
Logical equivalence for subtyping object and recursive
types

(Theory of Computing Systems, 42(3):306-348, 2008)

Steffen van Bakel1 Ugo de’Liguoro2

1 Department of Computing, Imperial College, 180 Queen’s Gate, London SW7 2BZ, UK,
2 Dipartimento di Informatica, Università di Torino, Corso Svizzera 185, 10149 Torino, Italy,

deliguoro@di.unito.it

Abstract

Subtyping in first order object calculi is studied with respect to the logical semantics obtained
by identifying terms that satisfy the same set of predicates, as formalised through an assign-
ment system. It is shown that equality in the full first order ς-calculus is modelled by this
notion, which in turn is included in a Morris-style contextual equivalence.

Introduction

Subtyping is a prominent feature of the type-theoretic foundation of object oriented program-
ming languages. The basic idea is expressed by subsumption: any piece of code of type A can
masquerade as code of type B whenever A is a subtype of B, written A <: B.

In typed calculi, equations can be expressed between terms of the same type; since terms
may have several types because of subsumption, it is commonly postulated that if a = b : A (a
and b are equal at type A) and A <: B then a = b : B (but not vice-versa): call this equational
subsumption. In the realm of object calculi, object types are essentially interfaces, and subtyping
interface restriction. Therefore subsumption is justified by the intuition that any object which
is able to react to messages mentioned in A a fortiori will answer correctly to messages in
the smaller interfaces represented by its supertypes. Similarly, equational subsumption is
understood on the ground of context separability: a and b are contextually equivalent at type
A if both are typeable by A and no context with a hole of type A can separate them. This
provides an interpretation of subtyping: A <: B should hold if any pair of terms contextually
equivalent at type A cannot be separated at B.

This is semantically understood in two ways, according to the existing literature: either by
means of coercions, or by inclusion of partial equivalence relations (see [20] Ch. 10 for a gentle
introduction to these approaches, where coercions are called “conversion functions”, and PER
semantics “subset interpretation of types”).

According to coercion semantics introduced in [12], the relation A <: B is witnessed by the
existence of a definable function from A to B, coercing values of one type into the other.
Given that, each term and its type is translated into a term typeable in a system without sub-
typing at all. Since such a translation depends on the typing derivation of the original term, a
coherence theorem is needed to prove that different typing derivations yield equivalent trans-
lations. Object and recursive types are not the concern of [12]; unfortunately when dealing
with such form of polymorphic types the coercion approach has some serious disadvantages.
Indeed there is no clear interpretation for object-types coercions: these cannot be reduced
to function and (recursive) record types, for which coercion semantics can be easily defined,

Theory of Computing Systems, 42(3):306-348, 2008 2

because of the self-reference which is an essential feature of objects. Furthermore it is a term-
model semantics, where term complexity grows because of the translation step. Last but not
least, coercion semantics does not reflect the actual implementation practice of object-oriented
languages, where subtyping is just type casting which does not affect the object code.

PER semantics interprets types as binary relations over a structure of untyped realisers,
and terms as (equivalence classes of) realisers. In [13] subtyping was interpreted as relation
inclusion for the first time. To interpret object and recursive types, however, one needs to
ensure the existence of certain fixed points of type functors, which is a quite difficult task, as
the relevant functors are not necessarily continuous, not even monotonic. The problem has
been confronted by means of metrics and Banach fixed-point theorem (see [15, 6, 3, 14]), and by
restricting to the category of complete uniform PERs over a realizability structure which is an
inverse limit. Based on these, in [1] Ch. 14 a CUPER semantics of the ς-calculus is proposed,
and the soundness of the whole system studied in the book is established. Unfortunately the
adopted solution for modelling object types as (continuous) unions of fixed points of type
functors is not very natural and quite complex in nature. Hence the remark that “there are
obvious difficulties to extract from the (PER) models and justify a finitary programming logic”
of [6] applies a fortiori to the case of object-calculi, where the call for such a logic is compelling.

We propose a third approach which, in our view, can lead to a simpler logical framework
for reasoning about object oriented programs. It is based on the ideas of logical semantics
and domain logic [4]. In the latter perspective, the meaning of a term is determined by the
set of the predicates it satisfies, so that two terms are equivalent if they are interpreted by the
same set. To account for equivalence “at” a certain type A we relativize this form of absolute
indiscernibility to sets of predicates indexed over types, calling them languages. Hence a and b
are logically equivalent at type A if they satisfy the same set of predicates from the language
LA associated to A.

We treat three kinds of entities, namely terms, types and predicates, and define a formal
system to derive judgements of the shape a:A:σ. The system is built in such a way that, if
we forget about any one of these three kinds of entities, what remains is still a meaningful
assignment system. Indeed, if we forget about predicates we obtain the first order object
calculus called FOb1<:µ in [1], but for a minor difference (we do not use fold,unfold operators in
the term syntax, and consider as isomorphic all the unfoldings of a recursive type).

If instead we erase all types, we get a sort of “intersection type” assignment system for
the untyped ς-calculus (essentially that one used in [16] to characterise the convergence of
untyped ς-terms). The predicates system has features different from the type system: objects
are treated as records, deducing a predicate 〈�:σ→φ〉 about a single method labelled by �, that
can be put in conjunction with any other similar predicate, possibly with a different premise
of the arrow. This works because the meaning of a:〈�:σ→φ〉 is not that the self variable has
type σ; rather it claims that σ is a precondition of the method �, which yields a value a.�
satisfying the post-condition φ if σ holds for a. Therefore to conclude that a.�:φ one needs to
show that both a:〈�:σ→φ〉 and a:σ for some σ.

Semantically speaking, this is Kamin’s self-application interpretation of objects, accounting
for the interpretation of self reference in case of method call and of method overriding. Even-
tually, this produces the effect that converging terms are characterised by predicates, whereas
types that ensure, for example, error freeness (no “message not understood” error can oc-
cur with typed terms at run time), cannot discriminate diverging terms. We claim that the
resulting system is a kind of extended Curry-style assignment system, determining a model
for the ς-calculus, which is an extension of the filter model for the pure Lambda Calculus of
[11]. This depends on the fact that a notion of implication is defined over predicates which
is written σ ≤ τ. This way we build a logic whose filters of formulae provide a denotation to

Theory of Computing Systems, 42(3):306-348, 2008 3

terms, coinciding with the sets of their properties as expressed by the logical formulae (see
[4], where this is framed as a form of Stone duality between categories of semi-lattices and of
Scott domains).

The third possibility is to forget about terms; then we interpret the judgement A:σ as: “the
predicate σ makes sense of terms of type A”, namely σ ∈ LA for closed A. This logic of
types, again inspired to domain logic, is our tool to treat object and recursive types. The
formal system formalises the concept that both object and recursive types are some kind of
fixed point, which is constructed starting with the trivial predicate ω, and iterating the proper
rules determined by the structure of type expressions. We observe that this definition of the
languages of object and recursive types is inductive, and that it makes sense without any
consideration about the invariance of the object types nor (and more importantly) about the
variance of the occurrences in A of the type variable X within the recursive type µX.A.

The importance of the interplay between these assignment systems (actually integrated in a
unique system) emerges when treating program equivalence. The system induces an equiv-
alence relation a � b : A, which, when restricted to closed terms and types, expresses: the
sets of predicates of type A that can be assigned to a and to b coincide. Observing that the
derivability of a:A:σ always implies that σ ∈ LA, this formalises the above idea of relativizing
logical semantics to types.

To verify that this is a sound theory of the first order object calculus, we prove that �t a↔ b : A
(the equational theory of FOb1<:µ) implies that a � b : A, which in turn implies that a �OA b,
namely that a and b cannot be separated by any context : A � C[] : K of any ground type K.
This Morris-style contextual equivalence is called the observational equivalence in [18] and is a
maximal consistent theory of the first order object calculus.

To establish the latter results we have to relate our theory of predicates assignment to terms
and types to the theory of subtyping. First we establish that if A <: B then LA ⊇ LB: hence
the logical theory associated to A is finer than the theory of B, so that any pair of terms which
are indiscernible according to A, are such in the coarser theory of B but not vice-versa. This
is indeed our interpretation of subtyping and equational subsumption.

To prove the inclusion of the logical equivalence in the observational equivalence we use a
realizability interpretation of predicates instead of types. This is not surprising since the key
property of convergence is not captured by the type system, but only by the predicate system,
as remarked above. We think that the logical equivalence is the theory of a model of the typed
calculus, which can be constructed as a filter model. We do not enter into the details of this
construction in the present paper, and shortly comment on it in Section 7.

Overview of contents

The paper is organised as follows: in Section 1 we introduce our variant of the FOb1<:µ system.
We define predicates, their logic and assignment to types in Section 2. The assignment system,
which essentially puts together the typing system with the logic of predicates is defined and
studied in Section 3. Basic soundness results of the assignment system with respect to the
operational semantics are established via subject reduction and (typed) subject expansion in
Section 4. In Section 5 we recall the equational theory of FOb1<:µ from [1]; we then formally
define the logical equivalence and show that the former is included in the latter. Finally,
in Section 6, we define the observational semantics after [18] and prove the inclusion of the
logical semantics in it. We eventually discuss the results presented in the paper, and relate
our work to the literature on the subject in Section 7.

Theory of Computing Systems, 42(3):306-348, 2008 4

1 The first order object calculus

We consider a first order object calculus which is a variant of the calculus called FOb1<:µ
in [1]. The difference between that version and the one we treat here is that we consider
recursive types and their unfoldings as equivalent with respect to subtyping. Consequently,
we do not have any syntax to distinguish among the folded and unfolded version of the same
term fold(A, a) and unfold(a), which will be written simply a. Indeed semantically they are all
equivalent expressions in [1], where fold and unfold do not affect the computational behaviour
of terms and are used just to ensure the existence of a minimal type of any given term: a
useful property for type reconstruction algorithms which is not the present concern, however.

For the sake of readability the calculus is introduced in two steps: we first define pre-types
A, pre-terms a and pre-environments E by means of grammars. These are not necessarily
well-formed types, terms and environments, as the latter notions are defined via derivation
systems. We will in fact present a number of type assignment systems that are interdependent
each other, whose statements (judgements and sequents) have the intended meaning:

E �t
 E is a well formed environment (an environment for short)
E �t A A is a type within the environment E;

E �t A <: B A is a subtype of B within the environment E;
E �o a : A a is a term of type A in the environment E;

Definition 1.1 (Pre-Types, Pre-Terms, Pre-Environments) Let K be a countable set of type
constants ranged over by K, and X a denumerable set of type variables ranged over by X. Let
L = {�i | i ∈ IN} be a denumerable set of labels; let C a countable set of term constants ranged
over by c and V a denumerable set of term variables ranged over by x. The syntax of pre-types,
pre-terms and pre-environments is defined by the following grammar:

Pre-Types: A, B ::= X | K | Top | [�i:Bi
(i ∈ I)] | A→B | µX.A

Pre-Terms: a,b ::= x | c | λxA.a | a(b) | [�i = ς(xA
i)bi

(i ∈ I)] | a.� | a.� ↼↽ ς(xA)b
Pre-Contexts: E ::= ∅ | E, X | E, X <: A | E, x:A

where I ranges over finite subsets of IN, and �i,�∈ L.

The notion of free and bound occurrences of variables, as well as substitution, are defined
as usual.

Definition 1.2 (Free and bound, Substitution) We say that X is free in A if it does not occur
within the scope of µX; it is bound otherwise. Similarly, x is free in a if it does not occur within
the scope of some λxA nor of some ς(xA); it is bound otherwise. We use fv(A) and fv(a) to
denote the sets of free variables occurring in A and a respectively; bv(A) and bv(a) denote the
sets of the bound variables.

By A{X← B} and a{x← b} we denote the substitution of X and x by B and b in A and a
respectively, up to renaming of bound variables to avoid variable clashes.

Syntactic equality, up to the renaming of bound variables, is denoted by ≡.

Definition 1.3 (Terminology) i) An object pre-term has the shape [�i = ς(xA
i)bi

(i ∈ I)], namely
a finite collection of methods ς(xA

i)bi labelled by distinct �i; the actual order of methods
is immaterial, which justifies the set-theoretic notation (i ∈ I);

ii) In �i = ς(xA
i)bi, the variable xA

i is the self variable, and bi is the body of the method �i; if
xi
∈ fv(bi) then �i is more properly seen as a field;

Theory of Computing Systems, 42(3):306-348, 2008 5

iii) a.� denotes the invocation of method � of the object a, if a evaluates to an object having
such a method;

iv) a.� ↼↽ ς(xA)b is the overriding of method � in the object to which a evaluates, if any;
v) Functional abstraction and application are represented as usual in typed λ-calculi, via

λxA.a and a(b).

Term-operational semantics does not depend on types, and can be defined directly over
pre-terms.

Definition 1.4 (Reduction) i) Evaluating contexts are term expressions with a hole [], and
are generated by the grammar:

E [] ::= | E [].� | E [].� ↼↽ ς(xA)b | E [](a).
We will write E [a] for filling the hole [] in E with a.

ii) The one-step reduction relation on terms is the binary relation defined by the following
rules:

[�i = ς(xAi
i)bi

(i ∈ I)].�j −→ bj{xj← [�i = ς(xAi
i)bi

(i ∈ I)]}
[�i = ς(xAi

i)bi
(i ∈ I)].�j ↼↽ ς(xA)b −→ [�i = ς(xAi

i)bi
i ∈ I\j,�j = ς(xA)b]

(λxA.a)(b) −→ a{x← b}
a −→ b ⇒ E [a] −→ E [b]

where in the first two rules j ∈ I is required.

iii) The relation ∗−→ is the reflexive and transitive closure of −→ .

The reduction relation is essentially the same in [18]. It is trivially confluent. Even relaxing
Definition 1.4 and taking the closure of −→ under arbitrary contexts would not destroy
confluence, as can be shown e.g. by adapting the Martin-Löf technique for proving the Church-
Rosser theorem for the λ-calculus. As for typed λ-calculi with recursion (e.g. PCF), typed
terms do not necessarily have a normal form: ΩB ≡ [� = ς(xA)x.�].� is typeable by B if A is
any object type [�:B, . . .], and it is such that ΩB −→ΩB.

In [1], Ch. 6 the operational semantics of the object calculi is defined by means of a big-step
predicate a� v, where a is a closed term, and v is a value. Values are defined as follows:

Definition 1.5 (Values) A value is a closed pre-term belonging to the set defined by the gram-
mar:

v ::= c | λxA.a | [�i = ς(xA
i)bi

i∈I].

It is easy to see that a� v if and only if a ∗−→ v. The reduction relation is more general since
it is defined for any term (possibly with free variable occurrences). It is even true that normal
forms are not necessarily values, but if a is typeable (i.e. a term), having a normal form b, then
b is value, as follows by Theorem 1.17 below and the fact that closed normal forms which are
not values are not typeable.

We just stress that, consistent with the definition of� in [1], in the clause:

[�i = ς(xAi
i)bi

(i ∈ I)].�j ↼↽ ς(xA)b −→ [�i = ς(xAi
i)bi

i ∈ I\j,�j = ς(xAj)b]

a renaming of the self type of the bound variable xA into xAj occurs. This is immaterial in
the fragments of the ς-calculus without subtyping, but it is needed in the presence of type
subsumption since if A = [�i:Bi

i∈I], and A <: C, then we can give type C to any term of type A

Theory of Computing Systems, 42(3):306-348, 2008 6

Figure 1 Contexts and Types

(Env ∅) :

∅ �t

(Type Const) :
E �t

E �t K

(Env X) :
E �t

(X
∈ dom(E))
E, X �t

(Type X) :

E′, X, E′′ �t

E′, X, E′′ �t X

(Type Top) :
E �t

E �t Top

(Type Object) :

E �t Bi (∀i ∈ I)

E �t [�i:Bi
(i ∈ I)]

(Type Arrow) :
E �t A E �t B

E �t A→B

(Type Rec) :
E, X �t A

E �t µX.A

and therefore update a method in an object of type A with ς(xC)b; but the result of (naively)
performing the update saving the self type C is no longer typeable, as the selves of the methods
now have different types (see below rule (Val Object) for object typing).

The simply typed λ-calculus is a sub-calculus of the Object Calculus: since the only eval-
uation contexts dealing with abstraction and application have the shape E [](a), it is a lazy
λ-calculus, in the sense of [5]. Also objects are “lazy”, in the sense that the bodies of the
methods are not reducible before selection.

We adopt the alternative notation a ⇓ v for a� v, as it is commonly used in the literature of
λ-calculus and related systems.

Definition 1.6 (Convergence) Given any closed term a we say that it converges to the value
v, written a ⇓ v, if a ∗−→ v. Moreover we say that a is convergent, written a ⇓ , if there exists a
value v such that a ⇓ v.

We will now repeat the construction of the definition of type assignment.

Definition 1.7 (Terminology (continued)) i) A pre-type of the shape [�i :Bi
(i ∈ I)] will be

used for an object whose methods �i have return type Bi;
ii) A→B is the usual functional type and µX.A is a recursive type;

iii) Top is the maximal type w.r.t. the subtyping relation <:.

The notions of inference rule and derivation are as usual. As in [1], we will use a short-hand
for rules, and write for example (where I = {1, . . . ,n})

E, xi:A �o bi : Bi (∀i ∈ I)

E �o [�i = ς(xA
i)bi

(i ∈ I)] : A
for

E, x1:A �o b1 : B1 . . . E, xn :A �o bn : Bn

E �o [�i = ς(xA
i)bi

(i ∈ I)] : A

Definition 1.8 (Pre-environment) A pre-environment E is defined via the grammar:

E ::= ∅ | E, X | E, X <: A | E, x:A

where X is a type variable, A a pre-type, x a term variable.
The domain of a pre-environment E is the set of type and term variables occurring in E, and

is defined by:
dom(∅) = ∅,

dom(E, X) = dom(E, X <: A) = dom(E) ∪ {X},
dom(E, x:A) = dom(E) ∪ {x}.

Although pre-environments are formally sequences, by abuse of notation we shall treat

Theory of Computing Systems, 42(3):306-348, 2008 7

Figure 2 Subtyping

(Sub Refl) :
E �t A

E �t A <: A

(Sub Top) :
E �t A

E �t A <: Top

(Sub Trans) :
E �t A <: B E �t B <: C

E �t A <: C

(Sub X) :

E′, X <: A, E′′ �t

E′, X <: A, E′′ �t X <: A

(Env X<:) :
E �t A

(X
∈ dom(E))
E, X <: A �t

(Type X<:) :

E′, X <: A, E′′ �t

E′, X <: A, E′′ �t X

(Sub Object) :

E �t Bi (∀i ∈ I)
(J ⊆ I)

E �t [�i:Bi
i ∈ I]<: [�i:Bi

i ∈ J]

(Sub Arrow) :

E �t A′ <: A E �t B <: B′

E �t A→B <: A′→B′

(Sub Rec1) :

E �t µX.A E �t A{X← µX.A}
E �t µX.A <: A{X← µX.A}

(Sub Rec2) :

E �t µX.A E �t A{X← µX.A}
E �t A{X← µX.A}<: µX.A

(Sub Rec3) :
E �t µX.A E �t µY.B E,Y, X <: Y �t A <: B

E �t µX.A <: µY.B

them as sets and write X ∈ E, X <: A∈ E or x:A∈ E to mean that X, X <: A and x:A occur as
elements of the sequence E respectively.

Definition 1.9 (Judgements and sequents) A type judgement has one of the forms
, A, A <: B,
or a : A, where A and B are pre-types and a is a pre-term. A type sequent has the form E � Θ
where E is a pre-environment and Θ is a type judgement.

Definition 1.10 (The Typed Object Calculus) A sequent E � Θ is derivable in the calculus of
objects if there exists a derivation whose inferences are instances of the rules in figures 1, 2
and 3, such that E � Θ appears in the bottom line.

We say that E is an environment, A is a type in the environment E and a a term (of type A) in
the environment E, if E �t
, E �t A and E �o a : A are derivable respectively.

We will write D :: E � Θ when D is a derivation whose conclusion is the sequent E � Θ,
and will write E � Θ if there exists a derivation D such that D :: E � Θ, i.e. this sequent is
derivable.

From now on, when dealing with environments, types and terms, we will assume they are
well formed.

Remark 1.11 i) For reasons of simplicity we assume that term constants have always constant
(and ground) types. These types are just implicitly assumed, and we do not record them
anywhere in the syntax.

ii) By comparing rules from figures 1 and 2 it is clear that E, X <: Top �t
 is derivable if and
only if E, X �t
 is derivable. Hence we will omit rule (Type Rec<:) of [1], since it can be
replaced by (Type Rec).

iii) Rules (Sub Rec1) and (Sub Rec2) imply that µX.A and A{X← µX.A} are isomorphic,

Theory of Computing Systems, 42(3):306-348, 2008 8

which, as noted above, is a departure from system FOb1<:µ. Consequently, there are
no fold(A, a) or unfold(a) pre-terms, nor their corresponding typing rules. The original rule
(Sub Rec) is our rule (Sub Rec3). This implies the loss of the minimal type property: it is
not true that any well-formed (and typed) term has a minimal type w.r.t. <:. This is a
problem when designing a type inference algorithm; rather it is the choice of making the
syntax more akin to its intended meaning in a foundational setting. Concerning our pred-
icate assignment system (see Section 2) the choice has some minor consequences: if one
does not admit the law of isomorphism of recursive types, as we did in [10], then the only
technical problem is that a and fold(A, a) become distinct entities of types A{X← µX.A}
and µX.A respectively; to catch such a distinction in [10] we introduced predicates of the
shape µ(σ) such that if σ ∈ LA{X← µX.A} then µ(σ) ∈ LµX.A. The relevant results in the
paper still hold, with the necessary changes in the predicate interpretation (see Definition
3.3).

The following lemmas state some basic properties of the system. We write E �t A =: B to
abbreviate E �t A <: B and E �t B <: A.

Lemma 1.12 i) If E �t A and X
∈ dom(E) then E �t A =: µX.A;
ii) if E �t K <: A for ground K, then E �t A =: K;

iii) if E �t A <: B→C then there exist A′, A′′ such that E �t A =: A′→A′′ and E �t B <: A′ and
E �t A′′<: C;

iv) if E �t A <: [�i:Bi
(i ∈ I)] then there exists some J ⊇ I such that �t A =: [�j :Bj

(j ∈ J)].

Proof: Immediate by inspection of rules. Observe that if E �t A and X
∈ dom(E) then X
∈ fv(A);
hence E �t µX.A =: A by (Sub Rec1), (Sub Rec2), since A ≡ A{X← µX.A} in this case.

Lemma 1.13 (Type Generation Lemma)
i) If E �t A then E �t
;

ii) if E, X �t B, then X
∈ dom(E);
iii) if E �t X then X ∈ dom(E);
iv) if E �t A then fv(A) ⊆ dom(E);
v) if E �t A <: B then both E �t A and E �t B;

vi) if E′, X <: A, E′′ �t
 then E′ �t A;
vii) if E �t [�i :Bi

(i ∈ I)] then E �t Bi for all i ∈ I;
viii) if E �t A→B then both E �t A and E �t B;

ix) if E �t µX.A then E, X �t A;
x) if E �t [�i :Bi

(i ∈ I)] then E �t Bi for all i ∈ I.

Proof: Straightforward.

The following is easy to show:

Lemma 1.14 (Typed Terms Generation Lemma)
i) if E �o a : A then E �t A;

ii) if E �o a : A and x ∈ fv(a) then x ∈ dom(E);
iii) If E �o c : C and c is a constant of some ground type K, then C ≡ K;
iv) If E �o x : C then there exists an A such that x:A occurs in E and E �t A <: C;

v) If E �o [�i = ς(xAi
i)bi

(i ∈ I)] : C, then there exist A≡ [�i:Bi
(i ∈ I)] such that E �t A <: C and, for

Theory of Computing Systems, 42(3):306-348, 2008 9

Figure 3 Typed terms

(Val Const) :
E �t

(for c of type K)
E �o c : K

(Env x) :
E �t A

(x
∈ dom(E))
E, x:A �o

(Val x) :

E′, x:A, E′′ �t

E′, x:A, E′′ �o x : A

(Val Fun) :
E, x:A �o a : B

E �o λxA.a : A→B

(Val Appl) :
E �o a : A→B E �o b : A

E �o a(b) : B

(Val Subsumption) :
E �o a : A E �t A <: B

E �o a : B

In the subsequent rules, let A≡ [�i :Bi
i ∈ I]:

(Val Object) :

E, xi :A �o bi : Bi (∀i ∈ I)

E �o [�i = ς(xA
i)bi

(i ∈ I)] : A

(Val Select) :
E �o a : A

(j ∈ J)
E �o a.�j : Bj

(Val Update) :
E �o a : A E, x:A �o b : Bj

(j ∈ J)
E �o (a.�j ↼↽ ς(xA)b) : A

all i ∈ I, A ≡ Ai and E, xi:A �o bi : Bi;
vi) If E �o a.� : C then there exists an A≡ [. . . ,�:B, . . .] such that E �t A, E �t B <: C and E �o a : A;

vii) If E �o (a.� ↼↽ ς(xD)b) : C then E �t D <: C and there exists an A ≡ [. . . ,�:B, . . .] such that
E �t A <: D, E �o a : A and E, x:D �o b : B;

viii) If E �o λxA.a : C, then there exists B such that E, x:A �o a : B, and E �t A→B <: C;
ix) If E �o a(b) : C, then there exist A, B such that E �o a : A→B, E �o b : A and E �t B <: C.

Proof: By induction on the structure of derivations.

The following property is standard, and allows to generalise derivable results.

Lemma 1.15 (Weakening)
i) if E �t A and X
∈ dom(E), then E, X �t A; if also E �t C then E, X <: C �t A;

ii) if E �t A <: B and X
∈ dom(E) then E, X �t A <: B;
iii) if E �t A <: B, X
∈ dom(E) and E �t C then E, X <: C �t A <: B;
iv) if E �o a : A, E �t B and x
∈ dom(E), then E, x:B �o a : A.

Proof: By induction on derivations. We just remark that, e.g. in case of (i), if E �t A then E �t

by Lemma 1.13, so that E, X �t
 because X
∈ dom(E) is the side condition of rule (Env X).
It follows that the derivation of E, X �t A is essentially the same as the given derivation of
E �t A, but for the sub-derivation of the sequent E, X �t
. In case of E, X <: C �t A we need
the hypothesis E �t C because of the premise of rule (Env X<:). Note that X
∈ dom(E) and
E �t C imply X
∈ fv(C) by (iv) of Lemma 1.13.

The proofs of the other items are similar.

Lemma 1.16 (Substitution Lemma for �o) If E, x:A �o b : B and E �o a : A then E �o b{x← a} : B.

Proof: By induction on the structure of derivations using Lemma 1.14. The proof is similar to
that of Lemma 4.2.

Using Lemma 1.16, we can prove the following theorem:

Theory of Computing Systems, 42(3):306-348, 2008 10

Theorem 1.17 (Subject Reduction for �o) If E �o a : A and a −→ b, then E �o b : A.

Proof: By induction over the definition of −→ and using Lemma 1.14; the proof is similar to
that of Theorem 4.3 but simpler.

Theorem 1.17 is the most relevant result about typed ς-calculus in [1]. It implies that no
“message not understood” error can occur in the evaluation (formally in the reduction) of
any well-typed term (a term in our terminology). In fact, for such an error to occur in the
reduction of a it should be the case that a ∗−→ b.� or a ∗−→ (b.� ↼↽ ς(xA)d), where b is some
object not including a method labelled by �. But since such a b.� or b.� ↼↽ ς(xA)d has no type,
because of (v), (vi) and (vii) of Lemma 1.14, Theorem 1.17 says that a has no type as well.

2 Typed Predicates and Languages

In this section we will introduce the syntax of the predicates and an assignment system to syn-
tactically derive judgements associating predicates to types under the assumption of similar
judgements about a finite set of type variables.

Term properties are formalised by predicates, which in turn are classified by types. Predi-
cates are transparently intersection types for a λ-calculus with records, and come from [16].
The essential difference is that the set of predicates is stratified into languages (see [17, 9]), in
such a way that whenever a predicate can be deduced for a (closed) term a, it belongs to the
language LA associated with the (closed) type A.

Much in the style of [8], in this section we will present a notion of strict intersection types,
called strict predicates here. Using these, we will define in the next section a notion of predicate
assignment, which will consists basically of associating a predicate to a typed term.

Definition 2.1 (Predicates) The set P of predicates, ranged over by σ,τ, . . . and its subset Ps
of strict predicates ranged over by φ,ψ, . . ., are defined through the grammar:

φ ::= κ | ω | (σ→ φ) | 〈�:φ〉
σ,τ ::= φ | (σ∧τ)

where κ ranges over a countable set of atoms, and �∈ L is any (method) label.

Since ∧ is commutative and associative w.r.t. the equivalence introduced below in Definition
2.2, we omit brackets and write

∧
i∈Iσi for σ1∧ . . .∧σn. Also, rather than 〈�1:φ1〉∧ · · · ∧〈�n:φn〉

where the �i are pair-wise distinct, we will write 〈�i:φi
(i ∈ I)〉. By definition, any predicate

σ ∈ P is such that σ ≡ ∧
i∈I φi for some non empty finite I and certain φi ∈ Ps. We shall use

φ,ψ possibly with apices and indices for elements of Ps, while σ,τ ∈ P ⊇ Ps (with similar
decorations) may be strict or not.

Predicates are strict intersection types in the sense of [7, 8] but for the fact that the type
constant ω is no longer treated as the empty intersection, which allows for occurrences of
ω at the right of arrows. Also record predicates 〈�:φ〉 are added. With respect to ordinary
intersection types, which have been introduced by several authors in a series of papers (see
e.g. [8] for references), the occurrence of intersection ∧ is not allowed at the right of an arrow;
this is a technical choice and a departure from [9], making the proof theory of the system more
manageable, since it allows for a more syntax directed treatment of the assignment system,
without loss of expressivity.

Atomic predicates κ are intended to describe elements of atomic types in the domain of
interpretation, but they can be used also to denote subsets of such values (e.g. the odd or even

Theory of Computing Systems, 42(3):306-348, 2008 11

integers in the interpretation of Int), allowing for a limited form of abstract interpretation.
σ→φ is the property of functions sending elements satisfying σ into elements satisfying φ.
〈�:φ〉 is the property of records having values that satisfy φ associated with the field �. Predi-
cates ω and σ∧τ mean ‘truth’ and ‘conjunction’ respectively. It should be noted that arbitrary
conjunctive predicates like (σ→φ)∧〈�:ψ〉 are allowed by the above definition, although never
derived for any type nor for any term by the assignment systems.

To build a logic of predicates we need a notion of implication, written σ ≤ τ (read as: “σ
implies τ”), which is a reflexive and transitive relation on predicates, as defined below. Also,
as in [8], but differently w.r.t. [7], we define ≤ to be contra-variant in arrow types.

Definition 2.2 (Predicate pre-order) The relation ≤ over predicates is defined as the last
pre-order such that for any σ,τ ∈ P and φ,ψ∈ Ps:

i) σ ≤ ω;
ii) (σ∧τ) is the meet of σ and τ;

iii) (σ→ω)≤ (ω→ω);
iv) σ ≥ τ,φ ≤ ψ ⇒ (σ→φ) ≤ (τ→ψ);
v) φ ≤ ψ ⇒ 〈�:φ〉 ≤ 〈�:ψ〉, for any �∈ L.

Finally σ = τ ⇐⇒ σ≤ τ≤ σ, and we write σ < τ if σ ≤ τ and σ
= τ. A predicate is trivial if it
is equivalent to ω.

The relation ≤ differs from that considered in [11], in that there ω→ω = ω, whereas here
we only allow ω→ω < ω. This is natural in the present context of lazy evaluation, where
an abstraction should always have a conjunction of arrow predicates, hence different from ω,
even if it does not return a result. Since strict intersection types are essentially representatives
of equivalence classes of type in [11], in [8], ω→ω is not a type; any term typeable by that
type in [11] is typeable only by ω in [8].

Lemma 2.3 For any σ,τ ∈ P , and φ,ψ∈ Ps:
i) the connective ∧ is monotonic w.r.t. ≤;

ii) σ is trivial if and only if σ ≡ ∧
i∈I ω for any (finite) I;

iii) σ→φ ≤ ω→ω and 〈�:φ〉 ≤ 〈�:ω〉 for any � ∈ L;
iv) I ⊇ J,∀j ∈ J. φj ≤ ψj ⇒ 〈�i:φi

i∈I〉 ≤ 〈�j:ψj
j∈J〉.

Proof: To see (i) let σ ≤ σ′ and τ ≤ τ′; then by the definition of ∧ as the meet w.r.t. ≤ we have
that σ∧τ ≤ σ ≤ σ′ and σ∧τ ≤ τ ≤ τ′, which implies that σ∧τ ≤ σ′∧τ′.

By inspection of the axioms of ≤ it is evident that if ω
≡ φ ∈ Ps then φ
= ω; hence (ii)
follows by the fact that σ ≡ ∧

i∈I φi for some φi ∈ Ps and that if either σi
= ω for i = 1,2, then
σ1∧σ2
= ω for any σi.

The proof of (iii) is straightforward. About (iv) we note that 〈�i:φi
i∈I〉 ≡ ∧

i∈I 〈�i:φi〉, and
that the meet operation ∧ is monotonic w.r.t. ≤ (part (i) of this Lemma).

The first part of this lemma implies that to be a trivial predicate is decidable. The subsequent
part says that ω→ω and 〈�:ω〉 are the largest non trivial predicates among arrow and record
predicates (with a certain label �) respectively. The last part claims that, with respect to ≤,
record predicates mirror record subtyping in width and in depth.

Lemma 2.4 i) If σ≤ τ→φ, then there are I and σi,ψi for every i ∈ I, such that σ =
∧

i∈I(σi→ψi) and
there exists J ⊆ I such that both

∧
j∈J σj ≥ τ and

∧
j∈J ψj ≤ φ;

Theory of Computing Systems, 42(3):306-348, 2008 12

Figure 4 Predicates to Types Assignment System

(Env ∅) :

∅ �pt

(Env X) :
∆ �pt

(X
∈ dom(∆))
∆, X:σ �pt

(Env X<:) :
∆ �pt A : τ

(X
∈ dom(∆),σ≤ τ)
∆, X:σ <: A �pt

(Type Const) :
∆ �pt

∆ �pt K:κ

(Type X) :

∆′, X:σ,∆′′ �pt

(σ ≤ φ)

∆′, X:σ,∆′′ �pt X:φ

(Type X<:) :

∆′, X:σ <: A,∆′′ �pt

(σ ≤ φ)

∆′, X:σ <: A,∆′′ �pt X:φ

(Type Arrow) :
∆ �pt A:σ ∆ �pt B:φ

∆ �pt A→B:σ→φ

(Type Object), A≡ [�i:Bi
(i ∈ I)] :

∆ �pt A:σ ∆ �pt Bj:φ
(j ∈ I)

∆ �pt A:〈�j:σ→φ〉
(Type Rec) :

∆ �pt µX.A:σ ∆, X:σ �pt A:φ

∆ �pt µX.A:φ

(ω) :

∆ �pt
 ∆̂ �t A

∆ �pt A:ω

(∧) :

∆ �pt A:φi (∀i ∈ I)

∆ �pt A:
∧

i∈Iφi

ii) if σ≤ 〈�j:ψj
j∈J〉 then there exists I ⊇ J and φi for every i ∈ I, such that σ = 〈�i:φi

i∈I〉 and φj ≤ ψj
for all j∈ J;

iii) For all σ,τ, σ≤ τ if and only if there are σi (i ∈ I),τj (j ∈ J) such that σ =
∧

i∈Iσi, τ =
∧

j∈Jτj,
and, for every j∈ J, there is an i ∈ I such that σi ≤ τj.

Proof: By induction on the definition of ≤ (2.2). Note that the statements would become false
with ≡ in place of = since equation σ∧ω = σ trivially holds for any σ.

Definition 2.5 (Predicates Contexts)
i) Predicate pre-environments are defined by the following grammar:

∆ ::= ∅ | ∆, X:σ | ∆, X:σ <: A

where X is a type variable, σ is a predicate, and A is a pre-type.
ii) By ∆̂ we denote the pre-environment E obtained from ∆ by erasing all predicates:

∅ ≡ ∅,
∆, X:σ ≡ ∆̂, X,

∆, X:σ <: A ≡ ∆̂, X <: A.

Set dom(∆) = dom(∆̂).
iii) A predicate environment is a predicate pre-environment ∆ such that ∆ �pt
 is derivable in

the system of Figure 4, which we call the predicates to types assignment system.
iv) We extend the relation ≤ as defined on predicates to predicate environments by: ∆≤ ∆′

if and only if, for every X:σ′ ∈ ∆′ or X:σ′ <: A∈ ∆′ there exists X:σ∈ ∆ or X:σ <: A∈ ∆
respectively, such that σ ≤ σ′.

Definition 2.6 (Assignment of Predicates to Types: Languages) Let ∆ be a predicate envi-
ronment, A a type and σ a predicate. We write ∆ �pt A : σ if this statement can be derived
using the rules of Figure 4.

Theory of Computing Systems, 42(3):306-348, 2008 13

Given a closed type A we define the language of A as the set LA = {σ∈ P | ∅ �pt A :σ}.

Notice that, in the definition of the system as in Figure 4, σ,τ ∈ P while φ∈ Ps: otherwise
one could assign to types predicates which are not in P at all. As stated in Definition 1.1,
the basic type K in rule (Type Const) ranges over a countable set K of type constants: the
assignment of the atoms κ to their types K is assumed to be fixed by a signature we do not
make explicit.

As it is apparent from Definition 2.6, we are essentially interested in closed types and their
languages. The reason why we introduce environments ∆ in the system is for a proper han-
dling of assumptions of predicates assigned to type variables, which may occur in recursive
types. This parallels the usage of environments E in the type system for �t .

The logical interpretation of types we are proposing is as collections of predicates, closed
under conjunction (by rule (∧)) and logical implication (by the admissibility of rule (≤) in
Lemma 2.14): that is types are seen as propositional theories.

Since predicates are properties of terms, which in turn are polymorphic-typed entities, the
soundness criterion we have in mind for the judgements A:σ is that there exists some term
of type A satisfying σ: this is what we mean by saying that σ makes sense of entities of type
A. We observe that this is the very departure of the present work from the endogenous logic
of [4]: while there the logical interpretation of polymorphism is not considered (but for the
limited case of recursive types), so that the logical and denotational interpretations of non
isomorphic types are pair-wise disjoint, the present construction allows for proper inclusions
and non-empty intersections of languages.

Example 2.7 Let A ≡ [�0:Int,�1:Int], and suppose that O,E∈ LInt are the predicates of being
odd and even integer respectively. Then we can derive �pt A : 〈�0:ω→O〉 as follows (while
omitting some obvious inferences):

∅ �pt
 �t A
(ω)�pt A : ω �pt Int : O

(Type Object)�pt A : 〈�0:ω→O〉
Once this is given we can derive more complex statements like:

�pt A : 〈�0:ω→E〉
�pt A : 〈�0:ω→O〉 �pt Int : O

(Type Object)
�pt A : 〈�1:〈�0:ω→O〉→O〉

(∧)�pt A : 〈�0:ω→E,�1:〈�0:ω→O〉→O〉
where the derivation of �pt A : 〈�0:ω→E〉 is similar to that of �pt A : 〈�0:ω→O〉.

The predicate 〈�0:ω→E,�1:〈�0:ω→O〉→O〉 is satisfied by any object having at least methods
labelled by �0 and �1 (that we identify with the respective methods), where �0 returns an even
number, no matter which is the actual state of the object; �1 returns and odd integer provided
that �0 does. This makes sense, however, and so it is not contradictory, since the second
conjunct of the predicate is only a conditional. Moreover, this is essential for handling method
overriding: see Example 4.4.

Theory of Computing Systems, 42(3):306-348, 2008 14

Concerning recursive types, consider the following derivation:

�t µX.X→X
(ω)�pt µX.X→X : ω

X:ω �pt X : ω X:ω �pt X : ω
(Type Arrow)

X:ω �pt X→X : ω→ω
(Type Rec)�pt µX.X→X : ω→ω

From this it is then not difficult to see that (ω→ω)→(ω→ω)∈ LµX.X→X; but also the unbal-
anced unfolds (on the predicate side) (ω→ω)→ω and ω→(ω→ω) are in LµX.X→X, e.g.:

�pt µX.X→X : ω→ω

X:ω→ω �pt X : ω→ω

X:ω→ω �pt
 X �t X
(ω)

X:ω→ω �pt X : ω
(Type Arrow)

X:ω→ω �pt X→X : (ω→ω)→ω
(Type Rec)�pt µX.X→X : (ω→ω)→ω

We can naturally link derivations in �pt to those in �t via erasure of predicates.

Lemma 2.8 (Erasing) If ∆ �pt
, then ∆̂ �t
. Similarly, if ∆ �pt A : σ, then ∆̂ �t A.

Proof: In both cases the proof is an easy induction on the structure of derivations. All cases are
trivial, except for when the derivation ends by rule (∧) or (Type Rec); then the result follows
by induction.

Lemma 2.9 i) If ∆, X:τ �pt B : σ, then X
∈ dom(∆);
ii) If ∆0,∆1 �pt B : σ, such that no free type variable in B is declared in ∆1, then ∆0 �pt B : σ,

Proof: Easy.

The next lemma states some standard properties of �pt , that follow immediately from the
rules in Figure 4.

Lemma 2.10 (Type Predicate Generation Lemma) Let D :: ∆ �pt A :σ. If A = Top, then σ = ω;
otherwise, either σ = ω, or:

(σ =
∧

i∈Iφi) : Then, for all i ∈ I there exist Di :: ∆ �pt A : φi, sub-derivations of D;

(ω
= σ∈ Ps) : a) If D :: ∆ �pt K :σ, then σ is atomic;
b) if D :: ∆ �pt X : σ then X:τ ∈ ∆ and τ ≤ σ;
c) if D :: ∆ �pt A : σ and X ∈ fv(A) then X:τ ∈ ∆, for some τ;
d) if D :: ∆ �pt A→B : σ then there exist τ,φ such that σ = τ→φ and D1 :: ∆ �pt A : τ and D2 ::

∆ �pt B : φ, sub-derivations of D;
e) if D :: ∆ �pt [�i :Bi

(i ∈ I)] : σ then for some j∈ I, σ = 〈�j:τ→ψ〉 and there exists both D′ ::
∆ �pt [�i:Bi

(i ∈ I)] : τ and D′′ :: ∆ �pt Bj : ψ, sub-derivations of D;
f) if D :: ∆ �pt µX.A : σ, then there exists τ and D′ :: ∆ �pt µX.A : τ and D′′ :: ∆, X:τ �pt A : σ,

sub-derivations of D.

Proof: By straightforward induction on the structure of derivations.

Theory of Computing Systems, 42(3):306-348, 2008 15

By 2.10 of the above Lemma it follows immediately that the rule:

(Type Rec′) :
∆ �pt µX.A:σ ∆, X:σ �pt A:τ

∆ �pt µX.A:τ

is admissible, where τ is not necessarily strict.
A useful corollary of the previous lemma is stated below:

Lemma 2.11 If D :: ∆ �pt [�i :Bi
(i ∈ I)] : σ and σ
= ω then for some J ⊆ I, σ =

∧
j∈J σj and for each j

there exists Hj such that σj = 〈�j:τh→ψh
(h ∈ Hj)〉 andDh :: ∆ �pt [�i:Bi

(i ∈ I)] : τh andD′h :: ∆ �pt Bj : ψh
for all h ∈ Hj; moreover, all these are sub-derivations of D.

Proof: Immediate by Lemma 2.10.

The next lemma shows that, for object types A and C, if σ is a predicate that we can assign
to A, which is a super-type of C, then also σ can also be assigned to C.

Lemma 2.12 Let A ≡ [�i:Bi
(i ∈ I)], C ≡ [�j :Bj

(j ∈ J)] for some J ⊇ I and suppose ∆̂ �t C <: A. Then,
for any σ, if ∆ �pt A : σ, then ∆ �pt C : σ.

Proof: If σ = ω, the thesis is trivial by rule (ω). For σ
= ω, we reason by induction over the
structure derivations. Now, ∆̂ �t C <: A implies that both C and A are well formed types
under ∆̂.

By Lemma 2.10 (ii.e) we know that σ is (equivalent to) an intersection of record types of
the shape 〈�i:τ→φ〉 for some i ∈ I ⊆ J, and that both ∆ �pt A : τ, for some τ, and ∆ �pt Bi : φ are
derivable in sub-derivations. Therefore, by induction, we know that ∆ �pt C : τ. Reconstructing
the derivation as the one for ∆ �pt A : σ, we obtain ∆ �pt C :σ.

Lemma 2.13 If both ∆0,∆1 �pt A :σ and ∆0 �t A, then ∆0 �pt A : σ.

Proof: By induction on the structure of derivations. Since derivations in the Predicates to Types
Assignment System mirror derivations in the type and subtype system of the object calculus in
almost all cases, we focus on those rules which are not just a decoration of the type formation
rules.

(ω) : Obvious, since we can use ∆0 �t A as the premise of the same rule.

(∧) : By induction.

(Type Top) : Trivial, as the environment ∆ does not play any role in this case.

(Type Object) : Then A≡ [�i :Bi
(i ∈ I)], and σ≡ 〈�j:τ→φ〉 for some , j∈ I, and both ∆0,∆1 �pt A :τ

and ∆0,∆1 �pt Bj : φ. By Lemma 1.13(x), we have ∆0 �t Bi for all i ∈ I; by induction we have
also ∆0 �pt A : τ and ∆0 �pt Bj : φ, and we get ∆0 �pt A : 〈�j:τ→φ〉 by rule (Type Object).

(Type Arrow) : Then A ≡ B→C,σ≡ τ→φ and both ∆0,∆1 �pt B : τ and ∆0,∆1 �pt C : φ. By induc-
tion both ∆0 �pt B : τ and ∆0 �pt C :φ, hence ∆0 �pt B→C : τ→φ by rule (Type Arrow).

(Type Rec) : Then A ≡ µX.B and both ∆0,∆1 �pt µX.B : τ and ∆, X:τ �pt B : σ. By induction
∆0 �pt µX.B : τ; by Lemma 1.13(ix), ∆0 �t µX.B implies ∆0, X �t B. Since no free type vari-
able in B is declared in ∆1, by Lemma 2.9 we obtain ∆0, X:τ �pt B : σ. Using the assumption
∆0 �pt µX.B : τ, we get the desired ∆0 �pt µX.B : σ by admissibility of rule (Type Rec′).

Theory of Computing Systems, 42(3):306-348, 2008 16

Lemma 2.14 The following rules are admissible:

(Relevance) :

∆, X:τ,∆′ �pt A :σ ∆,∆′ �pt

(X
∈ fv(A))

∆,∆′ �pt A : σ

(Weak) :
∆ �pt A : σ

(X
∈ dom(∆))
∆, X:τ �pt A :σ

(Cut) :
∆, X:σ �pt B : τ ∆ �pt A :σ

∆ �pt B{X← A} : τ

(Cut<:) :

∆ �pt A : σ ∆, X:σ <: C �pt B : τ ∆̂ �t A <: C

∆ �pt B{X← A} : τ

(≤) :

∆ �pt A : σ ∆′ �pt

(σ ≤ τ,∆′ ≤ ∆)

∆′ �pt A :τ

Proof: By easy induction on the structure of derivations. The proof of admissibility of (Relevance)
and (Weak) parallels the arguments in Lemma 1.15. In the cases of (Cut) and (Cut<:) we use
Lemma 4.2. For rule (≤), the proof is much as that for Lemma 3.13.

Lemma 2.15 For any pre-environment ∆, pre-type µX.A, and predicate σ:

∆ �pt µX.A : σ⇐⇒ ∆ �pt A{X← µX.A} : σ.

Proof: (⇒) : for σ = ω, the thesis is trivial; if σ is an intersection, the thesis follows by induc-
tion; else, by Lemma 2.10 (ii.f), there exists τ such that ∆ �pt µX.A : τ and ∆, X:τ �pt A : σ.
The thesis now follows from rule (Cut).

(⇐) : Let k be the number of free occurrences of X in A. If k = 0 then A{X← µX.A} ≡ A and
∆, X :ω �pt A : σ would follow by the hypothesis and (Weak); since trivially ∆ �pt µX.A : ω,
the thesis follows by rule (Type Rec′).

Suppose that k > 0. For all 1 ≤ i ≤ k there exists an environment ∆ i and a predi-
cate σi such that ∆ i �pt µX.A : σi, and these are sub-derivations of the given derivation of
∆ � A{X← µX.A} : σ. Since fv(µX.A) = fv(A) \ {X} = fv(A{X← µX.A}) we can freely
assume that ∆ i = ∆ for all i. By replacing each of these derivations by the derivation of
∆, X :

∧k
j=1σj � X : σi in the given derivation we construct a derivation of ∆, X :

∧k
j=1σj � A : σ;

on the other hand from ∆ i �pt µX.A : σi for all i we have by rule (∧I) a derivation of
∆ � µX.A :

∧k
j=1σj. Then we conclude by rule (Type Rec′).

We will now show that �pt is downwards closed for <:.

Theorem 2.16 The following rule is admissible:

(:>) :

∆ �pt B : σ ∆̂ �t A <: B

∆ �pt A : σ

Proof: If σ = ω, then by Lemma 1.13(v), ∆̂ �t A <: B implies ∆̂ �t A, and ∆ �pt A :ω is derivable
by rule (ω). If σ is an intersection, the result follows by induction. Otherwise, for σ strict, we
reason by a principal induction on the derivation of ∆̂ �t A <: B and a secondary induction on
the derivation of ∆ �pt B : σ.

(Sub Refl), (Sub Trans) : The first case is trivial and the second one follows by induction and the
transitivity of ≤.

Theory of Computing Systems, 42(3):306-348, 2008 17

(Sub Top) : Then B ≡ Top and σ = ω by Lemma 2.10. As above, by Lemma 1.13(v), ∆̂ �t A <: B
implies ∆̂ �t A, so ∆ �pt A :ω is derivable by rule (ω).

(Sub X) : Then A ≡ X and ∆̂≡ ∆′, X <: B,∆′′ for some ∆′,∆′′, and ∆̂ is a well-formed environ-
ment. By Lemma 1.13(vi) this implies ∆′ �t B. Therefore, by Lemma 2.13 and the assump-
tion, we have ∆′ �pt B : σ. Now, since σ ≤ σ, by rule (Env X<:), we have ∆′, X:σ <: B �t
,
and, by rule (Type X<:), ∆′, X:σ <: B �pt X : σ, and the thesis follows by rule (Weak).

(Sub Object) : This is an immediate consequence of Lemma 2.12.

(Sub Arrow) : Then A ≡ A′→A′′, B ≡ B′→B′′ and both ∆̂ �t B′<: A′ and ∆̂ �t A′′<: B′′. Then
σ = ρ→ψ, ∆ �pt B′ : ρ and ∆ �pt B′′ : ψ. By induction ∆ �pt A′′ : ψ; on the other hand, since
∆ �pt A′ : ω, so ∆ �pt A′→A′′ : ω→ψ. Since ω→ψ ≤ ρ→ψ, we get ∆ �pt A′→A′′ : σ by rule
(≤).

(Sub Rec1), (Sub Rec2) : These follow by Lemma 2.14 and 2.15.

(Sub Rec3) : Then A≡ µX.A′, B≡ µY.B′. By Lemma 2.10 (ii.f), there exists σ′ and sub-derivations
for ∆ �pt µY.B′ : σ′ and ∆,Y:σ′ �pt B′ : σ. By secondary induction, ∆ �pt µX.A : σ′. Since
X
∈ dom(∆) we have ∆,Y:σ′, X:σ′, X <: Y �t
.

On the other hand, applying rule (Weak) to ∆,Y:σ′ �pt B′ : σ gives ∆,Y:σ′, X:σ′ �pt B′ : σ.
But we know that ∆̂, X,Y, X <: Y �t A′<: B′ is the premise of the last inference in the
derivation for ∆̂ �t A <: B, so by the principal induction ∆,Y:σ′, X:σ′ �pt A′ : σ. Now Y
∈
fv(A′) (otherwise, since X
≡ Y, Y ∈ fv(µX.A′) so that we need Y ∈ dom(∆) for deducing
∆ �pt µX.A : σ′ by Lemma 2.10 (ii.c), which is not the case), hence, by Lemma 2.142.14,
∆, X:σ′ �pt A′ : σ. From this and ∆ �pt µX.A : σ′ we conclude ∆ �pt µX.A : σ.

Corollary 2.17 (Languages and Subtyping) If �t A <: B then both A and B are closed types, and
LA ⊇ LB. In particular if �t µX.A then LµX.A = LA{X← µX.A}.

Proof: That A and B are closed is an immediate consequence of (iv) and (v) of Lemma 1.13,
hence LA and LB are well defined. Then the first part of the thesis follows by Theorem 2.16.
This implies the second part together with the fact that �t µX.A =: A{X← µX.A}.

3 The Assignment System

We now come to the definition of predicate assignment, where we associate predicates to typed
terms.

Definition 3.1 (Bases and Term Pre-Environments) i) A basis Γ is defined inductively by:

Γ ::= ∅ | Γ, x:A:σ

where x is a term variable, A is a pre-type, and σ is a predicate. The domain of a basis is
defined by: dom(Γ, x:A:σ) = {x} ∪ dom(Γ), and Γ, x:A:σ = Γ, x:A.

ii) We extend ≤ to environments by: Γ ≤ Γ′ if and only if, for every x:A:σ′ ∈ Γ′ there exists
x:A:σ ∈ Γ such that σ ≤ σ′.

iii) A term pre-environment is a pair ∆; Γ such that ∆ is a predicate pre-environment and Γ is
a basis. We also define dom(∆; Γ) = dom(∆) ∪ dom(Γ) and ∆; Γ = ∆̂, Γ (where the comma
represents the concatenation of the two sequences).

Definition 3.2 (Assignment System) An assignment judgement is a triple a:A : σ expressing the
assignment of a predicate σ to the (pre) term a of (pre) type A. An assignment sequent has the

Theory of Computing Systems, 42(3):306-348, 2008 18

Figure 5 The Predicate Assignment System

Let A≡ [�i:Bi
(i ∈ I)]:

(Env ∅) :
∆ �t

∆;∅ �p

(Env x) :
∆ �pt B :σ ∆; Γ �p

(x
∈ dom(Γ))
∆; Γ, x:B:σ �p

(Val x) :

∆; Γ′, x:B:σ, Γ′′ �p

(σ ≤ ψ)

∆; Γ′, x:B:σ, Γ′′ �p x:B : ψ

(<:) :

∆; Γ �p a:B : ψ ∆̂ �t B <: C ∆ �pt C : ψ

∆; Γ �p a:C : ψ

(Val Fun) :
∆; Γ, x:A:σ �p a:B : φ

∆; Γ �p λxA.a:A→B : σ→φ

(Val Appl) :
∆; Γ �p a:A→B : σ→φ ∆; Γ �p b:A : σ

∆; Γ �p a(b):B : φ

(Val Object) :

∆; Γ, xj :A:σ �p bj :Bj : φ ∆; Γ, xi:A �o bi : Bi (∀i ∈ I\j)
(j ∈ I)

∆; Γ �p [�i = ς(xA
i)bi

(i ∈ I)]:A : 〈�j:σ→φ〉

(ω) :
∆; Γ �p
 ∆; Γ �o a : B

∆; Γ �p a:B : ω

(Val Update1) :
∆; Γ �p a:A : σ ∆; Γ,y:A:τ �p b:Bj : φ

(σ
= ω, j ∈ I)
∆; Γ �p (a.�j ↼↽ ς(yA)b):A : 〈�j :τ→φ〉

(Val Select) :

∆; Γ �p a:A : 〈�j :σ→φ〉 ∆; Γ �p a:A : σ

∆; Γ �p a.�j :Bj : φ

(Val Update2) :

∆; Γ �p a:A : 〈�k:φ〉 ∆; Γ,y:A �o b : Bj
(j,k ∈ I,k
= j)

∆; Γ �p (a.�j ↼↽ ς(yA)b):A : 〈�k:φ〉

(∧I) :

∆; Γ �p a:B : σi (∀i ∈ I)

∆; Γ �p a:B :
∧

i∈Iσi

shape ∆; Γ �t a:A : σ where ∆; Γ is a term pre-environment.
The Assignment System to derive assignment sequents is defined in Figure 5.
We say that a term pre-environment ∆; Γ is a term environment if ∆; Γ �pt
 is derivable in the

assignment system.

The judgement a:A:σ tells at the same time that a is of type A, and that it satisfies the
predicate σ: hence this implies that A:σ (as this is witnessed by a), which is in fact ensured by
the formal system. Since ω is the trivial predicate, the judgement a:A:ω is the same as a:A,
i.e. a has type A. This is why we use �o in the definition of �p . However, we could avoid this
explicit composition of systems, at the price of doubling all rules relating predicates to term
and type structure, adding an instance of each such rule with all trivial predicates at the right
end of the sequents. E.g. in the case of (Val Appl) we would have:

(Val Appl ω) :
∆; Γ �p a:A→B : ω ∆; Γ �p b:A : ω

∆; Γ �p a(b):B : ω

The actual formulation of rule (ω) avoids such verbose introductions of the trivial predicate,
by preserving its meaning of “being a typeable term”.

In the case of (Val Object) and of the (Val Updatei), different formulations are reported in the
Introduction, which are only apparently stronger of the corresponding rules in Figure 5: take
all the predicates φ and ψ to be ω in the discarded parts, just to ensure typeability.

Theory of Computing Systems, 42(3):306-348, 2008 19

The side condition σ
= ω of rule (Val Update1) is decidable by (ii) of Lemma 2.3. It is imma-
terial w.r.t. subject reduction and subject expansion Theorems 4.3 and 4.6 respectively, in the
next section. Indeed, as far as we are concerned with these properties of the system, it could
be replaced by the weaker

(Val Update′1) :
∆; Γ �o a : A ∆; Γ,y:A:τ �p b:Bj : φ

(j ∈ I)
∆; Γ �p (a.�j ↼↽ ς(yA)b):A : 〈�j:τ→φ〉

This can be understood from the observation that the rule expresses that the newly derived
predicate does not depend on any predicate for a at all; the only thing we need for subject
reduction and expansion is that a is well-formed of type A.

On the other hand it is essential for Theorem 6.5 to hold, as well as for the subsequent
results. These say that any (closed) term a satisfies a non-trivial predicate if and only if it
is convergent, namely reduces to a value. Now the predicate 〈�j:τ→φ〉 is non trivial, but
a.�j ↼↽ ς(yA)b converges only if a does. It is a remarkable fact that this is a combined effect
of the type system and of the predicate system: indeed for a.�j ↼↽ ς(yA)b to be convergent we
also need that a reduces to an object term, having a label �j. The type system ensures that
if a converges, then this will be the case; the assumption that a:A:σ for σ
= ω implies that a
actually converges, even if σ is discarded in the conclusion. This will be formally proved in
section 6.

We are now in place to give a semantics to predicates. It consists in assigning to each
predicate σ a set [[σ]] of closed terms of the appropriate (closed) types. It is usually called
a realizability interpretation, in the sense that each term in [[σ]] is a realiser of σ, namely an
evidence that σ holds of something. A proper reading of Theorem 6.5 is as a soundness
theorem for the realizability interpretation. This interpretation should be compared with the
interpretation of intersection types into saturated sets in [19].

We write aA for a closed term a of a closed type A, i.e. such that ∅ �o a : A (abbreviated by
�o a : A). In the next definition, the set of labels of A is defined as: Label(A) = {�i | i ∈ I} only

for A ≡ [�i:Ai
(i ∈ I)]; it is empty in all other cases. If aA for some object type A, �j ∈ Label(A)

and a ⇓ [�i = ς(xA
i)bi

(i ∈ I)], then a.�(c) abbreviates bj{xj← c}, for any cA.

Definition 3.3 (Realizability Interpretation) The realizability interpretation of the predicate
σ is a set [[σ]] of closed terms defined by induction over the structure of predicates as follows:

i) [[ω]] = {aA | A is a closed type};
ii) [[σ∧τ]] = [[σ]] ∩ [[τ]];

iii) [[κ]] = {aK | κ ∈ LK & ∃v [�p v:K :κ & a ⇓ v]};
iv) [[σ→φ]] = {aA→B | ∃x,b [a ⇓ (λxA.b) & ∀cA ∈ [[σ]] [b{x← c} ∈ [[φ]]]]};
v) [[〈�:φ〉]] is defined according to the shapes of φ:

– [[〈�:ω〉]] = {aA | � ∈ Label(A) & a ⇓}
– [[〈�:σ→ψ〉]] = {aA | �∈ Label(A) & a ⇓ & ∀cA ∈ [[σ]] [a.�(c) ∈ [[ψ]]]};
– [[〈�:〈�′:ψ〉〉]] = ∅.

The clause [[〈�:〈�′ :ψ〉〉]] = ∅ is consistent with the fact that 〈�:〈�′:ψ〉〉 cannot be assigned to
any (well typed) term.

Lemma 3.4 If σ
= ω (i.e. it is non trivial), then any aA ∈ [[σ]] converges.

Theory of Computing Systems, 42(3):306-348, 2008 20

Proof: By induction on the definition of [[σ]].

Lemma 3.5 If aA ∈ [[σ]] then for any bA if a ∗−→ b or b ∗−→ a then bA ∈ [[σ]].

Proof: By induction on the length of the reduction sequence, of which we only show the proof
for the relation −→ . This is proven by induction on the definition of reduction and by cases
on σ, of which we show one case:

(a ≡ (λxCa′)a′′ and σ ≡ τ→ψ) : then (λxCa′)a′′ ⇓ v for some v (an abstraction) with certain
properties; but this is true if and only if b ≡ a′{x← a′′} ⇓ v, since the reduction is deter-
ministic: hence b∈ [[τ→φ]] if and only if a ∈ [[τ→φ]].

Lemma 3.6 If σ ≤ τ then [[σ]] ⊆ [[τ]].

Proof: By easy induction on the definition of ≤ using Lemma 2.4. E.g. suppose 〈�:σ→φ〉 ≤
〈�:τ→ψ〉 because τ ≤ σ and φ≤ ψ. By Definition 3.3, for any aA ∈ [[〈�:σ→φ〉]] we have a ⇓ and
�∈ Label(A); suppose that cA ∈ [[τ]]: by induction cA ∈ [[σ]], so that by hypothesis a.�(c) ∈ [[φ]].
The thesis follows since [[φ]] ⊆ [[ψ]] again by induction.

We turn to the proof theoretic study of our systems, and formulate the link between �pt
and �t , and �p and �o , which is a conservativity result.

Lemma 3.7 (Assignment Erasing) If ∆; Γ �pt
 and ∆; Γ �p a:A : σ, then ∆; Γ �t
 and ∆; Γ �o a : A.

Proof: By induction on the structure of derivations using Lemma 2.8.

The following lemma links �p and �pt .

Lemma 3.8 If ∆; Γ, x:A:σ �p b:B : τ then both ∆ �pt A : σ and ∆ �pt B : τ.

Proof: By straightforward induction on derivations. It is a consequence of the fact that the
assignment ∆ �o A : σ of a predicate to a type under the assumptions in ∆ for each judgement
a:A : σ occurring in a derivation is checked by the appropriate rule.

We will now show that also �p is downwards closed for <:.

Theorem 3.9 The following rule is admissible:

(:>) :

∆; Γ �p a:C : σ ∆; Γ �o a : A ∆̂ �t A <: C

∆; Γ �p a:A : σ

Proof: By induction on the structure of derivations in �p , using Theorem 2.16. E.g. if the
derivation ends by rule (Val Fun):

∆; Γ, x:C′:τ′ �p b:D : ψ

∆; Γ �p λxC′ .b:C′→D : τ′→ψ

where ∆̂ �t A <: C ≡ C′→D. By Lemma 1.12(iii), A = A′→A′′, E �t C′<: A′ and E �t A′′<: D.
By induction ∆; Γ, x:C′:τ′ �p b:A′′ : ψ hence ∆; Γ �p λxC′ .b:A′→A′′ : τ′→ψ. Take any σ′ such that
∆ �t A′:σ′ and τ′ ≤ σ′ (which exists, and at worst is ω), then we get ∆; Γ �p λxC′ .b:A′→A′′ : σ′→ψ.
Since σ′→ψ ≤ τ′→ψ, we conclude by (≤).

Theory of Computing Systems, 42(3):306-348, 2008 21

Lemma 3.10 The following rule is admissible:

∆; Γ, x:A:τ, Γ′ �p a:C : σ ∆ �o A′ : τ′ ∆̂ �t A′<: A
(τ′ ≤ τ)

∆; Γ, x:A′:τ′, Γ′ �p a:C : σ

Proof: Easy induction on the structure of derivations. Informally, each time there is an instance
of the rule (Env x) with conclusion ∆; Γ, x:A:τ, Γ′′ �p x:A : τ in the derivation for ∆; Γ, x:A:τ, Γ′ �p a:C : σ,
we replace it by an instance of (<:) whose premises are ∆; Γ, x:A′:τ′, Γ′′ �p x:A : τ′, ∆̂ �t A′<: A
and ∆ �o A : τ′, where the conclusion is ∆; Γ, x:A:τ′, Γ′′ �p x:A : τ.

The essential properties of the predicate assignment system, on which the subsequent treat-
ment relies, are stated in next lemma.

Lemma 3.11 (Predicate Generation Lemma) If D :: ∆; Γ �p a:A : σ, then either: σ = ω, or,

(σ =
∧

i∈Iφi) : Then, for all 1≤ i ≤ n there exist Di :: ∆ �p a:A : φi, sub-derivations of D;

(σ ≡ φ∈ Ps \ {ω}) : a) if ∆; Γ �p c:A : φ then c is a constant of some ground type K, with A ≡ K,
φ ≡ κ and ∅ �pt K :κ;

b) if ∆; Γ �p x:A : φ then ∆ �pt A :φ and there exists x:C:σ∈ Γ such that ∆̂ �t C <: A and σ≤ φ;
c) if ∆; Γ �p [�i = ς(xAi

i)bi
(i ∈ I)]:A : φ then there exists C ≡ [�i:Bi

(i ∈ I)] for certain Bi, such
that Ai ≡ C for all i ∈ I, and there exists J ⊆ I such that A ≡ [�j :Bj

(j ∈ J)]; moreover
φ ≡ 〈�k :τ→ψ〉 where k ∈ J, ∆; Γ, xk:C:τ �p bk:Bk : ψ, while for all i ∈ I \ {k}, ∆; Γ, xi:C �o bi : Bi;

d) if ∆; Γ �p a.�:A : φ then there exists C ≡ [. . . ,�:B, . . .] such that ∆̂ �t B <: A, and τ such that
∆; Γ �p a:C : 〈�:τ→φ〉 and ∆; Γ �p a:C : τ;

e) if ∆; Γ �p (a.�j ↼↽ ς(xC)b):A : σ then ∆; Γ �t C <: A and C≡ [�i :Bi
(i ∈ I)] for certain Bi, with

j ∈ I and either:

∗ there are τ,ψ, ρ
= ω such that φ ≡ 〈�j:τ→ψ〉, ∆; Γ �p a:C : ρ, and ∆; Γ, x:C:τ �p b:Bj : ψ;
or
∗ there exist ψ and k
= j such that φ ≡ 〈�k:ψ〉, ∆; Γ �p a:C : φ, and ∆; Γ, x:C �o b : Bj;

f) if ∆; Γ �p λxA.a:C : φ, then there exists B such that ∆̂ �t A→B <: C, and φ ≡ τ→ψ, and
∆; Γ, x:A:τ �p a:B : ψ;

g) if ∆; Γ �p a(b):C : φ, then there exist A, B such that ∆̂ �t B <: C, and there is τ such that both
∆; Γ �p a:A→B : τ→φ and ∆; Γ �p b:A : τ.

Proof: By induction on the structure of derivations. We observe that in all clauses we use
≡ instead of =: (among types) and = (among predicates). This is possible since these are

all existential statements of derivability, and do not necessarily refer to sub-derivations of
the given one: hence we can choose types and predicates of the right form as we need. In
particular in clause (v.c) we have φ ≡ 〈�k:τ→ψ〉 instead of φ≥ 〈�k:τ→ψ〉 as one might expect.
This is a consequence of the fact that languages are upward closed w.r.t. ≤ (by lemma 2.14),
and that E �t A <: A for any A, so that if ∆; Γ �p a:A : σ and σ ≤ τ then ∆; Γ �p a:A : τ by (<:).
Similar remarks apply to all other clauses.

Remark 3.12 The last lemma, together with Lemmas 1.14 and 2.10 forms the basic tool for
reconstructing types and predicates in terms of the structure of the subject, namely the term.
In particular Lemma 2.10 applies the same technique to the “subject” A in the judgement A : σ.

Their proofs are just backward readings of the derivation rules, and as such are very simple

Theory of Computing Systems, 42(3):306-348, 2008 22

inductions over derivations which we omit.
All the implications in these lemmas are actually equivalences: indeed the opposite impli-

cations follow by direct application of (possibly more than one) derivation rules.

Although the relation ≤ is only used for variables, we can show the following lemma.

Lemma 3.13 The rule

(≤) :

∆; Γ �p a:A : σ ∆′; Γ′ �t

(σ ≤ τ,∆′ ≤ ∆, Γ′ ≤ Γ)

∆′; Γ′ �p a:A : τ

is admissible.

Proof: (τ ∈ Ps) : By induction on the structure of the derivation for ∆; Γ �p a:A : σ.
(Val x) : Then a = x, σ∈ Ps, and there exists τ such that Γ = Γ1, x:A:ρ, Γ2, ρ≤ σ and ∆; Γ �pt
.

Since Γ′ ≤ Γ, there exists x:A:ρ′ ∈ Γ′ such that ρ′ ≤ ρ. Notice that then ρ′ ≤ τ, and by
Lemma 2.14 also ∆′; Γ′ �pt
. Then, by rule (Val x), ∆′, Γ′ �p x:A : τ.

(<:) : Then ∆; Γ �p a:B : σ, ∆̂ �t B <: A, and ∆ �pt A :σ, for some B. We get ∆′; Γ′ �p a:B : τ] by
induction; since ∆′ ⊆ ∆̂, by weakening ∆′ �t B <: A; and by Lemma 2.14 ∆′ �pt A : τ,
Then, by rule (<:) we get ∆′; Γ′ �p a:A : τ.

(Val Fun) : Then σ = ρ→φ, a = λxA.a′, and ∆; Γ, x:A:ρ �p a′ :B : φ for some B. Since σ≤ τ ∈ Ps,
τ = ρ′→φ′ with ρ′ ≤ ρ,φ ≤ φ′, so, by induction, ∆′; Γ′, x:A:ρ′ �p a′ :B : φ′. Then, by rule
(Val Fun), ∆′; Γ′ �p λxA.a′:A→B : ρ′→φ′.

(Val Appl) : Then a= a1a2, and there exists ρ such that ∆; Γ �p a1:A→B : ρ→σ and ∆; Γ �p a2:A : ρ.
Since ρ→σ ≤ ρ→τ, by induction, ∆′; Γ′ �p a1:A→B : ρ→τ and ∆′; Γ′ �p a2:A : ρ. Then, by
rule (Val Appl), also ∆′; Γ′ �p a(b):B : τ.

(Val Object), (Val Update1) : As for rule (Val Fun).
(Val Select) : As for rule (Val Appl).
(Val Update2), (∧I) : By induction, using (ii) and (iii) of Lemma 2.4 respectively.
(ω) : By assumption, ∆′; Γ′ �pt
; since ∆′, Γ′ ⊆ ∆; Γ, by weakening also ∆′; Γ′ �o a : A. Then,

by rule (ω), ∆′; Γ′ �p a:A : ω.

(τ =
∧

j∈Jτj) : Assume, without loss of generality, that σ =
∧

i∈Iσi; then, by (iii) of Lemma 2.4,
for every j ∈ J there is an i ∈ I such that σi ≤ τj ∈ Ps. The result follows by the first part
of the proof, and applying rule (∧I).

4 Subject Reduction and Expansion

In this section we will show that predicate assignment as defined above is not only preserved
by reduction, but also by expansion, i.e. if ∆; Γ �p a:A : σ and we can relate a to a′ via the
reduction system, then also ∆; Γ �p a′ :A : σ.

The following lemma concerns properties of the Object Calculus whose proofs are straight-
forward inductions over derivations.

Lemma 4.1 i) Let ∆; Γ �p a:A : σ, and Γ′ = {x:A:τ ∈ Γ | x ∈ fv(a)}, then ∆; Γ′ �p a:A : σ,
ii) if ∆; Γ �p a:A : σ, and x∈ fv(a), then x ∈ dom(Γ).

Theory of Computing Systems, 42(3):306-348, 2008 23

Proof: Easy.

In the remaining part of this section we show that predicate assignment is closed for reduc-
tion and expansion. First we establish a substitution lemma.

Lemma 4.2 (Substitution Lemma for �p) If ∆; Γ, x:A:σ �p b:B : τ and ∆; Γ �p a:A : σ, then
∆; Γ �p b{x← a}:B : τ.

Proof: By straightforward induction on the structure of derivations, of which we show only
the interesting cases; the others follow by easy induction.

(Val x) : Then either:
(b = x) : Then σ≤ τ. Since x{x← a} = a, the result follows from the second assumption

and Lemma 3.13.
(b = y
= x) : Since y{x← a}= y, and ∆; Γ, x:A:σ �p y:B : τ, by Lemma 4.1(i) we obtain ∆; Γ �p y:B : τ.

(ω) : Then ∆; Γ, x:A �o b : B. Since by Lemma 1.16, ∆; Γ �o b{x← a} : B, we can apply rule (ω)
to get ∆; Γ �p b{x← a}:B : ω.

(∧I) : Then τ =
∧

i∈Iτi, and, for i ∈ I, ∆; Γ, x:A:σ �p b:B : τi. Then ∆; Γ �p b{x← a}:B : τi follows
by induction, and, by rule (∧I), ∆; Γ �p b{x← a}:B :

∧
i∈Iτi.

We use this lemma to show the following result.

Theorem 4.3 (Subject Reduction for �p) If ∆; Γ �p a:A : σ, and a −→ a′, then ∆; Γ �p a′ :A : σ.

Proof: By induction on the length of the reduction sequence, of which we only show the base
case, which is by definition on the reduction relation −→ . First we deal with ω
= σ∈ Ps.

((λxD.a)(b) −→ a{x← b}) : by Lemma 3.11, there exist B,C, E,τ such that both ∆̂ �t B <: A
and ∆̂ �t D→E <: C→B, and such that both ∆; Γ, x:D:τ �p a:E : φ, and ∆; Γ �p b:C : τ. Notice
that C <: D, so also ∆; Γ �p b:D : τ; the result then follows from Lemma 4.2 and rule (<:).

([�i = ς(xAi
i)bi

(i ∈ I)].�j −→ bj{xj← [�i = ς(xAi
i)bi

(i ∈ I)]}) : as the previous part.

([�i = ς(xDi
i)bi

(i ∈ I)].�j ↼↽ ς(xC)b−→ [�i = ς(xDi
i)bi

i ∈ I\j,�j = ς(xC)b]) :
by Lemma 3.11, j∈ I, ∆̂ �t C <: A and C ≡ [�i:Ci

(i ∈ I)] and either:

– there are τ,ψ,ρ
=ω such that σ≡ 〈�j:τ→ψ〉, and both (1) ∆; Γ �p [�i = ς(xDi
i)bi

(i ∈ I)]:C : ρ,
and (2) ∆; Γ, xj:C:τ �p bj:Cj : ψ. Then from (1), by Lemma 1.13, we have that there exist
E≡ [�i :Ei

(i ∈ I)] such that ∆; Γ �t E <: C, and, for all i ∈ I, E≡ Di and ∆; Γ, xi:E �o bi : Ei.
Notice that, by Lemma 3.10, since E <: C we also have ∆; Γ, xj:E:τj �p bj:Ej : ψj. Then the
result follows by rules (Val Object)

∆; Γ, xj:E:τ �p bj:Ej : ψ ∆; Γ, xi:E �o bi : Ei (∀i ∈ I\j)
(j∈ I)

∆; Γ �p [�i = ς(xDi
i)bi

i ∈ I\j,�j = ς(xC)b]:E : 〈�j:τ→ψ〉

and (<:), since E <: C <: A.
– σ ≡ 〈�j:φ〉, for some j∈ I, and we have both (1) ∆; Γ �p [�i = ς(xDi

i)bi
(i ∈ I)]:C : σ, and

(2) ∆; Γ, x:C �o b : Ck for some j
= k ∈ I. From (1), by Lemma 3.11, there exist E ≡
[�i :Ei

(i ∈ I)] such that ∆; Γ �t E <: C and E ≡ Di and ∆; Γ, xi:E �o bi : Ei for all i ∈ I\j,
and there exists τ,ψ such that φ≡ τ→ψ, and ∆; Γ, xk:E:τ �p bk:Ek : ψ. Also, from (2), we
get by Lemma 2.16 and (<:) that ∆; Γ, x:E �o b : Ej.

Theory of Computing Systems, 42(3):306-348, 2008 24

Then the result follows by rules (Val Object)

∆; Γ, xk:E:τ �p bk:Ek : ψ ∆; Γ, xi:E �o bi : Ei (∀i ∈ I\k, j) ∆; Γ, x:E �o b : Ej
(j ∈ I)

∆; Γ �p [�i = ς(xDi
i)bi

i ∈ I\j,�j = ς(xE)b]:E : 〈�j:τ→ψ〉

and (<:), since E <: C <: A.

(a −→ b ⇒ E [a] −→ E [b]) : By induction on the structure of evaluating contexts.

For σ = ω, the result follows from Lemma 3.7, Theorem 1.17 and rule (ω). For σ =
∧

i∈Iσi, the
result follows by the strict case, and rule (∧I).

Example 4.4 To better appreciate the importance of this standard result in the present setting,
let us look at the following example.

Suppose that A ≡ [�0:Int,�1:Int] as in Example 2.7, where the predicates in LA to be used
below have been derived. Moreover let a ≡ [�0 = ς(xA)1,�1 = ς(xA)x.�0] (using a constant 1
of type Int), so that we have �o a : A is derivable in the Object Calculus. Then (ignoring the
obvious parts):

x:A:ω �p 1:Int : O

x:A:〈�0:ω→O〉 �p x:A : 〈�0:ω→O〉
(ω)

x:A:〈�0:ω→O〉 �p x:A : ω
(Val Select)

x:A:〈�0:ω→O〉 �p x.�0:Int : O
(Val Object,∧I)�p a:A : 〈�0:ω→O,�1:〈�0:ω→O〉→O〉

where �0 is a field, �1 is the method get�0, and we are assuming that O∈ LInt is the predicate
of being an odd integer. Using rules (Val Update1), (Val Update2) and (∧I) one can derive (the
seemingly incorrect):

�t a:A:〈�0:ω→O,�1:〈�0:ω→O〉→O〉 y:A:ω �p 2:Int : E
(Val Updatei, i = 1,2,∧I)�p (a.�0 ↼↽ ς(yA)2):A : 〈�0:ω→E,�1:〈�0:ω→O〉→O〉

where E∈ LInt is the predicate of being an even integer. This makes sense, however, since
it simply states that if the value at �0 is an odd integer, then the method �1 will return an
odd integer; it also states that this is vacuously true of the actual object a.�0 ↼↽ ς(yA)2, since
it has an even integer at �0. As a consequence of Theorem 4.3 we also know that this is
harmless: indeed (a.�0 ↼↽ ς(yA)2).�1

∗−→ 2 and we clearly assume that
� 2:Int:O, so by contra-
position
� (a.�0 ↼↽ ς(yA)2).�1:Int:O. As a matter of fact, rule (Val Select) is not applicable, since

� (a.�0 ↼↽ ς(yA)2):A:〈�0:ω→O〉.

On the other hand, the following odd-looking assignment is legal as well:

x:A:ω �p 1:Int : O

x:A:〈�0:ω→E〉 �p x:A : 〈�0:ω→E〉 x:A:〈�0:ω→E〉 �p x:A : ω
(Val Select)

x:A:〈�0:ω→E〉 �p (x.�0):Int : E
(Val Object,∧I)

a �o A : 〈�0:ω→O,�1:〈�0:ω→E〉→E〉

In the last case, however, the apparently wrong predicate we deduce is of use to conclude as

Theory of Computing Systems, 42(3):306-348, 2008 25

before:

�p a:A : 〈�0:ω→O,�1:〈�0:ω→E〉→E〉 y:A:ω �p 2:Int : E
(Val Updatei, i = 1,2,∧I)

(a.�0 ↼↽ ς(yA)2) �o A : 〈�0:ω→E,�1:〈�0:ω→E〉→E〉

which is what we expected.

We now come to the proof that predicate assignment is closed for subject expansion as well.
With respect to the subject reduction property there is an asymmetry, since the expansion
property does not hold, in general, in �o . It might seem to be contradictory w.r.t. the con-
servativity established in Lemma 3.7, but it is not: remember that we assign predicates to
typeable terms, while the property which we are going to establish concerns the predicates,
and not the types. Therefore, we do not just assume that a′ −→ a, rather also that both have
the same type A, and show that for any predicate σ such that a:A:σ can be derived in a suit-
able environment, also a′:A:σ can be derived in the same environment. This could be called a
typed subject expansion property.

We need the following lemma.

Lemma 4.5 (Expansion Lemma for �p) Assume ∆; Γ �p b{x← a}:B : τ, and both ∆; Γ, x:A �o b : B
and ∆; Γ �o a : A for some A. Then there exist σ such that ∆; Γ, x:A:σ �p b:B : τ and ∆; Γ �p a:A : σ.

Proof: By induction on the structure of terms; we only show some interesting cases. Let B =
[�k :Bi

(k ∈ I)], and assume ω
= τ ∈ Ps.

(b = x) : Since x{x← a} = a, we get ∆; Γ �p a:B : τ. From ∆; Γ, x:A �o x : B, by Lemma 3.11, we
get A <: B. Then, from ∆; Γ �o a : A and A <: B, by Theorem 3.9, we get ∆; Γ �p a:A : τ.
Take σ = τ, then also by rule (<:), we have ∆; Γ, x:A:τ �p x:B : τ.

(b = y
= x) : Since y{x← a}= y, we get ∆; Γ �p y:B : τ, and, by Lemma 4.1, ∆; Γ, x:A:ω �p y:B : τ.
Notice that, from the fact that ∆; Γ �o a : A, we get, by rule (ω), ∆; Γ �p a:A : ω.

(b = c.� ↼↽ ς(yC)d) : If ∆; Γ �p (c.� ↼↽ ς(yC)d){x← a}:B : τ then, by the definition of substitu-
tion, ∆; Γ �p c{x← a}.� ↼↽ ς(yC)d{x← a}:B : τ. From ∆; Γ, x:A �o c.� ↼↽ ς(yC)d : B, by Lemma
1.13 we have both ∆; Γ, x:A �o c : B and ∆; Γ, x:A �o d : D, for some D.

Also by Lemma 3.11, ∆̂ �t C <: B and C ≡ [�i :Ci
(i ∈ I)] with j ∈ I and either:

– τ ≡ 〈�j:τ′→ψ〉, and we have ∆; Γ �p c{x← a}:C : ρ and ∆; Γ, x:C:µ �p d{x← a}:D : ψ, for
some ρ,µ,τ′,ψ. By induction, ∆; Γ, x:A:σ1 �p c:C : α and ∆; Γ �p a:D : σ1 for some σ1.

– τ ≡ 〈�j:φ〉, and both ∆; Γ �p c{x← a}:C : τ and ∆; Γ, x:C:µ �p d{x← a}:D : ψ for some
φ,ψ. By induction, there exists σ2 such that ∆; Γ, x:A:σ2 �p d:C : α and ∆; Γ �p a:D : σ2.

In either case, take σ = σ1∧σ2, then, by either rule (Val Update1) or (Val Update2), by
Lemma 4.1 we get ∆; Γ, x:A:σ �p (c.� ↼↽ ς(yC)d):B : τ and by rule (∧I), ∆; Γ �p a:A : σ, and
the result follows from rule (<:).

(b = c(d)) : If ∆; Γ �p c{x← a}(d{x← a}):B : τ, and, by Lemma 3.11 there exists ρ,C, A <: B
such that ∆; Γ �p c{x← a}:C→A : ρ→τ and ∆; Γ �p d{x← a}:C : σ. From the assumption
∆; Γ, x:A �o c(d) : B, by Lemma 1.13, ∆; Γ, x:A �o c : C→A and ∆; Γ, x:A �o d : C. Then, by
induction, there exists σ1,σ2 such that ∆; Γ, x:A:σ1 �p c:C→A : ρ→τ and ∆; Γ �p a:A : σ1, and
∆; Γ, x:A:σ2 �p d:C : ρ and ∆; Γ �p a:A : σ2. Then by Lemma 4.1 and rule (Val Appl) we get
∆; Γ, x:A:σ1∧σ2 �p c(d):A : τ and by rule (∧I), ∆; Γ �p a:A : σ1∧σ2.

Theory of Computing Systems, 42(3):306-348, 2008 26

Theorem 4.6 (Subject Expansion for �p) If ∆; Γ �p a:A : τ, and a′ is such that ∆; Γ �o a′ : A and
a′ −→ a, then ∆; Γ �p a′:A : τ.

Proof: By induction on the length of the reduction sequence, of which we only show the base
case, which is by definition on the reduction relation −→ . Most cases depend straightfor-
wardly on Lemma 4.5; we show one case, that does not. First we deal with ω
= τ ∈ Ps.

(ii) : [�i = ς(xBi
i)bi

(i ∈ I)].�j ↼↽ ς(xC
j)bj −→ [�i = ς(xBi

i)bi
i ∈ I\j,�j = ς(yC)b]. If

∆; Γ �p [�i = ς(xBi
i)bi

i ∈ I\j,�j = ς(yC)b]:A : τ

then, by Lemma 3.11, there exist D≡ [�i :Di
(i ∈ I)] such that ∆̂ �t D <: A, D≡ C, and for all

i ∈ I, Bi≡D. Then τ≡ 〈�k:σ→ψ〉 for some σ,ψ,k ∈ I, and, for all i ∈ I\j, ∆, Γ, xi:D �o bi : Di,
and ∆, Γ,y:D �o b : Di. By Lemma 1.13, the assumption

∆; Γ �o [�i = ς(xD
i)bi

(i ∈ I)].�j ↼↽ ς(yD)b : A

gives D <: A, and ∆; Γ �o [�i = ς(xD
i)bi

(i ∈ I)] : D, and for all i ∈ I, ∆; Γ, xi:D �o bi : Di, so, in
particular, ∆; Γ, xj:D �o bj : Dj.

If j = k and h
= j, we can now construct:

∆; Γ, xh:D:ω �p bh:Dh : ω ∆; Γ, xi:D �o bi : Di (∀i ∈ I \ {h})
(Val Object)

∆; Γ �p [�i = ς(xDi
i)bi

(i ∈ I)]:D : 〈�h:ω→ω〉

from which, using rule (Val Update1):

∆; Γ �p [�i = ς(xDi
i)bi

(i ∈ I)]:D : 〈�h:ω→ω〉 ∆; Γ, xj:D:τ �p bj:Dj : ψ
(Val Update1)

∆; Γ �p ([�i = ς(xDi
i)bi

(i ∈ I)].�j ↼↽ ς(yD)b):D : 〈�k :σ→ψ〉

If instead j
= k, we use rule (Val Update2):

∆; Γ, xk:D:σ �p bk:Dj : ψ ∆; Γ, xi:D �o bi : Di (∀i ∈ I\k)
∆; Γ �p [�i = ς(xDi

i)bi
(i ∈ I)]:D : 〈�k:σ→ψ〉 ∆; Γ,y:D �o b : Dj

(Val Update2)
∆; Γ �p ([�i = ς(xDi

i)bi
(i ∈ I)].�j ↼↽ ς(yD)b):D : 〈�k :σ→ψ〉

and the result follows by applying rule (<:).

For τ = ω, the result follows from Lemma 3.7, Theorem 1.17 and rule (ω). For τ =
∧

i∈Iτi
(n ≥ 0), the proof follows by easy induction.

5 The Logical Equivalence

In [1] an equational theory of the object calculus is presented, whose first order sub-theory is
generated by the rules of Figure 6 (omitting the term folding-unfolding rules, which do not
make sense for the Object Calculus we consider here).

Definition 5.1 (The Equational Theory of Objects [1]) The Equational Theory of Objects is a
theory of equations of the shape a↔ b : A, where a and b are pre-terms and A is a pre-
type; these are derived as the right-hand side of sequents E �t a↔ b : A, where E is a (pre)-

Theory of Computing Systems, 42(3):306-348, 2008 27

Figure 6 The Equational Theory of Objects

(Eq Refl) :
E �o a : A

E �t a ↔ a : A

(Eq Symm) :
E �t a ↔ b : A

E �t b ↔ a : A

(Eq Trans) :
E �t a ↔ b : A E �t b ↔ d : A

E �t a ↔ d : A

(Eval Beta) :

E �o λxAb : A→B E �o a : A

E �t (λxAb)(a) ↔ b{x← a} : B

(Eval Select) :
E �o a : A

(j ∈ I)
E �t a.�j ↔ bj{xj← a} : Bj

(Eval Update) where I ∩ J = ∅, A≡ [�i:Bi
i∈I], A′ ≡ [�i :Bi

i∈I∪J], a ≡ [�i = ς(xA′
i)bi

i∈I] :
E �o a : A E, x:A �o b : Bj

(j ∈ J)
E �t a.�j ↼↽ ς(xA)b ↔ [�j = ς(xA′)b,�i = ς(xA′)bi

(i ∈ I∪J\{j})] : A

(Eq Subsumption) :

E �t a ↔ a′ : A E �t A <: B

E �t a ↔ a′ : B

(Eq Top) :
E �o a : A E �o b : B

E �t a ↔ b : Top

(Eq Sub Object) where I ∩ J = ∅, A≡ [�i:Bi
i∈I], A′ ≡ [�k :Bk

k∈I∪J] :

E, xi :A �o bi : Bi (∀i ∈ I) E, xj:A′ �o bj : Bj (∀j ∈ J)

E �t [�i = ς(xA
i)bi

i∈I] ↔ [�k = ς(xA′
k)bk

k∈I∪J] : A

(Abs Cong) :

E, x:A �t b ↔ b′ : B

E �t λxA.b ↔ λxA.b′ : A→B

(App Cong) :

E �t a ↔ a′ : A→B E �t b ↔ b′ : A

E �t a(b) ↔ a′(b′) : B

(Object Cong) A≡ [�i:Bi
i∈I] :

E, xi:A �t bi ↔ b′i : Bi (∀i ∈ I)

E �t [�i = ς(xA
i)bi

i∈I] ↔ [�i = ς(xA
i)b
′
i

i∈I] : A

(Sel Cong) A ≡ [�i :Bi
i∈I], i ∈ I :

E �t a ↔ a′ : A

E �t a.�i ↔ a′.�i : Bi

(Update Cong) A≡ [�i :Bi
i∈I], j ∈ I :

E �t a ↔ a′ : A E, x:A �t b ↔ b′ : Bj

E �t a.�j ↼↽ ς(xA)b ↔ a′.�j ↼↽ ς(xA)b′ : A

environment of the Object Calculus. The rules are given in Figure 6, plus α-congruence:

(Eq α) :
E �o a : A a ≡α b

E �t a↔ b : A

where a ≡α b if and only if b is obtained from a by renaming bound variables and avoiding
capture of any free variable in a.

Proposition 5.2 If E �t a↔ b : A then both E �o a : A, E �o b : A and E �t A. Hence E is an environ-
ment, a and b are terms and A is a type under the assumptions in E.

Proof: By induction over derivations. In rule (Eq Refl), which is the base case, the premise

Theory of Computing Systems, 42(3):306-348, 2008 28

immediately implies the thesis. Cases of (Eq Symm) and (Eq Trans) are immediate consequences
of the induction hypothesis.

By rule (Eq α), we can assume that bound variables do not appear in the environment E, so
that the choice of their names is arbitrary and does not conflict with the choice of free variable
names.

In case of Eval rules use Theorem 1.17.
(Eq Subsumption) and (Eq Top) follow by the induction hypothesis and (Val Subsumption). For

rule (Eq Sub Object) use Theorem 2.16 and the compatibility of �p with respect to �o , stated
in Lemma 3.7.

All the Cong rules follow by induction.
Eventually, if E �o a : A then E �t A by Lemma 1.14(i); this in turn implies E �t
 by (i) of

Lemma 1.13.

Remark 5.3 This notion of equality includes (typed) convertibility, as is clear from rules (Eval Beta),
(Eq Select) and (Eq Update), but it does not coincide with it: in fact ‘↔’ is a congruence whereas
‘−→ ’ is not closed under arbitrary contexts; more importantly, this is a consequence of sub-
typing and precisely of rule (Eq Sub Object) (see Example 5.5).

The assignment system of Definition 3.2 induces a logical notion of equivalence, according
to which a and b are equal at A if they can be assigned the same set of predicates σ such that
A:σ. More precisely, and taking into account environments and their extensions into bases,
we can formalise this idea as follows:

Definition 5.4 (Logical Equivalence) Let a be any pre-term; we define P(E, a, A) as the set
of predicates of type A that can be assigned to a when E �o a : A:

P(E, a, A) = {σ | ∃∆; Γ [∆; Γ ≡ E & ∆; Γ �p a:A : σ] }.
We then say that the pre-terms a and b are logically equivalent at A and environment E if they
can be assigned the same set of predicates of type A with respect to E:

a �E b : A ⇐⇒ P(E, a, A) = P(E,b, A).

Example 5.5 As in Example 4.4, let A ≡ [�0:Int,�1:Int], and a ≡ [�0 = ς(xA
0)1,�1 = ς(xA

1)x.�0].
Further consider:

b ≡ [�0 = ς(xA
1)1,�1 = ς(xA

1)1].
In [1], Section 7.6.2 it is argued that they cannot be equated at A. Indeed, they are not logically
equivalent at A since, if we assume that 1 is the predicate expressing the property of “being the
number 1”, so 1∈ LInt, and ∆; �p 1:Int : 1, then ∆; �p b:A : 〈�1:ω→ 1〉 but ∆;
� a:A:〈�1:ω→ 1〉.
Indeed (omitting again the ∆’s and all those parts of the derivation justifying the assignment
of the predicate to a type):

x1:A:ω �p 1:Int : 1
(Val Object)�p b:A : 〈�1:ω→1〉

Replacing b by a would not yield a valid derivation. The best we can do in the case of a is

Theory of Computing Systems, 42(3):306-348, 2008 29

instead:

x1:A:〈�0:ω→1〉 �p x1:A : 〈�0:ω→1〉 x1:A:〈�0:ω→1〉 �p x1:A : ω
(Val Select)

x1:A:〈�0:ω→1〉 �p x1.�0:Int : 1
(Val Object)�p a:A : 〈�1:〈�0:ω→1〉→1〉

To express this in natural language, what we have proven is that the value of b on calling
method �1 is 1, and that this is a “field”, in that it does not depend on other parts of b; on
the other hand, for a the value returned by �1 depends on the actual value of �0: the predicate
〈�1:〈�0:ω→1〉→1〉 expresses this.

However, in [1] paragraph 8.4.2 it is observed that the equality �t a↔ b : [�0:Int] is derivable
since both

�t [�0 = ς(xB
0)1]↔ a : [�0:Int] and �t [�0 = ς(xB

0)1]↔ b : [�0:Int]
can be obtained by rule (Eq Sub Object); this clearly shows that ‘↔’ is not convertibility, since
a, b and [�0 = ς(xB

0)1] are distinct normal forms and the reduction is confluent.
In our setting, we can show that a �∅ b : [�0:Int] as well, and this is the effect of restricting

to the language L[�0:Int]: in fact the only non-trivial predicates in L[�0:Int] that we can derive
for either a or b are 〈�0:ω→1〉 (or greater than this with respect to ≤).

We relate here logical equivalence to the equational theory of the Object Calculus.

Lemma 5.6 Logic equivalence is a congruence; more precisely:

a �E,E′ a′ : A & b �E,x:A,E′ b′ : B ⇒ b{x← a} �E,E′ b′{x← a′} : B.

Proof: This is just a rephrasing of the substitution property stated in Lemma 4.2.

We want to establish that equality in the Object Calculus implies logical equivalence, prov-
ing that what we have seen in the Example 5.5 actually holds in general. Corollary 2.17 is
a first evidence of the consistency of the predicate assignment system with respect to the
subtyping relation. It is however not enough.

Lemma 5.7 Let A ≡ [�i:Bi
i∈I], and A′ ≡ [�k :Bk

k∈I∪J], where I ∩ J = ∅. If

E �t [�i = ς(xA
i)bi

i∈I]↔ [�k = ς(xA′
k)bk

k∈I∪J] : A

is the conclusion of rule (Eq Sub Object) under the premises

E, xi:A �o bi : Bi (∀i ∈ I) and E, xj:A′ �o bj : Bj (∀j ∈ J),

then [�i = ς(xA
i)bi

i∈I] �E [�k = ς(xA′
k)bk

k∈I∪J] : A.

Proof: Since I ⊆ I ∪ J, by rule (Sub Object) we have that E �t A′<:A. Moreover if i ∈ I, and
∆ �o A : 〈�i:τ→ψ〉 then we claim that:

Γ;∆, xi:A:τ �p bi:Bi : ψ ⇐⇒ Γ;∆, xi:A′:τ �p bi:Bi : ψ. (1)

Indeed the ⇒ implication an instance of Lemma 3.10. To prove⇐we note that ∆ �o 〈�i:τ→ψ〉 : A
implies ∆ �o A :τ by (ii.e) of Lemma 2.10, so that the hypothesis E, xi:A �o bi : Bi implies that
the assumption xi:A′:τ can be weakened to xi:A:τ, and we get Γ;∆, xi:A:τ �p bi:Bi : ψ as desired.

Let a ≡ [�i = ς(xA
i)bi

i∈I] and a′ ≡ [�k = ς(xA′
k)bk

k∈I∪J]. Suppose that σ ∈ P(E, a, A) and
assume without loss of generality that σ ∈ Ps \ {ω} (otherwise either it is ω, the trivial case,

Theory of Computing Systems, 42(3):306-348, 2008 30

or it is a conjunction of predicates in Ps and we reason similarly for each conjunct): hence
σ ≡ 〈�i:τ→ψ〉 for some i ∈ I and τ,ψ such that Γ;∆, xi:A:τ �p bi:Bi : ψ, where Γ;∆≡ E. By this
and Lemma 3.8 we know that ∆ �o A : 〈�i:τ→ψ〉, therefore by (1) we have Γ;∆, xi:A′:τ �p bi:Bi : ψ,
which easily implies Γ;∆ �p a′ :A : σ, i.e. σ ∈ P(E, a′, A).

Vice-versa, let σ ∈ P(E, a′, A). From Γ;∆ �p a′ :A : σ it follows that ∆ �o A :σ that is, if σ ≡
〈�i:τ→ψ〉 as before, we know that i ∈ I and ∆ �o A : τ. By (v.c) of Lemma 3.11 it must be the
case that Γ;∆, xi:A′:τ �p bi:Bi : ψ, whence we get Γ;∆ �p a:A : σ by (1) and rule (Val Object).

Theorem 5.8 If E �t a↔ b : A then a �E b : A.

Proof: The proof is by induction over the derivation of E �t a↔ b : A. In case the derivation
ends by any rule among (Eval Beta), (Eval Select) and (Eval Update) the thesis follows by Theo-
rems 4.3 and 4.6. Those cases in which the derivation ends by rules that establish the congru-
ence properties of ↔, namely (Abs Cong), (App Cong), (Object Cong), (Sel Cong) and (Update Cong),
the result follows from Lemma 5.6. If the last rule is (Eq Top) then A ≡ Top and we observe
that, by Lemma 2.10, P(E, a,Top) and P(E,b,Top) contain exactly all predicates equivalent to
ω, so they coincide.

If the derivation ends by rule (Eq Sub Object), the thesis follows by Lemma 5.7. The case
remains in which the derivation ends by rule (Eq Subsumption):

E �t a↔ b : A E �t A <: B

E �t a↔ b : B

Let τ ∈ P(E, a, B): then ∆; Γ �p a:B : τ for some ∆; Γ such that ∆; Γ ≡ E. Since the premise
E �t a↔ b : A implies that both E �o a : A and E �o b : A are derivable and E �t A <: B implies
that ∆̂ �t A <: B, Lemma 3.9 applies, so that ∆; Γ �p a:A : τ is derivable, so τ ∈ P(E, a, A). Also,
by induction, P(E, a, A) = P(E,b, A), that is ∆′; Γ′ �p b:A : τ is derivable for certain ∆′; Γ′ such
that ∆′; Γ′ ≡ E. Then ∆′; Γ′ �p b:B : τ follows by rule (<:), that is τ ∈ P(E,b, B) as desired.

Remark 5.9 The converse of Theorem 5.8 does not hold. To see a counter example consider:

d ≡ [�0 = ς(xA
0)1,�1 = ς(xA

1)λyInt.y],

e ≡ [�0 = ς(xA
0)1,�1 = ς(xA

1)λyInt.(x1.�0 ↼↽ ς(zA)y).�0]

where A ≡ [�0:Int,�1:Int→Int]. It is easy to see that both �o d : A and �o e : A, but clearly

� d↔ e : A. Their behaviour is however the same: this is clear for the field �0; concerning
�1 we observe that both d.�1 and e.�1 are the identity over Int. Indeed the side-effect which
occurs when applying e.�1 to any integer cannot be observed, since the self of e gets lost in the
computation, being the FOb1<:µ-calculus functional.

We argue that d � e : A (a detailed proof can be obtained by means of Lemma 3.11). In fact it
is not difficult to see that P(∅,d, A)⊆P(∅, e, A). For the opposite inclusion, if �p e:A : 〈�1:σ→φ〉
then it must be obtained by deriving x1:A′:σ �p λyInt.(x1.�0 ↼↽ ς(zA)y).�0:Int→Int : φ, for some
subtype A′ of A: since σ ∈ LA and �o e : A we can freely assume that A′ is A, and that the last
rule of this derivation is (Val Object). From the fact that φ ∈ LInt→Int we also know that, if it
is not trivial, then it is an arrow, namely φ ≡ τ→κ for certain τ,κ ∈ LInt. Going backward in
the derivation we arrive at x1:A:σ,y:Int:τ �p (x1.�0 ↼↽ ς(zA)y).�0:Int : κ which is the conclusion

Theory of Computing Systems, 42(3):306-348, 2008 31

of (Val Select). By this we know that in the derivation we must have both

x1:A:σ,y:Int:τ �p x1.�0 ↼↽ ς(zA)y:A : 〈�0:σ′→κ〉 (2)

and x1:A:σ,y:Int:τ �p x1.�0 ↼↽ ς(zA)y:A : σ′ for some σ′. As a matter of fact we do not need
the information encoded by σ′, which can be simply ω, so that we are left to derive (2) by
means of rule (Val Update1). This amounts to assume that σ is non trivial (e.g. take 〈�0:ω〉), and
to show x1:A:σ,y:Int:τ,z:A:ω �p y:Int :κ, for which τ ≤ κ is necessary and sufficient. But this
very last fact also suffices to derive x1:A:σ,y:Int:τ �p λyInt.y:Int→Int : τ→κ, from which it is
immediate to obtain �p d:A : 〈�1:σ→φ〉 by rule (Val Object) as desired.

We end this remark by observing that the logical complexity of the theory of logical equiv-
alence is Π0

2 , and we conjecture that it is a Π0
2-complete one, as it is the case for the theories

of filter models of the untyped λ-calculus from which it derives. If this is the case there exists
no formal system extending the theory of↔ such that it coincides with �.

6 Logical Equivalence and Observational Semantics

Observational semantics for the first order calculus has been defined in [18] in Morris-style,
called there “contextual equivalence”. It consists of inseparability by means of contexts of
ground type. In the same paper it has been shown that this coincides with a notion of bisim-
ulation which is stronger than ‘↔’. We will adopt a slightly more general definition here.

We claim that, when restricted to closed terms, logical equivalence is included in obser-
vational equivalence. To this aim we will establish a computational adequacy result for the
logical semantics with respect to convergence, which states that any well-typed term can be
assigned a non-trivial predicate if and only if it converges to a value. This is achieved by
means of the realizability interpretation of predicates given in Definition 3.3, proving that
the characterisation results of [16] are preserved in the typed context of the first order object
calculus.

As also mentioned above, we will write :A �o C[] : B to express that the closed context
C[] is typed with B, under the assumption that the “hole ” has type A; C[a] is the result of
replacing ‘ ’ by a in C[]. We write aA stays for a closed term a of a closed type A, i.e. such
that ∅ �o a : A (abbreviated by �o a : A).

Definition 6.1 (Observational Equivalence) Two closed terms a and b are called observa-
tionally equivalent at type A, written a �OA b, if both aA and bA, and

∀C[]. : A � C[] : K ⇒ (C[a] ⇓ v ⇐⇒ C[b] ⇓ v).

for any ground type K and value v of type K.

Remark 6.2
i) Typeable values can always be assigned non-trivial predicates.

ii) Definition 6.1 differs from the definition of contextual equivalence in [18] in some respect.
First, we consider contexts of any ground type as an “experiment”; moreover, we do
not consider reduction rules for constants as “if then else”; as a consequence we cannot
discriminate between different constants like true and false. It is for that reason that we
use in the above definition and in Theorem 6.7 the predicate a ⇓ v instead of a ⇓ .

Let a{xj← bj}j≤k abbreviate the simultaneous substitution of bj for xj in a for all 1 ≤ j ≤ k,

Theory of Computing Systems, 42(3):306-348, 2008 32

and similarly A{Xi← Bi}i≤h, substituting each Bi for Xi in A for all 1≤ i ≤ k.

Definition 6.3 (Compatible Substitutions) Assume ∆; Γ �p a:A : σ, where ∆ ≡ J1, . . . , Jh and
each judgement Ji either is Xi:σi or Xi:σi <: Di, and Γ ≡ x1:C1:τ1, . . . , xk:Ck:τk. We say that
the simultaneous substitutions {Xi← Bi}i≤h and {xj← bj}j≤k are compatible with ∆; Γ if:
∆̂ �t Bi <: Di (in case Xi:σi <: Di ∈ ∆), and �o Bi : σi for all 1≤ i≤ h, and �p bj:Cj{Xi← Bi}i≤h : τj
for all 1≤ j ≤ k.

In the above definition, if ∆; Γ �p a:A : σ is derivable then fv(A) ∪ fv(a) ⊆ dom(∆) ∪ dom(Γ):
hence compatible substitutions are closing a and A if they replace all free variable occurrences
by closed types and terms. We will call such a substitution a closing substitution.

Lemma 6.4 Assume that the closing substitutions {Xi← Bi}i≤h and {xj← bj}j≤k are compatible with
∆; Γ, then:

if ∆; Γ �p a:A : σ then �p a{xj← bj}j≤k:A{Xi← Bi}i≤h : σ

Proof: By Lemma 2.14 and Lemma 4.2.

Theorem 6.5 (Realizability theorem) Let ∆; Γ �p a:A : σ; assume that the closing substitutions
{Xi← Bi}i≤h and {xj← bj}j≤k are compatible with ∆; Γ. If bj

C′j ∈ [[τj]] whenever xj:Cj:τj ∈ Γ, then

a′A
′ ∈ [[σ]], where a′ ≡ a{xj← bj}j≤k, C′j ≡ Cj{Xi← Bi}i≤h and A′ ≡ A{Xi← Bi}i≤h.

Proof: We write aϑ for a{xj← bj}j≤k and A′ ≡ AΘ for A{Xi← Bi}i≤h. The proof proceeds by
induction on the derivation for ∆; Γ �p a:A : σ. The case (Val x) is trivial; the case (<:) follows
by the induction hypothesis and Lemma 3.6. For the remaining cases:

(Val Fun) : the last inference is an instance of the rule:

∆; Γ, x:A:σ �p a:B : φ

∆; Γ �p λxA.a:A→B : σ→φ

(λxA.a)ϑ is a value, hence it converges trivially. Since ϑ,Θ are compatible with ∆; Γ, given
any bA′ ∈ [[σ]], the substitutions ϑ[x := b] (which is the same as ϑ but for its value on x
which is b) and Θ are compatible with ∆; Γ, x:A:σ. Then, by induction aϑ[x := b] ∈ [[φ]],
and we conclude from ((λxA.a)ϑ)b −→ aϑ[x := b], Lemma 3.5 and the arbitrary choice of
bA′ .

(Val Appl) : the last inference is an instance of the rule:

∆; Γ �p a:A→B : σ→φ ∆; Γ �p b:A : σ

∆; Γ �p ab:B : φ

By induction aϑ ∈ [[σ→φ]] so that aϑ ⇓ (λxA.d) for some closed abstraction λxA.d; more-
over bϑ ∈ [[σ]] by induction, hence d[x := bϑ]∈ [[φ]], and we conclude by Lemma 3.5 and

(ab)ϑ ≡ (aϑ)(bϑ)
∗−→ (λxA.d)(bϑ) −→ d[x := bϑ].

(Val Object) : the last inference is an instance of the rule:

∆; Γ, xj:A:σ �p bj:Bj : φ ∆; Γ, xi:A �o bi : Bi (∀i∈ I \ {j})
(j∈ I)

∆; Γ �p [�i = ς(xA
i)bi

(i ∈ I)]:A : 〈�j:σ→φ〉

Theory of Computing Systems, 42(3):306-348, 2008 33

Now a ≡ [�i = ς(xA
i)bi

(i ∈ I)] is an object term, whose closure is a value: hence aϑ ⇓. That
�j ∈ Label(A) is a side condition of the rule. For any dA′ ∈ [[σ]] we have that ϑ[xj := d], and
Θ are compatible with ∆; Γ, xj:A:σ and

aϑ.�j(d) ≡ b(ϑ[xj := d]) ∈ [[φj]]

by induction.

(Val Select) : the last inference is an instance of the rule:

∆; Γ �p a:A : 〈�j:σ→φ〉 ∆; Γ �p a:A : σ

∆; Γ �p a.�j :Bj : φ

By induction aϑ ⇓ v, for some value v, �j ∈ Label(A) and aϑ.�j(d) ∈ [[φ]] for any dA′ ∈ [[σ]];
since aϑ ∈ [[σ]] (by induction again) we have that v∈ [[σ]] by Lemma 3.5 so that:

(a.�j)ϑ
∗−→ aϑ.�j(v) ∈ [[φ]],

and we conclude again by Lemma 3.5.

(Val Update1) : the last inference has the shape:

∆; Γ �p a:A : τ ∆; Γ,y:A:σ �p b:Bj : φ
(�j ∈ Label(A),τ
= ω)

∆; Γ �p (a.�j ↼↽ ς(yA)b):A : 〈�j:σ→φ〉

By induction aϑ ∈ [[τ]]; since τ
= ω this implies that aϑ ⇓ and that �j ∈ Label(A), there-
fore (a.�j ↼↽ ς(yA)b)ϑ ⇓ as well. Given any dA′ ∈ [[σ]], ϑ[y := d],Θ is compatible with
∆; Γ,y:A:σ, so that we conclude by induction

(a.�j ↼↽ ς(yA)b)ϑ.�j(d) ≡ bϑ[y := d] ∈ [[φ]].

(Val Update2) : the last inference has the form:

∆; Γ �p a:A : 〈�j:φ〉 ∆; Γ,y:A �t b:Bi
(i
= j)

∆; Γ �p (a.�i ↼↽ ς(yA)b):A : 〈�j:φ〉

By induction we know that aϑ ∈ [[〈�j:φ〉]], which implies that aϑ ⇓: hence (a.�j ↼↽ ς(yA)b)ϑ ⇓.
It remains to show that (a.�j ↼↽ ς(yA)b)ϑ ∈ [[〈�j:φ〉]] according to the shapes of φ. The case
in which φ ≡ ω is already proved by the fact that (a.�j ↼↽ ς(yA)b)ϑ ⇓. The case φ ≡ 〈�:ψ〉
is impossible, since (a.�j ↼↽ ς(yA)b)ϑ is well typed because of the compatibility of ϑ, and
no well-typed term might be assigned a predicate of that shape. We are left with the case
φ ≡ τ→ψ: then, since i
= j, we have that (a.�j ↼↽ ς(yA)b)ϑ.�i(d) ≡ aϑ.�i(d) is in [[ψ]] when
dA′ ∈ [[τ]] by the inductive hypothesis.

Corollary 6.6 (Characterisation of convergence) Let aA be any closed term: then a ⇓ if and
only if �p a:A : σ for some non-trivial σ.

Proof: As noted in (i) of Remark 6.2 typeable value v can be assigned non-trivial predicates,
so that a ⇓ v implies that the same predicates can be derived for a because of Theorem 4.6; on
the other hand a straightforward induction on the structure of σ shows that if σ is non trivial,
then any aA ∈ [[σ]] converges: by this and Theorem 6.5 we conclude.

Corollary 6.6 has important consequences. First it expresses the computational adequacy

Theory of Computing Systems, 42(3):306-348, 2008 34

of the logical equivalence, in the sense that no divergent term can be equated with a term
converging to a value. Combining this with the subject reduction and expansion Theorems
4.3 and 4.6, it says that predicates actually foresee properties of values: since the latter include
function and objects, such properties concern behaviour and not just aspects of elementary
values such as integers or Booleans.

But it is stronger than the above mentioned theorems, since we know that logical equivalence
is not simply convertibility (not even the equational theory of [1]). In fact Corollary 6.6 entails
the subsequent Theorem 6.7, which states the inclusion of the logical equivalence into the
observational equivalence, and hence the consistency of the former, and of the whole logic of
predicates we are about.

Theorem 6.7 (Logical Equivalence and Observational Equivalence) Suppose that for any
value v of ground type K we have exactly a non-trivial predicate κv ∈ LK, that these predicates are
distinct for different values and that �p v:K :κv is assumed for each v. Then for any aA and bA, if
a � b : A then a �OA b.

Proof: Let : A � C[] : K be any context of ground type K such that C[a] ⇓ v for some value v.
By the hypothesis that �p v:K :κv and Theorem 4.6, we have κv ∈ P(∅,C[a],K). On the other
hand a � b : A implies C[a] � C[b] : K, since logical equivalence is a congruence by Lemma
5.6, and therefore κv ∈ P(∅,C[b],K), that is �p C[b]:K :κv. By Corollary 6.6 it follows that
C[b] ⇓ v′ for some v′, whence �p v′:K :κv by Theorem 4.3. From the hypothesis that K is a
ground type and that κv is a characteristic predicate of v, we conclude v′ ≡ v.

By using bisimulation and its coincidence with observational equivalence, in [18] it is shown
that, taking a and b as in example 5.5, a �O

[�1:Int] b. This is intuitively clear: the only way to
separate a from b is to change the value of �0, since then the fact that a.�1 depends on such a
value while b.�1 does not, becomes apparent; but the overriding of �0 is inhibited in contexts
with the hole of type [�1:Int], where �0 is hidden.

It is not true, however, that a � b : [�1:Int], because the predicate 〈�1:ω→1〉 is in L[�1:Int], it
is derivable for b even at type [�1:Int] but cannot be derived for a at any type.

Language inclusion alone is not sufficient to account for subtyping of object types, while it
is for record types (see [17]): this is the essential reason for the presence of rule (Val Select) in
our system. It is reasonable to think that the failure of equivalences like a � b : [�1:Int] from
Example 5.5 depends on the fact that no rule accounts for the hiding effect of subtyping in the
case of object types. One possibility for coping with such a limitation is the following rule:

I ∩ J = ∅, A≡ [�i :Bi
i∈I∪J], A′ ≡ [�i :Bi

i∈J] :

∆; Γ �p a:A : 〈�:〈�i:σi
i∈I〉∧τ→ρ〉 ∆; Γ �p a:A : 〈�i:σi

i∈I〉 ∆ �o A′ : 〈�:τ→ρ〉
∆; Γ �p a:A′ : 〈�:τ→ρ〉

This rule formalises the idea that when A <: A′ and A and A′ are object types, the methods of
any object of type A not mentioned in A′ are hidden: therefore if a satisfies the premise of any
arrow predicate concerning the hidden part, this will never change in contexts of type A′, in
such a way that the latter premise can be discharged. Clearly, with reference to Example 5.5,
by this rule one can derive �o b : [�1:Int]:〈�1:ω→1〉, which makes a and b logically indiscernible
at type [�1:Int].

We have not considered this rule in our assignment system, however. The proof of the
soundness of such a rule requires a different definition of the realizability interpretation, and
makes the proof theory of the assignment system more involved. On the other hand, it is
difficult to say to what extent we obtain a stronger equivalence. Indeed we know in advance

Theory of Computing Systems, 42(3):306-348, 2008 35

that logical equivalence cannot coincide with observational equivalence: the former is indeed
the theory of a filter model which is a D∞ model; we know from [5] that it is not fully abstract
with respect to the lazy λ-calculus, which is a sub-calculus of the Object Calculus we consider.
Were logical equivalence and observational equivalence the same, a full abstraction property
would hold for the model.

7 Conclusions and Related Work

The system and results presented in this paper have been developed through a series of pa-
pers, [16], [17], [9], and [10], of which the present work is an extended and revised version.

To summarise our work, it can be seen as an intersection type assignment system (see e.g.
[10] and the references there) to typed terms of the first order object calculus from [1]. A simi-
lar idea of assignment of logical formulas to terms of a simply typed λ-calculus with recursive
types is the endogenous logic in [4], where languages are used to provide a finitary descrip-
tion of the domain interpretation of types, and a denotation of terms, much as it happens for
filter models of the type free λ-calculus in [11]. With respect to these antecedents our technical
contribution consists both in the consideration of object types and, more importantly, in the
treatment of subtyping, for which we build on ideas presented in [17].

Our results substantiate the claim that logical semantics allows for a clean and elegant
understanding of subtyping, which is seen as a form of (reverse) inclusion of logical theories,
indexed by types. This seems remarkable in presence of arrow, object and recursive types,
whose combination is notoriously very difficult to model.

The resulting logical equivalence is consistent with the equivalence axiomatically defined
in [1], and operationally sound with respect to the Morris-style semantics studied in [18]. We
remark that logic adds to the abstraction represented by types, in that it is able to capture
computational properties like convergence and context separability, which is not the case for
types. To show this, we resort to the technical tool of realizability interpretation of predicates,
which comes from [16] and is a mild extension of known techniques from the λ-calculus. Its
relation to types and subtyping, however, is not completely understood and is clearly involved
in the treatment of the rule suggested at the end of Section 6.

The present study rests on the assignment system and its proof theoretical properties, with-
out facing the problem of models. In [17] a filter model construction is proposed in which
types are interpreted as the CUPERs (studied in [6, 3, 14] and used in [1] Ch. 14) induced by
the indiscernibility relation with respect to the predicates of a language. Terms are interpreted
as filters of predicates, but their meaning in a type A is obtained by restricting to LA. Such a
restriction, trivially idempotent, is also continuous, which suggested the interpretation of the
restriction operation in terms of retractions over a D∞ universal model in [9]. Unfortunately
retractions do not allow for a sound treatment of subtyping because of their covariant be-
haviour with respect to both left and right-hand sides of arrow types. Although we think that
a model is implicitly described by our system, the analysis of its structure and the comparison
with existing denotational models of subtyping deserve further investigation.

Our system provides a program logic for the first order ς-calculus, which is natural to com-
pare with similar proposals in the literature. In [2] a Hoare-style logic for a first order object
calculus with subtyping is presented. A close relationship exists between their transition rela-
tions and our predicates 〈�i:σi→φi

(i ∈ I)〉. In fact, even if transition relations are expressed via
first order predicate logic whereas our logic is propositional, they specify pre and post con-
ditions of methods in terms of properties of filed values before and after method invocation.
We can do the same, since fields are simply methods that do not depend on self variables,

Theory of Computing Systems, 42(3):306-348, 2008 36

so that we can encode their properties by means of predicates of the shape 〈�:ω→ψ〉 (and
conjunctions of them); we then put them as the premises σi above, and encode post conditions
in the φi. We stress however that our framework is more powerful, because in [2] only field
update is permitted, whereas our logic is sound in the presence of the stronger operation of
method overriding.

The latter limitation is removed in [21], at the price of losing monotonicity of the transition
relations. To handle this difficulty, a notion of specification Spec(A, B, T) is introduced as
the unique fixed point of the bi-functor ΦA,B,T induced by the field predicate A, the result
predicates B and the transition relations T; such a fixed point does not exist in general, and
it can be assured only under suitable conditions (Existence Theorem). We first remark a tight
similarity between the definition of Spec(A, B, T) and of [[〈�:σ→ψ〉]] here, especially for the
quantification in the clause ∀cA ∈ [[σ]]. a.�(c) ∈ [[ψ]]. Then we observe that the realizability
interpretation of predicates is inductive, so that [[σ]] always exists. Although we do not have
a definite answer, it seems reasonable to think that our predicates are particular cases of
specifications, enjoying the good properties, which would explain why we do not need an
existence theorem at all. The model of the logic proposed in [21] is for the untyped ς-calculus,
both functional and imperative, so that there is nothing to remark about subtyping semantics
here.

A different approach to the relationship between program logic and subtyping is “be-
havioural subtyping” as exposed e.g. in [22]. It is based on the “subtype requirement” which
says that if A <: B and φ(b) for all b:B then φ(a) for all a:A, where φ(x) is a certain predicate
of x. This recalls the fact that LA ⊇ LB whenever A <: B in our system. However, because of
the universal quantifiers in the subtyping requirement, the predicates of [22] are likely to be
properties of types rather than of programs, so that they are better seen as a reinforcement of
the abstractions expressed by types, rather than as a description of behaviours. The latter is
exactly what we gain in our system, as shown via the Realizability Theorem 6.5.

References

[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer, 1996.
[2] M. Abadi and K. Leino. A logic of object oriented programs. In Proc. of TAPSOFT ’97, volume 1214

of Lecture Notes in Computer Science, pages 682–696, 1997.
[3] M. Abadi and G.D. Plotkin. A per model of polymorphism and recursive types. In Proc. of of

LICS’90, pages 355–365, 1990.
[4] S. Abramsky. Domain theory in logical form. Annals of Pure and Applied Logic, 51:1–77, 1991.
[5] S. Abramsky and C.-H. L. Ong. Full abstraction in the lazy lambda calculus. Information and

Computation, 105(2):159–267, 1993.
[6] R. Amadio. Recursion over realizability structures. Information and Computation, 91:55–85, 1991.
[7] S. van Bakel. Complete restrictions of the Intersection Type Discipline. Theoretical Computer Science,

102(1):135–163, 1992.
[8] S. van Bakel. Intersection Type Assignment Systems. Theoretical Computer Science, 151(2):385–435,

1995.
[9] S. van Bakel and U. de’Liguoro. Logical semantics of the first order sigma-calculus. In Proc. of

ICTCS’03, volume 2841 of Lecture Notes in Computer Science, pages 202–215, 2003.
[10] S. van Bakel and U. de’Liguoro. Subtyping object and recursive types logically. In Proc. of ICTCS’05,

volume 3701 of Lecture Notes in Computer Science, pages 66–80, 2005.
[11] H. P. Barendregt, M. Coppo, and M. Dezani. A filter lambda model and the completeness of type

assignment. Journal of Symbolic Logic, 48:931–940, 1983.
[12] V. Breazu-Tannen, T. Coquand, C. A. Gunter, and A. Scedrov. Inheritance as implicit coercion.

Information and Computation, 93:172–221, 1991.

Theory of Computing Systems, 42(3):306-348, 2008 37

[13] K. B. Bruce and G. Longo. A modest model of records, inheritance and bounded quantification.
Information and Computation, 87:196–240, 1990.

[14] K. B. Bruce and J. C. Mitchell. Per models of subtyping, recursive types and higher-order poly-
morphism. In Proc. of POPL ’92, pages 316–327, 1992.

[15] F. Cardone. Relational semantics for recursive types and bounded quantification. Lecture Notes in
Computer Science, 372:164–178, 1989.

[16] U. de’Liguoro. Characterizing convergent terms in object calculi via intersection types. In Proc. of
TLCA’01, volume 2004 of Lecture Notes in Computer Science, pages 315–328, 2001.

[17] U. de’Liguoro. Subtyping in logical form. In Proc. of ITRS’02, volume 70 of ENTCS. Elsevier, 2002.
[18] A. Gordon and G. Rees. Bisimilarity for first-order calculus of objects with subtyping. In Proc. of

POPL’96, pages 386–395, 1996.
[19] J. L. Krivine. Lambda-calcul, types et modèles. Masson, 1990.
[20] J. C. Mitchell. Foundations for Programming Languages. MIT Press, 1996.
[21] B. Reus and T. Streicher. Semantics and logic of object calculi. Theoretical Computer Science, 316:191–

213, 2004.
[22] B. H. Riskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions of Programming

Languages and Systems, 16(6):1811–1841, 1994.

