
Polymorphic Intersection TypeAssignmentfor Rewrite
Systemswith Abstraction and -rule

ExtendedAbstract

SteffenvanBakel , FrancoBarbanera, andMaribelFerńandez

Departmentof Computing,ImperialCollege,
180Queen’s Gate,LondonSW72BZ. svb@doc.ic.ac.uk
Dipartimentodi Matematica,Universit̀adegli Studidi Catania,

VialeA. Doria6, 95125Catania,Italia. barba@dipmat.unict.it
LIENS (CNRSURA 8548),EcoleNormaleSuṕerieure,

45,rued’Ulm, 75005Paris,France.maribel@ens.fr

Abstract. We definetwo type assignmentsystemsfor first-orderrewriting ex-
tendedwith application, -abstraction,and -reduction(TRS). The types
usedin thesesystemsareacombinationof (-free)intersectionandpolymorphic
types.Thefirst systemis thegeneralone,for whichweproveasubjectreduction
theoremandshow thatall typeabletermsarestronglynormalisable.Thesecond
is a decidablesubsystemof thefirst, by restrictingtypesto Rank2. For this sys-
temwedefine,usinganextendednotionof unification,anotionof principaltype,
andshow thattypeassignmentis decidable.

Intr oduction

The combinationof -calculus(LC) andterm rewriting systems(TRS) hasattracted
attentionnot only from the areaof programminglanguagedesign,but also from the
rapidlyevolving field of theoremprovers.It is well-known by now thattypedisciplines
provideanenvironmentin which rewrite rulesand -reductioncanbecombinedwith-
out lossof their usefulproperties.This is supportedby a numberof resultsfor a broad
rangeof typesystems[11,12,20,7,8,5].

In this paperwe studythe combinationof LC andTRS asa basisfor the design
of a programminglanguage.Thetypesystems̀a la Curry, alsocalledtypeinferenceor
typeassignmentsystems, arethe most interestingonesfrom this point of view, since
they savetheprogrammerfrom specifyingatypefor eachvariable(notypeannotations
arerequired).Typeassignmentdisciplineshave beenwidely studiedin thecontext of
theLC, andsomework hasalsobeendonefor TRS,moreprecisely, for CurryfiedTRS
(CuTRS)[6] whicharefirst-orderTRSwith application,thatcorrespondto theTRSthat
underlietheprogramminglanguageClean[26]. TheinteractionsbetweenLC andTRS
in thecontext of typeassignmentwerefirst studiedin [5], whereCuTRSextendedwith

-abstractionand -reductionweredefined,togetherwith a notionof intersectiontype
assignmentfor boththeLC andtheTRSfragments.

Partiallysupportedby NATO CollaborativeResearchGrantCRG970285‘ExtendedRewriting
andTypes’.

Otherimportantfeaturesof atypesystemfor aprogramminglanguagearepolymor-
phism, that is, the possibility of usingthe sameprogramwith argumentsof different
types,andtheexistenceof principal types, thatis, a typefrom whichall theothertypes
of thetermcanbederived.Thetypesystemof ML hasthethreepropertiesabove, i.e.,
it is a polymorphictype inferencesystemwith principal types, but its polymorphism
is limited (someprogramsthat arisenaturallycannotbe typed).SystemF [18] pro-
videsamuchmoregeneralnotionof polymorphism,but lacksprincipaltypes,andtype
inferenceis undecidablein general(althoughit is decidablefor somesubsystems,in
particularif weconsidertypesof rank2 [21]). Intersectiontypesystems[10] aresome-
wherein the middle with respectto polymorphism(they provide lesspolymorphism
thanSystemF but morethanML) andprincipal typescanbeconstructedfor typeable
terms.But typeassignmentis againundecidable;decidabilityis recoveredif werestrict
ourselvesto therank2 types[4].

In view of theaboveresults,two questionsarisenaturally:

– Is therank2 combinationof SystemF andtheIntersectionSystemalsodecidable?

– Doesit haveprincipaltypesfor all typeableterms?

A systemfor theLC thatcombinesintersectiontypesandSystemF with principal
typeshasbeenstudiedin [19,24]. In thispaperweextendthatsystemto acombination
of LC andCuTRS.In otherwords,weextendthetypeassignmentsystemof [5] further,
adding‘ ’ asanextra type-constructor(i.e. explicit polymorphism).Althoughextend-
ing the set of typesby adding‘ ’ doesnot extend the expressivity of the systemin
termsof typeableterms,thesettypesof assignabletypesincreases,andtypescanbetter
expressthebehaviourof terms(see[13]). Theresultingsystemhastheexpectedproper-
ties:SubjectReduction,andStrongNormalizationwhentherewrite rulesusea limited
form of recursion(inspiredby theGeneralSchemaof JouannaudandOkada[20]). The
proofof thelatterfollowsthemethodof Tait-Girard’sreducibilitycandidates,extended
in orderto take thepresenceof (higher-order)algebraicrewriting into account.

We alsoanswerthefirst questionin theaffirmative.Therestrictionto typesof rank
2 of the combinedsystemof polymorphicand intersectiontypesis decidable.This
restrictedsystemcanbeseenasacombinationof thesystemsconsideredin [4] and[21].
Thecombinationis twofold:notonly thetypesystemsof thosetwo papersarecombined
(resp.intersectionandpolymorphictypesof Rank2),butalsotheircalculiarecombined
(resp.CuTRS andLC). In our Rank2 systemeachtypeableterm hasa principal type
suchthat every typederivablefor the termcanbe seenasan instance(undersuitable
operations)of thetype.Thisis thecasealsoin theRank2 intersectionsystemof [4], but
not in theRank2 polymorphicsystemof [21]. For thelatter, a typeinferencealgorithm
of thesamecomplexity of thatof ML wasgivenin [22], wheretheproblemsthatoccur
dueto thelackof principaltypesarediscussedin detail.

This paperis organisedasfollows: In Section1 we defineTRS with application,
-abstractionand -reduction(TRS), andin Section2 thetypeassignmentsystem.

Section3 dealswith thestrongnormalizationpropertyfor typeableterms.In Section4
wepresenttherestrictionof thegeneraltypeassignmentsystemto Rank2.

1 Term Rewriting Systemswith -reduction

We presenta combinationof LambdaCalculuswith AlgebraicRewriting, obtainedby
extendingfirst-orderTRSwith notionsof applicationandabstraction,and -reduction.
Wecanlook atsuchcalculialsoasextensionsof theCurryfiedTermRewriting Systems
(CuTRS)consideredin [6], by adding -abstractionanda -reductionrule.We assume
thereaderto befamiliarwith LC [9] andreferto [23,14] for rewrite systems.

We considertermsbuilt from a set of variables,a set of function symbols,
application() and -abstraction,modulo -conversion,asusual.A context is a term
with ahole,andit is denoted,asusual,by C . A lambdaterm is a termnotcontaining
functionsymbols.An algebraic term is a termcontainingneither nor . Thesetof
freevariablesof a term is definedasusual,anddenotedby FV .

To denotea term-substitution,we usecapitalcharacterslike ‘R’, insteadof Greek
characterslike ‘ ’, whichwill beusedto denotetypes.Sometimeswe usethenotation

. We write R for theresultof applyingtheterm-substitution
R to . Reductionsaredefinedthroughrewrite rulestogetherwith a -reductionrule.

Definition 1 (Reduction).A rewrite rule is a pair of terms,written . Three
conditionsareimposed: , is analgebraicterm,and . The -rule
is definedby: . A rewrite rule determinesa set of
rewrite stepsC R C R for all term-substitutionsR andcontexts C . Likewise,
for any and , C C . Concatenatingrewrite stepswehave
rewrite sequences . If () we alsowrite

, and if in onestepor more.
A TermRewriting Systemwith -reductionrule (TRS) is definedby a setR of

rewrite rules.

Notethat,in contrastwith CuTRS,therewrite rulesconsideredin thispapermaycon-
tain -abstractionsin theright-handsides.We taketheview thatin a rewrite rulea cer-
tainsymbolis defined: is a definedsymbol, if thereis arewrite rule
. is calledaconstructorif is notadefinedsymbol.Noticethat cannotbe

a definedsymbolsinceit cannotappearin theleft-handsideof a rewrite rule.
A TRS is stronglynormalizing,or terminating,if all therewrite sequencesare

finite. It is confluentif for all suchthat and , thereexists suchthat
and .

Example2. The following is a setof rewrite rulesthat definesthe functionsappend
andmap on lists andestablishestheassociativity of append. Thefunctionsymbolsnil
andcons areconstructors.

append nil
append cons cons append

append append append append
map nil nil

map cons cons map

Sincevariablesin TRS canbe substitutedby -expressions,we obtainthe usual
functional programmingparadigm,extendedwith definitions of operatorsand data
structures.

2 A Polymorphic Intersection Systemfor TRS

We definea typeassignmentsystemfor TRS , thatcanbeseenasanextension(by
adding) of the intersectionsystempresentedin [5]. We usepolymorphicstrict inter-
sectiontypes,definedoverasetof type-variablesandsorts(typeconstants).The -free,

-freefragmentof thissystemcorrespondsto thesystemstudiedin [6]. If sortsarenot
takeninto account,the -freeLC-fragmentof our typeassignmentsystemcorresponds
to thesystempresentedin [3], andtheintersection-freeLC-fragmentto SystemF [18].

For LC, a typeassignmentsystemthatcombinesintersectiontypeswith polymor-
phic typeshasbeendefinedin [19] and its principal type propertyhasbeenstudied
in [24]. As far astypesareconcerned,thedifferencebetweenoursystemandthelatter
is thatwe addconstanttypes,andusestrict intersectiontypes[3] (i.e. an intersection
typecannotbe theright-handsideof anarrow type).Therestrictionto strict intersec-
tion typessimplifiesthetyping proceduresanddoesnot affect thetyping power of the
system,becauseany termtypeablein thefull intersectiontypedisciplinecanbegiven
a strict typeandvice-versa.We assumethereaderto befamiliar with intersectiontype
assignmentsystems,andreferto [10,1,3] for moredetails.

2.1 Types

Definition 3 (Types).Let beasetof type-variables,where
is the set of free variables,and the set of boundvariables.Let

beasetof sorts. s, thesetof polymorphicstrict types, and , theset
of polymorphicstrict intersectiontypes, aredefinedby mutualinduction:

s s s

s s

For variousreasons(definitionof operationson types,definitionof unification),we
distinguishsyntacticallybetweenfreetype-variables(in) andboundtype-variables(in

). As usual‘ ’ associatesto theright, and‘ ’ bindsstrongerthan‘ ’, whichbinds
strongerthan‘ ’; so standsfor . Also is
usedasabbreviationfor , andweassumethateachvariableis bound
at mostoncein a type (renamingif necessary).In the meta-language,we denoteby

(resp.) thesubstitutionof thetype-variable (resp.) by in .
FV(), thesetof freevariablesof atype is definedasusual(notethatby construc-

tion,). A type is calledclosedif it containsno freevariables,andground
if it containsnovariablesatall.

Definition 4 (Relations on types). On , the pre-order(i.e. reflexive and transitive
relation) is definedby:

not in
is fresh

Theequivalencerelation is definedby: . We work with
typesmodulo .

Toobtainanotionof typeassignmentthatis atrueextensionof SystemF, the type-
constructoris allowedto occuron theright of anarrow, soa typelike is well-
defined.Also notethat we cannotquantify intersectiontypes,but we have equivalent
typesof theform .

2.2 Typeassignment

Definition 5 (Statementand Basis).

1. A statementis anexpressionof theform , where . Theterm is thesubject
and thepredicateof .

2. A basisis a setof statementswith only distinctvariablesassubjects.
3. For bases , is the basisdefinedby:

if andonly if is the(non-empty)setof all state-
mentsabout thatoccurin .

4. We extend and to basesby: if andonly if for every there
is an suchthat , and if andonly if .

We will often write for the basis , when doesnot occur in ,
andwrite for thebasisobtainedfrom by removing thestatementthathas as
subject.

To assigntypesto termswearegoingtoconsideranenvironment, andwewill define
type assignmentin sucha way that the typesusedfor eachoccurrenceof a function
symbolwill beconsistentwith thetypeprovidedfor it by theenvironment.

Definition 6 (Envir onment).An environmentis a mapping s.

As an abstractionof a type derivation for a term we will usea triple
where is a basis, a type, and a set of types.Theserepresentthe types in a
derivationthatareaffectedby theoperationswe definebelow. In orderto obtainvalid
instancesof thetypesprovidedby theenvironmentwe aregoingto useoperationson
types(thatextendto triples). In typesystemsbasedonarrow typeswith type-
variables,theoperationof substitutiongeneratesall thevalid instancesof a giventype.
In a systemwith intersectiontypes,all the intersectionsof thoseinstancesshouldalso
be consideredvalid instances,which meansthat substitutionaloneis not enoughto
generateall the instancesof a giventype.We will alsouseexpansion, which replaces
(sub)typesby theintersectionof a numberof renamedcopiesof that type,andlifting,
which replacesbasisandtype by a smallerbasisanda larger type, in the senseof
(see[2] for details).Theseoperationsarestandardin type systemswith intersection
types,wewill extendthemto take into accountthepresenceof universalquantifiers.

Theoperationof lifting canbeusednotonly toeliminateintersectionsbutalsoquan-
tifiers,sinceour relationtakesinto accountuniversalquantifiers.Wewill introducea
fourthoperation,calledclosure, to dealwith theintroductionof universalquantifiers.

Definition 7. Thesubstitution , where is a type-variablein and
s, appliedto replacesall theoccurrencesof in by . Substitutionsextendto

basesandtriplesin thenaturalway.

Theoperationof expansiondealswith thereplacementof a subtypeof a typeby an
intersectionof anumberof renamedcopiesof thatsubtype.An expansionis determined
by a pair which indicatesthesubtypeto beexpandedandthenumberof copies
thathavetobegenerated.Whenasubtypeisexpandednew typevariablesaregenerated,
andothersubtypesmightbeaffected(e.g.theexpansionof in mightaffectalso

: intuitively, eachrenamedcopy of will have anassociatedcopy of ; see[28] for
a detailedexplanation).Groundtypesarenot affectedby expansionssinceall renamed
copiescoincide(and). Beforeapplyinganoperationof expansion,we need
thento computethesetof typesthatwill beaffectedby it, which is donewith respect
to a giventriple .

Two differentdefinitionsof expansionappearin theliteraturefor LC, dependingon
whetheroneusesa setof types(seee.g.[28]) or a setof typevariables(seee.g.[3]) to
characterisethesetof typesaffectedby theexpansion.We will considerthedefinition
givenby RonchidellaRoccaandVenneri[28] for full intersectiontypeswithout sorts
anduniversalquantifiers,andadaptit to our system.Theextensionto dealwith types
containingsortshasalreadybeendonein [15], herewe addquantifiers.For anexpan-
sion andatriple , anassociatedset of typesis computed,
andthetypesmodifiedby theexpansionarethosethat‘end’ with atypein thisset.The
notionof last subtypesin astrict typeplaysanimportantrôle in thisoperation.

Definition 8. Thesetof last subtypesof a type s, denotedby last , is defined
by:

– For a typevariable , last
– last last

– For a sort , last
– last

Notethat for typesof the form , is not a well-formedsubtypeaccordingto
ourconvention(freevariablesmustbelongto). For thisreasonweconsideramapping

thatassociatesto each adifferentfresh , andrename in , using .
In thiswaywecandefinesubtypesof typesin , asusual.

Thedefinitionof expansion,alreadynon-trivial in theintersectionsystem,becomes
quiteinvolvedin thepresenceof universalquantifiers.We defineit in threesteps.First
we computethe set of typesaffectedby the expansion.Thenwe seewhich arethe
variablesthatwill needto berenamed.Finally, to applyanexpansionto a type , we
traverse top-down searchingfor maximalsubtypeswhoselast subtypesarein or
haveaninstance(obtainedby replacingboundvariablesby types)in . Thosesubtypes
of will bereplacedby intersectionsof renamedcopies.

Definition 9 (Expansionin). Let beatypein , , abasis, and a
setof typesin (weassumethateachvariableis boundatmostoncein). The
pair determinesanexpansionEx with respectto , definedasfollows.

1. Let bethesetof typesdefinedby:
(a) Any non-closedstrict subtypeof is in .
(b) Let be a non-closedstrict (sub)typeoccurringin . If is a most

generalinstance(with respectto theuniversalquantifiers)of suchthat
last , then .

(c) Any non-closedproperstrictsubtypeof is in .

2. Let be thesetof free typevariablesoccurringin
thatappearin , andlet () be thesubstitution

thatreplacesevery by afreshvariable , andevery and by (actually,
is nota substitutionaccordingto ourdefinition,it is justa renaming).

3. For any (without loss of generalitywe assumethat its boundvariables
are disjoint with thoseof), Ex is obtainedby traversing top-
down andreplacing,in , a maximalnon-closedsubtype suchthat thereexists
a mostgeneralinstance(w.r.t. the universalquantifiers) of with last

(a) by if ,
(b) otherwiseby

Ex

if , () areall themostgeneralinstancesof satisfying
thecondition,and arefreshconstantsreplacingthevariablesinstantiatedin
theinstance of .

Expansionsextendto triplesrepresentingtypederivationsin thenaturalway.

Someexplanationsarein order. Theresultof anoperationof expansionis notunique
becauseit dependson the choiceof new variablesin part 2 of the definition; but it
is uniquemodulorenamingof variables(and this is sufficient for our purpose).It is
always a type in : we never introducean intersectionat the right-handside of an
arrow type,andneverquantifyanintersectiontype(seepart3).A typemightbeaffected
by an expansioneven if its free variablesaredisjoint with thoseof the subtypeto be
expanded.Thereasonis thatuniversallyquantifiedvariablesrepresentaninfinite setof
terms(theirinstances),soif oneinstanceis affected,thewholetypeis affected.If weare
applyinganexpansionoperationtoauniversallyquantifiedtype,someinstancesmaybe
expanded(if their lastsubtypesarein thesetof computedtypes)whereasothersarenot
(if their lastsubtypesarenot in thesetof computedtypes).In thiscasetheexpansionof
theuniversallyquantifiedtypewill be the intersectionof theexpansionsof eachclass
of instances.Sincethereis only a finite setof computedtypes,the operationis well
defined.

Example10. Let be , andEx betheexpansionde-
terminedby with respectto . Then ,

, and(to save space,wewrite insteadof)

Ex

Letnow be , andExbethesameexpansion.
Then

, and

Ex

For typesin without sortsand , theoperationof expansiondefinedby Ronchi
della Roccaand Venneri[28] gives the sameresultsas ours,modulo the relation
definedfor full intersectiontypes(but therepresentativesof equivalenceclasseschosen
in [28] arenotalwaystypesin).

The operationof lifting allows us to eliminateintersectionsanduniversalquanti-
fiers,usingthe relation.

Definition 11. An operationof lifting is denotedby a pair L
suchthat and . canbeappliedto a type,or a basis:

L if L if
L otherwise L otherwise

It is extendedto triplesin thatit doesnotaffect theaddedparameter.

Theoperationof closureintroducesquantifiers,takinginto accountthebasiswhere
a typeis used.

Definition 12. A closure isanoperationcharacterisedby threeparametersCl .
It is definedby:

Cl if
Cl if doesnotappearin (is a freshvariable)
Cl otherwise

Cl canalsobeappliedto abasis,or to triplesrepresentingtypederivations;onbases
it is just the identity, aswell ason tripleswhenthebasisis differentfrom thebasisof
theclosureCl.

The set h of chains is definedasthe smallestsetcontainingexpansions,substi-
tutions,liftings, andclosures,that is closedundercomposition.Chainsaredenotedas

.
Notice that, althoughthe operationof substitutionseemsredundant,in that one

couldsimulatesubstitutionviaclosureandlifting, thisis only thecasefor typevariables
thatdonotoccurin thebasis.

Definition 13 (TypeAssignmentRules).

1. Typeassignmenton terms(with respectto) is definedby the following natural
deductionsystemin sequentform (whereall typesdisplayedarein s, exceptfor

in rule () and in rule (E)). Notetheuseof a chainof operations
in rule ().

():
. . .

(I): ()

(E): (I):

. . .
(): (a)

(I): (b) (E):

(a) : If , andthereexistsachainChsuchthat Ch .
(b) : If doesnotoccur(free)in .

2. We write , andsay that is typeable, if andonly if this judgementis
derivableusingtheaboverules.If is thesetof typesassignedto functionsymbols
in sucha derivation,we representit by .

Theuseof anenvironmentin rule () introducesanotionof polymorphismfor our
functionsymbols,which is anextension(with intersectiontypesandgeneralquantifi-
cation)of theML-style of polymorphism.Theenvironmentreturnsthe‘principal type’
for a function symbol; this symbolcanbe usedwith typesthat are ‘instances’of its
principaltype,obtainedby applyingchainsof operations.

Note that the rule is only definedfor variables,andwe have a -rule for
arbitrarytermsbut not an -rule. Indeed,the -rule for arbitrarytermscanbe
derivedfrom this systemof rules.On theotherhand,the -rule cannotbederived
if it is notpresentin thesystem.Thisasymmetrycomesfrom thefactthatour typesare
strictwith respectto intersection,but notwith respectto .

Type Assignmentfor Rewrite Rules To ensurethesubjectreductionproperty, asin
[6], typeassignmenton rewrite ruleswill bedefinedusingthenotionof principalpair.

Definition 14. A pair is calleda principal pair for with respectto , if
andfor every suchthat thereis achainChsuchthatCh

.

Thetypeabilityof rulesensuresconsistency with respectto theenvironment.

Definition 15. 1. We saythat with definedsymbol is typeablewith
respectto , if thereare , and suchthat:

(a) is aprincipalpair for with respectto , and .
(b) In and all occurrencesof aretypedwith .

2. We saythata TRS is typeablewith respectto , if all r R are.

Note that for a rule to be typeable, mustbe of the form
. Although cannothave an outermostuniversalquantifier, its

free variablesplay the samerole as universally quantifiedvariables(sincethey can
be instantiatedby substitutionoperations).In particular, for the polymorphicidentity
function wewill use .

Reductionspreservetypesin oursystem.To obtainthisresult,first weneedto prove
thattheoperations(substitution,expansion,lifting, andclosure)aresoundon typeable
terms.Usingthatresult,wecanprove:

Theorem16 (SubjectReduction). If and , then .

3 Strong Normalisation

Typesservenot only asspecificationsandasa way to ensurethatprograms‘cannotgo
wrong’ during execution,but alsoto ensurethat computationsterminate.In fact, this
is a well-known propertyof the intersectionsystemfor LC, andof SystemF, but the
situationis different in TRS (a rule may be typeable,althoughit is obviously
non-terminating).Inspiredby the work of Jouannaudand Okada[20], who defined
a generalschemeof recursionthat ensuresterminationof higher-order rewrite rules
combinedwith LC, we definea generalschemefor TRS , suchthat typeabilityof
the rewrite rulesin the polymorphicintersectionsystemdefinedin this paperimplies
strongnormalizationof all typeableterms.

Definition 17 (GeneralSchemeof Recursion).Let , where
, . . . , will be the definedsymbols,and the setof constructors.We will as-

sumethat , . . . , aredefinedincrementally(i.e. thereis no mutualrecursion),by
typeablerulesthatsatisfythegeneral scheme:

,

where , aresequencesof variablessuchthat ; [], C’[], [], . . . , []
are(sequencesof) contexts with function symbolsin ; andfor every ,

[] mul [], where is the strict sub-termordering(i.e. denotesstrict super-
term) and‘mul’ denotesmulti-setextension.Moreover, if is the principal pair
of , the typesassociatedto thevariables in arethe typesof thecorre-
spondingargumentsof in .

Thisgeneralschemeis ageneralizationof primitiverecursion.It imposestwo main
restrictionson the definition of functions:the termsin the multi-sets [] aresub-
termsof termsin [] (this is the ‘primiti ve recursive’ aspectof thescheme),andthe
variables mustalsoappearasargumentsin the left-handsideof the rule. Both re-
strictionsareessentialto provetheStrongNormalizationTheorembelow. Althoughthe
generalschemehasaprimitiverecursiveaspect,it allowsthedefinitionof non-primitive
functionsthanksto thehigher-orderfeaturesavailablein TRS : for example,Ack-
ermann’s functioncanberepresented.Also therewrite rulesof CombinatoryLogic are
not recursive,so,in particular, satisfythescheme,andthereforethesystemsthatsatisfy
theschemehave full computationalpower.

Usingthepowerof thegeneralschema,it is possibleto provethefollowing

Theorem18 (StrongNormalization). If therewrite rulessatisfythegeneral schema,
anytypeabletermis stronglynormalisable.

Theproof,whichweomit for lackof space,canbecarriedonby usingTait-Girard’s
method[17] andthetechniquesdevisedin [20] in orderto copewith someof thediffi-
cultiesthatarisebecauseof thepresenceof algebraicrewriting.

It is possibleto show that if we assumethe rulesto satisfythe generalschema,a
typeableTRS withoutcritical pairsin R is locally confluenton typeableterms(we
omit alsothis proof for lack of space),andhence,by Newman’s Lemma[25], we can
deduceconfluencefrom strongnormalizationandlocalconfluence.

4 Restriction to Rank 2

In this section,we will presenta decidablerestrictionof the type system,basedon
typesof rank 2. Although the rank 2 intersectionsystemandthe rank 2 polymorphic
systemfor LC type exactly the samesetof terms[29], their combinationresultsin a
systemwith moreexpressivepower:polymorphismcanbeexpresseddirectly(usingthe
universalquantifier)and,moreover, everytypeabletermhasaprincipaltype,aswewill
show below. Thelatterpropertydoesnothold in asystemwithout intersection.

4.1 Rank 2 type assignment

Definition 19. We definepolymorphicintersectiontypesof Rank2 in layers: C are
Curry types, C arequantifiedCurry types, 1, typesof rank 1, are intersectionsof
quantifiedCurry types,and 2 aretypesof Rank2:

C C C C C C

1 C C 2 C 1 2

Below, wewill defineaunificationprocedurethatwill recursivelygothroughtypes.
However, usingthesetsdefinedabove,not everysubtypeof typein 2 is a typein that
sameset.For example, is not a type in any of thesetsdefinedabove; however,

C , andthereforeit canbethat,whengoingthroughtypesin 2 recursively,
hasto be dealtwith. Sincethe distinctionbetweenfree andboundvariablesis

essential,we introduce,for every set definedabove, alsothe set of types,that
containsalsofree occurrencesof s. We will not alwaysusethe whenspeakingof
thesesets,however; it will beclearfrom thecontext whichsetis intended.

As for , we will considera relationon types, , that is the restrictionto 2 of
therelation definedin Def. 4. Noticethatpart ‘ 2 , if doesnot
occurin ’ is omitted,since is nota typeof Rank2.

Thefirst threeoperationsusedfor theRank2 systemarestraightforwardvariantsof
operationsdefinedfor thefull system.

Definition 20. 1. Substitution 2 2 is definedasfor thegeneralsystem,
but with therestrictionthat C. WeuseId for thesubstitutionthatreplacesall
variablesby themselves,andwrite for thesetof all substitutions.

2. Lifting is definedasin Def. 11,but with therestrictionthat is takento be 2.
3. Closure is definedasin Def. 12as , with therestrictionthat C .

Thevariantof expansionusedin theRank2 systemis quitedifferentfrom thatof
Def. 9. Thereasonfor this is thatexpansion,normally, increasesthe rankof a type,a
featurethatis of coursenotallowedwithin asystemthatlimits therankof types.Since
below expansionis only usedin veryprecisesituations(within theprocedureunify2 ,
thesolutionis relatively easy:in thecontext of rank2 types,expansionis only calledon
typesin C , soit is definedto work well there,by replacingall typesby anintersection;
in particular, intersectionsarenotcreatedat theleft of anarrow.

Definition 21. Let be a Rank2 basis, C , and . The triple
determinesa -fold expansionwith respectto thepair , Ex 2 2, that

is constructedasfollows: SupposeV is thesetof all (free)variables
occurringin . Choose differentvariables ,
suchthateach (,) doesnotoccurin V. Let S bethesubstitution
thatreplacesevery by . ThenEx S S .
Expansionis extendedto basesandpairsin thestraightforwardway.

As before,operationswill begroupedin chains.

Definition 22. Rank2 typeassignmenton terms is definedby the following natural
deductionsystem:

2
(): C C2

2 . . . 2

(): (a)
2

2 2

(E):
2

2

(I):
2

2

(I): (b)
2

2 . . . 2

(I): (c)
2

(a) : If , andthereexistsanexpansion-freechainof operationsCh suchthat
Ch .

(b) : If doesnotoccurin .
(c) : If , and C , for every .

Noticethat,sincequantificationeliminationis implicit in rule (), whenrestricting
theuseof thequantifierto theleft of arrowsonly, thereis no longerneedfor a general
(E) rule; asrule (E), its useis in a strict systemlimited to variables,andthereits
actionsarealreadyperformedby (). In fact,this changeis justifiedby thefact that it
is possibleto show thattheoperations(substitution,lifting, closureandexpansion)are
soundwith respectto typing.

4.2 Unification of Rank 2 Types

In the context of types,unification is a procedurenormally usedto find a common
instancefor demandedandprovidedtypefor applications,i.e: if hastype , and

hastype , thenunificationlooksfor a commoninstanceof thetypes and such
that canbetypedproperly. Theunificationalgorithmunify2 presentedin
thenext definitiondealswith justthatproblem.Thismeansthatit is notafull unification
algorithmfor typesof Rank2,butonlyanalgorithmthatfindsthemostgeneralunifying
chainfor demandedandprovidedtype.It is definedasanaturalextensionof Robinson’s
well-known unificationalgorithmunify [27].

Definition 23. Unification of Curry types(extendedwith non-unifiablevariablesand
typeconstants),unify C C , is definedby:

unify unify Id
unify Id unify unify
unify if doesnotoccurin and is notavariable
unify S S where unify , and unify

(All non-specifiedcases,likeunify , with , fail.)

Theunificationalgorithmunify2 worksroughlyasfollows:supposewearetrying
to find atypefor theterm , andweknow thatboth and arealreadytyped
by, respectively, and . Thusthedemandedtype is in 1 andtheprovidedtype

is in 2. Theunificationalgorithmlooksfor typesthatcanbeassignedto theterms
and suchthat theapplicationtermcanbe typedproperly, i.e. looksfor types and

suchthat is aninstanceof , and is aninstanceof . It tries to unify the
types and , in trying to find asequenceof operationsthatdoestheright instantiation.
In orderto beconsistent,theresultof theunificationof and – a chainCh – should
alwaysbesuchthatCh C . However, if C , thenin generalCh C .

To overcomethisdifficulty, analgorithmto C will beinsertedthat,whenapplied
to thetype , returnsa chainof operationsthatremoves,if possible,intersectionsin .
This canbeunderstoodby the observation that, for example, is
a substitutioninstanceof Notethat if quanti-
fiersappearin , theto C procedurefails; soquantifiersthatappearbeforeanarrow
cannotberemoved.

Thealgorithmunify2 is calledwith thetypes and , thelatterbeing in which
theintersectionsareremovedby to C . Sincenoneof thederivationrules,noroneof
the operations,allows for the removal of a quantifierthat occursinsidea type, if =

, theunificationof with will not removethe part.
It is possiblethat C, so it canbe that mustbe expanded.Sincesuchan

operationaffectsalsothebasis,thethird argumentof unify2 is a basis.

Definition 24. Let h bethesetof all chains.to C : 2 h is definedby:

to C Id if C

to C S S Ch otherwise,where,
for every unify S S S S and

Ch to C S S

(Again,noticethatto C fails if contains .)

Definition 25. Let bethesetof all bases,and h thesetof all chains.unify2 1

C h is definedby:
unify2 Ex Ch Ch where
Ex Ex and,for every

unify S S Cl andCh Cl

Noticethatunify , to C , andunify2 all returnlifting-free chains.

Theclosureoperationsin thedefinitionof unify2 arecorrectbecausethevariables
do not appearin . Noticealsothatunify2 only fails whenunify fails,andthat

to C fails wheneitherunify fails or whenthe argumentcontains , andthat the
otheroperationsnever fail. Becauseof this relationbetweenunify2 andto C on
oneside,andunify ontheother, theproceduresdefinedhereareterminatingandtype
assignmentin thesystemdefinedin thissectionis decidable.

4.3 Principal pairs for terms

In thissubsection,theprincipalpair for aterm with respectto – PP – is defined,
consistingof basis andtype . In Theorem27 it will beshown that,for every term,
this is indeedtheprincipalone.

Noticethat,in thedefinitionbelow, if PP , then 2. For example,
theprincipalpairfor theterm is , so,in particular, it is not .
Although onecould arguethat the latter type is more ‘principal’ in the sensethat it
expressesthegenericcharactertheprincipaltypeis supposedto have,we have chosen
to usethe former instead.This is mainly for technicalreasons;becauseunificationis
usedin thedefinitionbelow, usingthelattertype,we would oftenbeforcedto remove
theexternalquantifiers.Both typescanbe seenas‘principal’ though,since
canbeobtainedfrom by closure,and from by lifting.

Definition 26. Let bea termin T . Usingunify2 , PP is definedby:

1. . ThenPP
2. . Let PP , then:

(a) If occursfreein , and , thenPP
(b) OtherwisePP where is a freshvariable.

3. . Let PP , PP (choose,if neces-
sary, trivial variantssuchthatthesepairsaredisjoint),and to C , then:

(a) If C then:PP , where ,
unify and , and is a freshvariable.

(b) If , with 1, 2, thenPP , where
Ch , Ch unify2 , and

Ch .

4. . Assume () = , andlet, for every ,
PP (choose,if necessary, trivial variantssuchthat the are
disjoint in pairs),then:

PP
where S S Ch Ch

to C
Ch unify2 Ch Ch

S S Ch Ch
is a freshinstanceof

Notethat,sinceunify or unify2 mayfail, noteverytermhasaprincipalpair.

Themainresultfor theRank2 systemis thefollowing:

Theorem27 (Soundnessand Completenessof PP).

– If PP , then 2 .
– If 2 , thenthere are a basis andtype such that PP , and

there is a chainCh such thatCh .

References

1. S. vanBakel. Completerestrictionsof theIntersectionTypeDiscipline. TCS, 102(1):135–
163,1992.

2. S. van Bakel. Principaltype schemesfor the Strict Type AssignmentSystem. Logic and
Computation, 3(6):643–670,1993.

3. S.vanBakel. IntersectionTypeAssignmentSystems.TCS, 151(2):385–435,1995.
4. S. van Bakel. Rank2 IntersectionTypeAssignmentin Term Rewriting Systems.Funda-

mentaInformaticae, 2(26):141–166,1996.
5. S. van Bakel, F. Barbanera,andM. Ferńandez. Rewrite Systemswith Abstractionand -

rule: Types,ApproximantsandNormalization. In ESOP’96, LNCS1058,pages387–403.
Springer-Verlag,1996.

6. S.vanBakel andM. Ferńandez.NormalizationResultsfor TypeableRewrite Systems.I&C
133(2):73–116,1997.

7. F. BarbaneraandM. Ferńandez.IntersectionTypeAssignmentSystemswith Higher-Order
AlgebraicRewriting. TCS170:173–207,1996.

8. F. Barbanera,M. Ferńandez,andH. Geuvers.Modularityof StrongNormalizationandCon-
fluencein theAlgebraic -cube.In LICS’94, 1994.

9. H. Barendregt. TheLambdaCalculus:its Syntaxand Semantics. North-Holland,Amster-
dam,revisededition,1984.

10. H. Barendregt, M. Coppo,andM. Dezani-Ciancaglini.A filter lambdamodelandthecom-
pletenessof typeassignment.J. of SymbolicLogic, 48(4):931–940,1983.

11. V. Breazu-TannenandJ.Gallier. Polymorphicrewriting conservesalgebraicstrongnormal-
ization. TCS83(1):3–28,1991.

12. V. Breazu-Tannenand J. Gallier. Polymorphicrewriting conserves algebraicconfluence.
I&C 82:3–28,1992.

13. A.Bucciarelli,S. De Lorenzis,A. Piperno,I. Salvo. SomeComputationalPropertiesof In-
tersectionTypes(ExtendedAbstract).In LICS’99, pages109–118,1999.

14. N. Dershowitz andJ.P. Jouannaud.Rewrite systems.In J.vanLeeuwen,editor, Handbookof
TheoreticalComputerScience, volumeB, chapter6, pages245–320.North-Holland,1990.

15. M.Ferńandez.TypeAssignmentandTerminationof InteractionNets. MathematicalStruc-
turesof ComputerScience, 1998.

16. M. FerńandezandJ.P. Jouannaud.Modularterminationof termrewriting systemsrevisited.
In LNCS906,pages255–272.Springer-Verlag,1994.

17. J.-Y. Girard,Y. Lafont, andP. Taylor. ProofsandTypes. CambridgeTractsin Theoretical
ComputerScience.CambridgeUniversityPress,1989.

18. J.Y. Girard. TheSystemF of VariableTypes,Fifteenyearslater. TCS45:159–192,1986.
19. B. Jacobs,I. Margaria,andM. Zacchi.Filter modelswith polymorphictypes.TCS95:143–

158,1992.
20. J.P. JouannaudandM. Okada.Executablehigher-orderalgebraicspecificationlanguages.In

LICS ’92, pages350–361,1991.
21. A.J. Kfoury andJ.Tiuryn. Typereconstructionin finite-rankfragmentsof thesecond-order

-calculus.I&C 98(2):228–257,1992.

22. A.J.Kfoury andJ.B.Wells. A DirectAlgorithm for TypeInferencein theRank-2Fragment
of theSecond-Order -Calculus.In LFP’94, 1994.

23. J.W. Klop. TermRewriting Systems.In S.Abramsky, Dov.M. Gabbay, andT.S.E.Maibaum,
editors,Handbookof Logic in ComputerScience, volume2, chapter1, pages1–116.Claren-
donPress,1992.

24. I. MargariaandM. Zacchi. PrincipalTyping in a -Discipline. Logic andComputation,
5(3):367–381,1995.

25. M.H.A. Newman.On theorieswith acombinatorialdefinitionof ‘equivalence’.Ann.Math.,
43:223–243,1942.

26. E.G.J.M.H.Nöcker, J.E.W. Smetsers,M.C.J.D.vanEekelen,andM.J. Plasmeijer. Concur-
rentClean.In PARLE’91, LNCS506-II, pages202–219.Springer-Verlag,1991.

27. J.A. Robinson.A machine-orientedlogic basedon theresolutionprinciple. Journal of the
ACM, 12(1):23–41,1965.

28. S.RonchiDellaRoccaandB. Venneri.Principaltypeschemesfor anextendedtypetheory.
TCS28:151–169,1984.

29. H. Yokohuchi. Embeddinga Second-OrderTypeSysteminto anIntersectionTypeSystem.
I&C 117:206–220,1995.

