ and

‘strongly normalisable’ coincide) onto the empty filter.

Notice also that we no longer restrict ourselves to the λI-terms, but prove the statement for

the full λK-calculus.

Fact 3.19 In the sequel, we will accept the following without proof:

i) If xM1 . . . Mn and N are strongly normalisable, then so is xM1 . . . MnN.

ii) If Mz is strongly normalisable (where z does not occur free in M), then so is M.

iii) If M[N/x] and N are strongly normalisable, then so is (λx.M)N.

Lemma 3.20 If B ⊢−ω− M[N/x]P : τ and B ⊢−ω− N : ρ, then B ⊢−ω− (λx.M)NP : τ.

Proof : We can assume that x does not occur in B.

i) N occurs n times in M[N/x], each time typed by, say, σi.

Theoretical Computer Science, 102:135-163, 1992 19

B ⊢−ω− M[N/x]P1 · · ·Pm : τ ⇒

∃ τ1, . . . , tm [B ⊢−ω− M[N/x] : τ1→·· ·→τm →τ & ∀ i ∈ m [B ⊢−ω− Pi : τi]]⇒

∃ τ1, . . . , tm,σ1, . . . ,σn [B∪{x:σ1∩ · · ·∩σn} ⊢−ω− M : τ1→·· ·→τm→τ &

B ⊢−ω− N : σ1∩ · · ·∩σn & ∀ i ∈ m [B ⊢−ω− Pi : τi]]⇒

∃ τ1, . . . , tm,σ1, . . . ,σn [B ⊢−ω− λx.M : (σ1∩ · · ·∩σn)→τ &

B ⊢−ω− N : σ1∩ · · ·∩σn & ∀ i ∈ m [B ⊢−ω− Pi : τi]]⇒

B ⊢−ω− (λx.M)NP1 · · ·Pm : τ.

ii) N does not occur in M[N/x], so x 6∈ fv (M).

B ⊢−ω− MP1 · · ·Pn : τ & B ⊢−ω− N : ρ ⇒ (x 6∈ fv (M))

∃ τ1, . . . , tm [B ⊢−ω− M : τ1→·· ·→τm →τ & B ⊢−ω− N : ρ & ∀ i ∈ m [B ⊢−ω− Pi : τi]] ⇒

∃ τ1, . . . , tm [B∪{x:ρ} ⊢−ω− M : τ1→·· ·→τm →τ &

B ⊢−ω− N : ρ & ∀ i ∈ m [B ⊢−ω− Pi : τi]] ⇒

∃ τ1, . . . , tm [B ⊢−ω− λx.M : ρ→τ & B ⊢−ω− N : ρ & ∀ i ∈ m [B ⊢−ω− Pi : τi]]⇒

B ⊢−ω− (λx.M)NP1 · · ·Pm : τ.

Notice that the condition B ⊢−ω− N : ρ in the formulation of the lemma is essential. As a

counter example take the two lambda terms λyz.(λb.z)(yz) and λyz.z. Notice that the first

strongly reduces to the latter. We know that {z:σ,y:τ} ⊢−ω− z : σ, but it is impossible to give a

derivation for (λb.z)(yz) : σ from the same basis without using ω. This is caused by the fact

that we can only type (λb.z)(yz) in the system without ω from a basis in which the predicate

for y is an arrow type scheme. We can for example derive {z:σ,y:σ→τ} ⊢−ω− (λb.z)(yz) : σ.

We can therefore only state that we can derive ⊢−ω− λyz.(λb.z)(yz) : (σ→τ)→σ→σ and also

can derive ⊢−ω− λyz.z : τ→σ→σ but that we are not able to give a derivation without ω for

the statement λyz.(λb.z)(yz) : τ→σ→σ. So the type assignment without ω is not closed for

β-equality, but of course that is also not needed. We only want to be able to derive a type for

each strongly normalisable term, no matter what basis or type are used.

Notice that for the λI-calculus the condition B ⊢−ω− N : ρ is not needed. So the following is an

immediate result:

Corollary 3.21 Let M and M’ be λI-terms, such that M reduces to M’ and there are B and σ such that

B ⊢−ω− M′ : σ. Then B ⊢−ω− M : σ.

We will now show that all strongly normalisable terms are typeable in our system. The

proof of the crucial lemma for this result as presented below (Lemma 3.23) goes by induc-

tion on the left-most outer-most reduction path. The following lemma formulates a subject

expansion result for our system with respect to left-most outer-most reduction.

Definition 3.22 An occurrence of a redex R = (λx.P)Q in a term M is called the left-most

outer-most redex of M (lor(M)), if and only if:

i) there is no redex R′ in M such that R′ = C[R] (outer-most);

ii) there is no redex R′ in M such that M = C0 [C1 [R
′]C2 [R]] (left-most).

M→lor N is used to indicate that M reduces to N by contracting lor(M).

Lemma 3.23 Let M→lor N, lor(M) = (λx.P)Q, B1 ⊢−ω− N : σ with σ not an intersection, and B2 ⊢−ω−
Q : τ, then there exists B3, ρ such that B3 ≤ B1, σ ≤ ρ, and B3 ⊢−ω− M : ρ.

Proof : By induction on the structure of terms.

(M = VP1 · · ·Pn) : Then there are µj (j ∈ n), such that B1 ⊢−ω− V ′ : µ1→·· ·→µn →σ and B1 ⊢−ω−
Pi : µi, for all i ∈ n, and either:

Theoretical Computer Science, 102:135-163, 1992 20

a) V is a redex (λy.P)Q, so lor(M) = V, and V ′ ≡ P[Q/y]. Let B3 = B1∩B2 and ρ = σ∩τ,

then by weakening and Lemma 3.20, B3 ⊢−ω− (λy.P)Q : µ1→·· ·→µn →δ.

b) V ≡ z and there is an i ∈ n such that lor(M) = lor(Pj), N ≡ zP1 · · ·P′
i · · ·Pn, and Pi→lor P′

i .

Then, by induction, there are B′, µ′
j such that µj ≤ µ′

j, and B′ ⊢−ω− Pj : µ′
j. Let V ′ = z, take

B3 = B1∩B′∩z:µ1→·· ·→µ′
j →·· ·→µn →φ, and ρ = σ∩ρ, then

B3 ⊢−ω− z : µ1→·· ·→µ′
j →·· ·→µn →δ.

In both cases, B3 ≤ B1, ρ ≤ σ, and B3 ⊢−ω− VP1 · · ·Pn : δ.

(M = λy.M′) : If M→lor N, then N = λy.N′ and M′→lor N′. Then there exists α and β such

that σ = α→β, and B1,y:α ⊢−ω− N′ : β. By induction, there exists B′ ≤ B1, α′ ≤ α, and

δ′ ≤ δ such that B′,y:α′ ⊢−ω− M′ : β′. Then, by rule (→ I), B′ ⊢−ω− λy.M′ : α′→β′. Notice that

α→β ≤ α′→β′; take B3 = B′ and ρ = α′→β′.

Notice that the condition B2 ⊢−ω− N : τ in the formulation of the lemma is essential. As a

counter example take the two lambda terms λyz.(λb.z)(yz) and λyz.z. Notice that the first

strongly reduces to the latter. We know that {z:σ,y:τ} ⊢−ω− z : σ, but it is impossible to give a

derivation for (λb.z)(yz) : σ from the same basis without using ω. This is caused by the fact

that we can only type (λb.z)(yz) in the system without ω from a basis in which the predicate

for y is an arrow type scheme. We can for example derive {z:σ,y:σ→τ} ⊢−ω− (λb.z)(yz) : σ.

We can therefore only state that we can derive ⊢−ω− λyz.(λb.z)(yz) : (σ→τ)→σ→σ and also

can derive ⊢−ω− λyz.z : τ→σ→σ but that we are not able to give a derivation without ω for

the statement λyz.(λb.z)(yz) : τ→σ→σ. So the type assignment without ω is not closed for

β-equality, but of course that is also not needed. We only want to be able to derive a type for

each strongly normalisable term, no matter what basis or type are used.

Theorem 3.24 If M is strongly normalisable, then there are σ and B such that B ⊢−ω− M : σ and in the

derivation the derivation rule (≤) is not used.

Proof : By induction on the maximum of the lengths of reduction sequences for a strongly

normalisable term to its normal form (denoted by #(M)).

i) If #(M) = 0, then M is in normal form, and by Lemma 3.11, there exist B and σ such that

B ⊢−ω− M : σ.

ii) If #(M) ≥ 1, so M contains a redex, then let M→lor N by contracting (λx.P)Q. Then

#(N) < #(M), and #(Q) < #(M) (since Q is a proper subterm of a redex in M), so by

induction B ⊢−ω− N : σ and B′ ⊢−ω− Q : τ, for some B, B′, σ, and τ. Then, by Lemma 3.23,

there exist B1, ρ such that B1 ⊢−ω− M : ρ.

Notice that for the λI-calculus the condition B ⊢−ω− N : ρ is not needed. So the following is an

immediate result:

Corollary 3.25 Let M and M’ be λI-terms, such that M reduces to M’ and there are B and σ such that

B ⊢−ω− M′ : σ. Then B ⊢−ω− M : σ.

Lemma 3.20 is also essentially the proof for the statement that each strongly normalisable

term can be typed in the system ⊢−ω−.

Corollary 3.26 If M is strongly normalisable, then there are σ and B such that B ⊢−ω− M : σ and in the

derivation the derivation rule (≤) is not used.

Proof : If M is strongly normalizable, then by using the inside-out reduction strategy (see [1],

Definition 14.2.11) the normal form of M will be reached. This strategy has the special prop-

erty that a redex (λx.P)Q can only be contracted if Q is in normal form. The proof is com-

Theoretical Computer Science, 102:135-163, 1992 21

pleted by induction on the inside out reduction path, using Lemma 3.20 and Theorem 2.13.

In order to prove that each term typeable in ⊢ is strongly normalisable we introduce a

notion of computability. From now on, we will abbreviate ‘M is strongly normalisable’ by

SN(M).

Definition 3.27 (cf. [21]) Comp(B, M,ρ) is inductively defined by:

i) Comp(B, M, ϕ)⇐⇒ B ⊢−ω− M : ϕ & SN(M).

ii) Comp(B, M,σ→τ)⇐⇒ (Comp(B′, N,σ) ⇒ Comp(B∩B′, MN,τ)).

iii) Comp(B, M,σ∩τ)⇐⇒ (Comp(B, M,σ) & Comp(B, M,τ)).

Lemma 3.28 Let σ and τ be such that σ ≤ τ. Then Comp(B, M,σ) implies Comp(B, M,τ).

Proof : By straightforward induction on the definition of ≤.

Theorem 3.29 i) If B ⊢−ω− xM1 . . . Mn : ρ and SN(xM1 . . . Mn), then Comp(B, xM1 . . . Mn,ρ).

ii) If Comp(B, M,ρ), then B ⊢−ω− M : ρ and SN(M).

Proof : Simultaneously by induction on the structure of types. The only interesting case is

when ρ ≡ σ→τ, the other cases are dealt with by induction.

i) B ⊢−ω− xM1 . . . Mn : σ→τ & SN (xM1 . . . Mn)⇒

(Comp(B′, N,σ) ⇒

B ⊢−ω− xM1 . . . Mn : σ→τ & SN (xM1 . . . Mn) & B′ ⊢−ω− N : σ & SN(N)) ⇒

(Comp(B′, N,σ) ⇒ B∩B′ ⊢−ω− xM1 . . . MnN : τ & SN (xM1 . . . Mn))⇒

(Comp(B′, N,σ) ⇒ Comp(B∩B′, xM1 . . . MnN,τ)) ⇒ (3.27(ii))

Comp(B, xM1 . . . Mn,σ→τ).

ii) Comp(B, M,σ→τ) & z 6∈ fv (M)⇒

Comp(B, M,σ→τ) & Comp({z:σ},z,σ) & z 6∈ fv (M)⇒ (3.27(ii))

Comp(B∪{z:σ}, Mz,τ) & z 6∈ fv (M)⇒

B∪{z:σ} ⊢−ω− Mz : τ & SN(Mz) & z 6∈ fv(M)⇒ (3.2(iv))

B ⊢−ω− M : σ→τ & SN(M).

Lemma 3.30 Comp(B, M[N/x]P,σ) & Comp(B, N,ρ)⇒ Comp(B, (λx.M)NP,σ).

Proof : By induction on the structure of types. We only consider the case that σ is a type

variable:
Comp(B, M[N/x]P, ϕ) & Comp(B, N,ρ)⇒ (3.29(ii))

B ⊢−ω− M[N/x]P : ϕ & SN(M[N/x]P) & B ⊢−ω− N : ρ & SN(N)⇒ (3.20)

B ⊢−ω− (λx.M)NP : ϕ & SN ((λx.M)NP)⇒ (3.27(i))

Comp(B, (λx.M)NP, ϕ).

Theorem 3.31 If B = {x1:µ1, . . . , xn:µn} and Comp(B′, Ni,µi) and B ⊢−ω− M : σ, then

Comp(B′, M[Ni/xi],σ).

Proof : By induction on the structure of derivations. We will only show the non-trivial parts,

and assume the substitutions to take place in parellel.

(→ I) : Then M ≡ λy.M’, σ = ρ→τ, and B∩{y:ρ} ⊢−ω− M′ : τ.

B = {x1:µ1, . . . , xn:µn} & Comp(B′, Ni,µi) & B∩{y:ρ} ⊢−ω− M′ : τ ⇒

(Comp(B′, N,ρ) ⇒ Comp(B′, M′[Ni/xi, N/y],τ)) ⇒ (3.30)

(Comp(B′, N,ρ) ⇒ Comp(B′, (λy.M′[Ni/xi])N,τ))⇒ (3.27(ii))

Comp(B′, (λy.M′)[Ni/xi],ρ→τ).

Theoretical Computer Science, 102:135-163, 1992 22

(→E) : Then M ≡ M1M2, B ⊢−ω− M1 : ρ→τ and B ⊢−ω− M2 : ρ.

B = {x1:µ1, . . . , xn:µn} & Comp(B′, Ni,µi) & B ⊢−ω− M1 : ρ→τ & B ⊢−ω− M2 : ρ ⇒

Comp(B′, M1[Ni/xi],ρ→τ) & Comp(B′, M2[Ni/xi],ρ) ⇒ (3.27(ii))

Comp(B′, (M1M2)[Ni/xi],τ).

Theorem 3.32 If B ⊢−ω− M : σ, then SN (M).

Proof : B ⊢−ω− M : σ ⇒ (3.31)

Comp(B, M,σ)⇒ (3.29(ii))

SN (M).

We can now prove the main theorem of this subsection.

Theorem 3.33 {M | M is typeable by means of the derivation rules (∩I), (∩E), (→ I) and (→E)}=
{M | M is strongly normalisable}.

Proof :(⊆) : If M is typeable by means of the derivation rules (∩I), (∩E), (→ I) and (→E), then

certainly B ⊢−ω− M : σ. Then by Theorem 3.32, M is strongly normalisable.

(⊇) : If M is strongly normalisable, then by Corollary 3.26 there are σ and B such that

B ⊢−ω− M : σ and in the derivation the derivation rule (≤) is not used.

Acknowledgements

I would like to thank the people of the Department of Computer Science of the university

of Turin, Italy, for their hospitality and support during my stay in the first half of 1988. My

very special thanks are for Mariangiola Dezani, for encouragement, support and many helpful

suggestions. I would also like to thank one of the referees who gave a lot of fruitful remarks.

References

[1] Barendregt H. The Lambda Calculus: its Syntax and Semantics. North-Holland, Amsterdam, revised
edition, 1984.

[2] Barendregt H., M. Coppo, and M. Dezani-Ciancaglini. A filter λ-model and the completeness of
type assignment. The Journal of Symbolic Logic, 48(4):931–940, 1983.

[3] Coppo M. and M. Dezani-Ciancaglini. An Extension of the Basic Functionality Theory for the
λ-Calculus. Notre Dame, Journal of Formal Logic, 21(4):685–693, 1980.

[4] Coppo M., M. Dezani-Ciancaglini, F. Honsell, and G. Longo. Extended type structures and filter
λ-models. In G. Lolli, G. Longo, and A. Marcja, editors, Logic Colloquium 82, pages 241–262,
Amsterdam, 1984. North-Holland.

[5] Coppo M., M. Dezani-Ciancaglini, and B. Venneri. Principal type schemes and λ-calculus se-
mantics. In J. R. Hindley and J. P. Seldin, editors, To H. B. Curry, Essays in combinatory logic,
lambda-calculus and formalism, pages 535–560. Academic press, New York, 1980.

[6] Coppo M., M. Dezani-Ciancaglini, and B. Venneri. Functional characters of solvable terms.
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 27:45–58, 1981.

[7] Coppo M., M. Dezani-Ciancaglini, and M. Zacchi. Type Theories, Normal Forms and D∞-Lambda-
Models. Information and Computation, 72(2):85–116, 1987.

[8] Curry H.B. Functionality in combinatory logic. In Proc. Nat. Acad. Sci. U.S.A., volume 20, pages
584–590, 1934.

[9] Curry H.B. and R. Feys. Combinatory Logic. volume 1. North-Holland, Amsterdam, 1958.

[10] Dezani-Ciancaglini M., F. Honsell, and S. Ronchi della Rocca. Models for theories of functions
strictly depending on all their arguments. Stanford ASL Summer Meeting ’85. Journal of Symbolic
Logic, 51 (2):845–846, 1986. abstract.

Theoretical Computer Science, 102:135-163, 1992 23

[11] Dezani-Ciancaglini M. and I. Margaria. F-semantics for intersection type discipline. In G. R. Kahn,
D. B. Macqueen, and G. Plotkin, editors, Sematics of data types. International symposium Sophia -
Antipolis, France, volume 173 of Lecture Notes in Computer Science, pages 279–300. Springer-Verlag,
1984.

[12] Dezani-Ciancaglini M. and I. Margaria. A characterisation of F-complete type assignments. Theo-
retical Computer Science, 45:121–157, 1986.

[13] Hindley J.R. The principal type scheme of an object in combinatory logic. Transactions of the
American Mathematical Society, 146:29–60, 1969.

[14] Hindley J.R. The simple semantics for Coppo-Dezani-Sallé type assignment. In M. Dezani and
U. Montanari, editors, International symposium on programming, volume 137 of Lecture Notes in
Computer Science, pages 212–226. Springer-Verlag, 1982.

[15] Hindley J.R. The Completeness Theorem for Typing λ-terms. Theoretical Computer Science, 22(1):1–
17, 1983.

[16] Honsell F. and S. Ronchi della Rocca. Models for theories of functions strictly depending on all
their arguments. Internal report, Department of Computer Science, Turin, Italy, 1984.

[17] Leivant D. Polymorphic Type Inference. In Proceedings 10th ACM Symposium on Principles of
Programming Languages, Austin Texas, pages 88–98, 1983.

[18] Milner R. A theory of type polymorphism in programming. Journal of Computer and System Sciences,
17:348–375, 1978.

[19] Mitchell J.C. Polymorphic Type Inference and Containment. Information and Computation, 76:211–
249, 1988.

[20] Plotkin G.D. and M.B. Smyth. The category-theoretic solution of recursive domain equations. DAI
Research Report 60, University of Edinburgh, Scotland, 1978.

[21] Pottinger G. A type assignment for the strongly normalisable λ-terms. In J. R. Hindley and
J. P. Seldin, editors, To H. B. Curry, Essays in combinatory logic, lambda-calculus and formalism, pages
561–577. Academic press, New York, 1980.

[22] Ronchi della Rocca S. Principal type scheme and unification for intersection type discipline. The-
oretical Computer Science, 59:181–209, 1988.

[23] Ronchi della Rocca S. and B. Venneri. Principal type schemes for an extended type theory. Theo-
retical Computer Science, 28:151–169, 1984.

[24] Sallé P. Une extension de la théorie des types. In G. Ausiello and C. Böhm, editors, Automata,
languages and programming. Fifth Colloquium, Udine, Italy, volume 62 of Lecture Notes in Computer
Science, pages 398–410. Springer-Verlag, 1978.

[25] Turner D.A. Miranda: A non-strict functional language with polymorphic types. In Proceedings of
the conference on Functional Programming Languages and Computer Architecture, volume 201 of Lecture
Notes in Computer Science, pages 1–16. Springer-Verlag, 1985.

Theoretical Computer Science, 102:135-163, 1992 24

Appendix A On the correction

The error that is corrected here lies in the proof of subject expansion result in Lemma 3.20. This

lemma was used in two others: that 1) all strongly normalisable terms are typeable (Corollary 3.22

in original paper, Theorem 3.24 here), and that 2) the computability predicate is closed for subject

expansion (Lemma 3.26 vs Lemma 3.30 here).

The original lemma was formulated as

If B ⊢−ω− C[M[x := N]] : σ and B ⊢−ω− N : τ, then B ⊢−ω− C[(λx.M)N] : σ.

However, its proof was incorrect, since the basis for the first term C[M[x := N]] changes in the

proof. Reformulating this as

If B1 ⊢−ω− C[M[x := N]] : σ and B2 ⊢−ω− N : τ, then B1∩B2 ⊢−ω− C[(λx.M)N] : σ

(which seems to be used by various authors) gives no improvement; the problem is that a

free variable in N might be bound in the context, which implies that the derived type might

change (get bigger in the sense of ≤), and that the B1∩B2 is not a correct basis for C[(λx.M)N],

since it contains types for bound variables. This suggests the property

If B1 ⊢−ω− C[M[x := N]] : σ and B2 ⊢−ω− N : τ,

then there exists B3 ≤ B1,ρ ≥ σ such that B3 ⊢−ω− C[(λx.M)N] : ρ

but this is also not achievable, since the use of ≤ in the derivation for P in MP (where

MP → MQ) forces a ≥ step on M which is not always achievable, which throws the proof

for the case of application out of kilter irreparably. Notice that this does not imply that the

term C[(λx.M)N] is not typeable at all; it might be possible that the following holds:

If B1 ⊢−ω− C[M[x := N]] : σ and B2 ⊢−ω− N : τ,

then there exists B3, ρ such that B3 ⊢−ω− C[(λx.M)N] : ρ

but it is not clear how to prove this, since it specifies no relation between bases and types.

It is, however, possible to show a subject expansion result for applicative contexts, where

the redex occurs at the left. Since those are exactly the contexts considered in the proof of

Lemma 3.30, here Lemma 3.20 is reformulated using those contexts only.

A more general subject expansion result is only really provable for left-most outermost

(l.o.) reduction as first shown by Betti Venneri, as is added to this version of the paper (see

Definition 3.22, and Lemma 3.23). The correct subject expansion result (with respect to l.o.,

Lemma 3.23) is now the one used for Theorem 3.24, which now uses induction on the length

of the l.o. reduction path.

	The intersection type discipline
	The system without derivation rule ()
	Strict derivations
	The relation between -.5s and
	Soundness and completeness of strict type assignment

	The system without `w
	`w-free derivations
	The relation between -`w and
	The type assignment without `w is complete for the `lI-calculus
	Strong normalisation result for the system without `w

	On the correction

