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Abstract

We define two type assignment systems for first-order rewriting extended with application,
λ-abstraction, and β-reduction, using a combination of intersection types and second-order
polymorphic types. The first system is the general one, for which we prove subject reduction,
and strong normalisation of typeable terms. The second is a decidable subsystem of the first,
by restricting to rank 2 (intersection and quantified) types. For this system we define, using
an extended notion of unification, a notion of principal typing which is more general than
ml’s principal type property, since also the types for the free variables of terms are inferred.

Introduction

Since the first investigations on combinations of Lambda Calculus (lc) and Term Rewriting
Systems (trs) [13, 19, 14, 26], this topic has drawn attention from the theoretical computer
science community. At first, the area of programming language design was consider to be
the typical field on which the theoretical results for combinations of the two computational
paradigms could better exploit their potentialities. Later on, the evolution of interactive
proof development tools with inductive types, and theorem provers in general, disclosed a
number of possible applications.

Apart from the practical outcome, most of the theoretical investigations in this particular
field have shown that type disciplines provide an optimal environment in which rewrite
rules and β-reduction can interact without loss of their useful properties [14, 15, 26, 9, 10, 7].
Type disciplines come in two main flavours: explicitly typed (also called à la Church) and type
inference systems (à la Curry). Systems based on the latter sort of type discipline are of great
interest from the point of view of programming language design. In fact, they save the
programmer from specifying a type for each variable (i.e. no type annotation is required).
Most of the results about combinations of lc and trs, however, concern systems which are
explicitly typed.

In the context of the lc alone, type inference disciplines have been widely studied, in par-
ticular with intersection types, and some work has also been done for trs alone, more pre-
cisely, for Curryfied trs (Cutrs) [8] which are first-order trs with application, that correspond
to the trs underlying the programming language Clean [34]. The interactions between lc
and trs for type systems à la Curry, instead, has not been extensively investigated. They
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were first studied in [7], where Cutrs extended with λ-abstraction and β-reduction were de-
fined, together with a notion of intersection type assignment for both the lc and the trs
fragments. In this paper we carry on this study by taking explicit polymorphism into account,
namely the possibility, from the programming language point of view, of using the same
program with arguments of different types.

We take into account also another important feature of type systems for programming
languages: the notion of principal type, that is, a type from which all the other types of a term
can be derived. As a matter of fact we consider an even stronger property than principal
types: the principal typing property. This means that any typing judgement for a term can be
obtained from the principal one, that is, not only the type but also the basis (containing the
type assumptions for the free variables) is obtained. The pragmatic value of this property
is demonstrated in [25], where it is shown that, unlike principal types, principal typings
provide support for separate compilation, incremental type inference, and for accurate type
error messages.

The type system of ml is polymorphic and has principal types, but its polymorphism is
limited (some programs that arise naturally cannot be typed), and it does not have principal
typings (see [17, 25]). System F [23] provides a much more general notion of polymorphism,
but lacks principal types, and type inference is undecidable in general (although it is decid-
able for some subsystems, in particular if we consider types of rank 2 [27]). Intersection type
systems [12] are somewhere in the middle with respect to polymorphism, and have principal
typings. But type assignment is again undecidable; decidability is recovered if we restrict
ourselves to intersection types of finite rank [29].

In [24], a system for lc combining intersection types and System F was presented, which
has principal typings (see [32]). In this paper we extend the approach of that system to a
combination of lc and Cutrs. In other words, we extend the type system of [7] further, adding
‘∀ ’ as an extra type-constructor (i.e. explicit polymorphism). Although extending the set of
types by adding ‘∀ ’ does not extend the expressivity of the system in terms of typeable
terms, the set of assignable types increases, and types can better express the behaviour of
terms (see [16]). The resulting system has the expected properties: Subject Reduction, and
Strong Normalization when the rewrite rules use a limited form of recursion (inspired by the
General Schema of Jouannaud and Okada [26]). The proof of the latter follows the method of
Tait-Girard’s reducibility candidates, extended in order to take the presence of (higher-order)
algebraic rewriting into account.

In view of the above results, two questions arise naturally:

i) Is the Rank 2 combination of System F and the Intersection System also decidable?
ii) Does it have the principal typing property?

We answer these questions in the affirmative. The restriction to types of rank 2 of the
combined system of polymorphic and intersection types is decidable. This restricted system
can be seen as a combination of the systems considered in [6] and [27]. The combination
is two-fold: not only the type systems of those two papers are combined (resp. intersection
and polymorphic types of rank 2), but also their calculi are combined (resp. Cutrs and lc).
In our Rank 2 system each typeable term has a principal typing. This is the case also in the
Rank 2 intersection system of [6], but not in the Rank 2 polymorphic system of [27]. For
the latter, a type inference algorithm of the same complexity of that of ml was given in [28],
where the problems that occur due to the lack of principal types are discussed in detail. Our
Rank 2 system generalizes also Jim’s system P2 [25], which is a combination of ml-types and
Rank 2 intersection types. Having Rank 2 quantified types in the system allows us to type
for instance the constant runST used in [31], which cannot be typed in P2.

This paper is organised as follows: In Section 1 we define trs with application, λ-abstraction
and β-reduction (trs+β), and in Section 2 the type assignment system. Section 3 deals with
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the strong normalization property for typeable terms, and in Section 4 we prove a confluence
result. In Section 5 we present the restriction of the general type assignment system to Rank
2; finally, Section 6 contains the conclusions.

1 Term Rewriting Systems with β-reduction rule

In this section, we will present a combination of untyped Lambda Calculus with untyped
Algebraic Rewriting, obtained by extending first-order trs with notions of application and
abstraction, and a β-reduction rule. We can look at such calculi also as extensions of the
Curryfied Term Rewriting Systems (Cutrs) considered in [3, 8], by adding λ-abstraction and
a β-reduction rule. We assume the reader to be familiar with lc [11] and refer to [30, 18] for
rewrite systems.

Definition 1.1 i) An alphabet or signature Σ consists of a countable, infinite set X of variables
x1, x2, x3, . . . (or x,y,z, x′,y′, . . .), a non-empty set F of function symbols F, G, . . . , each with
a fixed arity, and a special binary operator, called application (Ap).

ii) The set T(F,X ) of terms, ranged over by t, is defined by:

t ::= x | F(t1, . . . , tn) | Ap(t1, t2) | λx.t

We will consider terms modulo α-conversion.
A context is a term with a hole, and it is denoted as usual by C[].

iii) a) A neutral term is a term not of the form λx.t.
b) A lambda term is a term not containing function symbols.
c) An algebraic term is a term containing neither λ nor Ap.

The set of free variables of a term t is defined as usual, and denoted by FV(t).

A term-substitution is an operation on terms where terms variables are replaced by terms;
as usual for term-substitution in systems with abstraction, we will consider terms modulo
α-conversion to avoid name clashes. To denote a term-substitution, we use capital characters
like ‘R’, instead of Greek characters like ‘σ’, which will be used to denote types. Sometimes
we use the notation {x1 �→ t1, . . . , xn �→ tn}. We write tR for the result of applying the term-
substitution R to t.

Reductions on T(F,X ) are defined through rewrite rules together with a β-reduction rule.

Definition 1.2 (Reduction) i) A rewrite rule is a pair (l,r) of terms. Often, a rewrite rule
will get a name, e.g. r, and we write l →r r. Three conditions are imposed: l �∈ X , l is an
algebraic term, and FV(r) ⊆ FV(l).

ii) A rewrite rule l → r determines a set of rewrites lR → rR for all term-substitutions R. The
left hand side lR is called a redex, the right hand side rR its contractum. Likewise, for
any t and u, the usual notion of β-reduction Ap(λx.t,u) →β t{x �→u} is also a rewrite;
Ap(λx.t,u) is called a redex, and t{x �→u} its contractum.

iii) A redex t may be substituted by its contractum t′ inside a context C[]; this gives rise
to rewrite steps C[t] → C[t′ ]. Concatenating rewrite steps we have rewrite sequences t0 →
t1 → t2 → ·· ·. If t0 → ·· · → tn (n ≥ 0) we also write t0 →∗ tn, and t0 →+ tn if t0 →∗ tn in
one step or more.

Definition 1.3 A Term Rewriting System with β-reduction rule (trs+β) is defined by a pair
(Σ,R) of an alphabet Σ and a set R of rewrite rules.
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Note that in contrast with Cutrs, the rewrite rules considered in this paper may contain
λ-abstractions in the right-hand sides.

We take the view that in a rewrite rule a certain symbol is defined.

Definition 1.4 In a rewrite rule F(t1, . . . , tn)→r r, F is called the defined symbol of r, and r is
said to define F. F is a defined symbol, if there is a rewrite rule that defines F, and Q ∈ F is
called a constructor if Q is not a defined symbol.

Notice that ‘Ap’ cannot be a defined symbol since it cannot appear in the left-hand side of
a rewrite rule.

Definition 1.5 Let (Σ,R) be a trs+β.

i) A term is in normal form if it contains no redex.
ii) A term t is strongly normalisable if all the rewrite sequences starting with t are finite, and

we will write SN (t) if t is strongly normalisable.
iii) (Σ,R) is strongly normalising if every term is.
iv) (Σ,R) is confluent if for all t such that t →∗ u and t →∗ v, there exists s such that u →∗ s

and v →∗ s.

Example 1.6 The following is a set of rewrite rules that defines the functions append and map
on lists and establishes the associativity of append. The function symbols nil and cons are
constructors.

append(nil, l) → l
append(cons(x, l), l′) → cons(x,append(l, l′))
append(append(l, l′), l′′) → append(l,append(l′, l′′))
map ( f ,nil) → nil
map ( f ,cons(y, l)) → cons(Ap( f ,y),map ( f , l))

Since variables in trs+β may be substituted by λ-expressions, we obtain the usual func-
tional programming paradigm, extended with definitions of operators and data structures.
Notice, however, that we obtain more: in functional programs, the set F is divided into
function symbols and constructors, and, in rewrite rules, function symbols are not allowed to
appear in ‘constructor position’ and vice-versa. This does not hold for trs+β: the symbol
‘append’ appears in the third rule in both function and constructor position.

2 A Polymorphic Intersection System for trs+β

In this section we define a type assignment system for TRS+β, that can be seen as an ex-
tension (by adding ‘∀ ’) of the intersection system presented in [7]. We use polymorphic
strict intersection types, defined over a set of type-variables and sorts (type constants), us-
ing arrow, intersection and universal quantifiers. We assume the reader to be familiar with
intersection type assignment systems, and refer to [12, 2, 5] for more details.

Several systems can be considered as fragments of our type assignment system:

i) The system of [7]: ∀ -free fragment
ii) The system of [8]: λ-free, ∀ -free fragment

iii) The system of [5]: sort-free, ∀ -free, lc-fragment
iv) The type assignment version of System F [23] : intersection-free lc-fragment
v) The system of [32]: sort-free lc-fragment

Indeed, the latter system is not a proper fragment, since we use strict intersection types
(i.e. an intersection type cannot be the right-hand side of an arrow type). However this is not
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an actual difference, since the use of strict intersection types, while simplifying the typing
procedures, does not affect the typing power. Any term typeable in the full intersection type
discipline can be given a strict type and vice-versa [2].

For what concerns System F, its type assignment version can be seen as a fragment of our
system, but our system is not a pure intersection-extension: we cannot quantify intersection
types. Again, this is not a real problem: for any universally quantified intersection type
∀α.σ1∩σ2 we have an equivalent type of the form (∀α.σ1)∩(∀α.σ2).

For lc, a type assignment system that combines the intersection system [12] with System
F has been defined in [24] and its principal type property has been studied in [32]. As far as
types are concerned, the difference between our system and the latter is that we add constant
types, and use strict intersection types.

2.1 Types

We use strict intersection types over a set V = Φ � A of type-variables, and a set S of sorts.
For various reasons (definition of operations on types, definition of unification), we will
distinguish syntactically between (names of) free type-variables (which belong to Φ) and
(names of) bound type-variables (in A).

Definition 2.1 (Types) Let Φ = {ϕ0, ϕ1, . . .}, A = {α0,α1, . . .}, and S = {s0, s1, . . .} all be de-
numerable sets. Ts, the set of polymorphic strict types, and T , the set of polymorphic strict
intersection types, are defined by:

Ts ::= ϕ | s | (T → Ts) | ∀α.Ts[α/ϕ]
T ::= (Ts∩ · · · ∩Ts)

To avoid parentheses in the notation of types, ‘→’ is assumed to associate to the right and,
as in logic, ‘∩’ binds stronger than ‘→’, which binds stronger than ‘∀ ’; so ρ∩µ→∀α.γ→δ
stands for ((ρ∩µ)→(∀α.(γ→δ))). Also ∀α.σ is used as abbreviation for ∀α1.∀α2 . . .∀αn.σ,
and we assume that each variable is bound at most once in a type (renaming if necessary). In
the meta-language, we denote by σ[τ/ϕ] (resp. σ[τ/α]) the substitution of the type-variable
ϕ (resp. α) by τ in σ.

FV(σ), the set of free variables of a type σ is defined as usual (note that by construction,
FV(σ) ⊆ Φ). A type is called closed if it contains no free variables, and ground if it contains
no variables at all.

Definition 2.2 (Relations on types) The relation ≤ is defined as the least pre-order (i.e.
reflexive and transitive relation) on T such that:

∀n ≥ 1,∀1≤ i≤n [σ1∩· · ·∩σn ≤ σi]
∀α.σ ≤ σ[τ/α]

σ ≤ ∀α.σ, α not in σ
∀n ≥ 1,∀1≤ i≤n [σ ≤ σi] ⇒ σ ≤ σ1∩· · ·∩σn

σ ≤ τ ⇒ ∀α.σ[α/ϕ] ≤ ∀α.τ[α/ϕ]
ρ ≤ σ & τ ≤ µ ⇒ σ→τ ≤ ρ→µ

The equivalence relation ∼ on types is defined by: σ ∼ τ ⇐⇒ σ ≤ τ ≤ σ, and we will work
with types modulo ∼ .

Notice that Ts is a proper subset of T , and that σ→(τ∩ρ) is not a type in T (it is not
strict). To obtain a notion of type assignment that is a true extension of System F, the ‘∀ ’
type-constructor is allowed to occur on the right of an arrow, so a type like σ→∀α.τ is well-
defined. Also note that we cannot quantify intersection types, but we have equivalent types
of the form (∀α.σ1)∩(∀α.σ2).
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2.2 Type assignment

Before coming to the definition of type assignment, we introduce the notion of basis.

Definition 2.3 (Statement and Basis) i) A statement is an expression of the form t :σ, with
σ ∈ T and t ∈ T(F,X ). t is the subject and σ the predicate of t :σ.

ii) A basis B is a partial mapping from variables to types, represented as set of statements
with only distinct variables as subjects.

iii) For bases B1, . . . , Bn, the basis Π{B1, . . . , Bn} is defined by: x:σ1∩· · ·∩σm ∈ Π{B1, . . . , Bn} if
and only if {x:σ1, . . . , x:σm} is the (non-empty) set of all statements about x that occur in
B1∪ · · · ∪Bn.

iv) We extend ≤ and ∼ to bases by: B ≤ B′ if and only if for every x:σ′ ∈ B′ there is an
x:σ ∈ B such that σ ≤ σ′, and B ∼ B′ if and only if B ≤ B′ ≤ B.

Notice that if n= 0, then Π{B1, . . . , Bn}=∅. We will often write B, x:σ for the basis Π{B,{x:σ}},
when x does not occur in B, and write B\x for the basis obtained from B by removing the
statement that has x as subject.

One of the main features of type assignment systems, and intersection systems in partic-
ular, is to provide flexibility of typing. This feature seems in contrast with the type rigidity
implicitly possessed by function symbols. They have precise arities and a precise functional
behaviour, as expressed by the rewriting rules. Developing a type assignment system con-
taining function symbols necessarily implies a sort of mediation, for what concerns algebraic
terms, between flexibility and rigidity. We achieve this by using an environment providing a
type for each function symbol. This approach, however, is not rigid: from the type provided
by the environment we can derive many types to be used for different occurrences of the
symbol in a term, all of them ‘consistent’ with that provided type.

Definition 2.4 (Environment) An environment is a mapping E : F → Ts.

2.2.1 Operations on Types

In order to obtain valid instances of the type provided by an environment for a function
symbol we will use operations which are standard in type systems with intersection types,
suitably modified in order to take into account the presence of universal quantifiers. These
operations are: substitution, expansion, lifting and closure.

In type systems based on arrow types with type-variables, the operation of substitution
generates all valid instances of a given type by replacing types for type variables. In presence
of intersection types, valid instances could also be the result of replacing (sub)types by the
intersection of a number of renamed copies of that (sub)type. This is (roughly) what is
performed by the operation of expansion. The operation of lifting, instead, generates instances
of types using the ‘≤’ relation. The last operation we consider, closure, is not present in
other type systems with intersection types and has been devised to deal in particular with
universal quantification.

In the following we shall have to consider the notion of principal typing for a term, that
is the typing from which all the possible typings for the term can be derived. This can be
achieved by means of the above discussed operations. This implies that we shall have to
define the above operations not only on types, but also on type derivations (denoted by
B �E t :σ, where B is a basis and σ a type). We shall use the same symbols to denote the two
versions of the operations, since the context will always clarify any possible ambiguity.

We will show that all operations are sound in the sense that they preserve typeability,
and therefore well-defined when extended to derivations. That is, for any operation op, if
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B �E t :σ then op(B �E t :σ) is a correct derivation. Of course the variants of the operations
on derivations can be composed.

Substitution. We will define substitution as usual in first-order logic, but avoid to go out of
the set of polymorphic strict intersection types. For example, the replacement of ϕ by τ1∩τ2
would transform σ→ϕ into σ→τ1∩τ2, which is not in T . The following definition takes this
fact into account.

Definition 2.5 (Substitution) The substitution (ϕ �→ ρ) : T → T , where ϕ is a type-variable
in Φ and ρ ∈ Ts, is defined by:

(ϕ �→ ρ)(ϕ) = ρ
(ϕ �→ ρ)(ϕ′) = ϕ′, if ϕ′ �= ϕ
(ϕ �→ ρ)(s) = s
(ϕ �→ ρ)(α) = α
(ϕ �→ ρ)(σ→τ) = (ϕ �→ ρ)(σ) → (ϕ �→ ρ) (τ)

(ϕ �→ ρ)(σ1∩· · ·∩σn) = (ϕ �→ ρ)(σ1)∩ · · · ∩ (ϕ �→ ρ)(σn)
(ϕ �→ ρ)(∀α.σ) = ∀α.(ϕ �→ ρ)(σ)

We will use S to denote a generic substitution. Substitutions extend to bases in the natural
way: S(B) = {x:S(ρ) | x:ρ ∈ B}.

For substitutions, the following properties hold:

Property 2.6 Let S be a substitution.

i) If σ ≤ τ, then S(σ) ≤ S(τ).
ii) If B ≤ B′, then S(B) ≤ S(B′).

Proof: The second part is a consequence of the first, which is shown by induction on the
definition of ‘≤’.

Expansion. As mentioned above, the operation of expansion deals with the replacement
of a sub-type of a type by an intersection of a number of renamed copies of that sub-type.
When a sub-type is expanded, new type variables are generated, and other sub-types might
be affected (e.g. the expansion of τ in σ→τ might affect also σ: intuitively, each renamed
copy of τ will have an associated copy of σ; see [36] for a detailed explanation). Ground
types are not affected by expansions since all renamed copies coincide (and σ∩σ ∼ σ).

Two different definitions of expansion appear in the literature for lc, depending on whether
one uses a set of types (see e.g. [36]) or a set of type variables (see e.g. [5]) to compute the set
of types affected by the expansion. Our definition is inspired by [36]; the extension to deal
with types containing sorts has already been done in [20], here quantifiers are also taken
into account.

We consider expansions determined by three parameters: the sub-type to be expanded,
the number of copies that have to be generated, and the set of types affected by the expan-
sion. The third parameter is not present in standard definitions of expansion since it can be
“computed”, however we prefer to add it since it simplifies the definition. Of course, we will
only apply an expansion to a type (or to a type derivation) if they are compatible, that is, if
the third parameter of the expansion contains the corresponding set of affected types.

The types modified by the expansion 〈µ,n, A〉 will be those that end with a type in A. The
notion of last sub-types in a strict type plays an important role in this operation.
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Definition 2.7 The set of last sub-types of a type τ ∈ Ts, denoted by last(τ), is defined by:

last(ϕ) = {ϕ}
last(s) = {s}
last(σ→ρ) = {σ→ρ} ∪ last(ρ)
last(∀α.σ) = {∀α.σ} ∪ last(σ[ϕα/α]).

Note that for types of the form ∀α.σ, according to our convention σ is not a well-formed
sub-type (free variables must belong to Φ). For this reason we consider a mapping A→Φ
that associates to each α a different fresh ϕα ∈ Φ, and rename α in σ, using ϕα. In this way
we can define sub-types of types in T , as usual.

We define now the notion of compatibility between an expansion and a type derivation (it
applies to types as particular case).

Definition 2.8 (Compatibility) We represent a derivation B �E t :σ by a triple 〈B,σ, E〉 where
B is a basis, σ a type, and E the set of types assigned to the function symbols of t in the
derivation. An expansion Ex〈µ,n,A〉 (where µ is a type in T , n ≥ 2, and A a finite set of types)
is compatible with a derivation represented by 〈B,σ, E〉 if the set A contains the set Lµ(〈B,σ, E〉)
defined as follows:

i) Any non-closed strict sub-type of µ is in Lµ(〈B,σ, E〉).
ii) Let τ be a non-closed strict (sub)type occurring in 〈B,σ, E〉. If τ′ is a most general

instance (with respect to the universal quantifiers) of τ such that last(τ′)∩Lµ(〈B,σ, E〉) �=
∅, then τ′ ∈ Lµ(〈B,σ, E〉).

iii) Any non-closed strict sub-type of τ ∈ Lµ(〈B,σ, E〉) is in Lµ(〈B,σ, E〉).
An expansion Ex〈µ,n,A〉 is compatible with a type τ if it is compatible with the triple 〈∅,τ,∅〉.

The definition of expansion, already non-trivial in the intersection system, becomes quite
involved in the presence of universal quantifiers. We define it in two steps. First, given the
set A of types affected by the expansion, we see which are the variables that will need to
be renamed (for free variables we use substitutions in order to do the renamings, but we
also need to rename bound variables; those renamings are not substitutions according to
our definition, but by abuse of terminology we call them substitutions as well). Then, if
the expansion 〈µ,n, A〉 is compatible with the type τ that we want to expand, we traverse τ
top-down searching for maximal sub-types whose last sub-types are in A or have an instance
(obtained by replacing bound variables by types) in A. Those sub-types of τ will be replaced
by intersections of renamed copies.

Definition 2.9 (Expansion) Let µ be a type in T , n ≥ 2, and A a finite set of types. The
expansion determined by 〈µ,n, A〉, denoted by Ex〈µ,n,A〉, is defined as follows:

(Renamings) : Let V = {ϕ1, . . . , ϕm} be the set of free type variables occurring in A, and let Si
(1≤ i≤n) be the substitution that replaces every ϕj by a fresh variable ϕi

j, and every αj

and ϕαj by αi
j (actually, Si is just a renaming).

(Expansion of a type) : For any τ ∈ T (without loss of generality we assume that its bound
variables are disjoint with those of µ, A) compatible with the expansion Ex〈µ,n,A〉, the
type Ex〈µ,n,A〉(τ) is obtained out of τ by traversing τ top-down and replacing in τ a
maximal non-closed sub-type β such that there exists a most general instance (w.r.t. the
universal quantifiers) β′ of β with last(β′)∩A �= ∅

a) by S1(β)∩ · · · ∩Sn(β) if β′ = β,
b) otherwise by

⋂

1≤j≤p

(S1(β′
j)∩ · · · ∩Sn(β′

j)∩∀Si(α).Ex〈µ,n,A〉(ρ[cj/α])[α/cj])
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if β = ∀α.ρ, β′
j (1≤ j≤ p) are all the most general instances of β satisfying the con-

dition, and cj are fresh constants replacing the variables instantiated in the instance
β′

j of β.

(Expansion of a derivation) : Let B �E t :σ be a type-derivation (represented by the triple 〈B,σ, E〉)
compatible with Ex〈µ,n,A〉. The result of the application of the expansion is then a triple:

〈{x:Ex〈µ,n,A〉(ρ) | x:ρ ∈ B},Ex〈µ,n,A〉(σ),{Ex〈µ,n,A〉(ρ) | ρ ∈ E}〉

We will prove below that this triple represents a correct derivation (i.e. expansions are
sound on derivations).

Some explanations are in order. The result of an operation of expansion is not unique
because it depends on the choice of new variables in part (Renamings) of the definition; but it
is unique modulo renaming of variables (and this is sufficient for our purpose). It is always
a type in T : we never introduce an intersection at the right-hand side of an arrow type,
and never quantify an intersection type (see part (Expansion of a type)). A type might be
affected by an expansion even if its free variables are disjoint with those of the sub-type to
be expanded. The reason is that universally quantified variables represent an infinite set of
terms (their instances), so if one instance is affected, the whole type is affected. If we are
applying an expansion operation to a universally quantified type, some instances may be
expanded (if their last sub-types are in the set of affected types) whereas others are not (if
their last sub-types are not in this set). In this case the expansion of the universally quantified
type will be the intersection of the expansions of each class of instances. Since there is only
a finite set of affected types, the operation is well defined.

Example 2.10 Let γ be (ϕ1→ϕ2)→(ϕ3→ϕ1)→ϕ3→ϕ2, and Ex be the expansion determined
by 〈ϕ1,2,{ϕ1, ϕ3→ϕ1, ϕ3}〉. First, we check that this expansion is compatible with γ: indeed,
the set Lϕ1(〈∅,γ,∅〉) = {ϕ1, ϕ3→ϕ1, ϕ3}. Then we compute the set of variables that will be
renamed: V = {ϕ1, ϕ3}. The result of the expansion of γ is:

Ex(γ) = ((ϕ1
1∩ϕ2

1)→ϕ2)→((ϕ1
3→ϕ1

1)∩(ϕ2
3→ϕ2

1))→(ϕ1
3∩ϕ2

3)→ϕ2.

Consider now a type with universal quantifiers and free variables, such as

γ = ∀α2∀α3.(ϕ1→α2)→(α3→ϕ1)→α3→α2,

Then Lϕ1(〈∅,γ,∅〉) = {ϕ1,∀α3.(ϕ1→ϕ1)→(α3→ϕ1)→α3→ϕ1,
(ϕ1→ϕ1)→(ϕα3→ϕ1)→ϕα3→ϕ1, ϕ1→ϕ1, ϕα3→ϕ1, ϕα3}

Let Ex be the expansion determined by 〈ϕ1,2,Lϕ1(〈∅,γ,∅〉)〉, which is obviously compat-
ible with γ. Then V = {ϕ1} and

Ex(γ) = (∀α3.(ϕ1
1→ϕ1

1)→(α3→ϕ1
1)→α3→ϕ1

1)∩ (∀α3.(ϕ2
1→ϕ2

1)→(α3→ϕ2
1)→α3→ϕ2

1)∩
(∀α2∀α1

3∀α2
3.(ϕ1

1∩ ϕ2
1→α2)→((α1

3→ϕ1
1)∩ (α2

3→ϕ2
1))→α1

3∩α2
3→α2).

For an example with sorts, consider γ = (ϕ1→s)→ϕ2, and let Ex be the expansion de-
termined by 〈ϕ1→s, 2,{ϕ1→s, ϕ1}〉, which is compatible with γ since Lϕ1→s(〈∅,γ,∅〉) =
{ϕ1→s, ϕ1}. Then V = {ϕ1} and Ex(γ) = ((ϕ1

1→s)∩(ϕ2
1→s))→ϕ2.

If we apply instead the expansion determined by 〈ϕ2,2,Lϕ2(〈∅,γ,∅〉)〉 to γ, where

Lϕ2(〈∅,γ,∅〉) = {ϕ2, (ϕ1→s)→ϕ2, ϕ1→s, ϕ1}, and
V = {ϕ2, ϕ1},

we obtain Ex(γ) = ((ϕ1
1→s)→ϕ1

2)∩((ϕ2
1→s)→ϕ2

2).
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For an operation of expansion the following property holds:

Property 2.11 Let Ex= 〈µ,n, A〉 be an expansion compatible with a derivation represented by 〈B,σ, E〉.
If x:ρ ∈ B and ρ ≤ σ, then Ex(ρ) ≤ Ex(σ).

Proof: By induction on the definition of ≤.

Lifting. The operation of lifting replaces basis and type by a smaller basis and a larger type,
in the sense of ‘≤’ (see [4] for details). This operation allows us to eliminate intersections
and universal quantifiers, using the ‘≤’ relation. When applying a lifting to a derivation
B �E t :σ we will use the pair 〈B,σ〉 to represent the derivation.

Definition 2.12 (Lifting) An operation of lifting is determined by a pair L=<〈B0,τ0〉, 〈B1,τ1〉>
such that τ0 ≤ τ1 and B1 ≤ B0, and L(〈B,σ〉) = 〈B′,σ′〉 where

σ′ = τ1, if σ = τ0,
σ′ = σ, otherwise

B′ = B1, if B = B0
B′ = B, otherwise

A lifting on types is determined by a pair L = 〈τ0,τ1〉 such that τ0 ≤ τ1 and is defined by

L(σ) = τ1, if σ = τ0
= σ, otherwise

Closure. The operation of closure introduces quantifiers, taking into account the basis where
a type is used.

Definition 2.13 (Closure) A closure is an operation characterised by a type-variable ϕ. It is
defined by:

Clϕ(〈B,σ〉) = 〈B,∀α.σ[α/ϕ]〉, if ϕ does not appear in B (α is a fresh variable)
= 〈B,σ〉, otherwise

It is extended to types by: Clϕ(σ) = (τ), if Clϕ(〈∅,σ〉) = 〈∅,τ〉.

Chains of operations. The set Ch of chains for types is defined as the smallest set containing
expansions, substitutions, liftings, and closures on types, that is closed under composition.

Definition 2.14 (Chains on types) i) A chain is an object [O1, . . . ,On], where each Oi is an
operation of substitution, expansion, lifting, or closure, and

[O1, . . . ,On](σ) = O1(· · · (On(σ)) · · ·).

ii) On chains the operation of concatenation is denoted by ∗ , and:

[O1, . . . ,Oi] ∗ [Oi+1, . . . ,On] = [O1, . . . ,On].

iii) We say that Ch1 = Ch2, if for all σ, Ch1(σ) = Ch2(σ).
iv) We extend the notion of compatibility to chains by: Ch is compatible with B �E t :σ if,

for all expansions Ex that occur in Ch (so Ch = Ch1 ∗ [Ex] ∗ Ch2), Ex is compatible with
Ch1(B �E t :σ).

Notice that, although the operation of substitution seems redundant, in that one could
simulate substitution via closure and lifting, this is only the case for type variables that do
not occur in the basis; to instantiate type-variables that occur in the basis as well, substitution
on types is essential.
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2.2.2 Type Assignment Rules

We specify how to type terms through the presentation of type assignment rules. To deal
with function symbols we use an environment E and the operations on types defined above:
the types assigned to occurrences of function symbols are obtained from the type provided
by the environment by making a chain of operations.

Definition 2.15 (Type Assignment Rules) i) Type assignment (with respect to E) is defined
by the following natural deduction system in sequent form (where all types displayed
are in Ts, except for σ1, . . . ,σn in rule (F) and σ in rules (→E), (→I), and (≤)). Note the
use of a chain of operations in rule (F).

(≤) : (a)
B �E x :τ (→I) :

B, x:σ �E t :τ

B �E λx.t :σ→τ
(→E) :

B �E t1 :σ→τ B �E t2 :σ

B �E Ap(t1, t2) :τ

(∩I) :
B �E t :σ1 · · · B �E t :σn

(n ≥ 1)
B �E t :σ1∩· · ·∩σn

(F) :
B �E t :σ1 · · · B �E t :σn

(b)
B �E F(t1, . . . , tn) :σ

(∀ I) :
B �E t : σ

(c)
B �E t :∀α.σ[α/ϕ]

(∀E) :
B �E t :∀α.σ

B �E t :σ[τ/α]

a) x:σ ∈ B,σ ≤ τ.
b) If there exists a chain Ch on types such that σ1→·· ·→σn→σ = Ch(E(F)).
c) If ϕ does not occur (i.e. is not free) in B.

ii) If B �E t : σ is derivable in this system, we write B �E t : σ.

As said before, the use of an environment in rule (F) introduces a notion of polymor-
phism for our function symbols, which is an extension (with intersection types and general
quantification) of the ml-style of polymorphism. The environment returns the ‘principal
type’ for a function symbol; this symbol can be used with types that are ‘instances’ of its
principal type, obtained by applying chains of operations.

Note that the rule (≤) is only defined for variables, and we have a (∀E)-rule for arbitrary
terms but not an (∩E)-rule. Indeed, the (∩E)-rule for arbitrary terms can be admitted to this
system of rules without extending its expressive power. On the other hand, the (∀E)-rule
cannot be derived if it is not present in the system. This asymmetry comes from the fact that
our types are strict with respect to ‘∩’, but not with respect to ‘∀ ’.

Example 2.16 We can derive �E λxyz.x(yz) :(ϕ1→ϕ2)→(ϕ3→ϕ1)→ϕ3→ϕ2 as follows, where
B = {x:ϕ1→ϕ2,y:ϕ3→ϕ1,z:ϕ3}:

B �E x : ϕ1→ϕ2

B �E y : ϕ3→ϕ1 B �E z : ϕ3

B �E yz : ϕ1

B �E x(yz) : ϕ2

B\z �E λz.x(yz) : ϕ3→ϕ2

B\y,z �E λyz.x(yz) : (ϕ3→ϕ1)→ϕ3→ϕ2

�E λxyz.x(yz) : (ϕ1→ϕ2)→(ϕ3→ϕ1)→ϕ3→ϕ2

11



and also �E λxyz.x(yz) :∀α3α2.(ϕ1→α2)→(α3→ϕ1)→α3→α2 with a derivation D of the form:

�E λxyz.x(yz) : (ϕ1→ϕ2)→(ϕ3→ϕ1)→ϕ3→ϕ2

�E λxyz.x(yz) :∀α2.(ϕ1→α2)→(ϕ3→ϕ1)→ϕ3→α2

�E λxyz.x(yz) :∀α3α2.(ϕ1→α2)→(α3→ϕ1)→α3→α2

Notice that the sub-derivation for �E λxyz.x(yz) :(ϕ1→ϕ2)→(ϕ3→ϕ1)→ϕ3→ϕ2 in D is ex-
actly the one given above, in the sense that no α appears there.

Now, performing the expansions of Example 2.10, we obtain the statements

�E λxyz.x(yz) :((ϕ1
1∩ϕ2

1)→ϕ2)→((ϕ1
3→ϕ1

1)∩(ϕ2
3→ϕ2

1))→(ϕ1
3∩ϕ2

3)→ϕ2

and
�E λxyz.x(yz) :σ1∩σ2∩σ3

where σ1 = ∀α3.(ϕ1
1→ϕ1

1)→(α3→ϕ1
1)→α3→ϕ1

1,
σ2 = ∀α3.(ϕ2

1→ϕ2
1)→(α3→ϕ2

1)→α3→ϕ2
1, and

σ3 = ∀α2∀α1
3∀α2

3.(ϕ1
1∩ ϕ2

1→α2)→((α1
3→ϕ1

1)∩ (α2
3→ϕ2

1))→α1
3∩α2

3→α2,
which are derived as below (where, in the derivations, we will omit the premisse for rule
(≤) (of the shape ‘x:σ ∈ B’) as well as ϕ for lack of space).

Take B = {x : ϕ1
1→ϕ1

1,y : ϕ3→ϕ1,z:ϕ3}, then, for �E λxyz.x(yz) :σ1:

B �E x : 1
1→ 1

1

B �E y : 3→ 1
1 B �E z : 3

B �E yz : 1
1

B �E x(yz) : 1
1

B\z �E λz.x(yz) : 3→ 1
1

B\y,z �E λyz.x(yz) :( 3→ 1)→ 3→ 1
1

�E λxyz.x(yz) :( 1
1→ 1

1)→( 3→ 1
1)→ 3→ 1

1

�E λxyz.x(yz) :∀α3.( 1
1→ 1

1)→(α3→ 1
1)→α3→ 1

1

The derivation for �E λxyz.x(yz) :σ2 is similar to the one above, just replace ϕ1
1 by ϕ2

1.
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Take B = {x : (ϕ1
1∩ϕ2

1)→ϕ2,y : (ϕ1
3→ϕ1

1)∩(ϕ2
3→ϕ2

1),z : ϕ1
3∩ϕ2

3}, then, for �E λxyz.x(yz) :σ3:

B �E x : (1
1∩

2
1)→2

B �E y : 1
3→1

1 B �E z : 1
3

B �E yz : 1
1

B �E y : 2
3→2

1 B �E z : 2
3

B �E yz : 2
1

B �E yz : 1
1∩

2
1

B �E x(yz) : 2

B\z �E λz.x(yz) :(1
3∩

2
3)→2

B\y,z �E λyz.x(yz) :((1
3→1

1)∩(
2
3→2

1))→(1
3∩

2
3)→2

�E λxyz.x(yz) :((1
1∩

2
1)→2)→((1

3→1
1)∩(

2
3→2

1))→(1
3∩

2
3)→2

�E λxyz.x(yz) :∀α2
3.(1

1∩ 2
1→2)→((1

3→1
1)∩ (α2

3→2
1))→1

3∩α2
3→2

�E λxyz.x(yz) :∀α1
3∀α2

3.(1
1∩ 2

1→2)→((α1
3→1

1)∩ (α2
3→2

1))→α1
3∩α2

3→2

�E λxyz.x(yz) :∀α2∀α1
3∀α3.(1

1∩ 2
1→α2)→((α1

3→1
1)∩ (α2

3→2
1))→α1

3∩α2
3→α2

Finally, combining these three derivations, we obtain:

�E λxyz.x(yz) :σ1 �E λxyz.x(yz) :σ2 �E λxyz.x(yz) :σ3
(∩I)

�E λxyz.x(yz) :σ1∩σ2∩σ3

Similarly, we can build a derivation for

�E λxyz.x(yz) :∀α3α2α1.(α1→α2)→(α3→α1)→α3→α2

which is in fact the principal type for this term. We can also define a function F which plays
the same role as this λ-term, using a rewrite rule

F(x,y,z)→ Ap(x, Ap(y,z)).

The term F(x,y,z) is typeable with respect to an environment where

E(F) = ∀α3α2α1.(α1→α2)→(α3→α1)→α3→α2 or
E(F) = (ϕ1→ϕ2)→(ϕ3→ϕ1)→ϕ3→ϕ2.

2.3 Soundness of operations on derivations

The four operations defined above are sound in the sense that, when applied to a derivation,
they yield a derivation. We will show this result for each of the individual operations.

Theorem 2.17 (Soundness of Substitution) Let S be a substitution and E an environment,
then B �E t :σ implies S(B) �E t :S(σ).

Proof: By induction on the structure of derivations. The only interesting cases are:

(≤) : Then t ≡ x and B ≤ {x:σ}. By Lemma 2.6(ii), S(B) ≤ {x:S(σ)}, so S(B) �E x :S(σ).
(F ) : Then t ≡ F(t1, . . . , tn), there are σ1, . . . ,σn ∈ T and a chain Ch such that, for every

1≤ i≤n, B �E ti :σi and Ch(E(F)) = σ1→·· ·→σn→σ. Then by induction, S(B) �E ti :S(σi),
for every 1≤ i≤n; since [S] ∗ Ch is a chain and

([S] ∗ Ch)(E(F)) = S(σ1)→ ·· · → S(σn)→ S(σ),
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by (F) also S(B) �E t :S(σ).
(∀ I) : Then there exists a τ such that σ = ∀α.τ[α/ϕ], B �E t :τ, and ϕ does not occur (free)

in B. By induction, S(B) �E t :S(τ). Without loss of generality, we can assume that
S(ϕ) = ϕ, then ∀α.S(τ)[α/ϕ] = S(∀α.τ[α/ϕ]). Therefore, if ϕ occurs in τ, it also occurs in
S(τ), and it will not occur in S(B). But then, by rule (∀ I), also S(B) �E t :∀α.S(τ)[α/ϕ].

(∀E) : Then there are τ,ρ such that σ = τ[ρ/α], and B �E t :∀α.τ. By induction, S(B) �E t :S(∀α.τ).
Since S does not affect bound variables, also S(B) �E t :∀α.S(τ). Then, by rule (∀E), we
get S(B) �E t :S(τ)[S(ρ)/α], and S(τ)[S(ρ)/α] = S(τ[ρ/α]).

Theorem 2.18 (Soundness of Lifting) Let L be a lifting and E an environment, then B �E t :σ
implies L(B) �E t :L(σ).

Proof: Notice that L(B) ≤ B and σ ≤ L(σ). The proof is done by induction on the structure
of derivations.

(≤) : Then t ≡ x and there exists a τ such that x:τ ∈ B, with τ ≤ σ. Since L(B) ≤ B, there ex-
ists a ρ such that x:ρ ∈ L(B), and ρ ≤ τ ≤ σ ≤ L(σ). But then, by rule (≤), L(B) �E x :L(σ).

(F ) : Then t = F(t1, . . . , tn), and there are σ1, . . . ,σn such that, for 1≤ i≤n, B �E ti :σi, and
there exists a chain Ch such that Ch(E (F)) = σ1→·· ·→σn→σ. Since L(B) ≤ B, by induc-
tion L(B) �E ti :σi, for 1≤ i≤n. Since σ ≤ L(σ),

L = <〈∅,σ1→·· ·→σn→σ〉, 〈∅,σ1→·· ·→σn→L(σ)〉>

is a lifting, so ([L] ∗ Ch)E (F) = σ1→·· ·→σn→L(σ), and L(B) �E F(t1, . . . , tn) :L(σ) by
rule (F).

(→E) : Then t = Ap(t1, t2), and there is a ρ such that B �E t1 :ρ→σ, and B �E t2 :ρ. Since
σ ≤ L(σ), also ρ→σ ≤ ρ→L(σ), so by induction, L(B) �E t1 :ρ→L(σ) and, by rule (→E),
also L(B) �E Ap(t1, t2) :L(σ).

(→I) : Then t = λx.t′, and there are ρ,µ such that σ = ρ→µ and B, x:ρ �E t′ :µ, and δ,γ such
that L(σ) = γ→δ, and γ ≤ ρ,µ ≤ δ. Then, by induction L(B), x:γ �E t′ :δ, and therefore,
by rule (→I), also L(B) �E λx.t′ :γ→δ.

(∀ I) : Then σ = ∀α.ρ[α/ϕ], and B �E t :ρ. Since ∀α.ρ[α/ϕ] ≤ L(σ), by definition of ‘≤’, either:
(L(σ) = ρ[µ/ϕ]) : By induction, L(B) �E t :ρ, and, using rule (∀ I) we obtain L(B) �E t :∀α.ρ[α/ϕ]

(without loss of generality we assume that ϕ does not occur in L(B)). Now, using
(∀E) we obtain L(B) �E t : ρ[µ/ϕ].

(L(σ) = ∀α′.σ, with α′ fresh) : By induction, L(B) �E t :ρ, and, since α′ is fresh, L(B) �E t :∀α′.σ,
by rule (∀ I).

(L(σ) = ∀α.µ[α/ϕ], with ρ ≤ µ) : Then, by induction, L(B) �E t :µ, and L(B) �E t :∀α.µ[α/ϕ]
by rule (∀ I).

(∩I) : Then σ = σ1∩· · ·∩σn, and, for 1≤ i≤n, B �E t :σi. Then there is an 1≤ i≤n, such that
σi ≤ L(σ). Then, by induction, L(B) �E t :L(σ).

A direct consequence of this theorem is that the following derivation rule is admissible.

B �E t :σ
(σ ≤ τ)

B �E t :τ

Also, the following is immediate.

Corollary 2.19 B �E t :σ1∩· · ·∩σn, if and only if B �E t :σi, for all 1≤ i≤n.

Theorem 2.20 (Soundness of Expansion) Let Ex = 〈µ,n, A〉 be an expansion compatible with
the derivation B �E t : σ represented by 〈B,σ, E〉. If Ex(〈B,σ, E〉) = 〈B′,σ′, E′〉, then B′ �E t :σ′.
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Proof: By induction on the structure of derivations.
(≤) : Then t ≡ x and there exists τ such that x:τ ∈ B, with τ ≤ σ. By Property 2.11, Ex(τ) ≤

Ex(σ), then by rule (≤), B′ �E x :σ′.
(F ) : Then t = F(t1, . . . , tm), and there are σ1, . . . ,σm such that, for 1≤ i≤m, B �E ti :σi, and

there exists a chain Ch such that Ch(E (F)) = σ1→·· ·→σm→σ. We distinguish three cases:
a) If σ′ = Ex(σ) =

⋂
1≤j≤n Sj(σ) then Ex(σi) =

⋂
1≤j≤n Sj(σi) and

Ex(σ1→·· ·→σm→σ) =
⋂

1≤j≤n

Sj(σ1→·· ·→σm→σ),

since the expansion is compatible with the derivation. By induction, Ex(B) �E ti :Ex(σi).
Therefore, by Corollary 2.19, Ex(B) �E ti :Sj(σi), and using rule (F) with [Sj] ∗ Ch,
we can derive Ex(B) �E t :Sj(σ). We then obtain B′ �E t :σ′ using rule (∩I).

b) If Ex(Ch(E(F))) =Ex(σ1)→ . . .→Ex(σn)→Ex(σ) then, since by induction Ex(B) �E ti :Ex(σi),
we can apply rule (F) with a chain [Ex] ∗ Ch to obtain B′ �E t :σ′.

c) Otherwise, σ is a universally quantified type where some instances are expanded
as in part (a) and some instances as in part (b). Then Ex(σ) is an intersection type
where the derivation for each component can be obtained as in part (a) and part (b),
and combined using rule (∩I).

(→E) : Then t = Ap(t1, t2), and there is a ρ such that B �E t1 :ρ→σ, and B �E t2 :ρ. By induc-
tion, Ex(B) �E t1 :Ex(ρ→σ), and Ex(B) �E t2 :Ex(ρ). We consider two cases:

a) If Ex(ρ→σ) =
⋂

1≤j≤n Sj(ρ→σ) then also Ex(ρ) =
⋂

1≤j≤n Sj(ρ) and Ex(σ) =
⋂

1≤j≤n Sj(σ),
since the expansion is compatible with the derivation. Then, by Corollary 2.19,
Ex(B) �E t1 :Sj(ρ→σ), and Ex(B) �E t2 :Sj(ρ). Therefore, using rules (→E) and (∩I)
we obtain Ex(B) �E Ap(t1, t2) :Ex(σ).

b) Otherwise, Ex(ρ→σ) = Ex(ρ)→Ex(σ). Then Ex(B) �E Ap(t1, t2) :Ex(σ) follows by
induction using rule (→E).

(→I) : Then t = λx.t′, and there are ρ,µ such that σ = ρ→µ and B, x:ρ �E t′ :µ. Then, by
induction Ex(B), x:Ex(ρ) �E t′ :Ex(µ). If Ex(ρ→µ) is an intersection of renamed copies,
we proceed as in the previous cases. Otherwise, Ex(ρ→µ) = Ex(ρ)→Ex(µ). Since by
induction Ex(B), x:Ex(ρ) �E t′ :Ex(µ), using rule (→I) we obtain Ex(B) �E t :Ex(σ).

(∀ I) : Then σ = ∀α.ρ[α/ϕ], and B �E t : ρ, where ϕ does not occur in B. If Ex(σ) is an in-
tersection of renamed copies of σ, then so is Ex(ρ), and by induction Ex(B) �E t :Ex(ρ).
Using Corollary 2.19 and rule (∀ I) we obtain Ex(B) �E t :Ex(σ). Otherwise, there is an
instance of σ (with respect to the quantifiers) whose expansion is not an intersection of
renamed copies. Since, without loss of generality, we can assume that ϕ is not in A,
also the expansion of ρ is in Ts in this case. Then, by induction and rule (∀ I) we obtain
Ex(B) �E t :Ex(σ).

(∀E) : Then σ = σ′[τ/α] and B �E t :∀α.σ′.
By induction, Ex(B) �E t :Ex(∀α.σ′). Since all the instances of ∀α.σ′ are taken into

account in Ex(∀α.σ′), in particular we obtain Ex(B) �E t :Ex(σ) using (∀E).
(∩I) : Then σ = σ1∩· · ·∩σn, and, for 1≤ i≤n, B �E t : σi. Then, by induction and rule (∩I) we

deduce Ex(B) �E t :Ex(σ).

Theorem 2.21 (Soundness of Closure) Let Cl= 〈ϕ〉 be a closure such that Cl(〈B,σ〉) = 〈B′,σ′〉,
and E an environment. Then B �E t :σ implies B′ �E t :σ′.

Proof: Direct by definition of closure, using rule (∀ I).

We then have:
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Theorem 2.22 (Soundness of Chains) Let B �E t :σ, Ch be a compatible chain, and E an envi-
ronment. Then Ch(B �E t :σ) = Ch(B) �E t :Ch(σ).

2.3.1 Type Assignment for Rewrite Rules

Being able to infer a type for a term does not give any guarantee about the typing of the terms
in any reduction path out of it. Indeed we need to make sure that the rewrite rules respect
the intended functional behaviour for the function symbols of the signature expressed by the
environment. The environment, however, does not express a strict condition on the type of
function symbols, leaving room to flexibility by letting us use different consistent instances
of the type of a symbol for different occurrences of it. So, we would like to have a certain
degree of flexibility also in the use of rewriting rules, without losing the property of subject
reduction, which is essential in type systems. In order to achieve this we define a notion
of type assignment on rewrite rules, as done in [8], using the notion of principal pair (also
called principal typing). The typeability of rules ensures consistency with respect to the
environment.

Definition 2.23 (Principal pair) 〈P,π〉 is called a principal pair for t with respect to E , if
P �E t :π, and for all B �E t :σ, there is a chain Ch compatible with P �E t :π such that
Ch(〈P,π〉) = 〈B,σ〉.

Definition 2.24 i) We say that l → r ∈ R with defined symbol F is typeable with respect to E ,
if there are P, and π ∈ T such that:

a) 〈P,π〉 is a principal pair for l with respect to E , and each chain Ch compatible with
P �E l :π′ is compatible with P �E r :π.

b) In P �E l :π and P �E r :π all occurrences of F in side conditions to rule (F) are
typed with E (F).

ii) We say that (Σ,R) is typeable with respect to E , if all r ∈ R are.

Notice that, by the formulation of part (i.a), the set of types permitted to occur in the deriva-
tion for P �E r : π is restricted.

Note that for a rule F(t1, . . . , tn)→ r to be typeable, E(F) must be of the form σ1→ . . .→σn→σ.
Although E(F) cannot have an outermost universal quantifier, its free variables play the same
role as universally quantified variables (since they can be instantiated by substitution oper-
ations). In particular, for the polymorphic identity function I we will use E(I) = ϕ→ϕ.

Example 2.25 We show now the type assignment for the rewrite rule D(x)→ Ap(x, x) in an
environment E where E(D) = (ϕ1→ϕ2)∩ϕ1→ϕ2. Let B = {x:(ϕ1→ϕ2)∩ϕ1}, then

B �E x : ϕ1→ϕ2 B �E x : ϕ1

B �E x : (ϕ1→ϕ2)∩ϕ1

B �E D(x) : ϕ2

Indeed, this is a principal derivation for D(x). In order to type the rewrite rule we have to
show that {x:(ϕ1→ϕ2)∩ϕ1} �E Ap(x, x) : ϕ2, which is easy: let B = {x:(ϕ1→ϕ2)∩ϕ1}, then:

B �E x : (ϕ1→ϕ2) B �E x : ϕ1

B �E Ap(x, x) : ϕ2
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We will only consider trs+β that are typeable with respect to a given environment E .

2.3.2 Subject Reduction

We will now show that reductions preserve types in our system. In the proof of Subject
Reduction we will use one more lemma:

Lemma 2.26 Let E be an environment, t a term, and R a term-substitution.

i) If B �E t :σ and B′ is a basis such that B′ �E xR:ρ for every statement x:ρ ∈ B, then B′ �E tR:σ.
ii) If there are B and σ such that B �E tR:σ, then for every x occurring in t there is a type ρx such

that {x:ρx | x occurs in t} �E t :σ, and B �E xR:ρx.

By induction on the structure of derivations.

Theorem 2.27 (Subject Reduction Theorem) If B �E t :σ and t → t′, then B �E t′ :σ.

For a β-reduction step the proof is standard, so we consider only the case of a rewrite step.
Let l → r be the typeable rewrite rule applied in the rewrite step t → t′. We will prove that
for every term-substitution R and type µ, if B �E lR:µ, then B �E rR:µ, which proves the
theorem.
Since r is typeable, there are P,π such that 〈P,π〉 is a principal pair for l with respect to E ,
and P �E r : π. Suppose R is a term-substitution such that B �E lR:µ. By Lemma 2.26(ii)
there is a B′ such that for every x:ρ ∈ B′, B �E xR:ρ, and B′ �E l :µ. Since 〈P,π〉 is a
principal typing for l with respect to E , by Definition 2.23 there is a chain Ch compatible
with 〈P,π〉 such that Ch(〈P,π〉) = 〈B′,µ〉. Since P �E r : π, by Theorem 2.22 also B′ �E r :µ.
Then by Lemma 2.26(i) B �E rR:µ.

3 Strong Normalisation

As mentioned in the introduction, types serve not only as specifications and as a way to
ensure that programs ‘cannot go wrong’ during execution, but also to ensure that computa-
tions terminate. In fact, this is a well-known property of the intersection system for lc, and
of System F, but the situation is different in trs (a rule t →r t may be typeable, although it
is obviously non-terminating). In this section, we will focus on the restrictions necessary to
obtain a strong normalisation result.

3.1 The General Scheme

Inspired by the work of Jouannaud and Okada [26], who defined a general scheme of recur-
sion that ensures termination of higher-order rewrite rules combined with lc, we will define
a general scheme for trs+β, such that typeability of (Σ,R) in the (second-order) polymor-
phic intersection system defined in this paper implies strong normalisation of all typeable
terms.

Definition 3.1 (General Scheme of Recursion) Let Σ be a signature with a set of function
symbols Fn =Q∪ {F1, . . . , Fn}, where F1, . . . , Fn will be the defined symbols, and Q the set
of constructors. We will assume that F1, . . . , Fn are defined incrementally (i.e. there is no
mutual recursion), by typeable rules that satisfy the general scheme:

Fi (C[x],y)→ C′ [Fi (C1x,y), . . . , Fi (Cm [x],y),y],
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where x,y are sequences of variables such that x ⊆ y; C[ ], C′ [ ], C1 , . . . ,Cm [ ] are sequences
of contexts in T(Fi−1,X ); and for every 1≤ j≤m, C[x]>mul Cj [x], where � is the strict sub-
term ordering (i.e. > denotes strict super-term) and mul denotes multi-set extension. More-
over, in the principal derivation P �E Fi (C[x],y) :π of Fi (C[x],y), the types associated to the
variables y in P are the types of the corresponding arguments of Fi in E(Fi).

This general scheme is a generalisation of primitive recursion. It imposes two main restric-
tions on the definition of functions: the terms in the multi-sets Cj [x] are sub-terms of terms
in C[x] (this is the ‘primitive recursive’ aspect of the scheme), and the variables x must also
appear as arguments in the left-hand side of the rule. Both restrictions are essential in the
proof of the Strong Normalisation Theorem below. The last one can be replaced by a typing
condition, requiring that the variables in x that are not included in y can only be assigned
base types. Also, instead of the multi-set extension of the subterm ordering, a lexicographic
extension can be used, or even a combination of lexicographic and multi-set (see [21] for
details about these variants of the scheme).

Note that although the general scheme has a primitive recursive aspect, it allows the defi-
nition of non-primitive functions thanks to the higher-order features available in trs+β: for
example, Ackermann’s function can be represented.

h(0) → λx.Succ(x)
h(Succ(x)) → λy.H(h(x),y)

H(g, 0) → Ap(g,Succ(0))
H(g,Succ(y)) → Ap(g, H(g,y))

where Succ is the successor function.
Also the rewrite rules of Combinatory Logic are not recursive, so, in particular, satisfy the

scheme.

3.2 The strong normalisation theorem

We shall prove that, when the rewrite rules satisfy the general schema, every typeable term is
strongly normalisable. This will be done using Tait-Girard’s method [22] and the techniques
devised in [26] in order to cope with some of the difficulties that the presence of algebraic
rewriting makes arise.

From now on all the rewrite rules will be assumed to satisfy the general schema.
In the following, a sequence e1, . . . , en of elements will be denoted by e. The length of the

sequence will be denoted by |e| (so |e1, . . . , en| = n). In this section we shall not distinguish
between free and bound type variables. Type variables will be denoted by ϕ, ϕ′, ϕ1, . . .. Recall
that a term is called neutral if it is not an abstraction.

Definition 3.2 A Reducibility Candidate of type τ is a set Rτ of terms typeable with τ and
such that:
(C1) : If t ∈ Rτ , then t is strongly normalisable, SN (t).
(C2) : If t ∈ Rτ and t →∗ t′, then t′ ∈ Rτ .
(C3) : If t is neutral and typeable with type τ, and if, for every u, t → u implies u ∈ Rτ , then

t ∈ Rτ .

Note that any reducibility candidate contains all the term-variables and that, for any type
ρ, SN ρ is a reducibility candidate.
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Definition 3.3 Let ρ be a type, and let Rγ be a sequence of reducibility candidates Rγ1
1 , . . . ,Rγn

n
such that |Rγ|= |ϕ|, where {ϕ} ⊇ FV(ρ); then we can define the set of terms Red ρ[Rγ/ϕ] by
induction on ρ, as follows:

(ρ ≡ s) : Red s[Rγ/ϕ] = SN s.
(ρ ≡ ϕi) : Red ϕi [Rγ/ϕ] =Rγi

i .

(ρ ≡ σ∩τ) : Red σ∩τ[Rγ/ϕ] = Red σ[Rγ/ϕ]∩Red τ[Rγ/ϕ].
(ρ ≡ σ→τ) : Red σ→τ[Rγ/ϕ] is the set of terms t typeable with (σ→τ)[γ/ϕ] and such that,

for every u ∈ Red σ[Rγ/ϕ], Ap(t,u) ∈ Red τ[Rγ/ϕ].
(ρ ≡ ∀α′.τ) : Red∀α′.τ[Rγ/ϕ] is the set of terms t typeable with ∀α′.τ[γ/ϕ] and such that, for

any type δ and reducibility candidate Sδ, t ∈ Red τ [Rγ/ϕ,Sδ/α′].

From now on, when considering a sequence Rγ in a Red ρ[Rγ/ϕ], we shall always tacitly
assume |Rγ|= |ϕ| and {ϕ} ⊇ FV(ρ).

Lemma 3.4 Red ρ[Rγ/ϕ] is a reducibility candidate of type ρ[γ/ϕ].

Proof: By induction on the structure of ρ.

(ρ ≡ s) : By definition Red ρ[Rγ/ϕ] = SN s. It is straightforward to check that SN s satisfies
(C1), (C2) and (C3).

(ρ ≡ ϕi) : Immediate by definition, since Rγi
i is a reducibility candidate of type γi.

(ρ ≡ σ∩τ) : We have first to show that, if t ∈ Red σ[Rγ/ϕ]∩Red τ[Rγ/ϕ], then t is typeable
with (σ∩τ)[γ/ϕ]. By induction Red σ[Rγ/ϕ] and Red τ[Rγ/ϕ] are reducibility candidates
of type σ[γ/ϕ] and τ[γ/ϕ], respectively. Hence t is typeable by σ[γ/ϕ] and τ[γ/ϕ]. Since
(σ∩τ)[γ/ϕ]≡ σ[γ/ϕ]∩τ[γ/ϕ], by definition of our system we get that t is typeable with
(σ∩τ)[γ/ϕ]. We have now to prove the other properties of a reducibility candidate,
namely (C1), (C2) and (C3). These are easily inferred by the fact that Red ρ[Rγ/ϕ] is the
intersection of two reducibility candidates.

(ρ ≡ σ→τ) : By definition 3.3 we have that if t ∈ Red ρ[Rγ/ϕ] then t is typeable with (σ→τ)[γ/ϕ].
We can prove now the other properties which must hold for a reducibility candidate.
(C1) : Let t ∈ Red ρ[Rγ/ϕ]. By induction both Red σ[Rγ/ϕ] and Red τ[Rγ/ϕ] are re-

ducibility candidates. Hence, since any reducibility candidate contains all the vari-
ables, by Definition 3.3, we have that Ap(t, x) ∈ Red τ[Rγ/ϕ] and, by (C1), Ap(t, x)
is strongly normalisable. Thus also t is strongly normalisable.

(C2) : Let t ∈ Red ρ[Rγ/ϕ], with t →∗ t′, and let u ∈ Red σ[Rγ/ϕ]. By Definition 3.3, we
have Ap(t,u) ∈ Red τ [Rγ/ϕ]. Hence Ap(t,u)→∗ Ap(t′,u) and Ap(t′,u) ∈ Red τ[Rγ/ϕ],
by (C2). By Subject Reduction (Theorem 2.27) and (C2), we obtain t′ ∈ Red ρ[Rγ/ϕ].

(C3) : Let t be neutral and typeable with ρ[γ/ϕ], and let us assume that

∀u.t → u ⇒ u ∈ Red ρ[Rγ/ϕ].

We have to prove that

∀w.(w ∈ Red σ[Rγ/ϕ] ⇒ Ap(t,w) ∈ Red τ[Rγ/ϕ]).

Let then v ∈ Red σ[Rγ/ϕ]. Since t is typeable with (σ→τ)[γ/ϕ] and, by induction,
v is typeable with σ[γ/ϕ], Ap(t,v) is typeable with τ[γ/ϕ]. Moreover Ap(t,v) is
a neutral term and thus, since (C3) holds for Red τ[Rγ/ϕ] by induction, to prove
that Ap(t,v) ∈ Red τ [Rγ/ϕ], it suffices to show that for any t̂ such that Ap(t,v) →
t̂, t̂ ∈ Red τ[Rγ/ϕ]. By (C1) for Red σ[Rγ/ϕ], v is strongly normalisable. We now
proceed by induction on the height of the reduction tree of v.

Since t is neutral, the reduction from Ap(t,v) to t̂ has necessarily to occur either
in t or in v.
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1) If t̂ ≡ Ap(t′,v) with t → t′ then, by our assumption t′ ∈ Red ρ[Rγ/ϕ] and hence,
by definition of Red ρ[Rγ/ϕ] we have Ap(t′,v) ∈ Red τ [Rγ/ϕ].

2) If t̂ ≡ Ap(t,v′) with v→ v′ , then, by (C2) for Red σ[Rγ/ϕ] we have v′ ∈ Red σ[Rγ/ϕ].
Since the reduction tree of v′ is strictly shorter than the one of v, by induction we
obtain Ap(t,v′) ∈ Red τ [Rγ/ϕ].

(ρ ≡ ∀ϕ′.τ) : Any element of Red∀ ϕ′.τ[Rγ/ϕ] is typeable with ∀ϕ′.τ[γ/ϕ] by definition. We
now check that the other conditions hold.
(C1) : Let t ∈ Red∀ ϕ′.τ[Rγ/ϕ], let δ be an arbitrary type and let Sδ be a reducibility can-

didate for δ (the strongly normalisable terms typeable with δ, for instance). Then,
by definition, t ∈ Red τ[Rγ/ϕ,Sδ/ϕ′]. Since for Red τ[Rγ/ϕ,Sδ/ϕ′] the induction hy-
pothesis applies, by (C1) we get that t is strongly normalisable.

(C2) : Let t ∈ Red∀ ϕ′ .τ[Rγ/ϕ] with t →∗ t′. By definition, for all types δ and candidates
Sδ we have t ∈ Red τ[Rγ/ϕ,Sδ/ϕ′]. Hence, by induction and (C2), t′ ∈ Red τ [Rγ/ϕ,Sδ/ϕ′]
for all types δ and candidates Sδ. Thus, by definition and Subject Reduction,
t′ ∈ Red∀ ϕ′.τ[Rγ/ϕ].

(C3) : Let t be neutral and typeable with ∀ϕ′.τ[γ/ϕ] and let us assume

∀u.t → u ⇒ u ∈ Red∀ ϕ′.τ[Rγ/ϕ].

Taking any type δ and any candidate Sδ for it, we have, by definition, that

∀u.t → u ⇒ u ∈ Red τ[Rγ/ϕ,Sδ/ϕ′].

Since the induction hypothesis applies for Red τ[Rγ/ϕ,Sδ/ϕ′], by (C3) we have
that, for any type δ and any candidate Sδ for it, t ∈ Red τ[Rγ/ϕ,Sδ/ϕ′], and hence,
by definition, t ∈ Red∀ ϕ′.τ[Rγ/ϕ].

Lemma 3.5 (Red-substitution Lemma)

Red σ[τ/ϕ] [Rγ/ϕ] ≡ Red σ[Rγ/ϕ,Red τ/ϕ[Rγ/ϕ]].

Proof: By induction on the structure of σ.

Lemma 3.6 Let τ ≤ σ. Then, for any reducibility candidates Rγ:

Red τ[Rγ/ϕ] ⊆ Red σ[Rγ/ϕ].

Proof: By induction on the definition of ≤ .
(∀1≤ i≤n (n ≥ 1) [σ1∩· · ·∩σn ≤ σi]) : Easy.
(∀1≤ i≤n (n ≥ 1)σ ≤ σi ⇒ σ ≤ σ1∩· · ·∩σn) : Easy.
(σ ≤ σ′ & τ ≤ τ′ ⇒ σ′→τ ≤ σ→τ′) : Let t ∈ Red σ′→τ[Rγ/ϕ]. Then, by definition, t is ty-

peable with σ′→τ and

∀u.(u ∈ Red σ′
[Rγ/ϕ] ⇒ Ap(t,u) ∈ Red τ[Rγ/ϕ]).

In order to prove that t ∈ Red σ→τ′
[Rγ/ϕ] we first notice that, by Theorem 2.18, t is also

typeable with σ→τ′. Now, to show that

∀u.(u ∈ Red σ[Rγ/ϕ] ⇒ Ap(t,u) ∈ Red τ′
[Rγ/ϕ]),

take u ∈ Red σ[Rγ/ϕ]. By induction Red σ[Rγ/ϕ]⊆ Red σ′
[Rγ/ϕ]. Hence u ∈ Red σ′

[Rγ/ϕ]
and by assumption Ap(t,u) ∈ Red τ [Rγ/ϕ]. Again by induction, Ap(t,u) ∈ Red τ′

[Rγ/ϕ].
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(∀ϕ′.σ ≤ σ[τ/ϕ′ ]) : Let t ∈ Red∀ ϕ′.σ[Rγ/ϕ]. By definition, for any type δ and reducibility
candidate Sδ, t ∈ Red σ[Rγ/ϕ,Sδ/ϕ′]. In particular, t ∈ Red σ[Rγ/ϕ,Red τ[Rγ/ϕ]/ϕ′]. By
the Red-substitution Lemma 3.5, we obtain t ∈ Red σ[τ/ϕ′ ][Rγ/ϕ].

(σ ≤ τ ⇒ ∀ϕ′.σ ≤ ∀ϕ′τ) : By induction, for any reducibility candidates Rγ, Sδ:

Red τ[Rγ/ϕ,Sδ/ϕ′] ⊆ Red σ[Rγ/ϕ,Sδ/ϕ′].

Then, by Definition 3.3, it follows that for any reducibility candidate Rγ

Red∀ ϕ′.τ[Rγ/ϕ] ⊆ Red∀ ϕ′.σ[Rγ/ϕ].

(σ ≤ ∀ϕ′.σ with ϕ′ �∈ FV(σ)) : Since ϕ′ �∈ FV(σ), for any type δ and candidate Sδ, Red σ[Rγ/ϕ]≡
Red σ[Rγ/ϕ,Sδ/ϕ′]. Hence, by definition, we have that Red σ[Rγ/ϕ] ⊆ Red∀ ϕ.σ[Rγ/ϕ].

Definition 3.7 i) A term t typeable with type τ is reducible if it is in Red τ[SN X/X], where
X are the free variables of τ.

ii) Let B = {x1:σ1, . . . , xn:σn} be a basis and let FV(σ1, . . . ,σn) ⊆ {ϕ}. Moreover, let γ be a
sequence of types such that |γ|= |ϕ| and let Rγ be a sequence of reducibility candidates.
A term-substitution R is Rγ-reducible for B if, for every xi:σi ∈ B, xiR ∈ Red σi [Rγ/ϕ].

Terms can, as usual, be seen as trees; the sub-term of t at position p will be denoted by t|p,
and t[u]p will denote the result of replacing, in t, the sub-term at position p by u.

We shall prove our strong normalisation result by showing that every typeable term is
reducible. This implies strong normalisation by Lemma 3.4 and (C1). In order to show that
any typeable term is reducible we need to prove a stronger property, for which we will need
the following ordering.

Definition 3.8 i) Let ‘>IN’ denote the standard ordering on natural numbers, and lex, mul
denote respectively the lexicographic and multi-set extension of an ordering. Let ‘>· ’ stand
for the well-founded encompassment ordering, i.e. u>· v if u �≡ v modulo renaming of
variables, and u|p = vR for some position p ∈ u and term-substitution R. Note that en-
compassment contains strict super-term (‘>’).

ii) We define the ordering ‘�SN’ on triples – consisting of a natural number, a term, and a
multi-set of terms – as the object

(>IN, >· , (→∪>)mul)lex.

iii) We will interpret the term uR by the triple 〈i,u,{R}〉 = I(uR), where

– i is the maximal super-index of the function symbols belonging to u,
– {R} is the multi-set {xR | x ∈ Var(u)}.

These triples are compared in the ordering ‘�SN’.

When R is Rγ-reducible for some basis containing the free variables of u, then, by (C1),
every t in {R} is strongly normalisable, so the rewrite relation ‘→’ is well-founded on {R}.
Also, since the union of the relation ‘>’ with a terminating rewrite relation is well-founded
[18], the relation ‘(→∪>)mul’ is well-founded on {R}. Hence, with such term-substitutions,
‘�SN’ is a well-founded ordering.

We will use ‘�SN
n ’ when we want to indicate that the n-th element of the triple has de-

creased and the first n−1 have not increased.
We would like to stress that we do not just interpret terms, but pairs of terms and term-

substitutions. This implies that although it can be that the terms tR1 and tR2 are equal, their
interpretations need not be equal as well.

We now come to the main theorem of this section.

21



Property 3.9 Let B �E t :σ, where B = {x1:σ1, . . . , xn:σn}, and let FV(σ1, . . . ,σn,σ) ⊆ {ϕ}. Then,
given a sequence of types γ such that |γ| = |ϕ| and a sequence of reducibility candidates Rγ, if R is
a term-substitution that is Rγ-reducible for B, then tR ∈ Red σ[Rγ/ϕ].

Proof: See the Appendix.

Theorem 3.10 (Strong Normalisation) Any typeable term is strongly normalisable.

Proof: By Property 3.9, it easily follows that any typeable term is reducible. Strong normali-
sation then follows from Lemma 3.4 and (C1).

4 Confluence

Using the previous strong normalisation result, we are going to show that the absence of
critical pairs in a typeable trs+β implies confluence on typeable terms.

Definition 4.1 If l → r and s → t are two rewrite rules (we assume that the variables were
renamed so that there is no variable that occurs in both), p is the position of a non-variable
subterm of s and µ is a most general unifier of s|p and l, then (tµ, sµ[rµ]p) is a critical pair
formed from those rules. Note that the second rule may be a renamed version of the first. In
this case a super-position at the root position is not considered a critical pair.

We will prove that the absence of critical pairs implies local confluence, and use Newman’s
Lemma [33] to deduce confluence from strong normalisation and local confluence. Let us
recall the definition of local confluence:

Definition 4.2 A reduction relation → is locally confluent on a set T of terms, if for any
t,v1,v2 ∈ T such that t → v1 and t → v2, there exists v3 ∈ T such that v1 →∗ v3 and v2 →∗ v3.

Theorem 4.3 A typeable trs+β (Σ,R) is locally confluent on typeable terms if it does not have
critical pairs.

By the Subject Reduction Theorem, all rewrite sequences starting from a typeable term
remain inside the set of typeable terms. We study the interactions between the two classes
of reductions we have: β-reductions, and reductions using R.
The absence of critical pairs guarantees no super-position between the rewrite rules. It is
well-known that this implies local confluence of first-order rules on algebraic terms. The
extension to terms containing λ-abstractions is standard: we abstract with term-variables
the sub-terms that have a λ at the root, taking care of using the same variable for identical
sub-terms since rewrite rules may be non left-linear (see [9] for details). The extension to
rules containing λ-abstraction only in the right-hand side (as in our systems) is also
straightforward.
Since β-reductions are confluent on λ-terms containing constants, the only remaining case
to study is the interaction of β-reductions with reductions using R. But since by definition
of rewrite rule, the symbol Ap cannot appear in a left-hand side, there is no super-position
between β and other rules. This completes the proof.

5 Restriction to Rank2

In this section, we will present a decidable restriction of the type system as presented above,
based on types of rank 2. Although the Rank 2 intersection system and the Rank 2 poly-
morphic system for lc type exactly the same set of terms [37], their combination results in
a system with more expressive power: polymorphism can be expressed directly (using the
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universal quantifier) and, more importantly, as we will show below, every typeable term has
a principal type; the latter property does not hold in a system without intersection.

5.1 Rank 2 type assignment

In this subsection, we will briefly discuss a notion of Rank 2 type assignment (the system
presented here is not the only one possible: a variant could be to consider also the empty
intersection, i.e. to use the type constant ω, but we will not take that direction here).

The polymorphic intersection types of Rank 2, T2, are a true subset of the set of polymor-
phic intersection types as presented in Definition 2.1.

Definition 5.1 (Rank 2 types and bases) i) We define polymorphic intersection types of
Rank 2 in layers:

TC ::= ϕ | s | (TC → TC) (Curry types)
T ∀

C ::= TC | (∀α.T ∀
C[α/ϕ]) (Quantified Curry types)

T1 ::= (T ∀
C∩ · · · ∩T ∀

C) (Rank 1 types)
T2 ::= ϕ | (T1 → T2) (Rank 2 types)

We omit brackets as before.
ii) A Rank 2 basis is a basis in which all types are in T1.

Below, we will define a unification procedure that will recursively go through types. How-
ever, using the sets defined above, not every sub-type of a type in T2 is a type in that same set.
For example, α→ϕ is not a type in any of the sets defined above; however, ∀α.α→ϕ ∈ T ∀

C,
and therefore it can be that, when going through types in T2 recursively, α→ϕ has to be dealt
with. Since the distinction between free and bound variables is essential, we introduce, for
every set Ti defined above, also the set T ′

i of types, that contains also free occurrences of αs.
We will not always use the ‘′’ when speaking of these sets, however; it will be clear from the
context which set is intended.

As for T , we will consider a relation on types, ≤2, but one that is not the restriction to T2
of the relation ≤ defined in Definition 2.2; notice that the part corresponding to ‘σ ≤2 ∀α.σ,
if α not in σ’ is missing.

Definition 5.2 (Relations on types) On types, the pre-order (i.e. reflexive and transitive
relation) ≤2 is generated by the following rules:

σ1∩· · ·∩σn ≤2 σi, (1≤ i≤n)
∀α.σ[α/ϕ] ≤2 σ[τ/ϕ], (τ ∈ TC)

∀1≤ i≤n.σ ≤2 σi ⇒ σ ≤2 σ1∩· · ·∩σn (n ≥ 1)
ρ ≤2 σ,τ ≤2 µ ⇒ σ→τ ≤2 ρ→µ, (ρ,σ ∈ T1, τ,µ ∈ T2)

σ ≤2 τ ⇒ ∀α.σ[α/ϕ] ≤2 ∀α.τ[α/ϕ].

The equivalence relation ‘∼2’ is defined by: σ ∼2 τ ⇐⇒ σ ≤2 τ ≤2 σ, and we extend ‘≤2’ to
bases in the same way as done for ‘≤’.

For ≤2, the following properties hold:

Lemma 5.3 i) If σ ∈ T1, σ ≤2 τ ∈ T2, and σ does not contain ‘∀’, then neither does τ.
ii) If σ ≤2 τ1∩· · ·∩τn, then, for all 1≤ i≤n, σ ≤2 τi.

Proof: Easy.
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The Rank 2 versions for the various operations as presented below are defined in much
the same way as in [6], with the exception of the operation of closure and lifting, that were
not used there.

The first three operations used for the Rank 2 system are straightforward variants of oper-
ations defined for the full system.

Definition 5.4 i) Substitution (ϕ �→ ρ) : T2 → T2 is defined as in Definition 2.5, but with the
restriction that ρ ∈ TC. For the sake of clarity, and in order to avoid writing [S1, . . . ,Sn]
for a chain of single type-variable substitutions, we will close the set of substitution for
composition ‘◦’: for substitutions S1,S2, the substitution S2◦S1 is defined as S2◦S1(σ) =
S2(S1(σ)). We use IdS for the substitution that replaces all variables by themselves, and
write S for the set of all substitutions.

ii) Lifting is defined as in Definition 2.12, but with the restriction that ‘≤’ is taken to be ‘≤2’
of Definition 5.2.

iii) Closure is defined as in Definition 2.13 as a pair of types 〈σ, ϕ〉, with the restriction that
σ ∈ T ∀

C:
〈σ, ϕ〉(〈B,τ1∩· · ·∩τn〉) = 〈B,τ′

1∩· · ·∩τ′
n〉

where, for all 1≤ i≤n,

τ′
i = ∀α.σ[α/ϕ], if τi = σ, and ϕ does not appear in B (α is a fresh variable), and

τ′
i = τi, otherwise.

The variant of expansion used in the Rank 2 system is quite different from that of Defini-
tion 2.9. The reason for this is that expansion, normally, increases the rank of a type:

〈ϕ1,2〉(〈{x:ϕ1→ϕ2}, ϕ1〉)(ϕ1→ϕ2) = (ϕ1
1∩ϕ2

1)→ϕ2,

a feature that is of course not sound when present within a system that limits the rank of
types. Since below expansion is only used in very precise situations (within the procedure
unify∀ 2, and in the proof of Theorem 5.29), the solution is relatively easy: in the context of
Rank 2 types, expansion is only called on types in T ∀

C, so it is defined to work well there,
by replacing all types by an intersection; in particular, intersections are not created at the left
of an arrow.

Definition 5.5 Let B be a Rank 2 basis, σ ∈ T2, and n ≥ 1. The n-fold Rank 2 expansion with
respect to the pair 〈B,σ〉, n〈B,σ〉 : T2 →T2 is constructed as follows: Suppose V = {ϕ1, . . . , ϕm}
is the set of all (free) variables occurring in 〈B,σ〉. Choose m× n different variables ϕ1

1, . . . , ϕn
1 ,

. . . , ϕ1
m, . . . , ϕn

m, such that each ϕi
j (1≤ i≤n, 1≤ j≤m) does not occur in V. Let Si be the

substitution that replaces every ϕj by ϕi
j. Then Rank 2 expansion is defined on types, bases,

and pairs, respectively, by:

n〈B,σ〉(τ) = S1(τ)∩ · · · ∩Sn(τ),
n〈B,σ〉(B′) = {x:n〈B,σ〉(ρ) | x:ρ ∈ B},
n〈B,σ〉(〈B′,σ′〉) = 〈n〈B,σ〉(B′),n〈B,σ〉(σ

′)〉.

Notice that, if τ ∈ T2, it can be that S1(τ)∩ · · · ∩Sn(τ) is not a legal type. However, since
each Si(τ) ∈ T2, for 1≤ i≤n, for the sake of clarity, we will not treat it separately (see also
Lemma 5.13).

Notice that we have no need for the third parameter ‘A’ in this notion of expansion. Since
Rank 2 expansion essentially is just the combination of a number of substitutions by means of
rule (∩I), we do not need to calculate the set of affected types, for which the third parameter
was added.
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Since all results in this section regard the Rank 2 system, we will use ‘expansion’ rather than
‘Rank 2 expansion.’

As before, operations will be grouped in chains.

Definition 5.6 A Rank 2 chain (or chain for short) is a chain Ch of operations, composed of
at most one expansion, at most one substitution, at most one lifting, and a number (≥ 0) of
closures:

Ch = [Ex,S,L,Cl1, . . .Clm] = [Ex,S,L,Cl].

For chains, the following properties hold:

Lemma 5.7 Let Ch be a chain.
i) If σ ∈ TC, and Ch(σ) ∈ T2, then there are a substitution S and lifting L such that Ch(σ) =
[S,L] (σ).

ii) If σ ∈ T2, and Ch(σ) ∈ T ∀
C, then Ch(σ) = [S,Cl1, . . . ,Cln] (σ) for some substitution S and

closures Cl1, . . . , Cln.
iii) If σ ∈ TC, and Ch(σ) ∈ T1, then there exists a lifting-free chain Ch′ such that Ch(σ) = Ch′(σ).
iv) If σ ∈ T2, and Ch(σ) ∈ TC, then Ch(σ) = S(σ) for some substitution S.
v) If σ ∈ T2, and Ch(σ) ∈ T2, then Ch(σ) = [S,L] (σ) for some substitution S and lifting L.

Proof: For part one, clearly expansion and closure are not needed, and by Lemma 5.3??,
neither is lifting. The other parts are just generalisations of the first.

We now come to the definition of Rank 2 type assignment.

Definition 5.8 i) A Rank 2 environment E is a mapping from F to T2.
ii) Rank 2 type assignment on terms is defined by the following natural deduction system:

(≤2) : (a)
B �2

E x :τ (∩I) :
B �2

E t : σ1 · · · B �2
E t :σn

(b)
B �2

E t : σ1∩· · ·∩σn

(→I) :
B, x:σ �2

E t :τ

B �2
E λx.t :σ→τ

(→E) :
B �2

E t1 :σ→τ B �2
E t2 :σ

B �2
E Ap(t1, t2) :τ

(∀ I) :
B �2

E t :σ
(c)

B �2
E t :∀α.σ[α/ϕ]

(F) :
B �2

E t : σ1 · · · B �2
E t :σn

(d)
B �2

E F(t1, . . . , tn) :σ

a) If σ ≤2 τ , σ ∈ T1, and τ ∈ T2.
b) If n ≥ 1, and σi ∈ T ∀

C, for every 1≤ i≤n.
c) If ϕ does not occur in B, and σ ∈ T∀

C .
d) If F ∈ F , and there exists a chain Ch such that σ1→·· ·→σn→σ = Ch(E (F)).

Notice that, since quantification elimination is implicit in rule (≤2), when restricting the
use of the quantifier to the left of arrows only, there is no longer need for a general (∀E)
rule; as rule (∩E), its use is in a strict system limited to variables, and there its actions are
already performed by (≤2). In fact, this change is justified by Lemma 5.11.
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Example 5.9 We can derive both

(≤2){y:(σ→τ)∩σ} �2
E y :σ→τ

(≤2){y:(σ→τ)∩σ} �2
E y :σ

{y:(σ→τ)∩σ} �2
E yy :τ

∅ �2
E λy.yy :(σ→τ)∩σ→τ

and

(≤2){y:∀α.α} �2
E y :σ→τ

(≤2){y:∀α.α} �2
E y :σ

{y:∀α.α} �2
E yy :τ

∅ �2
E λy.yy :∀α.α→τ

We will now show that the above defined operations are sound. First, we show this for
substitution.

Lemma 5.10 If B �2
E t :σ, and S is a substitution, then S(B) �2

E t :S(σ).

Proof: By induction on the structure of derivations.

(≤2) : Then t= x,σ ∈ T2, and there is ρ ∈ T1 such that x:ρ ∈ B and ρ ≤2 σ. Since S(ρ) ≤2 S(σ),
and x:S(ρ) ∈ S(B), also S(B) �2

E x :S(σ).

(∩I) : Then σ = σ1∩· · ·∩σn, and, for 1≤ i≤n, B �2
E t :σi. Then, by induction, for all 1≤ j≤m,

S(B) �2
E t :S(τj), so, by rule (∩I), also S(B) �2

E t :S(τ1∩· · ·∩τm).

(→I) : Then t = λx.t′, and there are ρ,µ such that σ = ρ→µ and B, x:ρ �2
E t′ :µ. By induction,

S(B), x:S(ρ) �2
E t′ :S(µ), so, by rule (→I), S(B) �2

E λx.t′ :S(ρ→µ).

(→E) : Then t =Ap(t1, t2), and there is a ρ ∈ T1 such that B �2
E t1 :ρ→σ, and B �2

E t2 :ρ. By in-
duction, S(B) �2

E t1 :S(ρ→σ), and S(B) �2
E t2 :S(ρ), so, by rule (→E), S(B) �2

E Ap(t1, t2) :S(σ).

(∀ I) : Then σ = ∀α.ρ[α/ϕ], and B �2
E t :ρ. By induction, S(B) �2

E t :S(ρ). We can assume,
without loss of generality, that ϕ is not affected by S, so, ϕ occurs in ρ if and only if it oc-
curs in S(ρ). Therefore, by rule (∀ I), also S(B) �2

E t :S(ρ)[α/ϕ], so S(B) �2
E t :S(ρ[α/ϕ]).

(F ) : Then t = F(t1, . . . , tn), and there are σ1, . . . ,σn such that, for 1≤ i≤n, B �2
E ti :σi, and

there exists a chain Ch such that Ch(E (F)) = σ1→·· ·→σn→σ. By induction, for 1≤ i≤n,
S(B) �2

E ti :S(σi), and since

[S] ∗ Ch(E (F)) = S(σ1)→·· ·S(σn)→S(σ),

by rule (F) we obtain S(B) �2
E F(t1, . . . , tn) :S(σ).

The next lemma states essentially that lifting is a sound operation.

Lemma 5.11 If B �2
E t :σ, and let B′,τ be such that B′ ≤2 B, and σ ≤2 τ, then B′ �2

E t :τ.

Proof: By induction on the structure of derivations. First we deal with the case that τ is not
an intersection.

(≤2) : Then t = x,σ ∈ T2, and there is ρ ∈ T1 such that x:ρ ∈ B and ρ ≤2 σ. Since B′ ≤2 B,
there is ρ′ ∈ T1 such that x:ρ′ ∈ B′ and ρ′ ≤2 ρ ≤2 σ. Since σ ≤2 τ, also ρ′ ≤2 τ and
B′ �2

E x :τ. (Notice that, since τ is not an intersection, τ ∈ T2.)

(∩I) : Then σ = σ1∩· · ·∩σn, and, for 1≤ i≤n, B �2
E t :σi. Then there is an 1≤ i≤n, such that

σi ≤2 τ. Then, by induction, B′ �2
E t :τ.
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(→I) : Then t = λx.t′, and there are ρ,µ such that σ = ρ→µ and B, x:ρ �2
E t′ :µ, and δ,γ such

that τ = γ→δ, and γ ≤2 ρ,µ ≤2 δ. Then, by induction B′, x:γ �2
E t′ :δ, and therefore, by

rule (→I), also B′ �2
E λx.t′ :γ→δ.

(→E) : Then t = Ap(t1, t2), and there is a ρ ∈ T1 such that B �2
E t1 :ρ→σ, and B �2

E t2 :ρ.
Since σ ≤2 τ, also ρ→σ ≤2 ρ→τ, so by induction, B′ �2

E t1 :ρ→τ and, by rule (→E),
also B′ �2

E Ap(t1, t2) :τ.

(∀ I) : Then σ = ∀α.ρ[α/ϕ], and B �2
E t :ρ. Since ∀α.ρ[α/ϕ] ≤2 τ, by definition of ‘≤2’, either:

(τ = ρ[µ/ϕ], with µ ∈ TC) : By induction, B′ �2
E t :ρ, and, by Lemma 5.10, B′ �2

E t :ρ[µ/ϕ]
(notice that ϕ occurs in ρ only).

(τ = ∀α.µ[α/ϕ], with ρ ≤2 µ) : Then, by induction, B′ �2
E t :µ, and B′ �2

E t :∀α.µ[α/ϕ] by
rule (∀ I).

(F ) : Then t = F(t1, . . . , tn), and there are σ1, . . . ,σn such that, for 1≤ i≤n, B �2
E ti :σi, and

there exists a chain Ch such that Ch(E (F)) = σ1→·· ·→σn→σ. Since B′ ≤2 B, by induction
B′ �2

E ti :σi, for 1≤ i≤n. Since σ ≤2 τ,

L = <〈∅,σ1→·· ·→σn→σ〉, 〈∅,σ1→·· ·→σn→τ〉>

is a lifting, so [L] ∗ Ch(E (F)) = σ1→·· ·→σn→τ, and B′ �2
E F(t1, . . . , tn) :τ by rule (F).

If τ = τ1∩· · ·∩τn, with each τi ∈ T ∀
C, then, by Lemma 5.3(ii), for all 1≤ i≤n, σ ≤2 τi. The

result then follows from the above, and rule (∩I).

The next lemma states that closure is a sound operation.

Lemma 5.12 If B �2
E t :τ and let Cl = 〈σ, ϕ〉 be a closure such that Cl(〈B,τ〉) = 〈B′,ρ〉, then

B′ �2
E t :ρ.

Proof: Let τ = τ1∩· · ·∩τn (n ≥ 1), then 〈σ, ϕ〉(〈B,τ1∩· · ·∩τn〉) = 〈B,τ′
1∩· · ·∩τ′

n〉 so B′ = B and,
for all 1≤ i≤n,

• ϕ occurs in B, and τi = σ, and the result is trivial, or
• ϕ does not occur in B, τi = σ, and τ′

i = ∀α.σ[α/ϕ], and the result follows from rule
(∀ I).

Since expansion just creates an intersection of types, it could be that the type created is
not in T2, but would be an intersection of types from that set. Therefore, we cannot show a
general soundness result. However, we can show the following:

Lemma 5.13 Let Ex be an expansion, and let Ex(σ) = σ1∩· · ·∩σn. If B �2
E t :σ, then, for every

1≤ i≤n, there is a B′ such that B′ �2
E t :σi.

Proof: By Definition 5.5, there are substitutions S1, . . . ,Sn such that Ex(σ) = S1(σ)∩ · · · ∩Sn(σ).
The result then follows from Lemma 5.10 (notice that B′ = Si(B)).

In case expansion gets applied to a type in T1, the result is stronger.

Lemma 5.14 Let Ex be an expansion. If σ ∈ T1 and B �2
E t :σ, then Ex(B) �2

E t :Ex(σ).
Proof: By the previous lemma, if Ex(σ) = σ1∩· · ·∩σn, then, for every 1≤ i≤n, there is a B′

such that B′ �2
E t :σi. Since σ ∈ T1, also each σi ∈ T1. Notice that Ex(B) ≤2 Si(B), for 1≤ i≤n,

so, by Lemma 5.11 and rule (∩I), we get the result.

We have now the following result:

Lemma 5.15 If σ ∈ T1, B �2
E t :σ, and Ch is a chain such that Ch(〈B,σ〉) = 〈B′,σ′〉, then B′ �2

E t :σ′.
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Proof: By lemmas 5.10 to 5.13.

The following properties of chains will be used in the proof of Theorem 5.29 below.

Lemma 5.16 i) If there exists a chain Ch such that Ch(〈P∪{x:ν},π〉) = 〈B∪{x:ρ},µ〉, where
π,µ ∈ T2, then there exists a chain Ch′ such that Ch′(〈P,ν→π〉) = 〈B,ρ→µ〉.

ii) If there exists a chain Ch such that Ch(〈P,π〉) = 〈B,µ〉, where π,µ ∈ T2, then there exists a
chain Ch′ such that Ch′(〈P, ϕ→π〉) = 〈B, ϕ→µ〉, where ϕ is a fresh type variable.

Proof: Straightforward.

5.2 Unification of Rank 2 Types

In the context of types, unification is a procedure normally used to find a common instance
for demanded and provided type for applications, i.e: if t1 has type σ→τ, and t2 has type
ρ, then unification looks for a common instance of the types σ and ρ such that Ap(t1, t2)

can be typed properly. The unification algorithm unify∀ 2 presented in the next definition
deals with just that problem. This means that it is not a full unification algorithm for types
of Rank 2, but only an algorithm that finds the most general unifying chain for demanded
and provided type. It is defined as a natural extension of Robinson’s well-known unification
algorithm unify [35], and can be seen as an extension of the notion of unification as presented
in [6], in that it deals with quantification as well.

Definition 5.17 Unification of Curry types (extended with bound variables and type con-
stants) is defined by:

unify : T ′
C × T ′

C →S .

unify(ϕ,τ) = (ϕ �→ τ), if ϕ does not occur in τ, or ϕ = τ
unify(α,α) = IdS,
unify(s, s) = IdS,
unify(σ, ϕ) = unify(ϕ,σ),
unify(σ→τ,ρ→µ) = S2◦S1, where S1 = unify(σ,ρ),

S2 = unify(S1(τ),S1(µ)).

(Aa usual, all non-specified cases, like unify(α1,α2) with α1 �= α2, fail.)

It is worthwhile to notice that the operation on types returned by unify is not really a
substitution, since it allows, e.g., ϕ �→ α, without keeping track of the binder for α. This
potentially will create wrong results, since unification can now substitute bound variables
in unbound places. Therefore, special care has to be taken before applying a substitution, to
guarantee its application to the argument acts as a ‘real’ substitution.

The following property is well-known, and formulates that unify returns the most general
unifier for two Curry types, if it exists.

Property 5.18 ([35]) For all σ,τ ∈ TC, substitutions S1,S2: if S1(σ) = S2(τ), then there are substi-
tutions Su and S′ such that

Su = unify(σ,τ), and S1(σ) = S′◦Su(σ) = S′◦Su(τ) = S2(τ).

The unification algorithm unify∀ 2 as defined below gets, typically, called during the com-
putation of the principal pair for an application Ap(t1, t2). Suppose the algorithm has derived
P1 �2

E t1 :π1 and P2 �2
E t2 :π2 as principal pairs for t1 and t2, respectively, and that π1 = σ→τ.

Thus the demanded type σ is in T1 and the provided type π2 is in T2. In order to be con-
sistent, the result of the unification of σ and π2 – a chain Ch – should always be such that
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Ch(π2) ∈ T1. However, if π2 �∈ TC, then in general Ch(π2) �∈ T1. To overcome this difficulty,
an algorithm toTC will be inserted that, when applied to the type ρ, returns a chain of opera-
tions that removes, if possible, intersections in ρ. This can be understood by the observation
that, for example,

((σ→σ)→σ→σ)→σ is a substitution instance of ((ϕ1→ϕ1)→ϕ2)∩ (ϕ3→ϕ4→ϕ4)→ϕ5.

Note that if quantifiers appear in ρ, toTC(ρ) should fail, since quantifiers that appear before
an arrow cannot be removed by any of the operations on types.

Finally, unify∀ 2 (σ,S2(π2),S2(P2)) is called (with S2 = toTC(π2)). The basis S2(P2) is needed
to calculate the expansion of S2(π2) in case σ is an intersection type.

Definition 5.19 The function toTC : T2 →S is defined by:

toTC(σ) = [IdS], if σ ∈ TC
toTC((σ1∩· · ·∩σn)→µ) = S′◦Sn, otherwise,

where Si = unify(Si−1(σ1),Si−1(σi+1))◦Si−1, (1≤ i≤n−1, with S0 = IdS), and
S′ = toTC(Sn(µ))

(Again, notice that toTC(σ) fails if σ contains ‘∀’.)

The algorithm unify∀ 2 is called with the types σ and ρ′, the latter being ρ in which the
intersections are removed (so ρ′ = toTC(ρ)(ρ); notice that toTC(ρ) is an operation on types
that removes all intersections in ρ, and needs to be applied to ρ). Since none of the derivation
rules, nor one of the operations, allows for the removal of a quantifier that occurs inside a
type, if σ = ∀α.σ′, the unification of σ with ρ′ will not remove the ‘∀α’ part.

The following definition presents the main unification algorithm, unify∀ 2. It gets, typically,
called as

unify∀ 2 (σ,S2(π2),S2(P2))

during the calculation of the principal pair for an application; after deriving P1 �2
E t1 :π1 and

P2 �2
E t2 :π2 as principal pairs for t1 and t2, respectively, with π1 = σ→τ and S2 = toTC(π2).

The basis is needed to calculate the expansion in case σ is an intersection type, as said above.

Definition 5.20 Let B be the set of all bases, and Ch the set of all chains. The function
unify∀2 : T ∀

C × TC ×B → Ch is defined by:

unify∀ 2 (ϕ,τ, B) = (ϕ �→ τ),

unify∀ 2 ((∀α1.σ1)∩ . . . ∩ (∀αn.σn),τ, B) = [Ex,Sn], otherwise

where Ex = n〈B,τ〉,
τ1∩· · ·∩τn = Ex(τ), and

for every 1≤ i≤n, Si = unify(Si−1(σi),τi)◦Si−1 (with S0 = IdS).

It is worthwhile to notice that unify, toTC, and unify∀ 2 all return lifting-free chains. More-
over, both unify and toTC return a substitution, and the chain returned by unify∀ 2 (σ,τ) acts
on σ as a substitution: the expansion in the chain is defined for the sake of τ only. Notice
also that unify∀ 2 does not really return a unifying chain for its first two arguments; to achieve
this, also closures would have to be inserted. They are not needed for the present purpose.

The procedure unify∀ 2 fails when unify fails, and toTC fails when either unify fails or when
the argument contains ‘∀’. Because of this relation between unify∀ 2 and toTC on one side,
and unify on the other, the procedures defined here are terminating and type assignment in
the system defined in this section is decidable.

Using Property 5.18, it is possible to prove the following lemma.
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Lemma 5.21 Let Ch be a chain.

i) If σ ∈ T2, and Ch(σ) = τ ∈ TC, then there is a S′ such that S′◦toTC(σ)(σ) = τ.
ii) If σ ∈ T2, and Ch(σ) = τ ∈ T1, then there is a lifting-free chain Ch′ such that [toTC(σ)] ∗

Ch′(σ) = τ.

Proof: Easy, using Lemma 5.7(iii) and (iv).

5.3 Principal pairs for terms

In this subsection, the principal pair for a term t with respect to the environment E – ppE (t)
– is defined, consisting of basis P and type π. In Theorem 5.29 it will be shown that, for
every term, this is indeed the principal one.

Notice that, in the definition below, if ppE (t) = 〈P,π〉, then π ∈ T2. For example, the
principal pair for the term λx.x is 〈∅, ϕ→ϕ〉, so, in particular, it is not 〈∅,∀α.α→α〉. Although
one could argue that the latter type is more ‘principal’ in the sense that it expresses the
generic character the principal type is supposed to have, we have chosen to use the former
instead. This is mainly for technical reasons: because unification is used in the definition
below, using the latter type, we would often be forced to remove the external quantifiers.
Both types can be seen as ‘principal’ though, since ∀α.α→α can be obtained from ϕ→ϕ by
closure, and ϕ→ϕ from ∀α.α→α by lifting.

Definition 5.22 Let t be a term in T(F,X ). Using unify∀ 2, ppE (t) = 〈P,π〉, with π ∈ T2 is
defined by:

i) t ≡ x. Then ppE (x) = 〈{x:ϕ}, ϕ〉.
ii) t ≡ λx.t′. Let ppE (t′) = 〈P,π〉, then:

a) If x occurs free in t′, and x:σ ∈ P, then ppE (λx.t′) = 〈P\x,σ→π〉.
b) Otherwise, let ϕ be a fresh variable, and ppE (λx.t′) = 〈P, ϕ→π〉.

iii) t ≡ Ap(t1, t2). Let ppE (t1) = 〈P1,π1〉, ppE (t2) = 〈P2,π2〉 (choose, if necessary, trivial vari-
ants such that these pairs are disjoint), and S2 = toTC(π2), then either
(π1 = ϕ) : ppE (Ap(t1, t2)) = 〈P,π〉, where

P = S1(Π{P1,S2(P2)}),
π = ϕ′,

S1 = (ϕ �→ S2(π2)→ϕ′), and
ϕ′ is a fresh variable.

(π1 = σ→τ) : ppE (Ap(t1, t2)) = 〈P,π〉, provided P and π contain no unbound occur-
rences of αs, where

P = S(Π{P1,Ex(S2(P2))}),
π = S(τ), and

[Ex,S] = unify∀ 2 (σ,S2(π2),S2(P2)).

iv) t ≡ F(t1, . . . , tn). Let, for every 1≤ i≤n, ppE (ti) = 〈Pi,πi〉 (choose, if necessary, trivial vari-
ants such that the 〈Pi,πi〉 are disjoint in pairs), then ppE (F(t1, . . . , tn)) = 〈P,π〉, provided
P and π contain no unbound occurrences of αs, where

P = Sn(Π{Ex1(S1(P1)), . . . ,Exn(Sn(Pn))},
π = Sn(γ),

γ1→·· ·→γn→γ is a fresh instance of E (F),
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and, for every 1≤ i≤n, Si = toTC(πi),
[Exi,Si

′] = unify∀ 2 (S
i−1(γi),Si(πi),Si(Pi)), and

Si = Si
′◦Si−1 (with S0 = IdS).

Since unify or unify∀ 2 may fail, not every term has a principal pair.

Notice that closures and liftings are not needed when constructing the principal basis and
type.

The treatment of F(t1, . . . , tn) in Definition 5.22 is in fact very much the same as a repeated
treatment of Ap(t1, t2). This can be understood by observing that, if E (F) = σ1→·· ·→σn→σ,
then

ppE (F(x1, . . . , xn)) = 〈{x1:σ1, . . . , xn:σn},σ〉, so
ppE (λx1 · · · xn.F(x1, . . . , xn)) = 〈∅,E (F)〉,

and that therefore the terms

F(t1, . . . , tn) and Ap(· · ·Ap(Ap(λx1 · · · xn.F(x1, . . . , xn), t1), t2) · · · , tn)

should be treated in the same way. It is for this reason that, in the proofs below, all attention
will go to the case t = Ap(t1, t2); the case t = F(t1, . . . , tn) is essentially the same.

Example 5.23 Take the rewrite rules and environment

I(x) → x
F(x) → x
F(x) → Ap(x, x)

E (I) = ϕ1→ϕ1

E (F) = (∀α.α→α)→ϕ1→ϕ1

Using Definition 5.22, it is easy to check that �2
E F(λx.I(x)) : ϕ2→ϕ2, and �2

E I(λx.I(x)) : ϕ2→ϕ2.
These types are the principal types for these terms.

Example 5.24 The term λx.x(λy.yy) does not have a principal pair. It is typeable in the full
system of this paper by (((σ→τ)∩σ→τ)→ρ)→ρ (where B= {x:((σ→τ)∩σ→τ)→ρ,y:(σ→τ)∩σ}).

B\y �E x :((σ→τ)∩σ→τ)→ρ

B �E y : σ→τ B �E y :σ

B �E yy :τ

B\y �E λy.yy :(σ→τ)∩σ→τ

B\y �E x(λy.yy) :ρ

∅ �E λx.x(λy.yy) : ((σ→τ)∩σ→τ)→ρ→ρ

but it is not possible to type this term in �2
E : since toTC((σ→τ)∩σ→τ) will fail on unify(σ→τ,σ),

λy.yy can only be typed with a Rank 2 type, so the type of x has to be of rank 3.

Example 5.25 The principal type for λy.yy is ((ϕ1→ϕ2)∩ϕ1)→ϕ2 (see Example 5.9), and the
chain of operations that transforms the pair 〈∅, ((ϕ1→ϕ2)∩ϕ1)→ϕ2〉 into the pair 〈∅, (∀α.α)→ϕ2〉
is

[<〈∅, (ϕ1→ϕ2)∩ϕ1→ϕ2〉, 〈∅, (∀α.α)→ϕ2〉>]

(notice that ∀α.α ≤2 (ϕ1→ϕ2)∩ϕ1). However, this does not imply that the derivation for the
latter pair is obtained by applying (≤) to the derivation for the former: (≤) can only be
applied to term-variables. However, because of Lemma 5.11, we know that a derivation
exists, and as can be expected, the derivation for ∅ �E λy.yy : (∀α.α)→ϕ2 can be obtained by
applying a lifting. First we derive the principal pair for yy:
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{y:(ϕ1→ϕ2)∩ϕ1} �E y : ϕ1→ϕ2 {y:(ϕ1→ϕ2)∩ϕ1} �E y : ϕ1

{y:(ϕ1→ϕ2)∩ϕ1} �E yy : ϕ2

to which we apply the lifting <〈B, ϕ2〉, 〈{y:∀α.α}, ϕ2〉> (notice that since this lifting changes
only the basis, we can actually see it as an operation on derivations):

{y:∀α.α} �E y : ϕ1→ϕ2 {y:∀α.α} �E y : ϕ1

{y:∀α.α} �E yy : ϕ2

to which we apply (→I):

{y:∀α.α} �E y : ϕ1→ϕ2 {y:∀α.α} �E y : ϕ1

{y:∀α.α} �E yy : ϕ2

∅ �E λy.yy :(∀α.α)→ϕ2

The following lemmas are needed in the proof of Theorem 5.29. The first states that if a
chain maps the principal pairs of terms t1, t2 in an application Ap(t1, t2) to pairs that allow
the application itself to be typed, then these pairs can also be obtained by first performing a
unification. The second generalises this result to arbitrary function applications.

Lemma 5.26 Let σ ∈ T2, and for i = 1,2, ppE (ti) = 〈Pi,πi〉, such that these pairs are disjoint. Let
Ch1,Ch2 be chains such that

Ch1(ppE (t1)) = 〈B1,σ→τ〉, and Ch2(ppE (t2)) = 〈B2,σ〉.

Then there are a chains Chu and Chp, and type ρ ∈ T2 such that

ppE (Ap(t1, t2)) = Chu(〈Π{P1, P2},ρ〉), and
Chp(ppE (Ap(t1, t2))) = 〈Π{B1, B2},τ〉.

Proof: Since Ch2(π2) = σ ∈ T1, by Lemma 5.21(ii), Ch2 = Ch2 ∗ [toTC(π2)], so S2 = toTC(π2)
exists; let π′

2 = S2(π2), and P′
2 = S2(P2). We distinguish the cases:

(π1 = ϕ) : Then ppE (Ap(t1, t2)) = 〈S1(Π{P1, P′
2}), ϕ′〉, where S1 = (ϕ �→ π′

2→ϕ′), and ϕ′ is a
fresh variable; take Chu = [S1,S2].

Ch1(〈P1, ϕ〉) = 〈B1,σ→τ〉, and Ch2(〈P2,π2〉) = 〈B2,σ〉.

Since π2 ∈ T2 and Ch2(π2) ∈ T1, by Lemma 5.21(ii) and Lemma 5.7(ii), there exists a
lifting-free chain Ch′2 such that σ = Ch′2 ∗ [S2] (π2) = Ch′2(π′

2).
Also, Ch1(ϕ) = σ→τ, so there exists a chain Ch′1 such that Ch1 = Ch′1 ∗ [(ϕ �→ ϕ1→ϕ2)],

so such that Ch′1(ϕ1) = σ, and Ch′1(ϕ2) = τ.
Since Ch1(π1) = σ = Ch′2 ∗ [S1,S2] (π2), in particular
To show: there exists Chp such that Chp(ppE (Ap(t1, t2))) = 〈Π{B1, B2},τ〉, so such that

Chp(〈S1(Π{P1, P′
2}), ϕ′〉) = 〈Π{B1, B2},τ〉.

(π1 = µ1→µ2) : Notice that Ch1(π1) = Ch1(µ1→µ2) = σ→τ ∈ T2, so, by Lemma 5.7(v), there
are substitution S, and lifting L such that

Ch1(π1) = [S,L] (π1).
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So there are B′ ≥ B, σ ≤ ρ1, ρ2 ≤ τ such that

S(π1) = S(µ1→µ2) = ρ1→ρ2, (So S(µ1) = ρ1), and
L = <〈B′,ρ1→ρ2〉, 〈B,σ→τ〉>.

In particular,

π1 = µ1→µ2, so (µ1 ∈ T1,µ2 ∈ T2)
π1 = (∀α1.δ1∩ · · · ∩∀αm.δm)→ µ2, so (δj ∈ TC (1≤ j≤m), µ2 ∈ T2)

S(π1) = (∀α1.S(δ1)∩ · · · ∩∀αm.S(δm))→ S(µ2) = ρ1→ρ2.

Notice that <〈B,σ〉, 〈B,ρ1〉> is a lifting, and Ch2 ∗ [<〈B,σ〉, 〈B,ρ1〉>] (π2) = ρ1 ∈ T1.
Then, by Lemma 5.21(ii), there is a lifting-free chain Ch′ such that Ch′(π′

2) = ρ1. Then

Ch′ = [Ex′,S′,Cl], with Ex′(π′
2) = S′

1(π
′
2)∩ · · · ∩S′

n(π
′
2), (∀ free)

[Ex′,S′] (〈P′
2,π′

2〉) = 〈B1,ν〉, with ν = S′(S′
1(π

′
2))∩ · · · ∩S′(S′

n(π
′
2)), ”

Cl(〈B,ν〉) = 〈B,ρ1〉, with ρ1 = ∀α1.ν1
2∩ · · · ∩∀αm.νm

2

So, for 1≤ j≤m, S(δj) = ν
j
2 = S′(S′

j(π
′
2)), and, by Property 5.18, there exists substitutions

Sj
u,Sj such that

Sj
u = unify(δj,π′

2)

S(δj) = Sj(Sj
u(δj)) = ν

j
2 = Sj(Sj

u(π
′
2)) = S′(S′

j(π
′
2))

Since the substitutions Sj
u agree on type-variables, without loss of generality, we can

assume that exists substitutions S1, . . . ,Sm such that

Si = unify(Si−1(δi),π′
2)◦Si−1 (with S0 = IdS), and

for 1≤ j≤m, Sj(Sn(δj)) = ν
j
2 = Sj(Sn(π′

2))

so, by Definition 5.20

Ch′u = unify∀ 2 ((∀α1.δ1)∩ . . . ∩ (∀αn.δn),π′
2, P′

2).

exists. Take Chu = [S2] ∗ Ch′u, Chp = [S1◦ · · · ◦Sm,<〈B,ρ2〉, 〈B,τ〉>], and ρ = µ2.
Notice that, since B can be assumed to not contain free occurrences of αs, the last chain is
well-defined.

Lemma 5.27 Let σ ∈ T2, and, for every 1≤ i≤n, ppE (ti) = 〈Pi,πi〉, such that the pairs 〈Pi,πi〉 and
the type E (F) = γ1→·· ·→γn→γ are disjoint, and let Ch(F),Ch1, . . . ,Chn be chains such that

ChF(E (F)) = σ1→·· ·→σn→σ and, for every 1≤ i≤n,Chi(〈Pi,πi〉) = 〈Bi,σi〉.

Then there are chains Chg and Chp such that

ppE (F(t1, . . . , tn)) = Chg(〈Π{P1, . . . , Pn},γ〉), and
Chp(ppE (F(t1, . . . , tn))) = 〈Π{B1, . . . , Bn},σ〉.

Proof: This is a generalisation of the proof of the previous lemma.

The main result of this section then becomes the soundness and completeness result for
ppE .

Theorem 5.28 (Soundness of ppE ) If ppE (t) = 〈P,π〉, then P �2
E t :π.
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Proof: By induction on the structure of terms.
(t ≡ x) : Since ppE (x) = 〈{x:ϕ}, ϕ〉, the result follows from rule (≤2).
(t ≡ λx.t′) : a) If x occurs free in t′, then there are σ,π such that ppE (λx.t′) = 〈P,σ→π〉,

where ppE (t′) = 〈P, x:σ , π〉. By induction, P, x:σ �2
E t′ :π, and, by applying rule

(→I), also P �2
E λx.t′ :σ→π.

b) Otherwise, there are ϕ,π such that ppE (λx.t′) = 〈P, ϕ→π〉, where ppE (t′) = 〈P,π〉,
with ϕ a fresh variable. By induction, P �2

E t′ :π. Since x does not occur in P,
we have P, x:ϕ ≤2 P, and P, x:ϕ �2

E t′ :π by Lemma 5.11, and then, by rule (→I),
P �2

E λx.t′ : ϕ→π.
(t ≡ Ap(t1, t2)) : Then there are P1, P2 such that ppE (t1) = 〈P1,π1〉, ppE (t2) = 〈P2,π2〉, and, by

induction, P1 �2
E t1 :π1 and P2 �2

E t2 :π2. Notice that, by construction, the two principal
pairs share no type variables. Let S2 = toTC(π2). Then either:
(π1 = ϕ) : Then ppE (Ap(t1, t2)) = 〈S1(Π{P1,S2(P2)}), ϕ′〉, where S1 = (ϕ �→ S2(π2)→ϕ′),

and ϕ′ is a fresh variable. Let S = S1◦S2, then, by Lemma 5.10,

S(P1) �2
E t1 :S(π1) and S(P2) �2

E t2 :S(π2).

We know that S(π1) = S1(ϕ) = S2(π2)→ϕ′. Since S2 has no effect on P1, S(Π{P1, P2}) =
S1(Π{P1,S2(P2)}). Also, since S1 does not affect any variable in S2(〈P2,π2〉), we
have S(P2) = S2(P2), and S(π2) = S2(π2). So, by rule (→E), S(Π{P1, P2}) �2

E Ap(t1, t2) : ϕ′.
(π1 = σ→τ, with σ ∈ T1, τ ∈ T2) : Then ppE (Ap(t1, t2)) = 〈S(Π{P1,Ex(S2(P2))}),S(τ)〉,

where [Ex,S] = unify∀ 2 (σ,S2(π2),S2(P2)). Let Ch = [S2,Ex,S], then, by Lemma 5.15,

Ch(P1) �2
E t1 :Ch(π1) and Ch(P2) �2

E t2 :Ch(π2).

Since [Ex,S] (σ) = [Ex,S] (S2(π2)), and S2 has no effect on 〈P1,σ→τ〉, we have Ch(σ) =
Ch(π2) and S(Π{P1,Ex(S2(P2))}) = Ch(Π{P1, P2}). Also, since the chain returned
by unify∀ 2 acts on 〈P1,σ→τ〉 as a substitution, we get Ch(σ→τ) = Ch(π2)→S(τ).
But then, by rule (→E), Ch(Π{P1, P2}) �2

E Ap(t1, t2) :S(τ).
(t ≡ F(t1, . . . , tn)) : As the previous part, using that the fresh instance of the environment

type for F is can be used for F here (see the proof of Lemma 5.10).

Theorem 5.29 (Completeness of ppE ) If B �2
E t :σ, then there are a basis P and type π such that

ppE (t) = 〈P,π〉, and there is a chain Ch such that Ch(〈P,π〉) = 〈B,σ〉.
Proof: By induction on the structure of derivations.
(≤2) : Then t ≡ x, σ ∈ TC, and there is τ ∈ T1 such that x:τ ∈ B and τ ≤2 σ. Also, π = ϕ

and P = {x:ϕ}. Since τ ≤2 σ, B ≤2 {x:σ}, so <〈{x:σ},σ〉, 〈B,σ〉> is a lifting. Take Ch =
[ϕ �→ σ,<〈{x:σ},σ〉, 〈B,σ〉>].

(∩I) : Then σ = σ1∩· · ·∩σn, and, for 1≤ i≤n, B �2
E t :σi, with σi ∈ T ∀

C. Let ppE (t) = 〈P,π〉,
and let Ex = n〈P,π〉, then Ex(〈P,π〉) = 〈Π{P1, . . . , Pn},π1∩ · · · ∩πn〉, with each pair 〈Pi,πi〉
a trivial variant of 〈P,π〉. So, without loss of generality, we can even say ppE (t) = 〈Pi,πi〉,
for all 1≤ i≤n. By induction, there exist chains Ch1, . . . ,Chn such that for 1≤ i≤n,
Chi(〈Pi,πi〉) = 〈B,σi〉. By Lemma 5.7(ii), Chi = [Si,Cli]. Take Ch= [Ex,S1◦ · · · ◦Sn,Cln, . . . ,Cln].

(→I) : Then t ≡ λx.t′, and there are ρ,µ such that σ = ρ→µ, and B, x:ρ �2
E t′ :µ. Let ppE (t′) =

〈P′,π′〉, then
(x ∈ FV(t′)) : Let x:ν ∈ P′, then P = P′\x, and ppE (λx.t′) = 〈P,ν→π′〉. By induction

there exists a chain Ch′ such that

Ch′(〈P, x:ν , π′〉) = 〈B, x:ρ , µ〉.
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Then, by Lemma 5.16(i), there exists a chain Ch′′ such that Ch′′(〈P,ν→π′〉) = 〈B,ρ→µ〉.
Take Ch = Ch′′.

(x �∈ FV(t′)) : Then ppE (λx.t′) = 〈P′, ϕ→π′〉, where ϕ is a type-variable not occurring
in any other type. By induction there exists a chain Ch′ such that Ch′(〈P,π〉) =
〈B,µ〉. Then, by Lemma 5.16(ii), there exists a chain Ch′′ such that Ch′′(〈P, ϕ→π〉) =
〈B, ϕ→µ〉. Let Ch′′ = [Ex,S,L,Cl], then take Ch = [Ex,S◦(ϕ �→ ρ),L,Cl].

(→E) : Then t ≡ Ap(t1, t2), and there is a τ ∈ T2 such that B �2
E t1 :τ→σ, and B �2

E t2 :τ. By
induction, for i = 1, 2, there are Pi,πi, and chain Chi such that

ppE (ti) = 〈Pi,πi〉, Ch1(ppE (t1)) = 〈B,τ→σ〉, and Ch2(ppE (t2)) = 〈B,τ〉.

Then, by Lemma 5.26, there is a chain Ch such that Ch(ppE (Ap(t1, t2))) = 〈B,σ〉.
(∀ I) : Then σ = ∀α.τ[α/ϕ], and B �2

E t :τ. Let ppE (t) = 〈P,π〉, then by induction there exists
a chain Ch′ such that Ch′(〈P,π〉) = 〈B,τ〉. Take Cl = 〈τ, ϕ〉, and Ch = Ch′ ∗ [Cl].

(F ) : Then t ≡ F(t1, . . . , tn). There are σ1, . . . ,σn such that, for every 1≤ i≤n, B �2
E ti :σi, and

a chain ChF such that ChF(E (F)) = σ1→·· ·→σn→σ. By induction, for 1≤ i≤n, there are
〈Pi,πi〉, (disjoint in pairs) and a chain Chi, such that

ppE (ti) = 〈Pi,πi〉, and Chi(ppE (ti)) = 〈B,σi〉.

Since the pairs 〈Pi,πi〉 are disjoint, the chains Chi do not interfere. Assume, without
loss of generality, that none of the type-variables occurring in E (F) occur in any of the
pairs 〈Pi,πi〉. Then, by Lemma 5.27, there is a chain Ch such that Ch(ppE (F(t1, . . . , tn))) =
〈B,σ〉.

6 Conclusions

In this paper we made a further step inside the partially unexplored field of type assignment
systems for term rewriting systems extended with abstraction and β-rule. Various extensions
of term rewriting containing the notions of abstraction and β-rule have been intensively
explored in the last decade in a plethora of papers leaving, however, the concept of type
assignment in such a context still partially in darkness. We believe that if the study of
the combined computational paradigm Lambda Calculus and Algebraic Rewriting can be
of help not only for the development of interactive proof assistant tools, but also as basis
for powerful and expressive programming languages, the topic of type systems, and type
assignment systems in particular, cannot be left unattended. We have focused on a type
assignment aiming a being both powerful, by using intersection types, and expressive, by
adding the universal type quantification.

We cannot help to sympathize with the reader who had to go through the heavy techni-
calities that the notion of intersection types brings, particularly when connected with term
rewriting and universal quantification. But this has not to leave the impression of a useless-
ness of the sort of type assignment we propose. The typing power of our general system is
such to leave space to many kind of restrictions, needed also because of its undecidability.
As a matter of fact, we proposed a decidable restriction which, besides having such feature,
gets rid of many technicalities of the general system. We do not claim such restriction to be
”the restriction” for a practical use of the proposed notion of type assignment for Lambda
Calculus + Algebraic Rewriting, but simply wished to show one possibility.

The present paper then aims at being the theoretical platform from which we can start for
further investigations, which will be focused on restricted versions of the general system.
One other question to be addressed, directly in the context of some restricted version, is
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if the proposed notion of type assignment easily extends to other type constructors often
used in actual type system for programming languages (e.g. the polymorphic lists or the
restriction to type classes of the language Haskell).
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Appendix

Property 3.9 Let B �E t :σ, where B = {x1:σ1, . . . , xn:σn}, and let FV(σ1, . . . ,σn,σ) ⊆ {ϕ}.
Then, given a sequence of types γ such that |γ| = |ϕ| and a sequence of reducibility candi-
dates Rγ, if R is a term-substitution that is Rγ-reducible for B, then tR ∈ Red σ[Rγ/ϕ].

Proof: By Nötherian induction on ‘�SN’. If σ ≡ σ1∩· · ·∩σn, then, by definition, we have
to prove that, for any 1≤ i≤n, tR ∈ Red σi [Rγ/ϕ]. Thus, without loss of generality we can
consider σ not to be an intersection.

Let γ and Rγ be as in the hypothesis of the property and let R = {x1 �→ u1, . . . , xn �→ un}.
We distinguish the cases:

i) t is a neutral term. If t is a variable xj, then we have necessarily that σj ≤ σ. Since R is Rγ-
reducible for B, xjR ∈ Red τ[Rγ/ϕ], and, by Lemma 3.6, we have also that xjR ∈ Red σ[Rγ/ϕ].
So, without loss of generality we can assume that t is not a variable. This implies
that also tR is neutral. If tR is irreducible, then tR ∈ Red σ[Rγ/ϕ] holds by (C3). Oth-
erwise, let tR → t′ at position p. We will prove either tR ∈ Red σ[Rγ/ϕ] itself, or prove
t′ ∈ Red σ[Rγ/ϕ] and apply (C3).

a) p = qp′, where t|q ≡ xi ∈ X . So the redex is in a sub-term of tR that is introduced by
the term-substitution. Let z be a new variable.

Take now R′ such that R′ = R ∪ {z �→ t′ |q}. Note that tR|q → t′|q at position p′.
Since tR|q ∈ {R} and R is assumed to be Rγ-reducible for B, also tR|q ∈ Red σi [Rγ/ϕ]

holds. So, by (C2) we have that also t′ |q ∈ Red σi [Rγ/ϕ] holds. Then we have that R′

is Rγ-reducible for B,z:σi.
Now, if the variable xi (≡ t|q) has exactly one occurrence in t, then t ≡ t[z]q modulo

renaming of variables. Otherwise, t>· t[z]q . In the first case (since R contains a term
that is rewritten to get R′) we have I(tR) �SN

3 I(t[z]R′
q ), and I(tR) �SN

2 I(t[z]R′
q )

in the second case. Both cases yield, by induction, t[z]R
′

q ∈ Red σ[Rγ/ϕ]. Note that

t[z]R
′

q ≡ t′.
b) Now assume that p is a non-variable position in t. We analyze separately the cases:

1) p is not the root position. Note that t|pR ≡ tR|p. Let τk (k ∈ K) be a type assigned
to t|p in the derivation of B �E t : σ, then

tR|p ∈ Red τk [Rγ/ϕ] (1)

holds by induction. Let z be a new variable, and take R′ such that R′ = R ∪
{z �→ tR|q}. By (1), and since

Red
⋂

k ∈ K τk [Rγ/ϕ] ≡
⋂

k ∈ K

Red τk [Rγ/ϕ],

R′ is reducible for B ∪ {z:
⋂

k ∈ K τk}. Moreover B ∪ {z:
⋂

k ∈ K τk} �E t[z]p :σ. Now,
since, t>· t[z]p, we have that I(tR) �SN

2 I(t[z]R′
p ), and hence tR ∈ Red σ[Rγ/ϕ]

because tR ≡ t[z]R
′

p and, by induction, t[z]R
′

p ∈ Red σ[Rγ/ϕ].
2) p is the root position. Then the possible cases for t are:

A) t ≡ F(t1 . . . tn), where at least one of the ti’s is not a variable, and F is ei-
ther a defined symbol of arity n, or F ≡ Ap and n = 2. Take now z1, . . . ,zn
new variables and R′ such that R′ = R ∪ {z1 �→ t1R, . . . ,zn �→ tnR}. Since t>· ti,
I(tR) �SN

2 I(tiR). Then if B �E ti :ξi, tiR ∈ Red ξi [Rγ/ϕ] holds by induction,
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and hence R′ is Rγ-reducible for B ∪ {z1:ξ1, . . . ,zn :ξn}. Since t>· F(z1, . . . ,zn),
we have I(tR)�SN

2 I(F(z1, . . . ,zn)R′
). Now, F(z1, . . . ,zn)R′ ≡ tR and

B ∪ {z1:ξ1, . . . ,zn :ξn} �E F(z1, . . . ,zn) :σ.

Hence, by induction, tR ∈ Red σ[Rγ/ϕ].
B) t ≡ Fk(z1, . . . ,zn) where z1, . . . ,zn are different variables. (If zi ≡ zj for some

i �= j, we can reason as in the case above, taking z′1, . . . ,z′n, new pair-wise
distinct variables, and R′ = {z′1 �→ z1R, . . . ,z′n �→ znR}.) Then tR must be an
instance of the left-hand side of a rule defining Fk, that is a rule of the form

Fk(C[x],y)→ C′ [Fk(C1x],y), . . . , Fk(Cm [x],y),y].

Therefore we have

tR ≡ Fk(z1, . . . ,zn)R

≡ Fk(C[v],w)
→ C′ [Fk (C1v,w), . . . , Fk(Cm [v],w),w]
≡ t′,

where C[v],w are all terms in {R}, and hence, by hypothesis, for suitable i’s,
they belong to Red σi [Rγ/ϕ]. Now we will deduce t′ ∈ Red σ[Rγ/ϕ] in three
steps:

(Step I) : Let R′ be the term-substitution that maps Fk(C[x],y) to Fk(C[v],w) ≡ tR.
By the definition of the general scheme, x ⊆ y and hence v ⊆ w. Then,
since w are terms in {R}, by hypothesis we have w ∈ Red σ1[Rγ/ϕ], where
σ1 ⊆ σ. We can then infer that v ∈ Redσ2[Rγ/ϕ], where σ2 ⊆ σ1.
Take a derivation for our term Fk(C[v],w). Let ρv be the types given to v
in the derivation. Now, by Subject Reduction (Theorem 2.27) it is easy to
check that, for every 1≤ j≤m and 1 ≤ k′ ≤ |C| it is possible to type Cj′k

[x]
from the basis {x:ρv}. We can show that R′ is Rγ-reducible for {x:ρv}, as
follows:
Consider a derivation for the principal pair of the left hand side of the rule:

y:µ, . . . �E Fk(C[x],y) :µ′

and assume that E(Fk) = µ1→·· ·→µn→σ. Note that by the definition
of the general scheme, the types appearing in the principal basis for the
arguments y of Fk are the types required by E(Fk). All the types τ used for
x ⊆ y in this derivation satisfy µ ≤ τ. Any valid derivation for an instance
of the left-hand side can be obtained by a chain of operations applied to
the principal one, in particular the derivation that assigns the types ρ to
the occurrences of x in C[x] and σ2 to the occurrences of x in y. Hence,
there is a chain of operations that transforms µ into σ2 and τ into ρ. Recall
that substitution and expansions preserve the ≤ relation on types. Lifting
and closure can transform µ or its instances into smaller types, hence, still
smaller than τ. In this way we can build a derivation for Fk(C[v],w) where
the types ρv assigned to v are such that σ2 ≤ ρv. Now, by Lemma 3.6, we
have v ∈ Redρv[Rγ/ϕ], that is R′ is Rγ-reducible for {x:ρv}1.

1 With the version of the scheme that does not require v ⊆ w but assumes that the terms in v that do not
appear in w are assigned base types, we can deduce that R′ is reducible because SN (v).
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For every 1≤ j≤m, Fk does not occur in C[ j] (by definition of the general

scheme), hence for every 1 ≤ k′ ≤ |C[ j]|, I(Fk(z1, . . . ,zn)R)�SN
1 I(Cj′k

[x]R
′
).

Now, since R′ is Rγ-reducible for {x:ρv}, it is possible to apply the induc-

tion hypothesis obtaining Cj′k
[x]R

′
∈ Red τjk′ [Rγ/ϕ] for any type τjk′ we can

give to Cj′k
[x] from the basis {x:ρv}. In particular when τj1→ . . .→τjn→σ̂j

is the type used for Fk in the sub-derivation for the right hand side of our
reduction rule having Fk(Cj [x],w) as the subject of the conclusion.

(Step II) : Let, for 1≤ j≤m, Rj be the term-substitution such that

Fk(z1, . . . ,zc,y)Rj ≡ Fk(Cj [v],w) ≡ Fk(Cj [x],w)R′

(c = |C|). By (Step I), Rj is Rγ-reducible for

B′ = {z1:τj1 , . . . ,zcj :τjcj
,y:σ1},

where σ1 ⊆ σ. Since C>mulC[ j], and > is closed under term-substitution,

also C
R′
>mulC[ j]

R′

. So I(Fk(z1, . . . ,zn)R) �SN
3 I(Fk(z1, . . . ,zcj ,y)

Rj), and
therefore, by induction, Fk(z1, . . . ,zcj ,w)

Rj ∈ Red σ̂j [Rγ/ϕ].
(Step III) : Let v̂ be the term obtained by replacing, in the right-hand side of the rule,

the terms Fk(C1v,w), . . . , Fk(Cm [v],w) by fresh variables z′1, . . . ,z′m, that is,
v̂ = C′ [z′1, . . . ,z′m,y]. Let R′′ be the term-substitution such that

v̂R′′
≡ C′ [Fk(C1v,w), . . . , Fk(Cm [v],w),w],

then tR → v̂R′′
. Notice that, by (Step II), R′′ is Rγ-reducible for the ba-

sis B′′ = {z′1:σ̂1, . . . ,z′m:σ̂m,y:σ1}, where σ1 ⊆ σ. When an Fj occurs in v̂
then, by the general scheme, j < k and, therefore, I(Fk(z1, . . . ,zn)R) �SN

1

I(v̂R′′
). Hence, v̂R′′ ∈ Red σ[Rγ/ϕ], by induction. Since t′ ≡ v̂R′′

, we get
t′ ∈ Red σ[Rγ/ϕ].

C) t ≡ Ap(z1,z2) where z1,z2 ∈ X . We prove this part by induction on the struc-
ture of the derivation for B �E Ap(z1,z2) :σ.

(≤), (F ) : Not applicable.
(→E) : Then there is a τ such that B �E z1 :τ→σ and B �E z2 :τ. Then, by rule

(≤), there are ρ1,ρ2 such that {z1:ρ1,z2:ρ2} ⊆ B, ρ1 ≤ τ→σ, and ρ2 ≤ τ.
Since z1R and z2R are Rγ-reducible in B, we have z1R ∈ Red ρ1 [Rγ/ϕ], and
z2R ∈ Red ρ2 [Rγ/ϕ]. Then, by Lemma 3.6, also z1R ∈ Red τ→σ[Rγ/ϕ], and
z2R ∈ Red τ[Rγ/ϕ]. Then, by Definition 3.3, Ap(z1R,z2R) ∈ Red σ[Rγ/ϕ].
Notice that Ap(z1R,z2R) is the same as Ap(z1,z2)R.

(∩I) : Then σ ≡ τ1∩· · ·∩τm. The thesis follows easily by induction, since

Red τ1∩···∩τm [Rγ/ϕ] ≡ Red τ1 [Rγ/ϕ]∩ · · · ∩ Red τm [Rγ/ϕ].

(∀E) : Then σ ≡ σ′[τ/ϕ′] where the type in the premise of the rule is ∀ϕ′.σ′. Since
∀ϕ′.σ′ ≤ σ′[τ/ϕ′], the result follows by induction and Lemma 3.6.

(∀ I) : Then σ ≡ ∀ϕ′.σ′ and B �E t : σ′. Moreover, ϕ′ �∈ FV(σ1, . . . ,σn). By induc-
tion, for any sequence of types γ,δ such that |γ,δ| = |ϕ, ϕ′| and any se-
quence of reducibility candidates Rγ,Sδ: if R is a term-substitution Rγ,Sδ-
reducible for B, then tR ∈ Red σ′

[Rγ/ϕ,Sδ/ϕ′]. Since ϕ′ �∈ FV(σ1, . . . ,σn), it
follows that, for any 1≤ j≤n,

Red σj [Rγ/ϕ,Sδ/ϕ′] ≡ Red σj [Rγ/ϕ].
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This means that a term-substitution which is Rγ,Sδ-reducible for B, is also
Rγ-reducible for B. Hence we can restate the induction hypothesis as fol-
lows: for any sequence of types γ such that |γ| = |ϕ| and any sequence of
reducibility candidates Rγ, if R is a term-substitution Rγ-reducible for B,
then for any type δ and reducibility candidate Sδ, tR ∈ Red σ′

[Rγ/ϕ,Sδ/ϕ′].
By definition of reducibility candidates this means that Ap(z1,z2)R ∈ Red∀ ϕ′.σ′

[Rγ/ϕ].
ii) t is not neutral. Let t ≡ λx.u.

We can proceed by induction on the structure of the derivation of B �E λx.u :σ. The
argument is similar to that used for the case t ≡ Ap(z1,z2). We prove only the interesting
part, when the last rule is (→I), and σ ≡ ρ→β. Then we need to show that, given v such
that v ∈ Red ρ[Rγ/ϕ], we have that Ap(tR,v) ∈ Red β[Rγ/ϕ]. Since the term Ap(tR,v) is
neutral, by (C3) it is enough to prove t′ ∈ Red β[Rγ/ϕ] for all t′ such that Ap(tR,v)→ t′.
This will be proved by induction on the sum of the length of the rewrite sequences out
of v and out of R. Note that since v and R are reducible, by (C1) SN (v) and SN (R).
(Base) : If v and R are in normal form, the only reduction step out of Ap(tR,v) can be:

Ap((λx.u)R,v)→ t′ ≡ uR′
,

where R′ ≡ R ∪ {x �→ v}. R′ is reducible because v ∈ Red ρ[Rγ/ϕ]. Now, since
(λx.u)>· u, I(λx.uR) �SN

2 I(uR′
). By induction we have uR′ ∈ Red β[Rγ/ϕ]. Note

that uR′ ≡ t′.
(Induction step) : Otherwise, the reduction step out of Ap(tR,v) must take place inside

v or R. Then t′ is computable by induction.
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