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Abstract

We define a notion of type assignment with polymorphic intersection types of rank 2 for a term graph rewriting
language that expresses sharing and cycles. We show that type assignment is decidable through defining, using
the extended notion of unification from [5], a notion of principal pair which generalizesML ’s principal type
property.

Introduction

This paper presents a decidable notion of type assignment systems for a term-graph rewriting language
that uses polymorphic types of rank 2, so allows for more than just the standardshallowpolymorphism.
In order to obtain principal typings, intersection types of rank 2 are added to the system.

In the past, many notions of type assignment have been studied for (functional) programming lan-
guages, all based on (extensions of) the Hindley-Milner type assignment system [27, 37]. Moreover,
almost all notions of type assignment as proposed for use in functional programming, in reality are
developed on (enriched) lambda calculi, and little work is available that discusses and studies types
directly on the level of the programming language. However, to be able to study the role of types in
practice, it is arguably important that type assignment is formally defined as close to the actual language
as possible.

Furthermore, many aspects of those languages are not easily dealt with in the Lambda Calculus
(LC) [8], or not expressible at all, like patterns, sharing, and cyclic structures. This motivated the
investigation of type assignment for Term Rewriting Systems (TRS) [35] and Term Graph Rewriting
Systems (TGRS) [10] presented in various papers [7, 6, 4, 13, 5], and the system presented in this paper
is developed in much the same way as the systems studied there. As an example, take the problem of
I/O in the context of functional programming: only when representing terms as graphs to express the
sharing that is heavily used at run-time does it become possible to represent the number of different
references to an object accurately; only when the reference isunique(see [13] for a discussion of
uniqueness types; note that we do not consider a notion of uniquess typing here) is it possible to do a
destructive update.

Although functional programming languages are normally viewed as enriched lambda calculi, study-
ing properties on that level ignores features of the language, like patterns. The subject reduction prop-
erty in particular, is lost in general in the context of patterns, a problem successfully dealt with in [7],
where a notion of type assignment forTRS was developed. This system was later extended into type
assignment systems for different calculi [4, 13, 6, 5]. The papers [7, 6, 4] studied type assignment for
Curryfied TRS (CuTRS), a notion of first orderTRS extended with application. A difference between
CuTRS and @TGRSas considered (and defined) here, is that, for reasons of simplicity of definitions, we
will consider (higher order) applicative systems only, with higher order variables and function symbols,
rather than the first-orderCuTRS.

The extension fromLC to TRS is done via combinator systems; then term rewrite rules are written
very much like the definitions of combinators, with the difference that a formal parameter can have
structure and be apattern: it need not be a term-variable.TGRSare obtained fromTRS by lifting terms
to graphs. This lifting consists of writing terms as trees and of sharing variables that occur more than
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once in the term that is lifted. Term graph rewrite rules are obtained from term rewrite rules in very
much the same way: the left- and right hand side terms of every term rewrite rule are lifted to term
graphs, and the nodes that represent variables occurring in both terms are shared. If a variable appears
in both the left and right hand side, this operation will generate a connected graph. Of course it is also
possible to define term graphs and term graph rewrite rules directly, without first taking a term or term
rewrite rule and lifting it; see [10, 11, 12, 24, 30, 42] for discussions of term graph rewriting and its
suitability for programming.

The main point of focus for [6, 5] wasnormalisation, which motivated the choice to use intersections
types [9]. This implied, however, that type assignment for those systems is undecidable. It is by now
well-known that there are decidable restrictions of the intersection type assignment system [21, 34, 28,
4, 29, 22, 20, 31, 32], making the definition of notions of type assignment using those types feasible.
In particular, in [4] a notion of type assignment forTRS was presented that uses intersection types of
rank 2.

Another direction in the area of types is that ofquantifiedor polymorphictypes. This field originated
in the context ofLC with System F [26, 39], which provides a general notion of polymorphism, but lacks
principal typings. Moreover, type inference in System F is undecidable in general [44], although it is
decidable for some sub-systems, in particular if we consider types of rank 2 [33]. The type system of
ML [19] uses (shallow) polymorphic types and has principal types. Since its polymorphism is limited,
some programs that arise naturally cannot be typed, and it doesnot have principaltypings [29], a
property that is important for separate compilation, incremental type inference, and accurate type error
messages.

Intersection type systems are somewhere in the middle with respect to polymorphism, and have
principal typings.

The system of [4] was in [5] extended to a system for a combination ofLC and (CuTRS) by adding ‘∀’
as an extra type-constructor (i.e. explicit polymorphism). Although the Rank 2 intersection system and
the Rank 2 polymorphic system forLC type exactly the same set of terms [45], their combination results
in a system with more expressive power: the set of assignable types increases, and types can better
express the behaviour of terms [15]. Also, polymorphism can be expressed directly (using the universal
quantifier) and, moreover, every typeable expression in [5] has a principal typing. This principal typing
property does not hold in a system without intersection.

The decidability of a notion of unification on polymorphic intersection types of rank 2 as shown
in [5] could be used in many different contexts. Since intersection types are the natural tool to type
nodes that are shared in a notion of type assignment on graphs, in this paper, we adapt the notion of
type assignment of [5] to one for (a kind of)TGRS. (Intersection types also provide a good formalism
to express overloading.) We will show that the notion of type assignment as presented here has the
principal typing property.

We will study type assignment on a class of graphs that can be defined via an abstract syntax defini-
tion, which makes an inductive approach to type assingment possible. Graphs will be written as terms,
and type assignment will be treated on the level of terms. A first treatment of types for graph rewriting
systems that uses this approach can be found in [13], which itself is based on the approach of [7] as far
as the definition of type assignment is concerned. A draw-back of that system is that it uses the stan-
dard Curry types to type graphs, so that the types assignable to a graph are fewer than those assignable
to the corresponding tree (obtained by unraveling the graph), since there a node shared in the graph
would appear as two separate nodes, that can be typed with different types. Using intersection types,
the concept of sharing in graphs causes no difficulties, since a shared node can now be typed with more
than one type.

The only problem arises when the graph is allowed to have a cyclic structure, which causes the
unraveling to generate an infinite tree. Then it is possible that the (infinite number of) copies of a node
are all typed with different types, thus creating an intersection over an infinite number of types for the
type assignment to the term graph. The solution for this problem used in this paper is to type a cyclic
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node withoneCurry type only, similar to the standard way of dealing with recursion.
In our Rank 2 system each typeable term has a principal typing; this is the case also in the Rank

2 intersectionsystem of [4], but not in the Rank 2polymorphicsystem of [33]. For the latter, a type
inference algorithm of the same complexity of that ofML was given in [34], where the problems that
occur due to the lack of principal types are discussed in detail. Our Rank 2 system (without theshare
and thecycle) generalizes also Jim’s systemP2 [29], which is a combination ofML -types and Rank 2
intersection types. Having Rank 2 quantified types in the system allows us to type, for instance, the
constantrunST used in [36], which cannot be typed inP2. Our system also generalises the system of
[20] that combines rank 2 intersection types and shallow polymorphism, so does not have polymorphic
types of rank 2.

The Rank 2 system as used in this paper can be seen as a combination of the systems of [4] and [33].
In [5] an incomplete notion of polymorphic intersection type assignment was presented for a language
that is a combination ofLC andCuTRS; it contains a definition of a Rank 2 system for that combined
calculus, and it claimed to show that type assignment in that system is decidable and has principal types;
since there were some major flaws to definitions and proofs in that paper, a new correct presentation
is necessary. This paper corrects those definitions and extends those result to a calculus with sharing
and cycles, by defining a notion of Rank 2 type assignment on @TGRS, inspired by the system that was
studied in [5].

This paper is organised as follows: in Section 1 we define term graph rewriting extended with
application (@TGRS), and in Section 2 polymorphic intersection types of rank 2, and a notion of Rank 2
type assignment for @TGRS in Section 4. In Section 3, we will define four operations on types, needed
in the notion of type assignment, that we will show to be sound in Section 5. We will conclude by
presenting the notion of unification from [5] in Section 6, which will be used in Section 7 to show
that all typeable terms have a principal typing. Finally, Section 8 contains some concluding remarks
regarding implementation aspects and overloading.

We assume the reader to be familiar withLC [8], refer to [35, 23] for rewrite systems, and to [12,
10, 11, 30, 38, 42] for definitions ofTGRS. The system defined here is aimed to be similar to those,
although their relation is not studied here.

We will use a vector notationg⇀ as an abbreviation forg1, . . . , gn, so such that〈xi = ti〉
⇀

stands for
〈x1 = t1〉, . . . , 〈xn = tn〉, andxi 7→ ri

⇀ for x1 7→ r1, . . ., xn 7→ rn, etc.

1 Applicative Term Graph Rewriting Systems

In this section, we will present a notion ofApplicativeTerm Graph Rewriting (@TGRS) based on an
inductive definition of graphs, following essentially a similar system presented in [13]. Term Graph
Rewriting distinguishes itself from Term Rewriting in that the objects considered are no longer trees,
but allow sharing and cycles; it is different from Generalised Graph Rewriting in that only those rewrites
are allowed that can, essentially, be formulated through a term rewrite rule.

Definition 1.1 (TERMS) i) An alphabetor signatureΣ consists of a countable, infinite setX of vari-
ablesx, y, z, . . . , a non-empty setF of function symbolsF, G, . . . , each with a fixed arityarity(F),
and a special binary operator, calledapplication(@, written in in-fix notation).

ii ) The setT(F,X ) of terms, ranged over byt, is defined by:

t ::= x | F | (t1 @t2) | (share t1 via x in t2) | (cycle 〈xi = ti
⇀ 〉 in t)

Rather than writing(t1 @t2), we will write (t1 t2); as usual, obsolete brackets will be omitted.

A thing to observe is that function symbols come with an arity, which is relevant when defining
rewrite rules (Def. 1.5), and comes into play when translating a ‘program’ into a graph rewriting system;
for details of such a translation, see [13] and below (Def. 1.5 (ii )).
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Mainly for readability of proofs, the language of terms we study here differs from the one defined in
[13], whereexpressionswere defined by:

E ::= x | (F (E1, . . . , En)) | (let x = E1 in E2) |
(letrec x = E1

⇀
in E2) | (case E of P

⇀
|E
⇀

)
P ::= C (x1, . . . , xn)

Notice that, in Def. 1.1, we do not distinguish between function and constructor symbols, so we do
not require a separate treatment of patterns; also, we deal with anapplicativelanguage; in [13], the
language is first order, and application is considered in Section 4 of that paper only to allow higher
order functions by partial application of function symbols, essentially by extending the set of rewrite
rules via

(F (t1, . . . , tn)@tn+1) = F (t1, . . . , tn, tn+1)

The distinction between that syntax and the one used here is cosmetic in that all results obtained here
could be reached in a first-order system as that of [13]; it is the presentation of the results that benefits
from an applicative syntax by giving less involved and shorter proofs. Using the keywords ‘share’ and
‘cycle’ rather than ‘let’ and ‘letrec’ serves to highlight the change in syntax and system.

Notice that the language of types (presented below) differs significantly from that considered in [13],
in that, as far as assignable types are concerned, the systems are incompatible.

We will now formally introduce term graphs, as done in [10]. Following [13], graphs are written in
anequational style[10, 1], rather than using drawings or 4-tuples (as in [10]).

Definition 1.2 (GRAPHS) [13, 24] A graph (overF) is a pairg = 〈r | G〉, wherer is a variable and
stands for theroot of the graph, andG is a set of equations of the shape ‘x = @(y, z)’ or ‘ x = F’,
that describe the edges in the graph, where the variables that appear on the left appear there in onlyone
equation and should all appear on the right as well.

Thevariable setof graphg = 〈r | G〉, Var(g), is the collection of all variable names appearing in
r, G. The set offreevariables ofg, fv(g), contains those variables that do not appear as the left-hand
side of an equation inG, and a variable inVar(g) is boundif it is not free; we will identify graphs that
differ only in the names of their bound variables.

Definition 1.3 (GRAPH INTERPRETATION) (cf. [13]) For each termt, thegraph interpretation oft, ddtcc,
is defined by ([xi 7→ ri

⇀] stands for the simultaneous replacement ofri
⇀ for (the free occurrences of)xi

⇀,
and different graphs are assumed to share no variable names):

ddxcc = 〈x | ∅〉
ddFcc = 〈f | {f = F}〉

ddt1 t2cc = 〈r | {r = @(r1, r2)}∪G1 ∪G2〉,
whereddticc = 〈ri | Gi〉, i = 1, 2, andr is fresh

ddshare t1 via x in t2cc = 〈r2 | G1 ∪G2〉 [x 7→ r1],
whereddticc = 〈ri | Gi〉, i = 1, 2

ddcycle 〈xi = ti
⇀ 〉 in t′cc = 〈r′ | G1 ∪ · · · ∪Gn ∪G′〉 [xi 7→ ri

⇀],
whereddticc = 〈ri | Gi〉, (1≤ i≤n)

ddt′cc = 〈r′ | G′〉,

Via this interpretation, the notion of free and bound variables of a graphg induces a notion of free
and bound variables on terms; as a result, in the term(share t1 via x in t2), x does not occur free int1.

Example 1.4 (cf. [13]) The term(share 0 via x in (cycle 〈 z = F (cons x (G xz)) 〉 in z)) translates to
the graph
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〈z | {z = @(f, a),
f = F,
a = @(b, c),
b = @(d, x),
c = @(e, z),
d = cons,
e = @(g, x),
g = G,
x = 0}〉

@
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@
��	

@
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cons ........
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.......
.......
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��.................................................. ....... ....... ....... ....... ....... ....... ...... ...... ...... ............
......
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................................................	

@@R
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��	
@

��	
G

@@R
0

� �
�

Reduction onT(F,X ) is defined through rewrite rules.

Definition 1.5 (REWRITING RULES) i) A rewrite rule is a pair(left, right) of terms such that
– left = F t1 · · · tn, for someF with n = arity(F), and termst1, . . . , tn, and
– fv(right) ⊆ fv(left).

Often, a rewrite rule will get a name, e.g.r , and we writeleft→r right.
ii ) The translation into graphs of Def. 1.3 is extended to rewrite rules through: Letleft → right be a

(recursive) rewrite rule with defined symbolF, then:

ddleft→ rightcc = 〈rl | Gleft∪Gright〉 [xi 7→ yi
⇀],

where ddFcc = 〈g | {g = F}〉
ddleftcc = 〈rl | Gleft〉

ddrightcc = 〈rr | Gright〉
{x1, . . . , xn} = fv(left)

and ally1, . . . , yn andg are unused variables.

We take the view that in a rewrite rule a certain symbol is defined.

Definition 1.6 (DEFINED SYMBOLS AND CONSTRUCTORS) In a rewrite ruleF t1 · · · tn →r r, F is called
the defined symbolof r , andr is said todefineF. F is a defined symbol, if there is a rewrite rule that
definesF, andQ ∈F is called aconstructorif Q is not a defined symbol.

Notice that, by the first condition of Def. 1.5, ‘@’ cannot be a defined symbol.
We call a defined symbolF recursiveif F occurs on a cycle in the dependency-graph, and call every

rewrite rule that definesF recursive. All function symbols that occur on one cycle in the dependency-
graph depend on each other and are, therefore, definedsimultaneouslyand are calledmutually recur-
sive. Since it is always possible to introduce tuples into the language and solve the problem of mutual
recursion using only recursive rules, we will assume that rules arenotmutually recursive.

Definition 1.7 (TERM GRAPH REWRITING) The principle of term graph rewriting, presented formally
in [10], can be summarised as follows:
• a graphsg contains aredexif a left-hand sideleft of a rewrite ruleleft → right can be mapped

onto a graph, i.e. if there exists a homomorphism fromleft to the graph (MATCH), which respects
the structure of graphs and maps free variables to graphs.

• Reduction (rewriting) of the redex then consists of adding aninstanceof right to the graph by
adding the right hand side (graph) of the rewrite rule (BUILD ), but by replacing an edge going
into a free variable to one going into the image of the variable under the aforementioned homo-
morphism (LINK ).

• All edges going into the image of the root ofleft are re-directed into the root of the added instance
of right (RE-DIRECT).
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Figure 1: An example of term graph rewriting

• Now part of the graph has becomegarbage, in that it is no longer accessible from the root ofg;
this can be removed.

Example 1.8 As an example of term graph rewriting within the context of this paper, consider Fig. 1.

Definition 1.9 (REWRITING ON TERMS) We define a rewrite relation on terms by:t1 → t2 if and only
if there are graphsg1 andg2 such thatddt1cc = g1, ddt2cc = g2, andg1 → g2.

Definition 1.10 An Applicative Term Graph Rewriting System(@TGRS) is defined as a pair(Σ, R) of
an alphabetΣ and a setR of rewrite rules.

Example 1.11 The rewrite rules that define Combinatory Logic are expressed as a @TGRSby:

S xy z → xz (y z)
K xy → x
I x → x

Translated to term graph rewrite rules, these rules look like (usingleft andright rather thanrl andrr):
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Notice that, if we would have used ‘S xy z → share z via v in (xv) (y v)’ instead of the first rule, so
would have expressed explicitly that we want the third parameter to be shared, the resulting graph
rewrite rule would have been exactly the same.

Notice that the construct(share t1 via x in t2) differs from the construct(let x = t1 in t2) as used in
the ML language in that it is not a redex: in the rewriting relation inML , (let x = t1 in t2) → t2[t1/x],
whereas here,

ddshare t1 via x in t2cc = 〈r2 | G1 ∪G2〉 [x 7→ r1] = ddt2[t1/x]cc,

whereddticc = 〈ri | Gi〉, i = 1, 2. Of course thelet-construct is normally implemented using sharing
exactly as suggested by theshare-construct, but that implies that then the language itself has changed
from an extended lambda calculus to a language with lambda graphs, and the calculus no longer is the
one presented in [37].

Since (free) variables in @TGRSmay be substituted by function symbols, we obtain the usual func-
tional programming paradigm, extended with definitions of operators and data structures. Notice, how-
ever, that we obtain more: in functional programs, the setF (Def. 1.1) is divided intofunction symbols
and(data-type) constructors, and, in rewrite rules, function symbols are not allowed to appear in ‘con-
structor position’ and vice-versa. This does not hold for @TGRS.

Example 1.12 This example is an extension of one presented in [23]. It deals with the very well known
definition of stacks of natural numbers and contains next to the operationsTop, andPop, the operation
Alternatethat combines two stacks, and shows the advantage of relaxing on the separation of function
symbols and constructors.

The syntax of these representations is given by:

n ∈ Nat
n ::= 0 | Succn

s ∈ Stack
s ::= ε | Pushns

‘Push’ and ‘ε’ can be seen as stack constructors, and ‘0’ and ‘Succ’ can be seen as number constructors.
Semantics of the functions is given by the following rules:

Top(Pushxy) → x
Pop(Pushxy) → y
Push(Topx) (Popx) → x
Alternateε z → z
Alternate(Pushxy) z → Pushx (Alternatez y)

With these rules, it can be shown, for example, that

Alternate (Push(Top(Push0 ε)) (Pop(Push0 ε)) ) (Pop(Push(Succ0) ε))
→ Alternate(Push0 ε) (Pop(Push(Succ0) ε))
→ Push0 (Alternateε (Pop(Push(Succ0) ε)))
→ Push0 (Pop(Push(Succ0) ε))
→ Push0 ε.
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2 Rank 2 types

In Section 4, we will present a decidable notion of type assignment on @TGRS, using polymorphic
intersection types of rank 2. The system presented here is an extension, mainly by the ‘∀’ type con-
structor, of the Rank 2 system with intersection types as defined in [4].

We use strict intersection types over a setV = Φ]A of free and bound type-variablesrespectively,
and a setS of sortsor type constants. For various reasons (definition of operations on types, definition
of unification), we will distinguish syntactically between (names of)freetype-variables (which belong
to Φ) and (names of)boundtype-variables (inA).

Definition 2.1 (POLYMORPHIC INTERSECTION TYPES OFRANK 2 ) [5] We define types in layers:TC

are Curry types, built out of type variables inΦ (ranged over byϕ), sorts (type constants, ranged over
by s) and ‘→’, T ∀

C are quantified Curry types,T1, the types of rank 1, are intersections of quantified
Curry types, andT2 are types of Rank 2:

TC ::= ϕ | s | (TC → TC) T ∀
C ::= TC | (∀α.T ∀

C [α/ϕ])
T1 ::= (T ∀

C ∩ · · · ∩ T ∀
C ) T2 ::= ϕ | s | (T1 → T2)

We useTR for the union of these sets, and useσ, τ for arbitrary elements ofTR. Notice thatTC ⊆ T ∀
C ⊆

T1 andTC ⊆ T2, but thatT ∀
C 6⊆ T2.

In the notation of types, ‘→’ associates to the right, ‘∩’ binds stronger than ‘→’, which binds stronger
than ‘∀’; so ρ∩µ→(∀α.γ→δ)→σ stands for((ρ∩µ)→((∀α.(γ→δ))→σ)). Also, ∀α⇀ .σ is used for
∀α1.∀α2 . . .∀αn.σ, and we assume that each variable is bound at most once in a type (renaming if
necessary). In the meta-language, we denote byσ[τ/ϕ] (resp.σ[τ/α]) the substitution of the type-
variableϕ (resp.α) by τ in σ.

Definition 2.2 (FREE AND BOUND TYPE-VARIABLES) fv(σ), the set offree variablesof a typeσ is de-
fined as usual (note that by construction,fv(σ) ⊆ Φ). A type is calledclosedif it contains no free
variables, andground if it contains no variables at all. A type-variable will beboundif it is not free,
and will then be an element ofA.

Below, we will define a unification procedure that will recursively go through types. However, using
the sets defined above, not every sub-type of a type inT2 is a type in that same set. For example,α→ϕ
is not a type in any of the sets defined above; however,∀α.α→ϕ ∈ T ∀

C , and therefore it can be that,
when going through types inT2 recursively,α→ϕ has to be dealt with. The distinction between free
and bound variables is essential; for that reason we have introduced a different notation of both classes.
We could therefore, for every setTi defined above, also have defined the setT ′

i of types, that contains
also free occurrences ofαs. We will not always use the ‘′’ when speaking of these sets, however; it will
be clear from the context which set is intended.

Definition 2.3 (RELATIONS ON TYPES) [5] On TR, the pre-order (i.e. reflexive and transitive relation)
‘ ≤ ’ is defined by:

σ1∩· · ·∩σn ≤ σi, (1≤ i≤n)
∀α.(σ[α/ϕ]) ≤ σ[τ/ϕ], (τ ∈ TC)

∀1≤ i≤n [σ ≤ σi] ⇒ σ ≤ σ1∩· · ·∩σn (n ≥ 1)
ρ≤ σ, τ ≤ µ ⇒ σ→τ ≤ ρ→µ, (τ, µ∈ T2)

σ ≤ τ ⇒ ∀α.σ[α/ϕ]≤∀α.τ [α/ϕ].

The equivalence relation ‘∼ ’ is defined by:

σ ∼ τ ⇐⇒ σ ≤ τ ≤ σ.
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For ≤ , the following properties hold:

Lemma 2.4 i) Ifσ ∈ T1, σ ≤ τ ∈ T2, andσ does not contain ‘∀’, then neither doesτ .
ii) If σ ≤ τ1∩· · ·∩τn, then, for all1≤ i≤n, σ ≤ τi.

PROOF. Easy.

Definition 2.5 (STATEMENTS AND BASES) i) A statementis a term of the formt :σ, with σ ∈ TR and
t∈ T(F,X ). t is thesubjectandσ thepredicateof t :σ.

ii ) A basisB is a partial mapping fromX to T1, represented as set of statements with only distinct
variables as subjects. By abuse of notation, we writex∈B if there exists aτ such thatx:τ ∈B,
ϕ ∈B if there is a type inB in whichϕ occurs, and writeB\x for the basis obtained fromB by
removing the statement that hasx as subject.

iii ) For basesB1, B2, the basisB1∩B2 is defined by:

B1∩B2 = {x:τ | x:τ ∈B1 & x 6∈B2}∪ {x:τ | x:τ ∈B2 & x 6∈B1}∪
{x:τ1∩τ2 | x:τ1 ∈B1 & x:τ2 ∈B2}

B, x:τ = B \ x ∪ {x:τ}

iv) The relation‘≤ ’ and ‘∼ ’ are extended to bases by:

B ≤B′ ⇐⇒ ∀x:σ′ ∈B′ ∃x:σ ∈B [σ ≤ σ′]
B ∼B′ ⇐⇒ B ≤B′ ≤B

Notice that ifn = 0, thenB1∩ . . .∩Bn = ∅.

3 Operations on types

The Rank 2 versions for the various operations as presented below are defined in much the same way
as in [4], with the exception of the operation of closure and lifting, that were not used there, and are
taken from [5].

Substitution

We will define substitution as usual in first-order logic, but avoid to go out of the set of polymorphic
intersection types of Rank 2. For example, the substitution ofϕ by τ1∩τ2 would transformσ→ϕ into
σ→τ1∩τ2, which is not inTR. However, sinceTC ⊆ T2, andTC is closed for (Curry-)substitution, also
T2 is closed for that kind of substitution.

The following definition takes this fact into account.

Definition 3.1 (SUBSTITUTION) i) Thesubstitution(ϕ 7→ ρ) : T2 → T2, whereϕ is a type-variable
in Φ andρ∈ TC, is defined by:

(ϕ 7→ ρ)(ϕ) = ρ

(ϕ 7→ ρ)(ϕ′) = ϕ′, if ϕ′ 6= ϕ

(ϕ 7→ ρ)(s) = s

(ϕ 7→ ρ)(α) = α

(ϕ 7→ ρ)(σ→τ) = (ϕ 7→ ρ)(σ) → (ϕ 7→ ρ)(τ)
(ϕ 7→ ρ)(σ1∩· · ·∩σn) = (ϕ 7→ ρ)(σ1)∩ · · · ∩ (ϕ 7→ ρ)(σn)
(ϕ 7→ ρ)(∀α.σ) = ∀α.(ϕ 7→ ρ)(σ)
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ii ) We useIdS for the substitution that replaces all type-variables by themselves, writeS for the
set of all substitutions, and useS to denote a generic substitution. Substitutions extend to bases
in the natural way:S(B) = {x:S(ρ) | x:ρ∈B}, and the set of substitutions is closed under
composition ‘◦’.

iii ) The set of substitutions is closed under composition ‘◦’: for substitutionsS1, S2, the substitution
S2◦S1 is defined as

S2◦S1 (σ) = S2 (S1 (σ)).

We have the following property:

Lemma 3.2 Ifσ ≤ τ , then S(σ)≤S(τ), for all S.

PROOF. Easy.

Lifting

The operation oflifting replaces basis and type by a smaller basis and a larger type, in the sense of ‘≤’.
This operation allows us to eliminate intersections and universal quantifiers, using the ‘≤’ relation.

Definition 3.3 (L IFTING) An operation oflifting is determined by a pairL = <〈B1, τ1〉, 〈B2, τ2〉>
such thatτ1 ≤ τ2 andB2 ≤ B1, and is defined byL(〈B, σ〉) = 〈B′, σ′〉 where

σ′ = τ2, if σ = τ1,

σ′ = σ, otherwise
B′ = B2, if B = B1

B′ = B, otherwise

A lifting on types is determined by a pairL = 〈τ1, τ2〉 such thatτ1 ≤ τ2 and is defined by

L(σ) = τ2, if σ = τ1

σ, otherwise

Closure

The operation ofclosureintroduces quantifiers, taking into account the basis where a type might occur.

Definition 3.4 (CLOSURE) A closureis characterised by a pair of types〈σ, ϕ〉 with σ ∈ T ∀
C , and is

defined by:
〈σ, ϕ〉(〈B, τ1∩· · ·∩τn〉) = 〈B, τ ′1∩· · ·∩τ ′n〉

where, for all1≤ i≤n,

τ ′i = ∀α.σ[α/ϕ], if τi = σ, andϕ does not appear inB (α is a fresh variable),
τ ′i = τi, otherwise.

Closure is extended to types by:〈ϕ〉(σ) = (τ), if 〈ϕ, σ〉(〈∅, σ〉) = 〈∅, τ〉.

Expansion

The variant of expansion used in the Rank 2 system is quite different from that normally used [2, 3, 41].
The reason for this is that expansion, normally, increases the rank of a type:

〈ϕ1, 2〉(〈{x:ϕ1→ϕ2}, ϕ1〉)(ϕ1→ϕ2) = (ϕ1
1∩ϕ2

1)→ϕ2,

a feature that is of course not allowed within a system that limits the rank of types. Since here expansion
is only used in very precise situations (within the procedureunify∀2, and in the proof of Thm. 7.7), the
solution is relatively easy: in the context of Rank 2 types, expansion is only called on types inT ∀

C , so
it is defined to work well there, by replacingall types by an intersection; in particular, intersections are
not created at the right of an arrow.
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Definition 3.5 (EXPANSION) Let B be a basis,σ ∈ TR, andn≥ 1. Then-fold expansionwith respect
to the pair〈B, σ〉, n〈B,σ〉 : T2 → T2 is constructed as follows: SupposeF = {ϕ1, . . . , ϕm} is the set of
all (free) variables occurring in〈B, σ〉. Choosem×n different variablesϕ1

1, . . . , ϕ
n
1 , . . . ,ϕ1

m, . . . , ϕn
m,

such that eachϕi
j (1≤ i≤n, 1≤ j≤m) does not occur inF. Let Si be the substitution that replaces

everyϕj by ϕi
j . Then expansion is defined on types, bases, and pairs, respectively, by:

n〈B,σ〉 (τ) = S1 (τ)∩ · · · ∩Sn (τ),
n〈B,σ〉 (B′) = {x:n〈B,σ〉 (ρ) | x:ρ∈B},
n〈B,σ〉 (〈B′, σ′〉) = 〈n〈B,σ〉 (B′), n〈B,σ〉 (σ′)〉.

Notice that, ifτ ∈ T2, it can be thatS1 (τ)∩ · · · ∩Sn (τ) is not a legal type. However, for the sake of
clarity, and since eachSi (τ)∈ T2, we will not treat this case separately (see also Lem. 5.4).

Operations will be grouped in chains.

Definition 3.6 i) A chain is an object[O1, . . . , On], where eachOi is an operation of substitution,
expansion, lifting, or closure, and[O1, . . . , On](σ) = On (· · · (O1 (σ)) · · ·).

ii ) On chains the operation of concatenation is denoted by∗ , and:[O1, . . . , Oi] ∗ [Oi+1, . . . , On] =
[O1, . . . , On].

iii ) We say thatCh1 = Ch2, if for all σ, Ch1 (σ) = Ch2 (σ).

In [5], the following property is shown to hold for chains:

Lemma 3.7 [5] Let Ch be a chain.
i) If σ ∈ T2, and Ch(σ)∈ T ∀

C , then there are a substitution S, and closures Cl1, . . . , Cln, such that

Ch(σ) = [S, Cl1, . . . , Cln](σ).

ii) If σ ∈ TC, and Ch(σ)∈ T1, then there exists a lifting-free chain Ch′ such that Ch(σ) = Ch′ (σ).
iii) If σ ∈ T1, and Ch(σ)∈ TC, then there is a substitution S such that Ch(σ) = S(σ).
iv) If σ ∈ T2, and Ch(σ)∈ TC, then there is a substitution S such that Ch(σ) = S(σ).
v) If σ ∈ T2, and Ch(σ)∈ T2, then there are substitution S, and lifting L such that Ch(σ) = [S, L](σ).

PROOF. For part one, expansion and closure are not needed, and by Lem. 2.4, neither is lifting. The
other parts are just generalisations of the first.

4 Rank 2 Type Assignment

We now come to the definition of Rank 2 type assignment.

Definition 4.1 i) A Rank 2 environmentE is a mapping fromF to T2.
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ii ) Rank 2 type assignment on termsis defined by the following natural deduction system:

(Ax) : (x:σ ∈B & σ ≤ τ & σ ∈ T1 & τ ∈ T2)
B `E x :τ

(∩I) :
B `E t :σ1 · · · B `E t :σn

(n ≥ 1 & ∀1≤ i≤n [σi ∈ T ∀
C ])

B `E t :σ1∩· · ·∩σn

(→E) :
B `E t1 :σ→τ B `E t2 :σ

B `E t1 t2 :τ

(∀I) :
B `E t :σ

(ϕ 6∈B & σ ∈ T ∀
C )

B `E t :∀α.σ[α/ϕ]

(share) :
B, x:σ `E t2 :τ B `E t1 :σ

B `E (share t1 via x in t2):τ

(F) : (∃Ch[Ch(E (F)) = σ])
B `E F :σ

(cycle) :
B, xi:σi

⇀ `E ti :σ1 . . . B, xi:σi
⇀ `E ti :σn B, xi:σi

⇀ `E t :τ
(∀1≤ i≤n [σi ∈ TC])

B `E cycle 〈xi = ti
⇀ 〉 in t :τ

We writeB `E t :σ if this is derivable using the rules above.

Notice the use of an environment and chain in rule(F); because of this rule, the notion of type
assignment defined here is in fact apartially typedsystem: all function symbols are assumed to have a
type to begin with, that is ‘instantiated’ by this rule.

Also, rule(F) formalises the practice of functional languages in that it introduces a notion of poly-
morphism for function symbols, which is an extension (with intersection types and general quantifi-
cation) of theML -style of polymorphism. The environment returns the ‘principal type’ for a function
symbol; this symbol can be used with types that are ‘instances’ of its principal type, obtained by ap-
plying chains of operations.

Although these rules express how to type terms, it is straightforward to extend this definition to one
that expresses how to type graphs, such thatB `E t :σ if and only if B `E ddtcc :σ.

Example 4.2 If we extend the definition of types with the alternative for list types and booleans

TC ::= ϕ | s | (TC → TC) | [TC] | Bool

then, using Rank 2 types, we can now express the function ‘IsNil’, that tests if a list is empty, defined
by

IsNil [ ] → TT

is typeable using the environment

E (TT) = Bool
E ([ ]) = [ϕ]
E (Cons) = ϕ→[ϕ]→[ϕ]
E (IsNil) = (∀α.[α])→Bool

∅ `E IsNil :(∀α.[α])→Bool

∅ `E [ ] : [ϕ]

∅ `E [ ] :∀α.[α]

∅ `E IsNil [ ] :Bool
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Notice that the type for this function ‘IsNil’ in the environment prohibits its use against ‘concrete’
lists that are not empty, since any list with an element is that is of types is no longer polymorphic.
Also, this is not a derivable result in any of the other systems mentioned in the introduction.

Notice that rule(F) models a kind of polymorphism into our system, other than the kind obtained by
having quantified types to our disposition. Quantification allows only the replacement of type-variables
by Curry types, whereas rule(F) allows any operation to be applied. It allows function symbols to
appear in context that require a type that is more specific than the one provided by the environment; the
soundness result we show below for the various operations justify the application of chains to the types
provided by the environment.

Also, since quantification elimination is implicit in rule(Ax), when restricting the use of the quan-
tifier to the left of arrows only, there is no longer need for a general(∀E) rule; as with a possible rule
(∩E), its use is in a strict system limited to variables, and there its actions are already performed by
(Ax). In fact, this restriction is justified by Lem. 5.2.

For this system to be of use in practice, a minimal requirement would be asubject reductionresult,
which expresses that types are preserved by reduction. To achieve this, we define a notion of type
assignment on rewrite rules using the notion of principal pair (also called principal typing), that will be
developed in Section 7 (see Def. 7.1), and culminates in Thm. 7.7, which states:

If B `E t :σ, then there are a basisP and typeπ such that ppE (t) = 〈P, π〉,
and there is a chain Ch such that Ch(〈P, π〉) = 〈B, σ〉.

This property, together with the result that all operations are sound, is used to prove the subject reduc-
tion result. (The same method was used in [7, 6, 5].)

Definition 4.3 (TYPE ASSIGNMENT ON REWRITE RULES) i) We say thatleft→ right∈R with defined
symbolF is typeable with respect toE , if there areP , andπ ∈ T2 such that:
a) 〈P, π〉 is a principal pair (Def. 7.1) forleft with respect toE .
b) In P `E left:π andP `E right :π each occurrenc ofF is typed withE (F).

ii ) We say that(Σ, R) is typeable with respect toE , if all rules inR are.

As an aside to part (i.b), remark that, by rule(E), we know that each occurrence ofF has a typegen-
erated fromE (F) by applying a chain of operations. Part (i.b) states that, for the derivations involved
here, these chains are all empty, i.e. are the identity operation. Since we forced the type of a function
symbolF to be exactlyE (F) in the rules that defineF, the typeability of rules ensures consistency with
respect to the environment.

Notice that, because in the translation of terms to graphs, the defined node is shared by all occur-
rences in the rule, when typing the graph rewrite rule the condition ‘all occurrences ofF are typed with
E (F)’ becomes ‘the occurrence ofF is typed withE (F)’.

Before we come to a subject reduction result, first we need to show that all operations defined are
sound, which we will show in the next section. The main result there is Lem. 5.6, which states:

If σ ∈ T1, B `E t :σ, and Ch is a chain of operations on types
such that Ch(〈B, σ〉) = 〈B′, σ′〉, thenB′ `E t :σ′.

We will now take a short-cut, and show that reductions preserve types in our system, using the notion
of principal pair and the soundness of operations on types.

The proof of Subject Reduction depends also on the following lemma:

Lemma 4.4(REPLACEMENT) LetE be an environment,t a term, andf a mapping from free variables
to terms (which extends naturaly to a mapping from terms to terms).

i) If B `E t :σ andB′ is such thatB′ `E f(x):ρ for every statementx:ρ∈B, thenB′ `E f(t):σ.
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B1 `E S :E (S) B1 `E x :σ→τ→ρ

B1 `E S x :(µ→τ)→σ∩µ→ρ B1 `E y :µ→τ

B1 `E S xy :σ∩µ→ρ

B1 `E z :σ B1 `E z :µ

B1 `E z :σ∩µ

B1 `E S xy z :ρ

B1 `E x :σ→τ→ρ B1 `E z :σ

B1 `E xz :τ→ρ

B1 `E y :µ→τ B1 `E z :µ

B1 `E y z :τ

B1 `E xz (y z):ρ

B2 `E K :E (K) B2 `E x :ν

B2 `E K x :γ→ν B2 `E y :γ

B2 `E K xy :ν

B2 `E x :ν
B3 `E I :E (I) B3 `E x :δ

B3 `E I x :δ
B3 `E x :δ

Figure 2: Type derivations for Ex. 4.6 (whereB1 = {x:σ→τ→ρ, y:µ→τ, z:σ∩µ}, B2 = {x:ν, y:γ}
andB3 = {x:δ}).

ii) If there areB andσ such thatB `E f(t):σ, then for everyx occurring int there is a typeρx such
that{x:ρx | x∈ fv(t)} `E t :σ, andB `E f(x):ρx.

PROOF. By induction on the structure of derivations.

Using this lemma, the following result follows easily.

Theorem 4.5 (SUBJECT REDUCTION) If B `E t :σ andt → t′, thenB `E t′ :σ.

PROOF. We consider only the case of a rewrite step. Letleft → right be the (typeable) rewrite rule
applied in the rewrite stept → t′. We will prove that for every term-substitution R and typeµ, if
B `E f(left):µ, thenB `E f(right):µ, which proves the theorem.

Sincer is typeable, there areP, π such that〈P, π〉 is a principal pair forleft with respect toE , and
P `E right :π. Suppose R is a term-substitution such thatB `E f(left):µ. By Lem. 4.4 (ii ) there is aB′

such that for everyx:ρ∈B′, B `E f(x):ρ, andB′ `E left:µ. Since〈P, π〉 is a principal typing forleft
with respect toE , by Thm. 7.7 there is a chainChsuch thatCh(〈P, π〉) = 〈B′, µ〉. SinceP `E right :π,
by Lem. 5.6 alsoB′ `E right :µ. Then by Lem. 4.4 (i) B `E f(right):µ.

Example 4.6 Let σ, τ, ρ, µ, ν, γ, andδ be (arbitrary) types. Take the rewrite rules that define Combi-
natory Logic of Ex. 1.11, and the environmentE :

E (S) = (σ→τ→ρ)→(µ→τ)→σ∩µ→ρ
E (K) = ν→γ→ν
E (I) = δ→δ

Then these rules are typeable with respect toE ; we show the derivations in Fig. 2.

Example 4.7 Take the rewrite rule

D y → (share y via v in v v)
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B1 `E D :E (D)

B1 `E y :σ→τ B1 `E y :σ

B1 `E y :(σ→τ)∩σ

B1 `E D y :τ

B′
1 `E v :σ→τ B′

1 `E v :σ

B1, v:(σ→τ)∩σ `E v v :τ

B1 `E y :σ→τ B1 `E y :σ

B1 `E y :(σ→τ)∩σ

B1 `E share y via v in v v :τ

B2 `E D :E (D)

B2 `E y :ϕ→ϕ

B2 `E y :∀α.(α→α)

B2 `E D y :ϕ→ϕ

B′
2 `E v :(ϕ→ϕ)→ϕ→ϕ B′

2 `E v :ϕ→ϕ

B′
2 `E v v :ϕ→ϕ

B2 `E y :ϕ→ϕ

B2 `E y :∀α.(α→α)

B2 `E share y via v in v v :ϕ→ϕ

∅ `E D :((ϕ→ϕ)→ϕ→ϕ)∩(ϕ→ϕ)→ϕ→ϕ

∅ `E I :(ϕ→ϕ)→ϕ→ϕ ∅ `E I :ϕ→ϕ

∅ `E I :((ϕ→ϕ)→ϕ→ϕ)∩(ϕ→ϕ)

∅ `E D y :ϕ→ϕ

∅ `E D :∀α.(α→α)→ϕ→ϕ

∅ `E I :ϕ′→ϕ′

∅ `E I :∀α.(α→α)

∅ `E D I :ϕ→ϕ

Figure 3: Type derivations for Example 4.7

(notice that the rule corresponds to the lambda termλy.yy, but expresses that the variabley is shared; as
far as our system is concerned, this is already the case for the ruleD y → y y). This rule can be typed, as
shown in Figure 3, usingE (D) = (σ→τ)∩σ→τ , as well as usingE (D) = ∀α.(α→α)→ϕ→ϕ, where
B1 = {y:(σ→τ)∩σ}, andB′

1 = B1, v:(σ→τ)∩σ for the first environment, andB2 = {y:∀α.(α→α)}
andB′

2 = B2, v:∀α.(α→α) for the second.
We can, using these environments, also derive∅ `E D I :ϕ→ϕ.

5 Soundness of operations

We will now show that the operations defined in Section 3 are sound. First, we show this for substitu-
tion.

Lemma 5.1(SOUNDNESS OF SUBSTITUTION) If B `E t :σ, then, for every substitution S, S(B) `E t :S(σ).

PROOF. By induction on the structure of derivations.

(Ax) : Then t≡ x, σ ∈ T2, and there isρ∈ T1 such thatx:ρ∈B andρ≤ σ. Then, by Lemma 3.2,
S(ρ)≤S(σ), and sincex:S(ρ)∈S(B), alsoS(B) `E x :S(σ).

(∩I) : Thenσ = σ1∩· · ·∩σn, and, for1≤ i≤n, B `E t :σi. Then, by induction, for all1≤ j≤m,
S(B) `E t :S(τj), so, by rule(∩I), alsoS(B) `E t :S(τ1∩· · ·∩τm).

(F) : Thent≡ F, andCh(E (F)) = σ for some chainCh. Since[S] ∗ Ch(E (F)) = S(σ), by rule(F),
S(B) `E F :S(σ).
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(→E) : Thent≡ (t1 t2), andB `E t1 :ρ→σ, andB `E t2 :ρ for someρ∈ T1. By induction,S(B) `E t1 :S(ρ→σ),
andS(B) `E t2 :S(ρ), soS(B) `E t1 t2 :S(σ), by rule(→E).

(∀I) : Thenσ = ∀α.ρ[α/ϕ], B `E t :ρ, andS(B) `E t :S(ρ) by induction. We can assume, without
loss of generality, thatϕ is not affected byS, so,ϕ occurs inρ if and only if it occurs inS(ρ).
Therefore alsoS(B) `E t :S(ρ)[α/ϕ] by rule(∀I), soS(B) `E t :S(ρ[α/ϕ]).

(share) : Thent≡ (share t1 via x in t2), and there exists aτ such thatB, x:τ `E t1 :σ andB `E t2 :τ .
By induction, we getS(B, x:τ) `E t1 :S(σ) andS(B) `E t2 :S(τ). But then, sinceS(B, x:τ) =
S(B), x:S(τ), by rule(share) we getS(B) `E share t1 via x in t2 :S(σ).

(cycle) : Thent≡ (cycle 〈xi = ti
⇀ 〉 in t′). ThenB, xi:σi

⇀ `E ti :σi andB, xi:σi
⇀ `E t′ :σ for someσ1, . . . , σn.

Then we haveS(B, xi:σi
⇀) `E ti :S(σi) andS(B, xi:σi

⇀) `E t′ :S(σ), by induction. SinceS(B, xi:σi
⇀) =

S(B), xi:S(σi)
⇀

, we getS(B) `E cycle 〈xi = ti
⇀ 〉 in t :S(σ) by rule(cycle).

The next lemma essentially states that lifting is a sound operation.

Lemma 5.2(SOUNDNESS OF LIFTING) If B `E t :σ, and letB′, τ be such thatB′ ≤B, andσ ≤ τ , then
B′ `E t :τ .

PROOF. By induction on the structure of derivations. First we deal with the case thatτ is not an
intersection.

(Ax) : Then t≡ x, σ ∈ TC, and there isρ∈ T1 such thatx:ρ∈B andρ≤ σ. SinceB′ ≤B, there is
ρ′ ∈ T1 such thatx:ρ′ ∈B′ andρ′ ≤ ρ≤ σ. Sinceσ ≤ τ , alsoρ′ ≤ τ andB′ `E x :τ .

(∩I) : Thenσ = σ1∩· · ·∩σn, and, for1≤ i≤n, B `E t :σi. Then there is an1≤ i≤n, such thatσi ≤ τ .
Then, by induction,B′ `E t :τ .

(F) : Then t≡ F, andCh(E (F)) = σ for some chainCh. Sinceσ ≤ τ , L = <〈∅, σ〉, 〈∅, τ〉> is a
lifting. Notice that[L] ∗ Ch(E (F)) = τ , and thereforeB′ `E F :τ by rule(F).

(→E) : Thent≡ (t1 t2), andB `E t1 :ρ→σ, andB `E t2 :ρ, for someρ∈ T1. Sinceσ ≤ τ , alsoρ→σ ≤ ρ→τ ,
so by induction,B′ `E t1 :ρ→τ andB′ `E t1 t2 :τ by rule(→E).

(∀I) : Thenσ = ∀α.ρ[α/ϕ], andB `E t :ρ, and, by definition of ‘≤’, either:

(τ = ρ[µ/ϕ] (µ∈ TC)) : By induction,B′ `E t :ρ, and, by Lem. 5.1,B′ `E t :ρ[µ/ϕ] (notice that
ϕ occurs inρ only).

(τ = ∀α.µ[α/ϕ] (ρ≤ µ)) : ThenB′ `E t :µ by induction, andB′ `E t :∀α.µ[α/ϕ] by rule(∀I).

(share) : Thent≡ (share t1 via x in t2), and there exists aρ such thatB, x:ρ `E t1 :σ andB `E t2 :ρ.
Since we haveB′, x:ρ ≤B, x:ρ, by inductionB′, x:ρ `E t1 :τ , andB′ `E t2 :ρ, so, by rule(share),
alsoB′ `E (share t1 via x in t2):τ .

(cycle) : Thent≡ (cycle 〈xi = ti
⇀ 〉 in t′). Then, for someσ1, . . .σn ∈ TC, B, xi:σi

⇀ `E ti :σi andB, xi:σi
⇀ `E t′ :σ.

SinceB′, xi:σi
⇀≤ B, xi:σi

⇀, by induction,B′, xi:σi
⇀ `E ti :σi, for 1≤ i≤n, andB′, xi:σi

⇀ `E t′ :τ .
Then, by rule(cycle), B′ `E (cycle 〈xi = ti

⇀ 〉 in t′):τ .

If τ = τ1∩· · ·∩τn, then, by Lem. 2.4 (ii ), for all 1≤ i≤n, σ ≤ τi. The result then follows from the
above, and rule(∩I).

The next lemma states that closure is a sound operation.

Lemma 5.3(SOUNDNESS OF CLOSURE) If B `E t :τ and Cl= 〈σ, ϕ〉 is a closure such that Cl(〈B, τ〉) =
〈B′, ρ〉, thenB′ `E t :ρ.

PROOF. Let τ = τ1∩· · ·∩τn (n ≥ 1), then

〈σ, ϕ〉(〈B, τ1∩· · ·∩τn〉) = 〈B, τ ′1∩· · ·∩τ ′n〉
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soB′ = B and, for all1≤ i≤n,

• ϕ occurs inB, andτi = σ, and the result is trivial, or

• ϕ does not occur inB, τi = σ, andτ ′i = ∀α.σ[α/ϕ], and the result follows from rule(∀I).

Since expansion just creates an intersection of types, it could be that the type created is not inT2, but
would be an intersection of types from that set. Therefore, we cannot show a general soundness result.
However, we can show the following:

Lemma 5.4(SOUNDNESS OF EXPANSION) Let Ex be an expansion, and Ex(σ) = σ1∩· · ·∩σn. If B `E t :σ,
then, for every1≤ i≤n, there is aB′ such thatB′ `E t :σi.

PROOF. By Def. 3.5, there are substitutionsS1, . . . , Sn such thatEx(σ) = S1 (σ)∩ · · · ∩Sn (σ). The
result then follows from Lem. 5.1 (notice thatB′ = Si (B)).

In case expansion gets applied to a type inT1, the result is stronger.

Lemma 5.5 Let Ex be an expansion. Ifσ ∈ T1 andB `E t :σ, then Ex(B) `E t :Ex(σ).

PROOF. By the previous lemma, ifEx(σ) = σ1∩· · ·∩σn, then, for every1≤ i≤n, there is aB′ such
that B′ `E t :σi. Sinceσ ∈ T1, also eachσi ∈ T1. Notice thatEx(B)≤Si (B), for 1≤ i≤n, so, by
Lem. 5.2 and rule(∩I), we get the result.

These soundness results are combined in the following:

Lemma 5.6(SOUNDNESS OF CHAINS) If σ ∈ T1, B `E t :σ, and Ch is a chain such that
Ch(〈B, σ〉) = 〈B′, σ′〉, thenB′ `E t :σ′.

PROOF. By lemmas 5.1 to 5.4.

The following properties of chains will be used in the proof of Thm. 7.7 below.

Lemma 5.7 i) If there exists a chain Ch such that Ch(〈P ∪{x:ν}, π〉) = 〈B ∪{x:ρ}, µ〉, where
π, µ∈ T2, then there exists a chain Ch′ such that Ch′(〈P, ν→π〉) = 〈B, ρ→µ〉.

ii) If there exists a chain Ch such that Ch(〈P, π〉) = 〈B,µ〉, whereπ, µ∈ T2, then there exists a
chain Ch′ such that Ch′ (〈P,ϕ→π〉) = 〈B,ϕ→µ〉, whereϕ is a fresh type variable.

PROOF. Straightforward.

6 Unification of Rank 2 Types

In the context of types, unification is a procedure normally used to find a common instance for de-
manded and provided type for applications, i.e: ift1 has typeσ→τ , andt2 has typeρ, then unification
looks for a common instance of the typesσ andρ such that(t1 t2) can be typed properly. The unifi-
cation algorithmunify∀2 presented in the next definition (a corrected version of the algorithm presented
in [5]) deals with just that problem. This means that it is not a full unification algorithm for types of
Rank 2, but only an algorithm that finds the most general unifying chain for demanded and provided
type. It is defined as a natural extension of Robinson’s well-known unification algorithmunify [40],
and can be seen as an extension of the notion of unification as presented in [4], in that it deals with
quantification as well.

Definition 6.1 (UNIFICATION) Unification of Curry types (extended with bound variables and type
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constants) is defined by:

unify : T ′
C × T ′

C → S

unify(ϕ, ϕ′) = (ϕ 7→ ϕ′),
unify(ϕ, τ) = (ϕ 7→ τ), if ϕ not in τ ,

unify(α, α) = IdS ,

unify(s, s) = IdS ,

unify(σ, ϕ) = unify(ϕ, σ),
unify(σ→τ, ρ→µ) = S2◦S1,

where S1 = unify(σ, ρ),
S2 = unify(S1 (τ), S1 (µ)).

(All non-specified cases, likeunify(α1, α2) with α1 6= α2, fail.)

It is worthwhile to notice that the operation on types returned byunify is not really a substitution,
since it allows, e.g.,(ϕ 7→ α), without keeping track of the binder forα. This potentially will create
wrong results, since unification can now substitute bound variables in unbound places. Therefore,
special care has to be taken before applying a substitution, to guarantee its application to the argument
acts as a ‘real’ substitution.

The following property is well-known, and formulates thatunify returns the most general unifier for
two Curry types, if it exists.

Property 6.1 ([40]) If two types have an instance in common, they have ahighest common instance
which is returned by unify: for allσ, τ ∈ TC, substitutions S1, S2: if S1 (σ) = S2 (τ), then there are
substitutions Su and S′ such that

Su = unify(σ, τ), andS1 (σ) = S′◦Su (σ) = S′◦Su (τ) = S2 (τ).

The unification algorithmunify∀2 as defined below gets, typically, called during the computation
of the principal pair for an applicationt1 t2. Suppose the algorithm has derivedP1 `E t1 :π1 and
P2 `E t2 :π2 as principal pairs fort1 and t2, respectively, and thatπ1 = σ→τ . Thus the demanded
typeσ is in T1 and the provided typeπ2 is in T2. In order to be consistent, the result of the unification
of σ andπ2 – a chainCh – should always be such thatCh(π2)∈ T1. However, ifπ2 6∈ TC, then in
generalCh(π2) 6∈ T1. To overcome this difficulty, an algorithmtoTC will be inserted that, when ap-
plied to the typeρ, returns a chain of operations that removes, if possible, intersections inρ. This can
be understood by the observation that, for example,((σ→σ)→σ→σ)→σ is a substitution instance of
((ϕ1→ϕ1)→ϕ2)∩ (ϕ3→ϕ4→ϕ4)→ϕ5. Note that if quantifiers appear inρ, toTC(ρ) should fail, since
quantifiers that appear before an arrow cannot be removed by any of the operations on types defined
above. Finally,

unify∀2 (σ, S2 (π2), S2 (P2))

is called (withS2 = toTC(π2)). The basisS2 (P2) is needed to calculate the expansion ofS2 (π2) in
caseσ is an intersection type.

Definition 6.2 The functiontoTC : T2 → S is defined by:

toTC(σ) = [IdS ], if σ ∈ TC

toTC((σ1∩· · ·∩σn)→µ) = S′◦Sn, otherwise,

where Si = unify(Si−1 (σ1), Si−1 (σi+1))◦Si−1, (1≤ i≤n−1, with S0 = IdS)
S′ = toTC(Sn (µ))
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(Again, notice thattoTC(σ) fails if σ contains ‘∀’.)

The algorithmunify∀2 is called with the typesσ andρ′, the latter beingρ in which the intersections are
removed (soρ′ = toTC(ρ)(ρ); notice thattoTC(ρ) is an operation on types that removes all intersections
in ρ, and needs to be applied toρ). Since none of the derivation rules, nor one of the operations, allows
for the removal of a quantifier that occursinsidea type, ifσ = ∀α⇀ .σ′, the unification ofσ with ρ′ will
not remove the ‘∀α⇀ ’ part.

The following definition presents the main unification algorithm,unify∀2. It gets, typically, called as

unify∀2 (σ, S2 (π2), S2 (P2))

during the calculation of the principal pair for an application; after deriving〈P1, π1〉 and〈P2, π2〉 as
principal pairs fort1 andt2, respectively, withπ1 = σ→τ andS2 = toTC(π2). The basis is needed to
calculate the expansion in caseσ is an intersection type, as mentioned above.

Definition 6.3 LetB be the set of all bases, andCh the set of all chains. The functionunify∀2 is defined
by:

unify∀2 (ϕ, τ, B) = [(ϕ 7→ τ)],
unify∀2 ((∀α1

⇀.σ1)∩ . . . ∩ (∀αn
⇀.σn), τ, B) = [Ex, Sn], otherwise

where Ex = n〈B,τ〉,

τ1∩· · ·∩τn = Ex(τ), and
for every1≤ i≤n, Si = unify(Si−1 (σi), τi)◦Si−1 (with S0 = IdS).

It is worthwhile to notice thatunify, toTC, andunify∀2 all return chains without liftings or closures.
Moreover, bothunifyandtoTC return a substitution, and the chain returned byunify∀2 (σ, τ) acts onσ as
a substitution: the expansion in the chain is defined for the sake ofτ only. Notice also thatunify∀2 does
not really return a unifying chain for its first two arguments; to achieve this, also closures would have
to be inserted. They are not needed for the present purpose.

The procedureunify∀2 fails whenunify fails, andtoTC fails when eitherunify fails or when the argu-
ment contains ‘∀’. Because of this relation betweenunify∀2 andtoTC on one side, andunifyon the other,
the procedures defined here are terminating and type assignment in the system defined in this paper is
decidable.

Using Property 6.1, the following lemma is shown:

Lemma 6.4 Let Ch be a chain.
i) If σ ∈ T2, and Ch(σ) = τ ∈ TC, then there is a S such that S◦toTC(σ)(σ) = τ .

ii) If σ ∈ T2, and Ch(σ) = τ ∈ T1, then there is a chain Ch′ such that[toTC(σ)] ∗ Ch′ (σ) = τ .

PROOF. Easy, using Lem. 3.7 (ii ) and (iv).

7 Principal pairs for terms

In this section, the principal pair for a termt with respect to the environmentE – ppE (t) – is defined,
consisting of basisP and typeπ. In Thm. 7.7 it will be shown that, for every term, this is indeed the
principal one.

Definition 7.1 Let t be a term inT(F,X ). ppE (t) = 〈P, π〉, with π ∈ T2, is defined, usingunify∀2, by
induction to the structure of terms through:
(x) : ThenppE (x) = 〈{x:ϕ}, ϕ〉.
(F) : ppE (F) = 〈∅, E (F)〉.
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(t1 t2) : Let ppE (t1) = 〈P1, π1〉, ppE (t2) = 〈P2, π2〉 (choose, if necessary, trivial variants such that
these pairs are disjoint), andS2 = toTC(π2), then
(π1 = ϕ) : ppE (t1 t2) = 〈P, π〉, where

〈P, π〉 = 〈S1 (P1∩S2 (P2)), ϕ′〉,
S1 = (ϕ 7→ S2 (π2)→ϕ′), and
ϕ′ is a fresh variable.

(π1 = σ→τ) : ppE (t1 t2) = 〈P, π〉, providedP andπ contain no unbound occurrences ofαs,
where

〈P, π〉 = 〈S(P1∩Ex(S2 (P2))), S(τ)〉,
[Ex, S] = unify∀2 (σ, S2 (π2), S2 (P2)).

(share t1 via x in t2) : Let ppE (ti) = 〈Pi, πi〉, for i = 1, 2. Then either:
– (x occurs int1). Then there existsP ′, σ ∈ T1 such thatP1 = P ′, x:σ. Let S2 = toTC(π2).

Then
ppE (share t1 via x in t2) = 〈P, π〉,

providedP andπ contain no unbound occurrences ofαs, where

〈P, π〉 = 〈S(P ′∩Ex(S2 (P2))), S(π1)〉
[Ex, S] = unify∀2 (σ, S2 (π2), S2 (P2)).

– (x does not occur int1). Then

ppE (share t1 via x in t2) = 〈P1, π1〉.

(cycle 〈xi = ti
⇀ 〉 in t′) : Let, for 1≤ i≤n, ppE (ti) = 〈Pi, πi〉, andppE (t′) = 〈P ′, π′〉, and assume,

without loss of generality, that these pairs share no type variables. Let

Pi = P i, x1:ρi
1, . . . , xn:ρi

n

Let Sbe such thatS(πi) = τi ∈ TC, andS(ρi
j) = µi

j ∈ TC, for all 1≤ i, j≤n, and let

Si = unify(Si−1 (µi
i), Si−1 (τi))◦Si−1

(with S0 = IdS). Then

ppE (cycle 〈xi = ti
⇀ 〉 in t′) = Sn◦S(〈P ′∩P1∩ . . .∩Pn, π′〉).

(Notice thatScan be built out oftoTC(πi), toTC(ρi
j), and unification.)

Sinceunifyor unify∀2 may fail, not every term has a principal pair.

Notice that closures are not needed when calculating the new basis and type.
Notice that, ifppE (t) = 〈P, π〉, thenπ ∈ T2. For example, the principal pair forI with rewrite rule

I x → x is 〈∅, ϕ→ϕ〉, so, in particular, it is not〈∅,∀α.α→α〉. Although one could argue that the
latter type is more ‘principal’ in the sense that it expresses the generic character the principal type is
supposed to have, we have chosen to use the former instead. This is mainly for technical reasons:
because unification is used in the definition below, using the latter type, we would often be forced to
remove the external quantifiers. Both types can be seen as ‘principal’ though, since∀α.α→α can be
obtained fromϕ→ϕ by closure, andϕ→ϕ from ∀α.α→α by lifting.
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Example 7.2 Take the rewrite rules and environment

I x → x

F z → z
F z → z z

E (I) = ϕ1→ϕ1

E (F) = (∀α.α→α)→ϕ1→ϕ1

and using Def. 7.1, the following can easily be checked:

∅ `E F I :ϕ2→ϕ2, and∅ `E I I :ϕ2→ϕ2.

These types are the principal types for these terms.

Example 7.3 Take the rewrite rules
G x → x D

D y → y y

For these rules to be typeable, we are forced to use:

E (G) = (((ϕ2→ϕ1)∩ϕ2→ϕ1)→ϕ3)→ϕ3

E (D) = (ϕ2→ϕ1)∩ϕ2→ϕ1

or (∀α.α→α)→ϕ1→ϕ1

The principal derivation for(x D) is:

{x:µ→ϕ3} `E x :µ→ϕ3 {x:µ→ϕ3} `E D :µ

{x:µ→ϕ3} `E x D :ϕ3

(whereµ = (ϕ1→ϕ2)∩ϕ1→ϕ2), so, when typing the left-hand term(G x), we are forced to use

{x:µ→ϕ3} `E G :(µ→ϕ3)→ϕ3 {x:µ→ϕ3} `E x :µ→ϕ3

{x:µ→ϕ3} `E G x :ρ

An attempt to type these rewrite rules using Rank 2 types would fail: sincetoTC((σ→τ)∩σ→τ) will
fail on toTC((σ→τ)∩σ), D can only be typed with a Rank 2 type, so the type ofx has to be of rank 3,
and the type forG has to be of rank 4.

The following lemma is needed in the proof of Thm. 7.7. It states that if a chain maps the principal
pairs of termst1, t2 in an applicationt1 t2 to pairs that allow the application itself to be typed, then
these pairs can also be obtained by first performing a unification.

Lemma 7.4 [5] Letσ ∈ T2, and ppE (ti) = 〈Pi, πi〉, for i = 1, 2, such that these pairs are disjoint. Let
Ch1, Ch2 be chains such that Ch1 (ppE (t1)) = 〈B, σ→τ〉 and Ch2 (ppE (t2)) = 〈B, σ〉. Then there are
chains Chu and Chp, and typeρ∈ T2 such that

ppE (t1 t2) = Chu (〈P1∩P2, ρ〉), and
Chp (ppE (t1 t2)) = 〈B, τ〉.

PROOF. Let S2 = toTC(π2), andπ′
2 = S2 (π2), P ′

2 = S2 (P2). We distinguish the cases:
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(π1 ∈ TC) : SinceCh1 (π1) = σ→τ ∈ T2, we have that, by Lem. 3.7,Ch1 (π1)∈ TC and there is a
substitutionS1 such thatCh1 (π1) = S1 (π1). SinceCh1 contains no closure nor expansion,
there is at most one liftingL1 such thatCh1 = [S1, L1], and L1 can at most be of the kind
<〈B1, σ→τ〉, 〈B, σ→τ〉>, with B ≤B1, andS1 (P1) = B1.

SinceCh2 (π2) = σ ∈ TC, by Lem. 6.4 (i) there is a substitutionS3 such thatCh2 (π2) = S3π′
2.

Again, sinceCh2 contains no closure nor expansion, there is at most one liftingL2 such that
Ch2 = [S3◦S2, L2], andL2 can at most be of the kind<〈B2, σ〉, 〈B, σ〉>, with B ≤B2, and
S1 (P2) = B2.

Let ϕ be a fresh type-variable, and assume, without loss of generality, thatS3ϕ = τ . Then we
haveS1 (π1) = σ→τ = S3π′

2→ϕ, so by Property 6.1, there exists substitutionsSu, S′ such that
Su = unify(π1, π

′
2→ϕ), andS1◦S3 = S′◦Su = S3◦S1.

Notice that, sinceB ≤B1 andB ≤B2,

L = <〈B1∩B2, τ〉, 〈B, τ〉>

is a lifting. TakeChu = [Su], andChp = [S1◦S3, L], andρ = ϕ.

(π1 6∈ TC) : Then, in particular, there areµ1 ∈ T1, µ2 ∈ T2 such thatπ1 = µ1→µ2.

Notice thatCh1 (π1) = Ch1 (µ1→µ2) = σ→τ ∈ T2, so, by Lem. 3.7 (v), there are substitutionS,
and liftingL such that

Ch1 (π1) = [S, L](π1).

So there areB′ ≥ B, σ ≤ ρ1, ρ2 ≤ τ such that

S(π1) = S(µ1→µ2) = ρ1→ρ2, (SoS(µ1) = ρ1), and
L = <〈B′, ρ1→ρ2〉, 〈B, σ→τ〉>.

In particular,
π1 = µ1→µ2, so (µ1 ∈ T1, µ2 ∈ T2)
π1 = (∀α1

⇀.δ1 ∩ · · · ∩ ∀αm
⇀.δm) → µ2, so

(δj ∈ TC (1≤ j≤m), µ2 ∈ T2)
S(π1) = (∀α1

⇀.S(δ1)∩ · · · ∩ ∀αm
⇀.S(δm)) → S(µ2)

= ρ1→ρ2.

Notice that<〈B, σ〉, 〈B, ρ1〉> is a lifting, and

Ch2 ∗ [<〈B, σ〉, 〈B, ρ1〉>](π2) = ρ1 ∈ T1.

Then, by Lem. 6.4 (ii ), there is a lifting-free chainCh′ such thatCh′ (π′
2) = ρ1. Then

Ch′ = [Ex′, S′, Cl
⇀

],
with Ex′ (π′

2) = S′1 (π′
2)∩ · · ·∩S′n (π′

2), (∀ free)
[Ex′, S′](〈P ′

2, π
′
2〉) = 〈B1, ν〉,

with ν = S′ (S′1 (π′
2))∩ · · ·∩S′ (S′n (π′

2)), ”
Cl
⇀

(〈B, ν〉) = 〈B, ρ1〉,
with ρ1 = ∀α1

⇀.ν1
2∩ · · ·∩∀αm

⇀.νm
2

So, for 1≤ j≤m, S(δj) = νj
2 = S′ (S′j (π′

2)), and, by Property 6.1, there exists substitutions
Sj

u, Sj such that

Sj
u = unify(δj , π

′
2)

S(δj) = Sj (Sj
u (δj)) = νj

2 = Sj (Sj
u (π′

2)) = S′ (S′j (π′
2))
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Since the substitutionsSj
u agree on type-variables, without loss of generality, we can assume that

exists substitutionsS1, . . . , Sm such that

Si = unify(Si−1 (δi), π′
2)◦Si−1

(with S0 = IdS), and
for 1≤ j≤m, Sj (Sn (δj)) = νj

2 = Sj (Sn (π′
2))

so, by Def. 6.3
Ch′u = unify∀2 ((∀α1

⇀.δ1)∩ . . . ∩ (∀αn
⇀.δn), π′

2, P
′
2).

exists. Take
Chu = [S2] ∗ Ch′u,
Chp = [S1◦ · · · ◦Sm, <〈B, ρ2〉, 〈B, τ〉>], and

ρ = µ2.

Notice that, sinceB can be assumed to not contain free occurrences ofαs, the last chain is well-defined.

Similarly, we can show the following property

Lemma 7.5 Letσ ∈ T2, and ppE (t1) = 〈P1 ∪{x:ρ}, π1〉, and ppE (t2) = 〈P2, π2〉, such that these
pairs are disjoint. Let Ch1, Ch2 be chains such that

Ch1 (ppE (t1)) = 〈B∩{x:σ}, τ〉 & Ch2 (ppE (t2)) = 〈B, σ〉.

Then there are chains Chu and Chp such that

ppE (share x via t1 in t2) = Chu (〈P1∩P2, π1〉), and
Chp (ppE (share x via t1 in t2)) = 〈B1∩B2, τ〉.

The main result of this section then becomes the soundness and completeness result forppE .

Theorem 7.6 (SOUNDNESS OFppE ) If ppE (t) = 〈P, π〉, thenP `E t :π.

PROOF. By induction on the structure of terms.

(x) : SinceppE (x) = 〈{x:ϕ}, ϕ〉, the result follows from rule(Ax).

(F) : Immediate.

(t1 t2) : ThenppE (t1) = 〈P1, π1〉, ppE (t2) = 〈P2, π2〉, for someP1, P2, andP1 `E t1 :π1 andP2 `E t2 :π2

by induction. Then either:

(π1 ∈ TC) : ThenppE (t1 t2) = 〈S(P1∩P2), S(ϕ)〉, where

S = S1◦S2,
S1 = unify(π1, S2 (π2)→ϕ),
S2 = toTC(π2), and
ϕ is a fresh variable

Then, by the soundness lemmas above,

S(P1) `E t1 :S(π1) andS(P2) `E t2 :S(π2).

SinceS1 (π1) = S1 (S2 (π2)→ϕ), andS2 does not affect any variable in〈P1, π1〉 or ϕ, we can
also state thatS(π1) = S(π2→ϕ). So, by rule(→E),

S(P1∩P2) `E t1 t2 :S(ϕ).
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(π1 = σ→τ (σ ∈ T1, τ ∈ T2)) : Similar to the previous part, usingunify∀2 rather thanunify.

(share t1 via x in t2) : Let ppE (ti) = 〈Pi, πi〉, for i = 1, 2. Then either:

– (x occurs int1). Then there existsP ′, σ ∈ T1 such thatP = P ′, x:σ. Let S2 = toTC(π2).
Then

ppE (share t1 via x in t2) = 〈P, π〉,
providedP andπ contain no unbound occurrences ofαs, where

〈P, π〉 = 〈S(P ′∩Ex(S2 (P2))), S(π1)〉
[Ex, S] = unify∀2 (σ, S2 (π2), S2 (P2)).

– (x does not occur int1). Then

ppE (share t1 via x in t2) = 〈P1, π1〉.

(cycle 〈xi = ti
⇀ 〉 in t′) : Let, for 1≤ i≤n, ppE (ti) = 〈Pi, πi〉, andppE (t′) = 〈P ′, π′〉, and assume,

without loss of generality, that these pairs share no type variables. Let

Pi = P i, x1:ρi
1, . . . , xn:ρi

n

Let Sbe such thatS(πi) = τi ∈ TC, andS(ρi
j) = µi

j ∈ TC, for all 1≤ i, j≤n, and let

Si = unify(Si−1 (µi
i), Si−1 (τi))◦Si−1

(with S0 = IdS). Then

ppE (cycle 〈xi = ti
⇀ 〉 in t′) = Sn◦S(〈P1, . . . , Pn∩, π〉).

(Notice thatScan be built out oftoTC(πi), toTC(ρi
j), and unification.)

Theorem 7.7 (COMPLETENESS OFppE ) If B `E t :σ, then there are a basisP and typeπ such that
ppE (t) = 〈P, π〉, and there is a chain Ch such that Ch(〈P, π〉) = 〈B, σ〉.

PROOF. By induction on the structure of derivations.

(Ax) : Then t ≡ x, σ ∈ TC, and there isτ ∈ T1 such thatx:τ ∈B and τ ≤ σ. Also, π = ϕ and
P = {x:ϕ}. Sinceτ ≤ σ, B ≤ {x:σ}, so<〈{x:σ}, σ〉, 〈B, σ〉> is a lifting. Take

Ch = [ϕ 7→ σ,<〈{x:σ}, σ〉, 〈B, σ〉>].

(∩I) : Thenσ = σ1∩· · ·∩σn, and, for1≤ i≤n, B `E t :σi. Let ppE (t) = 〈P, π〉, and letEx = n〈P,π〉,
thenEx(〈P, π〉) = 〈P1∩ . . .∩Pn, π1∩ · · ·∩πn〉, with each pair〈Pi, πi〉 a trivial variant of〈P, π〉.
So, without loss of generality, we can even sayppE (t) = 〈Pi, πi〉, for all 1≤ i≤n. By induction,
there exist chainsCh1, . . . , Chn such that for1≤ i≤n, Chi (〈Pi, πi〉) = 〈B, σi〉. By Lem. 3.7 (i),
Chi = [Si, Cl

⇀
i]. TakeCh = [Ex, S1◦ · · · ◦Sn, Cl

⇀
n, . . . , Cl

⇀
n].

(F) : Thent ≡ F. There is a chainCh such thatCh(E (F)) = σ,andppE (F) = 〈∅, E (F)〉. Take the
lifting L = <〈∅, σ〉, 〈B, σ〉>, thenCh(ppE (F)) = 〈B, σ〉.

(→E) : Thent ≡ t1 t2, andB `E t1 :τ→σ, andB `E t2 :τ for someτ ∈ T2. By induction, fori = 1, 2,
there arePi, πi, and chainChi such that

ppE (ti) = 〈Pi, πi〉,
Ch1 (ppE (t1)) = 〈B, τ→σ〉, and
Ch2 (ppE (t2)) = 〈B, τ〉.

Then, by Lem. 7.4, there is a chainChsuch that

Ch(ppE (t1 t2)) = 〈B, σ〉.
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(∀I) : Thenσ = ∀α.τ [α/ϕ], andB `E t :τ . Let ppE (t) = 〈P, π〉, then by inductionCh′ (〈P, π〉) =
〈B, τ〉, for some chainCh′. TakeCl = 〈τ, ϕ〉, andCh = Ch′ ∗ [Cl].

(share) : Thent≡ (share t1 via x in t2). Then there exists aτ such thatB, x:τ `E t1 :σ andB `E t2 :τ .
Let ppE (ti) = 〈Pi, πi〉, for i = 1, 2. Then, by induction, there are chainsCh1, Ch2 such that

Ch1 (〈P1, π1〉) = 〈B ∪{x:τ}, σ〉 and
Ch2 (〈P2, π2〉) = 〈B, τ〉.

Then either:

– (x occurs int1). ThenP1 = P, x:ρ, and, by Lem. 7.5, there is a chainChsuch that

Ch(ppE (share x via t1 in t2)) = 〈B1∩B2, τ〉.

– (x does not occur int1). Then

ppE (share t1 via x in t2) = 〈P1, π1〉.

TakeCh = Ch1.

(cycle) : Thent≡ (cycle 〈xi = ti
⇀ 〉 in t′). Then there areσ1, . . . , σn ∈ TC such thatB, xi:σi

⇀ `E t′ :τ
andB, xi:σi

⇀ `E ti :σi, for 1≤ i≤n. Let ppE (t′) = 〈P ′, π′〉 andppE (ti) = 〈Pi, πi〉, for 1≤ i≤n.
Then, by induction, there are chainsCh1, . . . ,Chn, Ch′ such that

Chi (ppE (ti)) = 〈B ∪{xi:σi
⇀}, σi〉 for 1≤ i≤n, and

Ch′ppE (t′) = 〈B ∪{xi:σi
⇀}, τ〉

Let Pi = P i, x1:ρi
1, . . . , xn:ρi

n. SinceChi (ρi
1) = σi ∈ TC, by Lem. 3.7 (iii ), Chi acts like a

substitution onρi
1, and we can say that there existCh1, . . . , Chn, S1, . . . , Sn such that

Chi = Chi ∗ [Si]

SinceSi (ρi
j) = σj for all 1≤ j≤n, by Prop. 6.1, we can assume that allSi are one and the same

S. Then, usingtoTC andunifywe can defineSu such that

ppE (cycle 〈xi = ti
⇀ 〉 in t′) = Su (〈P ′∩P1∩ . . .∩Pn, π′〉),

and there exists aS′ such thatS= S′◦Su. Take

Ch = Ch1 ∗ · · · ∗ Chn ∗ S′.

8 Concluding remarks

On implementation

The results of this paper could be used to implement a type-check algorithm for @TGRS. It should be
pointed out that the notion of type assignment as defined in this paper is really atype-checksystem,
in the sense that it is not possible to create a type-inference algorithm, based on the approach of this
paper. Take for example the rewrite rules

F x → x
F x → xx
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A type-inference algorithm could for example type both alternatives separately and try to combine
the results found. For the first rule it would findE (F) = ϕ1→ϕ1, and for the secondE (F) =
(ϕ2→ϕ3)∩ϕ2→ϕ3. It is possible to create the desired type,

(ϕ5∩(ϕ4→ϕ5)∩ϕ4)→ϕ5,

from these other two applying the operations specified in this paper, but this is not part of, for example,
the algorithmppE .

So, it is allowed to give an environment for function symbols that is not a combination of possible
environments for the various rules. This implies that, in particular, combining types found for one
function symbol defined by several rules, applying the here defined operations, does not always lead
to the right solution. It can be that the user ‘sees’ the right type for the rules, which the type-check
algorithm is not capable of deducing, but will be capable of checking on its correctness. This can
be seen as a disadvantage of the system, but, on the other hand, it can be considered to be good
programming hygiene to explicitly state the types for function definitions.

Although type assignment (and type-checking) using the here defined notion of type assignment
is decidable, the complexity of type-checking is bigger than for a system based on Curry-types. The
biggest problem arises when checking the type provided for a function symbol. Supposel → r is a
rewrite rule. One way to implement type-checking for this rule would be to construct the principal pair
〈P, π〉 for the terml and to try to typer using this pair. Letσ1∩· · ·∩σn be the type assigned to the
term-variablex in P . Then, for every occurrence ofx in r, some selection of the types inσ1∩· · ·∩σn

should be made. In the worst case the number of possibilities that must be tried is huge:2n. There
are some more efficient ways to type-check a rule, but the complexity is still exponential. However, in
every day programming lifen will rarely be larger than2.

Overloading

The concept of overloading in programming languages is normally used to express that different objects
(typically procedures) can have the same identifier. (For another approach to overloading, see [17,
16].) At first sight this seems to be nothing but a tool to obtain programming convenience, but the
implementation aspects of languages with overloading are not at all trivial. In functional programming
languages, functions arefirst-order citizenswhich means that they can be handled as any object, like
for example numbers. In particular, a function can be passed as argument to another one, or could be its
result. Especially in the first case it can occur that at compile time it is not possible to decide which of
the several bodies (or pieces of code) for an overloaded identifier should be linked into the object-code.
If this decision cannot be made, the compiler should generate code that contains all possible functions
and some kind ofcase-construct that makes it possible to select at run-time which is the code to use.
For reasons of efficiency – and to avoid run-time checks on function types – it seems natural to allow for
overloaded objects only if at compile time it can be decided which of the different function definitions
is meant, since then, for every occurrence of an overloaded symbol, the compiler can decide which of
the several function definitions should be linked into the object code.

The intersection type constructor is a good candidate to express overloading. It seems natural to say
for example that the type for addition+ is (int→int→int)∩ (real→real→real). Bringing the notion of
overloading into a formal system for type assignment as defined in this paper implies that the restriction
on the types that can be provided by an environment should be dropped; in such a formalism, types
provided by the environment should be an intersection type, not just an element ofT2.

However, this extension itself creates strange effects. Let, for example,

E (F) = (int→int→int)∩ (real→real→real) → α
E (+) = (int→int→int)∩ (real→real→real)

Then, by the notion of type assignment as defined here, the termF + can be typed byα. In general,
let G be a function symbol that has the typeσ∩τ→ρ, and letH be an overloaded function symbol with
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E (H) = α∩β. Then finding the principal pair for the termG H requires more than just the kind of
unification defined in this paper. In general, there can be several cases, since all possible combinations
have to be tried:

• unify(σ, α) andunify(τ, β) are both successful.

• unify(σ, β) andunify(τ, α) are both successful.

• unify∀2 (σ∩τ, α) andunify∀2 (σ∩τ, β) are both successful.

• unify∀2 (σ∩τ, β) fails, unify∀2 (σ∩τ, α) is successful.

• unify∀2 (σ∩τ, α) fails, unify∀2 (σ∩τ, β) is successful.

It can even be that more than one of these cases is true at the same time, like for example the first and
second. This in particular is troublesome, since it is not obvious at all what in this case the type ofG H
should be. One solution for this problem would be to allow, like in [18], for more than one principal
pair for a term (notice that this is not the same as saying that a principal type can be an intersection).
Another would be to introduce – formally – an extra type constructor∩· with the same meaning as∩,
and to define overloading using this notion. Then the unification ofσ∩τ andα∩· β can be defined as
the combination of the results of unifyingσ∩τ andα, and unifyingσ∩τ andβ.

A good solution to the aforementioned problem is toforce selectionof one of the function definitions
for an overloaded identifier. This can be accomplished by defining, as in Definition 4.3, how a rewrite
rule can be typed, but by adding that, for everyσ ∈ T2 such thatE (F)≤ σ, all the rewrite rules that
defineF should be typeable using the typeσ, for every occurrence ofF. (Another approach would be to
introduce a new syntactic construct into the language that is used to separate the rules that defineF in
groups, and to ask that, for everyσ ∈ T2 such thatE (F)≤ σ, there is at least one group of rules that can
be typed usingσ.) Moreover, it is possible to define, as in rule(F) how a type for a function symbol
can be obtained form the one provided by the environment, in the following way:

(F) : (∃τ ∈ T2, Ch [E (F)≤ τ & Ch(τ) = σ])
B `E F :σ

Then the term(F +) mentioned above cannot be typed. This selection is then reflected in the way
intersection types are unified. Since onlyoneof the types in an ‘overloaded’ type can be used, the
unification should try to unify the demanded type witheach individual typeoccurring in the provided
type.

Using this definition, the notion of ‘principal pair’ becomes slightly more complicated. This is best
explained by discussing the implementation of the type-checker that is looking for such a pair. Take
the well-known functionfoldr that is defined by

foldr f i [ ] = i
foldr f i (a : b) = f a (foldr f i b)

and can be typed by(ϕ1→ϕ2→ϕ2)→ϕ2→[ϕ1]→ϕ2. Take the term

foldr + 1 [2, 3, 4]

then it is clear that this term should be typeable by the typeint. When constructing the type assignment
for this term, the subterm(foldr +) is typed. For this term as such the type needed for+ cannot be
uniquely determined: it is the second argument offoldr that forces the selection. Since there is a
chance of success, the type-checker should postpone the decision to reject the term and consider both
possibilities simultaneously. This means that formally the term(foldr +) hastwoprincipal types.
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