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Abstract

We define a notion of type assignment with polymorphic intersection types of rank 2 for a
term graph rewriting language that expresses sharing and cycles. We show that type assign-
ment is decidable through defining, using the extended notion of unification from [5], a notion
of principal pair which generalizes ml’s principal type property.

Introduction

This paper presents a decidable notion of type assignment systems for a term-graph rewriting
language that uses polymorphic types of rank 2, so allows for more than just the standard
shallow polymorphism. In order to obtain principal typings, intersection types of rank 2 are
added to the system.

In the past, many notions of type assignment have been studied for (functional) program-
ming languages, all based on (extensions of) the Hindley-Milner type assignment system
[22, 32]. Moreover, almost all notions of type assignment as proposed for use in functional
programming, in reality are developed on (enriched) lambda calculi, and little work is avail-
able that discusses and studies types directly on the level of the programming language. However,
to be able to study the role of types in practice, it is arguably important that type assignment
is formally defined as close to the actual language as possible.

Furthermore, many aspects of those languages are not easily dealt with in the Lambda
Calculus (lc) [8], or not expressible at all, like patterns, sharing, and cyclic structures. This
motivated the investigation of type assignment for Term Rewriting Systems (trs) [30] and
Term Graph Rewriting Systems (tgrs) [10] presented in various papers [7, 6, 4, 13, 5], and
the system presented in this paper. As an example, take the problem of I/O in the context
of functional programming: only when representing terms as graphs to express the sharing
that is heavily used at run-time does it become possible to represent the number of different
references to an object accurately; only when the reference is unique (see [13] for a discussion
of uniqueness types; note that we do not consider a notion of uniquess typing here) is it possible
to do a destructive update.

The main point of focus for [6, 5] was normalisation, which motivated the choice to use
intersections types [9]. This implied, however, that type assignment for those systems is
undecidable. It is by now well-known that there are decidable restrictions of the intersection
type assignment system [17, 29, 23, 4, 24, 18, 16, 26, 27], making the definition of notions of
type assignment using those types feasible. In particular, in [4] a notion of type assignment
for trs was presented that uses intersection types of rank 2.

Another direction in the area of types is that of quantified or polymorphic types. This field
originated in the context of lc with System F [21, 34], which provides a general notion of
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polymorphism, but lacks principal typings. Moreover, type inference in System F is undecid-
able in general [38], although it is decidable for some sub-systems, in particular if we consider
types of rank 2 [28]. The type system of ml [15] uses (shallow) polymorphic types and has
principal types. Since its polymorphism is limited, some programs that arise naturally cannot
be typed, and it does not have principal typings [24], a property that is important for separate
compilation, incremental type inference, and accurate type error messages.

Intersection type systems are somewhere in the middle with respect to polymorphism, and
have principal typings.

The system of [4] was in [5] extended to a system for a combination of lc and Curryfied
trs (Cutrs) –a notion of first order trs extended with application– by adding ‘∀’ as an extra
type-constructor (i.e. explicit polymorphism). Although the Rank 2 intersection system and
the Rank 2 polymorphic system for lc type exactly the same set of terms [39], their combi-
nation results in a system with more expressive power: the set of assignable types increases,
and types can better express the behaviour of terms [14]. Also, polymorphism can be ex-
pressed directly (using the universal quantifier) and, moreover, every typeable expression in
[5] has a principal typing. This principal typing property does not hold in a system without
intersection.

The decidability of a notion of unification on polymorphic intersection types of rank 2 as
shown in [5] could be used in many different contexts. Since intersection types are the natural
tool to type nodes that are shared in a notion of type assignment on graphs, in this paper,
we adapt the notion of type assignment of [5] to one for (a kind of) tgrs. (Intersection types
also provide a good formalism to express overloading.) We will show that the notion of type
assignment as presented here has the principal typing property.

We will study type assignment on a class of graphs that can be defined via an abstract syntax
definition, which makes an inductive approach to type assingment possible. Graphs will be
written as terms, and type assignment will be treated on the level of terms. A first treatment of
types for graph rewriting systems that uses this approach can be found in [13], which itself is
based on the approach of [7] as far as the definition of type assignment is concerned. A draw-
back of that system is that it uses the standard Curry types to type graphs, so that the types
assignable to a graph are fewer than those assignable to the corresponding tree (obtained by
unraveling the graph), since there a node shared in the graph would appear as two separate
nodes, that can be typed with different types. Using intersection types, the concept of sharing
in graphs causes no difficulties, since a shared node can now be typed with more than one
type.

The only problem arises when the graph is allowed to have a cyclic structure, which causes
the unraveling to generate an infinite tree. Then it is possible that the (infinite number of)
copies of a node are all typed with different types, thus creating an intersection over an
infinite number of types for the type assignment to the term graph. The solution for this
problem used in this paper is to type a cyclic node with one Curry type only, similar to the
standard way of dealing with recursion.

The Rank 2 system as used in this paper can be seen as a combination of the systems of [4]
and [28]. In our Rank 2 system each typeable term has a principal typing; this is the case also
in the Rank 2 intersection system of [4], but not in the Rank 2 polymorphic system of [28]. For
the latter, a type inference algorithm of the same complexity of that of ml was given in [29],
where the problems that occur due to the lack of principal types are discussed in detail. Our
Rank 2 system (without the share and the cycle) generalizes also Jim’s system P2 [24], which is
a combination of ml-types and Rank 2 intersection types. Having Rank 2 quantified types in
the system allows us to type, for instance, the constant runST used in [31], which cannot be
typed in P2. Our system also generalises the system of [16] that combines rank 2 intersection
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types and shallow polymorphism, so does not have polymorphic types of rank 2.

1 Applicative Term Graph Rewriting Systems

In this section, we will present a notion of Applicative Term Graph Rewriting (@tgrs) based
on an inductive definition of graphs, following essentially a similar system presented in [13].
Term Graph Rewriting distinguishes itself from Term Rewriting in that the objects considered
are no longer trees, but allow sharing and cycles; it is different from Generalised Graph
Rewriting in that only those rewrites are allowed that can, essentially, be formulated through
a term rewrite rule.

In [5] an incomplete notion of polymorphic intersection type assignment was presented for
a language that is a combination of and Cutrs; it contains a definition of a Rank 2 system
for that combined calculus, and it claimed to shown that type assignment in that system is
decidable and has principal types; since there were some major flaws to definitions and proofs
in that paper, a new correct presentation is necessary. This paper corrects those definitions
and extends those result to a calculus with sharing and cycles, by defining a notion of Rank 2
type assignment on @tgrs, inspired by the system that was studied in [5].

We refer to [30, 19] for rewrite systems, and to [12, 10, 11, 25, 33, 37] for definitions of tgrs.
The system defined here is aimed to be similar to those, although their relation is not studied
here.

We will use a vector notation g⇀ for g1, . . . , gn, so 〈xi = ti〉
⇀

stands for 〈x1 = t1〉, . . . , 〈xn = tn〉,
and xi �→ ri

⇀ for x1 �→ r1, . . . , xn �→ rn, etc.

Definition 1.1 i) An alphabet or signature Σ consists of a countable, infinite set X of variables
x, y, z, . . . , a non-empty set F of function symbols F, G, . . . , each with a fixed arity arity(F),
and a special binary operator, called application (@, written in in-fix notation).

ii) The set T(F,X ) of terms, ranged over by t, is defined by:

t ::= x | F | (t1 @ t2) | (share t1 via x in t2) | (cycle 〈 xi = ti
⇀ 〉 in t)

We write (t1 t2) for (t1 @ t2), and omit redundant brackets.

A thing to observe is that function symbols come with an arity, which is relevant when
defining rewrite rules (Def. 1.5), and comes into play when translating a ‘program’ into a
graph rewriting system; for details of such a translation, see [13] and below (Def. 1.5(ii)).

Mainly for readability of proofs, the language of terms we study here differs from the one
defined in [13], where expressions were defined by:

E ::= x | (F (E1, . . . , En)) | (let x = E1 in E2) | (letrec x = E1
⇀

in E2) | (case E of P
⇀ |E⇀ )

P ::= C(x1, . . . , xn)

Notice that, in Def. 1.1, we do not distinguish between function and constructor symbols, so
we do not require a separate treatment of patterns; also, we deal with an applicative language.
This distinction is cosmetic in that all results obtained here could be reached in a first-order
system as that of [13]; it is the presentation of the results that benefits from an applicative
syntax by giving less involved and shorter proofs. Using the keywords ‘share’ and ‘cycle’
rather than ‘let’ and ‘letrec’ serves to highlight the change in syntax and system.

Notice that the language of types (presented below) differs significantly from that consid-
ered in [13], in that, as far as assignable types are concerned, the systems are incompatible.
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We will now formally introduce term graphs, as done in [10]. Following [13], graphs are
written in an equational style [10, 1], rather than using drawings or 4-tuples (as in [10]).

Definition 1.2 [13, 20] A graph (over F ) is a pair g = 〈r | G〉, where r is a variable and stands
for the root of the graph, and G is a set of equations of the shape ‘x = @(y,z)’ or ‘x = F’, that
describe the edges in the graph, where the variables that appear on the left appear there in
only one equation and should all appear on the right as well.

The variable set of graph g = 〈r | G〉, Var(g), is the collection of all variable names appearing
in r, G. The set of free variables of g, fv(g), contains those variables that do not appear as the
left-hand side of an equation in G, and a variable in Var(g) is bound if it is not free; we will
identify graphs that differ only in the names of their bound variables.

Definition 1.3 (cf. [13]) For each term t, the graph interpretation of t, ��t��, is defined by ([xi �→ ri
⇀]

stands for the simultaneous replacement of ri
⇀ for (the free occurrences of) xi

⇀, and different
graphs are assumed to share no variable names).

��x�� = 〈x | ∅〉
��F�� = 〈 f | { f = F}〉

��t1 t2�� = 〈r | {r = @(r1,r2)}∪G1∪G2〉,
where ��ti��= 〈ri | Gi〉, i = 1,2, and r is fresh

��share t1 via x in t2�� = 〈r2 | G1∪G2〉 [x �→ r1],
where ��ti��= 〈ri | Gi〉, i = 1,2

��cycle 〈 xi = ti
⇀ 〉 in t′�� = 〈r′ | G1∪ · · · ∪Gn ∪G′〉 [xi �→ ri

⇀],
where ��ti�� = 〈ri | Gi〉, (1≤ i≤n)

��t′�� = 〈r′ | G′〉,

Via this interpretation, the notion of free and bound variables of a graph g induces a notion
of free and bound variables on terms; as a result, in the term (share t1 via x in t2), x does not
occur free in t1.

Example 1.4 (cf. [13]) The term

(share 0 via x in (cycle 〈 z = F (cons x (G x z)) 〉 in z))

translates to the graph

〈z | {z = @( f , a),
f = F,
a = @(b, c),
b = @(d, x),
c = @(e,z),
d = cons,
e = @(g, x),
g = G,
x = 0}〉

@
���
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���

@
���
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.......
.......
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���
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���
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���
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���
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� �

�

Reduction on T(F,X ) is defined through rewrite rules.

Definition 1.5 i) A rewrite rule is a pair (left,right) of terms such that

– left = F t1 · · · tn, for some F with n = arity (F), and terms t1, . . . , tn, and
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– fv(right) ⊆ fv(left).

ii) The translation into graphs of Def. 1.3 is extended to rewrite rules through: Let left → right
be a (recursive) rewrite rule with defined symbol F, then:

��left → right�� = 〈rl | Gleft∪Gright〉 [xi �→ yi
⇀],

where ��F�� = 〈g | {g = F}〉
��left�� = 〈rl | Gleft〉

��right�� = 〈rr | Gright〉
{x1, . . . , xn} = fv(left)

and all y1, . . . ,yn and g are unused variables.

We take the view that in a rewrite rule a certain symbol is defined. We call a defined symbol
F recursive if F occurs on a cycle in the dependency-graph, and call every rewrite rule that
defines F recursive. All function symbols that occur on one cycle in the dependency-graph
depend on each other and are, therefore, defined simultaneously and are called mutually recur-
sive. Since it is always possible to introduce tuples into the language and solve the problem
of mutual recursion using only recursive rules, we will assume that rules are not mutually
recursive.

Definition 1.6 We define a rewrite relation on terms by: t1 → t2 if and only if there are graphs
g1 and g2 such that ��t1�� = g1, ��t2�� = g2, and g1 → g2.

Definition 1.7 An Applicative Term Graph Rewriting System (@tgrs) is a pair (Σ,R) of an alpha-
bet Σ and a set R of rewrite rules.

Example 1.8 The rewrite rules that define Combinatory Logic are expressed as a @tgrs by
(notice that the rule for S expresses that the variable z is shared):

S x y z → x z (y z)
K x y → x
I x → x

Translated to term graph rewrite rules, these rules look like (using left and right rather than rl
and rr):

left @
���

@
���

@
���

S

�����

�
�
�
�
��	
















�

right@
���

@
���

x

�������

���
@

���y
���

z

left @
���

@
���

K
���

x

��� y

right

left @
���

I
���

x right

Notice that, if we would have used ‘S x y z → share z via v in (x v) (y v)’ instead of the first rule, so
would have expressed explicitly that we want the third parameter to be shared, the resulting
graph rewrite rule would have been exactly the same.

The principle of term graph rewriting, presented formally in [10], can be summarised as
follows:

• A graph g contains a redex if a left-hand side left of a rewrite rule left → right can be
mapped onto a graph, i.e. if there exists a homomorphism from left to the graph, which
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respects the structure of graphs and maps free variables to graphs.
• Reduction (rewriting) of the redex then consists of adding an instance of right to the graph

by adding the right hand side (graph) of the rewrite rule, but by replacing an edge going
into a free variable to one going into the image of the variable under the aforementioned
homomorphism.

• All edges going into the image of the root of left are re-directed into the root of the added
instance of right.

• Now part of the graph has become garbage, in that it is no longer accessible from the root
of g; this can be removed.

Example 1.9 As an example of term graph rewriting within the context of this paper, consider
Fig. 1.
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Figure 1: An example of term graph rewriting

Since (free) variables in @tgrs may be substituted by function symbols, we obtain the usual
functional programming paradigm, extended with definitions of operators and data struc-
tures. Notice, however, that we obtain more: in functional programs, the set F (Def. 1.1) is
divided into function symbols and (data-type) constructors, and, in rewrite rules, function sym-
bols are not allowed to appear in ‘constructor position’ and vice-versa. This does not hold for
@tgrs.

2 Rank 2 types

In Section 4, we will present a decidable notion of type assignment on @tgrs, using polymor-
phic intersection types of rank 2. The system presented here is a corrected version of a similar
system presented in [5], and is an extension, by the ‘∀’ type constructor, of the Rank 2 system
with intersection types as defined in [4].

We use strict intersection types over a set V = Φ � A of free and bound type-variables respec-
tively, and a set S of sorts or type constants. For various reasons (definition of operations
on types, definition of unification), we will distinguish syntactically between (names of) free
type-variables (which belong to Φ) and (names of) bound type-variables (in A).
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Definition 2.1 [5] We define polymorphic intersection types of Rank 2 in layers: TC are Curry
types, built out of type variables in Φ (ranged over by ϕ), sorts (type constants, ranged over
by s) and ‘→’, T ∀

C are quantified Curry types, T1, the types of rank 1, are intersections of
quantified Curry types, and T2 are types of Rank 2:

TC ::= ϕ | s | (TC → TC) T ∀
C ::= TC | (∀α.T ∀

C [α/ϕ])
T1 ::= (T ∀

C ∩ · · · ∩T ∀
C ) T2 ::= ϕ | s | (T1 → T2)

We use TR for the union of these sets, and use σ,τ for arbitrary elements of TR. Notice that
TC ⊆ T ∀

C ⊆ T1 and TC ⊆ T2, but that T ∀
C �⊆ T2.

In the notation of types, ‘→’ is assumed to associate to the right, ‘∩’ binds stronger than ‘→’,
which binds stronger than ‘∀’; so ρ∩µ→(∀α.γ→δ)→σ stands for ((ρ∩µ)→((∀α.(γ→δ))→σ)).
Also, ∀α⇀ .σ is used for ∀α1.∀α2 . . .∀αn.σ, and we assume that each variable is bound at most
once in a type (renaming if necessary). In the meta-language, we denote by σ[τ/ϕ] (resp.
σ[τ/α]) the substitution of the type-variable ϕ (resp. α) by τ in σ.

Definition 2.2 fv(σ), the set of free variables of a type σ is defined as usual (note that by
construction, fv(σ) ⊆ Φ). A type is called closed if it contains no free variables, and ground if
it contains no variables at all.

Notice that, because of the distinction between free and bound type variables, not every
syntactic sub-type of σ ∈ TR is necessarily a type in TR, but ignoring this below will not affect
any result.

Definition 2.3 [5] On TR, the pre-order (i.e. reflexive and transitive relation) ‘ ≤ ’ is defined
by:

σ1∩· · ·∩σn ≤ σi, (1≤ i≤n)
∀α.(σ[α/ϕ]) ≤ σ[τ/ϕ], (τ ∈ TC)

∀1≤ i≤n [σ ≤ σi] ⇒ σ ≤ σ1∩· · ·∩σn (n ≥ 1)
ρ ≤ σ,τ ≤ µ ⇒ σ→τ ≤ ρ→µ, (τ,µ ∈ T2)

σ ≤ τ ⇒ ∀α.σ[α/ϕ]≤ ∀α.τ[α/ϕ].

Definition 2.4 i) A statement is a term of the form t : σ, with σ ∈ TR and t ∈ T(F,X ). t is the
subject and σ the predicate of t : σ.

ii) A basis Γ is a partial mapping from X to T1, represented as set of statements with only
distinct variables as subjects. By abuse of notation, we write x ∈ Γ if there exists a τ such
that x:τ ∈ Γ, ϕ ∈ Γ if there is a type in Γ in which ϕ occurs, and write Γ\x for the basis
obtained from Γ by removing the statement that has x as subject.

iii) For bases Γ1, Γ2, the basis Γ1∩Γ2 is defined by:

Γ1∩Γ2 = {x:τ | x:τ ∈ Γ1 & x �∈ Γ2}∪{x:τ | x:τ ∈ Γ2 & x �∈ Γ1}∪
{x:τ1∩τ2 | x:τ1 ∈ Γ1 & x:τ2 ∈ Γ2}

Γ, x:τ = Γ \ x ∪ {x:τ}

iv) The relation‘ ≤ ’ is extended to bases by:

Γ ≤ Γ′ ⇐⇒ ∀x:σ′ ∈ Γ′ ∃x:σ ∈ Γ [σ ≤ σ′]

Notice that if n = 0, then Γ1∩ . . .∩Γn = ∅.
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3 Operations on types

The Rank 2 versions for the various operations as presented below are defined in much the
same way as in [4], with the exception of the operation of closure and lifting, that were not
used there, and are taken from [5].

Substitution

We will define substitution as usual in first-order logic, but avoid to go out of the set of
polymorphic intersection types of Rank 2. For example, the substitution of ϕ by τ1 ∩τ2 would
transform σ→ϕ into σ→τ1 ∩τ2, which is not in TR. However, since TC ⊆ T2, and TC is closed
for (Curry-)substitution, also T2 is closed for that kind of substitution.

The following definition takes this fact into account.

Definition 3.1 i) The substitution (ϕ �→ ρ) : T2 → T2, where ϕ is a type-variable in Φ and
ρ ∈ TC, is defined by:

(ϕ �→ ρ)(ϕ) = ρ

(ϕ �→ ρ)(ϕ′) = ϕ′, if ϕ′ �= ϕ

(ϕ �→ ρ)(s) = s
(ϕ �→ ρ)(α) = α

(ϕ �→ ρ)(σ→τ) = (ϕ �→ ρ)(σ) → (ϕ �→ ρ)(τ)

(ϕ �→ ρ)(σ1∩· · ·∩σn) = (ϕ �→ ρ)(σ1)∩ · · · ∩ (ϕ �→ ρ)(σn)

(ϕ �→ ρ)(∀α.σ) = ∀α.(ϕ �→ ρ)(σ)

ii) We use IdS for the substitution that replaces all type-variables by themselves, write S
for the set of all substitutions, and use S to denote a generic substitution. Substitutions
extend to bases in the natural way: S(Γ) = {x:S(ρ) | x:ρ ∈ Γ}, and the set of substitutions
is closed under composition ‘◦’.

Lifting

The operation of lifting replaces basis and type by a smaller basis and a larger type, in the
sense of ‘≤’. This operation allows us to eliminate intersections and universal quantifiers,
using the ‘≤’ relation.

Definition 3.2 An operation of lifting is L = 〈〈Γ1,τ1〉, 〈Γ2,τ2〉〉 such that τ1 ≤ τ2 and Γ2 ≤ Γ1,
and is defined by L(〈Γ,σ〉) = 〈Γ′,σ′〉 where

σ′ = τ2, if σ = τ1,
σ′ = σ, otherwise

Γ′ = Γ2, if B = Γ1

Γ′ = Γ, otherwise

A lifting on types is determined by a pair L = 〈τ1,τ2〉 such that τ1 ≤ τ2 and is defined by

L(σ) = τ2, if σ = τ1

σ, otherwise

Closure

The operation of closure introduces quantifiers, taking into account the basis where a type
might occur.
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Definition 3.3 A closure is characterised by a pair 〈σ, ϕ〉 with σ ∈ T ∀
C , and is defined by:

〈σ, ϕ〉 (〈Γ,τ1∩· · ·∩τn〉) = 〈Γ,τ′
1∩· · ·∩τ′

n〉

where, for all 1≤ i≤n,

τ′
i = ∀α.σ[α/ϕ], if τi = σ, and ϕ does not appear in B

(α is a fresh variable),
τ′

i = τi, otherwise.

Closure is extended to types by: 〈ϕ〉 (σ) = (τ), if 〈ϕ,σ〉 (〈∅,σ〉) = 〈∅,τ〉.

Expansion

The variant of expansion used in the Rank 2 system is quite different from that normally
used [2, 3, 36]. The reason for this is that expansion, normally, increases the rank of a type,
a feature that is of course not allowed within a system that limits the rank of types. Since
here expansion is only used in very precise situations (within the procedure unify∀2 , and in the
proof of Thm. 6.5), the solution is relatively easy: in the context of Rank 2 types, expansion
is only called on types in T ∀

C , so it is defined to work well there, by replacing all types by an
intersection; in particular, intersections are not created at the right of an arrow.

Definition 3.4 Let Γ be a basis, σ ∈ TR, and n ≥ 1. The n-fold expansion with respect to the pair
〈Γ,σ〉, n〈Γ,σ〉 : T2 →T2 is constructed as follows: Suppose F = {ϕ1, . . . , ϕm} is the set of all (free)
variables occurring in 〈Γ,σ〉. Choose m × n different variables ϕ1

1, . . . , ϕn
1 , . . . , ϕ1

m, . . . , ϕn
m, such

that each ϕi
j (1≤ i≤n, 1≤ j≤m) does not occur in F. Let Si be the substitution that replaces

every ϕj by ϕi
j. Then expansion is defined on types, bases, and pairs, respectively, by:

n〈Γ,σ〉 (τ) = S1 (τ)∩ · · · ∩Sn (τ),
n〈Γ,σ〉 (Γ′) = {x:n〈Γ,σ〉 (ρ) | x:ρ ∈ Γ},
n〈Γ,σ〉 (〈Γ′,σ′〉) = 〈n〈Γ,σ〉 (Γ′),n〈Γ,σ〉 (σ

′)〉.

Notice that, if τ ∈ T2, it can be that S1 (τ)∩ · · · ∩Sn (τ) is not a legal type. However, for the
sake of clarity, and since each Si (τ) ∈ T2, we will not treat this case separately.

Operations will be grouped in chains.

Definition 3.5 i) A chain is an object [O1, . . . ,On], where each Oi is an operation of substitu-
tion, expansion, lifting, or closure, and [O1, . . . ,On] (σ) = On (· · · (O1 (σ)) · · ·).

ii) On chains the operation of concatenation is denoted by ∗ , and:

[O1, . . . ,Oi] ∗ [Oi+1, . . . ,On] = [O1, . . . ,On].

iii) We say that Ch1 = Ch2, if for all σ, Ch1 (σ) = Ch2 (σ).

4 Rank 2 Type Assignment

We now come to the definition of Rank 2 type assignment.

Definition 4.1 i) A Rank 2 environment E is a mapping from F to T2.
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ii) Rank 2 type assignment on terms is defined by the following natural deduction system:

(Ax) : (x:σ ∈ Γ & σ ≤ τ & σ ∈ T1 & τ ∈ T2)
Γ � x : τ

(∩ I) :
Γ � t : σ1 · · · Γ � t : σn

(n ≥ 1 & ∀1≤ i≤n [σi ∈ T ∀
C ])

Γ � t : σ1∩· · ·∩σn

(→E) :
Γ � t1 : σ→τ Γ � t2 : σ

Γ � t1 t2 : τ

(∀I) :
Γ � t : σ

(ϕ �∈ Γ & σ ∈ T ∀
C )

Γ � t :∀α.σ[α/ϕ]

(share) :
Γ′, x:σ � t2 : τ Γ � t1 : σ

Γ � (share t1 via x in t2) : τ

(F) : (∃Ch [Ch (E (F)) = σ])
Γ �F : σ

(cycle) :
Γ′, xi:σi

⇀ � ti : σi Γ′, xi:σi
⇀ � t : τ

(∀1≤ i≤n [σi ∈ TC])
Γ � cycle 〈xi = ti

⇀ 〉 in t : τ

We write Γ � t :σ if this is derivable using the rules above.

Notice the use of an environment and chain in rule (F); because of this rule, the notion
of type assignment defined here is in fact a partially typed system: all function symbols are
assumed to have a type to begin with, that is ‘instantiated’ by this rule.

Also, rule (F) formalises the practice of functional languages in that it introduces a notion
of polymorphism for function symbols, which is an extension (with intersection types and
general quantification) of the ml-style of polymorphism. The environment returns the ‘prin-
cipal type’ for a function symbol; this symbol can be used with types that are ‘instances’ of its
principal type, obtained by applying chains of operations.

Although these rules express how to type terms, it is straightforward to extend this defini-
tion to one that expresses how to type graphs, such that Γ � t :σ if and only if Γ � ��t�� :σ.

Notice that rule (F) models a kind of polymorphism into our system, other than the kind
obtained by having quantified types to our disposition. Quantification allows only the replace-
ment of type-variables by Curry types, whereas rule (F) allows any operation to be applied.
It allows function symbols to appear in context that require a type that is more specific than
the one provided by the environment; the soundness result we show below for the various
operations justify the application of chains to the types provided by the environment.

Also, since quantification elimination is implicit in rule (Ax), when restricting the use of the
quantifier to the left of arrows only, there is no longer need for a general (∀E) rule; as with
a possible rule (∩E), its use is in a strict system limited to variables, and there its actions are
already performed by (Ax).

For this system to be of use in practice, a minimal requirement would be a subject reduction
result, which expresses that types are preserved by reduction. To achieve this, we define
a notion of type assignment on rewrite rules using the notion of principal pair (also called
principal typing), that will be developed in Section 6 (see Def. 6.1), and culminates in Thm. 6.5,
which states:

If Γ � t : σ, then there are a basis P and type π such that ppE (t) = 〈P,π〉,
and there is a chain Ch such that Ch(〈P,π〉) = 〈Γ,σ〉.
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This property, together with the result that all operations are sound, is used to prove the
subject reduction result. (The same method was used in [7, 6, 5].)

Definition 4.2 i) We say that left → right ∈ R with defined symbol F is typeable with respect to
E , if there are P, and π ∈ T2 such that:
a) 〈P,π〉 is a principal pair (Def. 6.1) for left with respect to E .
b) In P � left :π and P � right :π each occurrence of F is typed with E (F).

ii) We say that (Σ,R) is typeable with respect to E , if all rules in R are.

As an aside to part (i.b), remark that, by rule (E), we know that each occurrence of F has
a type generated from E (F) by applying a chain of operations. Part (i.b) states that, for the
derivations involved here, these chains are all empty, i.e. are the identity operation. Since
we forced the type of a function symbol F to be exactly E (F) in the rules that define F, the
typeability of rules ensures consistency with respect to the environment.

Notice that, because in the translation of terms to graphs, the defined node is shared by all
occurrences in the rule, when typing the graph rewrite rule the condition ‘all occurrences of
F are typed with E (F)’ becomes ‘the occurrence of F is typed with E (F)’.

Before we come to a subject reduction result, first we need to show that all operations
defined are sound, which we will show in the next section. The main result there is Lem. 4.6,
which states:

If σ ∈ T1, Γ � t :σ, and Ch is a chain of operations on types
such that Ch(〈Γ,σ〉) = 〈Γ′,σ′〉, then Γ′ � t : σ′.

We will now take a short-cut, and show that reductions preserve types in our system, using
the notion of principal pair and the soundness of operations on types.

The proof of Subject Reduction depends also on the following lemma:

Lemma 4.3 (Replacement) Let E be an environment, t a term, and f a mapping from free variables
to terms (which extends naturaly to a mapping from terms to terms).

i) If Γ � t :σ and Γ′ is such that Γ′ � f (x) : ρ for every statement x:ρ ∈ Γ, then Γ′ � f (t) : σ.
ii) If there are Γ and σ such that Γ � f (t) : σ, then for every x occurring in t there is a type ρx such

that {x:ρx | x ∈ fv(t)} � t : σ, and Γ � f (x) : ρx.

Using this lemma, the following result follows easily.

Theorem 4.4 (Subject reduction) If Γ � t : σ and t → t′, then Γ � t′ :σ.

Example 4.5 Let σ,τ,ρ,µ,ν,γ, and δ be (arbitrary) types. Take the rewrite rules that define
Combinatory Logic of Ex. 1.8, and the environment E :

E (S) = (σ→τ→ρ)→(µ→τ)→σ∩µ→ρ
E (K) = ν→γ→ν
E (I) = δ→δ

Then these rules are typeable with respect to E ; we show the derivation for the right-hand
side of the first rule in Fig. 2.

It is possible to show that the operations defined in Section 3 are sound; this result is omitted
for lack of space.

These soundness results are combined in the following:
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Γ′
1 � x :σ→τ→ρ Γ′

1 � v :σ

Γ′
1 � x v :τ→ρ

Γ′
1 � y :µ→τ Γ′

1 � v :µ

Γ′
1 � y v :τ

Γ′
1 � (x v) (y v) :ρ

Γ1 � z :σ Γ1 � z :µ

Γ1 � z :σ∩µ

Γ1 � share z via v in (x v) (y v) :ρ

Figure 2: A type derivation for Ex. 4.5 (where Γ1 = {x:σ→τ→ρ,y:µ→τ,z:σ∩µ}, and Γ′
1 = Γ1,v:σ∩µ.

Lemma 4.6 (Soundness of chains) If σ ∈ T1, Γ � t : σ, and Ch is such that
Ch(〈Γ,σ〉) = 〈Γ′,σ′〉, then Γ′ � t : σ′.

5 Unification of Rank 2 Types

In the context of types, unification is a procedure normally used to find a common instance
for demanded and provided type for applications, i.e: if t1 has type σ→τ, and t2 has type
ρ, then unification looks for a common instance of the types σ and ρ such that (t1 t2) can be
typed properly. The unification algorithm unify∀2 presented in the next definition (a corrected
version of the algorithm presented in [5]) deals with just that problem. This means that it is
not a full unification algorithm for types of Rank 2, but only an algorithm that finds the most
general unifying chain for demanded and provided type. It is defined as a natural extension
of Robinson’s well-known unification algorithm unify [35], and can be seen as an extension of
the notion of unification as presented in [4], in that it deals with quantification as well.

Definition 5.1 (Unification) Unification of Curry types (extended with bound variables and
type constants) is defined by:

unify : T ′
C × T ′

C → S

unify(ϕ, ϕ′) = (ϕ �→ ϕ′),
unify(ϕ,τ) = (ϕ �→ τ), if ϕ not in τ,
unify(α,α) = IdS,
unify(s, s) = IdS,
unify(σ, ϕ) = unify(ϕ,σ),
unify(σ→τ,ρ→µ) = S2◦S1,

where S1 = unify(σ,ρ),
S2 = unify(S1 (τ),S(1 : µ)).

(All non-specified cases, like unify(α1,α2) with α1 �= α2, fail.)

It is worthwhile to notice that the operation on types returned by unify is not really a
substitution, since it allows, e.g., (ϕ �→ α), without keeping track of the binder for α. This
potentially will create wrong results, since unification can now substitute bound variables in
unbound places. Therefore, special care has to be taken before applying a substitution, to
guarantee its application to the argument acts as a ‘real’ substitution.

The following property is well-known, and formulates that unify returns the most general
unifier for two Curry types, if it exists.
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Property 5.2 ([35]) If two types have an instance in common, they have a highest common instance
which is returned by unify: for all σ,τ ∈ TC, substitutions S1,S2: if S1 (σ) = S2 (τ), then there are
substitutions Su and S′ such that

Su = unify(σ,τ), and S1 (σ) = S′◦Su (σ) = S′◦Su (τ) = S2 (τ).

The unification algorithm unify∀2 as defined below gets, typically, called during the computa-
tion of the principal pair for an application t1 t2. Suppose the algorithm has derived P1 � t1 :π1
and P2 � t2 :π2 as principal pairs for t1 and t2, respectively, and that π1 = σ→τ. Thus the de-
manded type σ is in T1 and the provided type π2 is in T2. In order to be consistent, the result
of the unification of σ and π2 – a chain Ch – should always be such that Ch(π2) ∈ T1. How-
ever, if π2 �∈ TC, then in general Ch(π2) �∈ T1. To overcome this difficulty, an algorithm toTC
will be inserted that, when applied to the type ρ, returns a chain of operations that removes,
if possible, intersections in ρ. This can be understood by the observation that, for example,
((σ→σ)→σ→σ)→σ is a substitution instance of ((ϕ1→ϕ1)→ϕ2)∩ (ϕ3→ϕ4→ϕ4)→ϕ5. Note
that if quantifiers appear in ρ, toTC (ρ) should fail, since quantifiers that appear before an
arrow cannot be removed by any of the operations on types defined above. Finally,

unify∀2 (σ,S2 (π2),S2 (P2))

is called (with S2 = toTC (π2)). The basis S2 (P2) is needed to calculate the expansion of S2 (π2)
in case σ is an intersection type.

Definition 5.3 The function toTC : T2 →S is defined by:

toTC (σ) = [IdS], if σ ∈ TC
toTC ((σ1∩· · ·∩σn)→µ) = S′◦Sn, otherwise,

where Si = unify(Si−1 (σ1),Si−1 (σi+1))◦Si−1, (1≤ i≤n−1, with S0 = IdS)
S′ = toTC (Sn (µ))

(Again, notice that toTC (σ) fails if σ contains ‘∀’.)

The algorithm unify∀2 is called with the types σ and ρ′, the latter being ρ in which the
intersections are removed (so ρ′ = toTC (ρ : ρ); notice that toTC (ρ) is an operation on types that
removes all intersections in ρ, and needs to be applied to ρ). Since none of the derivation rules,
nor one of the operations, allows for the removal of a quantifier that occurs inside a type, if
σ = ∀α⇀ .σ′, the unification of σ with ρ′ will not remove the ‘∀α⇀ ’ part.

The following definition presents the main unification algorithm, unify∀2 .

Definition 5.4 The function unify∀2 is defined by:

unify∀2 (ϕ,τ, Γ) = [(ϕ �→ τ)],
unify∀2 ((∀α1

⇀.σ1)∩ . . . ∩ (∀αn
⇀.σn),τ, Γ) = [Ex,Sn], otherwise

where Ex = n〈Γ,τ〉,
τ1∩· · ·∩τn = Ex(τ), and

for every 1≤ i≤n, Si = unify(Si−1 (σi),τi)◦Si−1 (with S0 = IdS).

The procedure unify∀2 fails when unify fails, and toTC fails when either unify fails or when
the argument contains ‘∀’. Because of this relation between unify∀2 and toTC on one side, and
unify on the other, the procedures defined here are terminating and type assignment in the



Types in Programming (TIP’02); ENTCS Volume 75, 2002 14

system defined in this paper is decidable.

6 Principal pairs for terms

In this section, the principal pair for a term t with respect to the environment E – ppE (t) – is
defined, consisting of basis P and type π. In Thm. 6.5 it will be shown that, for every term,
this is indeed the principal one.

Definition 6.1 Let t be a term in T(F,X ). ppE (t) = 〈P,π〉, with π ∈ T2, is defined, using unify∀2 ,
by induction to the structure of terms through:

(x) : Then ppE (x) = 〈{x:ϕ}, ϕ〉.
(F) : ppE (F) = 〈∅,E (F)〉.
(t1 t2) : Let ppE (t1) = 〈P1,π1〉, ppE (t2) = 〈P2,π2〉 (choose, if necessary, trivial variants such that

these pairs are disjoint), and S2 = toTC (π2), then
(π1 = ϕ) : ppE (t1 t2) = 〈P,π〉, where

〈P,π〉 = 〈S1 (P1∩S2 (P2)), ϕ′〉,
S1 = (ϕ �→ S2 (π2)→ϕ′), and
ϕ′ is a fresh variable.

(π1 = σ→τ) : ppE (t1 t2) = 〈P,π〉, provided P and π contain no unbound occurrences of αs,
where

〈P,π〉 = 〈S(P1∩Ex(S2 (P2))),S(τ)〉,
[Ex,S] = unify∀2 (σ,S2 (π2),S2 (P2)).

(share t1 via x in t2) : Let ppE (ti) = 〈Pi,πi〉, for i = 1,2. Then either:

– (x occurs in t1). Then there exists P′,σ ∈ T1 such that P1 = P′, x:σ. Let S2 = toTC (π2).
Then

ppE (share t1 via x in t2) = 〈P,π〉,
provided P and π contain no unbound occurrences of αs, where

〈P,π〉 = 〈S(P′∩Ex(S2 (P2))),S(π1)〉
[Ex,S] = unify∀2 (σ,S2 (π2),S2 (P2)).

– (x does not occur in t1). Then

ppE (share t1 via x in t2) = 〈P1,π1〉.

(cycle 〈 xi = ti
⇀ 〉 in t′) : Let, for 1≤ i≤n, ppE (ti) = 〈Pi,πi〉, and ppE (t′) = 〈P′,π′〉, and assume,

without loss of generality, that these pairs share no type variables. Let

Pi = Pi, x1:ρi
1, . . . , xn:ρi

n

Let S be such that S(πi) = τi ∈ TC, and S(ρi
j) = µi

j ∈ TC, for all 1≤ i, j≤n, and let

Si = unify(Si−1 (µ
i
i),Si−1 (τi))◦Si−1

(with S0 = IdS). Then

ppE (cycle 〈 xi = ti
⇀ 〉 in t′) = Sn◦S(〈P′∩P1∩ . . .∩Pn,π′〉).

(Notice that S can be built out of toTC (πi), toTC (ρ
i
j), and unification.)
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Since unify or unify∀2 may fail, not every term has a principal pair.

Notice that, if ppE (t) = 〈P,π〉, then π ∈ T2. For example, the principal pair for I with rewrite
rule I x → x is 〈∅, ϕ→ϕ〉, so, in particular, it is not 〈∅,∀α.α→α〉. Although one could argue
that the latter type is more ‘principal’ in the sense that it expresses the generic character the
principal type is supposed to have, we have chosen to use the former instead. This is mainly
for technical reasons: because unification is used in the definition below, using the latter
type, we would often be forced to remove the external quantifiers. Both types can be seen
as ‘principal’ though, since ∀α.α→α can be obtained from ϕ→ϕ by closure, and ϕ→ϕ from
∀α.α→α by lifting.

The following lemma is needed in the proof of Thm. 6.5. It states that if a chain maps the
principal pairs of terms t1, t2 in an application t1 t2 to pairs that allow the application itself to
be typed, then these pairs can also be obtained by first performing a unification.

Lemma 6.2 [5] Let σ ∈ T2, and ppE (ti) = 〈Pi,πi〉, for i = 1,2, such that these pairs are disjoint. Let
Ch1,Ch2 be chains such that Ch1 (ppE (t1)) = 〈Γ,σ→τ〉 and Ch2 (ppE (t2)) = 〈Γ,σ〉. Then there are
chains Chu and Chp, and type ρ ∈ T2 such that

ppE (t1 t2) = Chu (〈P1∩P2,ρ〉), and
Chp (ppE (t1 t2)) = 〈Γ,τ〉.

Similarly, we can show the following property

Lemma 6.3 Let σ ∈ T2, and ppE (t1) = 〈P1∪{x:ρ},π1〉, and ppE (t2) = 〈P2,π2〉, such that these pairs
are disjoint. Let Ch1,Ch2 be chains such that

Ch1 (ppE (t1)) = 〈Γ∩{x:σ},τ〉 & Ch2 (ppE (t2)) = 〈Γ,σ〉.

Then there are chains Chu and Chp such that

ppE (share z via x in ) = Chu (〈P1∩P2,π1〉), and
Chp (ppE (share z via x in )) = 〈Γ1∩Γ2,τ〉.

The main result of this section then becomes the soundness and completeness result for ppE .

Theorem 6.4 (Soundness of ppE ) If ppE (t) = 〈P,π〉, then P � t :π.

Theorem 6.5 (Completeness of ppE ) If Γ � t : σ, then there are a basis P and type π such that
ppE (t) = 〈P,π〉, and there is a chain Ch such that Ch(〈P,π〉) = 〈Γ,σ〉.
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