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Abstract

This paper introduces a notion of partial type assignment on applicative term rewriting sys-
tems that is based on a combination of an essential intersection type assignment system, and
the type assignment system as defined for ML [16], both extensions of Curry’s type assign-
ment system [11]. Terms and rewrite rules will be written as trees, and type assignment will
consists of assigning intersection types function symbols, and specifying the way in which
types can be assigned to nodes and edges between nodes. The only constraints on this system
are local: they are imposed by the relation between the type assigned to a node and those
assigned to its incoming and out-going edges. In general, given an arbitrary typeable applica-
tive term rewriting system, the subject reduction property does not hold. We will formulate
a sufficient but undecidable condition typeable rewrite rules should satisfy in order to obtain
this property.

Introduction

In the recent years several paradigms have been investigated for the implementation of func-
tional programming languages. Not only the lambda calculus [5], but also term rewriting
systems [15] and term graph rewriting systems [7] are topics of research. Lambda calculus
(or rather combinator systems) forms the underlying model for the functional programming
language Miranda [22], term rewriting systems are used in the underlying model for the
language OBJ [14], and term graph rewriting systems is the model for the language Clean
[8, 17].

The lambda calculus, term rewriting systems and graph rewriting systems themselves are
type free, whereas in programming the notion of types plays an important role. Type as-
signment to programs and objects is in fact a way of performing abstract interpretation that
provides necessary information for both compilers and programmers. Since the lambda cal-
culus is a fundamental basis for many functional programming languages, a type assignment
system for the pure untyped lambda calculus, capable of deducing meaningful and expressive
types, has been a topic of research for many years.

There exists a well understood and well defined notion of type assignment on lambda terms,
known as the Curry type assignment system [11] which expresses abstraction and application.
Many of the now existing type assignment systems for functional programming languages are
based on (extensions of) the Curry type assignment system.

† Partially supported by the Esprit Basic Research Action 3074 ”Semagraph” and the Netherlands Organisation
for the advancement of pure research (N.W.O.).
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In [9, 6] the intersection type discipline for the lambda calculus is presented, an extension
of Curry’s type assignment system. The extension consists of allowing more than one type for
term-variables and adding a type constant ‘ω’ and, next to the type constructor ‘→’, the type
constructor ‘∩’. This yields a type assignment system that is very powerful: it is closed under
β-equality. Because of this power, type assignment in this system (and even in the system that
does not contain ω, see [1]) is undecidable. The essential type assignment system as presented
in this paper is a restriction of the intersection type discipline presented in [6] that satisfies all
properties of that system, and is also an extension of the Curry type assignment system. The
main advantage of the essential system over the intersection system is that the set of types
assignable to a term is significantly smaller.

Most functional programming languages, like Miranda for instance, allow programmers to
specify an algorithm (function) as a set of rewrite rules. The type assignment systems incor-
porated in most term rewriting languages are in fact extensions of type assignment systems
for a(n extended) lambda calculus, and although it seems straightforward to generalize those
systems to the (significantly larger) world of term rewriting systems, it is at first look not
evident that those borrowed systems have still all the properties they possessed in the world
of lambda calculus. For example, type assignment in term rewriting systems in general does
not satisfy the subject reduction property: i.e. types are not preserved under rewriting, as
illustrated in [4]. In order to be able to study the details of type assignment for term rewriting
systems, a formal notion of type assignment on term rewriting systems is needed, that is more
close to the approach of type assignment in lambda calculus than the algebraic one [12].

The aim of this paper is to present a formal notion of type assignment on term rewriting
systems that is close to those defined for the lambda calculus and use intersection types.

The notion of type assignment presented here for term rewriting systems is based on both
an essential type assignment system for the lambda calculus and the polymorphic type as-
signment system for the functional programming language ML [16]. The polymorphic aspect
of type assignment can be found in the use of an environment, that provides a type for every
function symbol F; for every occurrence of F the way in which its type can be obtained from
the one provided by the environment is specified.

Intersection types are studied because they are a good means to perform abstract interpre-
tation, better than Curry types, also even better than the kind of types used in languages like
ML. Also, the notion of type assignment presented in this paper could be extended to the
world of term graph rewriting systems, and in that world intersection types are the natural
tool to type nodes that are shared. Moreover, intersection types seem to be promising for
use in functional programming languages, since they seem to provide a good formalism to
express overloading (see also [20]).

In this paper we define applicative term rewriting systems (ATRS), a slight extension of
the term rewriting systems as defined in [15], as the term rewriting systems that contain a
special binary operator Ap. The applicative term rewriting systems defined in this paper are
extensions to those suggested by most functional programming languages in that they do not
discriminate against the varieties of function symbols that can be used in patterns.

In [4] and [2] partial type assignment systems for (left linear) applicative term rewriting
systems are presented. The system presented here can be seen as a variant of those systems;
the main difference between those two systems and the one presented here are in the set
of types that can be assigned to nodes and edges: Curry types in [4], intersection types of
Rank 2 in [2], and strict intersection types in this one. Also, type assignment in those systems
is decidable, but in the one presented in this paper it is not.

Throughout this paper, the symbol ϕ (often indexed, like in ϕi) will be a type-variable; when
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writing a type-variable ϕi, sometimes only the index i is used, so as to obtain more readable
types. Greek symbols like α, β, γ, µ, ν, η, ρ, σ and τ (often indexed) will range over types.
To avoid parentheses in the notation of types, ‘→’ is assumed to associate to the right – so
right-most, outer-most brackets will be omitted – and, as in logic, ‘∩’ binds stronger than ‘→’.
The symbol B is used for bases.

Because of the restricted length of this paper, all results are presented without proofs.

1 Essential type assignment for the lambda calculus

In this section we present the essential type assignment system, a restricted version of the sys-
tem presented in [6], together with some of its properties. The major feature of this restricted
system is, compared to that system, a restricted version of the derivation rules and it is based
on a set of strict types.

Strict types are the types that are strictly needed to assign a type to a term in the system of
[6]. We will assume that ω is the same as an intersection over zero elements: if n = 0, then
σ1∩· · ·∩σn = ω, so ω does not occur in an intersection subtype. Moreover, intersection type
schemes (so also ω) occur in strict types only as subtypes at the left hand side of an arrow
type scheme. We could have omitted the type constant ω completely from the presentation of
the system, because we can always assume that n = 0 in σ1∩· · ·∩σn, but some of the definitions
and the results we obtain are more clear when ω is dealt with explicitly.

1.1 Essential type assignment

Definition 1.1 (cf. [1]) i) Ts, the set of strict types, is inductively defined by:
a) All type-variables ϕ0, ϕ1, . . . ∈ Ts.
b) If τ, σ1. . . . ,σn ∈ Ts (n ≥ 0), then σ1∩· · ·∩σn→τ ∈ Ts.

ii) TS, the set of strict intersection types, is defined by: If σ1. . . . ,σn ∈ Ts (n≥ 0), then σ1∩· · ·∩σn ∈ TS.
iii) On TS, the relation ≤S is defined by:

a) ∀ 1≤ i≤n (n ≥ 1) [ σ1∩· · ·∩σn ≤S σi ].
b) ∀ 1≤ i≤n (n ≥ 0) [ σ ≤S σi ] ⇒ σ ≤S σ1∩· · ·∩σn.
c) σ ≤S τ ≤S ρ ⇒ σ ≤S ρ.

iv) We define the relation ≤E on TS like the relation ≤S , that is only defined for strict
intersection types, but we add an extra alternative.
d) ρ ≤E σ & τ ≤E µ ⇒ σ→τ ≤E ρ→µ.

v) On TS, the relation ∼E is defined by: σ ∼E τ ⇐⇒ σ ≤E τ ≤E σ.
vi) A statement is an expression of the form M:σ, where M ∈ Λ and σ ∈ TS. M is the subject

and σ the predicate of M:σ.
vii) A basis is a set of statements with only distinct variables as subjects.

If σ1∩· · ·∩σn is a predicate in a basis, then n ≥ 1.

TS may be considered modulo ∼E . Then ≤E becomes a partial order, and in this paper we
consider types modulo ∼E .

Unless stated otherwise, if σ1∩· · ·∩σn is used to denote a type, then by convention all
σ1. . . . ,σn are assumed to be strict. Notice that Ts is a proper subset of TS.

Definition 1.2 i) Essential type assignment and essential derivations are defined by the following
natural deduction system (where all types displayed are strict, except σ in the derivation
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rules (→I) and (≤E)):
[x:σ]

:
M:τ

(→I): (a)
λx.M:σ→τ

x:σ σ ≤E τ
(≤E):

x:τ

M:σ1∩· · ·∩σn→τ N:σ1 . . . N:σn
(→E): (n ≥ 0)

MN:τ

(a)) If x:σ is the only statement about x on which M:τ depends.
If M:σ is derivable from B using an essential derivation, we write B 
e M:σ.

ii) We define 
E by: B 
E M:σ if and only if: there are σ1. . . . ,σn (n ≥ 0) such that
σ = σ1∩· · ·∩σn and for every 1≤ i≤n B 
e M:σi.

Although the derivation rule (≤E) is not allowed on all terms, we can prove that if B 
E M:σ,
and σ ≤E τ, then B 
E M:τ. It is then easy to prove that type assignment in this system
is closed under η-reduction. It is also possible to prove that the essential type assignment
system satisfies the main properties of the BCD-system:

Property 1.3 i) B 
E M:σ & M =β N ⇒ B 
E N:σ.
ii) ∃ B, σ [ B 
E M:σ & B, σ ω-free ] ⇐⇒ M has a normal form.

iii) ∃ B, σ [ B 
E M:σ & σ �= ω ] ⇐⇒ M has a head normal form.�

1.2 Operations on pairs

In this subsection we present three different operations on pairs of <basis, type>, namely
substitution, expansion, and lifting as defined in [3]. The operation of substitution deals with
the replacement of type-variables by types and is a slight modification of the one normally
used; this modification is needed to make sure that substitution is closed on strict types.
The operation of expansion replaces types by the intersection of a number of copies of that
type and coincides with the one given in [10, 21]. The operation of lifting deals with the
introduction of extra (types to) statements in the basis of a derivation, or introduces extra
types to term-variables that are bound.

Substitution is normally defined on types as the operation that replaces type-variables by
types. For strict types this definition would not be correct. For example, the replacement of ϕ
by ω would transform σ→ϕ (or σ∩ϕ) into σ→ω (σ∩ω), which is not a strict type. Therefore,
for strict types substitution is not defined as an operation that replaces type-variables by types,
but as a mapping from types to types.

Definition 1.4 ([3]) i) The substitution (ϕ → α) : TS → TS, where ϕ is a type-variable and
α ∈ Ts ∪{ω}, is defined by:
a) (ϕ → α) (ϕ) = α.
b) (ϕ → α) (ϕ′) = ϕ′, if ϕ �= ϕ′.
c) (ϕ → α) (σ→τ) = ω, if (ϕ → α) (τ) = ω.
d) (ϕ → α) (σ→τ) = (ϕ → α) (σ)→ (ϕ → α) (τ), if (ϕ → α) (τ) �= ω.
e) (ϕ → α) (σ1∩· · ·∩σn) = (ϕ → α) (σ1

′) ∩· · ·∩ (ϕ → α) (σm
′),

where {σ1
′, . . . , σm

′} = { σi ∈ {σ1. . . . ,σn} | (ϕ → α) (σi) �= ω }.
ii) If S1 and S2 are substitutions, then so is S1◦S2, where S1◦S2 (σ) = S1 (S2 (σ)).
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iii) S (B) = { x:S (α) | x:α ∈ B & S (α) �= ω }.
iv) S (<B, σ>) = <S (B), S (σ)>.

Notice that in part (i.e), if for 1≤ i≤n (ϕ → α) (σi) = ω, then (ϕ → α) (σ1∩· · ·∩σn) = ω.

The operation of expansion is an operation on types that deals with the replacement of
(sub)types by an intersection of a number of copies of that type. In this process it can be that
also other types need to be copied. An expansion indicates not only the type to be expanded,
but also the number of copies that has to be generated.

Definition 1.5 ([3]) i) The last variable of a strict type is defined by:
a) The last variable of ϕ is ϕ.
b) The last variable of σ1∩· · ·∩σn→τ (n ≥ 0) is the last variable of τ.

ii) A strict type σ is said to end with ϕ, if ϕ is the last variable of σ.

Definition 1.6 ([3]) For every µ ∈ Ts, n ≥ 2, basis B and σ ∈ TS, the quadruple <µ,n, B,σ>
determines an expansion E<µ,n,B,σ> : TS → TS, that is constructed as follows.

i) The set of type-variables Vµ(<B, σ>) is constructed by:
a) If ϕ occurs in µ, then ϕ ∈ Vµ(<B, σ>).
b) Let τ be a strict (sub)type occurring in <B, σ>, with last variable ϕ0. If ϕ0 ∈ Vµ(<B, σ>),

then for all type-variables ϕ that occur in τ: ϕ ∈ Vµ(<B, σ>).
ii) Suppose Vµ(<B, σ>) = {ϕ1, . . . , ϕm}. Choose m × n different type-variables ϕ1

1, . . . , ϕn
1 ,

. . . , ϕ1
m, . . . , ϕn

m, such that each ϕi
j does not occur in <B, σ>, for 1≤ i≤n and 1≤ j≤m.

Let Si be the substitution that replaces every ϕj by ϕi
j.

iii) E<µ,n,B,σ> (α) is obtained by traversing α top-down and replacing, in α, a subtype β that
ends with an element of Vµ(<B, σ>) by S1 (β) ∩· · ·∩Sn (β).

iv) E<µ,n,B,σ> (B′) = { x:E<µ,n,B,σ> (ρ) | x:ρ ∈ B′ }.
v) E<µ,n,B,σ> (<B′, σ′>) = <E<µ,n,B,σ> (B′), E<µ,n,B,σ>(σ′)>.

The last operation on pairs defined in this subsection is the operation of lifting.

Definition 1.7 ([3]) A lifting L is denoted by a pair <<B0, τ0>, <B1, τ1>> such that τ0 ≤E τ1and
B1 ≤E B0, and is defined by:

i) L (σ) = τ1if σ = τ0; L (σ) = σ otherwise.
ii) L (B) = B1 if B = B0; L (B) = B otherwise.

iii) L (<B, σ>) = <L (B), L (σ)>.

Definition 1.8 ([3]) A chain is an object <O1, . . . , On>, with each Oi an operation of substitu-
tion, expansion or lifting; <O1, . . . , On> (<B, σ>) = On (· · ·(O1 (<B, σ>))· · ·).

It is possible to prove the principal type property for the essential type assignment system,
in the same way as done in [21] for the BCD-system. The operations needed for this proof
are substitution, expansion, and lifting, and it is possible to show that all pairs for a term can
be generated by chains that exist of expansions, and substitutions (in that order) and that end
with one lifting. Moreover, all three operations can be proven to be sound on all pairs.
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2 Type assignment in Applicative Term Rewriting Systems

In this paper we study type assignment on applicative term rewriting systems, which is a
slight extension of the term rewriting systems as defined in [15]. Applicative term rewriting
systems are defined as term rewriting systems that (can) contain a special binary operator Ap,
this in contrast to the pure applicative term rewriting systems, that contain only the binary
operator Ap.

2.1 Applicative Term Rewriting Systems

The motivation for the use of applicative term rewriting systems instead of the general term
rewriting systems can be illustrated by the following: There is a clear translation (embedding)
of combinator systems into term rewriting systems, in which the implicit application of the
world of combinators is made explicit. The kind of term rewriting system that is needed for
such a translation contains only one function symbol, called Ap, and is therefore often called
an applicative term rewriting system. A translation of for example Combinatory Logic (CL)

S x y z = x z (y z)
K x y = x
I x = x

into such a term rewriting system then looks like:

Ap (Ap (Ap (S, x),y),z) → Ap (Ap (x,z), Ap (y,z))
Ap (Ap (K, x),y) → x
Ap (I, x) → x

The definition of applicative systems we present in this paper is, however, more general: in
the systems we consider, Ap is a special function symbol; in particular it is one of the function
symbols, not the only one. To distinguish between the term rewriting systems that contain only
the function symbol Ap and those that contain Ap next to other function symbols, we call the
former the pure applicative term rewriting systems.

We prefer to see the symbols S, K and I as functions, with 3, 2 and 1 operands respectively.
This means that we have to introduce extra rewrite rules to express the Curried versions of
these symbols. Moreover, to get some computational power, some rewrite rule starting with
Ap should be added. Such an extended CL system could look like:

S (x,y,z) → Ap (Ap (x,z), Ap (y,z))
Ap (S2 (x,y),z) → S (x,y,z)
Ap (S1 (x),y) → S2 (x,y)
Ap (S0, x) → S1 (x)
K (x,y) → x
Ap (K1 (x),y) → K (x,y)
Ap (K0, x) → K1 (x)
I (x) → x
Ap (I0, x) → I (x)

We consider the applicative rewriting systems, because they are far more general than the
subclass of systems in which there exists only the function symbol Ap. Moreover, they are a
natural extension of those rewrite systems considerd in papers on type assignment on term
rewriting systems that follow the ‘algebraic’ approach [12], and are also the kind of rewrite
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systems an effecient implementation of a functional language would be based upon [18]. Since
the pure applicative term rewriting systems are a subclass of the applicative term rewriting
systems, all results obtained in this paper are also valid for that subclass.

We take the view that in a rewrite rule a certain symbol is defined; it is this symbol to which
the structure of the rewrite rule gives a type. We treat Ap as a predefined symbol; the symbol
Ap is neglected when we are looking for the symbol that is defined in a rewrite rule.

The type assignment system we present in this paper is a partial system in the sense of [19]:
we not only define how terms and rewrite rules can be typed, but assume that every function
symbol already has a type, which structure is usually motivated by a rewrite rule. There are
several reasons to do so.

First of all a term rewriting system can contain symbols that is not the defined symbol of
a rewrite rule (such a symbol is called a constant). A constant can appear in a rewrite rule
more or less as a symbol that ‘has to be there’, but for which it is impossible to determine
any functional characterisation, apart from what is demanded by the immediate context. If
we provide a type for every constant, then we can formulate some consistency requirement,
by saying that the types used for a constant must be related to the provided type.

Moreover, even for every defined symbol there must be some way of determining what
type can be used for an occurrence. Normally the rewrite rules that define such a symbol are
investigated, and from analyzing the structure of those rules the ‘most general type’ for that
symbol can be constructed. Instead of for defined symbols investigating all their defining rules
every time the symbol is encountered, we can store the type of the symbol in a mapping from
symbols to types, and use this mapping instead. Of course it makes no difference to assume
the existence from the start of such a mapping from symbols (both defined and constant) to
types, and to define type assignment using that mapping (in the following such a mapping is
called an ‘environment’).

Definition 2.1 (cf. [15, 4]) An Applicative Term Rewriting System (ATRS) is a pair (Σ, R) of an
alphabet or signature Σ and a set of rewrite rules R.

i) The alphabet Σ consists of:
a) A countable infinite set of variables x1, x2, x3, . . . (or x, y, z, x′, y′, . . . ).
b) A non empty set F of function symbols F, G, . . . , each equipped with an ‘arity’.
c) A special binary operator, called application (Ap).

ii) The set of terms (or expressions) ‘over’ Σ is T(F,X ) and is defined inductively:
a) x, y, z, . . . ∈ T(F,X ).
b) If F ∈ F ∪{Ap} is an n-ary symbol, and t1, . . . , tn ∈ T(F,X ), then

F (t1, . . . , tn) ∈ T(F,X ).

Definition 2.2 (cf. [15, 4]) Let (Σ, R) be an ATRS.
i) A replacement is a map R : T(F,X ) → T(F,X ) satisfying R(F (t1, . . . , tn)) =

F (R(t1), . . . , R(tn)) for every n-ary function symbol F ∈ F ∪{Ap} (here n ≥ 0). We also
write TR instead of R(T).

ii) a) A rewrite rule ∈ R is a pair (Lhs, Rhs) of terms ∈ T(F,X ). Often a rewrite rule will get
a name, e.g. r, and we write r : Lhs → Rhs. Three conditions will be imposed:
1) Lhs is not a variable.
2) The variables occurring in Rhs are contained in Lhs.
3) For every Ap in Lhs, the left hand argument is not a variable.
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b) A rewrite rule r : Lhs → Rhs determines a set of rewrites LhsR → RhsR for all replace-
ments R. The left hand side LhsR is called a redex; it may be replaced by its ‘contractum’
RhsR inside a context C[ ]; this gives rise to rewrite steps:
C[ LhsR ] →r C[ RhsR ].

iii) In a rewrite rule, the leftmost, outermost symbol in the left hand side that is not an Ap,
is called the defined symbol of that rule. If the symbol F is the defined symbol of a rewrite
rule r, then r defines F. F is a defined symbol, if there is a rewrite rule that defines F. Q ∈ F
is called a constant symbol if Q is not a defined symbol.

iv) For every defined symbol F with arity n ≥ 1, there are n additional rewrite rules that
define the function symbols F0 upto Fn−1 as follows:

Ap (Fn−1 (x1, . . . , xn−1), xn) → F (x1, . . . , xn)
Ap (Fn−2 (x1, . . . , xn−2), xn−1) → Fn−1 (x1, . . . , xn−1)

...
Ap (F0, x1) → F1 (x1)

The added rules with Fn−1, . . . , F1, F0, etc. give in fact the ‘Curried’-versions of F.

Part (ii.a.3) of definition 2.2 is added in order to avoid rewrite rules with left hand sides like
Ap (x,y), because such a rule would not have a defined symbol.

We will, for the sake of simplicity, assume that rewrite rules are not mutually recursive; for
those rules the definition of defined symbol, and also that of type assignment, would be more
complicated, and this would unnecessarily obscure this paper.

In the following definition we give a special applicative term rewriting system.

Definition 2.3 Applicative Combinatory Logic (ACL) is the ATRS (Σ, R), where F = {S, S2, S1,
S0, K, K1, K0, I, I0}, and R contains the rewrite rules

S (x,y,z) → Ap (Ap (x,z), Ap (y,z))
K (x,y) → x
I (x) → x.

For ACL we have for example the following rewriting sequence:

S (K0,S0, I0) → Ap (Ap (K0, I0), Ap (S0, I0)) → Ap (K1 (I0), Ap (S0, I0)) →
K (I0, Ap (S0, I0)) → I0.

Notice that a term like K1 (I0) itself cannot be rewritten. This corresponds to the fact that
in CL the term K I is not a redex. Because ACL is Curry-closed, it is in fact combinatory
complete: every lambda term can be translated into a term in ACL; for details of such a
translation, see [5, 13].

Example 2.4 If the left hand side of a rewrite rule is F (t1, . . . , tn), then the ti need not be simple
variables, but can be terms as well, as for example in the rewrite rule H (S2 (x,y)) → S2 (I0,y).

It is also possible that for a certain symbol F, there are more than one rewrite rule that
define F. For example the rewrite rules F (x) → x, F (x) → Ap (x, x) are legal.

2.2 Essential type assignment in ATRS’s

Partial intersection type assignment on an ATRS (Σ, R) is defined as the labelling of nodes and
edges in the tree-representation of terms and rewrite rules with types in TS. In this labelling,
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we use that there is a mapping that provides a type in Ts for every F ∈ F ∪{Ap}. Such a
mapping is called an environment.

Definition 2.5 Let (Σ, R) be an ATRS.
i) A mapping E : F ∪{Ap} → Ts is called an environment if E (Ap) = (1→2)→1→2, and for

every F ∈ F with arity n, E (F) = E (Fn−1) = · · · = E (F0).
ii) For F ∈ F with arity n ≥ 0, σ ∈ Ts, and E an environment, the environment E [F :=σ] is

defined by:
a) E [F :=σ] (G) = σ, if G ∈ {F, Fn−1, . . . , F0}.
b) E [F :=σ] (G) = E (G), otherwise.

Since E maps all F ∈ F to types in Ts, no function symbol is mapped to ω.

Type assignment on applicative term rewriting systems is defined in two stages. In the next
definition we define type assignment on terms, in definition 2.10 we define type assignment
on term rewrite rules.

Definition 2.6 Let (Σ, R) be an ATRS, and E an environment.
i) We say that T ∈ T(F,X ) is typeable by σ ∈ TS with respect to E , if there exists an assignment

of types to edges and nodes that satisfies the following constraints:
a) The root edge of T is typed with σ; if σ = ω, then the root edge is the only thing in the

term-tree that is typed.
b) The type assigned to a function node containing F ∈ F ∪{Ap} (where F has arity

n ≥ 0) is τ1∩· · ·∩τm, if and only if for every 1≤ i≤m there are σi
1, . . . , σi

n ∈ TS, and
σi ∈ Ts, such that τi= σi

1→·· ·→σi
n→σi, the type assigned to the j-th (1≤ j≤n) out-going

edge is σ1
j ∩· · ·∩σm

j , and the type assigned to the incoming edge is σ1∩· · ·∩σm.

�
σ1∩· · ·∩σm

F:(σ1
1→·· ·→σ1

n→σ1) ∩· · ·∩ (σm
1 →·· ·→σm

n →σm)
�����

σ1
1∩· · ·∩σm

1 �
�

�
��

σ1
2∩· · ·∩σm

2

�
�
�
��
σ1

n−1∩· · ·∩σm
n−1

����	
σ1

n∩· · ·∩σm
n. . .

c) If the type assigned to a function node containing F ∈ F ∪{Ap} is τ, then there is a
chain C, such that C (E (F)) = τ.

ii) Let T ∈ T(F,X ) be typeable by σ with respect to E . If B is a basis such that for every
statement x:τ occurring in the typed term-tree there is a x:τ′ ∈ B such that τ′ ≤E τ, we
write B 
E T:σ.

Notice that if B 
E T:σ, then B can contain more statements than needed to obtain T:σ. Notice
also that parts (i.a) and (ii) are not in conflict so for every B and T: B 
E T:ω.

A typical example for part (i.b) of definition 2.6 is the symbol Ap; for every occurrence of
Ap in a term-tree, there are σ and τ such that the following is part of the term-tree.

�τ
Ap: (σ→τ)→σ→τ



�σ→τ �� σ
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Notice that the type the environment provides for Ap is crucial; it is the type suggested by
the (→E) derivation rule, and gives structure to the type assignment.

Example 2.7 The term S (K0,S0, I0) can be typed with the type 7→7, under the assumption that:
E (S) = (1→2→3)→(4→2)→1∩4→3, E (K) = 5→ω→5, E (I) = 6→6.

�7→7

S:((7→7)→ω→7→7) → ω → (7→7) → 7→7



�
K0:(7→7)→ω→7→7

�
S0

��
I0:7→7

Notice that to obtain the type ((7→7)→ω→7→7)→ω→(7→7)→7→7 for S, we have used the
chain <(1 := 7→7), (2 := ω), (3 := 7→7), (4 := ω)>, and that the node containing S0 is not typed
since the incoming edge is typed with ω. If we define D (x) → Ap (x, x), then we can even
check that for example D (S (K0,S0, I0)) and D (I0) are both typeable by 8→8.

The following definition introduces some terminology and notations for bases.

Definition 2.8 i) The relation ≤E is extended to bases by: B ≤E B′ if and only if
for every x:σ′ ∈ B′ there is an x:σ ∈ B such that σ ≤E σ′.

ii) If B1, . . . , Bn are bases, then Π{B1, . . . , Bn} is the basis defined as follows:
x:1∩· · ·∩σm ∈ Π{B1, . . . , Bn} if and only if {x:σ1, . . . , x:σm} is the set of all statements

whose subject is x that occur in B1 ∪ . . . ∪ Bn.

Notice that if n = 0, then Π{B1, . . . , Bn} = ∅.

In the next definition we introduce the notion of used bases. The idea is to collect all types
assigned to term-variables that are actually used for the typed term-tree, but the collected
types need not occur in the original bases themselves.

Definition 2.9 i) The used bases of B 
E T:σ are inductively defined by:
a) σ ∈ Ts.

1) T ≡ x. Take {x:σ}.
2) T ≡ F (t1, . . . , tn). There are σ1. . . . ,σn such that for every 1≤ i≤n B 
E ti:σi. Let for

1≤ i≤n, Bi be a used basis of B 
E ti:σi.
Take Π{B1, . . . , Bn}.

b) If σ = σ1∩· · ·∩σn (n ≥ 0), then for every 1≤ i≤n B 
E T:σi. Let for every 1≤ i≤n, Bi be
a used basis of B 
E T:σi. Take Π{B1, . . . , Bn}.

ii) A basis B is used for T:σ with respect to E if and only if there is a basis B′ such that B′ 
E T:σ
and B is a used basis of B′ 
E T:σ.

Notice that in part (i.b), if n = 0, then σ = ω, and Π{B1, . . . , Bn} = ∅.

We will say ‘B is used for T:σ’ instead of ‘B is used for T:σ with respect to E ’. A used basis
for a statement T:σ is not unique, but the results of this paper do not depend on the actual
structure of such a basis, only on its existence. Thanks to the notion of used basis, we can give
a clear definition of a typeable rewrite rule and a typeable rewrite system. The condition ‘B is
used for Lhs:σ’ in definition 2.10 (i.a) is crucial. Just saying:

We say that Lhs → Rhs ∈ R with defined symbol F is typeable with respect to E , if there
are basis B, and type σ ∈ Ts such that: B 
E Lhs:σ and B 
E Rhs:σ,
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would give a notion of type assignment that is not closed under rewriting (i.e. does not satisfy
the subject reduction property), and is not a natural extension of the essential intersection
type assignment system for the λ-calculus. For an example of the first, take the rewrite system
I (x) → x, K (x,y) → x, F (I0) → I0, G (x) → F (x).

Take the environment E (G) = (5→ω→5)→6→6, E (F) = (3→3)→4→4, E (K) = 2→ω→2, E (I)
= 1→1. Take B = {x:(7→7)∩(5→ω→5)}, then B 
E G (x):6→6, and B 
E F (x):6→6. Notice that

E G (K0):7→7, but not 
E F (K0):7→7.

Therefore, a minimal requirement for subject reduction is to demand that all types assigned
to term-variables in the typed term-tree for the right hand side of a rewrite rule already
occurred in the typed term-tree for the left hand side. This is accomplished by restricting the
possible bases to those that contain nothing but the types actually used for the left hand side.

Definition 2.10 Let (Σ, R) be an ATRS, and E an environment.
i) We say that Lhs → Rhs ∈ R with defined symbol F is typeable with respect to E , if there are

basis B, type σ ∈ Ts, and an assignment of types to nodes and edges such that:
a) B is used for Lhs:σ and B 
E Rhs:σ.
b) In B 
E Lhs:σ and B 
E Rhs:σ, all nodes containing F are typed with E (F).

ii) We say that (Σ, R) is typeable with respect to E , if every r ∈ R is typeable with respect to E .

Condition (i.b) of definition 2.10 is in fact added to make sure that the type provided by the
environment for a function symbol F is not in conflict with the rewrite rules that define F. By
restricting the type that can be assigned to the defined symbol to the type provided by the
environment, we are sure that the rewrite rule is typed using that type, and not using some
other type. Since by part (i.b) of definition 2.10 all occurrences of the defined symbol in a
rewrite rule are typed with the same type, type assignment of rewrite rules is actually defined
using Milner’s way of dealing with recursion.

It is easy to check that if F is a function symbol with arity n, and all rewrite rules that define
F are typeable, then there are γ1, . . . , γn, γ such that E (F) = γ1→·· ·→γn→γ.

The use of an environment and part (i.c) of definition 2.6 introduces a notion of polymor-
phism into our type assignment system. The environment returns the ‘principal type’ for a
function symbol; this symbol can be used with types that are ‘instances’ of its principal type.

Example 2.11 Typed versions of some of the rewrite rules given in definition 2.3, under the
assumption that: E (S) = (1→2→3)→(4→2)→1∩4→3, E (K) = 5→ω→5, E (I) = 6→6.

�3
S:(1→2→3)→(4→2)→1∩4→3



�
x:1→2→3 �

y:4→2

��
z:1∩4

→

�3
Ap

����
���	

Ap


�

x:1→2→3
��

z:1

Ap


�

y:4→2
��

z:4

�5
K:5→ω→5


�

x:5
��

y

→ �5
x:5

�6
I:6→6

�
x:6

→ �6
x:6

Notice that the node containing y in the rule for K is not typed; its incoming edge is typed
with ω.
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Example 2.12 Typed versions of the the rewrite rules given in example 2.4, using: E (H) =
(1→2)→(3→4)∩1→4, E (S) = (7→8→9)→(10→8)→7∩10→9, E (I) = 11→11, E (F) = 6∩(5→6)∩5→6.

�(3→4)∩1→4
H:(1→2)→(3→4)∩1→4

�
S2:(1→3→2)→(1→3)→1→2



�
x:1→3→2

��
y:1→3

→
�(3→4)∩1→4

S2:((3→4)→3→4)→(1→3)→(3→4)∩1→4


�

I0:(3→4)→3→4
��
y:1→3

�6
F:6∩(5→6)∩5→6

�
x:6∩(5→6)∩5

→ �6
x:6

�6
F:6∩(5→6)∩5→6

�
x:6∩(5→6)∩5

→
�6

Ap


�

x:5→6
��

x:5

2.3 Soundness of operations

It is possible to show that the three operations on pairs (substitution, expansion, and lifting)
are sound on typed term-trees. For the operations of substitution and expansion it is also
possible to show that part (i.c) of definition 2.6 is sound in the following sense: if there is
an operation O (either a substitution or an expansion) such that O (E (F)) = σ, then for every
type τ ∈ Ts such that σ ≤S τ, the rewrite rules that define F are typeable with respect to the
changed environment E [F :=τ]. It is not possible to prove such a property for the operation
of lifting.

Theorem 2.13 Soundness of substitution. Let S be a substitution.
i) If B 
E T:σ, then S (B) 
E T:S (σ).

ii) If B is used for T:σ, then S (B) is used for T:S (σ).
iii) Let r: Lhs → Rhs be a rewrite rule typeable with respect to the environment E , and let F be the

defined symbol of r. Then r is typeable with respect to E [F :=S (E (F))].�

Theorem 2.14 Soundness of expansion. Let E be an expansion such that E (<B, σ>) = <B′, σ′>.
i) If B 
E T:σ, then B′ 
E T:σ′.

ii) If B is used for T:σ, then B′ is used for T:σ′.
iii) Let r: Lhs → Rhs be a rewrite rule typeable with respect to the environment E , and let F be the

defined symbol of r. If E (E (F)) = τ ∈ TS, then for every µ ∈ Ts such that τ ≤S µ, r is typeable
with respect to E [F :=µ].�

Notice that in part (iii) the relation ≤S is used, not ≤E .

Theorem 2.15 Soundness of lifting. If B 
E T:σ and L is a lifting , then L (B) 
E T:L (σ).�

Obviously not every lifting performed on a pair <B, σ> such that B is used for T:σ pro-
duces a pair with this same property. Since type assignment of rewrite rules is defined us-
ing the notion of used bases, it is clear that lifting cannot be a sound operation on rewrite
rules. This can also be illustrated by the rewrite system I (x) → x, F (I0) → I0, that is ty-
peable with respect to the environment E 1 (I) = 1→1, E 1 (F) = (2→2)→3→3. Notice that
(2→2)→3→3 ≤E (2→2)∩4→3→3, so <<∅, (2→2)→3→3>, <∅, (2→2)∩4→3→3>> is a lifting.
It is not possible to show that the rewrite rule that defines F is typeable with respect to
E [F := (2→2)∩4→3→3], since all types in (2→2)∩4 should be types for I.
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Combining the above results for the different operations, we have:

Theorem 2.16 i) If B 
E T:σ then for every chain C such that C (<B, σ>) = <B′, σ′>: B′ 
E T:σ′.
ii) If B is used for T:σ, and C is a chain that contains no lifting, then:

if C (<B, σ>) = <B′, σ′>, then B′ is used for T:σ′.
iii) Let r: Lhs → Rhs be a rewrite rule typeable with respect to the environment E , and let F be the

defined symbol of r. If C is a chain that contains no lifting, then: if C (E (F)) = τ ∈ TS, then for
every µ ∈ Ts such that τ ≤S µ, r is typeable with respect to E [F :=µ].�

3 The loss of the subject reduction property

By definition 2.2 (i), if a term T is rewritten to the term T′ using the rewrite rule Lhs → Rhs,
there is a subterm t0 of T, and a replacement R, such that LhsR = t0, and T′ is obtained
by replacing t0 by RhsR. The subject reduction property for this notion of reduction is: If
B 
E T:σ, and T can be rewritten to T′, then B 
E T′:σ.

This is of course an important property of reduction systems. To guarantee the subject
reduction property, we should accept only those rewrite rules Lhs → Rhs, that satisfy:

For all replacements R, bases B and types σ: if B 
E LhsR:σ, then B 
E RhsR:σ.

because then we are sure that all possible rewrites are safe.
Definitions 2.5, 2.6 and 2.10 define what a type assignment should be, just using the strategy

as used in languages like for example Miranda. Unfortunately, it is not sufficient to guarantee
the subject reduction property. Take for example the definition of H as in example 2.4, and the
following environment E 0 (H) = ((1→2)→3)→(1→2)→2, E0 (S) = (1→2→3)→(1→2)→1→3, E 0 (I)
= 1→1. The rule that defines H is typeable with respect to E0:

�(1→2)→2
H:((1→2)→3)→(1→2)→2

�
S2:((1→2)→1→3)→((1→2)→1)→(1→2)→3



�
x:(1→2)→1→3

��
y:(1→2)→1

→ �(1→2)→2
S2:((1→2)→1→2)→((1→2)→1)→(1→2)→2



�
I0:(1→2)→1→2

��
y:(1→2)→1

If we take the term H (S2 (K0, I0)) then it is easy to see that the rewrite is allowed, and that
this term will be rewritten to S2 (I0, I0). Although the first term is typeable with respect to E0:

�(4→5)→5
H:((4→5)→4→5)→(4→5)→5

�
S2:((4→5)→(4→5)→4→5)→((4→5)→4→5)→(4→5)→4→5



�
K0:(4→5)→(4→5)→4→5

��
I0:(4→5)→4→5

the term S2 (I0, I0) is not typeable with respect to E0 with the type (4→5)→5.
We should emphasize that the loss of the subject reduction property is not caused by the fact

that we use intersection types. The environment E 0 maps function symbols to Curry-types,
so even for a notion of type assignment based on Curry-types types are not preserved under
rewriting.
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In [4] and [2] two restrictions (variants) of the notion of type assignment of this paper are dis-
cussed for which a decidable and sufficient condition is formulated that rewrite rules should
satisfy in order to reach the subject reduction property.

The construction of those conditions is made using a notion of principal pairs; the condition
a rewrite rule should satisfy is that the principal pair for the left hand side term is also a pair
for the right hand side term. For the notion of type assignment defined in this section we are
not able to formulate this condition in a constructive way, since it is not clear how we should
define the principal pair for a term. This problem is overcome in [4] and [2] by defining a most
general unification algorithm for types and defining principal pairs using that algorithm. At
this moment there is no general unification algorithm for types in TS that works well on all
types, so we cannot take this approach.

For the notion of type assignment as defined in this paper the only result we can obtain
is to show that if a left hand side of a rewrite rule has a principal pair and using that pair
the rewrite rule can be typed, then rewriting using this rule is safe with respect to subject
reduction.

Definition 3.1 i) Let T ∈ T(F,X ). A pair <P, π> is called a principal pair for T with respect to E ,
if P 
E T:π and for every B, σ such that B 
E T:σ there is a chain C such that C (<P, π>)
= <B, σ>.

ii) The definition of a safe type assignment with respect to E is the same as the one for a type
assignment as defined in definition 2.10, by replacing condition (i.a) by:

<B, σ> is a principal pair for Lhs with respect to E , and B 
E Rhs:σ.
Then rewrite rule Lhs → Rhs is called a safe rewrite rule.

Notice that we do not show that every typeable term has a principal pair with respect to E ;
at the moment we cannot give a construction of such a pair for every term. But even with this
non-constructive approach we can show that the condition is sufficient.

Theorem 3.2 The condition is sufficient. Let r : Lhs → Rhs be a safe rewrite rule. Then for every
replacement R, basis B and a type µ: if B 
E LhsR:µ, then B 
E RhsR:µ.�

Future work

We intend to formulate a decidable condition rewrite rules should satisfy in order to obtain
the subject reduction property. In the near future characterizations of typeable rewrite systems
will be looked for, like for example normalizability of non-recursive typeable systems.
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