Rank 2 Types for Term Graph Rewriting

Steffen van Bakel

Department of Computing, Imperial College,
80 Queen’s Gate, London SW7 2BZ, U.K
Email: svb@doc.ic.ac.uk

Abstract

We define a notion of type assignment with polymorphic intersection types of rank 2 for a term graph rewriting
language that expresses sharing and cycles. We show that type assignment is decidable through defining, using
the extended notion of unification from [5], a notion of principal pair which generahzes principal type

property.

Introduction

This paper presents a decidable notion of type assignment systems for a term-graph rewriting language
that uses polymorphic types of rank 2, so allows for more than just the stastttowpolymorphism.
In order to obtain principal typings, intersection types of rank 2 are added to the system.

In the past, many notions of type assignment have been studied for (functional) programming lan-
guages, all based on (extensions of) the Hindley-Milner type assignment system [27, 37]. Moreover,
almost all notions of type assignment as proposed for use in functional programming, in reality are
developed on (enriched) lambda calculi, and little work is available that discusses and studies types
directly on the level of the programming languagdowever, to be able to study the role of types in
practice, itis arguably important that type assignment is formally defined as close to the actual language
as possible.

Furthermore, many aspects of those languages are not easily dealt with in the Lambda Calculus
(Lc) [8], or not expressible at all, like patterns, sharing, and cyclic structures. This motivated the
investigation of type assignment for Term Rewriting Systemrss] [35] and Term Graph Rewriting
Systems{GR9) [10] presented in various papers [7, 6, 4, 13, 5], and the system presented in this paper
is developed in much the same way as the systems studied there. As an example, take the problem of
I/0 in the context of functional programming: only when representing terms as graphs to express the
sharingthat is heavily used at run-time does it become possible to represent the number of different
references to an object accurately; only when the referenoeitgie (see [13] for a discussion of
unigueness typesiote that we do not consider a notion of uniquess typing here) is it possible to do a
destructive update

Although functional programming languages are normally viewed as enriched lambda calculi, study-
ing properties on that level ignores features of the language, like patterns. The subject reduction prop-
erty in particular, is lost in general in the context of patterns, a problem successfully dealt with in [7],
where a notion of type assignment fors was developed. This system was later extended into type
assignment systems for different calculi [4, 13, 6, 5]. The papers [7, 6, 4] studied type assignment for
Curryfied TRs (@WTRS), a notion of first ordemrs extended with application. A difference between
Qrrsand @ GRsas considered (and defined) here, is that, for reasons of simplicity of definitions, we
will consider (higher order) applicative systems only, with higher order variables and function symbols,
rather than the first-ord€tirRrs.

The extension from.C to TRS is done via combinator systems; then term rewrite rules are written
very much like the definitions of combinators, with the difference that a formal parameter can have
structure and be jpattern it need not be a term-variableGrsare obtained fronTrRs by lifting terms
to graphs. This lifting consists of writing terms as trees and of sharing variables that occur more than

once in the term that is lifted. Term graph rewrite rules are obtained from term rewrite rules in very
much the same way: the left- and right hand side terms of every term rewrite rule are lifted to term
graphs, and the nodes that represent variables occurring in both terms are shared. If a variable appears
in both the left and right hand side, this operation will generate a connected graph. Of course it is also
possible to define term graphs and term graph rewrite rules directly, without first taking a term or term
rewrite rule and lifting it; see [10, 11, 12, 24, 30, 42] for discussions of term graph rewriting and its
suitability for programming.

The main point of focus for [6, 5] wasormalisation which motivated the choice to use intersections
types [9]. This implied, however, that type assignment for those systems is undecidable. It is by now
well-known that there are decidable restrictions of the intersection type assignment system [21, 34, 28,
4,29, 22, 20, 31, 32], making the definition of notions of type assignment using those types feasible.
In particular, in [4] a notion of type assignment forS was presented that uses intersection types of
rank 2.

Another direction in the area of types is thatpfantifiedor polymorphictypes. This field originated
in the context of.c with System F [26, 39], which provides a general notion of polymorphism, but lacks
principal typings. Moreover, type inference in System F is undecidable in general [44], although it is
decidable for some sub-systems, in particular if we consider types of rank 2 [33]. The type system of
ML [19] uses (shallow) polymorphic types and has principal types. Since its polymorphism is limited,
some programs that arise naturally cannot be typed, and it motsave principaltypings[29], a
property that is important for separate compilation, incremental type inference, and accurate type error
messages.

Intersection type systems are somewhere in the middle with respect to polymorphism, and have
principal typings.

The system of [4] was in [5] extended to a system for a combinatiac @hd (TRS) by adding v’
as an extra type-constructor (i.e. explicit polymorphism). Although the Rank 2 intersection system and
the Rank 2 polymorphic system foc type exactly the same set of terms [45], their combination results
in a system with more expressive power: the set of assignable types increases, and types can better
express the behaviour of terms [15]. Also, polymorphism can be expressed directly (using the universal
guantifier) and, moreover, every typeable expression in [5] has a principal typing. This principal typing
property does not hold in a system without intersection.

The decidability of a notion of unification on polymorphic intersection types of rank 2 as shown
in [5] could be used in many different contexts. Since intersection types are the natural tool to type
nodes that are shared in a notion of type assignment on graphs, in this paper, we adapt the notion of
type assignment of [5] to one for (a kind afsrRs. (Intersection types also provide a good formalism
to express overloading.) We will show that the notion of type assignment as presented here has the
principal typing property.

We will study type assignment on a class of graphs that can be defined via an abstract syntax defini-
tion, which makes an inductive approach to type assingment possible. Graphs will be written as terms,
and type assignment will be treated on the level of terms. A first treatment of types for graph rewriting
systems that uses this approach can be found in [13], which itself is based on the approach of [7] as far
as the definition of type assignment is concerned. A draw-back of that system is that it uses the stan-
dard Curry types to type graphs, so that the types assignable to a graph are fewer than those assignable
to the corresponding tree (obtained by unraveling the graph), since there a node shared in the graph
would appear as two separate nodes, that can be typed with different types. Using intersection types,
the concept of sharing in graphs causes no difficulties, since a shared node can now be typed with more
than one type.

The only problem arises when the graph is allowed to have a cyclic structure, which causes the
unraveling to generate an infinite tree. Then it is possible that the (infinite number of) copies of a node
are all typed with different types, thus creating an intersection over an infinite number of types for the
type assignment to the term graph. The solution for this problem used in this paper is to type a cyclic

node withoneCurry type only, similar to the standard way of dealing with recursion.

In our Rank 2 system each typeable term has a principal typing; this is the case also in the Rank
2 intersectionsystem of [4], but not in the Rank @lymorphicsystem of [33]. For the latter, a type
inference algorithm of the same complexity of thatvaf was given in [34], where the problems that
occur due to the lack of principal types are discussed in detail. Our Rank 2 system (withsirthe
and thecycle) generalizes also Jim’s systeR) [29], which is a combination ofiL -types and Rank 2
intersection types. Having Rank 2 quantified types in the system allows us to type, for instance, the
constantunST used in [36], which cannot be typed i». Our system also generalises the system of
[20] that combines rank 2 intersection types and shallow polymorphism, so does not have polymorphic
types of rank 2.

The Rank 2 system as used in this paper can be seen as a combination of the systems of [4] and [33].
In [5] an incomplete notion of polymorphic intersection type assignment was presented for a language
that is a combination ofc andQTRS; it contains a definition of a Rank 2 system for that combined
calculus, and it claimed to show that type assignment in that system is decidable and has principal types;
since there were some major flaws to definitions and proofs in that paper, a new correct presentation
is necessary. This paper corrects those definitions and extends those result to a calculus with sharing
and cycles, by defining a notion of Rank 2 type assignment oar® inspired by the system that was
studied in [5].

This paper is organised as follows: in Section 1 we define term graph rewriting extended with
application (@GR9), and in Section 2 polymorphic intersection types of rank 2, and a notion of Rank 2
type assignment for @Rsin Section 4. In Section 3, we will define four operations on types, needed
in the notion of type assignment, that we will show to be sound in Section 5. We will conclude by
presenting the notion of unification from [5] in Section 6, which will be used in Section 7 to show
that all typeable terms have a principal typing. Finally, Section 8 contains some concluding remarks
regarding implementation aspects and overloading.

We assume the reader to be familiar with [8], refer to [35, 23] for rewrite systems, and to [12,

10, 11, 30, 38, 42] for definitions afGrRs. The system defined here is aimed to be similar to those,
although their relation is not studied here.

We will use a vector notatiop as an abbreviation fayi, . . ., g,, SO such thatz; = t;) stands for
(x1 =t1),...,(xp = t,), andz; — riforx; — ry, ..., z, — 1y, €tC.

1 Applicative Term Graph Rewriting Systems

In this section, we will present a notion 8jpplicativeTerm Graph Rewriting (@GRS) based on an
inductive definition of graphs, following essentially a similar system presented in [13]. Term Graph
Rewriting distinguishes itself from Term Rewriting in that the objects considered are no longer trees,
but allow sharing and cycles; it is different from Generalised Graph Rewriting in that only those rewrites
are allowed that can, essentially, be formulated through a term rewrite rule.

Definition 1.1 (TErRMS) i) An alphabetor signatureX consists of a countable, infinite s&tof vari-
ablesr, y, z, ..., anon-empty sef of function symbol§, G, ..., each with a fixed aritgrity (F),
and a special binary operator, callggplication(@, written in in-fix notation).

i) The sefT(F X) of terms ranged over by, is defined by:

t = x| F|(t1 @t2) | (sharetyviazints) | (cycle (x; =t;)int)
Rather than writindt; @ t2), we will write (¢; t2); as usual, obsolete brackets will be omitted.

A thing to observe is that function symbols come with an arity, which is relevant when defining
rewrite rules (Def. 1.5), and comes into play when translating a ‘program’ into a graph rewriting system;
for details of such a translation, see [13] and below (Def.il)) (

Mainly for readability of proofs, the language of terms we study here differs from the one defined in
[13], whereexpressionsvere defined by:

E :=zx|(F(E1,...,E,)) | (letx = Ey1inEy) |
(letrecx = Ejin Ey) | (case Eof P|E)
P = C(x1,...,2y)

Notice that, in Def. 1.1, we do not distinguish between function and constructor symbols, so we do
not require a separate treatment of patterns; also, we deal wilpgitativelanguage; in [13], the
language is first order, and application is considered in Section 4 of that paper only to allow higher
order functions by partial application of function symbols, essentially by extending the set of rewrite
rules via

(F(t1y .. tn) @tyy1) = F(t1, ... tnytns1)

The distinction between that syntax and the one used here is cosmetic in that all results obtained here
could be reached in a first-order system as that of [13]; it is the presentation of the results that benefits
from an applicative syntax by giving less involved and shorter proofs. Using the keyvgbeats’‘and
‘cycle’ rather than fet’ and ‘letrec’ serves to highlight the change in syntax and system.

Notice that the language of types (presented below) differs significantly from that considered in [13],
in that, as far as assignable types are concerned, the systems are incompatible.

We will now formally introduce term graphs, as done in [10]. Following [13], graphs are written in
anequational stylg10, 1], rather than using drawings or 4-tuples (as in [10]).

Definition 1.2 (GrRAPHS) [13, 24] A graph (over F) is a pairg = (r | G), wherer is a variable and
stands for theoot of the graph, and~ is a set of equations of the shape= @(y,z) or ‘z = F,

that describe the edges in the graph, where the variables that appear on the left appear theoma only
equation and should all appear on the right as well.

The variable setof graphg = (r | G), Var(g), is the collection of all variable names appearing in
r,G. The set offree variables ofg, fv(g), contains those variables that do not appear as the left-hand
side of an equation if, and a variable ivar(g) is boundif it is not free; we will identify graphs that
differ only in the names of their bound variables.

Definition 1.3 (GrRaPH INTERPRETATION (cf. [13]) For each term, thegraph interpretation of, [[¢]],
is defined by [z; — 7] stands for the simultaneous replacement;dbr (the free occurrences afj;,
and different graphs are assumed to share no variable names):

[z] = (z|0)
TFl = (fI{Ff=F}
th tQJJ = <7” ’ {'I“ = @(7"1, 7“2)} UG U GQ),
where[t;] = (r; | G;),i = 1,2, andr is fresh
ﬂshare tiviazxin tQJJ = <’I“2 ‘ Gy UG2> [ac — 7’1],
Where”tiﬂ = <’I“Z‘ ‘ Gl>,’L =1,2
Teycle (z; =t;)int']| = (' | GLU -+~ UG, UG") [7; — 7,
where[t;] = (r; | G;), (1<i<n)
Me] = ¢'| &,

Via this interpretation, the notion of free and bound variables of a ggaptduces a notion of free
and bound variables on terms; as a result, in the {ghare ¢; viaxints), x does not occur free ify.

Example 1.4 (cf. [13]) The term(shareOviazin(cycle (z = F(consz (Gz z)))inz)) translates to
the graph

Reduction oril (£ X)) is defined through rewrite rules.

Definition 1.5 (REWRITING RULES) i) A rewrite ruleis a pair(left, right) of terms such that
— left=Ft; - - t,, for someF with n = arity (F), and termg, ..., t,, and
— fv(right) C fv(left).
Often, a rewrite rule will get a name, erg.and we writdeft —, right.
ii) The translation into graphs of Def. 1.3 is extended to rewrite rules througheftet right be a
(recursive) rewrite rule with defined symbglthen:

[left — rightﬂ = (r; | Gert U Gright) [T — yi,
where [Fl = (g]{g=F})
Neft] = (r; | Gler)
[right] = (r7 | Gright)

{z1,...,2,} = fv(left)

and allyy, ..., y, andg are unused variables.

We take the view that in a rewrite rule a certain symbol is defined.

Definition 1.6 (DEFINED SYMBOLS AND CONSTRUCTOR} Inarewrite rule-¢q --- ¢, —, r, Fis called
the defined symbadf r, andr is said todefineF. F is a defined symboif there is a rewrite rule that
definesF, andQ € F is called aconstructorif Q is not a defined symbol.

Notice that, by the first condition of Def. 1.5, ‘@’ cannot be a defined symbol.

We call a defined symbd recursiveif F occurs on a cycle in the dependency-graph, and call every
rewrite rule that defineb recursive All function symbols that occur on one cycle in the dependency-
graph depend on each other and are, therefore, dedinmdtaneoushand are calleanutually recur-
sive Since it is always possible to introduce tuples into the language and solve the problem of mutual
recursion using only recursive rules, we will assume that rules@mautually recursive.

Definition 1.7 (TERM GRAPH REWRITING The principle of term graph rewriting, presented formally
in [10], can be summarised as follows:

e a graphg contains aedexif a left-hand siddeft of a rewrite ruleleft — right can be mapped
onto a graph, i.e. if there exists a homomorphism fieftito the graph (MTCH), which respects
the structure of graphs and maps free variables to graphs.

¢ Reduction (rewriting) of the redex then consists of addingrnatanceof right to the graph by
adding the right hand side (graph) of the rewrite rules(B), but by replacing an edge going
into a free variable to one going into the image of the variable under the aforementioned homo-
morphism (LNK).

¢ All edges going into the image of the rootleft are re-directed into the root of the added instance
of right (RE-DIRECT).

/@< N '
@ S S
4 \@ @
PN PN
| K | K
Redex MATCH
i g
/ \I @/ \I @
/ \S / \ @/ N < \@
e \ e \Q« &N
/ \ I/ \K
BUILD LINK
Garbage i
I
s < \@ / \
& \,&}«
N AN
RE-DIRECT Contractum

Figure 1: An example of term graph rewriting
e Now part of the graph has becorgarbage in that it is no longer accessible from the rootgof
this can be removed.
Example 1.8 As an example of term graph rewriting within the context of this paper, consider Fig. 1.

Definition 1.9 (REWRITING ON TERMS) We define a rewrite relation on terms by: — ¢, if and only
if there are graphg, andg, such thatl¢, | = g1, [t2l = g2, andgi — go.

Definition 1.10 An Applicative Term Graph Rewriting Systé@tGRY) is defined as a pai®, R) of
an alphabek and a seR of rewrite rules.

Example 1.11 The rewrite rules that define Combinatory Logic are expressed ass® gDy

Szyz — xz(yz2)
Kzy —«x
|z — T

Translated to term graph rewrite rules, these rules look like (Usfhgndright rather tharn; andr;.):

left @
e

a N

@ @ T ri
/@\/ \yk\: K ght
S xz

left
e/@ left @

x right

z

Notice that, if we would have use& 'y z — share zviavin (zv) (yv)’ instead of the first rule, so
would have expressed explicitly that we want the third parameter to be shared, the resulting graph
rewrite rule would have been exactly the same.

Notice that the construgshare ¢, viaxinty) differs from the constructietz = ¢;inty) as used in
themML language in that it is not a redex: in the rewriting relatiomin, (letz = t1inte) — ta[t1/z],
whereas here,

[sharet)viazints] = (ry | G1UGS) [z +— 1] = [ta[t1/2]],

where[t;]] = (r; | G;),i = 1,2. Of course théet-construct is normally implemented using sharing
exactly as suggested by theare-construct, but that implies that then the language itself has changed
from an extended lambda calculus to a language with lambda graphs, and the calculus no longer is the
one presented in [37].

Since (free) variables in @RS may be substituted by function symbols, we obtain the usual func-
tional programming paradigm, extended with definitions of operators and data structures. Notice, how-
ever, that we obtain more: in functional programs, the7/séDef. 1.1) is divided intdunction symbols
and(data-type) constructorsnd, in rewrite rules, function symbols are not allowed to appear in ‘con-
structor position’ and vice-versa. This does not hold farg@s.

Example 1.12 This example is an extension of one presented in [23]. It deals with the very well known
definition of stacks of natural numbers and contains next to the operdgnandPop, the operation
Alternatethat combines two stacks, and shows the advantage of relaxing on the separation of function
symbols and constructors.

The syntax of these representations is given by:

n € Nat s € Stack
n = 0| Suca s u= ¢ | Pushns

‘Push and ‘e’ can be seen as stack constructors, @ndnd ‘Succ¢ can be seen as number constructors.
Semantics of the functions is given by the following rules:

Top(Pushz) —
Pop(Pushz y) —
Push(Topzx) (Popz) — =z
Alternates z — z

Alternate(Pushz y) = — Pushz (Alternatez y)
With these rules, it can be shown, for example, that

Alternate (Push(Top(Push0¢)) (Pop(Push0e))) (Pop(Push(Sucd))e¢))
— Alternate(Push0 ¢) (Pop(Push(Sucd)¢))
— Pusho (Alternates (Pop(Push(Sucd)€)))
— Push0 (Pop(Push(Sucd) ¢))
— Push0e.

2 Rank 2 types

In Section 4, we will present a decidable notion of type assignment DBR® using polymorphic
intersection types of rank 2. The system presented here is an extension, mainly Bytitpe ‘con-
structor, of the Rank 2 system with intersection types as defined in [4].

We use strict intersection types over aBet ¢ W A of free and bound type-variablegspectively,
and a seft of sortsor type constantsFor various reasons (definition of operations on types, definition
of unification), we will distinguish syntactically between (namesfrg type-variables (which belong
to @) and (names ofoundtype-variables (in4).

Definition 2.1 (POLYMORPHIC INTERSECTION TYPES ORANK 2) [5] We define types in layers7c
are Curry types, built out of type variablesdn(ranged over byp), sorts (type constants, ranged over
by s) and ‘—’, 7Y are quantified Curry typeg, the types of rank 1, are intersections of quantified
Curry types, and, are types of Rank 2:

¢|s] (TC —Tc) T == Tc | (Va.Td[a/¢])
(TCV NTY) T u=¢l|s|(h—Th)

We us€ZR for the union of these sets, and use for arbitrary elements ofr. Notice thatZc C 72’ -
T, and7c C Ty, but that7y ¢ To.

In the notation of types;~’ associates to the righty’ binds stronger than=’, which binds stronger
than ¥v'; so pnp— (Va.y—d)—o stands for((pnu)—((Va.(y—6))—0c)). Also, Va .o is used for
Yay.Vas ... Va,.0, and we assume that each variable is bound at most once in a type (renaming if
necessary). In the meta-language, we denote[byy| (resp.o|r/«a]) the substitution of the type-
variabley (resp.a) by T in o.

Definition 2.2 (FREE AND BOUND TYPEVARIABLES) fv(o), the set ofree variablesof a typeo is de-
fined as usual (note that by constructitwioc) C ®). A type is calledclosedif it contains no free
variables, andyroundif it contains no variables at all. A type-variable will b®undif it is not free,
and will then be an element of.

Below, we will define a unification procedure that will recursively go through types. However, using
the sets defined above, not every sub-type of a typ® ia a type in that same set. For exampie; ¢
is not a type in any of the sets defined above; howevera—¢ € 77, and therefore it can be that,
when going through types i, recursively,a—¢ has to be dealt with. The distinction between free
and bound variables is essential; for that reason we have introduced a different notation of both classes.
We could therefore, for every s&t defined above, also have defined the&ebf types, that contains
also free occurrences ak. We will not always use thé when speaking of these sets, however; it will
be clear from the context which set is intended.

Definition 2.3 (ReELATIONS ON TYPES [5] On 7R, the pre-order (i.e. reflexive and transitive relation)
* <’is defined by:

oin---no, < oy, (1<i<n)
Va.(ola/¢l) < olr/e], (1 €7c)
Vi<i<nloc <o) = o<oin-no, (n>1)

p<o,T<p = o=T<p—p, (TpeD)
o<1 = Vaola/p| <Va.r|a/y].

The equivalence relation~ ' is defined by:

o~T &= o<717<0.

For <, the following properties hold:

Lemma2.4 i) b €, o0 <rteTs ando does not containy’, then neither does.
i) If o <7n---n7y, then, foralll <i<n, o <7;.

PROOF. Easy.

Definition 2.5 (STATEMENTS AND BASES i) A statements a term of the fornt: o, with o € 7g and
t € T(F X). t is thesubjectando thepredicateof ¢: 0.
ii) A basisB is a partial mapping front’ to 71, represented as set of statements with only distinct
variables as subjects. By abuse of notation, we wrigeB if there exists a such thate:T € B,
¢ € B ifthere is a type inB in which ¢ occurs, and writé3\ x for the basis obtained fro® by
removing the statement that hagss subject.
iii) For bases3;, B, the basisB;NB; is defined by:

BiNBy = {7t |zir€B1 &g BoyU{a:T |zt €Bo & v ¢ B} U
{z:m1n72 | 2271 € By & m:79 € B}
B,x:t = B\ xU{x:7}

iv) Therelation'’<’and ‘ ~ ' are extended to bases by:

B<B <= Vaxio'€e B Jzic € Blo <]
B~B < B<B<B

Notice that ifn. = 0, thenBiN...NB,, = 0.

3 Operations on types

The Rank 2 versions for the various operations as presented below are defined in much the same way
as in [4], with the exception of the operation of closure and lifting, that were not used there, and are
taken from [5].

Substitution

We will define substitution as usual in first-order logic, but avoid to go out of the set of polymorphic
intersection types of Rank 2. For example, the substitutiop by 7N would transforms— into
o—T1N72, Which is not in7g. However, sinc&c C 75, and7c is closed for (Curry-)substitution, also
7> is closed for that kind of substitution.

The following definition takes this fact into account.

Definition 3.1 (SussTITuTION) i) Thesubstitution(y — p) : 7o — 75, wherey is a type-variable
in ® andp € T, is defined by:

(o= p)(p) =p

(o= p)(¥) = ¢t #F o

(¢ = p)(s) =5

(¢ p)(a) =«

(¢ = p)(o—T) = (g p)(o) = (g p)(7)

(p = p)(o1n--non) = (@ p)(o1) N - N(p = p)(on)
(¢ = p)(Va.o) = Va.(p — p)(0)

i) We useldg for the substitution that replaces all type-variables by themselves, @it the
set of all substitutions, and u§to denote a generic substitution. Substitutions extend to bases
in the natural way:S(B) = {z:S(p) | x:p € B}, and the set of substitutions is closed under
composition &’
iii) The set of substitutions is closed under compositignfor substitutionsS;, S,, the substitution
S0S is defined as
$08; (0) = $(Si(0)).

We have the following property:
Lemma 3.2 It <7,then o) < S(7), forall S.

PROOF Easy.

Lifting
The operation ofifting replaces basis and type by a smaller basis and a larger type, in the serse of *
This operation allows us to eliminate intersections and universal quantifiers, using tiedation.
Definition 3.3 (LIFTING) An operation oflifting is determined by a palt = <(Bj, 71), (Ba, 72)>
such that; < 7 andB; < By, and is defined by ((B, o)) = (B’,¢’) where

o =mn,ifo=7m, B =B, ifB=D5

o' = o, otherwise B’ = B, otherwise
A lifting on types is determined by a pdir= (1, 72) such that; < 7, and is defined by

Lio) =m, ifo=mn
o, otherwise

Closure

The operation o€losureintroduces quantifiers, taking into account the basis where a type might occur.

Definition 3.4 (CLosurE) A closureis characterised by a pair of typés, ©) with o € 7%, and is
defined by:
(0,0) ((B, 10+ n7)) = (B, 7in- - N7y

where, for alll <7 <mn,

7/ = Va.ola/g|, if 1, = o, andp does not appear iF? (« is a fresh variable),

7

T =T, otherwise.

Closure is extended to types byp) (o) = (1), if (¢, o) ((0,0)) = (0, 7).

Expansion

The variant of expansion used in the Rank 2 system is quite different from that normally used [2, 3, 41].
The reason for this is that expansion, normally, increases the rank of a type:

(01, 2) ({m:o1— 02}, 01)) (P1—=92) = (1n01) =02,

a feature that is of course not allowed within a system that limits the rank of types. Since here expansion
is only used in very precise situations (within the proceduriys, and in the proof of Thm. 7.7), the
solution is relatively easy: in the context of Rank 2 types, expansion is only called on tyBgs $o

it is defined to work well there, by replaciradj types by an intersection; in particular, intersections are

not created at the right of an arrow.

10

Definition 3.5 (ExpPansioN) Let B be a basisg € 7r, andn > 1. Then-fold expansiorwith respect
to the pair(B, o), n(p) : T2 — T2 is constructed as follows: SuppdBe= {41, .., ¢y} is the set of
all (free) variables occurring itB, o). Choosen x n different variables!, ..., o7, ..., 0L ... 0%,
such that eacbvé» (1<i<n, 1<j5<m)does not occur irr. Let S; be the substitution that replaces

everyy; by goz Then expansion is defined on types, bases, and pairs, respectively, by:

n(B,o) (T) =S ()N --- NS, (1),
n(po) (B') = {znp0) (p) | 2:p € B},
n(B,o) (<B/a U/>) = <n<B,0> (B,)v n(B,s) (OJ>>'

Notice that, ifr € 75, it can be tha§, (7) N --- NS, (7) is not a legal type. However, for the sake of
clarity, and since eac§ (1) € 72, we will not treat this case separately (see also Lem. 5.4).
Operations will be grouped in chains.

Definition 3.6 i) A chainis an objectO,...,0,], where eaclO; is an operation of substitution,
expansion, lifting, or closure, aff@,, ..., 0,] () = O, (- (O1(0)) - - +).
ii) On chains the operation of concatenation is denoted gnd:[Oy, ..., O;] * [Oiy1,...,0p] =
[O1,...,0].

i) We say thaCh; = Chy, if for all o, Ch; (o) = Chy (o).
In [5], the following property is shown to hold for chains:

Lemma 3.7 [5] Let Ch be a chain.
i) If o € T2, and Ch(o) € 7Y, then there are a substitution S, and closures, Cl. , Cl,,, such that

Ch(o) = [S,Ch,...,Cl,] (o).

i) If o €7¢c, and Ch(o) € 71, then there exists a lifting-free chain Gduch that Cifo) = CH (o).
i) If o €71, and Ch(o) € ¢, then there is a substitution S such that(@h= S(o).

iv) If o € T, and Ch(o) € 7¢, then there is a substitution S such that(@h= S(o).

V) If o € T, and Ch(o) € 73, then there are substitution S, and lifting L such tha{&h= [S L] (o).

PrROOF For part one, expansion and closure are not needed, and by Lem. 2.4, neither is lifting. The
other parts are just generalisations of the first.

4 Rank 2 Type Assignment

We now come to the definition of Rank 2 type assignment.

Definition 4.1 i) A Rank 2 environmerd is a mapping frons to 7>.

11

i) Rank 2 type assignment on teriaslefined by the following natural deduction system:

(AX):m(m:UEB&UST&UE’E&TETZ)

Bbgt:or -+ Blget:o
(Al : "n>1&V1<i<n|o;€TY))
Bltgt:oin--no,

Blgti:o—17 Blgety:o
BlFgtito:T

1) - Bletio . -
(>.Bhgt:Va.a[a/<p] (o 7eTc)

B,r:obecto:r Blgti:io

(share) : —
B¢ (sharet)viazinty):T

F): —— (ICh[Ch(E(F)) =0
(F) BWF:U([Ch(E(F)) = o))
B,z;io;betiior ... B,xrjoitetiion B,xjioibgt:T
(cycle) : (V1<i<nlo; €1c])

Blrgcycle(x; =t;)int:T
We write B t-¢ t: o if this is derivable using the rules above.

Notice the use of an environment and chain in rle); because of this rule, the notion of type
assignment defined here is in faghartially typedsystem: all function symbols are assumed to have a
type to begin with, that is ‘instantiated’ by this rule.

Also, rule (F) formalises the practice of functional languages in that it introduces a notion of poly-
morphism for function symbols, which is an extension (with intersection types and general quantifi-
cation) of themL-style of polymorphism. The environment returns the ‘principal type’ for a function
symbol; this symbol can be used with types that are ‘instances’ of its principal type, obtained by ap-
plying chains of operations.

Although these rules express how to type terms, it is straightforward to extend this definition to one
that expresses how to type graphs, such Bt t:o if and only if B¢ [t] :o.

Example 4.2 If we extend the definition of types with the alternative for list types and booleans
Tc w=¢|s| (Tc — Tc) | [Tc] | Bool

then, using Rank 2 types, we can now express the funcistiil’; that tests if a list is empty, defined
by

ISNil[] — TT
is typeable using the environment
E(TT) = Bool P
&) =yl | Ore [I:1¢]
E(Cons) = p—[p]—]p] (0 kg IsNil: (Va.[a])—Bool @ ¢ []:Va.[a]
€(IsNil) = (Va.[a])—Bool 0 t-¢ IsNil []: Bool

12

Notice that the type for this functionsNil’ in the environment prohibits its use against ‘concrete’
lists that are not empty, since any list with an element is that is of tylseno longer polymorphic.
Also, this is not a derivable result in any of the other systems mentioned in the introduction.

Notice that rulg F) models a kind of polymorphism into our system, other than the kind obtained by
having quantified types to our disposition. Quantification allows only the replacement of type-variables
by Curry types, whereas rulgF) allows any operation to be applied. It allows function symbols to
appear in context that require a type that is more specific than the one provided by the environment; the
soundness result we show below for the various operations justify the application of chains to the types
provided by the environment.

Also, since quantification elimination is implicit in rul@\x), when restricting the use of the quan-
tifier to the left of arrows only, there is no longer need for a gen@fd) rule; as with a possible rule
(nE), its use is in a strict system limited to variables, and there its actions are already performed by
(AX). In fact, this restriction is justified by Lem. 5.2.

For this system to be of use in practice, a minimal requirement wouldsijact reductiomesult,
which expresses that types are preserved by reduction. To achieve this, we define a notion of type
assignment on rewrite rules using the notion of principal pair (also called principal typing), that will be
developed in Section 7 (see Def. 7.1), and culminates in Thm. 7.7, which states:

If Bt¢t:0, then there are a basiB and typer such that pp(t) = (P,),
and there is a chain Ch such that C{P, 7)) = (B, o).

This property, together with the result that all operations are sound, is used to prove the subject reduc-
tion result. (The same method was used in [7, 6, 5].)

Definition 4.3 (TYPE ASSIGNMENT ON REWRITE RULE} 1) We say thateft — right € R with defined
symbolF is typeable with respect t§, if there areP, andr € 7, such that:
a) (P,) is a principal pair (Def. 7.1) foleft with respect tcf.
b) In Pt¢ left:m and P ¢ right: = each occurrenc df is typed withe (F).
i) We say thatX, R) is typeable with respect 18, if all rules inR are.

As an aside to parti.p), remark that, by rul¢¢), we know that each occurrencehas a typegen-
erated fromé (F) by applying a chain of operations. Partbf states that, for the derivations involved
here, these chains are all empty, i.e. are the identity operation. Since we forced the type of a function
symbolF to be exactly€ (F) in the rules that defing, the typeability of rules ensures consistency with
respect to the environment.

Notice that, because in the translation of terms to graphs, the defined node is shared by all occur-
rences in the rule, when typing the graph rewrite rule the condition ‘all occurren€esreftyped with
& (F)’ becomes ‘the occurrence 6fis typed withE (F)’.

Before we come to a subject reduction result, first we need to show that all operations defined are
sound, which we will show in the next section. The main result there is Lem. 5.6, which states:

If o € 71, B¢ t:0, and Ch is a chain of operations on types
such that Cli(B, o)) = (B’,0’), thenB' ¢ t:o’.

We will now take a short-cut, and show that reductions preserve types in our system, using the notion
of principal pair and the soundness of operations on types.
The proof of Subject Reduction depends also on the following lemma:

Lemma 4.4(RepPLACEMENT) Let& be an environment,a term, andf a mapping from free variables
to terms (which extends naturaly to a mapping from terms to terms).
i) If BFgt:0andB'is such thatB’ ¢ f(x):p for every statement:p € B, thenB’ ¢ f(t):0.

13

BiFeS:E(S) Bitgx:o—T—p

Bi ke Sz:(p—1)—=0onu—p Bitgy:u—1 Bitgzio Bitgz:ip

BiFeSxy:onu—p Bilgzionu

BiFeSxyz:ip

BiFgx:0—1—p Bitgzio Bilgy:u—17 Bilgz:ip

Bilegxzzim—p Biteyz:T

BiFexz(yz):p

By k¢ K:g(K) Bobgx:v

Bstel:E(1) Bstex:§ ——
BobFeKa:y—v Boley:y Bobgex:v Bibgx:d

Bsbelz:§
BolFeKzy:v e

Figure 2: Type derivations for Ex. 4.6 (whely = {z:0—7—p,y:u—7, z:onu}, Be = {z:v,y:v}
andBs = {z:0}).

ii) If there are B ando such thatB ¢ f(t) : o, then for every: occurring int there is a typep,. such
that{z:p, | z€fv(t)} Fet:o, andBtg f(x):py.

PrROOFE By induction on the structure of derivations.
Using this lemma, the following result follows easily.

Theorem 4.5 (SusJecT REDUCTION If B¢ t:o andt — t/, thenB ¢t :0.

PrROOF We consider only the case of a rewrite step. le¢t — right be the (typeable) rewrite rule
applied in the rewrite step — t'. We will prove that for every term-substitution R and typeif
B¢ f(left): u, thenB ¢ f(right): u, which proves the theorem.

Sincer is typeable, there ar®, 7 such that(P,) is a principal pair forleft with respect ta, and
P ¢ right: 7. Suppose R is a term-substitution such tBatc f(left): . By Lem. 4.4{i) there is aB’
such that for every:p € B', Bt¢ f(x):p, andB’ I-¢ left: u. Since(P,) is a principal typing foleft
with respect t&€, by Thm. 7.7 there is a chaldhsuch thaCh((P, 7)) = (B’, u). SinceP I-¢ right: 7,
by Lem. 5.6 als@B’ I-¢ right: . Then by Lem. 4.4if B t¢ f(right): u.

Example 4.6 Let o, 7, p, 1, v, v, andé be (arbitrary) types. Take the rewrite rules that define Combi-
natory Logic of Ex. 1.11, and the environmeht

£(S) = (0—=1—p)=(pu—7)—0npu—p
E(K) = v—oy—v
E() =060

Then these rules are typeable with resped;tare show the derivations in Fig. 2.

Example 4.7 Take the rewrite rule

Dy — (shareyviavinvv)

14

Bitgy:o—1 Bilegy:o Bi}—gv:o—w Bil—gvzo BiFgy:o—7 BiFgy:o

B, F¢D:£E(D) BiFegy:(c—7)No By, v:(c—1)Nokgvv:T BiFey:(c—1)No
BiFeDy:T By k¢ shareyviavinvv:r
ByFey:p—p Bybev:(p—=p)=p—p Bybevip—p Bribeyip—p
BsbegD:E(D) Batgy:Va.(a—a) Bitevvip—p By Fe y:Va.(a—a)
BybFeDy:p—gp By ke shareyviavinvv:p—p

Dhel:(p—p)—=p—p DlFelip—p

DFe D: ((p—p)—p—p)N(p—p)—p—p D ke 1: ((p—p)—p—p)N(p—p)

kel —¢

OFe D:Va.(a—a)—p—p OF¢ Vo (a—a)

fFeDl:p—p

Figure 3: Type derivations for Example 4.7

(notice that the rule corresponds to the lambda tegyy, but expresses that the variablies shared; as
far as our system is concerned, this is already the case for the gule y y). This rule can be typed, as
shown in Figure 3, using (D) = (¢—7)noc—T, as well as using (D) = Va.(a—a)—p—p, where
By = {y:(c—7)nc}, andB] = By, v:(c—7)no for the first environment, anB, = {y:Va.(a—a)}
andB), = B, v:Va.(a—«) for the second.

We can, using these environments, also depivg D 1: p—p.

5 Soundness of operations

We will now show that the operations defined in Section 3 are sound. First, we show this for substitu-
tion.

Lemma 5.1(SouNDNESs oOF suBsTITuTION If BF¢t:0,then, for every substitution S(B) F¢ ¢:S(0).

PROOFE By induction on the structure of derivations.

(AX) : Thent==z,0 € 75, and there is € 7; such thatz:p € B andp <o. Then, by Lemma 3.2,
S(p) < S(o), and sincer:S(p) € S(B), alsoS(B) k¢ x:S(0).

(nl): Theno = o1n---noy, and, forl <i<n, Bt¢t:0;. Then, by induction, for all <j <m,
S(B) k¢ t:S(7;), so, by rule(nl), alsoS(B) ¢ t: S(11n- - -N7yp,).

(F): Thent =F, andCh(& (F)) = o for some chairCh. Since[§ « Ch(E (F)) = S(o), by rule (F),
S(B) ¢ F:S(0).

15

(—E): Thent = (t t2), andB t-¢ t;: p—o,andB k¢ ty: p for somep € 7. By induction,S(B) ¢ t1:S(p—0),
andS(B) k¢ t2:S(p), SOS(B) gty t2:S(0), by rule(—E).

(V1) : Theno = Va.pla/], Btet:p, andS(B) ¢ t:S(p) by induction. We can assume, without
loss of generality, thap is not affected byS, so, ¢ occurs inp if and only if it occurs inS(p).
Therefore als®(B) F¢ t:S(p)[a/] by rule(V1), soS(B) F¢ t:S(pla/¢]).

(share) : Thent = (sharet; viaxints), and there exists a such thatB, z:7 ¢ t1:0 and B¢ to: 7.

By induction, we geS(B, z:7) F¢ t1:S(0) andS(B) b¢ to:S(7). But then, sinceS(B, z:7) =
S(B), z:S(7), by rule(share) we getS(B) t-¢ share t; viazinty: S(o).

(cycle) : Thent = (cycle (x; = t;)int’). ThenB, z;:0; bg t;:0;andB, I;:0; F¢ t' ;0 forsomeoy, . .., oy,.
Thenwe hav&(B, z;:0;) ¢ t;:S(0;) andS(B, z;:0;) ¢ t': S(o), by induction. Sinc&(B, z;:0;) =
S(B), z;:S(0;), we getS(B) ¢ cycle (x; = t;)int:S(o) by rule(cycle).

The next lemma essentially states that lifting is a sound operation.

Lemma 5.2(SOUNDNESS OF LIFTING If B¢ t:o0, and letB’, 7 be such thaB3’ < B, ando < 7, then
B bet:T.

PrROOF By induction on the structure of derivations. First we deal with the caserti@not an
intersection.

(AX) : Thent==x,0 € Tc, and there i € 71 such thatr:p € B andp <o. SinceB’ < B, there is
p' € T such thate:p’ € B’ andp’ < p <. Sinces <7, alsop’ <7 andB' ¢ z:7.

(nl) : Theno = o1n- - -noy,, and, forl <i<n, Bt¢t:0;. Thenthereis ah <i<n, such that; <.
Then, by inductionB’ ¢ t:7.

(F): Thent=F, andCh(£(F)) = o for some chairCh. Sincec <7, L = <(0,0),(0,7)> is a
lifting. Notice that[L] « Ch(£(F)) = 7, and thereford3’ ¢ F: 7 by rule (F).

(—E): Thent = (t; t2), andB b¢ t1: p—o,andB F¢ ta: p, for somep € 7. Sinces < 7, alsop—o < p—r,
so by inductionB’ k¢ t1: p—7 and B’ b¢ t; to: 7 by rule (—E).

(V1) : Theno = Va.pla/e], andB ¢ t: p, and, by definition of £, either:
(1 = plp/¢] (ue Tc)) : Byinduction,B' ¢ t:p, and, by Lem. 5.1B" ¢ t: p[u/¢] (notice that

© occurs inp only).

(1 =Va.ula/e] (p<wp)): ThenB’ ¢ t:pu by induction, andB’ ¢ t:Va.ula/¢] by rule (V).

(share) : Thent = (sharet; viazinty), and there exists asuch thatB, z:pt¢ t1:0 and B F¢ ta: p.
Since we havé?’, z:p < B, x:p, by inductionB’, z:p ¢ t1:7,andB’ k¢ t5: p, SO, by rulgshare),
alsoB’ ¢ (sharetyviazints):T.

(cycle) : Thent = (cycle (z; = t;)int’). Then, for somey, ...o, € Tc, B, T;:0; ¢ ti:0; andB, 70, Fe ' 0.
SinceB’, z;:0; < B, Z;:0;, by induction,B’, z;:0; F¢ ti: 0y, for 1 <i<n, andB’, z;:0; Fe t': 7.

Then, by rule(cycle), B’ ¢ (cycle (x; = t;)int'):T.

If 7 = mn-- N7, then, by Lem. 2.4i), for all 1 <i<n, o <. The result then follows from the
above, and rulénl).

The next lemma states that closure is a sound operation.

Lemma 5.3(SouNDNESS oF cLOoSURE If B¢ ¢:7and Cl= (o,) isaclosure suchthat C{B, 7)) =
(B',p), thenB’ k¢ t:p.

PROOFE Let7 = 7in---n7, (n > 1), then

(o,0) (B, 110+ - -nm)) = (B, 110 - :07},)

16

soB’ = B and, for alll <i<mn,
e ¢ occurs inB, andr; = o, and the result is trivial, or
e o does not occur iB, 7; = o, andr; = Ya.o|a/¢], and the result follows from rulgvl).

Since expansion just creates an intersection of types, it could be that the type created % rmitin
would be an intersection of types from that set. Therefore, we cannot show a general soundness result.
However, we can show the following:

Lemma 5.4(SOUNDNESS OF EXPANSION Let Ex be an expansion, and &X = o1n- - -noy,. If BEg t:o,
then, for everyl <i <n, there is aB’ such thatB’ \-¢ t: ;.

PROOF By Def. 3.5, there are substitutioSs, . . ., S, such thaEx(c) = S; (o) N --- NS, (o). The
result then follows from Lem. 5.1 (notice thBt = S (B)).

In case expansion gets applied to a typ&iinthe result is stronger.
Lemma5.5 Let Ex be an expansions i 71 and B ¢ t:o, then EXB) k¢ t:Ex(o).

PROOF By the previous lemma, Ex(c) = o1n- - :noy, then, for everyl <i <n, there is aB’ such
that B’ ¢ t:0;. Sinceo € 71, also eachy; € 7;. Notice thatEx(B) < S (B), for 1<i<n, so, by
Lem. 5.2 and rulénl), we get the result.

These soundness results are combined in the following:

Lemma 5.6(SoUNDNESS OF CHAINS If o € 71, BF¢ t:o, and Ch is a chain such that
Ch((B,o)) = (B',d'),thenB' k¢ t:0'.

PrROOF Bylemmas5.1t05.4.
The following properties of chains will be used in the proof of Thm. 7.7 below.

Lemmab5.7 i) If there exists a chain Ch such that(@huU {z:v}, 7)) = (BU{x:p}, 1), where
7, u € T, then there exists a chain Csuch that CH((P, v—r)) = (B, p—u).
ii) If there exists a chain Ch such that C{P, 7)) = (B, u), wherer, u € 75, then there exists a
chain CH such that Ch((P, p—)) = (B, ¢—pu), whereyp is a fresh type variable.

PrROOF. Straightforward.

6 Unification of Rank 2 Types

In the context of types, unification is a procedure normally used to find a common instance for de-
manded and provided type for applications, i.e; ihas typer—7, andt, has typep, then unification

looks for a common instance of the typesandp such that(t; ¢2) can be typed properly. The unifi-
cation algorithmunifys presented in the next definition (a corrected version of the algorithm presented
in [5]) deals with just that problem. This means that it is not a full unification algorithm for types of
Rank 2, but only an algorithm that finds the most general unifying chain for demanded and provided
type. It is defined as a natural extension of Robinson’s well-known unification algouittiiy[40],

and can be seen as an extension of the notion of unification as presented in [4], in that it deals with
guantification as well.

Definition 6.1 (UNiFicaTioN) Unification of Curry types (extended with bound variables and type

17

constants) is defined by:

unify: e x T — S

unify(p, ¢') = (p—¢),

unify (e, 7) = (¢ 71), if pnotinr,
unify(a, «) = Idg,

unify(s, s = Idg,

unify(c, ¢) = unify(p, o),
unify(o—7, p—p1) = $08,

where S, = unify(o, p),
S, = unify(S,(7), St (w))-

(All non-specified cases, likenify(ai, ag) with a; # aq, fail.)

It is worthwhile to notice that the operation on types returnedibiy is not really a substitution,
since it allows, e.g.(¢ — «), without keeping track of the binder fer. This potentially will create
wrong results, since unification can now substitute bound variables in unbound places. Therefore,
special care has to be taken before applying a substitution, to guarantee its application to the argument
acts as a ‘real’ substitution.

The following property is well-known, and formulates thetify returns the most general unifier for
two Curry types, if it exists.

Property 6.1 ([40]) If two types have an instance in common, they hat@hest common instance
which is returned by unify: for alb, 7 € 7¢, substitutions § S;: if S; (0) = S (7), then there are
substitutions Sand 3 such that

S, = unify(o,7), andS; (o) = SoS, () = SoS, (1) = S (7).

The unification algorithnunify as defined below gets, typically, called during the computation
of the principal pair for an applicatioty t,. Suppose the algorithm has derivédl ¢ t1:7; and
Py ¢ to:mo as principal pairs fot; andt,, respectively, and that; = c—7. Thus the demanded
typeo is in 7; and the provided type; is in 7,. In order to be consistent, the result of the unification
of o andme — a chainCh — should always be such th@h(ns) € 7;. However, ifre ¢ 7¢, then in
generalCh(my) ¢ 7. To overcome this difficulty, an algorithtnaZc will be inserted that, when ap-
plied to the typep, returns a chain of operations that removes, if possible, intersectignsTinis can
be understood by the observation that, for examle;~0)—o—0o)—0o is a substitution instance of
((p1—=p1)—2) N (p3—pa—p4)—s. Note that if quantifiers appear i toZc (p) should fail, since
guantifiers that appear before an arrow cannot be removed by any of the operations on types defined
above. Finally,

unify (0, S (m2), S (P2))

is called (withS, = toZc(m2)). The basisS, (P,) is needed to calculate the expansiorSefrs) in
casev is an intersection type.

Definition 6.2 The functiontdZc : 7, — S is defined by:

tO'Tc(U) = [|d5], if o €7c
toZc ((o1n- - -noy)—p) = SoS,, otherwise

where S; = unify(S_; (01),S-1(0i+1))oS—1, (1 <i<n—1, with § = Idg)
S = t07c (S, (1))

18

(Again, notice thatdZc (o) fails if o contains V'.)

The algorithrmunifys is called with the types andy’, the latter being in which the intersections are
removed (s@’ = toZc (p)(p); notice thatdZc (p) is an operation on types that removes all intersections
in p, and needs to be applied . Since none of the derivation rules, nor one of the operations, allows
for the removal of a quantifier that occlinsidea type, ifc = Va .o’, the unification ot with p’ will
not remove theVa ' part.

The following definition presents the main unification algorithmifys. It gets, typically, called as

unify (0, S (m2), S (P2))

during the calculation of the principal pair for an application; after deriViRg 71) and (P, m2) as
principal pairs fort; andts, respectively, withr; = o—7 andS, = tdZ¢ (m2). The basis is needed to
calculate the expansion in casés an intersection type, as mentioned above.

Definition 6.3 Let B be the set of all bases, afitl the set of all chains. The functicmmify\g is defined
by:

unify (0, 7, B) = [(p 7)),

unifyl ((Vag.o1) N ... N (Yap.0,),7, B) = [Ex S,], otherwise

where EX = np,
10N, = Ex(7), and
foreveryl <i<n, § = unify(S_1 (o), 7:)oS_1 (with § = Idg).

It is worthwhile to notice thatnify, taZc, andunify§ all return chains without liftings or closures.
Moreover, bothunify andtdZc return a substitution, and the chain returnedibify} (o, 7) acts ons as
a substitution: the expansion in the chain is defined for the sakenlfy. Notice also thatinifyj does
not really return a unifying chain for its first two arguments; to achieve this, also closures would have
to be inserted. They are not needed for the present purpose.

The procedurenify} fails whenunify fails, andtaZc fails when eitheunify fails or when the argu-
ment contains’. Because of this relation betweenifyy andtoZc on one side, andnify on the other,
the procedures defined here are terminating and type assignment in the system defined in this paper is
decidable.

Using Property 6.1, the following lemma is shown:

Lemma 6.4 Let Ch be a chain.
i) If 0 € T, and Ch(o) = 7 € ¢, then there is a S such that®7¢ (o) (o) = 7.
i) If o € T2, and Ch(o) = 7 € 7, then there is a chain Clsuch thaftoZc (o)] * CH (o) = 7.

PrRoOOF Easy, using Lem. 3.7i§ and {v).

7 Principal pairs for terms

In this section, the principal pair for a terhwith respect to the environme&t— pp (¢) — is defined,
consisting of basig” and typer. In Thm. 7.7 it will be shown that, for every term, this is indeed the
principal one.

Definition 7.1 Lett be a term inT(% X). pr (t) = (P, «), with 7 € 7, is defined, usinginify§, by
induction to the structure of terms through:

(z) @ Thenpp () = ({z:p},).

(F): pre(F) = (0, (F)).

19

(t1t2) : Letpp (t1) = (Pi,m1), PR (t2) = (P2, m2) (choose, if necessary, trivial variants such that
these pairs are disjoint), al®l = toZ¢ (72), then
(1 =) pR(t1t2) = (P, m), where

(P,m) = (S (PINS (P)), ¢'),
S = (p— S(m)—¢'), and
¢ is afresh variable

(m = o0—7): pre(tite) = (P,m), providedP and7 contain no unbound occurrences«s,

where
(P,m) = (S(PINEX(S (FP2))), S(7)),

[Ex. § = unify; (0,S;(m2), S (P2)).

(sharetiviazinty) : Letpp (t;) = (P, m), fori = 1,2. Then either:
— (z occurs inty). Then there exist®’, o € 71 such thatP, = P/, x:0. LetS, = to7¢ (o).
Then
PR (sharety viazints) = (P,),

providedP andw contain no unbound occurrencesas, where

(P,m) = (S(P'NEX(S;(P2))), S(m1))
[Ex. § = unify] (0,S;(m2), S (P2)).

— (2 does not occur iy). Then
PR (sharety viazints) = (P, 7).

(cycle (x; = t;)int") : Let, for 1 <i<n, pg (t;) = (P;,m;), andpg (t') = (P',7’), and assume,
without loss of generality, that these pairs share no type variables. Let

P = Pi,:vl:pli, cee z‘nzpfI
Let Sbe such tha§(m;) = 7; € Tc, andS(p§) = M§ € 7Tc, forall1<i,j <n,and let

S = unify(S—1 (1), S—1(7:))oSi-1
(with § = Ids). Then
PR (cycle (z; = t;)int') = S,0S((P'NPIN...NP,, 7')).

(Notice thatScan be built out ofdZ¢ (), toZ¢ (pé»), and unification.)

Sinceunify or unify may fail, not every term has a principal pair.

Notice that closures are not needed when calculating the new basis and type.

Notice that, ifpge (t) = (P, 7), thent € 7. For example, the principal pair fomwith rewrite rule
le — xis (0, p—¢), so, in particular, it is not), Va.a«—«a). Although one could argue that the
latter type is more ‘principal’ in the sense that it expresses the generic character the principal type is
supposed to have, we have chosen to use the former instead. This is mainly for technical reasons:
because unification is used in the definition below, using the latter type, we would often be forced to
remove the external quantifiers. Both types can be seen as ‘principal’ thoughysince:« can be
obtained fromp—¢ by closure, angp—¢ from Va.a—a by lifting.

20

Example 7.2 Take the rewrite rules and environment

lr — x

Fz — 2
Fz — 2z

E(l) = p1—e1
S(F) = (Va.a—>a)—><p1—>gp1

and using Def. 7.1, the following can easily be checked:
D beFlipa—po, and(kg I1:po—o.
These types are the principal types for these terms.

Example 7.3 Take the rewrite rules
Gz — zD

Dy — yy
For these rules to be typeable, we are forced to use:

E(G) = (((p2—wp1)np2—p1)—p3)—ps
E(D) = (pa—¢1)Npa—1
or (\V’Oz.a—>oz)—>gol—>gol

The principal derivation fofz D) is:

{z:pu—ps} e x:p—es {z:u—ps3}teD:ip
{z:p—p3}texD:ips

(Wherep = (¢1—92)Np1—¢2), SO, when typing the left-hand ter(@ x), we are forced to use

{wp—p3} e G:(u—p3)—@3 {x:p—p3}bFex:p—ps
{z:p—ps} e Garip

An attempt to type these rewrite rules using Rank 2 types would fail: $0%¢g (c—7)no—7) will
fail ontoZc ((c—7)no), D can only be typed with a Rank 2 type, so the type dfas to be of rank 3,
and the type foG has to be of rank 4.

The following lemma is needed in the proof of Thm. 7.7. It states that if a chain maps the principal
pairs of termsty, ¢t in an applicationt; to to pairs that allow the application itself to be typed, then
these pairs can also be obtained by first performing a unification.

Lemma 7.4 [5] Leto € 75, and pp (t;) = (P;, m;), fori = 1, 2, such that these pairs are disjoint. Let

Chy, Ch, be chains such that Glipg (¢1)) = (B, o—7) and Ch (pg: (t2)) = (B, o). Then there are
chains Ch and Ch,, and typep € 7> such that

pRe (t1t2) = Ch, ((PiNPy, p)), and
Chy, (P (t1t2)) = (B, 7).

PROOF LetS, = tdZc(m2), andnh = S, (m2), Py = S (FP2). We distinguish the cases:

21

(m €7c): SinceChy (m) = o—71 € 7Tp, we have that, by Lem. 3.Ch; (71) € 7c and there is a
substitutionS; such thatChy (71) = S, (7). SinceCh; contains no closure nor expansion,
there is at most one liftind; such thatCh; = [S;,L,], andL; can at most be of the kind
<<Bl, O'—>’7'>, <B,O‘—>T>>, with B < By, andS; (Pl) = Bj.

SinceChy (12) = o € 7, by Lem. 6.4() there is a substitutio; such thatCh, (72) = S35

Again, sinceChy contains no closure nor expansion, there is at most one liftinguch that
Chy, = [S$30S,L,], andL, can at most be of the kine(B,, o), (B,o)>, with B < B,, and
S| (P,) = Bo.

Let ¢ be a fresh type-variable, and assume, without loss of generalitySihat= 7. Then we
haveS, (m1) = o—7 = S3h—, so by Property 6.1, there exists substituti®sS such that
Sy = unify(m, mh—), andS;0S; = S’0S, = $30S;.

Notice that, sincéB < B; andB < By,

L= <<BlmBQ,T>, <B,7’>>

is a lifting. TakeCh, = [S,], andCh, = [S;0S$;, L], andp = ¢.
(m1 ¢ 7c) : Then, in particular, there aye € 71, o € 7 such thatr; = 1 —po.

Notice thatChy (71) = Chy (11— p2) = o—71 € Tz, S0, by Lem. 3.7\, there are substitutioS,
and lifting L such that

Chy (m1) = [SL](m1).
So there aré3’ > B, o < p1, p2 < 7 such that

S(m1) = S(u1—p2) = p1—p2, (S0S(u1) = p1), and
L = <(B, pr—p2), (B,0—T1)>.

In particular,
T = p1— 2, SO (11 € I, p2 € 72)
T = (Vail(;l n--- ﬂwmém) — W2, SO
(0 €T (1<) <m), 2 € To)
S(m) = (Vai.S(61) N -+ NVam.S(0,)) — S(u2)
= p1—p2-

Notice that<(B, o), (B, p1)> is a lifting, and
Ch2 * [<O->a <Bap1>>} (772) =p1€ 75.
Then, by Lem. 6.4i{), there is a lifting-free chai€h such thatCh (7}) = p;. Then

CH = [EX,S,Cl],
with EX (7)) = S (wh)n---nS, (75), (V free)
[EX, S]({P3,75)) = (B1,v),
. Wwithv = S(S;(mp))n---nS (S, (73)),”
CI((B,v)) = (B, p1),
with p; = Vch.Vzlﬂ---mV(Tm.Vg"

So, for1<j<m, S(6;) = v = S (S; (7)), and, by Property 6.1, there exists substitutions
S, 9 such that

unify(éj,ﬂg)
=5 (8, (7)) = S(S; (7))

I 4
I

oS

22

Since the substitutior§] agree on type-variables, without loss of generality, we can assume that
exists substitutions,, . . ., S,, such that

S = unify(S_1 (6;), m)oS—1
- (with & = Idg), and
for 1< <m, §(S.(6;)) = v = 5 (. (7))

so, by Def. 6.3
CH, = unifyj (Ya;.01) N ... N (Yan.0,), 75, Py).
exists. Take
Ch, = [$)] * CH,,
Ch, = [Slo---0S™ <(B, p2), (B, 7)>], and
p = H2.

Notice that, since3 can be assumed to not contain free occurrences ahe last chain is well-defined.
Similarly, we can show the following property

Lemma7.5 Let €7, and pp(t1) = (Pi1U{x:p},m), and pp(t2) = (Ps,m2), such that these
pairs are disjoint. Let Ch Ch, be chains such that

Chy (pre (1)) = (BN{w:0},7) & Chy (PR (2)) = (B, 0).

Then there are chains Grand Ch, such that

PR (share zviatints) = Ch, ((PiNP2, 1)), and
Ch, (pp (sharezviatyinty)) = (BiNBa, 7).
The main result of this section then becomes the soundness and completeness nagult for

Theorem 7.6 (SounDpNEss ofpre) If ppe (t) = (P,), thenP ¢ t: .

PROOFE By induction on the structure of terms.
(z) : Sincepp () = ({z:¢},), the result follows from rul¢Ax).
(F) : Immediate.

(t1t2) : Thenppe (t1) = (P1,m1), PR (t2) = (P, m2), for somePy, Po, andP; F¢ t1:m andPs ¢ to:mo
by induction. Then either:

(m € 1c) : Thenpg (t1t2) = (S(PiNF2), S(¢)), where
S= §0%,
S = unify(m, S (m2)—¢),
S, = tdlc(ms), and
@ is afresh variable
Then, by the soundness lemmas above,

S(Pl) |_g t1 ZS(7T1) andS(Pg) |—g to: S(7I‘2).

SinceS; (71) = S (S (m2)—¢), andS, does not affect any variable (P, 1) or ¢, we can
also state tha®(m;) = S(m2—¢). So, by rule(—E),

S(Plﬁpg) Fetits: S(gﬁ)

23

(m1 = o—7 (0 €7, 7 €T2)) : Similar to the previous part, usingify§ rather tharunify.
(sharet;viazints) : Letpp (t;) = (P, m), fori = 1,2. Then either:

— (x occurs int1). Then there exist$’, o € 7y such thatP = P’ z:0. LetS, = tdlc(m2).
Then

PR (sharety viazinty) = (P,),
provided P andz contain no unbound occurrencesa, where
(P,m) = (S(P'NEX($;(P,))), S(m1))
[Ex, S = unify§ (0, S (m2), S ().
— (= does not occur ;). Then
PR (sharetyviazinty) = (P, m).
(cycle (z; = t;)int’) : Let, for 1 <i<n, pr(t;)) = (P,), andpg (¢') = (P’,«’), and assume,
without loss of generality, that these pairs share no type variables. Let
P, = Pi,xl:pi, e xn:pfl
Let Sbe such tha§(m;) = 7; € Tc, andS(pg) = ué €Tc, forall1<i,j<n,and let
S = unify(S—1 (1)), S-1(7:))oS 1
(with § = Idg). Then
pRe (cycle (z; = t;)int') = S,0S((Py, ..., PN, 7).
(Notice thatScan be built out ofdZ¢ (), toZ¢ (p}), and unification.)

Theorem 7.7 (ComPLETENESS o) If Bl¢t:o, then there are a basi® and typer such that
pre (t) = (P,), and there is a chain Ch such that G, 7)) = (B, o).

PROOF By induction on the structure of derivations.
(AX): Thent = z, o € 7c, and there isr € 7; such thatrz:r € B andT <o. Also, 7 = ¢ and
P = {z:p}. Sincer <o, B<{z:w0}, so<{({z:0},0),(B,o)> is alifting. Take
Ch=[p— o, <{{z:0},0),(B,o)>].
(nl): Theno = o1n-- Ny, and, forl <i<n, Bkgt:0;. Letpg (t) = (P,), and letEX = np),
thenEX((P, 7)) = (PiN...NP,,mN---Nmy,), with each paif P;, ;) a trivial variant of(P, 7).
So, without loss of generality, we can even s@y(t) = (P;, m;), for all 1 <i <n. By induction,

there exist chain€hy, ..., Ch, such that fon <i <n, Ch; ((P;, 7;)) = (B, 0y). By Lem. 3.7(),
Ch; =[S, Cl;]. TakeCh= [EX, Sj0 - - - 0S,,Cl,,...,Cl,].

(F): Thent = F. There is a chailth such thatCh(€ (F)) = o,andpp: (F) = (0, £ (F)). Take the
liting L = <(0, 0), (B, 0)>, thenCh(pp: (F)) = (B,).

(—E): Thent = t;ty,andB ¢ t;:7—0, andB k¢ to: 7 for somer € 7. By induction, fori = 1, 2,
there areP;, 7;, and chairCh; such that

PR (ti) = (P, mi),
Chy (pe (t1)) = (B, 7—0), and
Chy (pre (t2)) = (B, 7).

Then, by Lem. 7.4, there is a chdlth such that
Ch(pre (t1t2)) = (B, 0).

24

(VI): Theno = Va.t[a/p], andBtgt:7. Letpg (t) = (P,), then by inductiorCH ((P, 7)) =
(B, 1), for some chairCh. TakeCl = (7,), andCh = CH x [CI].

(share) : Thent = (sharet; viaxzinty). Then there existsasuch thatB, x:7 ¢ t1:0 andB kg to: 7.
Letpp (t;) = (P;,m;), fori = 1,2. Then, by induction, there are chai@s;, Ch, such that

Chy ((Py,m)) = (BU{x:7},0) and
Chy ((P,m2)) = (B, 7).

Then either:

— (z occursint;). ThenP, = P, x:p, and, by Lem. 7.5, there is a chabh such that

Ch(pg (sharexviatiints)) = (BiNBa, T).

— (= does not occur ;). Then
PR (sharet)viazinty) = (P, m).

TakeCh = Ch;.

(cycle) : Thent = (cycle (x; = t;)int’). Then there are,...,0, € 7c such thatB, z;:0;F¢ct':7
andB, z;:0, g t; 04, for1 <i<n. Letpp (¢) = (P’, 7'y andppe (t;) = (P, 1), for1 <i<n.
Then, by induction, there are chai@s;, ...,Ch,, Ch such that

Ch; (pre (t:)) = (BU{Zs0:},04) for 1 <i<n, and
Chpr (t') = (BU{7;0,},7)

Let P, = P! xy:pt, ..., mp:ph. SinceCh;(pt) = o; € Ic, by Lem. 3.7ii), Ch; acts like a
substitution orp}, and we can say that there ex@f', ..., Ch*, S!, ..., S* such that

Ch = CH « [S]

SinceS (p;'-) = ¢, forall 1 <j <n, by Prop. 6.1, we can assume that3ilare one and the same
S Then, usingdZc andunify we can definé, such that

pre (cycle (z; = t;)int’) = S, ((P'NPiN...NP,, 7)),
and there exists § such thalS= SoS,. Take

Ch=Ch; * --- % Ch, % S.

8 Concluding remarks

On implementation

The results of this paper could be used to implement a type-check algorithnrfar @It should be

pointed out that the notion of type assignment as defined in this paper is ragfg-gheclsystem,

in the sense that it is not possible to create a type-inference algorithm, based on the approach of this
paper. Take for example the rewrite rules

Fr — x
Fr — xzx

25

A type-inference algorithm could for example type both alternatives separately and try to combine
the results found. For the first rule it would fir®l(F) = ¢1—1, and for the second (F) =
(p2a—p3)Np2—s. Itis possible to create the desired type,

(psn(wa—s)Nps)—es,

from these other two applying the operations specified in this paper, but this is not part of, for example,
the algorithmpp:.

So, it is allowed to give an environment for function symbols that is not a combination of possible
environments for the various rules. This implies that, in particular, combining types found for one
function symbol defined by several rules, applying the here defined operations, does not always lead
to the right solution. It can be that the user ‘sees’ the right type for the rules, which the type-check
algorithm is not capable of deducing, but will be capable of checking on its correctness. This can
be seen as a disadvantage of the system, but, on the other hand, it can be considered to be good
programming hygiene to explicitly state the types for function definitions.

Although type assignment (and type-checking) using the here defined notion of type assignment
is decidable, the complexity of type-checking is bigger than for a system based on Curry-types. The
biggest problem arises when checking the type provided for a function symbol. Suppeseis a
rewrite rule. One way to implement type-checking for this rule would be to construct the principal pair
(P,) for the termi and to try to typer using this pair. Leb;n---no, be the type assigned to the
term-variabler in P. Then, for every occurrence afin r, some selection of the typesnin- - -no,
should be made. In the worst case the number of possibilities that must be tried is2Rugehere
are some more efficient ways to type-check a rule, but the complexity is still exponential. However, in
every day programming life will rarely be larger thar2.

Overloading

The concept of overloading in programming languages is normally used to express that different objects
(typically procedures) can have the same identifier. (For another approach to overloading, see [17,
16].) At first sight this seems to be nothing but a tool to obtain programming convenience, but the
implementation aspects of languages with overloading are not at all trivial. In functional programming
languages, functions afiest-order citizensavhich means that they can be handled as any object, like

for example numbers. In particular, a function can be passed as argument to another one, or could be its
result. Especially in the first case it can occur that at compile time it is not possible to decide which of
the several bodies (or pieces of code) for an overloaded identifier should be linked into the object-code.
If this decision cannot be made, the compiler should generate code that contains all possible functions
and some kind o€ase-construct that makes it possible to select at run-time which is the code to use.
For reasons of efficiency — and to avoid run-time checks on function types — it seems natural to allow for
overloaded objects only if at compile time it can be decided which of the different function definitions

is meant, since then, for every occurrence of an overloaded symbol, the compiler can decide which of
the several function definitions should be linked into the object code.

The intersection type constructor is a good candidate to express overloading. It seems natural to say
for example that the type for addition is (int—int—int) N (real—real—real). Bringing the notion of
overloading into a formal system for type assignment as defined in this paper implies that the restriction
on the types that can be provided by an environment should be dropped; in such a formalism, types
provided by the environment should be an intersection type, not just an elermignt of

However, this extension itself creates strange effects. Let, for example,

E(F) = (int—int—int) N (real—real—real) — «
E(+) = (int—int—int) N (real—real—real)

Then, by the notion of type assignment as defined here, theRefroan be typed by:. In general,
let G be a function symbol that has the typer—p, and letH be an overloaded function symbol with

26

€ (H) = angB. Then finding the principal pair for the ter@H requires more than just the kind of
unification defined in this paper. In general, there can be several cases, since all possible combinations
have to be tried:

e unify(o, o) andunify(r, 3) are both successful.
e unify(o,) andunify(r, «) are both successful.

g
e unifyy (on7, o) andunify (on, 3) are both successful.
e unify§ (on, 3) fails, unify (on7, @) is successful.

(

e unify (on,) fails, unifyy (onr, 3) is successful.

It can even be that more than one of these cases is true at the same time, like for example the first and
second. This in particular is troublesome, since it is not obvious at all what in this case the &/pe of
should be. One solution for this problem would be to allow, like in [18], for more than one principal
pair for a term (notice that this is not the same as saying that a principal type can be an intersection).
Another would be to introduce — formally — an extra type construgtowrith the same meaning as
and to define overloading using this notion. Then the unificatiomref anda. 3 can be defined as
the combination of the results of unifyirghr anda, and unifyingenr and .

A good solution to the aforementioned problem isdiwe selectiomf one of the function definitions
for an overloaded identifier. This can be accomplished by defining, as in Definition 4.3, how a rewrite
rule can be typed, but by adding that, for everg 7, such that€ (F) < o, all the rewrite rules that
defineF should be typeable using the typefor every occurrence d¢f. (Another approach would be to
introduce a new syntactic construct into the language that is used to separate the rules thatidefine
groups, and to ask that, for everye 7, such that (F) < o, there is at least one group of rules that can
be typed using.) Moreover, it is possible to define, as in ryl€) how a type for a function symbol
can be obtained form the one provided by the environment, in the following way:

(F) : BreFio (31 €T2,Ch[E(F) <71 & Ch(r) = 0])

Then the termF +) mentioned above cannot be typed. This selection is then reflected in the way
intersection types are unified. Since omlye of the types in an ‘overloaded’ type can be used, the
unification should try to unify the demanded type watich individual typeccurring in the provided
type.

Using this definition, the notion of ‘principal pair’ becomes slightly more complicated. This is best
explained by discussing the implementation of the type-checker that is looking for such a pair. Take
the well-known functiorfoldr that is defined by

foldr fi[] =
foldr fi(a:b) = fa(foldr fib)

and can be typed by —po—p2)—pa—[p1]—p2. Take the term
foldr + 1[2,3,4]

then it is clear that this term should be typeable by the typeéWhen constructing the type assignment
for this term, the subterrffoldr +) is typed. For this term as such the type neededifarannot be
uniquely determined: it is the second argumentoidr that forces the selection. Since there is a

chance of success, the type-checker should postpone the decision to reject the term and consider both

possibilities simultaneously. This means that formally the tfafdr -+) hastwo principal types.

27

References

[1]
[2]
[3]

[4]

[5]

[6]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Z. M. Ariola and J. W. Klop. Equational term graph rewritingundamentae Informatica26(3,4):207—

240, 1996. Extended version: CWI Report CS-R9552.

S. van Bakel. Complete restrictions of the Intersection Type Discipliffeeoretical Computer Science
102(1):135-163, 1992.

S. van Bakel. Intersection Type Assignment Systerikeoretical Computer Scienc&51(2):385-435,
1995.

S. van Bakel. Rank 2 Intersection Type Assignment in Term Rewriting Systaimslamenta Informaticae
2(26):141-166, 1996.

S. van Bakel, F. Barbanera, and M. Fandez. Polymorphic Intersection Type Assignment for Rewrite
Systems with Abstraction angtrule. In Thierry Coquand, Peter Dybjer, Bengt Nordstr and Jan Smith,
editors, Types for Proofs and Programs. International Workshop, TYPE3'8Reberg, Sweden, Sected
Papers, volume 1956 afcture Notes in Computer Scienpages 41-60. Springer-Verlag, 2000.

S. van Bakel and M. Feandez. Normalization Results for Typeable Rewrite Systeim®rmation and
Computation133(2):73-116, 1997.

S. van Bakel, S. Smetsers, and S. Brock. Partial Type Assignment in Left Linear Applicative Term Rewrit-
ing Systems. In J.-C. Raoult, editdProceedings of CAAP '92. 17th Colloquim on Trees in Algebra
and ProgrammingRennes, France, volume 581 lagcture Notes in Computer Sciengages 300-321.
Springer-Verlag, 1992.

H. Barendregt. The Lambda Calculus: its Syntax and Semantibkorth-Holland, Amsterdam, revised
edition, 1984.

H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and the completeness of type
assignmentJournal of Symbolic Logie18(4):931-940, 1983.

H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, J.R. Kennaway, M.J. Plasmeijer, and M.R. Sleep.
Term graph rewriting. IiProceedings of PARLE, Parallel Architectures and Languages EuEipdhoven,

The Netherlands, volume 259-II défcture Notes in Computer Sciengages 141-158. Springer-Verlag,
1987.

H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, J.R. Kennaway, M.J. Plasmeijer, and M.R. Sleep.
Towards an Intermediate Language based on Graph Rewritingrolteedings of PARLE, Parallel Archi-
tectures and Languages Eurofigndhoven, The Netherlands, volume 259-ILefcture Notes in Computer
Sciencepages 159-175. Springer-Verlag, 1987.

E. Barendsen and S. Smetsers. Extending Graph Rewriting with Copying. In HayenhJchneider

and Hartmut Ehrig, editor®roceedings of International Workshop ‘Graph Transformations in Computer
Science’,Daghstuhl, Germany, January 1993, volume 776 &dture Notes in Computer Sciengages
51-70. Springer-Verlag, 1994.

E. Barendsen and S. Smetsers. Conventional and Uniqueness Typing in Graph Rewrite Syistéras.
matical Structures of Computer Sciend896.

T. Brus, M.C.J.D. van Eekelen, M.O. van Leer, and M.J. Plasmeijer. Clean - A Language for Functional
Graph Rewriting. IrProceedings of the Third International Conference on Functional Programming Lan-
guages and Computer Architectuieprtland, Oregon, USA, volume 274 bécture Notes in Computer
Sciencepages 364—-368. Springer-Verlag, 1987.

A. Bucciarelli, S. De Lorenzis, A. Piperno, and I. Salvo. Some computational properties of intersection
types. InProc. Symposium on Logic in Computer Science (LICS18&)es 109-118, 1996.

G. Castagna. A Meta-Language for Typed Object-Oriented Languages. In R.K. Shyamasunda, editor,
Proceedings of FST&TCS '93. #3Conference on Foundations of Software Technology and Theoreti-
cal Computer Sciencd8ombay, India, volume 761 dfecture Notes in Computer Sciengages 52,71.
Springer-Verlag, 1993.

G. Castagna, G. Ghelli, and G. Longo. A Calculus for Overloaded Functions with Subtypiognation

and Computation117(1):115-135, 1995.

M. Coppo and P. Giannini. A complete type inference algorithm for simple intersection types. In J.-C.
Raoult, editorProceedings of CAAP '92. 17th Colloquim on Trees in Algebra and ProgramiRiexgnes,
France, volume 581 dfecture Notes in Computer Scienpages 102—-123. Springer-Verlag, 1992.

L.M.M. Damas. Type Assignment in Programming LanguageBhD thesis, University of Edinburgh,
Department of Computer Science, Edinburgh, 1985. Thesis CST-33-85.

28

[20]

[21]

[22]

(23]

[24]

[25]
[26]
[27]
(28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]
[41]

[42]

F. Damiani. Typing local definitions and conditional expressions with rank 2 intersectidtroteedings

of FOSSACS’00volume 1784 of_ecture Notes in Computer Scienpages 82—97. Springer-Verlag, 2000.

F. Damiani and P. Giannini. A Decidable Intersection Type System based on Relevance. In M. Hagiya
and J.C. Mitchell, editorsProceedings of TACS '94. International Symposium on Theoretical Aspects of
Computer SoftwareSendai, Japan, volume 789 bécture Notes in Computer Sciengeges 707-725.
Springer-Verlag, 1994.

F. Damiani and F. Prost. Detecting and Removing Dead-Code using Rank 2 IntersecRarcdadings of
International Workshop TYPES'96, Selected Papestume 1512 ol ecture Notes in Computer Science
pages 66—87. Springer-Verlag, 1998.

N. Dershowitz and J.P. Jouannaud. Rewrite systems. In J. van Leeuwen, ldditdhook of Theoretical
Computer Scienge&olume B, chapter 6, pages 245—-320. North-Holland, 1990.

M. Eekelen, S. Smetsers, , and R. Plasmeijer. Graph Rewriting Semantics for Functional Programming
Languages. In Dirk van Dalen, editd?roceedings of CSL '96, Fifth Annual conference of the European
Association for Computer Science Logic (EACGSIglume 1258 ofLecture Notes in Computer Science
pages 106-128. Springer-Verlag, 1996.

K. Futatsugi, J. Goguen, J.P. Jouannaud, and J. Meseguer. Principles of OBJacdadings 12 ACM
Symposium on Principles of Programming Languagegies 5266, 1985.

J.Y. Girard. The System F of Variable Types, Fifteen years latkeoretical Computer Sciencé5:159—

192, 1986.

J.R. Hindley. The principal type scheme of an object in combinatory log@nsactions of the American
Mathematical Society146:29-60, 1969.

T. Jim. Rank 2 type systems and recursive definitions. Technical Memorandum MIT/LCS/TM-531, Labo-
ratory for Computer Science Massachusetts Institute of Technology, 1995.

T. Jim. What are principal typings and what are they good for? Phoceedings of POPL'96. ACM
Symposium on Principles of Programming Languad©g6.

J. R. Kennaway, J. W. Klop, M. R. Sleep, and F. J. de Vries. The adequacy of term graph rewriting for
simulating term rewriting. In M.R. Sleep, M.J. Plasmeijer, and M.C.D.J. van Eekelen, ed#onms Graph
Rewriting: Theory and Practicgpages 157-168. John Wiley & Sons, 1993.

A. Kfoury and J. Wells. Principality and decidable type inference for finite-rank intersection types. In
Proceedings of POPL '9926" ACM Symposium on the Principles of Programming. Languagages
161-174, 1999.

A.J. Kfoury, H.G. Mairson, F.A. Turbak, and J.B. Wells. Relating Typability and Expressibility in Finite-
Rank Intersection Type Systems. Rmoceedings of ICFP '99, International Conference on Functional
Programming pages 90-101, 1999.

A.J. Kfoury and J. Tiuryn. Type reconstruction in finite-rank fragments of the second-drciculus.
Information and Computatiqr®8(2):228-257, 1992.

A.J. Kfoury and J. Wells. A Direct Algorithm for Type Inference in the Rank-2 Fragment of the Second-
Order A-Calculus. InProceedings of LFP’94: ACM Conference of LISP Functional Programirpages
196-207, 1994.

J.W. Klop. Term Rewriting Systems. In S. Abramsky, Dov.M. Gabbay, and T.S.E. Maibaum, editors,
Handbook of Logic in Computer Sciene®lume 2, chapter 1, pages 1-116. Clarendon Press, 1992.

J. Launchbury and S.L. Peyton Jones. Lazy functional state threads. In PLDI, 1994.

R. Milner. A theory of type polymorphism in programmingournal of Computer and System Sciences
17:348-375, 1978.

E.G.J.M.H. Nocker, J.E.W. Smetsers, M.C.J.D. van Eekelen, and M.J. Plasmeijer. Concurrent Clean. In
Proceedings of PARLE '91, Parallel Architectures and Languages EuiBimelhoven, The Netherlands,
volume 506-II ofLecture Notes in Computer Scienpages 202—219. Springer-Verlag, 1991.

J.C. Reynolds. Towards a Theory of Type Structures. In B. Robinet, eBitaceedings of Programming
SymposiumParis, France, volume 19 dfcture Notes in Computer Sciengages 408—-425. Springer-
Verlag, 1974.

J.A. Robinson. A machine-oriented logic based on the resolution prindiplenal of the ACM12(1):23—

41, 1965.

S. Ronchi Della Rocca and B. Venneri. Principal type schemes for an extended type fhieeoyetical
Computer Scien¢28:151-169, 1984.

R. Sleep, M.J. Plasmeijer, and M.C.J.C van Eekelen, edif@sn Graph Rewriting. Theory and Practice
Wiley, 1993.

29

[43] D.A. Turner. Miranda: A non-strict functional language with polymorphic typesProceedings of the
conference on Functional Programming Languages and Computer Architestitene 201 ofLecture
Notes in Computer Scienggages 1-16. Springer-Verlag, 1985.

[44] J. Wells. Typeability and type checking in Second orii@alculus are equal and undecidablePPhoceed-
ings of the ninth Annual IEEE Symposium on Logic in Computer Sci®agcis, France, 1994.

[45] H. Yokohuchi. Embedding a Second-Order Type System into an Intersection Type Sysfermation
and Computation117:206—220, 1995.

30

