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Abstract

We define two type assignment systems for first-order rewriting extended with application, λ-
abstraction, and β-reduction (TRS+ β). The types used in these systems are a combination of
(ω-free) intersection and polymorphic types. The first system is the general one, for which we
prove a subject reduction theorem and show that all typeable terms are strongly normalisable.
The second is a decidable subsystem of the first, by restricting types to Rank 2. For this system
we define, using an extended notion of unification, a notion of principal type, and show that
type assignment is decidable.

Introduction

The combination of λ-calculus (LC) and term rewriting systems (TRS) has attracted atten-
tion not only from the area of programming language design, but also from the rapidly
evolving field of theorem provers. It is well-known by now that type disciplines provide
an environment in which rewrite rules and β-reduction can be combined without loss of their
useful properties. This is supported by a number of results for a broad range of type sys-
tems [11, 12, 20, 7, 8, 5].

In this paper we study the combination of LC and TRS as a basis for the design of a pro-
gramming language. The type systems à la Curry, also called type inference or type assignment
systems, are the most interesting ones from this point of view, since they save the programmer
from specifying a type for each variable (no type annotations are required). Type assignment
disciplines have been widely studied in the context of the LC, and some work has also been
done for TRS, more precisely, for Curryfied TRS (CuTRS) [6] which are first-order TRS with
application, that correspond to the TRS that underlie the programming language Clean [26].
The interactions between LC and TRS in the context of type assignment were first studied
in [5], where CuTRS extended with λ-abstraction and β-reduction were defined, together with
a notion of intersection type assignment for both the LC and the TRS fragments.

Other important features of a type system for a programming language are polymorphism,
that is, the possibility of using the same program with arguments of different types, and
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the existence of principal types, that is, a type from which all the other types of the term can
be derived. The type system of ML has the three properties above, i.e., it is a polymorphic
type inference system with principal types, but its polymorphism is limited (some programs
that arise naturally cannot be typed). System F [18] provides a much more general notion
of polymorphism, but lacks principal types, and type inference is undecidable in general
(although it is decidable for some subsystems, in particular if we consider types of rank 2 [21]).
Intersection type systems [10] are somewhere in the middle with respect to polymorphism
(they provide less polymorphism than System F but more than ML) and principal types can
be constructed for typeable terms. But type assignment is again undecidable; decidability is
recovered if we restrict ourselves to the rank 2 types [4].

In view of the above results, two questions arise naturally:

• Is the rank 2 combination of System F and the Intersection System also decidable?
• Does it have principal types for all typeable terms?

A system for the LC that combines intersection types and System F with principal types
has been studied in [19, 24]. In this paper we extend that system to a combination of LC and
CuTRS. In other words, we extend the type assignment system of [5] further, adding ‘∀’ as
an extra type-constructor (i.e. explicit polymorphism). Although extending the set of types
by adding ‘∀’ does not extend the expressivity of the system in terms of typeable terms,
the set types of assignable types increases, and types can better express the behaviour of
terms (see [13]). The resulting system has the expected properties: Subject Reduction, and
Strong Normalization when the rewrite rules use a limited form of recursion (inspired by the
General Schema of Jouannaud and Okada [20]). The proof of the latter follows the method of
Tait-Girard’s reducibility candidates, extended in order to take the presence of (higher-order)
algebraic rewriting into account.

We also answer the first question in the affirmative. The restriction to types of rank 2 of the
combined system of polymorphic and intersection types is decidable. This restricted system
can be seen as a combination of the systems considered in [4] and [21]. The combination is
twofold: not only the type systems of those two papers are combined (resp. intersection and
polymorphic types of Rank 2), but also their calculi are combined (resp. CuTRS and LC). In our
Rank 2 system each typeable term has a principal type such that every type derivable for the
term can be seen as an instance (under suitable operations) of the type. This is the case also in
the Rank 2 intersection system of [4], but not in the Rank 2 polymorphic system of [21]. For
the latter, a type inference algorithm of the same complexity of that of ML was given in [22],
where the problems that occur due to the lack of principal types are discussed in detail.

This paper is organised as follows: In Section 1 we define TRS with application, λ-abstraction
and β-reduction (TRS+β), and in Section 2 the type assignment system. Section 3 deals with
the strong normalization property for typeable terms. In Section 4 we present the restriction
of the general type assignment system to Rank 2.

1 Term Rewriting Systems with β-reduction

We present a combination of Lambda Calculus with Algebraic Rewriting, obtained by extend-
ing first-order TRS with notions of application and abstraction, and β-reduction. We can look
at such calculi also as extensions of the Curryfied Term Rewriting Systems (CuTRS) considered
in [6], by adding λ-abstraction and a β-reduction rule. We assume the reader to be familiar
with LC [9] and refer to [23, 14] for rewrite systems.

We consider terms built from a set X of variables, a set F of function symbols, application
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(Ap) and λ-abstraction, modulo α-conversion, as usual. A context is a term with a hole, and
it is denoted, as usual, by C[ ]. A lambda term is a term not containing function symbols. An
algebraic term is a term containing neither λ nor Ap. The set of free variables of a term t is
defined as usual, and denoted by FV(t).

To denote a term-substitution, we use capital characters like ‘R’, instead of Greek characters
like ‘σ’, which will be used to denote types. Sometimes we use the notation {x1 �→ t1, . . . , xn �→
tn}. We write tR for the result of applying the term-substitution R to t. Reductions are defined
through rewrite rules together with a β-reduction rule.

Definition 1.1 (Reduction) A rewrite rule is a pair (l,r) of terms, written l → r. Three con-
ditions are imposed: l �∈ X , l is an algebraic term, and FV(r) ⊆ FV(l). The β-rule is de-
fined by: Ap (λx.t,u) →β t{x �→u}. A rewrite rule l → r determines a set of rewrite steps
C[ lR ] → C[ rR ] for all term-substitutions R and contexts C[ ]. Likewise, for any t and u,
C[Ap (λx.t,u) ] →β C[ t{x �→u} ]. Concatenating rewrite steps we have rewrite sequences t0 →
t1 → t2 → ·· ·. If t0 → ·· · → tn (n ≥ 0) we also write t0 →∗ tn, and t0 →+ tn if t0 →∗ tn in one
step or more.

A Term Rewriting System with β-reduction rule (TRS+β) is defined by a set R of rewrite rules.

Note that, in contrast with CuTRS, the rewrite rules considered in this paper may contain λ-
abstractions in the right-hand sides. We take the view that in a rewrite rule a certain symbol
is defined: F is a defined symbol, if there is a rewrite rule F (t1, . . . , tn) → r. Q ∈ F is called a
constructor if Q is not a defined symbol. Notice that Ap cannot be a defined symbol since it
cannot appear in the left-hand side of a rewrite rule.

A TRS+β is strongly normalizing, or terminating, if all the rewrite sequences are finite. It
is confluent if for all t such that t →∗ u and t →∗ v, there exists s such that u →∗ s and v →∗ s.

Example 1.2 The following is a set of rewrite rules that defines the functions append and map
on lists and establishes the associativity of append. The function symbols nil and cons are
constructors.

append(nil, l) → l
append(cons(x, l), l′) → cons(x,append(l, l′))

append(append(l, l′), l′′) → append(l, (append(l′, l′′))
map( f ,nil) → nil

map ( f ,cons(y, l)) → cons(Ap ( f ,y),map ( f , l))
Since variables in TRS+β can be substituted by λ-expressions, we obtain the usual functional
programming paradigm, extended with definitions of operators and data structures.

2 A Polymorphic Intersection System for TRS+β

We define a type assignment system for TRS+β, that can be seen as an extension (by adding
∀) of the intersection system presented in [5]. We use polymorphic strict intersection types,
defined over a set of type-variables and sorts (type constants). The ∀-free, λ-free fragment of
this system corresponds to the system studied in [6]. If sorts are not taken into account, the
∀-free LC-fragment of our type assignment system corresponds to the system presented in [3],
and the intersection-free LC-fragment to System F [18].

For LC, a type assignment system that combines intersection types with polymorphic types
has been defined in [19] and its principal type property has been studied in [24]. As far as
types are concerned, the difference between our system and the latter is that we add constant
types, and use strict intersection types [3] (i.e. an intersection type cannot be the right-hand
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side of an arrow type). The restriction to strict intersection types simplifies the typing pro-
cedures and does not affect the typing power of the system, because any term typeable in
the full intersection type discipline can be given a strict type and vice-versa. We assume the
reader to be familiar with intersection type assignment systems, and refer to [10, 1, 3] for more
details.

2.1 Types

Definition 2.1 (Types) Let V = Φ 
 A be a set of type-variables, where Φ = {ϕ0, ϕ1, . . .} is the
set of free variables, and A= {α0,α1, . . .} the set of bound variables. Let S = {s0, s1, . . .} be a set
of sorts. Ts, the set of polymorphic strict types, and T , the set of polymorphic strict intersection
types, are defined by mutual induction:

Ts ::= ϕ | α | s | (T → Ts) | ∀α.Ts[α/ϕ]
T ::= (Ts ∩ · · · ∩ Ts)

For various reasons (definition of operations on types, definition of unification), we distin-
guish syntactically between free type-variables (in Φ) and bound type-variables (in A). As
usual ‘→’ associates to the right, and ‘∩’ binds stronger than ‘→’, which binds stronger than
‘∀’; so ρ∩µ→∀α.γ→δ stands for ((ρ∩µ)→(∀α.(γ→δ))). Also ∀α.σ is used as abbreviation for
∀α1.∀α2 . . .∀αn.σ, and we assume that each variable is bound at most once in a type (renaming
if necessary). In the meta-language, we denote by σ[τ/ϕ] (resp. σ[τ/α]) the substitution of the
type-variable ϕ (resp. α) by τ in σ.

FV(σ), the set of free variables of a type σ is defined as usual (note that by construction,
FV(σ) ⊆ Φ). A type is called closed if it contains no free variables, and ground if it contains no
variables at all.

Definition 2.2 (Relations on types) On T , the pre-order (i.e. reflexive and transitive rela-
tion) ≤ is defined by:

∀ n ≥ 1,∀ 1≤ i≤n [σ1∩· · ·∩σn ≤ σi] σ ≤ τ ⇒ ∀α.σ[α/ϕ] ≤ ∀α.τ[α/ϕ]
∀α.σ→τ ≤ σ→∀α.τ, (α not in σ) ∀α.σ ≤ σ[τ/α]
ρ ≤ σ&τ ≤ µ ⇒ σ→τ ≤ ρ→µ σ ≤ ∀α.σ, (α is fresh)

∀ n ≥ 1,∀ 1≤ i≤n [σ ≤ σi] ⇒ σ ≤ σ1∩· · ·∩σn

The equivalence relation ∼ is defined by: σ ∼ τ ⇐⇒ σ ≤ τ ≤ σ. We work with types
modulo ∼ .

To obtain a notion of type assignment that is a true extension of System F, the ∀ type-
constructor is allowed to occur on the right of an arrow, so a type like σ→∀α.τ is well-defined.
Also note that we cannot quantify intersection types, but we have equivalent types of the form
(∀α.σ1)∩(∀α.σ2).

2.2 Type assignment

Definition 2.3 (Statement and Basis) i) A statement is an expression of the form t:σ, where
σ ∈ T . The term t is the subject and σ the predicate of t:σ.

ii) A basis is a set of statements with only distinct variables as subjects.
iii) For bases B1, . . . , Bn, Π{B1, . . . , Bn} is the basis defined by: x:σ1∩· · ·∩σm ∈ Π{B1, . . . , Bn} if

and only if {x:σ1, . . . , x:σm} is the (non-empty) set of all statements about x that occur in
B1∪· · ·∪Bn.
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iv) We extend ≤ and ∼ to bases by: B ≤ B′ if and only if for every x:σ′ ∈ B′ there is an
x:σ ∈ B such that σ ≤ σ′, and B ∼ B′ if and only if B ≤ B′ ≤ B.

We will often write B, x:σ for the basis Π{B,{x:σ}}, when x does not occur in B, and write
B\x for the basis obtained from B by removing the statement that has x as subject.

To assign types to terms we are going to consider an environment, and we will define type
assignment in such a way that the types used for each occurrence of a function symbol will
be consistent with the type provided for it by the environment.

Definition 2.4 (Environment) An environment is a mapping E : F → Ts.

As an abstraction of a type derivation for a term t we will use a triple 〈B,τ, E〉 where B is a
basis, τ a type, and E a set of types. These represent the types in a derivation that are affected
by the operations we define below. In order to obtain valid instances of the types provided by
the environment we are going to use operations on types (that extend to triples 〈B,τ, E〉). In
type systems based on arrow types with type-variables, the operation of substitution generates
all the valid instances of a given type. In a system with intersection types, all the intersections
of those instances should also be considered valid instances, which means that substitution
alone is not enough to generate all the instances of a given type. We will also use expansion,
which replaces (sub)types by the intersection of a number of renamed copies of that type, and
lifting, which replaces basis and type by a smaller basis and a larger type, in the sense of ≤
(see [2] for details). These operations are standard in type systems with intersection types, we
will extend them to take into account the presence of universal quantifiers.

The operation of lifting can be used not only to eliminate intersections but also quantifiers,
since our ≤ relation takes into account universal quantifiers. We will introduce a fourth
operation, called closure, to deal with the introduction of universal quantifiers.

Definition 2.5 The substitution (ϕ �→ ρ) : T → T , where ϕ is a type-variable in Φ and ρ ∈ Ts,
applied to σ replaces all the occurrences of ϕ in σ by ρ. Substitutions extend to bases and
triples in the natural way.

The operation of expansion deals with the replacement of a subtype of a type by an inter-
section of a number of renamed copies of that subtype. An expansion is determined by a
pair 〈µ,n〉 which indicates the subtype to be expanded and the number of copies that have
to be generated. When a subtype is expanded new type variables are generated, and other
subtypes might be affected (e.g. the expansion of τ in σ→τ might affect also σ: intuitively,
each renamed copy of τ will have an associated copy of σ; see [28] for a detailed explanation).
Ground types are not affected by expansions since all renamed copies coincide (and σ∩σ ∼ σ).
Before applying an operation of expansion, we need then to compute the set of types that will
be affected by it, which is done with respect to a given triple 〈B,τ, E〉.

Two different definitions of expansion appear in the literature for LC, depending on whether
one uses a set of types (see e.g. [28]) or a set of type variables (see e.g. [3]) to characterise the
set of types affected by the expansion. We will consider the definition given by Ronchi della
Rocca and Venneri [28] for full intersection types without sorts and universal quantifiers,
and adapt it to our system. The extension to deal with types containing sorts has already
been done in [15], here we add quantifiers. For an expansion 〈µ,n〉 and a triple 〈B,σ, E〉, an
associated set Lµ(〈B,σ, E〉) of types is computed, and the types modified by the expansion
are those that ‘end’ with a type in this set. The notion of last subtypes in a strict type plays an
important rôle in this operation.
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Definition 2.6 The set of last subtypes of a type τ ∈ Ts, denoted by last (τ), is defined by:
• For a type variable ϕ, last (ϕ) = {ϕ}
• last (σ→ρ) = {σ→ρ} ∪ last (ρ)

• For a sort s, last (s) = {s}
• (∀α.σ) = {∀α.σ} ∪ last (σ[ϕα/α])

Note that for types of the form ∀α.σ, σ is not a well-formed subtype according to our
convention (free variables must belong to Φ). For this reason we consider a mapping A→Φ
that associates to each α a different fresh ϕα ∈ Φ, and rename α in σ, using ϕα. In this way we
can define subtypes of types in T , as usual.

The definition of expansion, already non-trivial in the intersection system, becomes quite
involved in the presence of universal quantifiers. We define it in three steps. First we compute
the set L of types affected by the expansion. Then we see which are the variables that will
need to be renamed. Finally, to apply an expansion to a type τ, we traverse τ top-down
searching for maximal subtypes whose last subtypes are in L or have an instance (obtained by
replacing bound variables by types) in L. Those subtypes of τ will be replaced by intersections
of renamed copies.

Definition 2.7 (Expansion in T ) Let µ be a type in T , n ≥ 2, B a basis, σ ∈ T and E a set of
types in T (we assume that each variable is bound at most once in µ, B,σ, E). The pair 〈µ,n〉
determines an expansion Ex with respect to 〈B,σ, E〉, defined as follows.

i) Let Lµ(〈B,σ, E〉) be the set of types defined by:
a) Any non-closed strict subtype of µ is in Lµ(〈B,σ, E〉).
b) Let τ be a non-closed strict (sub)type occurring in 〈B,σ, E〉. If τ′ is a most general

instance (with respect to the universal quantifiers) of τ such that
last (τ′) ∩ Lµ(〈B,σ, E〉) �= ∅, then τ′ ∈ Lµ(〈B,σ, E〉).

c) Any non-closed proper strict subtype of τ ∈ Lµ(〈B,σ, E〉) is in Lµ(〈B,σ, E〉).
ii) Let Vµ(〈B,σ, E〉) = {ϕ1, . . . , ϕm} be the set of free type variables occurring in B,σ,µ, E that

appear in Lµ(〈B,σ, E〉), and let Si (1≤ i≤n) be the substitution that replaces every ϕj by
a fresh variable ϕi

j, and every αj and ϕαj by αi
j (actually, Si is not a substitution according

to our definition, it is just a renaming).
iii) For any τ ∈ T (without loss of generality we assume that its bound variables are disjoint

with those of µ, B,σ,τ, E), Ex(τ) is obtained by traversing τ top-down and replacing, in τ,
a maximal non-closed subtype β such that there exists a most general instance (w.r.t. the
universal quantifiers) β′ of β with last (β′) ∩ Lµ(〈B,σ, E〉) �= ∅
a) by S1(β) ∩ · · · ∩ Sn(β) if β′ = β,
b) otherwise by

⋂

1≤j≤p

(S1(β′
j) ∩ · · · ∩ Sn(β′

j) ∩ ∀Si(α)Ex(ρ[cj/α])[α/cj])

if β = ∀α.ρ, β′
j (1≤ j≤ p) are all the most general instances of β satisfying the condition,

and cj are fresh constants replacing the variables instantiated in the instance β′
j of β.

Expansions extend to triples representing type derivations in the natural way.

Some explanations are in order. The result of an operation of expansion is not unique
because it depends on the choice of new variables in part (ii) of the definition; but it is unique
modulo renaming of variables (and this is sufficient for our purpose). It is always a type
in T : we never introduce an intersection at the right-hand side of an arrow type, and never
quantify an intersection type (see part (iii)). A type might be affected by an expansion even
if its free variables are disjoint with those of the subtype to be expanded. The reason is that
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universally quantified variables represent an infinite set of terms (their instances), so if one
instance is affected, the whole type is affected. If we are applying an expansion operation
to a universally quantified type, some instances may be expanded (if their last subtypes are
in the set of computed types) whereas others are not (if their last subtypes are not in the set
of computed types). In this case the expansion of the universally quantified type will be the
intersection of the expansions of each class of instances. Since there is only a finite set of
computed types, the operation is well defined.

Example 2.8 Let γ be (ϕ1→ϕ2)→(ϕ3→ϕ1)→ϕ3→ϕ2, and Ex be the expansion determined
by 〈ϕ1,2〉 with respect to 〈∅,γ,∅〉. Then Lϕ1(〈∅,γ,∅〉) = {ϕ1, ϕ3→ϕ1, ϕ3}, Vϕ1(〈∅,γ〉) =
{ϕ1, ϕ3}, and (to save space, we write j

i instead of ϕ
j
i)

Ex(γ) = ((1
1∩2

1)→2)→((1
3→1

1) ∩ (2
3→2

1))→(1
3∩2

3)→2.

Let now γ be ∀α2∀α3.(1→α2)→(α3→1)→α3→α2, and Ex be the same expansion. Then
L1(〈∅,γ,∅〉) = {1,∀α3.(1→1)→(α3→1)→α3→1, (1→1)→(α3→1)→α3→1,
1→1,α3 →1,α3 }, and

Ex(γ) = (∀α3.(1
1→1

1)→(α3→1
1)→α3→1

1) ∩ (∀α3.(2
1→2

1)→(α3→2
1)→α3→2

1)∩
(∀α2∀α1

3∀α2
3.(1

1∩2
1→α2)→((α1

3→1
1) ∩ (α2

3→2
1))→α1

3 ∩ α2
3→α2).

For types in T without sorts and ∀, the operation of expansion defined by Ronchi della
Rocca and Venneri [28] gives the same results as ours, modulo the relation ∼ defined for full
intersection types (but the representatives of equivalence classes chosen in [28] are not always
types in T ).

The operation of lifting allows us to eliminate intersections and universal quantifiers, using
the ≤ relation.

Definition 2.9 An operation of lifting is denoted by a pair L = 〈〈B0,τ0〉, 〈B1,τ1〉〉 such that
τ0 ≤ τ1 and B1 ≤ B0. L can be applied to a type, or a basis:

L (σ) = τ1, if σ = τ0 L (B) = B1, if B = B0
L (σ) = σ, otherwise L (B) = B, otherwise

It is extended to triples in that it does not affect the added parameter.

The operation of closure introduces quantifiers, taking into account the basis where a type
is used.

Definition 2.10 A closure is an operation characterised by three parameters Cl = 〈B,σ, ϕ〉. It is
defined by:

Cl(τ) = τ, if τ �= σ
Cl(σ) = ∀α.σ[α/ϕ], if ϕ does not appear in B (α is a fresh variable)
Cl(σ) = σ, otherwise

Cl can also be applied to a basis, or to triples representing type derivations; on bases it is
just the identity, as well as on triples when the basis is different from the basis of the closure
Cl.

The set Ch of chains is defined as the smallest set containing expansions, substitutions, lift-
ings, and closures, that is closed under composition. Chains are denoted as [O1, . . . ,On].

Notice that, although the operation of substitution seems redundant, in that one could
simulate substitution via closure and lifting, this is only the case for type variables that do not
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occur in the basis.

Definition 2.11 (Type Assignment Rules) i) Type assignment on terms (with respect to E)
is defined by the following natural deduction system in sequent form (where all types
displayed are in Ts, except for σ1, . . . ,σn in rule (F ) and σ in rule (→E)). Note the use of a
chain of operations in rule (F ).

x:σ ∈ B σ ≤ τ
(≤):

B �E x:τ

B �E t:σ1 . . . B �E t:σn
(∩I): (n ≥ 1)

B �E t:σ1∩· · ·∩σn

B �E t1:σ→τ B �E t2:σ
(→E):

B �E Ap (t1, t2):τ

B, x:σ �E t:τ
(→I):

B �E λx.t:σ→τ

B �E t1:σ1 . . . B �E tn:σn
(F ): (a)

B �E F (t1, . . . , tn):σ

B �E t:σ
(∀I): (b)

B �E t:∀α.σ[α/ϕ]

B �E t:∀α.σ
(∀E):

B �E t:σ[τ/α]

(a) : If F ∈ F , and there exists a chain Ch such that σ1→·· ·→σn→σ = Ch(E (F)).
(b) : If ϕ does not occur (free) in B.

ii) We write B �E t:σ, and say that t is typeable, if and only if this judgement is derivable
using the above rules. If E is the set of types assigned to function symbols in such a
derivation, we represent it by 〈B,σ, E〉.

The use of an environment in rule (F ) introduces a notion of polymorphism for our function
symbols, which is an extension (with intersection types and general quantification) of the ML-
style of polymorphism. The environment returns the ‘principal type’ for a function symbol;
this symbol can be used with types that are ‘instances’ of its principal type, obtained by
applying chains of operations.

Note that the rule (≤) is only defined for variables, and we have a (∀E)-rule for arbitrary
terms but not an (∩E)-rule. Indeed, the (∩E)-rule for arbitrary terms can be derived from
this system of rules. On the other hand, the (∀E)-rule cannot be derived if it is not present
in the system. This asymmetry comes from the fact that our types are strict with respect to
intersection, but not with respect to ∀.

2.2.1 Type Assignment for Rewrite Rules

To ensure the subject reduction property, as in [6], type assignment on rewrite rules will be
defined using the notion of principal pair.

Definition 2.12 A pair 〈P,π〉 is called a principal pair for t with respect to E , if P �E t:π and for
every B,σ such that B �E t:σ there is a chain Ch such that Ch(〈P,π, E〉) = 〈B,σ, E′〉.

The typeability of rules ensures consistency with respect to the environment.

Definition 2.13 i) We say that l → r ∈ R with defined symbol F is typeable with respect to E ,
if there are P, and π ∈ T such that:
a) 〈P,π〉 is a principal pair for l with respect to E , and P �E r:π.
b) In P �E l:π and P �E r:π all occurrences of F are typed with E (F).
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ii) We say that a TRS+β is typeable with respect to E , if all r ∈ R are.

Note that for a rule F(t1, . . . , tn)→ r to be typeable, E (F) must be of the form σ1→ . . .→σn→σ.
Although E (F) cannot have an outermost universal quantifier, its free variables play the same
role as universally quantified variables (since they can be instantiated by substitution opera-
tions). In particular, for the polymorphic identity function I we will use E(I) = ϕ → ϕ.

Reductions preserve types in our system. To obtain this result, first we need to prove that
the operations (substitution, expansion, lifting, and closure) are sound on typeable terms.
Using that result, we can prove:

Theorem 2.14 (Subject Reduction) If B �E t:σ and t → t′, then B �E t′ :σ.

3 Strong Normalisation

Types serve not only as specifications and as a way to ensure that programs ‘cannot go wrong’
during execution, but also to ensure that computations terminate. In fact, this is a well-known
property of the intersection system for LC, and of System F, but the situation is different in
TRS (a rule t → t may be typeable, although it is obviously non-terminating). Inspired by the
work of Jouannaud and Okada [20], who defined a general scheme of recursion that ensures
termination of higher-order rewrite rules combined with LC, we define a general scheme for
TRS+β, such that typeability of the rewrite rules in the polymorphic intersection system
defined in this paper implies strong normalization of all typeable terms.

Definition 3.1 (General Scheme of Recursion) Let Fn =Q∪ {F1, . . . , Fn}, where F1, . . . , Fn

will be the defined symbols, and Q the set of constructors. We will assume that F1, . . . , Fn

are defined incrementally (i.e. there is no mutual recursion), by typeable rules that satisfy the
general scheme:

Fi (C[x],y)→ C′[Fi (C1[x],y), . . . , Fi (Cm[x],y),y],

where x, y are sequences of variables such that x⊆y; C[ ], C’[ ], C1[ ], . . . , Cm[ ] are (sequences
of) contexts with function symbols in Fi−1; and for every 1≤ j≤m, C[x] >mul Cj[x], where <
is the strict sub-term ordering (i.e. > denotes strict super-term) and ‘mul’ denotes multi-set
extension. Moreover, if 〈P,π〉 is the principal pair of Fi (C[x],y), the types associated to the
variables y in P are the types of the corresponding arguments of Fi in E (Fi).

This general scheme is a generalization of primitive recursion. It imposes two main restric-
tions on the definition of functions: the terms in the multi-sets Cj[x] are sub-terms of terms
in C[x] (this is the ‘primitive recursive’ aspect of the scheme), and the variables x must also
appear as arguments in the left-hand side of the rule. Both restrictions are essential to prove
the Strong Normalization Theorem below. Although the general scheme has a primitive re-
cursive aspect, it allows the definition of non-primitive functions thanks to the higher-order
features available in TRS+β: for example, Ackermann’s function can be represented. Also
the rewrite rules of Combinatory Logic are not recursive, so, in particular, satisfy the scheme,
and therefore the systems that satisfy the scheme have full computational power.

Using the power of the general schema, it is possible to prove the following

Theorem 3.2 (Strong Normalization) If the rewrite rules satisfy the general schema, any ty-
peable term is strongly normalisable.
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The proof, which we omit for lack of space, can be carried on by using Tait-Girard’s method
[17] and the techniques devised in [20] in order to cope with some of the difficulties that arise
because of the presence of algebraic rewriting.

It is possible to show that if we assume the rules to satisfy the general schema, a typeable
TRS+β without critical pairs in R is locally confluent on typeable terms (we omit also this
proof for lack of space), and hence, by Newman’s Lemma [25], we can deduce confluence
from strong normalization and local confluence.

4 Restriction to Rank 2

In this section, we will present a decidable restriction of the type system, based on types
of rank 2. Although the rank 2 intersection system and the rank 2 polymorphic system for
LC type exactly the same set of terms [29], their combination results in a system with more
expressive power: polymorphism can be expressed directly (using the universal quantifier)
and, moreover, every typeable term has a principal type, as we will show below. The latter
property does not hold in a system without intersection.

4.1 Rank 2 type assignment

Definition 4.1 We define polymorphic intersection types of Rank 2 in layers: TC are Curry
types, T ∀

C are quantified Curry types, T1, types of rank 1, are intersections of quantified Curry
types, and T2 are types of Rank 2:

TC ::= ϕ | s | (TC → TC) T ∀
C ::= TC | (∀α.T ∀

C [α/ϕ])
T1 ::= (T ∀

C ∩ · · · ∩ T ∀
C ) T2 ::= TC | (T1 → T2)

Below, we will define a unification procedure that will recursively go through types. How-
ever, using the sets defined above, not every subtype of type in T2 is a type in that same set.
For example, α→ϕ is not a type in any of the sets defined above; however, ∀α.α→ϕ ∈ T ∀

C , and
therefore it can be that, when going through types in T2 recursively, α→ϕ has to be dealt with.
Since the distinction between free and bound variables is essential, we introduce, for every set
Ti defined above, also the set Ti

′ of types, that contains also free occurrences of αs. We will
not always use the ′ when speaking of these sets, however; it will be clear from the context
which set is intended.

As for T , we will consider a relation on types, ≤2, that is the restriction to T2 of the relation
≤ defined in Def. 2.2. Notice that part ‘∀α.σ→τ ≤2 σ→∀α.τ, if α does not occur in σ’ is omitted,
since σ→∀α.τ is not a type of Rank 2.

The first three operations used for the Rank 2 system are straightforward variants of opera-
tions defined for the full system.

Definition 4.2 i) Substitution (ϕ �→ ρ) : T2 → T2 is defined as for the general system, but
with the restriction that ρ ∈ TC. We use IdS for the substitution that replaces all variables
by themselves, and write S for the set of all substitutions.

ii) Lifting is defined as in Def. 2.9, but with the restriction that ≤ is taken to be ≤2.
iii) Closure is defined as in Def. 2.10 as 〈B,σ, ϕ〉, with the restriction that σ ∈ T ∀

C .

The variant of expansion used in the Rank 2 system is quite different from that of Def. 2.7.
The reason for this is that expansion, normally, increases the rank of a type, a feature that is
of course not allowed within a system that limits the rank of types. Since below expansion is
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only used in very precise situations (within the procedure unify∀2 (), the solution is relatively
easy: in the context of rank 2 types, expansion is only called on types in T ∀

C , so it is defined
to work well there, by replacing all types by an intersection; in particular, intersections are not
created at the left of an arrow.

Definition 4.3 Let B be a Rank 2 basis, σ ∈ T ∀
C , and n ≥ 1. The triple 〈n, B,σ〉 determines

a n-fold expansion with respect to the pair 〈B,σ〉, Ex〈n,B,σ〉 : T2 → T2, that is constructed as
follows: Suppose V = {ϕ1, . . . , ϕm} is the set of all (free) variables occurring in 〈B,σ〉. Choose
m × n different variables ϕ1

1, . . . , ϕn
1 , . . . , ϕ1

m, . . . , ϕn
m, such that each ϕi

j (1≤ i≤n, 1≤ j≤m) does
not occur in V. Let Si be the substitution that replaces every ϕj by ϕi

j. Then Ex〈n,B,σ〉 (τ) =

S1 (τ)∩ · · · ∩Sn (τ).
Expansion is extended to bases and pairs in the straightforward way.

As before, operations will be grouped in chains.

Definition 4.4 Rank 2 type assignment on terms is defined by the following natural deduction
system:

x:σ ∈ B σ ≤2 τ
(≤): (σ ∈ T ∀

C ,τ ∈ TC)B �2
E x:τ

B �2
E t1:σ1 . . . B �2

E tn:σn
(F ): (a)

B �2
E F (t1, . . . , tn):σ

B �2
E t1:σ→τ B �2

E t2:σ
(→E):

B �2
E Ap (t1, t2):τ

B, x:σ �2
E t:τ

(→I):
B �2

E λx.t:σ→τ

B �2
E t:σ

(∀I): (b)
B �2

E t:∀α.σ[α/ϕ]

B �2
E t:σ1 . . . B �2

E t:σn(∩I): (c)
B �2

E t:σ1∩· · ·∩σn

(a) : If F ∈ F , and there exists an expansion-free chain of operations Ch such that
σ1→·· ·→σn→σ = Ch (E (F)).

(b) : If ϕ does not occur in B.

(c) : If n ≥ 1, and σi ∈ T ∀
C , for every 1≤ i≤n.

Notice that, since quantification elimination is implicit in rule (≤), when restricting the use
of the quantifier to the left of arrows only, there is no longer need for a general (∀E) rule; as
rule (∩E), its use is in a strict system limited to variables, and there its actions are already
performed by (≤). In fact, this change is justified by the fact that it is possible to show that
the operations (substitution, lifting, closure and expansion) are sound with respect to typing.

4.2 Unification of Rank 2 Types

In the context of types, unification is a procedure normally used to find a common instance
for demanded and provided type for applications, i.e: if t1 has type σ→τ, and t2 has type ρ,
then unification looks for a common instance of the types σ and ρ such that Ap (t1, t2) can be
typed properly. The unification algorithm unify∀

2 () presented in the next definition deals with
just that problem. This means that it is not a full unification algorithm for types of Rank 2,
but only an algorithm that finds the most general unifying chain for demanded and provided
type. It is defined as a natural extension of Robinson’s well-known unification algorithm
unify () [27].

Definition 4.5 Unification of Curry types (extended with non-unifiable variables and type
constants), unify : T ′

C × T ′
C →S , is defined by:
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unify (ϕ1, ϕ2) = (ϕ1 �→ ϕ2) unify (c1, c1) = IdS
unify (α1,α1) = IdS unify (σ, ϕ) = unify (ϕ,σ)
unify (ϕ,τ) = (ϕ �→ τ), if ϕ does not occur in τ and τ is not a variable
unify (σ→τ,ρ→µ) = S2◦S1, where S1 = unify (σ,ρ), and S2 = unify (S1 (τ),S1 (µ))

(All non-specified cases, like unify (α1,α2), with α1 �= α2, fail.)

The unification algorithm unify∀
2 () works roughly as follows: suppose we are trying to

find a type for the term Ap (t1, t2), and we know that both t1 and t2 are already typed by,
respectively, σ→τ and ρ. Thus the demanded type σ is in T1 and the provided type ρ is in T2.
The unification algorithm looks for types that can be assigned to the terms t1 and t2 such that
the application term can be typed properly, i.e. looks for types µ and ν such that µ→ν is an
instance of σ→τ, and µ is an instance of ρ. It tries to unify the types σ and ρ, in trying to find
a sequence of operations that does the right instantiation. In order to be consistent, the result
of the unification of σ and ρ – a chain Ch – should always be such that Ch(ρ) ∈ T ∀

C . However,
if ρ �∈ T ∀

C , then in general Ch (ρ) �∈ T ∀
C .

To overcome this difficulty, an algorithm toT ∀
C () will be inserted that, when applied to the

type ρ, returns a chain of operations that removes, if possible, intersections in ρ. This can
be understood by the observation that, for example, ((σ→σ)→σ→σ)→σ is a substitution in-
stance of ((ϕ1→ϕ1)→ϕ2)∩ (ϕ3→ϕ4→ϕ4)→ϕ5. Note that if quantifiers appear in ρ, the toT ∀

C ()
procedure fails; so quantifiers that appear before an arrow cannot be removed.

The algorithm unify∀2 () is called with the types σ and ρ′, the latter being ρ in which the inter-
sections are removed by toT ∀

C (). Since none of the derivation rules, nor one of the operations,
allows for the removal of a quantifier that occurs inside a type, if σ = ∀α.σ′, the unification of
σ with ρ′ will not remove the ∀α part.

It is possible that σ �∈ TC, so it can be that ρ must be expanded. Since such an operation
affects also the basis, the third argument of unify∀

2 () is a basis.

Definition 4.6 Let Ch be the set of all chains. toT ∀
C (): T2 → Ch is defined by:

toT ∀
C (σ) = [IdS], if σ ∈ TC

toT ∀
C ((σ1∩· · ·∩σn)→µ) = [S1, . . . ,Sn−1]∗Ch, otherwise, where,

for every 1≤ i≤n−1,Si = unify ([S1, . . . ,Si−1] (σ1), [S1, . . . ,Si−1] (σi+1)), and
Ch = toT ∀

C ([S1, . . . ,Sn−1] (µ))

(Again, notice that toT ∀
C (σ) fails if σ contains ∀.)

Definition 4.7 Let B be the set of all bases, and Ch the set of all chains. unify∀2 : T1 ×TC ×B →
Ch is defined by:

unify∀
2 ((∀α1.σ1)∩ . . . ∩ (∀αn.σn),τ, B) = [Ex]∗Ch1 ∗ · · · ∗Chn, where

Ex = n〈B,τ〉, τ1∩· · ·∩τn = Ex (τ), and, for every 1≤ i≤n,
Si = unify ([S1, . . . ,Si−1] (σi),τi) Cli = 〈Si (B),Si (σi),αi〉, and Chi = [Si,Cli].

Notice that unify (), toT ∀
C (), and unify∀

2 () all return lifting-free chains.

The closure operations in the definition of unify∀
2 () are correct because the variables αi do

not appear in B. Notice also that unify∀2 () only fails when unify () fails, and that toT ∀
C () fails

when either unify () fails or when the argument contains ∀, and that the other operations
never fail. Because of this relation between unify∀

2 () and toT ∀
C () on one side, and unify () on

the other, the procedures defined here are terminating and type assignment in the system
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defined in this section is decidable.

4.3 Principal pairs for terms

In this subsection, the principal pair for a term t with respect to E – PPE (t) – is defined,
consisting of basis P and type π. In Theorem 4.9 it will be shown that, for every term, this is
indeed the principal one.

Notice that, in the definition below, if PPE (t) = 〈P,π〉, then π ∈ T2. For example, the princi-
pal pair for the term λx.x is 〈∅, ϕ→ϕ〉, so, in particular, it is not 〈∅,∀α.α→α〉. Although one
could argue that the latter type is more ‘principal’ in the sense that it expresses the generic
character the principal type is supposed to have, we have chosen to use the former instead.
This is mainly for technical reasons; because unification is used in the definition below, using
the latter type, we would often be forced to remove the external quantifiers. Both types can
be seen as ‘principal’ though, since ∀α.α→α can be obtained from ϕ→ϕ by closure, and ϕ→ϕ
from ∀α.α→α by lifting.

Definition 4.8 Let t be a term in T(F,X ). Using unify∀2 (), PPE (t) is defined by:
i) t ≡ x. Then PPE (x) = 〈{x:ϕ}, ϕ〉.

ii) t ≡ λx.t′. Let PPE (t′) = 〈P,π〉, then:
a) If x occurs free in t′, and x:σ ∈ P, then PPE (λx.t′) = 〈P\x,σ→π〉.
b) Otherwise PPE (λx.t′) = 〈P, ϕ→π〉 where ϕ is a fresh variable.

iii) t ≡ Ap (t1, t2). Let PPE (t1) = 〈P1,π1〉, PPE (t2) = 〈P2,π2〉 (choose, if necessary, trivial vari-
ants such that these pairs are disjoint), and S2 = toT ∀

C (π2), then:
a) If π1 ∈ TC then: PPE (Ap (t1, t2)) = 〈P,π〉, where P = 〈S2,S1〉 (Π{P1, P2}),

S1 = unify (π1,S2 (π2)→ϕ), and π = 〈S2,S1〉 (ϕ), and ϕ is a fresh variable.
b) If π1 = σ→τ, with σ ∈ T1, τ ∈ T2, then PPE (Ap (t1, t2)) = 〈P,π〉, where

P = 〈S2〉∗Ch (Π{P1, P2}), Ch = unify∀2 (σ,S2 (π2),S2 (P2)), and π = 〈S2〉∗Ch (τ).
iv) t ≡ F (t1, . . . , tn). Assume E (F) = γ1→·· ·→γn→γ, and let, for every 1≤ i≤n, PPE (ti) =

〈Pi,πi〉 (choose, if necessary, trivial variants such that the 〈Pi,πi〉 are disjoint in pairs),
then:

PPE (F (t1, . . . , tn)) = 〈P,π〉,
where P = [S1, . . . ,Sn]∗Ch1 ∗ · · · ∗Chn (Π{P1, . . . , Pn})

Si = toT ∀
C (πi)

Chi = unify∀
2 (Ch1 ∗ · · · ∗Chi−1 (γ

′
i),Si (πi),Si (Pi)),

π = [S1, . . . ,Sn]∗Ch1 ∗ · · · ∗Chn (γ′)
γ′

1→·· ·→γ′
n→γ′ is a fresh instance of γ1→·· ·→γn→γ.

Note that, since unify () or unify∀
2 () may fail, not every term has a principal pair.

The main result for the Rank 2 system is the following:

Theorem 4.9 (Soundness and Completeness of PPE ) • If PPE (t) = 〈P,π〉, then P �2
E t:π.

• If B �2
E t:σ, then there are a basis P and type π such that PPE (t) = 〈P,π〉, and there is a chain

Ch such that Ch (〈P,π〉) = 〈B,σ〉.
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