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Abstract

We present λtry, an extension of the λ-calculus with named exception handling, via try, throw
and catch, and present a basic notion of type assignment expressing recoverable exception
handling and show that it is sound. We define an interpretation for λtry to Parigot’s λµ-
calculus, and show that reduction (both call-by-name and call-by-value) is preserved by the
interpretation. We will show that also types assignable in the basic system are preserved by
the interpretation.
We will add a notion of total failure through halt that escapes applicative contexts without
being caught by a handler, and show that we can interpret this in λµ when adding tp as
destination. We will argue that introducing handlers for halt will break the relation with λµ.
We will show that it is possible to add handlers for program failure by introducing panic and
dedicated handlers to λtry. We will need to extend the language with a conditional construct
that is typed in a non-traditional way, that cannot be expressed in λµ or logic. This will
allow both recoverable exceptions and total failure, dealt with by handlers; we will show a
non-standard soundness result for this system. We conclude the paper by showing that the
system enjoys the principal typing property.

Introduction

For a long time it has been thought that only Intuitionistic Logic [9, 10, 11] had any com-

putational meaning, given its strong relation with types in functional programming and the

λ-calculus [13, 5] through the Curry-Howard isomorphism [21]. However, since it is not possi-

ble to comfortably express notions like control or context manipulation in the pure λ-calculus,

it is clear that that by itself, although Turing complete, it is perhaps not expressive enough.

Most of the control features, such as direct returns, coroutines, or exception handling, usu-

ally exhibit a form of non-local exit, which, albeit specifiable (and therefore realisable) in the

pure calculus, are not easily represented, and certainly not using meaningful types. As such,

these additions require different formalisms for behaviour specification - e.g. translation to

continuation-passing style (CPS) or abstract machines.

That situation changed when Griffin [18] observed that the C-operator of Felleisen’s λC-

calculus [15] can be typed with ¬¬A→A (or better, ((A→⊥)→⊥)→A), thus highlighting

the first link between Classical Logic [16, 34] and sequential control in computer science. This

led to work by Parigot, who introduced a candidate for describing delimited continuations in

the form of the λµ-calculus [28, 29], a calculus that represents minimal classical logic [1].

In this paper we will investigate the relation between exception handling and Classical

Logic, but will tread a path different to that usually taken over the last 20 years or so. Where

the normal approach is to start from Classical Logic and to seek computational content in

proofs, here we will do the reverse: we will define a λ-calculus enriched with named (recov-

erable) exception handling, and investigate if its natural notions of type assignment can be

represented in Classical Logic through mapping those to λµ.
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We will also add non-recoverable exceptions (through halt and panic); then the correspond-

ing calculus is λµ-tp [1], but only if we do not ‘catch’ these exceptions. When trying to add

handlers for failing exceptions, the correspondence with λµ or λµ-tp breaks down, highlight-

ing that type theories based on classical logic do not fully cover exception handling. To stress

that point even further, we will enrich λtry with a non-conventionally typed conditional struc-

ture, and the type constant fail that is reserved for failing computations; for this system, we

will show that computations either run preserving the type, or fail (run to a term that has

type fail), as can be expected from the character of failing exceptions. This thereby constitutes

a language for which the standard subject-reduction result does not hold, and which therefore

cannot be represented in calculi based on classical logic.1

The study of the relation between exception handling and classical logic goes back a few

decades. Fundamental work has been done by Nakano [25, 26], followed by Crolard [12], in

building intuitive systems for analysing throw/catch structures in a functional context. Cro-

lard’s intuition with respect to the representation of throw and catch as terms in λµ is an essen-

tial development, and is also used in Bierman’s [7] interpretation into λµ of de Groote’s [20]

calculus λ→
exn, which has an exception handling mechanism à la ml [24], and in a certain sense

also by [27], albeit for call-by-value (cbv) languages. However, in both approaches the ar-

gument of the throw-term is the actual exception handler, rather than information that gets

passed to the handler, as is usual.

Here we will present the λtry-calculus, a λ-calculus extended with a try/throw/catch syntax

which is more similar to the constructions found in common programming languages. In our

view, shared by many in the literature, exceptions should exclusively only be thrown when

reached during the execution of a program; we therefore accept the (almost) generic approach

(an exception is that of [25]) and define reduction strategies that do not permit reduction inside

an abstraction; unlike in other papers, we will we consider both call-by-name (cbn) and cbv.

Rather than selecting the exception handler through a type constructor or through a type, as is

the common practice in languages like java [17], in λtry the handlers are called by name, giving

exception handling a more functional ‘feel’. This calculus can be implemented in λµ in that

we will present an interpretation that preserves both cbn and cbv reduction in λtry; as was

the case in previous work [27, 12, 8], the ‘context erasing’ capability of µ-reduction is used to

model the functionality of throw.

To investigate if all natural notions of type assignment for this calculus can correspond to

the one for λµ, we will present three variants of λtry, with different notions of type assign-

ment. The first comprises a ‘basic’ theory, based on the approach of recoverable exceptions

currently used [14] for example in java and ml; it assumes that all exception handlers return

the same type as that of the main term in a try-construct, effectively hiding the occurrence

of the exception on the (abstract interpretation) level of types, and allowing for execution to

continue normally even after an exception has been thrown: those exceptions are recoverable.

We will show that assignable types are preserved under cbn and cbv-reduction and under the

interpretation into λµ.

The second notion of type assignment we will represent ‘failure’; we add the construct halt,

which corresponds to an exception that cannot be caught so has no possibility of recovery. This

induces a non-standard notion of type assignment, where failure is propagated ‘outwards’,

for which we will show soundness for both cbn and cbv. We will modify the interpretation

into on mapping onto λµ-tp, a variant of λµ that represents full classical logic, and show that

assignable types are preserved.

Since both these notions are presented for a small extension of the λ-calculus, the notions

1 All such calculi are designed to satisfy preservation of provable statements under the operation of cut-
elimination, which translates to the property of subject reduction on the level of the calculi.
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are sound but not really expressive: for example, both throw and halt can have all types.

Although the type ⊥ is used when mapping the calculus into λµ-tp, it is not used for the

calculus itself, so we cannot tell by the assignable types if a program will fail, an arguably

desirable property.

It is fair to state that type assignment for exception handling that marks failing computa-

tions is only really relevant in the presence of the conditional construct, where, depending

on the evaluation of the boolean expression, the program continues normally or raises an ex-

ception. We will therefore extend λtry further, add a conditional construct together with term

constants and their types, and add a handling mechanism to deal with occurrences of halt,

but now equipped with parameter passing and called panic, so achieve a notion of both recov-

erable and fatal exceptions. Also for this extension we will show a soundness result, which

states that a computation either runs preserving the type, or fails. The key difference for this

system is that we have to allow for the conditional construct to be typed in a non-conventional

way. A direct consequence of this choice is that no longer can we preserve assignable types

under the interpretation into λµ or λµ-tp.

These results put into evidence that exception handling can be either recoverable or fail-

ing, characterised through assignable types, and that named exception handling is perfectly

feasible in the context of functional programming. Moreover, type assignment systems for

exception handling need not all be based on classical logic.

Contents of this paper

We start the paper by giving an overview of past related research and results in Sect. 1; in

particular we will look at cbn and cbv-reduction in Parigot’s λµ and give formal proofs for

subject reduction results for both those notions. In Sect. 2 we will look at systems dealing with

exception handing, like ml, Nakano’s system and Crolard’s interpretation thereof in to λµ.

We will also discuss de Groote’s calculus λ→
exn, and Bierman’s interpretation into cbv λµ.

In Sect. 3 we will present λtry, our λ-calculus extended with recoverable exception handling

through try-catch and throw, for which we will define cbn and cbv reduction strategies. We

will present an interpretation V·Uλµ from λtry into λµ, and show that it preserves both cbn and

cbv-reductions. In Sect. 4 we will define a basic notion of type assignment for λtry, for which

we show subject reduction and preservation of types with respect to V·Uλµ.

This is followed by Sect. 5, where we start our investigation into adding handling of unre-

coverable exceptions to λtry. We start by defining λtry
H , adding the constant halt that basically

escapes all contexts, and extend type assignment by treating halt like throw and show that to

be sound for both cbn and cbv reduction. We will extend our interpretation to one mapping

onto λµ-tp, and show that both cbn and cbv reductions are preserved. However, we will argue

in Sect. 5.2 that it is not possible to add handlers for halt whilst retaining those properties.

Then in Sect. 6 we extend λtry to λtry
F by adding catchable, but unrecoverable exceptions

(panic). To make this relevant, we also add a conditional construct that we type in a non-

conventional manner. We add the type constant fail to the type language, and define a cbn

and cbv notion of type assignment for which we show soundness. We conclude in Sect. 7,

where we show the practicality of λtry
F by extending the notion of principal typings from the

λ-calculus to λtry
F , and show soundness and completeness results for that.

*: Note. An extended abstract of this paper appeared as [3]; in particular, this paper adds a

discussion on past papers on its topic, gives detailed proofs, gives a more refined presentation

of the system with failure, addresses a problem with call-by-value reduction on that system,

and shows the principal typing property for it. A version of this paper with all proofs given

in full can be found at www.doc.ic.ac.uk/˜svb/Research.
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1 Context and Background

In this section we will revise some formal languages and their type assignment systems that

are of interest to this paper. We revisit Curry’s λ-calculus [13, 5], and Parigot’s λµ [28].

1.1 The λ-calculus

We quickly revise some basic notions for the λ-calculus, to better set the context of this paper.

Definition 1.1 (Lambda terms, β, cbn, and cbv reduction [5]) i) λ-terms are defined by the

grammar:

M, N ::= V | MN

V ::= x | λx.M (values)

Seeing λ as a binder, the notion of free and bound variables is defined as usual, and we

accept Barendregt’s convention to keep free and bound variables distinct, using (silent)

α-conversion whenever necessary. A variable or name is free in M if it occurs in M and

is not bound; we write fv(M) for the set of free variables in M, x ∈ M if x occurs in M,

either free of bound, and call a term closed if it has no free variables.

ii) Contexts are defined as terms with a single hole [ ] by:

C ::= [] | CM | MC | λx.C

We write C[M] for the term obtained from the context C by replacing its hole [] with

M, allowing variables to be captured. One-step β reduction is defined as the compatible

closure of the β-rule through:

C[(λx.M)N] → C[M{N x}]

for any context. We write →∗
β for the reflexive, transitive closure of →β.

iii) The Call-by-name evaluation contexts are defined through:

Cn ::= [ ] | Cn M

The Call-by-name (cbn) reduction strategy →n

β is defined through:

Cn[(λx.M)N] → Cn [M{N x}]

iv) The.Call-by-value evaluation contexts are defined through:

Cv ::= [] | Cv M | V Cv

The Call-by-value (cbv) reduction strategy →v

β is defined through:

Cv [(λx.M)V] → Cv [M{V x}]

Remark that cbn-evaluation contexts do not allow the left-hand side to be an abstraction (as

is allowed in normal evaluation contexts), so do not allow the contraction of redexes inside

an abstraction; neither is it allowed to reduce inside the right-hand side, so certainly it is not

allowed to reduce inside a redex. For cbv-evaluation contexts, we are allowed to reduce inside

the right-hand side, but only if that is not an abstraction (nor a variable), so the application is

not a cbv-redex. Thereby →n

β and →v

β are called strategies since in both there can only ever be

one redex to contract; this is not the case for →β.

The notions and notations of this definition are also used for the other calculi defined in

this paper.

Curry (or simple) type assignment for the λ-calculus is defined as follows:

Definition 1.2 (Curry type assignment for the λ-calculus) i) Let ϕ range over a count-

able (infinite) set of type-variables. The set of Curry types is defined by the grammar:
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A, B ::= ϕ | A→B

ii) A context (of term variables) Γ is a partial mapping from term variables to types, denoted

as a finite set of statements x:A, such that the subjects of the statements (x) are distinct. We

write Γ1, Γ2 for the compatible union of Γ1 and Γ2 (if x:A1 ∈ Γ1 and x:A2 ∈ Γ2, then A1 = A2),

and write Γ, x: A for Γ,{x: A}, x 6∈ Γ if there exists no A such that x:A ∈ Γ, and Γ x for

Γ {x: A}.

iii) Curry type assignment is defined by the following inference system:

(Ax) :
Γ, x : A ⊢ x : A

(→I) :
Γ, x : A ⊢ M : B

(x 6∈ Γ)
Γ ⊢ λx .M : A→B

(→E) :
Γ ⊢ M : A→B Γ ⊢ N : A

Γ ⊢ M N : B

We write Γ ⊢c M : A for judgements derivable using these rules.

The main properties for ⊢c are that type assignment is decidable, and every typeable term

is strongly normalisable.

Decidability of type assignment is established through the definition of an algorithm that

defines the principal typing for each term, using Robinson’s unification algorithm [32].

Definition 1.3 (Substitution and unification) i) a) The substitution (ϕ 7→ C), where ϕ is a

type variable and C a Curry type, is inductively defined2 by:

(ϕ 7→ C) ϕ = C

(ϕ 7→ C) ϕ′ = ϕ′

(ϕ 7→ C) A→B = ((ϕ 7→ C) A)→ ((ϕ 7→ C) B)

b) If S1, S2 are substitutions, then so is S1◦S2, where S1◦S2 A = S1(S2 A).

c) SΓ = {x:SB | x:B ∈ Γ}.

d) S〈Γ; A〉 = 〈SΓ; S A〉.

e) If there exists a substitution S such that S A = B, then B is a (substitution) instance of A.

f ) IdS is the identity substitution that replaces all type variables by themselves.

ii) (Robinson’s unification algorithm) Unification of Curry types is defined by:

unify ϕ ϕ = (ϕ 7→ ϕ)

unify ϕ B = (ϕ 7→ B) (ϕ does not occur in B)

unify A ϕ = unify ϕ A

unify (A→B) (C→D) = S2◦S1

where S1 = unify A C

S2 = unify (S1 B) (S1 D)

iii) The operation unifyC generalises unify to contexts:

unifyC (Γ1, x:A) (Γ2, x:B) = S2◦S1,

where S1 = unify A B

S2 = unifyC (S1 Γ1) (S1 Γ2)

unifyC (Γ1, x:A) Γ2 = unifyC Γ1 Γ2 (x 6∈ Γ2)

unifyC ∅ Γ2 = IdS

This definition specifies unify as a partial function; if the side condition ‘ϕ does not occur in B’

fails, no result is returned. So, for example, unify ϕ ϕ→ ϕ does not return a substitution.

If successful, unification returns the most general unifier:

2 All algorithmic definitions in this paper are presented in ‘functional style’, where calls are matched against
the alternatives ‘top-down’, the first match is taken, and the result is undefined in case there is no match.
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Lemma 1.4 ([32]) For all A, B: if S1 is a substitution such that S1 A = S1 B (so then S1 is a unifier of

A and B), then there exist substitutions S2 and S3 such that S2 = unify A B and S1 = S3◦S2 .

Unification is associative and commutative: we can show that, for all types A, B, and C

unify ((unify A B) A) C = unify ((unify A C) A) B

= unify ((unify B C) B) A

= unify A ((unify B C) B) etc.

which justifies a ‘higher-order notation’; we will write unify A B C . . . for the unification of

any number of types and will use the same higher-order notation for unifyC.

In the literature, Milner’s algorithm W [23] is the usual point of reference for the principal

typing property; however, mainly since designed to deal with the polymorphic let construct,3

there contexts are supposed to have types for all term variables which might get updated by

the running of W . In a system without let, we can use the more intuitive ‘divide and conquer’

approach; we type subterms in an application separately, and freshly construct the contexts

needed; we then need to unify those, making sure they map each term variable to at most one

type.

Definition 1.5 (pt
c

, principal typing algorithm for ⊢c) The principal typing algorithm for

Curry’s system is given by:

pt
c

x = 〈x:ϕ; ϕ〉

where ϕ is fresh

pt
c
(λx.M) = 〈Γ; C〉

where 〈Γ′; B〉 = pt
c

M

Γ,C =

{

Γ′ x, A→B (x:A ∈ Γ′)

Γ′, ϕ→B (x 6∈ Γ′)

ϕ is fresh

pt
c
(MN) = S2◦S1 〈Γ1 ∪ Γ2; ϕ〉

where 〈Γ1; A〉 = pt
c

M

〈Γ2; B〉 = pt
c

N

S1 = unify A B→ ϕ

S2 = unifyC (S1 Γ1) (S1 Γ2)

ϕ is fresh

The algorithm as presented here is not purely functional. The 0-ary function fresh is supposed

to return a new, unused type variable. It is obvious that such a function is not referential

transparent, but for the sake of readability, we prefer not to be explicit on the handling of type

variables.

The following property can be shown to hold.

Theorem 1.6 (Principal Typing Property) If Γ ⊢c M : A , then there are context Γ′, type B and

a substitution S such that: pt
c

M = 〈Γ′; B〉, and both SΓ′ ⊆ Γ and SB = A.

Proof : By induction on the structure of terms, much like that of Thm. 7.4.

1.2 The λµ-calculus

Parigot’s λµ-calculus is a proof-term syntax for classical logic, expressed in Natural Deduc-

tion, defined as an extension of the Curry type assignment system for the λ-calculus. We

present the variant of λµ we consider in this paper, as defined by Parigot in [29].

Definition 1.7 (Syntax of λµ) The λµ-terms we consider are defined by the grammar:

3 When typing ml’s letx := E1 inE2, ‘divide and conquer’ would not work: in order to type E2, we need to have
access to the (polymorphic) type for x, and cannot construct it as done in Def. 1.5. In order to correctly instantiate
the polymorphic type found for E1 when typing E2, W first types E1, quantifies the type found as much as possible
and assigns that type to x when typing E2. This implies that, when encountering a term variable, W uses its type
from the context rather than creating it fresh. Unification is not defined on quantified types.
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M, N ::= V | MN | µα.[β]M

V ::= x | λx.M (values)

Recognising both λ and µ as binders, the notion of free and bound names and variables is

defined as usual. As in Haskell [22], we will use ‘ ’ as a special name: when we write µ .[α]M,

the name ‘ ’ cannot occur (free) in [α]M. We will call the pseudo-terms of the shape [α]M

commands, written C, and treat them as terms for reasons of brevity, whenever convenient.

In λµ, reduction of terms is expressed via implicit substitution, and as usual, M{N x}

stands for the (instantaneous) substitution of all occurrences of x in M by N. Two kinds of

structural substitution are defined: the first is the standard one, where M{N·γ α} stands for

the term obtained from M in which every command of the form [α]P is replaced by [γ]PN (γ

is a fresh name). The second will be of use for cbv reduction; here {N·γ α}M stands for the

term obtained from M in which every [α]P is replaced by [γ]NP.

They are formally defined by:

Definition 1.8 (Structural substitution) Right-structural substitution, M{N·γ α}, and left-

structural substitution, {N·γ α}M, are defined inductively over pseudo terms by:

x{N·γ α} =∆ x

(λx.M){N·γ α} =∆ λx.(M{N·γ α})

(PQ){N·γ α} =∆ P{N·γ α} Q{N·γ α}

[α]M{N·γ α} =∆ [γ](M{N·γ α}N)

[β]M{N·γ α} =∆ [β](M{N·γ α}) (β 6= α)

(µδ.C){N·γ α} =∆ µδ.(C{N·γ α})

{N·γ α}x =∆ x

{N·γ α}(λx.M) =∆ λx.({N·γ α}M)

{N·γ α}(PQ) =∆ {N·γ α}P {N·γ α}Q

{N·γ α} [α]M =∆ [γ]N({N·γ α}M)

{N·γ α} [β]M =∆ [β]{N·γ α}M (β 6= α)

{N·γ α}µδ.C =∆ µδ.{N·γ α}C

[28] only defines the first variant of these notions of structural substitutions (so does not use

the prefix ‘right’); the two notions are defined together, but rather informally, using a notion

of contexts in [27].

We have the following notions of reduction on λµ. For the third, call by value, different

variants exists in the literature; we adopt the one from [27].

Definition 1.9 (λµ reduction) i) The reduction rules of λµ are:

logical (β) : (λx.M)N → M{N x}

structural (µ) : (µα.C)N → µγ.C{N·γ α} (γ fresh)4

erasing (E) : µα.[α]M → M (α 6∈ M)

renaming (R) : µα.[β]µγ.[δ]M → µα.([δ]M){β γ}

Contexts are defined by:

C ::= [] | CM | MC | λx.C | µα.[β]C

(Free, unconstrained) reduction →βµ on λµ-terms is defined through C[M] →βµ C[N] if

M → N using either the β, µ, E, or R-reductions rule.

ii) cbn evaluation contexts are defined as:

Cn ::= [] | Cn M | µα.[β]Cn

and each Cn is redex-free. cbn reduction →n

βµ is defined through: Cn [M] →n

βµ Cn [N] if

M → N using either the β, µ, E, or R-reduction rule.

iii) cbv evaluation contexts are defined through:

4 In the literature, it is common to write (µα.C)N → µα.C{N α} for the structural rule. This notation not
only violates the spirit of Barendregt’s convention, it also hides the fact that the bound α on the left and right are
different: when dealing with typeable terms, their types differ (respectively A→B and B).
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Cv ::= [] | Cv M | V Cv | µα.[β]Cv

and each Cv is redex-free. cbv reduction →v

βµ is defined through: Cv [M] →v

βµ Cv[N] if

M → N using either rule µ, E, R, or one of the rules:

(βv) : (λx.M)V → M{V x}

(µv) : V(µα.C) → µγ.{V·γ α}C (γ fresh)

iv) cbn applicative contexts are defined as:

Cn

a
::= [ ] | Cn

a
M

whereas cbv applicative contexts are defined as:

Cv

a
::= [ ] | Cv

a
M | V Cv

a

Notice that we now need to demand that a cbn or cbv evaluation context is redex-free; other-

wise, (µα.[β](λx.M)N)P is ambiguous. This is not needed for cbn or cbv applicative contexts,

as argued above in Def. 1.1.

Remark that, for rule (µv), µα.[β]N is not a value. Also, unlike for the λ-calculus, cbv

reduction is not a sub-reduction system of →βµ: the rule (µv) (and left-structural substitution)

are not part of →βµ. Both cbn and cbv constitute reduction strategies in that they pick exactly

one free βµ-redex to contract; notice that a term might be in either cbn or cbv-normal form

(i.e. reduction has stopped), but not need be that for →βµ.

It is possible to add the cbv-rules to λµ, and define

(µL) : (µα.C)N →βµ µγ.C{N·γ α} (γ fresh)

(µR) : M(µα.C) →βµ µγ.{M·γ α}C (γ fresh)

but then reduction would no longer be confluent: it would then contain the critical pair

(µα.C) (µβ.C′), which can be contracted in two ways, with perhaps different outcomes.

As shown in [33], it is possible to define a domain theoretic model of λµ, based on the

solution of the domain equations D = C→R and C = D × C, where R is an arbitrary domain

of ‘results’. The domain C is set of what are called ‘continuations’ in [33], which are infinite

tuples of elements in D, where D is the domain of continuous functions from C to R and is

the set of ‘denotations’ of terms. Using the strong relation between intersection type theories

and domain constructions, based on those results, [4] defined an intersection type assignment

system for λµ that induces a filter model [6] for λµ where continuations are typed with

sequence of term types. This approach was then used in [2], but limiting the set of results R

to just a singleton set, thus effectively obtaining ‘negated intersection types’. For that system,

strong normalisation of cut elimination is shown, from which a number of other normalisation

and characterisation results follow.

1.3 Type assignment for λµ and soundness

With λµ Parigot created a multi-conclusion typing system which corresponds to implicative

classical logic with focus; there derivable statements have the ‘sequent’ shape Γ ⊢ M : A | ∆,

where A is the main conclusion of the statement, expressed as the active conclusion, Γ is the

set of assumptions and ∆ is the set of alternative conclusions, or have the shape Γ ⊢ ∆ is there

is no formula under focus. The formulas and inference rules for this system are:

A, B ::= ϕ | A→B

and a context Γ is a set of formulas,5 where Γ, A = Γ ∪ {A} and

5 Treating a contexts as a list would require additional inference rules for context manipulation.
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(Ax) : Γ, A ⊢ A | ∆ (Act) :
Γ ⊢ | A,∆

Γ ⊢ A | ∆
(Pass) :

Γ ⊢ A | A,∆

Γ ⊢ | A,∆

(→I) :
Γ, A ⊢ B | ∆

Γ ⊢ A→B | ∆
(→E) :

Γ ⊢ A→B | ∆ Γ ⊢ A | ∆

Γ ⊢ B | ∆

Since formulas in ∆ can be seen as negated, the rule (Act) represents double negation elimi-

nation.

λµ gives a Curry-Howard interpretation to the above inference rules, as will be clear from

the definition of type assignment for λµ as below; there is a main, or active, conclusion, labelled

by a term, and the alternative conclusions are labelled by names α, β, etc.

Judgements in λµ are of the shape Γ ⊢λµ M : A | ∆, where ∆ consists of pairs of Greek

characters (the names) and types; the left-hand context Γ, as for the λ-calculus, contains pairs

of Roman characters and types, and represents the types of the free term variables of M.

Definition 1.10 (Typing rules for λµ) i) Types and variable contexts Γ are those of Def. 1.2.

ii) A context of names ∆ is a partial mapping from names to types, denoted as a finite set of

statements α:A, such that the subjects of the statements (α) are distinct. Notions ∆1,∆2, as

well as ∆,α:A and α 6∈ ∆ are defined as for Γ.

iii) The type assignment rules for λµ, adapted to our notation, are:

(Ax) : Γ, x : A ⊢ x : A |∆ (µ) :
Γ ⊢ M : B | α:A, β:B,∆

(α 6∈ ∆)
Γ ⊢ µα.[β]M : A | β:B,∆

Γ ⊢ M : A | α: A,∆
(α 6∈ ∆)

Γ ⊢ µα.[α]M : A | ∆

(→I) :
Γ, x : A ⊢ M : B | ∆

(x 6∈ Γ)
Γ ⊢ λx .M : A→B |∆

(→E) :
Γ ⊢ M : A→B |∆ Γ ⊢ N : A | ∆

Γ ⊢ M N : B | ∆

We will write Γ ⊢λµ M : A | ∆ for statements derivable in this system.

iv) We extend Barendregt’s convention on free and bound variables and names to judge-

ments (for all the notions of type assignment we define here), so in Γ, x:A ⊢λµ M : B | α:C,∆,

both x and α cannot appear bound in M.

We can think of [α]M as storing the type of M amongst the alternative conclusions by giving

it the name α.

As with Implicative Intuitionistic Logic and the Lambda Calculus, the reduction rules for

the terms that represent the proofs correspond to proof contractions; the difference is that the

reduction rules for the λ-calculus are the logical reductions, i.e. deal with the elimination of a

type construct that has been introduced directly above. In addition to these, Parigot expresses

also the structural rules that change the focus of a proof, where elimination takes place for

a type constructor that appears in one of the alternative conclusions (the Greek variable is

the name given to a subterm): he therefore needs to express that the focus of the derivation

(proof) changes (see the rules in Def. 1.10), and this is achieved by extending the syntax with

two new constructs [α]M and µα.M that act as witness to deactivation and activation, which

together move the focus of the derivation, and together are called a context switch.

The intuition behind the structural rule is given by de Groote [19]: “in a λµ-term µα.M

of type A→B, only the subterms named by α are really of type A→B (. . . ); hence, when such a

µ-abstraction is applied to an argument, this argument must be passed over to the sub-terms named

by α.” This can be illustrated by the derivations for the reduction (µα.[β]C[µγ.[α]M])N →βµ

µδ.[β]C[µγ.[δ]MN] in Fig. 1 (where β:C ∈ ∆).

We have the following standard result.

Lemma 1.11 (Weakening and thinning for ⊢λµ) The following rules are admissible for ⊢λµ:

(Wk) :
Γ ⊢ M : A | ∆

(Γ ⊆ Γ′,∆ ⊆ ∆′)
Γ′ ⊢ M : A | ∆′

(Th) :
Γ ⊢ M : A | ∆ (Γ′ = {x :B ∈ Γ | x ∈ fv(M)},

∆′ = {n:B ∈ ∆ | n∈ fn(M)})Γ′ ⊢ M : A |∆′
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Γ ⊢ M : A→B | α:A→B,γ:D,∆
(µ)

Γ ⊢ µγ.[α]M : D | α: A→B,∆

Γ ⊢ C[µγ.[α]M] : C | α:A→B,∆
(µ)

Γ ⊢ µα.[β]C[µγ.[α]M] : A→B | ∆ Γ ⊢ N : A | ∆
(→E)

Γ ⊢ (µα.[β]C[µγ.[α]M])N : B | ∆

Γ ⊢ M : A→B | δ:B,γ:D,∆

Γ ⊢ N : A | ∆
(Wk)

Γ ⊢ N : A | δ:B,γ:D,∆
(→E)

Γ ⊢ M N : B | δ:B,γ:D,∆
(µ)

Γ ⊢ µγ.[δ]M N : D | δ:B,∆

Γ ⊢ C[µγ.[δ]MN] : C | δ:B,∆
(µ)

Γ ⊢ µδ.[β]C[µγ.[δ]M N] : B | ∆

Figure 1. An illustration of structural reduction in λµ.

Proof : Standard.

Notice that, by our extension of Barendregt’s convention in Def. 1.10, Γ′ and ∆′ cannot contain

statements for the bound names and variables in M.

Example 1.12 Take the term µα.[α]µβ.[γ]M, such that M does not contain α or β, and α 6=

γ. Then by renaming, µα.[α]µβ.[γ]M →βµ µα.[γ]M{α β} = µα.[γ]M but also, by erasure,

µα.[α]µβ.[γ]M →βµ µβ.[γ]M. Notice that µα.[γ]M =α µ .[γ]M =α µβ.[γ]M.

We will now show that type assignment is closed under reduction for both cbn and cbv re-

duction. This result might itself be as expected, and is presented here mostly for completeness.

First we show results for the three notions of term substitution.

Lemma 1.13 (Substitution lemma) i) If Γ, x:B ⊢λµ M : A | ∆ and Γ ⊢λµ L : B | ∆, then Γ ⊢λµ

M{L x} : A | ∆.

ii) If Γ ⊢λµ M : A | α:B→C,∆ and Γ ⊢λµ L : B | ∆, then Γ ⊢λµ M{L·γ α} : A | γ:C,∆.

iii) If Γ ⊢λµ L : B→C | ∆ and Γ ⊢λµ M : A | α:B,∆, then Γ ⊢λµ {L·γ α}M : A | γ:C,∆.

Proof : i) By induction on the definition of term substitution.

(x{L x} = L) : If Γ, x:B ⊢λµ x : A |∆, then B = A, so Γ ⊢λµ L : A |∆, so also Γ ⊢λµ x[L/x] : A |∆.

(y{L x} ≡ y (y 6= x)) : Then y: A ∈ Γ and by rule (Ax) we have Γ ⊢λµ y : A | ∆.

(λy.(N{L x}) = (λy.N){L x}) : Then A = C→D. If Γ, x:B ⊢λµ λy.N : C→D |∆, then by rule

(→I), Γ, x:B,y:C ⊢λµ N : D |∆. Then by induction, Γ,y:C ⊢λµ N{L x} : D |∆, so by (→I),

Γ ⊢λµ λy.(N{L x}) : C→D | ∆.

((PQ){L x} ≡ P{L x}Q{L x}) : If Γ, x:B ⊢λµ PQ : A | ∆, then, by rule (→E) there exist C

such that both Γ, x:B ⊢λµ P : C→A | ∆ and Γ, x:B′ ⊢λµ Q : C | ∆. Then, by induction,

Γ ⊢λµ P{L x} : C→A | ∆ and Γ ⊢λµ Q{L x} : C | ∆; the result follows by rule (→E).

((µα.[β]N){L x} ≡ µα.[β]N{L x}) : If Γ, x:B ⊢λµ µα.[β]N : A |∆, then, by rule (µ) there exist

C such that Γ, x:B ⊢λµ N : C | α:A, β:C,∆′ with ∆ = β:C,∆′. Then, by induction, Γ ⊢λµ

N{L x} : C | α:A, β:C,∆′ , and by rule (µ) we have Γ ⊢λµ N{L x} : C | α:A, β:C,∆′ .

ii) By induction on the definition of right-structural substitution.

(x{L·γ α} =∆ x) : Then x:A ∈ Γ, and by rule (Ax) we have Γ ⊢λµ x : A | γ:C,∆.

((λx.N){L·γ α} =∆ λx.(N{L·γ α})) : Then A = D→E and, bu rule (→I), Γ, x:D ⊢λµ N : E |

α:B→C,∆. Then by induction we have Γ, x:D ⊢λµ N{L·γ α} : E | γ:C,∆, so by rule (→I)

also Γ ⊢λµ λx.N{L·γ α} : D→E | γ:C,∆.

((PQ){L·γ α} =∆ P{L·γ α}Q{L·γ α}) : Then by rule (→E) there exists D such that Γ ⊢λµ

P : D→A | α:B→C,∆ and Γ ⊢λµ Q : D | α:B→C,∆. Then by induction we can assume

both Γ ⊢λµ P{L·γ α} : D→A | γ:C,∆ and Γ ⊢λµ Q{L·γ α} : D | γ:C,∆; the result follows

by rule (→E).
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(µδ.[α]N{L·γ α} =∆ µδ.[γ](N{L·γ α}L)) : Then by rule (µ) Γ ⊢λµ N : B→C | δ:A,α:B→C,∆,

and by induction Γ ⊢λµ N{L·γ α} : B→C | δ:A,γ:C,∆. Since α, δ and γ all do not occur

(free) in N, we can construct

Γ ⊢ N{L·γ α} : B→C | δ:A,γ:C,∆

Γ ⊢ L : B |∆
(Wk)

Γ ⊢ L : B | δ:A,γ:C,∆
(→E)

Γ ⊢ (N{L·γ α})L : C | δ: A,γ:C,∆
(µ)

Γ ⊢ µδ.[γ](N{L·γ α})L : A | γ:C,∆

((µδ.[β]N){L·γ α} =∆ µδ.[β](N{L·γ α}) (β 6= α)) : Then by rule (µ) there exists D such that

∆ = β:D,∆′, and Γ ⊢λµ N : D | δ:A, β:D,α:B→C,∆′ , and by induction Γ ⊢λµ N{L·γ α} :

D | δ:A, β:D,γ:C,∆′ . But then, by rule (µ), also µδ.[β]N{L·γ α} : A : Γ ⊢λµ β:D,γ:C,∆′.

iii) By induction on the definition of left-structural substitution.

({L·γ α}x =∆ x) : Then x:A ∈ Γ, and by rule (Ax) we have Γ ⊢λµ x : A | γ:C,∆.

({L·γ α}(λx.N) =∆ λx.({L·γ α}N)) : Then A = D→E and, bu rule (→I), Γ, x:D ⊢λµ N : E |

α:B,∆. Then by induction we have Γ, x:D ⊢λµ {L·γ α}N : E | γ:C,∆, so by rule (→I) also

Γ ⊢λµ λx.{L·γ α}N : D→E | γ:C,∆.

({L·γ α}(PQ) =∆ {L·γ α}P{L·γ α}Q) : Then by rule (→E) there exists D such that Γ ⊢λµ

P : D→A | α:B,∆ and Γ ⊢λµ Q : D | α:B,∆. Then by induction both Γ ⊢λµ {L·γ α}P :

D→A | γ:C,∆ and Γ ⊢λµ {L·γ α}Q : D | γ:C,∆; the result follows by rule (→E).

({L·γ α}µδ.[α]N =∆ µδ.[γ]L({L·γ α}N)) : Then by rule (µ) Γ ⊢λµ N : B | δ:A,α:B,∆, and by

induction Γ ⊢λµ {L·γ α}N : B | δ:A,γ:C,∆. Since δ and γ do not occur (free) in L, we

can construct

Γ ⊢ L : B→C | ∆
(Wk)

Γ ⊢ L : B→C | δ: A,γ:C,∆ Γ ⊢ {L·γ α}N : B | δ:A,γ:C,∆
(→E)

Γ ⊢ L{L·γ α}N : C | δ: A,γ:C,∆
(µ)

Γ ⊢ µδ.[γ]L{L·γ α}N : A | γ:C,∆

({L·γ α}(µδ.[β]N) =∆ µδ.[β]({L·γ α}N) (β 6= α)) : Then by rule (µ) there exists D such

that β:D,∆′ = ∆, and Γ ⊢λµ N : D | δ:A,α:B, β:D,∆′ . Then by induction we have Γ ⊢λµ

{L·γ α}N : D | δ:A,γ:C, β:D,∆′ . But then, by rule (µ), also Γ ⊢λµ µδ.[β]{L·γ α}N : A |

γ:C, β:D,∆′ .

We will now show that type assignment respects cbn and cbv reduction:

Theorem 1.14 i) If Γ ⊢λµ M : A | ∆, and M →n

βµ N, then Γ ⊢λµ N : A | ∆.

ii) If M →v

βµ N, and Γ ⊢λµ M : A | ∆, then Γ ⊢λµ N : A | ∆.

Proof : i) By induction on the definition of →n

βµ.

((λx.M)N →n

βµ M{N x}) : The derivation for Γ ⊢λµ (λx.M)N : A | ∆ is shaped like

Γ, x :B ⊢ M : A | ∆
(→I)

Γ ⊢ λx .M : B→A | ∆ Γ ⊢ N : B | ∆
(→E)

Γ ⊢ (λx .M)N : A | ∆

Then, by Lem. 1.13, we have Γ ⊢λµ M{N x} : A | ∆.

((µα.[α]M)N →n

βµ µγ.[γ]M{N·γ α}N) : The derivation for (µα.[α]M)N is shaped like
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Γ ⊢ M : B→A | α:B→A,∆
(µ)

Γ ⊢ µα.[α]M : B→A | ∆ Γ ⊢ N : B | ∆
(→E)

Γ ⊢ (µα.[α]M)N : A | ∆

Then by Lem. 1.13, we have Γ ⊢λµ M{N·γ α} : B→A | γ:A,∆. Since γ is fresh, by

weakening also Γ ⊢λµ N : B | γ:A,∆, and we can construct

Γ ⊢ M{N·γ α} : B→A | γ:A,∆ Γ ⊢ N : B | γ:A,∆
(→E)

Γ ⊢ M {N·γ α}N : A | γ:A,∆
(µ)

Γ ⊢ µγ.[γ]M {N·γ α}N : A | ∆

((µα.[δ]M)N →n

βµ µγ.[δ]M{N·γ α}, with α 6= δ) : The derivation for (µα.[δ]M)N is shaped

like

Γ ⊢ M : C | α:B→A,δ:C,∆′

(µ)
Γ ⊢ µα.[δ]M : B→A | δ:C,∆′ Γ ⊢ N : B | δ:C,∆′

(→E)
Γ ⊢ (µα.[δ]M)N : A | δ:C,∆′

with ∆ = δ:C,∆′. Then by Lem. 1.13, we have Γ ⊢λµ M{N·γ α} : C | γ:A,δ:C,∆′ , and we

can construct

Γ ⊢ M{N·γ α} : C | γ:A,δ:C,∆′

(µ)
Γ ⊢ µγ.[δ]M{N·γ α} : A | δ:C,∆′

(µα.[α]M →n

βµ M) : The derivation for µα.[α]M is shaped like

Γ ⊢ M : A | α:A,∆
(µ)

Γ ⊢ µα.[α]M : A | ∆

Since α does not occur in M, we can thin α:A,∆ and obtain Γ ⊢λµ M : A | ∆.

(µα.[β]µγ.[δ]M →n

βµ µα.([δ]M){β γ}) : The derivation for (µα.[δ]M)N is shaped like

Γ ⊢ M : D | α:A, β:B,γ:B,δ:D,∆′

(µ)
Γ ⊢ µγ.[δ]M : B | α: A, β:B,δ:D,∆′

(µ)
Γ ⊢ µα.[β]µγ.[δ]M : A | β:B,δ:D,∆′

So in particular, replacing all occurrences of γ by β, we obtain a derivation for Γ ⊢λµ

M{β γ} : D | α:A, β:B,δ:D,∆′ . Now either:

(δ 6= γ) : Then we can construct:

Γ ⊢ M{β γ} : D | α: A, β:B,δ:D,∆′

(µ)
Γ ⊢ µα.[δ]M{β γ} : A | β:B,δ:D,∆′

(δ = γ) : Then D = B as well, and we can construct:

Γ ⊢ M{β γ} : B | α:A, β:B,∆′

(µ)
Γ ⊢ µα.[β]M{β γ} : A | β:B,∆′

(M →n

βµ N ⇒ MP →n

βµ NP, µα.[β]M →n

βµ µα.[β]N) : By induction.

ii) By induction on the definition of →v

βµ.
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((λx.M)V →v

βµ M{V x}) : The derivation for Γ ⊢λµ (λx.M)V : A | ∆ is shaped like

Γ, x :B ⊢λµ M : A | ∆
(→I )

Γ ⊢λµ λx .M : B→A | ∆ Γ ⊢λµ V : B | ∆
(→E)

Γ ⊢λµ (λx .M)V : A |∆

Then, by Lem. 1.13, we have Γ ⊢λµ M{V x} : A | ∆.

((µα.[α]M)N →v

βµ µγ.[γ]M{N·γ α}N) : The derivation for (µα.[α]M)N is shaped like

Γ ⊢λµ M : B→A | α:B→A,∆
(µ)

Γ ⊢λµ µα.[α]M : B→A | ∆ Γ ⊢λµ N : B | ∆
(→E)

Γ ⊢λµ (µα.[α]M)N : A | ∆

Then by Lem. 1.13, we have Γ ⊢λµ M{N·γ α} : B→A | γ:A,∆. Since by weakening also

Γ ⊢λµ N : B | γ:A,∆, we can construct

Γ ⊢λµ M{N·γ α} : B→A | γ:A,∆ Γ ⊢λµ N : B | γ:A,∆
(→E)

Γ ⊢λµ M {N·γ α}N : A | γ:A,∆
(µ)

Γ ⊢λµ µγ.[γ]M {N·γ α}N : A | ∆

((µα.[δ]M)N →v

βµ µγ.[δ]M{N·γ α}, with α 6= δ) : The derivation for (µα.[δ]M)N is shaped

like

Γ ⊢λµ M : C | α:B→A,δ:C,∆′

(µ)
Γ ⊢λµ µα.[δ]M : B→A | δ:C,∆′ Γ ⊢λµ N : B | δ:C,∆′

(→E)
Γ ⊢λµ (µα.[δ]M)N : A | δ:C,∆′

with ∆ = δ:A,∆′. Then by Lem. 1.13, we have Γ ⊢λµ M{N·γ α} : C | γ:A,δ:C,∆′ , and by

rule (µ) we get Γ ⊢λµ µγ.[δ]M{N·γ α}N : A | δ:C,∆′ .

(V(µα.[α]M)→v

βµ µγ.[γ]V{V·γ α}M) : The derivation for V(µα.[α]M) is shaped like

Γ ⊢ V : B→A | ∆

Γ ⊢ M : B | α:B,∆
(µ)

Γ ⊢ µα.[α]M : B | ∆
(→E)

Γ ⊢ V (µα.[α]M) : A | ∆

Then by Lem. 1.13, we have Γ ⊢λµ {V·γ α}M : B | γ:A,∆, and we can construct

Γ ⊢ V : B→A |∆
(Wk)

Γ ⊢ V : B→A | γ:A,∆ Γ ⊢ {V·γ α}M : B | γ:A,∆
(→E)

Γ ⊢ V{V·γ α}M : A | γ:A,∆
(µ)

Γ ⊢ µγ.[γ]V{V·γ α}M : A | ∆

(V(µα.[δ]M)→v

βµ µγ.[δ]{V·γ α}M, with α 6= δ) : The derivation for V(µα.[δ]M) is shaped

like

Γ ⊢ V : B→A | δ:C,∆′

Γ ⊢ M : C | α:B,δ:C,∆′

(µ)
Γ ⊢ µα.[δ]M : B | δ:C,∆′

(→E)
Γ ⊢ V (µα.[δ]M) : A | δ:C,∆′

with ∆ = δ:C,∆′. Then by Lem. 1.13, we have Γ ⊢λµ {V·γ α}M : C | γ:A,δ:C,∆′ , and by
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.
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.

(Ax)
y:(C→⊥)→⊥ ⊢ y : (C→⊥)→⊥ |

(Ax)
x :C ⊢ x : C | δ:⊥,α:C,γ:⊥

(µ)
x :C ⊢ µδ.[α]x : ⊥ | α:C,γ:⊥

(→I )
⊢ λx .µδ.[α]x : C→⊥ | α:C,γ:⊥

(→E)
y:(C→⊥)→⊥ ⊢ y(λx .µδ.[α]x) : ⊥ | α:C,γ:⊥

(µ)
y:(C→⊥)→⊥ ⊢ µα.[γ]y(λx .µδ.[α]x) : C | γ:⊥

(→I )
⊢ λy.µα.[γ]y(λx .µδ.[α]x) : ((C→⊥)→⊥)→C | γ:⊥

.

.

.

.

.

(Ax)
z:C→⊥ ⊢ z : C→⊥ |

Γ ⊢ M : C | ∆
(→E)

Γ,z:C→⊥ ⊢ zM : ⊥ | ∆
(→I )

Γ ⊢ λz.zM : (C→⊥)→⊥ | ∆
(→E)

Γ ⊢ (λy.µα.[γ]y(λx .µδ.[α]x)) (λz.zM) : C | γ:⊥,∆

Figure 2. Modeling double negation elimination in λµ

rule (µ) we have µγ.[δ]{V·γ α}M : A : Γ ⊢λµ δ:C,∆′.

(µα.[α]M →v

βµ M) : The derivation for µα.[α]M is shaped like

Γ ⊢ M : A | α:A,∆
(µ)

Γ ⊢ µα.[α]M : A | ∆

since α does not occur in M, we can thin α:A,∆ and obtain Γ ⊢λµ M : A | ∆.

(µα.[β]µγ.[δ]M →v

βµ µα.([δ]M){β γ}) : The derivation for (µα.[δ]M)N is shaped like

Γ ⊢ M : D | α:A, β:B,γ:B,δ:D,∆′

(µ)
Γ ⊢ µγ.[δ]M : B | α: A, β:B,δ:D,∆′

(µ)
Γ ⊢ µα.[β]µγ.[δ]M : A | β:B,δ:D,∆′

So in particular, replacing all occurrences of γ by β, we obtain a derivation for Γ ⊢λµ

M{β γ} : D | α:A, β:B,δ:D,∆′ .

Now either:

(δ 6= γ) : Then we can construct

Γ ⊢ M{β γ} : D | α: A, β:B,δ:D,∆′

(µ)
Γ ⊢ µα.[δ]M{β γ} : A | β:B,δ:D,∆′

(δ = γ) : Then D = B as well, and we obtain

Γ ⊢ M{β γ} : B | α:A, β:B,∆′

(µ)
Γ ⊢ µα.[β]M{β γ} : A | β:B,∆′

(M →v

βµ N ⇒ MP →v

βµ NP, µα.[β]M →v

βµ µα.[β]N) : By induction.

Example 1.15 In [28], Parigot represents ‘double negation elimination’ in λµ through the term

λy.µα.[γ]y(λx.µδ.[α]x); notice that this term is not closed as it has a free name γ. To type

it, rather than adding negation, ⊥ is added as a pseudo-type to express negation as well as

contradiction. Assuming z 6∈ M, we can construct the derivation in Fig. 2 (using multiplicative

style); notice that γ is of type ⊥. Since δ 6∈ [α]M and α 6∈ M by Barendregt’s convention, we

have:

(λy.µα.[γ]y(λx.µδ.[α]x)) (λz.zM) →n

βµ µα.[γ](λz.zM) (λx.µδ.[α]x) →n

βµ

µα.[γ](λx.µδ.[α]x)M →n

βµ µα.[γ]µδ.[α]M →n

βµ

µα.[α]M →n

βµ M

which illustrates Thm. 1.14.
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The following lemma is needed below when encoding throwing exceptions.

Lemma 1.16 i) The reduction rule Cn
a [µ .[β]N ] → µ .[β]N is admissible in →n

βµ.

ii) The reduction rule Cv
a [µ .[β]N]→ µ .[β]N is admissible in →v

βµ.

Proof : i) By induction on the structure of contexts:

(Cn
a = []) : Immediate.

(Cn

a = Cn

a ′M) : Notice that 6= β and that there is no sub-term called in N; then

Cn
a′[µ .[β]N]M → (IH) (µ .[β]N)M →n

βµ µγ.[β]N{M·γ }

= µγ.[β]N =α µ .[β]N

Notice that γ is fresh; since there is no sub-term called in N, the structural substitu-

tion {M·γ } has no effect, so, in particular, γ does not appear in [β]N.

ii) By induction on the structure of contexts. The first two cases are similar to above; the

third one is:

(Cv
a = V Cv

a′) : V Cv
a ′[µ .[β]M] → (IH) V(µ .[β]M) →v

βµ µγ.[β]{V·γ }M

= µγ.[β]M =α µ .[β]M

1.4 The λµ-tp-calculus

Following [33], [1] also presents a variant of λµ, called λµ-tp, where tp is a name that cannot

occur bound and denotes the top-level. It does that by adding tp as a name-constant, and the

type assignment rule:

(tp) :
Γ ⊢ M : ⊥ | ∆

Γ ⊢ [tp]M : ⊥ | ∆

Notice that, implicitly, the assumption is that tp has type ⊥, but that this connection is not

registered in the co-context.

Their motivation for this extension is: “On the programming calculi side, the presence of the

continuation tp makes it possible to distinguish between aborting a computation and throwing to a

continuation (as aborting corresponds to throwing to the special top-level continuation). This distinc-

tion can be used to develop more refined programming calculi for languages with control operators.”

AHS’07. We will follow this suggestion below, when we look to model aborting computations

in λtry in Sect. 5.

Definition 1.17 (λµ-tp [1]) i) Terms of the λµ-tp-calculus are defined as in Def. 1.7, extended

with the case µα.[tp]M, where tp is a name that cannot occur bound.

ii) The notion of type assignment for λµ-tp, ⊢tp, is defined using the types defined by the

grammar

A, B ::= ϕ | ⊥ | A→B

and the type assignment rules of Def. 1.10, extended with the inference rule

(tp) :
Γ ⊢ M : ⊥ | α: A,∆

Γ ⊢ µα.[tp]M : A | ∆

Notice that now ⊥ is a type. The appropriate variants of Lem. 1.13 and Thm. 1.14 can much

in the same way be shown to hold for ⊢tp. Notice that Lem. 1.16 also holds for β = tp.

Example 1.18 In λµ-tp, ‘double negation elimination’ can be expressed using the closed term

λy.µα.[tp](yλx.µδ.[α]x); the structure of the derivation is exactly the same as that in Ex. 1.15,

but for the fact that γ has been replaced by tp, and γ:⊥ has been removed from the co-context.
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2 Calculi with exception handling and λµ

In this section we will look at the intricacies of adding exceptions to a λ-calculus, and how

exceptions are dealt with in ml. We then look at Nakano’s calculus λn [25] that tries to do

that, and Crolard’s interpretation of λn into λµ [12], and de Groote’s calculus λ→
exn [20] and

Bierman’s interpretation of λ→
exn in cbv-λµ [8].

Exception handling is a common feature of quite a few programming languages. Exceptions

are raised when a program reaches an undesirable state, and basically involves abandoning a

computation, aborting the current context, and passing control to a dedicated handler, that is

written to deal with the anomaly.

The kind of contexts that can be aborted differ from paper to paper. The most common

approach, as used in [15, 8] and here, is to allow aborting applicative contexts only. For exam-

ple, Nakano’94b allows aborting executions inside abstractions as well; allowing this kind of

computational exit comes with obstacles, in that type assignment and in particular soundness

(preservation of assignable types under reduction) becomes more difficult to achieve, since

in general we cannot preserve types when aborting from an abstraction (see Ex. 4.5 and 6.6).

This leaves that (in the context of the λ-calculus with types) we can only safely abort from

applicative contexts.

2.1 On adding exception handling to the λ-calculus

The main topic of this paper is to define an extension of the λ-calculus with exception han-

dling, modelled through try, catch and throw, and investigate notions of type assignment for it

and their relation to classical logic. Before coming to that, perhaps we should point out some

of the inevitable limitations of equipping the λ-calculus with exception handling.

• From the point of view of programming, throwing of exceptions from inside an abstrac-

tion, as modelled by the reduction rule

λx.throw α N → throw α N

should not be allowed.6 One reason is that subject reduction will then fail (the variable x

might appear in N; see Ex. 4.5), but, perhaps more importantly, it would correspond to letting

a program raise an exception just because it occurs in a function definition, regardless of

whether or not evaluation of the program has led to the exception.

• In cbv or cbn functional programming languages, reductions never take place under-

neath an abstraction, so exceptions defined inside a function are only ever thrown when the

function has been called (a redex involving the abstraction has been contracted). This restric-

tion seems to have been applied to almost all proposals for λ-calculi with control in the past

(an exception is [25]).

• A common approach to typeing the throw action is to base its rule on the rule for ⊥-

elimination from Classical Logic [16],

(EFQ) :
Γ ⊢ ⊥

Γ ⊢ A

(ex falso quodlibet sequitur) which allows any type to be assigned to the expression, as through

the rule

(throw) :
Γ ⊢ M : A | ∆

Γ ⊢ throw α M : B | α:A,∆

(See Def. 2.1). This, however, is only ever useful in languages that have a conditional construct,

when one of the two alternatives throws a recoverable exception whereas the other executes

6 This rule is implied in systems where throw is allowed to escape from any context, as in [25].
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normally (see also Sect. 6). We do not know, a priori, if a boolean will evaluate to true or false,

so if the exception handler is only thrown in the else-part, the type assignment system should

be able to express both that the computation will continue normally (in case the boolean

evaluates to true), or fails (in case the boolean evaluates to false).

In order to successfully type this with the normal type assignment rule for the conditional

(cond) :
Γ ⊢ M : bool | ∆ Γ ⊢ P : B | ∆ Γ ⊢ Q : B | ∆

Γ ⊢ if M then P else Q : B | ∆

we need to be able to ‘warp’ the type of the throw to B, for any B. Type assignment thereby

then ‘hides’ the fact that an exception was thrown. This last point will be relevant in Sect. 6

where we present a notion of type assignment that allows for failing exceptions, for which

this hiding feature is no longer present, and the type assignment can (in certain cases) predict

failure of a program, in the sense that when the type fail has been inferred, it is certain that

the program will fail. When adding the conditional construct and allowing a more liberal way

of typing it, as we will do in the final part of the paper, and allowing for both recoverable

and failing exceptions, this apparent shortcoming disappears, and part of a program can fail

without that affecting the type for the whole.

• Normal programming hygiene would demand that exceptions can only be thrown to-

wards an existing and corresponding catch (in our case, the one with the right name). Our

approach here, where we use a try-construct

try M; catch n1 (x) = N1; . . . ; catch nn (x) = Nn

that contains a number of catch expressions that deal with the exceptions that might be

thrown inside M, demands that the result of a normal execution, which would exit from

the try-construct, cannot contain a throw towards one of the exception handlers inside the try-

construct, but can only refer to exception handlers that are defined outside the try-construct.

In fact, the names for the exception handlers are bound in the construct, and we do not want

reduction ‘to free’ bound names (or variables).

If this seems restrictive, dropping this restriction for names is easily dealt with using dy-

namic scoping,7 and involves checking if a handler for that name is also defined ‘one level

up’, or assuming that all locally defined exception handlers are otherwise redefined on the

outermost level where they generate an undefined message, with reduction rules like

(try V; catch ni (x) = Mi)P →

try V P; catch m(x) = Error("Message not understood") (mi = fn(V))

etc. Because dynamic scoping cannot be directly represented in λµ, we choose here to syn-

tactically restrict the terms; this leads to more elegant and tractable solutions to the various

theoretical results we achieve, where we can focus on the essential properties without overly

complicating the system.

2.2 Exceptions in ml

Exceptions were introduced for ml in [24], and the approach taken there forms the basis for

that used in Haskell and OCaml [31], to name but two more recently developed functional

programming languages. Exception handling for ML is defined in a rather ad-hoc way, since

not really representable in a functional, λ-calculus way. This is caused by the very nature of

exceptions that, when raised, propagate “outwards and upwards”. In a formal calculus, this

requires a reduction rule that is capable of eradicating contexts, like for example C[A(M)] →

7 In dynamic scoping, the compiler maintains a mapping from identifiers to values for each ‘environment’.
Then referencing an identifier produces what is associated to it in the most recent environment; the compiler first
searches the current environment and then successively the surrounding ones, in order.
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M as used in λC [15] (using the abort constructor A), or similarly as in [25, 18]. Normally,

contexts that are discarded are applicative, as in (A(M))N1 · · ·Nn → M, and the applicative

context has to be assumed to be maximal.

Then using raise as a keyword that models an exception occurring, we can say that we

need a reduction rule of the shape ‘raise M → raise’ (discarding the context ‘one term at the

time’), which cannot be expressed in a pure functional language, not even using a fixed-point

construction. Rather, exception handling in ml is dealt with as an implementation issue outside

of the normal reduction strategy, by placing markers with the handlers, and unwinding the

stack until the correct handler for the exception is reached.

Focussing for the moment on ml, exceptions have to be declared in ml through a statement

of the form:

exception exceptionName of argumentsType

(of argumentsType is optional) where exceptionName is the declared identifier, a type

constructor, and the added argumentsType is the type of the arguments that can be passed.

Raising has the syntax

raise expression

where expression is (some program term that evaluates to) the exception to be raised.

Handling an exception is dealt with through handle expressions, that have the form

expression handle matches

where matches is one or more pattern rules of the shape “name => body” that match against

declared exception names and executes body when successful, and expression is some

program term that might raise an exception. This matching feature highlights that exception

names are treated as constructors, that create objects of ml’s built-in extensible data type exn.8

Raising an exception name involves an interruption of normal execution, and a jump out

of the current context, unfolding the stack until a handler for name has been reached, or

the outermost level is reached after which the run-time system deals with the event through

printing an error message or the program terminates. This reduction behaviour is left rather

unspecified in ml, but can be defined formally as done by de Groote (see Sect. 2.5) and as we

will do in Definition 3.2 for our calculus λtry; as mentioned above, it is not expressible in a

pure λ-calculus.

The return type of an exception is always exn, and when the exceptionName is declared

with argumentsType, then the type of exceptionName is argumentsType→ exn. There-

fore the argument passed to raise has type exn; the term raise expression given above has

any type, since a raise expression should be useable in any context. Also, to guarantee subject

reduction, the bodies of the handlers should all have the same type as the main expression.

A declaration like

exception exceptionName of argumentsType

is dealt with in a different way than a normal function declaration (which gets modelled

through a let-construct) because exceptionName is not an identifier, but a type constructor.

Informally, the declaration adds the statement

exceptionName : argumentsType→ exn

to an exceptions environment (called E here), mapping type constructors to types, which gets

built up before typing the main term in the program.

This suggests inference rules like:

8 Haskell has no extensible data type; rather user-defined exceptions are instances of the Exception type class.

18



Γ; E ⊢ paramsi : argTypei

Γ; E ⊢ namei(paramsi) : exn

Γ; E ⊢ expr : exn

Γ; E ⊢ raise expr : A

Γ; E ⊢ expr : A Γ, x :argTypei; E ⊢ body i : A (∀ i ∈ n)

Γ; E ⊢ expr handle namei (x) => body i : A

where E = name1 :argType1→exn, . . . ,namen :argTypen →exn, and of course the parameters

need not be present. Notice that, in the second rule, raise expr can have any type, and that

in the last rule, the statements for the namei in E link the type for the x in Γ, x:argTypei; E ⊢

body i : A to namei.

We will see in Sect. 4 that this interpretation of the way exceptions are treated in ml is

similar to the basic type assignment system for λtry, where we would write Γ ⊢ expr : A | E

in closer correspondence to type judgements in λµ. There throwing an exception has any

type as well. The type exn is not used there; since in λtry handler names are not first-class

citizens, so cannot be used outside of throwing or catching, there is no need for a separate

type assignment rule for them.

Formal systems dealing with exception analyses for ml are described in the literature; a

good summary of various systems is presented in Section 6 of [30]. Since the purpose of those

systems does not correspond to ours, and neither of those approaches is related to classical

logic, so not really related to our results, we will not present those here. In Sect. 2.5 we discuss

de Groote’s calculus λ→
exn [20] that has features inspired by ml’s exception handling, and how

Bierman [8] has successfully linked λ→
exn to cbv-λµ.

2.3 On modelling the catch / throw mechanism in λµ

In terms of provable properties it is preferable to model eradication of applicative contexts

‘one syntactic construction at the time’, rather than use the λC-approach, which aborts entire

contexts via C[A(M)] → M, where the context is implicitly assumed to be as large as pos-

sible. This is exactly what can be modelled in λµ (using the result of Lem. 1.16), where the

functionality of throwing an exception M to name n can be represented by µ .[n]M (where

n does not occur in M), i.e. a context switch that can be used to erase (only) an applicative

context.

This gives that we can now implement the functionality of ‘escaping from the context’ via

the mechanism of consuming it via the reduction steps:

(µ .[n]M)PQR → (µ .[n]M)QR → (µ .[n]M)R → µ .[n]M

Notice that this will always leave the prefix µ .[n] , which therefore has to be removed through

the encoding of the catch functionality. We can achieve this using λµ’s renaming and erasing

reduction steps: we model catching on name n through µn.[α]M, essentially allowing for:

µn.[α](µ .[n]M)PQR →∗
βµ (1.16) µn.[α]µ .[n]M →βµ (R) µn.[n]M →βµ (E) M

However, this is not enough; we also want the catch-mechanism to disappear when com-

putation terminates normally, as in try V; catch ni (x) = Mi → V. This asks for a last step

µn.[α]V → V but this is in λµ only possible when α = n and α does not appear in V.

In conclusion, throwing to the name n has to be modelled through µ .[n] , whereas catching

on the name n has to be modelled through µn.[n]. This is the approach of all interpretations

into λµ we discuss here, even the historic ones, as, for example, the one presented in [27].

2.4 Nakano’s system and Crolard’s interpretation

In [25], Nakano presented an unnamed programming language with catch and throw, together

with a notion of type assignment. It is presented as extension of a λ-calculus with pairing

and disjunctive choice, and by adding tag variables that are used to mark destinations for the
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throw instructions. Crolard [12] later established a relation between Nakano’s calculus and

Parigot’s λµ (see below).

We briefly summarise Nakano’s system as appeared in [25]; to facilitate the comparison

with λtry, we will not consider pairing, disjoint union, nor constants, and use Crolard’s syntax;

we will call it λn here.

Definition 2.1 (Nakano’s λn) i) The terms of λn are defined through the grammar:

M, N ::= x | λx.M | MN | catch α M | throw α M

ii) Reduction on terms in λn is defined through the rules:

M{throw α N x} → throw α N (x ∈ M, M 6= x, M 6= C[catch α C′[x]])9

catch α M → M (α 6∈ M)

catch α (throw α M) → M (α 6∈ M)

(λx.M)N → M{N x}

iii) The notion of types and context of variables Γ is the same as that of Def. 1.10; as usual, we

use Dom (Γ) =∆ {x | ∃A (x:A ∈ Γ)}. The notion of name context maps names to pairs of

types and sets of term variables, α:〈A , S〉. The definition of compatible union of contexts

of names ∆1,∆2 then requires the type for a name to be the same in both ∆1 and ∆2, and

takes the union of the associated sets.

iv) Type assignment for λn is defined through the following inference rules (modified here

to our syntax and limitations of the language).

(Ax) : Γ, x : A ⊢ x : A | ∆ (→I) :
Γ, x : A ⊢ M : B |∆

(∗)
Γ ⊢ λx .M : A→B | ∆

(→E) :
Γ1 ⊢ M : A→B | ∆1 Γ2 ⊢ N : A | ∆2

Γ1, Γ2 ⊢ M N : B | ∆1,∆2

(catch) :
Γ ⊢ M : A | α:〈A , S〉,∆

Γ ⊢ catch α M : A | ∆
(throw) :

Γ ⊢ M : A | ∆

Γ ⊢ throw α M : B | α:〈A , Dom (Γ)〉,∆

(∗) : x 6∈ S for all α:〈A , S〉 ∈ ∆.

With the extra feature 〈A , Dom (Γ)〉 the system registers in rule (throw) which are the term

variables in the context of inputs used to type the term to be thrown. Then in rule (→I), to

avoid binding of a free variable that occurs in a term that gets thrown, abstraction is only

typed if the variable to be bound does not appear in any such term. Notice that rule (throw)

adds α:〈A , S〉 to the context of names; it is not clear if Nakano intends this to be a true

addition, i.e. if α is supposed to not already occur in ∆; since the third reduction rule demands

that the name towards which the expression M is thrown does not appear in M, this seems to

be the case.

Nakano proves that the system satisfies subject reduction; it avoids the problem highlighted

in Ex. 4.5 through not allowing abstraction over variables that occur in thrown terms. However,

this restriction is quite strong. For example, the term

λx.(λab.b)(throw α x) x

would be considered untypeable in Nakano’s system, since we have the λn-reduction

λx.(λab.b) (throw α x) x → throw α x

even though its type would be A→A, and it also safely runs to λx.x under head-reduction,

so reduction is not confluent. In our approach (as detailed below), we will type the term, but

will not allow an exception to be thrown from inside an abstraction. Moreover, the system in

9 The third restriction is missing in [25], but this seems to be in error.
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(Ax)
x : A,b:B, a:A ⊢ a : A | α: A

(→I )
x :A,b:B ⊢ λa.a : A→A | α:A

(→I)
x : A ⊢ λba.a : B→A→ A | α: A

(Ax)
x : A ⊢ x : A | :B,α: A

(µ)
µ .[α]x : B : x : A ⊢ α: A

(→E)
x : A ⊢ (λba.a) (µ .[α]x) : A→A | α:A

(Ax)
x : A ⊢ x : A | α:A

(→E)
x : A ⊢ (λba.a) (µ .[α]x)x : A | α: A

(→I )
⊢ λx .(λba.a) (µ .[α]x)x : A→A | α: A

Figure 3. A derivation for ⊢λµ λx .(λba.a) (µ .[α]x)x : A→ A | α:A.

not ‘multiplicative’, so contexts might be substantially larger than needed to type the term, so

Dom (Γ) might be unnecessarily large.

Notice that the first reduction rule states that any context can be eradicated by a throw that

occurs inside it; thereby, this yields a highly non-confluent calculus; this was already observed

by Nakano, who gives the following example10: take

M = catch α ((λxy. I) (throw α K) (throw α Z))

(where I = λx.x, K = λab.a, and Z = λab.b), then we have the following three reduction

results:

M → catch α ((λy. I) (throw α Z)) → catch α I → I

M → catch α (throw α K) → K

M → catch α (throw α Z) → Z

So reduction is manifestly non-confluent.

In part to address this, Crolard [12] defines an interpretation of terms in λn into λµ. Observe

that, since reduction in λµ is confluent, this interpretation cannot preserve (all) λn-reductions.

Definition 2.2 Crolard’s interpretation ·
c

is (adapted to our notation) defined by:

x
c

= x

λx.N
c

= λx. N
c

MN
c

= M
c

N
c

catch α M
c

= µα.[α] M
c

throw α N
c

= µ .[α] N
c

Notice that this interpretation follows the observations made in Sect. 2.3. Then, for example,

we get:

catch α (throw α M)
c

=∆ µα.[α](µ .[α] M
c

) → µα.[α] M
c

→ M
c

The last step is only possible if α does not occur in M
c

, so respects the restriction imposed

by the λn-reduction rule.

Nakano’s example term translates as:

catch α ((λxy. I) (throw α K) (throw α Z))
c

=∆ µα.[α]((λxy. I) (µ .[α]K) (µ .[α]Z))

which in λµ only reduces as follows:

µα.[α]((λxy. I) (µ .[α]K) (µ .[α]Z)) →βµ µα.[α]((λy. I) (µ .[α]Z)) →βµ µα.[α] I →βµ I

Moreover,

λx.(λab.b) (throw α x)x
c

=∆ λx.(λab.b) (µ .[α]x)x →∗
βµ λx.x

and we can show ⊢λµ λx.(λba.a) (µ .[α]x)x : A→A | α:A, as in Fig. 3, so non-typeability in

Nakano’s system is not preserved under Crolard’s interpretation.

10 Nakano uses numbers rather than I, K, and Z to get a typeable term.
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2.5 De Groote and Bierman’s approach

In [8], Bierman studies the interpretation of de Groote’s simply-typed calculus λ→
exn, as pre-

sented in [20] into an abstract machine that evaluates λµ-terms using a cbv strategy; De

Groote’s calculus is based on ml’s [24] handling of exceptions. We will follow Bierman’s

notation here, updated to ours.

Definition 2.3 λ→
exn-terms are defined through the grammar:11

M, N ::= V | MN | raise (n, M) | let n in M handle n x ⇒ N end

V ::= c | x | λx.M

It uses the set of types defined as A, B ::= c | ⊥ | A→B (where c ranges over a set of ground

types and ⊥ is a distinguished ground type) and the type assignment rules:

Γ, x : A ⊢ x : A | ∆

Γ ⊢ c : σ c | ∆

Γ, x : A ⊢ M : B |∆

Γ ⊢ λx .M : A→B | ∆

Γ ⊢ M : A→B | ∆ Γ ⊢ N : A | ∆

Γ ⊢ M N : B | ∆

Γ ⊢ M : B | ∆

Γ ⊢ raise (n, M) : A | n:¬B,∆

Γ ⊢ M : B | n:¬A,∆ Γ, x : A ⊢ N : B | ∆

Γ ⊢ let n in M handle n x ⇒ N end : B | ∆

Here ¬A = A→exn, with exn ml’s type of exceptions as discussed above, represented as ⊥;

σ assigns the appropriate ground type to each constant.

This system is, like Nakano’s, developed out of classical logic, and de Groote argues that it

is complete, i.e. fully represents classical proofs.12

Definition 2.4 The (call by value) reduction relation on λ→
exn is defined through the rules:

(λx.M)V → M{V x}

V ′(raise (n,V)) → raise (n,V)

(raise (n,V))M → raise (n,V)

raise (m, raise (n,V)) → raise (n,V)

let n in V handle n x ⇒ N end → V (n 6∈ fn(V))

let n in raise (n,V) handle n x ⇒ N end → N{V x} (n 6∈ fn(V, N))

let n in raise (m,V) handle n x ⇒ N end → raise (m,V) (m 6= n,n 6∈ fn(V))

De Groote makes no attempt to link this reduction relation to how exceptions are dealt with

in ml.

Notice that there are no rules permitting raising an exception from within an abstraction,

thereby avoiding the subject reduction problem mentioned in Ex. 4.5. However, de Groote does

not put the side-condition on the last three rules, opening the system to another kind of subject

reduction problem; Bierman adds the restrictions in his presentation. Operationally, the λ→
exn-

term ‘let n in M handle n x ⇒ N end’ corresponds to the λtry-term ‘try M; catch n(x) = N’ (see

Def. 3.1).

Definition 2.5 (Interpretation of λ→
exn into λµ) Bierman defines the interpretation of λ→

exn-

terms into λµ-terms as follows:

11 In [20] de Groote represents the syntax of λ→
exn differently and thereby also the inference rules, by allowing

for n to be a separate term, rather than only in the appropriate context, like raise (n M), as we do here in λtry.
Moreover, de Groote uses x for term variables, and y for names, which he calls ‘exception variables’, and keeps
their types in the left-hand context; de Groote also adds n and n V to values, but these are not proper terms in
Bierman’s approach; they are in ml.

12 Apart from the fact that we do not aim for completeness in this sense for λtry, it seems also likely that, with
the restrictions present in Def. 3.1(iii), this would not be possible to show for any of the notions of type assignment
we define here for λtry.
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x
b

=∆ x

λx.M
b

=∆ λx. M
b

MN
b

=∆ M
b

N
b

raise (n, M)
b

=∆ (λx.µβ.[n]x) M
b 13

let n in M handle n x ⇒ N end
b

=∆ µβn .[βn](λx. N
b

) (µn.[βn] M
b

)

and states “It is quite easy to verify that this translation preserves the expected operational behaviour.”,

intended through his interpretation into the abstract machine which essentially runs cbv re-

duction, but is not shown. We illustrate Bierman’s claim.

Example 2.6 Take ‘let n in raise n V handle n z ⇒ N end’. Then we have:

let n in raise (n V) handle n z ⇒ N end
b

=∆

µβn.[βn](λz. N
b

) (µn.[βn] raise (n,V)
b

) =∆

µβn.[βn](λz. N
b

) (µn.[βn](λx.µ .[n]x) V
b

) →v

βµ

µβn.[βn](λz. N
b

) (µn.[βn](µ .[n] V
b

)) →v

βµ

µβn.[βn](λz. N
b

) (µn.[n] V
b

) →v

βµ

(λz. N
b

) (µn.[n] V
b

) →v

βµ

(λz. N
b

) V
b

→v

βµ N{V x}
b

Also, for ‘let n in V handle n z ⇒ N end’ with n 6∈ fn(V) we get:

let n in V handle n z ⇒ N end
b

=∆

µβn .[βn](λz. N
b

) (µn.[βn] V
b

) →v

βµ

µβn .[βn](µγ.{(λz.N)·γ n}[βn] V
b

) = (n 6= βn,γ fresh)

µβn .[βn](µγ.[βn]{(λz.N)·γ n} V
b

) = (n 6∈ fn(V))

µβn .[βn](µγ.[βn] V
b

) →v

βµ

µβn .[βn] V
b

{βn γ} =

µβn .[βn] V
b

→v

βµ V
b

both as intended.

3 The calculus λtry

The calculus λtry we will present in this section will use the C++/java-like syntax of try, throw,

and catch, but will discern the exception handlers by name rather than by type. We will see

the term ‘catch n(x) = M’ as an exception handler named n that can receive a parameter on x after

which it runs M with the parameter taking the position of x in M, and ‘throw n(N)’ a call to the

exception handler with name n, passing it the argument N. By the very nature of exception

handling, this implies that then N itself is a term that does not call on n (so exception handling

is non-recursive), but can call on other exception handlers, defined outside the scope of the

present try-term.

Terms of λtry are defined as follows:

Definition 3.1 (Syntax of λtry) i) The set of pre-terms of λtry is defined by the grammar:

Catch Block ::= ǫ | Catch Block catch n(x) = N; 14

M, N ::= V | MN | try M; Catch Block | throw n(M)

V ::= x | λx.M (Values)

13 [7] essentially uses (λx .µβ.[a]x) M
b
, but the use of a rather than n seems to be in error; also, we assume β

to be fresh, so can be replaced by ‘ ’.
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ii) We will call n in ‘catch n(x) = N’ a declared name and will write catch ni (x) = Ni for the

catch-block

catch n1 (x) = N1; . . . ; catch nn (x) = Nn;

Since exceptions are called using their name, the order in which they appear in the catch-

block is not important.

iii) The set of terms are pre-terms that satisfy the following restrictions:

a) In a try-term, the catch-block is never empty (ǫ), and in the catch-block catch ni (x) = Mi

the names ni do not occur in the exception handlers Mj, for any i, j ∈ n,15 and all

declared names n1, · · ·,nn are distinct;

b) For each throw nl (N) that occurs inside M in the term try M; catch ni (x) = Ni, none of

the names ni occur in N.

iv) We define the notion of bound variables and of bound names of M (respectively bv (M) and

bn (M)) as usual:

bv (x) = ∅

bv (λx.M) = bv (M) ∪ {x}

bv (MN) = bv (M) ∪ bv (N)

bv (try M; catch ni (x) = Ni) = bv (M) ∪

bv (N1) ∪ · · · ∪ bv (Nn) ∪ {x}

bv (throw n(M)) = bv (M)

bn (x) = ∅

bn (λx.M) = bn (M)

bn (MN) = bn (M) ∪ bn (N)

bn (try M; catch ni (x) = Ni) = {n1, . . . ,nn } ∪

bn (M) ∪ bn (N1) ∪ · · · ∪ bn (Nn)

bn (throw n(M)) = bn (M)

where the occurrences of x in the terms Ni are bound by catch in the try-construct, and,

by Barendregt’s convention, x does not occur free in M. We write fv(M) for the set of

free variables in M, and fn(M) for its free names.

Remark that the conditions of part (iii) serve to maintain a naming ‘hygiene’, in that we

do not want terms that contain occurrences of bound names to reduce to terms where those

names are free when throwing an exception.

To control the throwing of exceptions, we define a notion of cbn and cbv reduction; these

define an evaluation strategy, where only ever one sub-expression can execute and an excep-

tion is only ever thrown when needed to continue reduction.

Definition 3.2 (λtry-reduction) i) The notion of cbn reduction →n

try on λtry is defined as an

extension of that reduction on λ-terms. The main reduction rules are:

(β) : (λx.M)N → M{N x}

(throw) : ( throw n(N))M → throw n(N)

(try-throw) : try throw nl(N); Catch Block; catch nl (x) = Ml → Ml{N x}

(try-normal) : try N; catch ni (x) = Mi → N (ni 6∈ N)

cbn applicative evaluation contexts are defined as:

Cn
a

::= [] | Cn
a

M | try Cn
a

; Catch Block

ii) The notion of cbv reduction →v

try on λtry is defined as an extension of cbv reduction on

λ-terms using the main reduction rules from cbn, with the exception of (β) which gets

replaced by:

(βv) : (λx.M)V → M{V x}

14 Notice that each Catch Block does finish with ‘;’, but that this semicolon is included in the block;
for readability, we will add the semicolon below, so write try M; Catch Block; catch n(x) = N rather than
try M; Catch Block catch n(x) = N.

15 We use i ∈ n for i ∈ {1, . . . ,n}.
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It adds the rule:

(throwv) : V(throw n(N)) → throw n(N)

cbv applicative evaluation contexts are defined as:

Cv
a

::= [] | Cv
a

M | V Cv
a | try Cv

a
; Catch Block

Notice that, as in all (cbn, or cbv) functional languages, reduction does not allow for the

evaluation of the body of an abstraction; this implies that throws inside the body are not

‘triggered’ until at least the surrounding abstraction has disappeared as the result of the

contraction of a redex. If execution inside a try-block leads to a term N that does not contain

throws to the declared names, then the result of the try-block is just that N; it is not necessarily

the case that reduction of N has terminated, but it is natural to change the rule so that this

would be required.

Moreover, a term like

try λx. throw n(x); catch n(y) = N

is stuck; computation has finished on the main term, which is a value, but is not allowed to

emerge from the block because it would free the name n.

We will now define an interpretation of λtry-terms into λµ, using the approach we discussed

above. Notice that, by the very nature of λµ, when encoding throw using a context switch, the

body of the throw is not the information that something has gone wrong that gets passed to

the exception handler, but in fact the entire exception handler. This implies that, when dealing

with the term ‘try M; catch ni (x) = Ni’, we need to bring the (interpretation of the) exception

handlers catch n(x) = N inside the interpretation of M; this is done using substitution,16 intro-

ducing variables cni
that are placed in front of the argument that is passed to the exception

handler in throw ni(M). As an illustration, we aim to interpret

try C[throw n(N)]; catch n(x) = P;

by

µn.[n]C[µ .[n] (λx.VPUλµ)VNUλµ]

Definition 3.3 (Interpretation of λtry
into λµ) We extend the set of names in λµ with n, m,

. . . , and define the interpretation of terms in λtry into λµ-terms as follows:

VxUλµ =∆ x

Vλx.MUλµ =∆ λx.VMUλµ

VMNUλµ =∆ VMUλµVNUλµ

Vthrow n(M)Uλµ =∆ µ .[n]cnVMUλµ

Vtry M; ǫUλµ =∆ VMUλµ

Vtry M; Catch Block; catch n(x) = NUλµ =∆ (µn.[n]Vtry M; Catch BlockUλµ) {λx.VNUλµ cn}

Remark 3.4 Although many names can be used in a λtry-term, when interpreting into λµ all

collapse onto the outermost one. To illustrate this, take the term

try M(throwm(N))(throw n(L)); catch n(x) = P; catch m(x) = Q;

The interpretation of this term is (where we drop the superscript on V·Uλµ).

16 A perhaps more elegant approach is to encode a try-block using a redex, rather than term substitution, but
that implies that we can no longer model cbn (cbv) reduction in λtry by cbn (cbv) reduction in λµ, in particular
when modelling the step M → N ⇒ try M; Catch Block→ try N; Catch Block.
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(µm.[m]((µn.[n]VMU(µ .[m] cmVNU)

(µ .[n] cnL)) {λx.VPU cn})) {λx.VQU cm} =

µm.[m] µn.[n] VMU(µ .[m] (λx.VQU)VNU)(µ .[n] (λx.VPU)VLU) →βµ (R)

µm.[m] VMU(µ .[m] (λx.VQU)VNU)(µ .[m] (λx.VPU)VLU)

Once the named exception handlers have been translated to anonymous abstractions and

inserted inside the term, the names no longer play a role, and the prefix µm.[m] just serves as

a delimiter for the two throws.

We will show that both reduction and assignable types (under the basic system, see Sect. 4)

are preserved under this interpretation. First we show that term-substitution is preserved.

Lemma 3.5 (V·Uλµ
preserves term substitution) VMUλµ{VNUλµ x} = VM{N x}Uλµ.

Proof : By induction on the definition of term substitution.

(x) : VxUλµ{VNUλµ x} = x{VNUλµ x} = VNUλµ = Vx{N x}Uλµ

(y 6= x) : VyUλµ{VNUλµ x} = y{VNUλµ x} = y = Vy{N x}Uλµ

(λx.M) : Vλy.MUλµ{VNUλµ x} = (λy.M){VNUλµ x} = λy.M{VNUλµ x} = (IH)

λy.VM{N x}Uλµ = Vλy.M{N x}Uλµ = V(λy.M){N x}Uλµ

(PQ) : VPQUλµ{VNUλµ x} = VPUλµVQUλµ{VNUλµ x} =

VPUλµ{VNUλµ x}VQUλµ{VNUλµ x} = (IH) VP{N x}Uλµ VQ{N x}Uλµ =

VP{N x}Q{N x}Uλµ = V(PQ){N x}Uλµ

(try M; catch ni (x) = Ni; catch m(x) = L; ) :

Vtry M; catch ni (x) = Ni catch m(x) = L; Uλµ{VNUλµ x} =

(µm.[m]Vtry M; catch ni (x) = NiU
λµ) (λx.VLUλµ){VNUλµ x} =

(µm.[m]Vtry M; catch ni (x) = NiU
λµ{VNUλµ x}) (λx.VLUλµ{VNUλµ x}) = (IH)

(µm.[m]Vtry M{N x}; catch ni (x) = Ni{N x}Uλµ) (λx.VL{N x}Uλµ) =

Vtry M{N x}; catch ni (x) = Ni{N x}; catch m(x) = L{N x}Uλµ =

V(try M; catch ni (x) = Ni catch m(x) = L; ){VNUλµ x}Uλµ

(throw n(M)) : Vthrow n(M)Uλµ{VNUλµ x} = (µ .[n]cnVMUλµ){VNUλµ x} =

µ .[n]cnVMUλµ{VNUλµ x} = (IH) µ .[n]cnVM{N x}Uλµ =

Vthrow n(M{N x})Uλµ

We can now show that cbn-reduction on λtry-terms is preserved as well under the interpre-

tation:

Theorem 3.6 (Soundness of V·Uλµ
with respect to →n

try) If P →n

try Q, then VPUλµ →n∗
βµ VQUλµ.

Proof : By induction on the definition of →n

try. We show the non-trivial cases (and drop the

superscript on V·Uλµ).

(β) : Then P = (λx.M)N → M {N x}= Q, and

V(λx.M)NU =∆ (λx.VMU)VNU →n

βµ VMU {VNU x} = (3.5) VM{N x}U

(throw) : Then P = (throw n(N))M → throw n(N) = Q, and

V(throw n(N))MU =∆ (µ .[n]cnVNU )VMU →n

βµ (1.16) µ .[n]cnVNU =∆ Vthrow n(N)U

(try-throw) : Then P = try throw nl (N); catch ni (x) = Mi → Ml{N x} = Q, with l ∈ {1, . . . ,n},

and
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Vtry throw nl (N); catch ni (x) = MiU =∆

(µnn.[nn]Vtry throw nl (N); catch ni (x) = MiU ) {λx.VMnU cnn} =∆

(µnn.[nn] · · ·(µn1.[n1]Vthrow nl (N)U ) {λx.VM1U cn1
}· · ·) {λx.VMnU cnn} =

(cnn 6∈ (µnn .[nn] · · ·(µn1.[n1]Vthrow nl (N)U ) {λx.VM1U cn1} · · · ) {λx.VMn−1U cnn−1})

(µnn.[nn] · · ·(µn1.[n1]Vthrow nl(N)U ) {λx.VM1U cn1
} · · · ) →n

βµ (E)

(nn 6∈ (µnn−1.[nn−1] · · ·(µn1.[n1]Vthrow nl (N)U ) {λx.VM1U cn1
} · · · )

(µnn−1.[nn−1] · · ·(µn1.[n1]Vthrow nl (N)U ) {λx.VM1U cn1
}· · ·) {λx.VMn−1U cnn−1

} →n∗
βµ (E)

(µnl .[nl ] · · ·(µn1.[n1]Vthrow nl (N)U ) {λx.VM1U cn1
}· · ·) {λx.VMlU cnl

} =∆

(µnl .[nl ] · · ·(µn1.[n1]µ .[nl]cnl
VNU ) {λx.VM1U cn1}· · ·) {λx.VMlU cnl

} =

µnl .[nl] · · ·(µn1.[n1]µ .[nl ](λx.VMlU)VNU ) {λx.VM1U cn1
}· · ·) →n∗

βµ (R)

µnl .[nl]µ .[nl]((λx.VMlU)VNU ) →n

βµ (R) µnl .[nl ] ((λx.VMlU)VNU ) →n

βµ (E)

(λx.VMlU )VNU →n

βµ VMlU {VNU x} = (3.5) VMl{N x}U

(try-normal) : Then P = try N; catch ni (x) = Mi → N = Q, with ni 6∈ N for all i ∈ n. Notice that,

since ni 6∈ N for all i ∈ n, also ni and cni
do not occur in VNU . Then:

Vtry N; catch ni (x) = MiU =∆ (µnn.[nn]Vtry N; catch ni (x) = MiU ) {λx.VMnU cnn} =∆

(µnn .[nn] · · ·(µn1.[n1]VNU ) {λx.VM1U cn1
}· · ·) {λx.VMnU cnn} =

(cnn 6∈ (µnn .[nn] · · ·(µn1.[n1]VNU ) {λx.VM1U cn1} · · · ) {λx.VMn−1U cnn−1})

(µnn .[nn] · · ·(µn1.[n1]VNU ) {λx.VM1U cn1
} · · · ) →n

βµ (E)

(nn 6∈ (µnn−1.[nn−1] · · ·(µn1.[n1]VNU ) {λx.VM1U cn1} · · · ))

(µnn−1.[nn−1] · · ·(µn1.[n1]VNU ) {λx.VM1U cn1
}· · ·) {λx.VMn−1U cnn−1

} →n∗
βµ VNU

(M → N ⇒ ML → N L) : VMLU =∆ VMUVLU →n∗
βµ (IH) VNUVLU =∆ VN LU

(M → N ⇒ try M; catch ni (x) = Li → try N; catch ni (x) = Li) : Vtry M; catch ni (x) = LiU =∆

(µnn .[nn] · · ·µn1.[n1]VMU ) {λx.VLiU cni
} →n∗

βµ (IH)

(µnn .[nn] · · ·µn1.[n1]VNU ) {λx.VLiU cni
} =∆ Vtry N; catch ni (x) = LiU

So it seems that our way of interpreting into λµ is the natural thing to do.

Similarly, we can verify that the interpretation respects cbv reduction →v

try.

Theorem 3.7 (Soundness of V·Uλµ
with respect to →v

try) If P →v

try Q, then VPUλµ →v∗
βµ VQUλµ.

Proof : By induction on the definition of →v

try. Most cases correspond to those of the previous

proof, except for:

(throwv) : VV(throw n(N))Uλµ =∆ VVUλµ(µ .[n]cn .VNUλµ) →v

βµ (µv)

µγ.{VVUλµ·γ }([n].cnVNUλµ) = µγ.[n].cnVNUλµ =α

µ .[n]cnVNUλµ =∆ Vthrow n(N)Uλµ

Notice that the only non-β-reduction steps for the λµ-calculus used in these two encoding

results are renaming, erasing, and µ (or µv) towards , i.e. a non-occurring name.

4 Basic type assignment

In this section we will define a notion of basic type assignment for terms in λtry in the tra-

ditional way; in particular, in rule (try), we will demand that the type of the main term is

exactly that returned by all exception handlers; this is, in principle, also the approach chosen

for java [14], and all the notions of type assignment presented above in Sect. 2.

Definition 4.1 (Basic type assignment for λtry) i) Types and contexts of variables Γ and of
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names ∆ are those of Def. 1.10, but using n, m rather than Greek characters.

ii) Basic type assignment for terms in λtry is defined through the following inference system:

(Ax) : Γ, x :A ⊢ x : A | ∆ (→E) :
Γ ⊢ M : A→B | ∆ Γ ⊢ N : A | ∆

Γ ⊢ M N : B | ∆

(→I) :
Γ, x : A ⊢ M : B | ∆

(x 6∈ Γ)
Γ ⊢ λx .M : A→B |∆

(throw) :
Γ ⊢ N : A |∆

Γ ⊢ throw n(N) : C | n:A→B,∆

(try) :
Γ ⊢ M : B | ni :Ai →B,∆ Γ, x : Ai ⊢ Ni : B |∆ (∀ i ∈ n)

(ni 6∈∆)
Γ ⊢ try M; catch ni (x) = Ni : B | ∆

We write Γ ⊢B M : A | ∆ for statements derivable using these rules.

Notice that our (throw) rule is almost identical to Nakano’s in that it allows to derive any type

for the term throw n(N), but provided there is an exception handler with name n capable of

accepting arguments of the type of N, as represented by the context of names.

Comparing this notion to how ml types exceptions, we can see that in rule (throw) we do

not implicitly type n with A→exn. Instead, the return type of names needs to be that of the

main term in the try-block.

Explaining rule (try), notice that, if we have derivations for

Γ ⊢ M : C | ni :Ai →Bi,∆ and Γ, x :Ai ⊢ Ni : Bi | ∆ (∀ i ∈ n)

then we cannot predict, a priori, if running M to normal form M′ will throw an exception or

not. If it does not, then running the term try M; catch ni (x) = Ni will result in M′ (assuming M′

is free of throws) and in order to achieve subject reduction, M′ should be of type C. If it does,

running M will produce throw n(L) and (assuming n= nl ∈ ni), try M; catch ni (x) = Ni will run

to Nl {L x}, which has type Bl. So in order to achieve a subject reduction result also for this

case, there is no choice but to demand that C = B1 = · · · = Bn.

Lemma 4.2 (Weakening and thinning for ⊢B) The following rules are admissible for ⊢B:

(Wk) :
Γ ⊢ M : A | ∆

(Γ ⊆ Γ′,∆ ⊆ ∆′)
Γ′ ⊢ M : A | ∆′

(Th) :
Γ ⊢ M : A | ∆

(Γ′ = {x :B ∈ Γ | x ∈ fv(M)}, ∆′ = {n:B ∈ ∆ | n∈ fn(M)})
Γ′ ⊢ M : A | ∆′

Proof : Standard.

We can show:

Lemma 4.3 (Substitution lemma for ⊢B) If Γ, x:C ⊢B M : A | ∆ and Γ ⊢B N : C | ∆, then Γ ⊢B

M{N x} : A | ∆.

Proof : By induction on the definition of term substitution.

(M ≡ x) : Then x:A ∈ Γ, x:C, so A = C. Also, x{N x} = N, so Γ ⊢B x{N x} : A | ∆.

(M ≡ y 6= x) : Then y:A ∈ Γ, so Γ ⊢B y : A | ∆, and y{N x} = y.

(M ≡ λy.M′) : Then A = A′→B′ and Γ, x:C,y:A′ ⊢B M′ : B′ | ∆. By induction, Γ,y: A′ ⊢B

M′{N x} : B′ | ∆. But then Γ ⊢B λy.M′{N x} : A | ∆ by (→I); notice that λy.M′{N x} =

(λy.M′){N x}.

(M ≡ PQ) : Then there exists B such that Γ, x:C ⊢B P : B→A | ∆ and Γ, x:C ⊢B Q : B | ∆. By

induction both P{N x} : B→A : Γ ⊢B ∆ and Q{N x} : B : Γ ⊢B ∆; then, by (→E), we have

P{N x} Q{N x} : A : Γ ⊢B ∆. Notice that P{N x} Q{N x} = (PQ){N x}.

(M ≡ try P; catch ni (y) = Qi) : Then there exists Bi (i ∈ n) such that Γ, x:C ⊢B P : A | ni :Bi→C,∆

and Γ, x:C,y:Bi ⊢B Qi : A | ∆, for all i ∈ n. By induction, P{N x} : A : Γ ⊢B ni :Bi→C,∆ and
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Qi{N x} : A : Γ,y:Bi ⊢B ∆, for all i ∈ n.

Then we get Γ ⊢B try P{N x}; catch ni (y) = Qi{N x} : A | ∆ by rule (try). Notice that

try P{N x}; catch ni (y) = Qi{N x} = ( try P; catch ni (y) = Qi){N x}

(M ≡ throw n(P)) : Then there exists B,C such that Γ, x:C ⊢B P : B | ∆. By induction we have

Γ ⊢B P{N x} : B | ∆. By rule (throw) we get Γ ⊢B throw n(P{N x}) : A | n:B→C,∆; notice

that throw n(P{N x}) = ( throw n(P)){N x}.

It is now relatively straightforward to show that this notion of type assignment is closed

under cbn and cbv-reduction:

Theorem 4.4 (Subject reduction for ⊢B) i) If Γ ⊢B P : A | ∆ and P →n

try Q, then Γ ⊢B Q : A | ∆.

ii) If Γ ⊢B P : B | ∆ and P →v

try Q, then Γ ⊢B Q : B | ∆.

Proof : i) By induction on the definition of →n

try.

(β) : Standard, using Lem. 4.3.

(throw) : Then ∆ = n:A→C,∆′, P = (throw n(N))M → throw n(N) = Q; the derivation for P

is constructed as:

D

Γ ⊢ N : A |∆′

(throw)
Γ ⊢ throw n(N) : D→B | n: A→C,∆′ Γ ⊢ M : D | n:A→C,∆′

(→E)
Γ ⊢ (throw n(N))M : B | n: A→C,∆′

We can construct the derivation for Q:17

D

Γ ⊢ N : A | ∆′

(throw)
Γ ⊢ throw n(N) : B | n:A→C,∆′

(try-throw) : Then P = try throw nl (M); catch ni (x) = Ni → Nl {M x} = Q; the derivation for

P is constructed as follows:

Γ ⊢ M : Al | ni :Ai →B,∆
(throw)

Γ ⊢ throw nl (M) : B | ni : Ai →B,∆ Γ, x :Ai ⊢ Ni : B | ∆ (∀ i ∈ n)
(try)

Γ ⊢ try throw nl (M); catch ni (x) = Ni : B | ∆

In particular, we have derivations for both Γ ⊢B M : Al | ni :Ai→B,∆ and Γ, x: Al ⊢B Nl :

B | ∆. By the definition of λtry-terms, we know that ni 6∈ fn(M), for all i ∈ n, so by

thinning (Lem. 4.2) we can remove ni :Ai→B from the co-context for the first to obtain

Γ ⊢B M : Al | ∆. Then, by Lem. 4.3, we obtain Γ ⊢B Nl {M x} : B | ∆.

(try-normal) : Then P = try Q; catch ni (x) = Ni → Q, and ni 6∈ Q; the derivation for P is con-

structed as follows:

Γ ⊢ Q : B | ni :Ai →B,∆ Γ, x :Ai ⊢ Ni : B |∆ (∀ i ∈ n)
(try)

Γ ⊢ try Q; catch ni (x) = Ni : B | ∆

In particular, we have a derivation for Γ ⊢B Q : B | ni :Ai→B,∆; as above we can remove

ni :Ai→B from the co-context to obtain Γ ⊢B Q : B | ∆.

(M → N ⇒ ML → NL) : Then the derivation for P is constructed as follows:

17 Notice that throw n (N) changes type; this corresponds to a feature of reduction in λµ, where in some presen-
tations the structural rule is written as (using the notation of Definition 1.9) (µα.[β]M)N → µα.([β]M{N·α α});
before the reduction, α has type A→B, say, and after it has type B.
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Γ ⊢B M : A→B | ∆

D

Γ ⊢B L : A | ∆
(→E)

Γ ⊢B ML : B | ∆

By induction, Γ ⊢B N : A→B | ∆, and we can construct a derivation for Q:

Γ ⊢B N : A→B | ∆

D

Γ ⊢B L : A | ∆
(→E)

Γ ⊢B NL : B | ∆

(M → N ⇒ try M; catch ni (x) = Li → try N; catch ni (x) = Li) : Then the derivation for P is con-

structed as follows:

Γ ⊢B M : B | ni :Ai →C,∆

D

Γ, x :Ai ⊢B Li : C | ∆ (∀ i ∈ n)
(try)

Γ ⊢B try M; catch ni (x) = Li : B | ∆

By induction, Γ ⊢B N : B | ∆, and we can construct a derivation for Q:

Γ ⊢B N : B | ni :Ai →C,∆

D

Γ, x :Ai ⊢B Li : C | ∆ (∀ i ∈ n)
(try)

Γ ⊢B try N; catch ni (x) = Li : B |∆

ii) The proof is much like that for the previous part, but with the addition of:

(throwv) : Then ∆ = n:A→C,∆′, P = V(throw n(N))→ throw n(N) = Q; the derivation for P

is constructed as follows:

Γ ⊢ V : E→F | n:A→C,∆′

D

Γ ⊢ N : A | ∆′

(throw)
Γ ⊢ throw n(N) : E | n:A→C,∆′

(→E)
Γ ⊢ V (throw n(N)) : F | n:A→C,∆′

We can construct the derivation for Q:

D

Γ ⊢ N : A | ∆′

(throw)
Γ ⊢ throw n(N) : F | n:A→C,∆′

(M → N ⇒ V M → V N) : By induction.

Although restricting throwing an exception to applicative contexts might seem too limiting,

it is in fact not possible to extend it to full reduction whilst preserving soundness, as we will

argue now.

Example 4.5 Assume we would have tried to model throwing exceptions from inside an ab-

straction as well, by adding the rule:

(throw-abstr) : λx. throw n(N) → throw n(N)

Apart from the fact that this is undesirable within programming languages (it would corre-

spond to throwing an exception simply because it occurs in a function definition), or the fact

that we cannot model this reduction in pure λµ, also subject reduction would fail instantly.

Suppose we can derive

Γ, x :A ⊢ N : D | ∆
(throw)

Γ, x : A ⊢ throw n(N) : B | n:D→C,∆
(→I )

Γ ⊢ λx . throw n(N) : A→B | n:D→C,∆

We can construct

30



Γ, x :A ⊢ N : D | ∆
(throw)

Γ, x : A ⊢ throw n(N) : A→B | n:D→C,∆

but cannot, in general, derive Γ ⊢B throw n(N) : A→B | n:D→C,∆: notice that x might be free

in N, so then would need a type in any derivation for N. This problem was observed by

Nakano [25, 26], who solved it by not allowing an abstraction to be typeable if the bound

variable occurs in a thrown term, and avoided by many others by not allowing the throwing

of an exception from within an abstraction, as we do here.

We will now show that our encoding into λµ preserves types assignable in the basic system:

Theorem 4.6 (Preservation of assignable types under V·Uλµ) If Γ ⊢B M : B | ni :Ai→Ci , then

Γ, cni
:Ai→Ci ⊢λµ VMUλµ : B | ni :Ci .

Proof : By induction on the definition of ⊢B.

(Ax) : Then the derivation consists of:

(Ax)
Γ, x :B ⊢ x : B | ni :Ai →Ci

It is clear that we can also derive

(Ax)
Γ,cni

:Ai →Ci, x :B ⊢ x : B | ni :Ci

(→I) : Then B = D→E and the derivation is shaped like

Γ, x :D ⊢ M : E | ni :Ai →Ci
(→I )

Γ ⊢ λx .M : D→E | ni : Ai →Ci

By induction, we have Γ, cni
:Ai→Ci, x:D ⊢ VMUλµ : E | ni :Ci and we can construct

Γ,cni
:Ai →Ci, x :D ⊢ VMUλµ : E | ni :Ci

(→I )
Γ,cni

:Ai →Ci ⊢ λx .VMUλµ : D→E | ni :Ci

and λx.VMUλµ = Vλx.MUλµ.

(→E) : Then the derivation looks like

Γ ⊢ M : D→B | ni :Ai →Ci Γ ⊢ N : D | ni :Ai →Ci
(→E)

Γ ⊢ M N : B | ni :Ai →Ci

By induction, Γ, cni
:Ai→Ci ⊢ VMUλµ : D→B | ni :Ci and Γ, cni

:Ai→Ci ⊢ VNUλµ : D | ni :Ci ,

and we can construct

Γ,cni :Ai →Ci ⊢ VMUλµ : D→B | ni :Ci Γ,cni :Ai →Ci ⊢ VNUλµ : D | ni :Ci
(→E)

VMUλµ VNUλµ : B : Γ,cni
: Ai →Ci ⊢ ni :Ci

and VMUλµVNUλµ = VMNUλµ.

(throw) : Then the derivation looks like

Γ ⊢ M : Al | ni :Ai →Ci
(throw)

Γ ⊢ throw nl (M) : B | ni :Ai →Ci

By induction we have Γ, cni
:Ai→Ci ⊢ VMUλµ : Al | ni :Ci,∆, and we can construct:
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(Ax)
Γ,cni

:Ai →Ci ⊢ cnl
: Al →Cl | ni :Ci Γ,cni

:Ai →Ci ⊢ VMUλµ : Al | ni :Ci
(→E)

Γ,cni
: Ai →Ci ⊢ cnl

VMUλµ : Cl | ni :Ci
(Wk)

Γ,cni
:Ai →Ci ⊢ cnl

VMUλµ : Cl | :B,ni :Ci
(µ)

Γ,cni
: Ai →Ci ⊢ µ .[nl ]cnl

VMUλµ : B | ni :Ci

and Vthrow nl(M)Uλµ = µ .[nl]cnl
VMUλµ. Notice that the weakening step is correct, in

that the names n and do not occur (free) in VMUλµ, so (perhaps using thinning) can be

assumed to not occur in the right-hand context.

(try) : Then the derivation ends like (assuming there are m exception handlers defined):

Γ ⊢ M : B |mj :Dj →B,ni :Ai →Ci Γ, x :Dj ⊢ Nj : B | ni :Ai →Ci (∀ j ∈ m)
(try)

Γ ⊢ try M; catch mj (x) = Nj : B | ni : Ai →Ci

We can now construct derivations for the two alternatives of the interpretation of a try-

expression; for clarity, we only present the second, the first is almost trivial. . First:

Γ ⊢ Vtry M; catch ni (x) = NiU
λµ : Ci | nn :Ci,mj :B

(µ)
Γ ⊢ µnn .[nn]Vtry M; catch ni (x) = NiU

λµ : Ci |mj :B
(→I )

Γ ⊢ µnn .[nn]Vtry M; catch ni (x) = NiU
λµ : (An →Ci)→Ci |mj :B

Γ, x :An ⊢ VNnUλµ : Ci |mj :B
(→I )

Γ ⊢ λx .VNnUλµ : An →Ci |mj :B
(→E)

Γ ⊢ (µnn .[nn]Vtry M; catch ni (x) = NiU
λµ) (λx .VNnUλµ) : Ci |mj :B

and second:

Vtry M; Catch Block; catch m(x) = NUλµ =∆

(µm.[m]Vtry M; Catch BlockUλµ) {λx.VNUλµ cm}

Let M′ = try M; Catch Block; then Γ, cni
:Ai→Ci, cm :D→B ⊢ VM′Uλµ : B |m:B,ni :Ci and

Γ, cni
:Ai→Ci, x:D ⊢ VNUλµ : B | ni :Ci follow by induction. We can construct:

Γ,cni
:Ai →Ci, x :D ⊢ VNUλµ : B | ni :Ci

(→I )
Γ,cni

:Ai →Ci ⊢ λx .VNUλµ : D→B | ni :Ci
(Wk)

Γ,cni
:Ai →Ci ⊢ λx .VNUλµ : D→B |m:B,ni :Ci

Then Γ, cni
:Ai→Ci ⊢ VM′Uλµ {λx.VNUλµ cm} : B |m:B, ni :Ci follows by Lem. 1.13, and we

can construct:

Γ,cni
:Ai →Ci ⊢ VM′Uλµ{λx.VNUλµ cm} : B |m:B,ni :Ci

(µ)
Γ,cni

:Ai →Ci ⊢ µm.[m]VM′Uλµ{λx .VNUλµ cm} : B | ni :Ci

So λtry with basic type assignment is fully representable in λµ.

5 Adding halt to λtry

We will now define λtry
H , a variant of λtry, and a notion of type assignment that extends the

system we defined above, by allowing for both recoverable and unrecoverable failure; to dis-

tinguish raising the latter kind of exception from the former, throw, we considered above, we

use the keyword halt. The idea is that halt gets propagated through the system and becomes

the end result. Therefore, we need to add reduction rules that consume applicative contexts,

as for throw, and make sure to not ‘catch’ the halt, as that would localise the event and limit

its range (see also Sect. 5.2).
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Not catching halt is done also for technical reasons. We will argue below that raising a halt

is different from throw: when aiming for a representation in λµ, we cannot use handlers and

parameter passing for halt. In Sect. 5.2 we will discuss an alternative approach, and indicate

why that does not satisfy the purpose.

As mentioned above, following the suggestion of [1], we will aim to map λtry
H onto λµ-tp,

where tp is a special name that cannot occur bound and denotes the top-level. We would

therefore want to define a notion of type assignment that, for example, deals with halt by

assigning it the type ⊥, but that would not be possible, as argued in Rem. 5.7.

We extend the calculus λtry from Def. 3.1, by extending the set of pre-terms through adding

the construct halt; the notion of reduction is defined as in Def. 3.2, by adding the rule that

expresses that also halt consumes an applicative context.

Definition 5.1 (Syntax of λtry
H ) i) The set of pre-terms of λtry

H is defined by the grammar:

Catch Block ::= ǫ | Catch Block catch n(x) = M;

M, N ::= V | MN | try M; Catch Block | throw n(M) | halt
V ::= x | λx.M

ii) The cbn-reduction system for λtry
H is like that for λtry from Def. 3.2, defined by the rules:

(β) : (λx.M)N → M{N x}
(throw) : (throw n(N))M → throw n(N)
(halt) : halt M → halt

(try-throw) : try throw nl (N); catch ni (x) = Mi → Ml{N x} (nl ∈ ni)
(try-normal) : try N; catch ni (x) = Mi → N (ni 6∈ N)

cbn applicative evaluation contexts are defined as in Def. 3.2.

iii) The cbv-reduction system for λtry
H is that of cbn, replacing rule (β) by the first reduction

rule below, and adding the second and third:

(βv) : (λx.M)V → M{V x}
(throwv) : V(throw n(N)) → throw n(N)
(haltv) : V halt → halt

cbv applicative evaluation contexts are defined as in Def. 3.2.

Notice that the system only handles throws; halt is just propagated through the reduction

system until it is the remaining term, as in

try halt; catch ni (x) = Mi → halt

through reduction rule try-normal. So when a halt occurs, no parameter passing takes place,

and the event is not handled.

We define type assignment for terms in λtry
H as follows.

Definition 5.2 (Type assignment for λtry
H ) Type assignment for terms in λtry

H , ⊢H, is defined

through the inference system:

(Ax) : Γ, x : A ⊢ x : A | ∆

(→I) :
Γ, x : A ⊢ M : B |∆

Γ ⊢ λx .M : A→B | ∆

(→E) :
Γ ⊢ M : A→B | ∆ Γ ⊢ N : A | ∆

Γ ⊢ M N : B | ∆

(throw) :
Γ ⊢ M : A | ∆

Γ ⊢ throw n(M) : C | n: A→B,∆

(halt) : Γ ⊢ halt : A | ∆

(try) :
Γ ⊢ M : C | n:Ai →C,∆ Γ, x : Ai ⊢ Ni : C | ∆ (∀ i ∈ n)

Γ ⊢ try M; catch ni (x) = Ni : C | ∆

We write Γ ⊢H M : A | ∆ if this judgement is derivable using these rules.

Notice that we use the same set of types as before, so are not using the type constant ⊥ that
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is used in λµ-tp. Also, the way halt is treated in the type assignment system is the same as

throw, in that it allows halt to have any type at all, essentially following the logic rule (EFQ).

Here we do not inhabit this rule with a term construct, as is done for example, in Λµ [19] and

[1]. Rather, we limit its use to just (halt). So although aborting a computation is successfully

modelled in the calculus itself, there is no representation of that in the type system.

We can now show the following soundness result for cbn reduction.

Theorem 5.3 (Subject reduction for ⊢H) i) If Γ ⊢H P : C | ∆ and P →n

try Q, then Γ ⊢H Q : C | ∆.

ii) If Γ ⊢H P : C | ∆ and P →v

try Q, then Γ ⊢H Q : C | ∆.

Proof : i) By induction on the definition →n

try. The proof is very similar to that of Thm. 4.4; we

only show here the added case.

(β) : Then P = (λx.M)N → M{N x}= Q, and the derivation for P is constructed as follows:

Γ, x :B ⊢ M : C | ∆
(→I )

Γ ⊢ λx .M : B→C | ∆ Γ ⊢ N : B |∆
(→E)

Γ ⊢ (λx .M)N : C |∆

In particular, we have Γ, x:B ⊢H M : C | ∆ and Γ ⊢H N : B | ∆, and the result follows from

Lem. ??.

(throw) : Then ∆ = n:A→C,∆′, P = (throw n(N))M → throw n(N) = Q, and the derivation

for P is constructed as:

D

Γ ⊢ N : A |∆′

(throw)
Γ ⊢ throw n(N) : D→B | n: A→C,∆′ Γ ⊢ M : D | n:A→C,∆′

(→E)
Γ ⊢ (throw n(N))M : B | n: A→C,∆′

We can construct the derivation for Q:

D

Γ ⊢ N : A | ∆′

(throw)
Γ ⊢ throw n(N) : B | n:A→C,∆′

(try-throw) : Then P = try throw nl (M); catch ni (x) = Ni → Nl {M x} = Q and the derivation

for P is constructed as follows:

Γ ⊢ M : Al | ni :Ai →B,∆
(throw)

Γ ⊢ throw nl (M) : B | ni : Ai →B,∆ Γ, x :Ai ⊢ Ni : B | ∆ (∀ i ∈ n)
(try)

Γ ⊢ try throw nl (M); catch ni (x) = Ni : B | ∆

In particular, we have derivations for both Γ ⊢H M : Al | ni :Ai→C,∆ and Γ, x: Al ⊢H Nl : B |

∆. Since by the definition of λtry-terms we know that ni 6∈ fn(M), for all i ∈ n, by Lem. ??

we can remove ni :Ai→B from the co-context for the first to obtain Γ ⊢H M : Al |∆. Then,

by Lem. 4.3, we obtain Nl {M x} : B : Γ ⊢H ∆.

(halt) : Then P = halt M → halt= Q, and the derivation for P is shaped like:

(halt)
Γ ⊢ halt : A→C | ∆ Γ ⊢ M : A | ∆

(→E)
Γ ⊢ halt M : C | ∆

We have Γ ⊢H halt : C | ∆ by rule (halt).

(try-normal) : Then P = try Q; catch ni (x) = Mi → Q with ni 6∈ Q. Then the derivation for P

is constructed as follows:
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Γ ⊢ Q : C | ni :Ai →C,∆ Γ, x :Ai ⊢ Ni : C | ∆ (∀ i ∈ n)

Γ ⊢ try Q; catch ni (x) = Ni : C | ∆

In particular, we have Γ ⊢H Q : C | ni :Ai→C,∆; since ni 6∈ Q, by Lem. ?? we can remove

ni :Ai→C from the co-context to obtain Γ ⊢H Q : C | ∆.

(M → N ⇒ ML → NL) : Then the derivation looks like the one on the left, so we have

Γ ⊢H M : B→C |∆. By induction, Γ ⊢H N : B→C |∆, and we can construct the derivation

on the right.

Γ ⊢ M : B→C | ∆

D

Γ ⊢ L : B |∆
(→E)

Γ ⊢ ML : C | ∆

Γ ⊢ N : B→C | ∆

D

Γ ⊢ L : B | ∆
(→E)

Γ ⊢ NL : C | ∆

(M → N ⇒ try M; Catch Block→ try N; Catch Block) : Then the derivation for P is constructed

as the derivation on the left. By induction, Γ ⊢H N : C | ∆, and we can construct the

derivation on the right:

Γ ⊢H M : C | ∆

Di

handleri (∀ i ∈ n)
(try)

Γ ⊢H try M; Handlers : C |∆

Γ ⊢H N : C | ∆

Di

handleri (∀ i ∈ n)
(try)

Γ ⊢H try N; Handlers : C | ∆

ii) Similar to that of the previous case and Thm. 4.4, but with the added case:

(throwv) : Then ∆ = n:A→C,∆′, P = V(throw n(N)) → throw n(N) = Q, and the derivation

for P is constructed as:

Γ ⊢ V : E→F | n:A→C,∆′

D

Γ ⊢ N : A | ∆′

(throw)
Γ ⊢ throw n(N) : E | n:A→C,∆′

(→E)
Γ ⊢ V (throw n(N)) : F | n:A→C,∆′

We can construct the derivation for Q:

D

Γ ⊢ N : A | ∆′

(throw)
Γ ⊢ throw n(N) : F | n:A→C,∆′

(haltv) : Then P = V halt→ halt= Q, and the derivation for P is constructed as:

Γ ⊢H V : A→C | ∆
(halt)

Γ ⊢H halt : A | ∆
(→E)

Γ ⊢H V halt : C | ∆

Notice that we have Γ ⊢H halt : C | ∆ by rule (halt).

So, in terms of type assignment for a λ-calculus with exceptions, the ⊢H system satisfies the

basic requirement with respect to cbn and cbv reduction.

We can interpret λtry
H in λµ-tp as follows:

Definition 5.4 (Interpretation of λtry
H into λµ-tp) i) We add the term constant halt18 to λµ-tp

that can only be assigned ⊥ by adding the inference rule:

(halt) : Γ ⊢tp halt : ⊥ | ∆

ii) The interpretation of λtry
H in λµ-tp is defined as follows:

18 We use halt just as a place holder, it is not active in the reduction relation; in fact, any λµ-tp-term of type ⊥
will do here.
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x
tp

=∆ x

λx.M
tp

=∆ λx. M
tp

MN
tp

=∆ M
tp

N
tp

throw n(M)
tp

=∆ µ .[n]cn M
tp

try M; ǫ
tp

=∆ M
tp

try M; Catch Block; catch n(x) = L
tp

=∆ (µn.[n] try M; Catch Block
tp
) {λx. L

tp
cn}

halt
tp

=∆ µ .[tp]halt

Notice that, in order to achieve that halt
tp

consumes applicative contexts, we are forced to

use the prefix ‘µ ’, as we have done also for throw n(M)
tp

.

We can now show:

Theorem 5.5 (Soundness of the interpretation for λtry
H )

i) If P →n

H Q, then P
tp
→n∗

βµ Q
tp

.

ii) If P →v

H Q, then P
tp
→v∗

βµ Q
tp

.

Proof : i) As in the proof of Thm. 3.6 (we drop the superscript on ·
tp

):

(β) : Then P = (λx.M)N →n

H M{N x} = Q, and

(λx.M)N
tp

=∆ (λx. M
tp
) N

tp
→n

H M
tp
[ N

tp
/x] = (3.5) M{N x}

tp

(throw) : Then P = (throw n(N))M →n

H throw n(N) = Q, and

(throw n(N))M
tp

=∆ (µ .[n]cn N
tp
) M

tp
→n

βµ (1.16) µ .[n]cn N
tp

=∆ throw n(N)
tp

(try-throw) : Then P = try throw nl (N); catch ni (x) = Mi →
n

H Ml {N x}= Q, with nl ∈ ni, and

try throw nl(N); catch ni (x) = Mi
tp

=∆

(µnn .[nn] · · ·µn1.[n1] throw nl (N)
tp
) {λx. Mi

tp
cni

} =∆

(µnn .[nn] · · ·µn1.[n1]µ .[nl ]cnl
N) {λx. Mi

tp
cni

} =∆ (cni
6∈ N)

µn1.[n1] · · ·µnn .[nn] µ .[nl ] (λz. Ml
tp
) N

tp
→n∗

βµ (E)

µnl .[nl ] · · ·µnn.[nn] µ .[nl] (λz. Ml
tp
) N

tp
→n∗

βµ (R)

µnl .[nl ]µ .[nl] (λz. Ml
tp
) N

tp
→n

βµ (R)

µnl .[nl ] (λz. Ml
tp
) N

tp
→n

βµ (E)

(λz. Ml
tp
) N

tp
→n

βµ (β) Ml
tp
{ N

tp
z} = (3.5) Ml{N z}

tp

(try-normal) : Then P = try N; handlei ni (x) = Mi →
n

H N = Q, with ni 6∈ N for all i ∈ n. Notice

that, since ni 6∈ N for all i ∈ n, also ni and cni
do not occur in N

tp
. Then:

try N; handlei ni (x) = Mi
tp

=∆

(µnn .[nn] · · ·µn1.[n1] N
tp
) {λx. Mi

tp
cni

} = (cni
6∈ N

tp
)

µn1.[n1] · · ·µnn.[nn] N
tp

→n∗
βµ (E) (ni 6∈ N

tp
)

N
tp

(halt) : Then P = halt M →n

H halt= Q, and

halt M
tp

=∆ (µ .[tp]halt) M
tp

→n

βµ (1.16) µ .[tp]halt =∆ halt
tp

(M →n

H N ⇒ P = ML →n

H N L = Q) : ML
tp

=∆ M
tp

L
tp

→n∗
βµ (IH) N

tp
L

tp
=∆ N L

tp

(M →n

H N ⇒ try M; catch ni (x) = Li →
n

H try N; catch ni (x) = Li) :
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try M; catch ni (x) = Li
tp

=∆ (µnn.[nn] · · ·µn1.[n1] M
tp
) {λx.VLiU

λµ cni
}

→n∗
βµ (IH) (µnn.[nn] · · ·µn1.[n1] N

tp
) {λx.VLiU

λµ cni
}

=∆ try N; catch ni (x) = Li
tp

ii) As the proof for the previous case, except for the rules:

(βv) : As in case (β) in the previous part.

(haltv) : Then P = V halt→ halt= Q.

V halt
tp

=∆ V
tp
(µ .[tp]halt) →v

βµ (1.16) µ .[tp]halt =∆ halt
tp

We can also show that assignable types are preserved.

Theorem 5.6 (Preservation of assignable types) If Γ ⊢H M : B | ni :Ai→Ci , then we also have

Γ, cni
:Ai→Ci ⊢tp M : B | ni :Ci .

Proof : By induction on the definition of ⊢H, similar to that of Thm. 4.6, but with an added case.

(Ax) : Then M = x and the derivation consists of:

(Ax)
Γ, x :B ⊢ x : B | ni :Ai →Ci

It is clear that we can also derive

(Ax)
Γ,cni

:Ai →Ci, x :B ⊢ x : B | ni :Ci

(→I) : Then M = λx.N, B = D→E and the derivation is shaped like

Γ, x :D ⊢ N : E | ni :Ai →Ci
(→I )

Γ ⊢ λx .N : D→E | ni : Ai →Ci

By induction, we have Γ, cni
:Ai→Ci, x:D ⊢ N : E | ni :Ci and we can construct

Γ,cni
:Ai →Ci, x :D ⊢ N : E | ni :Ci

(→I )
Γ,cni

:Ai →Ci ⊢ λx . N : D→E | ni :Ci

and λx. N = λx.N .

(→E) : Then M = PQ, the derivation looks like

Γ ⊢ P : D→B | ni :Ai →Ci Γ ⊢ Q : D | ni :Ai →Ci
(→E)

Γ ⊢ PQ : B | ni :Ai →Ci

By induction, Γ, cni
:Ai→Ci ⊢ P : D→B | ni :Ci and Γ, cni

:Ai→Ci ⊢ Q : D | ni :Ci , and we

can construct

Γ,cni
:Ai →Ci ⊢ P : D→B | ni :Ci Γ,cni

:Ai →Ci ⊢ Q : D | ni :Ci
(→E)

P Q : B : Γ,cni
:Ai →Ci ⊢ ni :Ci

and P Q = PQ .

(throw) : Then M = throw nl (M) and the derivation looks like

Γ ⊢ N : Ai | ni :Ai →Ci
(throw)

Γ ⊢ throw nl (N) : B | ni :Ai →Ci

By induction we have Γ, cni
:Ai→Ci ⊢ N : Ai | ni :Ci,∆, and we can construct:
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(Ax)
Γ,cni

:Ai →Ci ⊢ cnl
: A→Ci | ni :Ci Γ,cni

:Ai →Ci ⊢ N : Ai | ni :Ci
(→E)

Γ,cni
:Ai →Ci ⊢ cnl

N : Ci | ni :Ci
(Wk)

Γ,cni
:Ai →Ci ⊢ cnl

N : Ci | :B,ni :Ci
(µ)

Γ,cni
:Ai →Ci ⊢ µ .[nl ]cnl

N : B | ni :Ci

and throw nl(N) = µ .[nl]cnl
N .

(try) : Then M = try N; catch mi (x) = Li and the derivation ends like

Γ ⊢ N : B |mj :Dj →B,ni :Ai →Ci Γ, x :Dj ⊢ Lj : B | ni :Ai →Ci (∀ j ∈ m)
(try)

Γ ⊢ try N; catch mi (x) = Li : B | ni :Ai →Ci

We can now construct derivations for the two alternatives of the interpretation of a try-

expression; for clarity, we only present the second, the first is trivial. So the case we deal

with here is:

try M; Catch Block; catch m(x) = L =∆ (µm.[m] try M; Catch Block ) {λx.VLUλµ cm}

Let M′ = try M; Catch Block; then both Γ, cni
:Ai→Ci, cm :D→B ⊢ M′ : B |m:B,ni :Ci and

Γ, cni
:Ai→Ci, x:D ⊢ L : B | ni :Ci follow by induction. We can construct:

Γ,cni
:Ai →Ci, x :D ⊢ L : B | ni :Ci

(→I )
Γ,cni

:Ai →Ci ⊢ λx . L : D→B | ni :Ci
(Wk)

Γ,cni
:Ai →Ci ⊢ λx . L : D→B |m:B,ni :Ci

Then by Lem. 1.13, we have Γ, cni
:Ai→Ci ⊢ M′ {λx. L cm} : B |m:B,ni :Ci , and we can

construct:

Γ,cni
:Ai →Ci ⊢ M′ {λx. L cm} : B |m:B,ni :Ci

(µ)
Γ,cni

:Ai →Ci ⊢ µm.[m] M {λx . N1 cm} : B | ni :Ci

and µm.[m] M′ {λx. L cm} = (µm.[m] M′ ) {λx. L cm}.

(halt) : Then M = halt. We can construct

(halt)
Γ ⊢ halt : ⊥ | :C,∆

(tp)
Γ ⊢ µ .[tp]halt : C | ∆

for any pair of contexts, and halt = µ .[tp]halt.

5.1 When typing halt with ⊥

In this paper we are mainly looking at the relation between notions of exception handling and

classical logic; in that setting, it would be reasonable to add the type constant ⊥ to the type

language, and use it to type halt, as also suggested in the proof of the previous theorem.

This is, on its own, perfectly feasible, and works well on the level of λtry itself, but we would

not be able to establish a relation with λµ or λµ-tp.

Remark 5.7 We can add the rules

(halt) : Γ ⊢ halt : ⊥ | ∆ (→En) :
Γ ⊢ M : ⊥ | ∆ Γ ⊢ N : A | ∆

Γ ⊢ M N : ⊥ | ∆

for a notion of type assignment geared towards cbn, and add the rule

(→Ev) :
Γ ⊢ M : A |∆ Γ ⊢ N : ⊥ | ∆

Γ ⊢ M N : ⊥ |∆
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for cbv.19

The problem appears in the proof of Thm. 5.6, where we would have the case

(→En) : Then M = PQ, the derivation looks like

Γ ⊢H P : ⊥ | ni :Ai →Ci Γ ⊢H Q : D | ni :Ai →Ci
(→E)

Γ ⊢H PQ : ⊥ | ni :Ai →Ci

and by induction we have Γ, cni
:Ai→Ci ⊢tp P : ⊥ | ni :Ci and Γ, cni

:Ai→Ci ⊢tp Q : D |

ni :Ci . In order to be able to combine these two derivations in ⊢tp, we need to create the

arrow type D→⊥ from ⊥. The only way to do that, in ⊢tp, is to apply rule (tp):

Γ,cni
:Ai →Ci ⊢λµ P : ⊥ | ni :Ci

(Wk)
Γ,cni

:Ai →Ci ⊢λµ P : ⊥ | :D→⊥,ni :Ci
(tp)

Γ,cni
: Ai →Ci ⊢λµ µ .[tp] P : D→⊥ | ni :Ci Γ,cni

:Ai →Ci ⊢λµ Q : D | ni :Ci
(→E)

Γ,cni
: Ai →Ci ⊢λµ (µ .[tp] P ) Q : ⊥ | ni :Ci

but (µ .[tp] P ) Q 6= PQ . In fact, these terms are computationally incompatible.

So we cannot give the type ⊥ the role it should have, which seems to contradict the motivation

of [1].

In the next section, we will introduce a notion of type assignment that uses the type constant

fail (which could be seen as ⊥) for calls to panic, which are essentially catchable halts; as

suggested here, we will not be able to establish a relation with λµ or λµ-tp for that notion.

5.2 On catching halt

It might seem natural to define a failing computation through halt in much the same way as

throw (and that is basically what is suggested in [1]). We will argue here that this cannot be

expressed in λµ-tp.

Attempting this would lead to, contrary to what we have done above, adding panic n(N) as

a construct, together with dedicated exception handlers abort n(x) = L, so using, for example,

the grammar:

Catch Block ::= ǫ | Catch Block catch n(x) = M;
Abort Block ::= ǫ | Abort Block abort n(x) = M;

M, N ::= V | MN | try M; Catch Block | throw n(N)
| try M; Abort Block | panic n(N)

V ::= x | λx.M

and the (additional) reduction rules

(panic) : (panic n(N))M → panic n(N)
(try-panic) : try panic nl (N); abort ni (x) = Mi → Ml{N x} (nl ∈ ni)

(try-normal) : try N; abort ni (x) = Mi → N (ni 6∈ N)

for cbn, and the inference rules

19 Notice that these two variants of (→E) would need to be added to achieve subject reduction.
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(panic) :
Γ ⊢ M : A | ∆

Γ ⊢ panic n(M) : ⊥ | n:A→⊥,∆

(→EP) :
Γ ⊢ M : ⊥ | ∆ Γ ⊢ N : A | ∆

Γ ⊢ M N : ⊥ | ∆

(tryP) :
Γ ⊢ M : ⊥ | ni :Ai →⊥,∆ Γ, x : Ai ⊢ Ni : ⊥ | ∆ (∀ i ∈ n)

Γ ⊢ try M; abort ni (x) = Ni : ⊥ | ∆

As before, for reasons of subject reduction, we have to demand that the return type of the

handlers is equal to that of the main term, which means that we cannot return ⊥ for a failing

program without having to demand that all handlers return ⊥, as we do in rule (tryP); this is

why the control blocks are either a Catch Block or an Abort Block.

We extend the interpretation ·
tp

with the cases:

panic n(M)
tp

=∆ µ .[tp]cn M
tp

try M; Abort Block; abort n(x) = L
tp

=∆ (µn.[n] try M; Abort Block
tp
) {λx. L

tp
cn}

This would behave well on the level of λtry (see also the next section), but not when we aim

to show that

if P →H Q, then P
tp
→∗

βµ Q
tp

,

for either cbn or cbv-reduction. Although that property follows straightforwardly from the

proof of Thm. 3.6, and for the additional case panic, the reduction rule try-panic throws a

spanner in the works. Then the interpretation of the term

try panic n(N); abort n(x) = M

does not reduce to that of M{N x}:

try panic n(N); abort n(x) = M
tp

=∆

(µn.[n] panic n(N)
tp
) {λx. M

tp
cn} =∆

(µn.[n] (µ .[tp]cn N
tp
)) {λx. M

tp
cn} =

µn.[n]µ .[tp] (λx. M
tp
) N

tp
→n

βµ (E)

µ .[tp] (λx. M
tp
) N

tp
→n

βµ

µ .[tp] M
tp
{ N

tp
x} = (3.5) µ .[tp] M{N x}

tp

So here we have P
tp
→n∗

βµ µ .[tp] Q
tp

, not P
tp
→n∗

βµ Q
tp

as we desired. Moreover, the terms

µ .[tp] Q
tp

and Q
tp

are also computationally incompatible.20

In a certain sense, the encoding expects VM{N x}Uλµ to be ‘thrown again’, which suggests

the reduction rule

(try-panic) : try panic nl (N); abort ni (x) = Mi → panic nl(Ml {N x}) (nl ∈ ni)

where handlers for panics should be redefined consistently, violating Barendregt’s convention.

Alternatively, we could invoke a handler for all aborts, as in

(try-panic) : try panic nl(N); abort ni (x) = Mi → panic-top(Ml {N x}) (nl ∈ ni)

which gets dealt with at the ‘outermost level’. In fact, the interaction between the prefixes

µn.[m] as discussed in Sect. 2.3 gets disturbed; when mapping to λµ-tp we would need the

prefix µtp.[tp] at the ‘outside’, but are not allowed to bind tp.

Otherwise, we can assume that there is no handler named nl, and that the panic escapes

the try-block without being processed. But that would constitute the solution we presented

above, by just using the keyword halt.

20 Notice the similarity with the problem spotted in Rem. 5.7.
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So, in order to define a notion of aborting exceptions for our language λtry that is strongly

related to classical logic (i.e. mappable into λµ or variants thereof), we cannot opt to ‘handle’

these events, nor explicitly use the type ⊥ to type them, but are forced to add simply a constant

halt that can be assigned all types to the language that consumes all applicative contexts.

6 Handling failing computations

In this section, we will generalise the approach of the previous section, and add the con-

struct panic that is dealt with by handlers. As explained in Rem. 5.7 and Sect. 5.2, this is not

straightforward, and we will have to forgo on establishing a direct relation with λµ or λµ-tp.

Our approach will be to construct a system that adds a type constant fail to the type lan-

guage, and is set up in such a way that, essentially, only calls to panic can be typed with fail.

Our aim is to define a calculus that is close to ‘normal’ programming practice: programs can

raise exceptions and panic from within the same try-statement. As we argued above, to satisfy

subject reduction, we have to demand that the return type of the handlers is equal to that of

the main term, which would mean that we cannot return fail for a failing program without

having to demand that all handlers return fail. That clearly goes against intuition, since 1) we

cannot expect the type checker to decide if a program will fail; 2) failure can depend on input, which

need not be part of the code; 3) the programmer should have the liberty to cater for the event of a

successful computation and a total failure in a different way. We therefore introduce a new feature:

handlers for throws, called catch, all return the type of the main term, whereas handlers for

panic calls, called abort, all return fail. It would, in principle, be possible to generalise this to

more ‘failure’ types, but at the moment one will do.

The system we will present is thereby unconventional in that the standard subject reduction

result does not hold as such. Our aim is to show that, as usual, types are preserved under

normal reduction (is sound), but that the type fail is only used when a panic is raised; as a

result of this duplicity we will not be able to show the normal subject reduction result; we

therefore lose the connection with logic for this system, since proof contraction (the equivalent

of subject reduction in logic) does not change the proven formula. Since in standard notions

of type assignment for the λ-calculi this property holds, for both the reduction strategies cbn

and cbv we need to explicitly insert the duplicity of keeping the type under reduction or

running to a term with type fail. Note that whether reduction returns a term of type fail will

not be decidable, since modelling the concept that predicts how a program will run, i.e. if a

panic will be triggered, through assignable types, is impossible. On the other hand, the type

system can predict if a panic is guaranteed to happen.

To introduce the duplicity, we enrich the language with a conditional construct; then de-

pending on the result of running the boolean expression, either the then or else part will be

deployed. Assuming the boolean expression tests if the execution is running normally (like a

test for division by zero), we can call panic in one part, and continue normal execution in the

other. Our aim is that in the first case a term is returned of type fail, whereas the second one

will return a normal type, int in our case. We will type the whole term then with int, which

then is the type for the result produced by normal reduction.

Remark 6.1 Since the conditional is encodable in the pure λ-calculus through λbtf .bt f , with

the boolean constant true through λab.a, and false through λab.b, there is no need to add the

conditional construct explicitly for reasons of expressivity. The type bool then necessarily is

a type suitable for both λab.a and λab.b, so has to correspond to A→A→A, for any A (or

∀ ϕ .ϕ→ ϕ→ ϕ). This is found also in the standard way of typeing the conditional construct,

which demands that the then and else part have the same type as the expression itself, as in

the present setting expressed through the rule:
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(β) : (λx .M)N → M{N x}

(throw) : ( throw n(N))M → throw n(N)

(try-throw) : try throw nl (N);Handlers; catch nl (x) = Ml → Ml {N x}

(panic) : (panic n(N))M → panic n(N)

(try-panic) : try panic nl (N);Handlers; abort nl (x) = Ml → Ml {N x}

(try-normal) : try N; handlei ni (x) = Mi → N (ni 6∈ N)

(cond-true) : if true then P else Q → P

(cond-false) : if false then P else Q → Q

(cond-throw) : if throw n(N) then P else Q → throw n(N)

(cond-panic) : if panic n(N) then P else Q → panic n(N)

Figure 4. Basic reduction rules for →n

F .

(cond) :
Γ ⊢ M : bool | ∆ Γ ⊢ P : A | ∆ Γ ⊢ Q : A | ∆

Γ ⊢ if M then P else Q : A |∆

But this standard approach would not allow us the characterisation of failing computations

through assignable types we aim for. So, rather, we deviate from that standard approach and,

essentially, let bool correspond to

A→A→A ∨ A→ fail→A ∨ fail→A→A.

If we would allow that to be a type for both λab.a and λab.b, we would be forced to set A = fail

and we would be forced to allow for fail to be treated as any type, rather than just the type for

panic, which would diminish expressivity of the system.

So to be able to express the characteristic we aim for, we are forced to add the conditional

construct explicitly, which allows us to use non-standard type assignment rule(s) for the condi-

tional that allow the two branches to have different types, provided that one of them is typed

with fail. This is achieved by adding the rules

Γ ⊢ M : fail |∆ Γ ⊢ P : A | ∆ Γ ⊢ Q : B | ∆

Γ ⊢ if M then P else Q : fail | ∆

(if running the boolean expression fails, the whole computation will fail)

Γ ⊢ M : bool | ∆ Γ ⊢ P : A | ∆ Γ ⊢ Q : fail | ∆

Γ ⊢ if M then P else Q : A | ∆

(if M runs to false, the computation will fail, otherwise it runs to a term of type A)

Γ ⊢ M : bool | ∆ Γ ⊢ P : fail | ∆ Γ ⊢ Q : A | ∆

Γ ⊢ if M then P else Q : A | ∆

(if M runs to true, the computation will fail, otherwise it runs to a term of type A).

We define λtry
F by extending the calculus λtry from Def. 3.1, by adding panic and abort, a

conditional construct and term constants to the set of pre-terms.

Definition 6.2 (λtry
F ) i) The set of pre-terms of λtry

F is defined through the grammar:

Handlers ::= ǫ | Handlers; catch m(x) = M | Handlers; abort n(x) = N

M, N ::= V | MN | try M;Handlers | throw n(M) | panic n(M)
| if M then P else Q

V ::= x | c | λx.M
c ::= err | true | false | 0 | 1 | . . . | + | × | ∧ | ∨ | . . .

The order in which the handlers are listed is not important; we will reorganise them

whenever convenient, and will use handle for either catch or abort.

ii) cbn reduction →n

F is defined as in Def. 3.2 by the rules in Fig. 4, and cbn applicative
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(Ax) : Γ, x : A ⊢ x : A | ∆ (c) : Γ ⊢ c : σ c | ∆ (→I) :
Γ, x : A ⊢ M : B | ∆

Γ ⊢ λx .M : A→B | ∆

(→E) :
Γ ⊢ M : A→B | ∆ Γ ⊢ N : A | ∆

Γ ⊢ M N : B | ∆
(→EF) :

Γ ⊢ M : fail | ∆ Γ ⊢ N : A | ∆

Γ ⊢ M N : fail | ∆

(throw) :
Γ ⊢ M : A | ∆

(n 6∈ ∆)
Γ ⊢ throw n(M) : C | n: A→B,∆

(panic) :
Γ ⊢ M : A | ∆

(n 6∈ ∆)
Γ ⊢ panic n(M) : fail | n:A→ fail,∆

(try) :
Γ ⊢ M : C | n:Ai →Bi,∆ Γ, x :Ai ⊢ Ni : Bi | ∆ (∀ i ∈ n)

(∀ i ∈ n (Bi = C ∨ Bi = fail) )
Γ ⊢ try M; handlei ni (x) = Ni : C | ∆

(try
F
) :

Γ ⊢ M : fail | ni : Ai →Bi,∆ Γ, x : Ai ⊢ Ni : Bi |∆ (∀ i ∈ n)
(∀ i ∈ n (Bi = C ∨ Bi = fail) )

Γ ⊢ try M; handlei ni (x) = Ni : fail |∆

(cond) :
Γ ⊢ M : bool | ∆ Γ ⊢ P : A | ∆ Γ ⊢ Q : B | ∆ (A = B = C ∨ (A = C ∧ B = fail)∨

(A = fail ∧ B = C))Γ ⊢ if M then P else Q : C | ∆

(condF) :
Γ ⊢ M : fail |∆ Γ ⊢ P : A | ∆ Γ ⊢ Q : B | ∆

Γ ⊢ if M then P else Q : fail | ∆

Figure 5. The system ⊢F
n.

evaluation contexts are defined as:

Cn

a
::= [ ] | Cn

a
M | try Cn

a
;Handlers | if Cn

a
then P else Q

The operators +, ×, . . . are all pre-fix.

We will now define a notion of type assignment that characterises unrecoverable failure. The

idea is that the exception handlers that deal with panic return terms that are typed fail and

have to return a panic call, so panic gets propagated through the system and fail becomes

the type of the whole program.21 In order to deal with this properly, we need to extend our

notion of type assignment.

Definition 6.3 (Type assignment with throw and panic) i) We extend the set of types by

adding (normal) ground types, ranged over by c:

c ::= bool | int | . . .
A, B ::= ϕ | c | A→B.

and assume the function σ which assigns the appropriate ground type to each constant.

We also add the constant fail, but do not consider that a type as normal, since we do

not want to let fail occur as a subtype; we will only allow the notation A→ fail as types

for abort routines.

ii) cbn type assignment (with failure) ⊢F
n for terms in λtry

F is defined through the inference

system in Fig. 5.

Note that we no longer require that the handlers return the same type as the main term in a

try-expression, but allow them to either return that type, or fail; moreover, each panic n(M) is

typed with fail (so fails), and the rule (→EF) propagates the ‘type’ fail in applicative contexts.

Also, an abstraction can never fail; the only rule that is allowed for abstractions is (→I), so

the type for an abstraction is of the shape A→B, and A 6= fail 6= B.

Remark 6.4 Although the derivation rule (→EF) is clearly inspired by fail≤ A→ fail, for all A,

or more generally by the logic rule (EFQ), we explicitly do not inhabit this rule with a term

21 We could even add the term halt with type ⊥ for this purpose, similar to the previous section, but refrain
from doing so since we cannot assign any other type to a term that has type fail.

43



Let ∆=m:B→ fail,n:C→A,∆′.

(Ax)
Γ, x :fail,y: A ⊢ x : fail | ∆

(→I)
Γ, x :fail ⊢ λy.x : A→ fail | ∆

(→I )
Γ ⊢ λxy.x : fail→A→ fail | ∆

Γ ⊢ N : C | ∆′

(panic)
Γ ⊢ panic m(N) : fail | ∆

(→E)
Γ ⊢ (λxy.x) (panic m(N)) : A→ fail | ∆

Γ ⊢ L : B | ∆′

(throw)
Γ ⊢ throw n(L) : A | ∆

(→E)
Γ ⊢ (λxy.x) (panic m(N))(throw n(L)) : fail | ∆

Figure 6. A possible derivation for (λxy.x) (panicm(N))(throw n(L))

construct, as is implicitly done for the systems above in rules (throw) and (halt). Rather, we

limit its use to just (→EF). Our treatment thereby better corresponds to the characteristic of

aborting computations. If we would allow, as above, the rule

(panic) :
Γ ⊢ M : A | ∆

Γ ⊢ panic n(M) : C | n:A→B, ∆

then it would be possible to assign an abortive computation any type, rather than just the

one indicating that computation has failed, and we would no longer be able to distinguish

between exceptions and panic through assignable types.

Example 6.5 We have (essentially) restricted the use of fail to panic only. For example, the term

try (λxy.x) (panicm(N)) (throw n(L)); catch n(x) = P; abort m(x) = Q

is not typeable, since it would demand that the type for λxy.x contains fail. It would be

typeable if we relax this restriction, and allow fail as a normal type. Take the sub-term

M = (λxy.x) (panic m(N)) (throw n(L))

which will panic. We can allow the throw and panic to return different types inside M, as in

Fig. 6. When we place this term inside the context of dealing with the catch on n and abort on

m, the special character of the rule (try) in ⊢F becomes evident; it allows the return type of

exception handlers to differ from the type of the main term in case the latter is fail.

Γ ⊢ M : fail | ∆ Γ, x :C ⊢ P : A | ∆ Γ, x :C ⊢ Q : fail | ∆
(try

F
)

Γ ⊢ try M; catch n(x) = P; abort m(x) = Q : fail | ∆

But relaxing the restriction would take away the characteristic that the type fail indicates a

failing execution, since we would have to allow x:fail ⊢ x : fail. We therefore opt to have

fewer typeable terms, thereby also enforcing a perhaps better programming style, in that the

conditional structure cannot be simulated.

Using the conditional structure, the similar term

try if true then panic m(N) else throw n(L); catch n(x) = P; abort m(x) = Q

is typeable under the restriction, as shown in Fig. 7.

Notice that, in particular, the type assignment system forces the type of the body of an abort

to have type fail as well, so running the body of each abort has to result in a panic as well.

Example 6.6 Remark that, for reasons discussed above, we explicitly do not consider rules like

Γ, x : A ⊢ M : fail | ∆

Γ ⊢ λx .M : fail | ∆

Γ, x : A ⊢ M : fail |∆

Γ ⊢ λx .M : A→ fail | ∆

Γ ⊢ M : fail | ∆

Γ ⊢ M : B | ∆

Moreover, assume we would add the first of the above rules and assume we can derive:
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Let ∆=m:C→fail,n:B→A,∆′.

(true)
Γ ⊢ true : bool | ∆ .

..

.

Γ ⊢ N : C | ∆′

(panic)
Γ ⊢ panic m(N) : fail | ∆ Γ ⊢ L : B | ∆′

(throw)
Γ ⊢ throw n(L) : A | ∆

(cond)
Γ ⊢ if true then panic m(N) else throw n(L) : A | ∆ Γ, x :B ⊢ P : A | ∆′ Γ, x :C ⊢ Q : fail |∆′

(try)
Γ ⊢ try if true then panic m(N) else throw n(L); catch n(x) = P; abort m(x) = Q : A | ∆′

Figure 7. A derivation for try if true then panic m(N) else throw n(L); catch n(x) = P; abort m(x) = Q

Γ, x :A ⊢ M : fail | ∆
(λ-fail)

Γ ⊢ λx .M : fail | ∆ Γ ⊢ N : B | ∆
(→EF)

Γ ⊢ (λx .M)N : fail | ∆

Remark that now we cannot apply Lem. 6.8 to conclude Γ ⊢F M{N x} : fail |∆, since we cannot

be sure that A = B; therefore we would not be able to show soundness.

We can show that weakening and thinning are both admissible.

Lemma 6.7 The following rules are admissible in ⊢F
n:

(Wk) :
Γ ⊢ M : A | ∆

(Γ ⊆ Γ′,∆ ⊆ ∆′)
Γ′ ⊢ M : A | ∆′

(Th) :
Γ ⊢ M : A | ∆

(Γ′ = {x :B ∈ Γ | x ∈ fv(M)}, ∆′ = {n:B ∈ ∆ | n∈ fn(M)})
Γ′ ⊢ M : A | ∆′

Proof : Standard.

We can also show that type assignment is closed under term substitution.

Lemma 6.8 (Substitution lemma for ⊢F
n) If Γ, x:C ⊢F

n M : A | ∆ and Γ ⊢F
n N : C | ∆, then Γ ⊢F

n

M{N x} : A | ∆.

Proof : By induction on the structure of terms.

(M ≡ c) : Then A = σ c; then also Γ ⊢F
n

c : σ c | ∆, and c{N x} = c.

(M ≡ x) : If Γ, x:C ⊢F
n x : A | ∆ and Γ ⊢F

n N : C | ∆, then by rule (Ax), x:A ∈ Γ, x:C, so A = C.

Also, x{N x}= N, so Γ ⊢F
n x{N x} : A | ∆.

(M ≡ y 6= x) : If Γ, x:C ⊢F
n y : A | ∆, then y:A ∈ Γ, so also Γ ⊢F

n y : A | ∆, and y{N x} = y.

(M ≡ λy.M′) : Then A= A′→B′ and Γ, x:C,y:A′ ⊢F
n M′ : B′ |∆. By induction, we have Γ,y: A′ ⊢F

n

M′{N x} : B′ |∆. But then Γ ⊢F
n λy.M′{N x} : A |∆ by (→I), so Γ ⊢F

n λy.(M′{N x}) : A |∆.

Notice that λy.(M′{N x}) = (λy.M′){N x}.

(M ≡ PQ) : Then Γ, x:C ⊢F
n M : A | ∆ is typed using either:

(→E) : Then there exists B such that Γ, x:C ⊢F
n P : B→A | ∆ and Γ, x:C ⊢F

n Q : B | ∆. By in-

duction both Γ ⊢F
n P{N x} : B→A | ∆ and Γ ⊢F

n Q{N x} : B | ∆; then, by (→E), we have

Γ ⊢F
n P{N x} Q{N x} : A | ∆.

(→EF) : Then A = fail and there exists B such that Γ, x:C ⊢F
n P : fail | ∆ and Γ, x:C ⊢F

n Q : B | ∆.

By induction both Γ ⊢F
n P{N x} : fail |∆ and Γ ⊢F

n Q{N x} : B |∆; then, by (fail), we have

Γ ⊢F
n P{N x} Q{N x} : fail | ∆.

Notice that P{N x} Q{N x} = PQ{N x}.

(M ≡ if P then Q else R) : Then Γ, x:C ⊢F
n if P then Q else R : A | ∆ is typed using either:

(cond) : Γ, x:C ⊢F
n P : bool | ∆, Γ, x:C ⊢F

n Q : A | ∆, and Γ, x:C ⊢F
n R : A | ∆, and by induction
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Γ ⊢F
n P{N x} : bool | ∆, Γ ⊢F

n Q{N x} : A | ∆, and Γ ⊢F
n R{N x} : A | ∆. Then also Γ ⊢F

n

if P{N x} then Q{N x} else R{N x} : A | ∆ by rule (cond).

(condF) : A = fail, Γ, x:C ⊢F
n P : fail | ∆, Γ, x:C ⊢F

n Q : B | ∆, and Γ, x:C ⊢F
n R : D | ∆, and by in-

duction Γ ⊢F
n P{N x} : fail | ∆, Γ ⊢F

n Q{N x} : B | ∆, and Γ ⊢F
n R{N x} : D | ∆. Then also

Γ ⊢F
n if P{N x} then Q{N x} else R{N x} : fail | ∆ by rule (condF).

Notice that if P{N x} then Q{N x} else R{N x} = (if P then Q else R){N x}.

(M ≡ try P; catch ni (y) = Qi) : Then there exists Ai, Bi such that Γ, x:C ⊢F
n P : A | ∆ and

Γ, x:C,y:Ai ⊢F
n Qi : Bi | ∆, for all i ∈ n. By induction, Γ ⊢F

n P{N x} : A | ∆ and Γ,y: Ai ⊢F
n

Qi{N x} : Bi | ∆, (∀ i ∈ n). We get Γ ⊢F
n try P{N x}; catch ni (y) = Qi{N x} : A | ∆ by rule

(try), and try P{N x}; catch ni (y) = Qi{N x} = ( try P; catch ni (y) = Qi){N x}.

(M ≡ throw n(P)) : Then A 6= fail, and there exists B, D such that n:B→D ∈ ∆, and Γ, x:C ⊢F
n

P : B | ∆. By induction Γ ⊢F
n P{N x} : B | ∆. Since n:B→D ∈ ∆, by rule (throw) we get

Γ ⊢F
n throw n(P{N x}) : A | ∆. Notice that throw n(P{N x}) = ( throw n(P)){N x}.

(M ≡ panic n(P)) : Then A = fail and there exists B such that n:B→ fail ∈ ∆, and Γ, x:C ⊢F
n

P : B | ∆. By induction Γ ⊢F
n P{N x} : B | ∆. We get Γ ⊢F

n panic n(P{N x}) : fail | ∆ by rule

(panic), since n:B→ fail∈ ∆. Notice that panic n(P{N x}) = (panic n(P)){N x}.

The main result we show for this system is the following soundness result. It states that

running a program will either run normally, preserving the assigned type, or will run to a

term that has type fail, so throws a panic.

Theorem 6.9 (Soundness for ⊢F
n

with respect to →n

F ) If Γ ⊢F
n P : C | ∆ and P →n∗

F Q, then ei-

ther Γ ⊢F
n Q : C | ∆, or Γ ⊢F

n Q : fail | ∆.

Proof : The result follows by induction on the definition →n∗
F ; we focus on the single step

reduction, and only show the interesting cases

(β) : Then P = (λx.M)N → M{N x}= Q, and the derivation for P is constructed as follows:

Γ, x :B ⊢ M : C | ∆
(→I )

Γ ⊢ λx .M : B→C | ∆ Γ ⊢ N : B |∆
(→E)

Γ ⊢ (λx .M)N : C |∆

(notice that it is impossible for (→EF) to be applied last for (λx.M)N as fail cannot be

a type for λx.M). In particular, then Γ, x:B ⊢F
n M : C | ∆ and Γ ⊢F

n N : B | ∆, and the result

follows from Lem. 6.8.

(throw) : Then P = ( throw n(N))M → throw n(N) = Q, and the return type for the exception

handler n is not fail: then the derivation for P looks like:

D

Γ ⊢ N : A |∆
(throw)

Γ ⊢ throw n(N) : D→C | n:A→B,∆ Γ ⊢ M : D | n:A→B,∆
(→E)

( throw n(N))M : C : Γ ⊢ n:A→B,∆

We can construct the derivation for Q:

D

Γ ⊢ N : A | ∆
(throw)

Γ ⊢ throw n(N) : C | n:A→B,∆
.

(panic) : Then P = (panic n(N))M → panic n(N) = Q, and the return type for the exception

handler n is fail; then the derivation for P looks like:
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D

Γ ⊢ N : A | ∆
(panic)

Γ ⊢ panic n(N) : fail | n:A→ fail,∆ Γ ⊢ M : B | n:A→ fail,∆
(→E f)(panic n(N))M : fail : Γ ⊢ n:A→ fail,∆

Notice that we have a sub-derivation for Γ ⊢F
n panic n(N) : fail | n:A→ fail,∆.

(try-throw) : Then P = try throw nl (M); catch ni (x) = Ni → Nl {M x} = Q and the derivation

for P is shaped as follows:

Γ ⊢ M : Al | ni :Ai →Bi,∆
(throw)

Γ ⊢ throw nl (M) : C | ni :Ai →Bi,∆ Γ, x :Ai ⊢ Ni : Bi | ∆ (l ∈ n,∀ i ∈ n)
(try)

Γ ⊢ try throw nl (M); catch ni (x) = Ni : C |∆

where C 6= fail, and Bi = C or Bi = fail, for each i. In particular, we have both Γ ⊢F
n

M : Al | ni :Ai→Bi,∆ and Γ, x: Al ⊢F
n Nl : C | ∆, so Bl = C. By Lem. 6.7, we0can remove

ni :Ai→Bi from the co-context for the first to obtain Γ ⊢F
n M : Al |∆. Then, by Lem. 6.8, we

obtain Γ ⊢F
n Nl {M x} : C | ∆.

(try-panic) : Then P = try panic nl (M); abort ni (x) = Ni → Nl {M x} = Q and the derivation

for P is shaped as follows:

Γ ⊢ M : Al | ni :Ai →Bi,∆
(panic)

Γ ⊢ panic nl (M) : fail | ni :Ai →Bi,∆ Γ, x :Ai ⊢ Ni : Bi | ∆ (l ∈ n,∀ i ∈ n)
(try

F
)

Γ ⊢ try panic nl (M); abort ni (x) = Ni : fail | ∆

so Bl = fail. In particular, we have derivations for both Γ ⊢F
n M : Al | ni :Ai→Bi,∆ and

Γ, x: Al ⊢F
n Nl : fail | ∆.22 By Lem. 6.7, we can remove ni :Ai→Bi from the co-context for the

first to obtain Γ ⊢F
n M : Al | ∆. Then, by Lem. 6.8, we obtain Γ ⊢F

n Nl {M x} : fail | ∆.

(try-normal) : Then P = try Q; handlei ni (x) = Mi → Q with ni 6∈ Q. Then the derivation for P

is constructed as follows:

Γ ⊢ Q : C | ni :Ai →Bi,∆ Γ, x :Ai ⊢ Ni : Bi | ∆ (∀ i ∈ n)
(try)

Γ ⊢ try Q; handlei ni (x) = Ni : C | ∆

In particular, we have Γ ⊢F
n Q : C | ni :Ai→Bi,∆; since ni 6∈ Q, by Lem. 6.7 we can remove

ni :Ai→Bi from the co-context to obtain Γ ⊢F
n Q : C | ∆.

(cond-true) : Then P = if true then M else N → M = Q. Since true can only be assigned bool,

the derivation is constructed as follows:

(σ)
Γ ⊢ true : bool |∆ Γ ⊢ Q : A | ∆ Γ ⊢ N : B | ∆

(cond)
Γ ⊢ if true then Q else N : C |∆

and either:

((A = B = C) ∨ (A = C ∧ B = fail)) : Then, in particular, Γ ⊢F
n Q : C | ∆.

(A = fail∧ B = C) : Then, in particular, Γ ⊢F
n Q : fail | ∆.

(cond-false) : Then P = if false then M else N → N = Q. Similar to the previous case.

(cond-throw) : Then ∆ = n:E→ F,∆′, P = if throw n(R) then M else N → throw n(R) = Q, and

the derivation for P is constructed as:

22 Remark that we cannot apply (→I ) to the latter result.

47



D

Γ ⊢ R : E | ∆′

(throw)
Γ ⊢ throw n(R) : bool | n:E→F,∆′ Γ ⊢ M : B | ∆ Γ ⊢ N : C | ∆

(cond)
Γ ⊢ if throw n(R) then M else N : D | ∆

for certain B, C, and D. Then we can construct the derivation:

D

Γ ⊢ R : E | ∆′

(throw)
Γ ⊢ throw n(R) : D | n:E→F,∆′

(cond-panic) : Then P = if panic n(R) then M else N → panic n(R) = Q, and the derivation for

P is constructed as:

Γ ⊢ panic n(R) : fail | ∆ Γ ⊢ M : B | ∆ Γ ⊢ N : C | ∆
(condF)

Γ ⊢ if panic n(R) then M else N : fail | ∆

for certain B and C. Notice that we have a sub-derivation for Γ ⊢F
n panic n(R) : fail | ∆.

(M → N ⇒ ML → NL) : Then the derivation for P is constructed as either:

Γ ⊢ M : A→B | ∆

D

Γ ⊢ L : A |∆
(→E)

Γ ⊢ ML : B | ∆

or Γ ⊢ M : fail | ∆

D

Γ ⊢ L : A | ∆
(→E f)

Γ ⊢ ML : fail |∆

By induction, either Γ ⊢F
n N : A→B |∆ or Γ ⊢F

n N : fail |∆, and we can construct a derivation

for Q:

Γ ⊢F
n N : A→B | ∆

D

Γ ⊢F
n L : A | ∆

(→E)
Γ ⊢F

n
NL : B | ∆

or Γ ⊢F
n N : fail | ∆

D

Γ ⊢F
n L : A | ∆

(→EF)
Γ ⊢F

n
NL : fail |∆

(M → N ⇒ try M;Handlers→ try N; Handlers) : Then the derivation for P is constructed as

follows:

Γ ⊢ M : C | ∆

D

Handlers
(try)

try M; Handlers : C : Γ ⊢ ∆

By induction, Γ ⊢F
n N : C | ∆ or Γ ⊢F

n N : fail | ∆, and we can construct a derivation for Q:

Γ ⊢ N : C | ∆

D

Handlers
(try)

try N; Handlers : C : Γ ⊢ ∆

Γ ⊢ N : fail |∆

D

Handlers
(try f)

try N; Handlers : fail : Γ ⊢ ∆

(M → N ⇒ if M then T else E → if N then T else E) : Then the derivation for P is constructed

as:

Γ ⊢ M : bool | ∆ Γ ⊢ T : A | ∆ Γ ⊢ E : B |∆
(cond)

Γ ⊢ if M then T else E : C | ∆

or

Γ ⊢ M : fail | ∆ Γ ⊢ T : A | ∆ Γ ⊢ E : B | ∆
(cond f)

Γ ⊢ if M then T else E : fail | ∆

for certain A, B, and C. By induction, we have either Γ ⊢F
n N : bool | ∆ or Γ ⊢F

n N : fail | ∆,

so either by rule (cond) we have Γ ⊢F
n if N then T else E : C | ∆ or by rule (cond f), we get

Γ ⊢F if N then T else E : fail | ∆.
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6.1 On cbv-reduction for λtry
F

As above, we can define a notion of cbv-reduction for λtry
F , through:

Definition 6.10 cbv reduction →v

F is defined as in Def. 6.2 by also changing/adding the rule

(βv) : (λx.M)V → M{V x}
(panicv) : V(panic n(N)) → panic n(N)

cbv applicative contexts are defined as:

Cv
a

::= [ ] | Cv
a

M | V Cv
a | try Cv

a
;Handlers | if Cv

a
then P else Q

If we now look at type assignment, a particular feature pops up, in that we need to add an

extra type assignment rule (as we did for cbv-λµ).

Definition 6.11 The cbv notion ⊢v

F is for λtry
F defined using the rules of Def. 6.3, extended with

the rule

(→Ev) :
Γ ⊢ M : A | ∆ Γ ⊢ N : fail | ∆

Γ ⊢ M N : fail | ∆

This was not necessary for ⊢B nor ⊢H, since there the use of either throw of halt is hidden; since

our intention is that the use of panic is not, as in Rem. 5.7 we have to add this type assignment

rule. Notice that we need to formulate rule (→Ev) using M rather than a value, since we can

have:

(λx.x) (λx.x)(panic n(N)) →v

F (λx.x) (panic n(N)) →v

F panic n(N)

This gives a well-behaved system, in the sense that it is straightforward to show soundness.

Lemma 6.12 (Substitution lemma for ⊢v

F ) If Γ, x:C ⊢v

F M : A | ∆ and Γ ⊢v

F N : C | ∆, then Γ ⊢v

F

M{N x} : A | ∆.

Proof : By induction on the structure of terms. The proof is much the same as for Thm. 6.8,

except for one case:

(M ≡ PQ) : Then Γ, x:C ⊢v

F M : A | ∆ is typed using either (→E), (→EF), or (→Ev), so we

have the same cases as before, extended by:

(→Ev) : Then A= fail, and Γ, x:C ⊢F
n P : B |∆ for some B, and Γ, x:C ⊢F

n Q : fail |∆. By induction

both Γ ⊢F
n P{N x} : B | ∆ and Γ ⊢F

n Q{N x} : fail | ∆; then, by (→Ev), we have Γ ⊢F
n

P{N x} Q{N x} : fail | ∆.

We can now show:

Theorem 6.13 (Soundness for ⊢v

F with respect to →v

F ) If Γ ⊢v

F P : C | ∆ and P →v∗
F Q, then

either Γ ⊢v

F Q : C | ∆, or Γ ⊢v

F Q : fail | ∆.

Proof : The proof is much like that for Thm. 6.9, with the addition of:

(throwv) : Then ∆ = n:A→C,∆′, P = V( throw n(N)) → throw n(N) = Q, and the derivation

for P is constructed as:

Γ ⊢F V : E→F | n:A→C,∆′

D

Γ ⊢F N : A | ∆′

(throw)
Γ ⊢F throw n(N) : E | n:A→C,∆′

(→E)
Γ ⊢F V( throw n(N)) : F | n:A→C,∆′

We can construct the derivation for Q:

D

Γ ⊢F N : A | ∆′

(throw)
Γ ⊢F throw n(N) : F | n:A→C,∆′
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(panicv) : Then P = V(panic n(N))→ panic n(N) = Q, and the derivation for P is constructed

like:

Γ ⊢ V : A | ∆ Γ ⊢ panic n(N) : fail | ∆
(→Ev)

Γ ⊢ V (panic n(N)) : fail | ∆

We have Γ ⊢v

F panic n(N) : fail | ∆ in a sub-derivation.

(M → N ⇒ V M → V N) : By induction.

However, we lose the property of the predictive character of the type fail. For example, we

can have a derivation like (where x:B→A,y:B ∈ Γ)

(Ax)
Γ ⊢ x : B→A | ∆

(Ax)
Γ ⊢ y : B | ∆

(→E)
Γ ⊢ xy : A | ∆ Γ ⊢ panic n(N) : fail | ∆

(→Ev)
Γ ⊢ xy(panic n(N)) : fail | ∆

but this term is in cbv-normal form, so will never reduce to panic n(N) as suggested by the

type fail. Notice that it is not typeable in ⊢F
n.

Moreover, it is not clear how to define a notion of principal typeing for this system, as we

do in the next section for ⊢F
n, because using the standard approach, through unification, we

would reject to type xy(panic n(N)).

7 Principal typing for ⊢F
n

In this section, we will show that we can extend the notion of principal typing from Sect. 1.1

in a natural way to ⊢F
n. We will define the algorithm pt

F
that calculates the principal typing

for each term typeable in ⊢F
n; as for pt

c
from Def. 1.5, it is defined using a notion of unification

and substitution of type variables by types.

We first extend the notions of substitution and unification to our notion of types:

Definition 7.1 i) The substitution (ϕ 7→ C), where ϕ is a type variable and C a type (not equal

to fail), is inductively defined over the structure of types as in Def. 1.3 by adding:

(ϕ 7→ C) c = c

ii) Unification on λtry-types with fail is defined as as in Def. 1.3, by adding:

unify c c = IdS

As above, this definition implies that all non-specified cases, like unify int bool, or unify ϕ fail,

do not return a substitution.

Lemma 7.2 (Soundness of substitution) If Γ ⊢F
n M : A | ∆, then SΓ ⊢F

n M : S A | S∆.

Proof : By straightforward induction on the structure of derivations.

We now define a notion of principal typing for terms of λtry
F .

Definition 7.3 The principal typing algorithm for ⊢F
n is given by:

pt
F

c = 〈∅; σ c; ∅〉

pt
F

x = 〈x:ϕ; ϕ; ∅〉

where ϕ is fresh

pt
F
(λx.M) = 〈Γ; C; ∆〉
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where 〈Γ′; P; ∆〉 = pt
F

M (i)

Γ; C =

{

Γ′ x; A→P (x:A ∈ Γ′)
Γ′; ϕ→P (x 6∈ Γ′)

ϕ is fresh

pt
F

MN = S3◦S2◦S1 〈Γ1 ∪ Γ2; ϕ; ∆1 ∪ ∆2〉

where 〈Γ1; P1; ∆1〉 = pt
F

M
〈Γ2; P2; ∆2〉 = pt

F
N

S1 =

{

unify P1 P2→ ϕ (P1 6= fail)
(ϕ 7→ fail) P(ii) (P1 = fail)

S2 = unifyC (S1 Γ1) (S1 Γ2)
S3 = unifyC (S2◦S1 ∆1) (S2◦S1 ∆2)
ϕ is fresh

pt
F
(try M; ǫ) = pt

F
M

pt
F
(try M;Handlers; catch n(x) = N) = S3◦S2◦S1 〈Γ1 ∪ Γ2; A; ∆1 n∪ ∆2〉

where 〈Γ1; P1; ∆1〉 = pt
F
(try M;Handlers)

〈Γ′
2 ; P2; ∆2〉 = pt

F
N (P2 6= fail)

Γ2; C =

{

Γ′
2 x; D→P2 (x:D ∈ Γ′

2)
Γ′

2 ; ϕ→P2 (x 6∈ Γ′
2)

S1 =

{

unify P1 P2 (P1 6= fail)
IdS (P1 = fail)

S2 = unifyC (S1 Γ1) (S1 Γ2)
S3 = unifyC (S2◦S1 ∆1) (S2◦S1(n:C,∆2)) (iii) (n 6∈ ∆2)
ϕ is fresh

pt
F
(try M;Handlers; abort n(x) = N) = S2◦S1 〈Γ1 ∪ Γ2; P; ∆1 n∪ ∆2〉

where 〈Γ1; P; ∆1〉 = pt
F
(try M;Handlers)

〈Γ′
2 ; fail; ∆2〉 = pt

F
N (iv)

Γ2; C =

{

Γ′
2 x; D→fail (x:D ∈ Γ′

2)
Γ′

2; ϕ→fail (x 6∈ Γ′
2)

S1 = unifyC Γ1 Γ2

S2 = unifyC (S1 ∆1) (S1(n:C,∆2)) (n 6∈ ∆2)
ϕ is fresh

pt
F
(throw n(N)) = 〈Γ; ϕ; n:P→ ϕ′,∆〉

where 〈Γ; P; ∆〉 = pt
F

N
ϕ, ϕ′ are fresh

pt
F
(panic n(N)) = 〈Γ; fail; n:P→ fail,∆〉

where 〈Γ; P; ∆〉 = pt
F

N

pt
F
(if Q then R else S) = S4◦S3◦S2◦S1 〈Γ1 ∪ Γ2 ∪ Γ3; ϕ; ∆1 ∪ ∆2 ∪ ∆3〉

where 〈Γ1; P1; ∆1〉 = pt
F

Q
〈Γ2; P2; ∆2〉 = pt

F
R

〈Γ3; P3; ∆3〉 = pt
F

S

S1 =

{

unify P1 bool (P1 6= fail)
(ϕ 7→ fail) (P1 = fail)

S2 =































(unify (S1 P2) (S1 P3))◦(ϕ 7→ S1 P2)
(P2 6= fail 6= P3)

(ϕ 7→ S1 P2) (P2 6= fail= P3)
(ϕ 7→ S1 P3) (P2 = fail 6= P3)
(ϕ 7→ fail) (P2 = fail= P3)























(P1 6= fail)

IdS (P1 = fail)
S3 = unifyC (S2◦S1 Γ1) (S2◦S1 Γ2) (S2◦S1 Γ3)
S4 = unifyC (S3◦S2◦S1 ∆1) (S3◦S2◦S1 ∆2) (S3◦S2◦S1 ∆3)
ϕ is fresh
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Notes:

i) If P = fail, then the algorithm returns no result.

ii) Officially, (ϕ 7→ fail) is not a substitution; but since ϕ occurs only as the placeholder for

the return type, we can safely abuse our notation here.

iii) We do not have to consider n ∈ ∆1 or not separately; this call to unifyC will create the

correct type for n.

iv) If pt
F

N does not produce fail, the algorithm fails.

We can show that the algorithm creates valid judgements:

Lemma 7.4 (Soundness of pt
F
) If pt

F
M = 〈Γ; P; ∆〉, then Γ ⊢F

n M : P | ∆.

Proof : By induction on the structure of terms, using Lem. 7.2.

(M = x) : Then pt
F

x = 〈x:ϕ; ϕ; ∅〉. Notice that we have

(Ax)
x : ϕ ⊢ x : ϕ |

(M = c) : Then pt
F

c = 〈∅; σ c; ∅〉. Notice that we have

(c)
⊢ c : σc |

(M = λx.N) : Let pt
F

N = 〈Γ; B; ∆〉, with B 6= fail; then either:

(x ∈ Γ) : Then there exists A such that Γ = Γ′, x:A, and pt
F
(λx.N) = 〈Γ′; A→B; ∆〉. By in-

duction Γ′, x:A ⊢F
n N : P | ∆. We can construct:

Γ′, x : A ⊢ N : P | ∆
(→I )

Γ′ ⊢ λx .N : A→P | ∆

(x 6∈ Γ) : Take ϕ fresh; let pt
F
(λx.N) = 〈Γ; ϕ→P; ∆〉, then by induction Γ ⊢F

n N : P | ∆. We

can construct:

Γ ⊢ N : P |∆
(Wk)

Γ, x : ϕ ⊢ N : P | ∆
(→I )

Γ ⊢ λx .N : ϕ→P | ∆

(M = QR) : Let pt
F

QR= S3◦S2◦S1 〈Γ1 ∪ Γ2; A; ∆1 ∪ ∆2〉, where pt
F

Q= 〈Γ1; P1; ∆1〉 and pt
F

R=

〈Γ2; P2; ∆2〉, and ϕ fresh. Then either:

(P1 6= fail) : Let A = ϕ is fresh
S1 = unify P1 (P2→ϕ)
S2 = unifyC (S1 Γ1) (S1 Γ2)
S3 = unifyC (S2◦S1 ∆1) (S2◦S1 ∆2)

By induction we have both Γ1 ⊢F
n Q : P1 |∆1 and Γ2 ⊢F

n R : P2 |∆2 ; by Lem. 7.2, also (where

S′ = S3◦S2◦S1)

S′ Γ1 ⊢F
n Q : S′ P1 | S′ ∆1 and S′ Γ2 ⊢F

n R : S′ P2 | S′ ∆2,

and S′ P1 = S′(P2→ϕ) = S′ P2→S′ ϕ. By Lem. 6.7 we also have

S′ Γ1,S′ Γ2 ⊢F
n Q : S′ P1 | S′ ∆1,S′ ∆2 and S′ Γ1,S′ Γ2 ⊢F

n R : S′ P2 | S′ ∆1,S′ ∆2

(note that, if x:A ∈ Γ1 and x 6∈ Γ2, then x is not bound or free in R, so can be safely

added; if x:A1 ∈ Γ1 and x:A2 ∈ Γ2, then S′ A1 = S′ A2, so we can safely add x:A2) so

also

S′(Γ1 ∪ Γ2) ⊢F
n Q : S′ P1 | S′(∆1 ∪ ∆2) and S′(Γ1 ∪ Γ2) ⊢F

n R : S′ P2 | S′(∆1 ∪ ∆2).
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To these we can apply rule (→E) and obtain:

S′ (Γ1 ∪ Γ2) ⊢ Q : S′ P2→S′ ϕ | S′ (∆1 ∪ ∆2) S′ (Γ1 ∪ Γ2) ⊢ R : S′ P2 | S′ (∆1 ∪ ∆2)
(→E)

S′ (Γ1 ∪ Γ2) ⊢ QR : S′ ϕ | S′ (∆1 ∪ ∆2)

(P1 = fail) : Let ϕ is fresh
A = fail
S2 = unifyC Γ1 Γ2

S3 = unifyC (S2 ∆1) (S2 ∆2)

By induction we have both Γ1 ⊢F
n Q : fail |∆1 and Γ2 ⊢F

n R : P2 |∆2 ; by Lem. 7.2, also (where

S′ = S3◦S2)

S′ Γ1 ⊢F
n Q : fail | S′ ∆1 and S′ Γ2 ⊢F

n R : S′ P2 | S′ ∆2 ,

By Lem. 6.7 we also have

S′ Γ1,S′ Γ2 ⊢F
n Q : fail | S′ ∆1,S′ ∆2 and S′ Γ1,S′ Γ2 ⊢F

n R : S′ P2 | S′ ∆1,S′ ∆2,

so also

S′(Γ1 ∪ Γ2) ⊢F
n Q : fail | S′(∆1 ∪ ∆2) and S′(Γ1 ∪ Γ2) ⊢F

n R : S′ P2 | S′(∆1 ∪ ∆2).

To these we can apply rule (→EF) and obtain:

S′ (Γ1 ∪ Γ2) ⊢ Q : fail | S′ (∆1 ∪ ∆2) S′ (Γ1 ∪ Γ2) ⊢ R2 : S′ P2 | S′ (∆1 ∪ ∆2)
(→EF )

S′ (Γ1 ∪ Γ2) ⊢ QR : fail | S′ (∆1 ∪ ∆2)

(try M; handlei ni (x) = Ni ;; catch n(x) = N) : We have:

pt
F
(try M; handlei ni (x) = Ni ;; catch m(y) = L) = S3◦S2◦S1 〈Γ1 ∪ Γ2; A; ∆1 m∪ ∆2〉

where 〈Γ1; A; ∆1〉 = pt
F
(try M; handlei ni (x) = Ni)

〈Γ′
2 ; B; ∆2〉 = pt

F
L

Γ2; C =

{

Γ′
2; D→B (x:D ∈ Γ′

2)
Γ′

2, x:ϕ; ϕ→B (x 6∈ Γ′
2)

S1 =

{

unify B A (A 6= fail)
IdS (A = fail)

S2 = unifyC (S1 Γ1) (S1 Γ2)
S3 = unifyC (S2◦S1 ∆1) (S2◦S1(m:C,∆2)) (m 6∈ ∆2)
ϕ is fresh

By induction, we have both Γ1 ⊢F
n try M; handlei ni (x) = Ni : A |∆1 and Γ2, x:D ⊢F

n L : B |∆2 .

From the first we have, by rule (try), Γ1 ⊢F
n M : A | n:Ci→Bi,∆1 and Γ1, x:Ci ⊢F

n Ni : Bi | ∆1

where Bi = A ∨ Bi = fail, for all i ∈ n. Let S = S3◦S2◦S1; as in the previous case we

have S(Γ1 ∪ Γ2) ⊢F
n M : S A | S(n:Ci→Bi,∆1 ∪ ∆2), S(Γ1, x:Ci ∪ Γ2) ⊢F

n Ni : Bi | S(∆1 ∪ ∆2),

and S(Γ1 ∪ Γ2,y:D) ⊢F
n L : SB | S(∆1 ∪ ∆2), where D can be ϕ.

Then we can construct (where Γ = S(Γ1 ∪ Γ2), and ∆ = S(∆1 ∪ ∆2)):

Γ ⊢ M : S A |m:SC,∆ Γ, x :SCi ⊢ Ni : SBi | ∆ Γ,y:SD ⊢ L : SB | ∆ (∀ i ∈ n)
(try)

Γ′ ⊢ try M; handlei ni (x) = Ni ;; catch m(y) = L : S A | ∆

(try M; handlei ni (x) = Ni ;; abort n(x) = N) : We have :

pt
F
(try M; handlei ni (x) = Ni ;; abort n(x) = N) = S3◦S2◦S1 〈Γ1 ∪ Γ2; A; ∆1 n∪ ∆2〉
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where 〈Γ1; A; ∆1〉 = pt
F
(try M; handlei ni (x) = Ni ;)

〈Γ′
2 ; B; ∆2〉 = pt

F
N

Γ2; C =

{

Γ′
2; D→B (x:D ∈ Γ′

2)
Γ′

2, x:ϕ; ϕ→B (x 6∈ Γ′
2)

S1 = unify B fail
S2 = unifyC (S1 Γ1) (S1 Γ2)
S3 = unifyC (S2◦S1 ∆1) (S2◦S1(n:C,∆2)) (n 6∈ ∆2)
ϕ is fresh

By induction, we have both Γ1 ⊢F
n try M; handlei ni (x) = Ni : A | ∆1 and Γ2, x:D ⊢F

n L : fail |

∆2; notice that we can assume that B = fail, since these should be unifiable. From the

first we have, by rule (try), Γ1 ⊢F
n M : A | n:Ci→Bi,∆1 and Γ1, x:Ci ⊢F

n Ni : Bi |∆1 where Bi =

A ∨ Bi = fail, for all i ∈ n. Let S = S3◦S2◦S1; as in the previous case we have S(Γ1 ∪ Γ2) ⊢F
n

M : A | S(n:Ci→Bi,∆1 ∪ ∆2), S(Γ1, x:Ci ∪ Γ2) ⊢F
n Ni : Bi | S(∆1 ∪ ∆2), and S(Γ1 ∪ Γ2,y:D) ⊢F

n

L : fail | S(∆1 ∪ ∆2), where D can be ϕ.

Then we can construct (where Γ = S(Γ1 ∪ Γ2), and ∆ = S(∆1 ∪ ∆2)):

Γ ⊢ M : S A |m:SC,∆ Γ, x :SCi ⊢ Ni : SBi |∆ Γ,y:SD ⊢ L : fail | ∆ (∀ i ∈ n)
(try)

Γ′ ⊢ try M; handlei ni (x) = Ni ;; catch m(y) = L : S A | ∆

(throw n(M)) : We have pt
F
(throw n(M)) = 〈Γ; ϕ; n:A→ ϕ′,∆〉 with 〈Γ; A; ∆〉 = pt

F
M and

ϕ, ϕ′ are fresh; notice that by assumption n does not occur in M. By induction, we have

Γ ⊢F
n M : A | ∆, and we can construct:

Γ ⊢ M : A | ∆
(throw)

Γ ⊢ throw n(M) : ϕ | n:A→ ϕ′,∆

(panic n(M)) : We have pt
F
(panic n(M)) = 〈Γ; fail; n:A→ fail,∆〉 with 〈Γ; A; ∆〉 = pt

F
M; no-

tice that by assumption n does not occur in M. By induction, we have Γ ⊢F
n M : A | ∆, and

we can construct:

Γ ⊢ M : A |∆
(panic)

Γ ⊢ panic n(M) : fail | n:A→ fail,∆

(if M then P else Q) : Let pt
F

M = 〈Γ1; P1; ∆1〉 ; we have two cases:

(A1 6= fail) : We have:

pt
F
(if M then P else Q) = S4◦S3◦S2◦S1 〈Γ1 ∪ Γ2 ∪ Γ3; ϕ; ∆1 ∪ ∆2 ∪ ∆3〉

where 〈Γ2; A2; ∆2〉 = pt
F

P
〈Γ3; A3; ∆3〉 = pt

F
Q

and S1 = unify A1 bool

S2 =























unify (S1 A2) (S1 A3)
◦(ϕ 7→ S1A2) (A2 6= fail 6= A3)

(ϕ 7→ S1 A2) (A2 6= fail= A3)
(ϕ 7→ S1 A3) (A2 = fail 6= A3)
(ϕ 7→ fail) (A2 = fail= A3)























S3 = unifyC (S2◦S1 Γ1) (S2◦S1 Γ2) (S2◦S1 Γ3)
S4 = unifyC (S3◦S2◦S1 ∆1) (S3◦S2◦S1 ∆2) (S3◦S2◦S1 ∆3)
ϕ is fresh

By induction we have Γ1 ⊢F
n M : A1 | ∆1 , Γ2 ⊢F

n P : A2 | ∆2, and Γ3 ⊢F
n Q : A3 | ∆3 . Take

S = S4◦S3◦S2◦S1, then by Lem. 7.2, also SΓ1 ⊢F
n M : S A1 | ∆1, Γ2 ⊢F

n P : S A2 | ∆2, and

Γ3 ⊢F
n Q : S A3 | ∆3. Since S A1 = bool, and S A2 = S A3, or (A2 = fail ∨ A3 = fail), we can

derive the desired result by rule (cond).
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(A1 = fail) : We have pt
F
(if M then P else Q) = S4◦S3 〈Γ1 ∪ Γ2 ∪ Γ3; fail; ∆1 ∪ ∆2 ∪ ∆3〉

where 〈Γ2; A2; ∆2〉 = pt
F

P
〈Γ3; A3; ∆3〉 = pt

F
Q

S3 = unifyC Γ1 Γ2 Γ3

S4 = unifyC (S3 ∆1) (S3 ∆2) (S3 ∆3)
ϕ is fresh

By induction we have Γ1 ⊢F
n M : fail | ∆1 , Γ2 ⊢F

n P : A2 | ∆2 , and Γ3 ⊢F
n Q : A3 | ∆3 . Take S =

S4◦S3, then by Lem. 7.2, also SΓ1 ⊢F
n M : fail |∆1, Γ2 ⊢F

n P : S A2 |∆2, and Γ3 ⊢F
n Q : S A3 |∆3 .

We can derive the desired result by rule (condF).

We will now show the main result for pt
F
, which states that it calculates the most general

typeing with respect to type substitution for all terms typeable in ⊢F
n.

Theorem 7.5 (Completeness of substitution.) If Γ ⊢F
n M : A | ∆, then there are contexts Γ′ and

∆′, type P and a substitution S such that: pt
F

M = 〈Γ′; P; ∆′〉, and SΓ′ ⊆ Γ, S∆′ ⊆ ∆, and SP = A.

subst complete By induction on the structure of terms in Λ.

(M ≡ x) : Then, by rule (Ax), x:A ∈ Γ, and pt
F

x = 〈{x: ϕ}; ϕ; ∅〉. Take S = (ϕ 7→ A).

(M ≡ c) : Then, by rule (c), A = σc, and pt
F

c = 〈∅; σc; ∅〉. Take S = IdS.

(M ≡ λx.N) : Then, by rule (→I), there are C, D such that A = C→D, and Γ, x:C ⊢F
n N : D |∆.

Then, by induction, there are Γ′′,∆′′, P′ and S′ such that pt
F

N = 〈Γ′′; P′; ∆′′〉, and S′ Γ′′ ⊆

Γ, x:C, S′ ∆′′ ⊆ ∆, SP′ = D. Then either:

(x ∈ fv(N)) : Then x:A′ ∈ Γ′′, and pt
F
(λx.N) = 〈Γ′′ x; A′→P′; ∆〉. Since S′ Γ′′ ⊆ Γ, x:C,

in particular S′ A′ = C, S′ (Γ′′ x) ⊆ Γ, and S′ (A′→P′) = C→D. Take Γ′ = Γ′′ x,

∆′ = ∆′′, P = A′→P′, and S = S′.

(x 6∈ fv(N)) : Then pt
F
(λx.N) = 〈Γ′′; ϕ→P′; ∆〉, x does not occur in Γ′′, and ϕ does not

occur in 〈Γ′′; P′; ∆〉. Since S′ Γ′′ ⊆ Γ, x:C, in particular S′ Γ′′ ⊆ Γ. Take S = S′◦(ϕ 7→

C), then, since ϕ does not occur in Γ′′, also SΓ′′ ⊆ Γ. Notice that S(ϕ→P′) = C→D;

take Γ′ = Γ′′, ∆′ = ∆′′, and P = ϕ→P′.

(M ≡ QR) : Then, by rule (→E), there exists a B such that Γ ⊢F
n Q : B→A | ∆ and Γ ⊢F

n R :

B | ∆. By induction, there are S1,S2, 〈Γ′
1; P1; ∆′

1〉 = pt
F

Q and 〈Γ′
2; P2; ∆′

2〉 = pt
F

R (no type

variables shared) such that S1 Γ′
1 ⊆ Γ, S1 ∆′

1 ⊆ ∆, S2 Γ′
2 ⊆ Γ, S2 ∆′

2 ⊆ ∆, S1 P1 = B→A and

S2 P2 = B. Notice that S1,S2 do not interfere. Let ϕ be a fresh type variable.

Now either:

(P1 6= fail) : Let Su = unify P1 (P2→ϕ)
SΓ = unifyC (Su Γ′

1) (Su Γ′
2)

S∆ = unifyC (SΓ◦Su ∆′
1) (SΓ◦Su ∆′

2)
pt

F
QR = S∆◦SΓ◦Su 〈Γ′

1 ∪ Γ′
2; ϕ; ∆′

1 ∪ ∆′
2〉

We need to argue that pt
F

QR is successful: since this can only fail on unification

(of P1 and P2→ϕ, or in the unification of the contexts), we need to argue that these

are successful. Take S3 = S2◦S1◦(ϕ 7→ A), then

S3 P1 = B→A, and
S3(P2→ϕ) = B→A.

so P1 and P2→ϕ have a common instance B→A, and by Lem. 1.4, Su exists.

Notice that we have

S3 Γ′
1 ⊆ Γ, and

S3 Γ′
2 ⊆ Γ

S3 ∆′
1 ⊆ ∆, and

S3 ∆′
2 ⊆ ∆

since Γ′
1 and Γ′

2 share no type-variables. Since Γ is a context, each term variable has
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only one type, and therefore S3 is a unifier for Γ′
1 and Γ′

2 (and similar for ∆), so we

know that an S4 exists which extends the substitution that unifies the contexts, even

after being changed with Su, so such that

S4(Su Γ′
1) ⊆ Γ, and

S4(Su Γ′
2) ⊆ Γ.

S4(SΓ◦Su ∆′
1) ⊆ ∆, and

S4(SΓ◦Su ∆′
2) ⊆ ∆.

So S4 also unifies Su Γ′
1 and Su Γ′

2 and SΓ◦Su ∆′
1 and SΓ◦Su ∆′

2, so by Lem. 1.4 there

exists a substitution S5 such that S4 = S5◦S∆◦SΓ◦Su. Take S = S5.

(P1 = fail) : Let SΓ = unifyC Γ′
1 Γ′

2

S∆ = unifyC (SΓ ∆′
1) (SΓ ∆′

2)
pt

F
QR = S∆◦SΓ 〈Γ′

1 ∪ Γ′
2 ; fail; ∆′

1 ∪ ∆′
2〉

Take S3 = S2◦S1◦(ϕ 7→ A), then

S3 Γ′
1 ⊆ Γ, and

S3 Γ′
2 ⊆ Γ

S3 ∆′
1 ⊆ ∆, and

S3 ∆′
2 ⊆ ∆

As above an S4 exists such that

S4 Γ′
1 ⊆ Γ, and

S4 Γ′
2 ⊆ Γ.

S4(SΓ ∆′
1) ⊆ ∆, and

S4(SΓ ∆′
2) ⊆ ∆.

Again by Lem. 1.4 there exists a substitution S5 such that S4 = S5◦S∆◦SΓ. Take S= S5.

(M ≡ try L; handlei ni (x) = Ni ;; catch nn+1 (x) = Nn+1) : By rule (try) there exist Ai, Bi (i∈ n+1),

such that Γ ⊢F
n L : A | ni :Ai→Bi,nn+1 :An+1→Bn+1,∆ and Γ, x: Ai ⊢F

n Ni : Bi |∆ where handlei

is either catch and Bi = A, or abort and Bi = fail for every i ∈ n, and Bn+1 = A.

Let M′ = try L; handlei ni (x) = Ni and notice that Γ ⊢F
n M′ : A | nn+1 :An+1→Bn+1,∆

holds as well. Then by induction there exist S1, S2, 〈Γ′
1; P1; ∆′

1〉= pt
F

M′ and 〈Γ′
2 ; P2; ∆′

2〉=

pt
F

Nn+1 (no type variables shared and P2 6= fail) such that

S1 Γ′
1 ⊆ Γ

S1 ∆′
1 ⊆ nn+1 :An+1→Bn+1,∆

S1 P1 = A

and
S2 Γ′

2 ⊆ Γ, x: An+1

S2 ∆′
2 ⊆ ∆

S2 P2 = Bn+1

Take Γ1 = Γ′
1, and ∆2 = ∆′

2. Now either x:D ∈ Γ′
2 and we take C = D→P2, and Γ2 =

Γ′
2 x:D, or x 6∈ Γ′

2 and C = ϕ→P2, Γ2 = Γ′
2 , with ϕ fresh. Likewise, either nn+1 :E ∈∆′

1 and

we take ∆1 = ∆′
1 n or nn+1 6∈ ∆′

1 and E = ϕ′ with ϕ′ fresh, ∆1 = ∆′
1. Take Su = unify E C,

and S3 = S2◦S1◦Su, then we have S3 Γ1 ⊆ Γ, S3 ∆1 ⊆ ∆, S3 P1 = A, S3 Γ2 ⊆ Γ, and S3 ∆2 ⊆ ∆.

Since S3 unifies all these, the unifications called when calculating

pt
F
(try M;Handlers; catch n(x) = N) = S′ 〈Γ1 ∪ Γ2; P1; ∆1 ∪ ∆2〉

are successful, and using Lem. 1.4 S3 can now be decomposed into S◦S′.

(M ≡ try L; handlei ni (x) = Ni ;; abort nn+1 (x) = Nn+1) : By rule (try) there exist Ai, Bi (i∈ n+1),

such that Γ ⊢F
n L : A | ni :Ai→Bi,nn+1 :An+1→Bn+1,∆ and Γ, x: Ai ⊢F

n Ni : Bi |∆ where handlei

is either catch and Bi = A, or abort and Bi = fail for every i ∈ n, and Bn+1 = fail.

Let M′ = try L; handlei ni (x) = Ni and notice that we have Γ ⊢F
n M′ : A |nn+1 :An+1→ fail,∆

as well. Then by induction there exist S1, S2, 〈Γ′
1 ; P1; ∆′

1〉 = pt
F

M′ and 〈Γ′
2 ; fail; ∆′

2〉 =

pt
F

Nn+1 (no type variables shared) such that

S1 Γ′
1 ⊆ Γ

S1 ∆′
1 ⊆ nn+1 :An+1→ fail,∆

S1 P1 = A

and
S2 Γ′

2 ⊆ Γ, x: An+1

S2 ∆′
2 ⊆ ∆

Take Γ1 = Γ′
1 , and ∆2 = ∆′

2. Now either x:D ∈ Γ′
2 and we take C = D→ fail, and

Γ2 = Γ′
2 x:D, or x 6∈ Γ′

2 and C = ϕ→ fail, Γ2 = Γ′
2 , with ϕ fresh. Likewise, either nn+1 :E∈∆′

1

and we take ∆1 =∆′
1 n or nn+1 6∈∆′

1 and E = ϕ′ with ϕ′ fresh, Γ2 = Γ′
2. Take Su = unify E C,
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and S3 = Su◦S2◦S1, then we have S3 Γ1 ⊆ Γ, S3 ∆1 ⊆ ∆, S3 P1 = A, S3 Γ2 ⊆ Γ, and S3 ∆2 ⊆ ∆.

As above, unification of the contexts is successful, and S3 can now be decomposed into a

unifying substitution, and the substitution we are looking for.

(M ≡ throw n(N)) : By rule (throw) there exist C, D such that n:C→D∈∆ and Γ ⊢F
n N : C |∆ n.

By induction there exists S′, 〈Γ′; P; ∆′〉 = pt
F

N, such that S′ Γ′ ⊆ Γ, S′ ∆′ ⊆ ∆ n, and

S′ P = C. Notice that pt
F
(throw n(N)) = 〈Γ; ϕ; n:P→ ϕ′,∆〉, where ϕ, ϕ′ fresh; define S =

(ϕ 7→ A)◦(ϕ′ 7→ D)◦S′, then SΓ′ ⊆ Γ, S(n:P→ ϕ′,∆′) ⊆ ∆, and S ϕ = A.

(M ≡ panic n(N)) : By rule (panic), A = fail and there exists C such that n:C→ fail ∈ ∆ and

Γ ⊢F
n N : C |∆ n. By induction there exists S′, 〈Γ′; P; ∆′〉= pt

F
N, such that S′ Γ′ ⊆ Γ, S′ ∆′ ⊆

∆ n, and S′ P = C. Notice that pt
F
(throw n(N)) = 〈Γ; fail; n:P→ fail,∆〉; define S = S′, then

SΓ′ ⊆ Γ, and S(n:P→ fail,∆′) ⊆ ∆.

(M ≡ if Q then R else S) : We distinguish the cases:

(cond) : Then there are B,C such that Γ ⊢F
n Q : bool | ∆, Γ ⊢F

n R : B | ∆, and Γ ⊢F
n S : C | ∆,

and A = B = C, or A = B and C = fail, or A = C and B = fail. By induction there are

S1,S2,S3 and 〈Γ1; P1; ∆1〉 = pt
F

Q, 〈Γ2; P2; ∆2〉 = pt
F

R, and 〈Γ3; P3; ∆3〉 = pt
F

S, such

that:

S1 Γ1 ⊆ Γ S2 Γ2 ⊆ Γ S3 Γ3 ⊆ Γ
S1 ∆1 ⊆ ∆ S2 ∆2 ⊆ ∆ S3 ∆3 ⊆ ∆
S1 P1 = bool S2 P2 = B S3 P3 = C

Now take ϕ fresh, and

S4 = unify P1 bool

S5 =















(unify (S4 P2) (S4 P3))◦(ϕ 7→ S4 P2) (P2 6= fail 6= P3)
(ϕ 7→ S4 P2) (P2 6= fail= P3)
(ϕ 7→ S4 P3) (P2 = fail 6= P3)
(ϕ 7→ fail) (P2 = fail= P3)

SΓ = unifyC (S5◦S4 Γ1) (S5◦S4 Γ2) (S5◦S4 Γ3)
S∆ = unifyC (SΓ◦S5◦S4 ∆1) (SΓ◦S5◦S4 ∆2) (SΓ◦S5◦S4 ∆3)

As above, since S1, S2 and S3 create common instances, the unifications in S4,S5,SΓ,

and S∆ are successful, and

pt
F
(if Q then R else S) = S∆◦SΓ◦S5◦S4 〈Γ1 ∪ Γ2 ∪ Γ3; ϕ; ∆1 ∪ ∆2 ∪ ∆3〉

is well defined, and by Lem. 1.4 there exists S such that S3◦S2◦S1 = S◦S∆◦SΓ◦S5◦S4.

(condF) : Similar to the previous case, where now A = fail= P1.

This last result shows the practicality of our notion of type assignment.

Conclusion

We have defined λtry, a natural extension to the λ-calculus by adding exception handling,

and shown that it can be embedded into λµ, preserving both cbn and cbv reduction. The

normal notion of type assignment for λtry, here called the basic system, is also preserved by

our mapping onto λµ. Type assignment is not preserved, however, for the notion of type

assignment that captures total program failure using exception handling.

We also have presented a notion of handling of exception and panic calls, together with a

natural notion of type assignment, that cannot be represented in λµ or λµ-tp. We thus have

shown that, although a strong link between typeable exception handling and double negation

elimination is evident, exception handling itself is a feature that is not naturally a part of

calculi based on classical logic, since it is possible to define notions of type assignment that

are natural for λtry, but are not founded on classical logic.

By letting go of the link between programming and logic, we have shown that it is possible
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to define distinct handling of exception and panic calls for formal calculi in a computationally

meaningful way. This was emphasised by showing that our system has the principal typeing

property, a prerequisite for its use in programming.
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at TYPES Workshop, at Bǎstad, June 1992.
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