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1 Introduction

There are essentially three paradigms in common use for the design of functional program-
ming languages: the λ-calculus (LC for short), Term Rewriting Systems (TRS), and Term
Graph Rewriting Systems (TGRS). The LC, or rather combinator systems, forms the under-
lying model for the functional programming language Miranda1 [35], TRS are used in the
language OBJ [24], and TGRS form the base model for the language Clean [17].

For LC, there exists a well understood notion of type assignment known as the Curry type
assignment system [20], that expresses abstraction and application. The intersection type disci-
pline [18, 15] is an extension of Curry’s system that consists of allowing more than one type for
term-variables and terms, adding a type constant ‘ω’, and considering the type constructor
‘∩’ in addition to the type constructor ‘→’. One of the most appealing features of intersec-
tion type assignment in LC is the fact that normalisation of terms can be studied through
assignable types (see e.g. [15] and [2]):

• M has a head-normal form iff B ⊢ M : σ and σ 6= ω.

• M has a normal form iff B ⊢ M : σ and ω does not occur in B and σ.

• M is strongly normalisable iff B ⊢ M : σ and ω is not used at all.

The essential intersection system for LC defined by [5] is a restriction of the intersection type
discipline that satisfies all the properties above. Its main advantage is that the set of types
assignable to a term is significantly smaller than in the full intersection system.

Though many functional programming languages allow programmers to specify an algo-
rithm (function) as a set of rewrite rules, type assignment for TRS has not attracted much
attention until now. This is remarkable, since TRS and LC are essentially different: although
both formalisms are Turing-complete, there exists no direct translation of TRS to LC. For ex-
ample, adding the definition of surjective pairing,

Fst (Pair (x,y)) x

Snd (Pair (x,y)) y

Pair (Fst (x),Snd (x)) x

1Miranda is a trade mark of Research Software LTD.
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to LC gives a system in which the Church-Rosser property no longer holds [28]; this implies
that the above TRS cannot be expressed in LC.

Although it seems straightforward to extend type assignment systems for LC to TRS, it is
not evident that those borrowed systems will still have, for general TRS, all the properties
they possessed in the setting of LC. For example, some restrictions have to be imposed in
the assignment of types to rewrite rules in order to ensure the subject reduction property (i.e.
preservation of types under rewriting), as illustrated in [12].

The aim of this paper is to define a notion of (essential) intersection type assignment di-
rectly for TRS and to study normalisation properties in that setting. We use intersection types
because more meaningful terms can be typed in this way. Also, the notion of type assign-
ment presented in this paper applies to TGRS and in that framework intersection types are
the natural tool to type nodes that are shared (another notion of type assignment on TGRS
was defined by [16], to study safeness of destructive updates). Intersection types are also
promising for use in functional languages, since they provide a good formalism to express
overloading, see [32].

We consider Curryfied TRS (CuTRS), a slight extension of the TRS defined by [29], and [21].
CuTRS contain a special binary operator Ap, that models application and allows for partial
application of function symbols (Curryfication). CuTRS are also extensions of the constructor
systems used in most functional programming languages in that they do not discriminate
against the varieties of function symbols that can be used in patterns. However, we will in
some cases make this distinction when we will study normalisation properties of CuTRS.

Recently, some results have been obtained in the field of typed TRS [21] and the combination
of those with intersection type assignment systems for LC [13]. The idea behind those systems
is that rewrite rules aim to describe manipulations of objects of an algebraic data-type and,
therefore, concepts like polymorphism are not introduced within TRS. In contrast, in this
paper we present a type assignment system for CuTRS that is closer to the approach of intersection
type assignment in LC; in particular, rewrite rules can be polymorphic.

The type assignment system on CuTRS that we define is based on a combination of the es-
sential intersection system for LC and the type assignment system of ML [30], both exten-
sions of Curry’s type assignment system. Type assignment will be defined through a natural
deduction system, assuming that every function symbol has a predefined type, given in an
environment. This approach is similar to the one taken by [26] to define the principal Curry
type of an object in Combinatory Logic.

The polymorphic aspect of our type assignment system becomes apparent in the deriva-
tion rule that deals with the assignment of a type to a term like F(t1, . . . , tn). There the type
predefined for F in the environment can be ‘instantiated’ by applying operations of substitu-
tion, expansion, and lifting (see [4]). The operation of substitution deals with the replacement
of type-variables by types, the operation of expansion replaces types by the intersection of
a number of copies of that type and coincides with the one given by [19], and the operation
of lifting deals with both taking more specific types in bases and assigning a more general
type to terms. We use these three operations, instead of just substitution, not only because
more terms are typeable in this way, but also to obtain a natural embedding of LC in TRS that
preserves assignable types (with just substitution, this would not be possible).

The type assignment system presented in this paper can be seen as a generalization of the
systems of [12] and [6]; the main difference is the set of types used: Curry types in [12],
intersection types of Rank 2 in [6], and strict intersection types in this paper. Type assignment
in those systems is decidable, whereas in the one presented here it is not. However, the
normalisation results we will prove hold also for free in these decidable restrictions of the
system.

In contrast with LC, typeable terms in CuTRS need not even be head-normalisable; for ex-
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ample, consider a typeable term t and a rule t → t. That is why we need to control the use
of recursion by imposing some syntactical conditions on the rewrite rules (a generalization
of primitive recursion). We will define a recursive scheme for rewrite rules that is inspired
by the general scheme of [27]. The general scheme was devised for the incremental definition
of higher order functionals based on first order definitions, such that their combination with
polymorphic LC is terminating. It was also used for defining higher order functions compat-
ible with other lambda calculi by [13] and [14].

It is worthwhile to notice that, even with the severe restrictions imposed on rewrite rules by
the general scheme, the class of CuTRS that satisfies the scheme is Turing-complete, a property
that systems without Ap would not possess.

For a type assignment system in which the type ω is not used, we will prove (adapting the
method of Computability Predicates of [25] and [33]) that for all typeable CuTRS satisfying the
general scheme, typeable terms are strongly normalisable.

Perhaps surprisingly, in the type system with ω, the general scheme is not enough to ensure
head-normalisation of typeable terms. Therefore, to study head-normalisation of typeable
CuTRS we will define a suitable restriction of the general scheme, called the HNF-scheme, where
the patterns of rewrite rules are constructor terms that have sorts as types. We should remark
here that our notion of head-normal form for CuTRS is similar in spirit to the notion of weak
head-normal form in LC; the latter is used in most functional programming languages based
on LC, see [1]. We will again use the method of Computability Predicates to prove that for all
typeable CuTRS satisfying the HNF-scheme, every typeable term has a head-normal form. We
will also show that if Curryfication is not allowed, under certain restrictions, terms typeable
with a type that does not contain ω are normalisable.

These results apply in particular to Combinator Systems, a class of CuTRS that satisfies the
required conditions. For Combinator Systems that are combinatory complete, a type assign-
ment system was defined by [22]. Our system can be seen as a generalization of that one.

The lay-out of this paper is as follows: We present CuTRS in Section 2. In Section 3 we briefly
recall the essential intersection system for LC. In Section 3 we introduce the essential inter-
section system for CuTRS, and compare it with the one for LC. In Section 4 we present the
general scheme and prove the strong normalisation theorem for the type assignment system
without ω. We then show that in the system with ω, and considering the restrictions formu-
lated in the HNF-scheme, all typeable terms have a head-normal form. Finally we prove the
normalisation result.

The results presented in this paper were first published, in a much condensed form, as [3, 8],
and [9].

2 Curryfied Term Rewriting Systems

In this section we present Curryfied Term Rewriting Systems (CuTRS), an extension of the Term
Rewriting Systems (TRS) defined by [29], and [21]. CuTRS are first-order TRS extended with a
binary function symbol which models partial application of functions. This feature allows us
to make a straightforward translation of Lambda Calculus (LC) to CuTRS, i.e. to a first-order
rewrite system.

CuTRS are also an extension of the constructor systems used in most functional program-
ming languages in that not only constructor symbols can be used in the operand space of the
left-hand side of rewrite rules, but all function symbols.
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Definition 2.1 An alphabet or signature Σ consists of a countable infinite set X of variables x,
y, z, x′, y′, . . . ; a non-empty set F of function symbols F, G, . . ., each equipped with an ‘arity’ (a
natural number); and a special binary operator, called application (Ap).

Definition 2.2 The set T(F,X ) of terms is defined inductively by:

i) X ⊆ T(F,X ).

ii) If F ∈ F ∪{Ap} is an n-ary symbol (n ≥ 0) and t1, . . . , tn ∈ T(F,X ), then F(t1, . . . , tn) ∈
T(F,X ). The ti (i ∈ n) are the arguments of the last term. We will omit the brackets when
n = 0.

We will write Var (t) for the set {x ∈ X | x occurs in t}.

Definition 2.3 A term-substitution R is a mapping from T(F,X ) to T(F,X ) satisfying

R(F(t1, . . . , tn)) = F (R(t1), . . . ,R(tn)

for every n-ary (n ≥ 0) function symbol F, and is determined by its restriction to a finite set of
variables. Sometimes we will use the notation {x1 7→t1, . . . , xn 7→tn} for term-substitutions. We
will also write tR instead of R(t).

Definition 2.4 i) Given a signature Σ with a set X of variables and a set F of function sym-
bols, a rewrite rule in σ is a pair (l,r) of terms in T (F, X), such that l is not a variable, and
thevariables occurring in r appear in l. Often a rewrite rule will get a name, e.g. r, and
we will write r : l → r.
If F (t1, . . . , tn) is the left-hand side of a rule r, and, for i ∈ n, either ti is not a variable, or ti

is a variable and there is a 1≤ i 6= j≤n such that ti = tj, then ti is called a pattern of r.

ii) A Curryfied Term Rewriting System (CuTRS) is a pair (Σ,R) of a signature Σ = (F,X ), and a
set R of rewrite rules in Σ, such that, for every F ∈F of arity n > 0, there exist n additional
function symbols Fn−1, . . . , F1, F0 in F , the Curryfied-versions of F, and R contains the n
rewrite rules:

Ap (Fn−1 (x1, . . . , xn−1), xn) → F (x1, . . . , xn)
...

Ap (F1 (x1), x2) → F2 (x1, x2)

Ap (F0, x1) → F1 (x1)

If Fi is a Curryfied version of a function symbol F, then its Curryfied versions coincide
with the corresponding Curryfied versions of F, being Fi−1, . . . , F0. Moreover, we will
assume that for any rule r : l → r in R, if Ap occurs in l, then r is of the shape:

Ap (Fi−1 (x1, . . . , xi−1), xi) → Fi (x1, . . . , xi)

for some Curryfied version Fi−1, and that Curryfied versions do not appear in the root of
any left-hand side.

iii) Terms that do not contain Curryfied versions of symbols are called non-Curryfied terms.

iv) A rewrite rule r : l → r determines a set of reductions lR → rR for all term-substitutions
R. The term lR is called a redex; it may be replaced by its contractum rR inside any context
C[ ]; this gives rise to rewrite steps:

C[ lR ]→r C[ rR ].

We will write t →R t′ if there is a r ∈ R such that t →r t′.
Concatenating rewrite steps we have (possibly infinite) rewrite sequences t0 → t1 → ·· ·. If
t0 → ·· · → tn (n ≥ 0) we will also write t0 →∗ tn.
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Because of the extra rules for Fn−1, . . . , F1, F0, etc., the rewrite systems are called Curry-closed.
When presenting a rewrite system we will sometimes omit the rules that define the Curryfied
versions.

Definition 2.5 A rewrite rule r : l → r defines F if F is the leftmost, outermost symbol in l that
is not an Ap; we call F the defined symbol of r. We say that F ∈ F is a defined symbol if there is a
rewrite rule that defines F. Otherwise, it is a constructor.

Example 2.6 Our definition of recursive symbols, using the notion of defined symbols, is dif-
ferent from the one normally considered. Since Ap is never a defined symbol, the following
CuTRS

D (x) → Ap (x, x)

Ap (D0, x) → D (x)

is not considered a recursive system. Notice that, for example, the term D (D0) has no normal
form (this term plays the role of (λx.xx)(λx.xx) in LC). This means that, in the formalism of
this paper, there exist non-recursive first-order rewrite systems that are not normalising.

Definition 2.7 i) A term is in normal form if it is irreducible.

ii) A term t is in head-normal form if for all t′ such that t →∗ t′:

a) t′ is not itself a redex and

b) if t′ = Ap (v,u), then v is in head-normal form.

iii) A term is (head) normalisable if it can be reduced to a term in (head/constructor-hat) nor-
mal form.

iv) A rewrite system is strongly normalising (or terminating) if all the rewrite sequences are
finite; it is (head) normalising if every term is (head) normalisable.

Example 2.8 Take the CuTRS

F (x, x) → A (x)

B (H) → H

H → H

where F, B, and H are defined symbols, and A is a constructor (notice the use of a defined
symbol as a pattern in the second rule). The term F (B (H), H) is not a redex, but it is not a
head-normal form either, since it reduces to F (H, H) which is a redex. This term reduces to
A (H), which is a head-normal form.

This notion of head-normal form corresponds to the notion of weak ead-normal form in LC.
For instance, if F is a function symbol of arity n, Fi (t1, . . . , ti) is a head-normal form according
to the previous definition. Clearly it corresponds to the λ-term

λxi+1 . . . xn.F (t1, . . . , ti, xi+1, . . . , xn),

which is in weak head-normal form.

3 Essential Intersection System for CuTRS

In this section we present an intersection type assignment system for CuTRS. It is a partial
system in the sense of [31]: not only will we define how terms and rewrite rules can be typed,
but we will also assume that every function symbol in the signature has a type, provided by
an environment (i.e. a mapping from function symbols to types).
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To assign types to terms in the CuTRS framework, we are going to use three operations on
types (that extend to bases and to pairs of 〈basis,type〉), namely substitution, expansion, and
lifting. These were first defined in [4] to show that the strict type assignment system of [2]
has the principal type property. Substitution is the operation that instantiates a type (i.e. that
replaces type variables by types). The operation of expansion replaces types by the intersec-
tion of a number of copies of that type. The operation of lifting replaces basis and type by a
smaller basis and a larger type, in the sense of ≤.

The operations of substitution, expansion, and lifting can be composed to form chains of
operations. The set Ch of chains is defined as the smallest set containing expansions, substitu-
tions, and liftings, that is closed under composition ◦.

See [3] for formal definitions.

Definition 3.1 i) TS, the set of strict types, and T, the set of strict intersection types, are defined
through mutual induction by:

a) All type-variables ϕ0, ϕ1, . . . ∈ TS.

b) All sorts s1, s2, . . . ∈ TS.

c) If τ ∈ TS and σ ∈ T , then σ→τ ∈ TS.

d) If σ1, . . . ,σn ∈ TS (n ≥ 0), then σ1∩· · ·∩σn ∈ T .

ii) The type ω is defined as an intersection of zero types: if n = 0, then σ1∩· · ·∩σn = ω.

iii) On T , the relation ≤ is defined by:

a) ∀n ≥ 1, i ∈ n [σ1∩· · ·∩σn ≤σi].

b) ∀n ≥ 0 [∀ i ∈ n [σ≤σi]⇒ σ≤σ1∩· · ·∩σn].

c) σ≤τ≤ρ ⇒ σ≤ρ.

d) ρ≤σ & τ≤µ ⇒ σ→τ≤ρ→µ.

iv) The relation ∼E is defined by: σ∼E τ ⇐⇒ σ≤E τ≤E σ.

Notice that intersection types (so also ω) occur in strict types only as subtypes at the left-
hand side of an arrow type. According to the previous definition, if σ1∩· · ·∩σn is used to
denote a type, then all σ1, . . . ,σn are strict, therefore they cannot be ω. Notice also that TS is a
proper subset of T .

To obtain readable types, instead of ϕi we often write only the number i.

Definition 3.2 i) A statement is an expression of the form M : σ, where M is a λ-term and
σ ∈ T . M is the subject and σ the predicate of M : σ.

ii) A basis is a set of statements with only distinct variables as subjects. If σ1∩· · ·∩σn is a
predicate in a basis, then n ≥ 1.
The relations ≤E and ∼E extend to bases in the natural way: B≤B′ ⇐⇒ ∀x : σ′ ∈ B′ ∃x :
σ ∈B[σ≤σ′], and B∼B′ ⇐⇒ B≤B′≤B.

iii) If B1, . . . , Bn are bases, then∩{B1, . . . , Bn} is the basis defined by: x : σ1∩· · ·∩σm ∈∩{B1, . . . , Bn}
if and only if {x : σ1, . . . , x : σm} is the (non-empty) set of all statements whose subject is x
that occur in B1∪ . . . ∪Bn.

Notice that if n = 0, then ∩{B1, . . . , Bn} =. Often B∪{x : σ} (or B, x : σ) will be written for the
basis ∩{B,{x : σ}}, when x does not occur in B.

The three operations on types will be used in this section to define type assignment on
CuTRS: the types assigned to occurrences of function symbols will be obtained from the type
provided by the environment by making a chain of operations.

We will start by defining an environment, which is a mapping from function symbols to
strict types. Since we want to associate the Curryfied versions of a function symbol not only

6



through their rewrite rules, but also through their assignable types, we will require that the
environment maps a function F and all its Curryfied versions Fi to the same type.

Definition 3.3 Let (Σ,R) be a CuTRS, and F the set of function symbols in Σ.

i) A mapping E : F ∪{Ap} → TS is called an environment if for every F ∈ F with arity n,
E (F) = E , (Fn−1) = · · · = E(F0).

ii) For F ∈ F with arity n ≥ 0, σ ∈ TS, and E an environment, the environment E [F :=σ] is
defined by:

a) E [F :=σ] (G) = σ, if G ∈ {F, Fn−1, . . . , F0}.

b) E [F :=σ] (G) = E , (G), otherwise.

Since E maps all F ∈ F to types in TS, in particular no function symbol is mapped to ω.

In the following we will assume that E is a given environment for a CuTRS(Σ,R).

Definition 3.4 i) Type assignment and derivations are defined by the following natural deduc-
tion system (where all types displayed are in TS, except for σ in rule (≤) and (→E), and
σ1, . . . ,σn in rule (F)):

(≤) : (x : σ ∈ B,σ≤τ)
B ⊢E x : τ (∩I) :

B ⊢E t : σ1 . . . B ⊢E t : σn
(n ≥ 0)

B ⊢E t : σ1∩· · ·∩σn

(→E) :
B ⊢E t1 : σ→τ B ⊢E t2 : τ

B ⊢E Ap (t1, t2) : τ
(F) :

B ⊢E t1 : σ1 . . . B ⊢E tn : σn
(a)

B ⊢E F(t1, . . . , tn) : σ

(a) : If there exists C ∈ Ch such that Ch (E(F)) = σ1→·· ·→σn→σ.

ii) We write B ⊢E t : σ if and only if t : σ is derivable from B by using the natural deduction
system above. We will say that t is typeable with respect to E (or simply that t is typeable, if
the environment is clear from the context) if there exists a basis B and a type σ 6= ω such
that B ⊢E t : σ.

Notice that if B ⊢E t : σ, then B can contain more statements than needed to obtain t : σ. More-
over, by (∩I), for every B and t, B ⊢E t : ω.

The use of an environment in derivation rule (→E) introduces a notion of polymorphism
into our type assignment system. The environment returns the ‘principal type’ for a function
symbol; this symbol can be used with types that are ‘instances’ of its principal type, obtained
by applying chains of operations.

We will now define the type assignment for rewrite rules. This will be done in a careful
way to ensure that the subject reduction property (i.e. preservation of types under rewriting)
holds.

In [12] and [6] two restrictions of the type assignment system defined above are discussed,
for which there is a decidable and sufficient condition on rewrite rules that ensures subject
reduction. The condition a rewrite rule should satisfy is that the principal pair for the left-hand
side is also a correct pair for the right-hand side of the rule. The notion of principal pair is in
those papers defined in a constructive way, by defining a unification algorithm for types and
defining principal pairs using that algorithm.

Since at this moment there is no general unification algorithm for types in TS that works well
on all types, we cannot take this approach here. Therefore, for the notion of type assignment
defined in this paper we will show that if a left-hand side of a rewrite rule has a principal
pair and using that pair the rewrite rule can be typed, then rewriting using this rule preserves
types.
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Definition 3.5 A pair 〈P,π〉 is called a principal pair for a term t with respect to an environment
E if P ⊢E t : π and, for every B,σ such that B ⊢E t : σ, there is a chain Ch such that C (〈P,π〉) =
〈B,σ〉.

Definition 3.6 Let (Σ,R) be a CuTRS, and E an environment.

i) We will say that l → r ∈ R with defined symbol F is typeable with respect to E , if there are
basis P, type π ∈ TS, and an assignment of types to l and r such that:

a) 〈P,π〉 is a principal pair for l with respect to E , and P ⊢E r : π.

b) In P⊢E l : π and P⊢E r : π, the type actually used for each occurrence of F (or Curryfied
versions of F) is E , (F).

ii) We will say that (Σ,R) is typeable with respect to E , if every r ∈ R is typeable with respect
to E .

Condition (i.b) of Definition 3.6 is in fact added to make sure that the type provided by the
environment for a function symbol F is not in conflict with the rewrite rules that define F.
Since by part (i.b) of Definition 3.6, all occurrences of the defined symbol in a rewrite rule are
typed with the same type, type assignment of rewrite rules is actually defined using Milner’s
way of dealing with recursion [30].

We have shown a soundness result for chains of operations.

Theorem 3.7 i) If B ⊢E t : σ then for every chain Ch such that Ch (〈B,σ〉) = 〈B′,σ′〉, and B′ ⊢E t : σ′.

ii) Let r : l → r be a rewrite rule typeable with respect to the environment E and let F be the defined
symbol of r. If Ch is a chain that contains no lifting, then: if Ch (E(F)) = σ1∩· · ·∩σn, then for
every i ∈ n, r is typeable with respect to E [F :=σi].

We have also proved a subject reduction result.

Theorem 3.8 (SUBJECT REDUCTION THEOREM) Let (Σ,R) be a typeable CuTRS with respect to an
environment E . If B ⊢E t : σ and t →R t′, then B ⊢E t′ : σ.

It is important to note that, for this last theorem, the condition ‘〈P,π〉 is a principal pair for
l with respect to E ′ in Definition 3.6 is crucial. Just saying naively:

“ l → r ∈ R is typeable with respect to E if there are basis B and type σ ∈ TS such that B ⊢E l : σ

and B ⊢E r : σ, ”

would give a notion of type assignment that is not closed under rewriting and is not a natural
extension of the essential intersection system for LC. The following is an example of the loss
of subject reduction (see [12] for more details).

Example 3.9 Consider the rewrite system

H (S2 (x,y)) → S2 (I0,y)

S (x,y,z) → Ap (Ap (x,z), Ap (y,z))

K (x,y) → x

I (x) → x

and the environment
E0 (H) = ((1→2)→3)→(1→2)→2,

E0 (S) = (1→2→3)→(1→2)→1→3,

E0 (K) = 1→2→1,

E0 (I) = 1→1.
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The first rule is naively typeable with respect to E0:

x : (1→2)→1→3 y : (1→2)→1

S2 (x,y) : (1→2)→3

H (S2 (x,y)) : (1→2)→2

→ I0 : (1→2)→1→2 y : (1→2)→1

S2 (I0,y) : (1→2)→2

Take the term H (S2 (K0, I0)), which reduces to S2 (I0, I0). Although the first term is typeable
with respect to E0:

K0 : (4→5)→(4→5)→4→5 I0 : (4→5)→4→5

S2 (K0, I0) : (4→5)→4→5

H (S2 (K0, I0)) : (4→5)→5

the term S2 (I0, I0) is not typeable with respect to E0 with the type (4→5)→5. In our system
the rule is not typeable in this way, because the type assignment used for H (S2 (x,y)) is not a
principal one. To illustrate this, consider the following derivation:

x : (1→2)→4→3 y : (1→2)→4

S2 (x,y) : (1→2)→3

H (S2 (x,y)) : (1→2)→2

The pair 〈{x : (1→2)→4→3,y : (1→2)→4}, (1→2)→2〉 can by no chain of operations be ob-
tained from the pair 〈{x : (1→2)→1→3,y : (1→2)→1}, (1→2)→2〉; in the opposite direction,
the operation needed is that of (4 7→ 1).

We should emphasise that, when defining type assignment in a naive way, the loss of the
subject reduction property is not caused by the fact that intersection types are used. The en-
vironment E0 maps function symbols to Curry-types, so even for a notion of type assignment
based on Curry-types, types are not preserved under rewriting.

4 Normalisation Properties of Typeable CuTRS

In this section we study normalisation properties of CuTRS, using the type assignment system
defined above. As in LC, the type ω plays an important role in this study.

As mentioned in the introduction, in the rewriting framework typeability alone does not
ensure any normalisation property (for example, consider a typeable term t and a one-rule
recursive CuTRS of the form t → t). This means that the characterisation of normalisability of
terms in CuTRS cannot be based on type conditions only, as is possible for LC, but that also
syntactic restrictions on the rules have to be imposed. For this reason, we will introduce a
general scheme of recursion, inspired by [27], that restricts the use of recursion to ensure strong
normalisation of all terms typeable without using ω. Moreover, by restricting the scheme a
little further, we will show that when ω is used, all typeable terms have a head-normal form.

4.1 Strong Normalisation

In the following we will define the general scheme and the class of SN-safe recursive systems,
and prove that, using the type assignment system without ω, typeable SN-safe systems are
strongly normalising. We will consider environments that map function symbols to types
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without ω. Such environments will be called ω-free, and in general we will use the expression
ω-free as prefix to indicate that ω does not appear in an object.

Definition 4.1 Let σ be a signature with a set of function symbols Fn = C ∪{F1, . . . , Fn},
where F1, . . . , Fn will be the defined symbols that are not Curryfied-versions, and C the set
of constructors and Curryfied versions of symbols. Assume that F1, . . . , Fn are defined incre-
mentally, by rules that satisfy the general scheme:

Fi (C[x],y)→ C′[Fi (C1[x],y), . . . , Fi (Cm[x],y),y],

where x, y are sequences of variables such that x ⊆ y; C[ ], C′[ ], C1[ ], . . . , Cm[ ] are sequences
of contexts in T(Fi−1,X ); and for every j ∈ m, C[x] >

mulCj[x], where ⊳ is the strict subterm
ordering (i.e. > denotes strict superterm) and mul denotes multiset extension.

Then the hierarchical CuTRS that contains the rules defining F1, . . . , Fn is a SN-safe recursive
system.

This general scheme is a generalisation of primitive recursion. It imposes two main restric-
tions on the definition of functions: the terms in the multisets Cj[x] are subterms of terms in C
(this is the ‘primitive recursive’ aspect of the scheme), and the variables x must also appear as
arguments in the left-hand side of the rule. Both restrictions are essential to prove the Strong
Normalisation Theorem (Theorem 4.4 below). The last one can be replaced by a typing con-
dition, requiring that the variables in x that are not included in y can only be assigned base
types. Also, instead of the multiset extension of the subterm ordering, a lexicographic ex-
tension can be used, or even a combination of lexicographic and multiset (see [23] for details
about these variants of the scheme).

Example 4.2 The following rewrite system on natural numbers is SN-safe: it is a hierarchical
system, the variables that do not appear as arguments in the left-hand sides can only have
base types, and the recursive calls in the right-hand sides satisfy the required subterm con-
dition. The signature contains the constructors Succ, and Zero, and the defined symbols Add,
and Mul.

Add (Zero,y) → y

Add (Succ (x),y) → Succ (Add (x,y))

Mul (Zero,y) → Zero

Mul (Succ (x),y) → Add (Mul (x,y),y)

Con (Nil, l) → l

Con (Cons (a,b), l) → Cons (a,Con (b, l))

If we extend the definition of Add with the rule that expresses associativity,

Add (Add (x,y),z) → Add (x,Add (y,z))

the rewrite system is no longer SN-safe.

Note that although the general scheme has a primitive recursive aspect, it allows the def-
inition of non-primitive functions thanks to the higher-order features available in CuTRS: for
example, Ackermann’s function can be represented.
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Example 4.3 Ackermann’s function as a CuTRS.

h (0) = Succ0

h (Succ (x)) = H1 (h (x))

H (g, 0) = Ap (g, 1)

H (g,Succ (y)) = Ap (g, H (g,y))

Moreover, the rewrite rules of CCL (the rules for S, K, and I in Example 3.9) are not recur-
sive, so, in particular, satisfy the scheme. Therefore, even with the severe restrictions imposed
on rewrite rules by the general scheme, the class of SN-safe CuTRS is Turing-complete, a prop-
erty that systems without Ap would not possess.

Then the following holds.

Theorem 4.4 (STRONG NORMALISATION THEOREM) If (Σ,R) is typeable in ⊢−ω−E and SN-safe, then
any typeable term is strongly normalisable with respect to R.

4.2 Head-normalisation

As shown in the previous subsection, in a type assignment system without ω the condi-
tions imposed by the general scheme are sufficient to ensure strong normalisation of typeable
terms. Unfortunately, the general scheme is not enough to ensure head-normalisation of ty-
peable terms in a type system with ω: take the rewrite system

F (G (x)) → F (x),

A (x,y) → Ap (y, Ap (Ap (x, x),y))

that is typeable with respect to the environment

E(F) = ω→σ,

E(G) = ω→σ,

E(A) = ((α→µ→β)∩α)→((β→ρ)∩µ)→ρ,

then B ⊢E F (A (A0, G0)) : σ, but

F (A (A0, G0)) →
∗
R F (G (A (A0, G0)))→R F (A (A0, G0)).

The underlying problem is that, using ω, there are two kinds of typeable recursion in
CuTRS: the one explicitly present in the syntax, as well as the one obtained by the so-called
fixed-point combinators; for every H that has type ω→σ, the term A (A0, H0) has type σ, and
A (A0, H0) →∗

R H (A (A0, H0)). In fact, the term A1 (A0) corresponds to Θ= (λxy.y(xxy))(λxy.y(xxy)),
Turing’s fixed-point combinator for LC.

So, to obtain a head-normalisation theorem in a type system with ω, we will have to impose
stronger conditions than just those imposed by the general scheme. In this subsection we will
only consider environments that map constructors to types without type variables and ω. In
other words, we will consider those CuTRS having an alphabet with a set C of constructors,
such that, for every environment E , if H ∈ C then E(H) = s1→ . . .→sn→s, where n is the
arity of H and s1, . . . , sn, s are sorts, i.e. type constants. In the following, E will denote an
environment satisfying this condition.

Definition 4.5 (HNF-SCHEME) A rewrite rule

Fi (C[x],y) → C′[Fi (C1[x],y), . . . , Fi (Cm[x],y),y]

satisfies the HNF-scheme in the environment E , if it satisfies the conditions of the general
scheme, where we replace the condition of Definition 4.1:
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“ for j ∈ m, C[x] >
mul Cj[x] ”

by the condition:

“ for j ∈ m, C[x] >
mul Cj[x],C[x],Cj[x] ∈ T(C,X ), and the patterns (see Definition 2.4(i))

appear at positions where E(Fi) requires arguments of sort type’ ”

The systems that satisfy the HNF-scheme will be called HNF-safe.

With this restriction, we can prove the following.

Theorem 4.6 (HEAD NORMALISATION THEOREM) If the HNF-safe (Σ,R) is typeable in ⊢E and HNF-
safe, then Ht for every term t such that B ⊢E t : σ and σ 6= ω.

4.3 Normalisation

In the intersection system for LC it is well-known that terms that are typeable without ω in
basis and type are normalisable. This is not true in the rewriting framework, even if one
considers HNF-safe recursive systems only. Take for instance the HNF-safe system:

Z (x,y) → y

D (x) → Ap (x, x).

The term Z1 (D (D0)) has type ϕ→ϕ in an environment where Z is typed with ϕ1→ϕ2→ϕ2

and D with (ϕ3→ϕ4)∩ϕ3→ϕ4, but is not normalisable. The characterisation of normalisation
can therefore only be obtained for a restricted class of terms. We will consider only non-
Curryfied terms and CuTRS where reduction is closed on non-Curryfied terms (the latter will
be called non-Curryfied CuTRS). Actually, to get a normalisation result similar to that of LC
we will also need to impose the following condition on CuTRS:

Definition 4.7 A CuTRS is complete if whenever a typeable non-Curryfied term t of which the
type does not contain ω has a reducible subterm t|p that is typeable with a type containing ω,
there exists q < p such that t|q is typeable with a type without ω and t|q[x]p (where x is a fresh
variable) is not in head-normal form.

Definition 4.8 Let (Σ,R) be a non-Curryfied, HNF-safe and complete CuTRS. Let ≻ denote
the following well-founded ordering between terms: t≻t′ if t ⊲ t′ or t′ is obtained from t by re-
placing the subterm t|p = F (t1, . . . , tn) by the term F (s1, . . . , sn) where {t1, . . . , tn} >

mul{s1, . . . , sn}.
We define the ordering >>NF on triples composed of a natural number and two terms, as
the object (>IN,>· ,≻)lex .

Theorem 4.9 (NORMALISATION THEOREM) Let t be a non-Curryfied term in a typeable, and NF-
safe CuTRS. If B ⊢E t : σ and ω does not appear in σ, then t is normalisable.

5 Approximation and normalisation properties

This section gives the construction of the proof of the approximation theorem.
In order to define approximants of terms, we start by introducing a special symbol ⊥

(bottom) into the language (so ⊥ is not in X , and neither in F ), that is intended to repre-
sent meaningless terms. (The definition of this new set of terms T(F,X,⊥) is straightforward.)
To define type assignment on T(F,X,⊥), the type assignment rules given in Def. 3.4 need not
be changed, it suffices that terms are allowed to be in T(F,X,⊥). Since ⊥ 6∈ F ∪{Ap}, this
implies that ⊥ can only be given the type ω, or appear in subterms that are given the type ω.

Terms in T(F,X,⊥) can be ordered using the relation ⊑:
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Definition 5.1 i) t ⊑ u is inductively defined by:

a) For every u ∈ T(F,X,⊥), ⊥⊑ u.

b) For every t ∈ T(F,X,⊥), t ⊑ t.

c) F(t1, . . . , tn)⊑ F(u1, . . . ,un), if and only if, for all i ∈ n, ti ⊑ ui.

ii) We write t↑u (and say that t and u are compatible) if there is a v ∈T(F,X,⊥) such that t ⊑ v
and u ⊑ v. We write t↑V if there is an l ∈ V such that t↑ l.

By abuse of notation, we will use the symbol ⊥ also for the term-substitution that replaces
term-variables by ⊥: ⊥ {x 7→ ⊥| x ∈ X}. In the following we consider a given CuTRS (Σ,R),
and Lhs⊥ = {l⊥ | ∃r [l → r ∈ R]}.

We will now develop the notion of approximant of a term with respect to a given CuTRS. A
particular difference with approximants for lambda terms [36] is that our definition is ‘static’,
whereas the other notion was defined as normal forms with respect to an extended notion of
reduction. This approach did not work for our paper, because, to name just one problem, we
would not be able to prove a subject reduction result for such a notion of reduction. Instead,
we will recursively replace redexes by ⊥. While doing this, it can be that a term is created that
itself is not a redex, but looks like one, in the sense that is compatible to a left-hand side of a
rewrite rule (where variables are replaced by ⊥). Also such ‘possible redexes’ will be replaced
by ⊥.

Definition 5.2 DA (t), the direct approximant of t with respect to (Σ,R) is defined by:

i) t = x. DA (x) = x.

ii) t = F(t1, . . . , tn); let, for i ∈ n, ai = DA (ti).
DA (t) = ⊥, if F (a1, . . . , an)↑ Lhs⊥; otherwise, DA (t) = F (a1, . . . , an).

iii) t = Ap (t1, t2); let a1 = DA (t1), and a2 = DA (t2).
DA (t) = ⊥, if a1 = ⊥, or a1 = Fi (a1, . . . , ai); otherwise, DA (t) = Ap (a1, a2).

Approximants of terms are obtained by taking direct approximants of their reducts (and
making a downward closure).

Definition 5.3 i) DA, the set of approximate normal forms is defined as

DA = {a ∈ T(F,X,⊥) | DA (a) = a}.

ii) A(t), the set of approximants of t, is defined by:

A(t) = {a ∈ DA | ∃u [t →∗ u & a ⊑DA (u)]}.

Intuitively, the terms whose only approximant is ⊥ are undefined (i.e. meaningless). We
will see below (Corollary 5.11) that typeable terms cannot be undefined. A particular problem
for this result was that the normal approach, i.e. reasoning on terms, did not give a solution,
since the join a two SN-terms is not always an SN-term. Take for example the CuTRS:

E (x,y) → Ap (x,y)

D (x) → Ap (x, x)

then E (⊥, D0) ⊔ E (D0,⊥) = E (D0, D0). Notice that E (D0, D0) → D (D0) → D (D0) → ·· ·,
E (⊥, D0) → Ap (⊥, D0), and E (D0,⊥) → D (⊥) → Ap (⊥,⊥), and therefore that the terms
E (⊥, D0) and E (D0,⊥) are both strongly normalisable, while E (D0, D0) is not. The solution
to this apparent problem lies in the fact that the term E (D0, D0) is, in ⊢E, only typeable by ω.
By defining reduction on derivations rather than on terms, the difficulty is overcome, since
the derivation for ⊢EE (D0, D0) : ω is without redexes, so in normal form.

In this section, we will show the approximation theorem
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“ If B ⊢E t : σ, then there exists a ∈ A(t) such that B ⊢E a : σ, ”

as well as the three normalisation properties stated above, are consequences of a strong nor-
malisation result for derivation reduction.

The approximation result has been reached also in [5] for the essential system for LC, ⊢λ∩.
That result, however, cannot be transferred to typed CuTRS, and neither can the there used
technique. The crucial point in the problem is that the property “If z does not occur in M,
then ‘there is an A ∈ A (Mz) such that B,z : α ⊢λ∩ A : σ’ implies ‘there is an A ∈ A (M) such that
B ⊢λ∩ A : α→β’.” is relatively easy to prove, since the following holds: “If A ∈ A(Mz) and
z 6∈ FV(M), then either: A ≡ A′z & z 6∈ FV(A′) & A′ ∈ A(M), or λz.A ∈ A(M).”

The first of these properties is hard to prove in arbitrary CuTRS, because there is no known
way to express abstraction adequately in CuTRS that are not combinatory complete. Take, for
example, the term S2 (K0,y), B = {z : α}, and notice that

B ⊢E K0 : α→ω→α B ⊢E y : ω

B ⊢E S (K0,y) : α→α
(z : α ∈ B)

B ⊢E z : α

B ⊢E Ap (S (K0,y),z) : α

Notice that {⊥,z} = A(Ap (S (K0,y),z)) and also {z : α} ⊢ECL
z : α. Following the above

property, since none of the approximants of Ap (S (K0,y),z) is an application term, we would
then like to obtain, with a = ⌈⌈λz.〈z〉λ⌋⌋CL (where ⌈⌈⌋⌋CL is the mapping that translates lambda
terms to terms in CCL, and 〈〉λ is its inverse), that a ∈ A(S2 (K0,y)) and ∅ ⊢ECL

a : α→α. How-
ever, ⌈⌈λz.〈z〉λ⌋⌋CL = I and A(S2 (K0,y)) = {⊥,S2 (⊥,⊥),S2 (K0,⊥),S2 (⊥,y),S2 (K0,y)}.

That is why, to be able to prove the approximation result for CuTRS, it was necessary to
develop a new technique. We proved that, for a slight restriction of the intersection type
assignment system as defined in this paper, derivation reduction is strongly normalisable;
this then gives the desired approximation result in an easy way.

In order to prove the approximation theorem 5.10, we need first to define an auxiliary no-
tion of type assignment, ⊢E

′, that differs from ⊢E in the rule for term-variables only.

Definition 5.4 Strict type assignment and strict derivations are defined as in Definition 3.4 by a
natural deduction system, by replacing rule (≤) by:

(∩E) : (x : σ1∩· · ·∩σn ∈ B, i ∈ n)
B ⊢E

′ x : σi

The relation between the two notions of type assingment is formulated by:

Lemma 5.5 i) If B ⊢E t : σ, then there is a B′ such that B≤B′, and B′ ⊢E
′ t : σ.

ii) If B ⊢E
′ t : σ, and B′ is such that B′≤B, then B′ ⊢E t : σ.

We have also proved a subject reduction result for this notion of type assignment.

Theorem 5.6 (SUBJECT REDUCTION THEOREM) Let (Σ,R) be a typeable CuTRS with respect to an
environment E . If B ⊢E

′ t : σ and t →R t′, then B ⊢E
′ t′ : σ.

For this notion of type assignment ⊢E
′, we managed to prove that derivation reduction is

strongly normalisable. Reduction derivation is defined through the following.
First, we needed a notion of substitution on derivations (for lack of space, we do not give a

formal definition):

Definition 5.7 More precisely, for each of those leaves there is a subderivation
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B, xi : σi ⊢E
′ xi : ρi

j

A

Di
1

B ⊢E
′ xi

R : ρi
1

· · ·

Di
mi

B ⊢E
′ xi

R : ρi
mi

B ⊢E
′ xi

R : σi

The derivation D [Di/xi : σi] is defined as the derivation obtained from D by replacing all
occurrences of Di,j such that σi = ρi

j by Di, and the others by the correspondingDi
j, and making

in t the corresponding replacement of xi by xi
R.

We now give the definition of reduction on derivations.

Definition 5.8 The derivation reduction relation, denoted by D :: B ⊢E
′ t : σ →D D′ :: B ⊢E

′ t′ :
σ, is defined as follows: Suppose there is a rewrite rule l → r where Var (l) = {x1, . . . , xn},
and a subterm of t at position p (denoted t|p) such that: t|p = lR = F(t1, . . . , tm) where R =
{x1 7→u1, . . . , xn 7→un}. Assume moreover that for t|p, D contains at least one subderivation
D0 of the form:

D1

B ⊢E
′ u1 : σ1

Dn

B ⊢E
′ un : σn

B ⊢E
′ F(t1, . . . , tm) : τ

such that τ 6= ω, and the root of D0 is the first occurrence of the statement t|p : τ in a path from
the root of D to a leaf. Then by the Theorem 5.6 there exists D′

0 :: {x1 : σ1, . . . , xn : σn} ⊢E
′ r : τ.

Let D′ be obtained from D by replacing each subderivation D0 of t|p satisfying the previous
conditions by the corresponding

D′
0 [D1/x1 : σ1, . . . ,Dn/xn : σn] :: B ⊢E

′ rR : τ,

and propagating the replacement of t|p by rR along all the derivation tree. Let t′ be obtained
from t by replacing t|p with rR. Then we write D :: B ⊢E

′ t : σ →D D′ :: B ⊢E
′ t′ : σ.

The reflexive and transitive closure of →D is denoted by →D
∗, and we write SN (D) to

indicate that D is strongly normalisable with respect to →D.
For this notion of reduction, we are able to show the following termination result.

Theorem 5.9 Strong Normalisation of Derivation Reduction. If TRS is typeable in ⊢E
′ and HNF-

safe, then for every D :: B ⊢E
′ t : σ, SN (D).

Because of the precise relation between ⊢E
′ and ⊢E, as formulated by Lemma 5.5, we can

prove the following:

Theorem 5.10 Approximation Theorem. If (Σ,R) is typeable in ⊢E and HNF-safe, then for every
t such that B ⊢E t : σ there is an a ∈ A(t) such that B ⊢E a : σ.

Corollary 5.11 (TYPEABLE TERMS ARE MEANINGFUL.) Let (Σ,R) be typeable with respect to E and
HNF-safe. If B ⊢E t : σ, and σ 6= ω, then there exists a ∈ A(t) such that a 6= ⊥.
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As a matter of fact, it is possible to show that both the head-normalisation theorem 4.6 as
well as the normalisation theorem 4.9 follow directly from the approximation result 5.10.

Moreover, the strong normalisation result 4.4 is a direct result from 5.9.

6 Term Rewriting Systems with β-reduction rule

In this section we present a combination of untyped Lambda Calculus with untyped Alge-
braic Rewriting, obtained by extending first-order TRS with notions of application and ab-
straction, and a Beta-reduction rule. Terms are defined for this calculus as in Definition 2.2,
with the extension of the introduction of abstraction.

Definition 6.1 The set T(F,X ) of terms is defined inductively:

i) X ⊆ T(F,X ).

ii) If F ∈ F ∪{Ap} is an n-ary symbol (n ≥ 0), and t1, . . . , tn ∈ T(F,X ), then F(t1, . . . , tn) ∈
T(F,X ).

iii) If t ∈ T(F,X ), and x ∈ X , then λx.t ∈ T(F,X ).

We will consider terms modulo α-conversion.
The set of free variables of a term t is defined as usual, and denoted by FV (t).

In the next definition, we present a notion of rewriting on T(F,X ) that is defined through
rewrite rules together with a Beta-reduction rule. Again, this definition is similar to Definition
2.4. The differences lie in the fact that now also the β-contraction is added, and that the
rules for the Curryfied versions need not longer be added; they can now be expressed using
abstraction.

Definition 6.2 (REDUCTION) i) A rewrite rule is a pair (l,r) of terms. Often, a rewrite rule will
get a name, e.g. r, and we write l →r r. Three conditions are imposed: l is not a variable
or an abstraction λx.t, FV (r) ⊆ FV (l), and Ap does not occur in l.

ii) On terms we define the usual notion of β-reduction: Ap (λx.t,u)→β t{x 7→u}.

iii) A rewrite rule l →r r determines a set of rewrites lR → rR for all term-substitutions R. The
left hand side lR is called a redex, the right hand side rR its contractum. Likewise, for any
t and u, Ap (λx.t,u)→β t{x 7→u} is also a rewrite; Ap (λx.t,u) is called a redex, and t{x 7→u}

its contractum.

iv) A redex t may be substituted by its contractum t′ inside a context C[ ]; this gives rise
to rewrite steps C[ t ] → C[ t′ ]. Concatenating rewrite steps we have rewrite sequences t0 →
t1 → t2 → ·· ·. If t0 → ·· · → tn (n ≥ 0) we also write t0 →∗ tn, and t0 →+ tn if t0 →∗ tn in
one step or more.

Definition 6.3 Type assignment on terms (with respect to E) is defined as in Definition 3.4 by a
natural deduction system, adding the following rule:

(→I) :
B, x : σ ⊢E t : τ

(a)
B ⊢E λx.t : σ→τ

(a) If x : σ is the only statement about x on which t : τ depends.

(b) If F ∈ F ∪{Ap}, and there exists a chain Ch such that σ1→·· ·→σn→σ = Ch (E , (F)).

We will now develop the notion of approximant of a term with respect to a given TRS+β

(Σ,R). As mentioned above, this definition is a combination of the notion of approximant for
terms in LC [36] and that for terms in TRS [34]. A particular difference with those definitions
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is that our definition is ‘static’, whereas both other notions were defined as normal forms
with respect to an extended notion of reduction, adding, for example, for LC the reduction
rule ⊥M →⊥.

Definition 6.4 DA (t), the direct approximant of t is defined by cases:

i) t = x. DA (x) = x.

ii) t = F(t1, . . . , tn), F ∈ F ; let, for i ∈ n, ai = DA (ti).
DA (t) = ⊥, if F (a1, . . . , an)↑ Lhs⊥; otherwise, DA (t) = F (a1, . . . , an).

iii) t = Ap (t1, t2); let a1 = DA (t1), and a2 = DA (t2).
DA (t) = ⊥, if a1 = ⊥, or a1 = λx.a′; otherwise, DA (t) = Ap (a1, a2).

iv) t = λx.t′; let a = DA (t′). DA (t) = ⊥, if a = ⊥; otherwise, DA (t) = λx.a.

Example 6.5 Take the TRS+β

F (G, x) → A (H)

B (C) → G

H → H

and consider again the term F (B (C),λy.Ap (G,y)). Since B (C) is a redex, in particular it is
compatible with a left-hand side (being that term itself), so DA (B (C)) = ⊥.

Since F (⊥,λy.Ap (G,y)) is compatible to F (G,⊥), we get that DA (F (B (C),λy.Ap (G,y))) =
⊥.

Also, DA (λy.Ap (y, B (C))) = λy.Ap (y,⊥), and DA (λy.Ap (B (C),y)) = ⊥.

The sets DA and A(t) are defined as before.

Example 6.6 Take again the TRS+β of Example 6.5. Then

F (B (C),λy.Ap (G,y))→ F (G,λy.Ap (G,y))→ A (H)→ A (H)→ ·· · .

Notice that DA (F (B (C),λy.Ap (G,y))) = DA (F (G,λy.Ap (G,y))) = ⊥, DA (A (H)) = A (⊥),
so A(F (B (C),λy.Ap (G,y))) = {⊥, A (⊥)}.

Instead, A(F (H,λy.Ap (G,y))) = {⊥}.

Using the HNF-scheme, we were able to prove:

Theorem 6.7 (APPROXIMATION THEOREM) If @TRS is typeable in E and HNF-safe, then for every
term t such that B ⊢E t : σ, there is an a ∈ A(t) such that B ⊢E a : σ.

As in the previous section, this result leads to the head-normalisation result, and a normal-
isation theorem. The strong normalisation result needs to be proven independently, however.
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