
A Filter Model for the λµ Calculus

(Extended Abstract with proofs in appendix)

(TLCA’11, LNCS 6690, pp. 229-244, 2011)

Steffen van Bakel1, Franco Barbanera2, and Ugo de’Liguoro3

1 Imperial College London, London, UK
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Abstract

We introduce an intersection type assignment system for the pure λµ-calculus, which is
invariant under subject reduction and expansion. The system is obtained by describing Stre-
icher and Reus’s denotational model of continuations in the category of ω-algebraic lattices
via Abramsky’s domain logic approach. This provides a tool for showing the completeness
of the type assignment system with respect to the continuation models via a filter model
construction. We also show that typed λµ-terms in Parigot’s system have a non-trivial inter-
section typing in our system.

1 Introduction

The λµ-calculus is a pure calculus introduced by Parigot [27] to denote classical proofs
and to compute with them. It is an extension of the proofs-as-programs paradigm where
types can be understood as classical formulas and (closed) terms inhabiting a type as the
respective proofs in a variant of Gentzen’s natural deduction calculus for classical logic
[16]. Since the early days, the study of the syntactic properties of the λµ-calculus has been
challenging, motivating the introduction of variants of term syntax, of reduction rules, and of
type assignment, as is the case of de Groote’s variant of the λµ-calculus [18]. These changes
have an impact on the deep nature of the calculus which emerges both in the typed and in
the untyped setting [12, 29, 19].

Types are of great help in understanding the computational properties of terms in an ab-
stract way. Although in [7] Barendregt treats the theory of the pure λ-calculus without a
reference to types, most of the fundamental results of the theory can be exposed in a quite
elegant way by using the Coppo-Dezani intersection type system [10]. This is used by Kriv-
ine [22], where the treatment of the pure λ-calculus relies on intersection type assignment
systems called D and DΩ.

The quest for more expressive notions of type assignment for λµ is part of an ongoing
investigation into calculi for classical logic. In order to come to a characterisation of strong
normalisation for Curien and Herbelin’s (untyped) sequent calculus λµµ̃ [11], Dougherty,
Ghilezan and Lescanne presented SystemM∩∪ [14, 15], that defines a notion of intersection
and union typing for that calculus. However, in [4] van Bakel showed that this system is not
closed under conversion, an essential property of Coppo-Dezani systems; in fact, it is shown
that it is impossible to define a notion of type assignment for λµµ̃ that satisfies that property.
In [5] van Bakel brought intersection (and union) types to the context of the (untyped) λµ-
calculus, and showed type preservation with respect to λµ-conversion. However, union
types are no longer dual to intersection types and play only a marginal role, as was also
the intention of [15]. In particular, the normal (∪I) and (∪E) rules as used in [6], which
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are known to create the same soundness problem in the context of the λ-calculus, are not
allowed. Moreover, although one can link intersection types with the logical connector and,
the union types used in [5] bear no relation with or; one could argue that therefore union
might perhaps not be the right name to use for this type constructor.

In the view of the above mentioned failure, the result of [5] came as a surprise, and led
automatically to the question we answer here: does a filter semantics for λµ exist?

Building on Girard’s ideas [23] and Ong and Stewart’s work [25], in [30, 21] the Streicher
and Reus proposed a model of both typed and untyped λ-calculi embodying some idea of
continuations, including a version of pure λµ. Their model is based on the solution of the
domain equations D = C→R and C = D × C, where R is an arbitrary domain of ‘results’
(we call the triple (R, D,C) a λµ-model). With respect to this, here we adapt the term-
interpretation map of Streicher and Reus [30] to Parigot’s original calculus (it is not difficult
to do the same for de Groote’s Λµ); we deviate from the variant studied in [30], where also
continuation terms are included in the syntax.

Following Abramski’s approach [1], we reconstruct the initial/final solution of these equa-
tions in the category of ω-algebraic lattices by describing compact points and the ordering
of these domains as Lindenbaum-Tarski algebras of certain intersection type theories. Types
are generated from type variables, the trivial type ω, the connective ∧, plus the domain spe-
cific type constructors × and→. This way, we obtain an extension of the type theory used in
[8] which is a natural equated intersection type theory in terms of [3] and hence isomorphic
to the inverse limit construction of a D∞ λ-model (as an aside, we observe that this perfectly
matches with Theorem 3.1 in [30]). The thus obtained type theory and term interpretation
guide the definition of an intersection type assignment system. We prove this to be invariant
under conversion, and sound and complete with respect to the validity of type judgements
in any λµ-model; this is shown through the filter model which, together with the system, is
the main contribution of this paper.

At this point we have to stress the quite different meaning of our types and type assign-
ment system with respect to the system originally presented by Parigot. The types we use
here are not logical formulas, and the ∧ connective is not conjunction. As is the case with
ordinary intersection types, ∧ is not even the left adjoint of→, which instead is the case for
the × connective. Nonetheless, we show there exists a strong connection between Parigot’s
type assignment and ours. In fact, we show that any typed term in Parigot’s system has a
non-trivial type (i.e. one that cannot be equated to ω) in our system, and that this is true of
all the subjects in its derivation. We interpret this result as evidence that terms that actually
represent logical proofs do have a computational meaning in a precise sense. Assuming the
model captures relevant computational properties, this might provide a characterisation of
strong normalisation for λµ.

Due to space restrictions, proofs are omitted from this paper.

2 The λµ calculus

In this section we briefly recall Parigot’s pure λµ-calculus introduced in [27], slightly chang-
ing the notation.

Definition 2.1 (Term Syntax [27]) The sets Trm of terms and Cmd of commands are defined
inductively by the following grammar (where x∈Var, a set of term variables, and α∈Name, a
set of names, that are both denumerable):

M, N ::= x | λx.M | MN | µα.Q (terms)

Q ::= [α]M (commands)
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As usual, we consider λ and µ to be binders; we adopt Barendregt’s convention on terms,
and will assume that free and bound variables are different.

In [27] terms and commands are called unnamed and named terms respectively. In the
same place names are called µ-variables, while they are better understood as continuation
variables (see [30]), but this would be a direct link to the interpretation; we prefer a more
neutral terminology.

Definition 2.2 (Substitution [27]) Substitution takes three forms:

term substitution: M[N/x] (N is substituted for x in M, avoiding capture)
renaming: Q[α/β] (every free occurrence of β in Q is replaced by α)
structural substitution: T[α⇐ L] (every subterm [α]N of M is replaced by [α]NL)

where M, N, L ∈ Trm, Q ∈ Cmd and T ∈ Trm∪ Cmd. More precisely, T[α⇐ L] is defined by:

([α]M)[α⇐ L]≡ [α](M[α⇐ L])L

whereas in all the other cases it is defined by:

x[α⇐ L] ≡ x
(λx.M)[α⇐ L] ≡ λx.M[α⇐ L]
(MN)[α⇐ L] ≡ (M[α⇐ L])(N[α⇐ L])
(µβ.Q)[α⇐ L] ≡ µβ.Q[α⇐ L]
([β]M)[α⇐ L] ≡ [β]M[α⇐ L]

Definition 2.3 (Reduction [27]) The reduction relation T→µ S, where (T,S)⊆ (Trm×Trm)∪
(Cmd× Cmd) is defined as the compatible closure of the following rules :

(β) : (λx.M)N → M[N/x]
(µ) : (µβ.Q)N → µβ.Q[β⇐N]

(ren) : [α]µβ.Q → Q[α/β]
(µη) : µα.[α]M → M if α 6∈ fn (M)

Parigot’s original paper [27] just mentions rule (µη), while proving confluence of the
reduction relation axiomatised by rules (β), (µ), (ren) only. The full reduction relation in
Def 2.3 has been proved confluent by Py [28].

Theorem 2.4 (Confluence of→µ [28]) The reduction relation →µ is confluent.

Because of Thm. 2.4 the convertibility relation =µ determined by →µ is consistent in the
usual sense that different normal forms are not equated. If we add the rule

(η) : λx.Mx → M if x 6∈ fv (M)

of the λ-calculus, we obtain a non-confluent reduction relation, that we call→µη; see [28]§2.1.6
for an example of non-confluence and possible repairs. However, the convertibility relation
=µη induced by→µη is consistent (namely non-trivial) by a semantic argument (see Sect. 3).
The theory of =µη is interesting because it validates the untyped version of Ong’s equation
(ζ) in [26], which has the following form:

(ζ) : µα.Q = λx.µα.Q[α⇐ x]

where x 6∈ fv (Q). Indeed, for a fresh x we have:

µα.Q η← λx.(µα.Q)x →µ λx.µα.Q[α⇐ x]

So it is possible to define more reduction rules, but Parigot refrained from that since he
aimed at defining a confluent reduction system.
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x:(A→B)→A ⊢ x : (A→B)→A | α:A

x:(A→B)→A,y:A ⊢ y : A | α:A, β:B
(⊥)

x:(A→B)→A,y:A ⊢ [α]y :⊥ | α:A
(µ)

x:(A→B)→A,y:A ⊢ µβ.[α]y : B | α:A
(→I)

x:(A→B)→A ⊢ λy.µβ.[α]y : A→B | α:A
(→E)

x:(A→B)→A ⊢ x(λy.µβ.[α]y) : A | α:A
(⊥)

x:(A→B)→A ⊢ [α](x(λy.µβ.[α]y)) :⊥ | α:A
(µ)

x:(A→B)→A ⊢ µα.[α](x(λy.µβ.[α]y)) : A |
(→I)

⊢ λx.µα.[α](x(λy.µβ.[α]y)) : ((A→B)→A)→A |

Figure 1: A proof of Peirce’s Law (due to Ong and Stewart [25])

With λµ Parigot created a multi-conclusion typing system which corresponds to classical
logic; the derivable statements have the shape Γ⊢M : A | ∆, where A is the main conclusion
of the statement, expressed as the active conclusion, and ∆ contains the alternative con-
clusions. The reduction rules for the terms that represent the proofs correspond to proof
contractions.

Parigot’s type assignment for λµ is defined by the following natural deduction system;
there is a main, or active, conclusion, labelled by a term of this calculus, and the alternative
conclusions are labelled names.

Definition 2.5 (Typing rules for λµ [27]) Types are those of the simply typed λ-calculus,
extended with the type constant ⊥ (essentially added to express negation), i.e.:

A, B ::= ϕ | ⊥ | A→B (A 6= ⊥)

The type assignment rules are:

(Ax) : (x:A ∈ Γ)
Γ ⊢ x : A | ∆ (⊥) :

Γ ⊢ M : B | β:B,∆

Γ ⊢ [β]M :⊥ | β:B,∆
(µ) :

Γ ⊢ Q :⊥ | α:A,∆

Γ ⊢ µα.Q : A | ∆

(→I) :
Γ, x:A ⊢ M : B | ∆

Γ ⊢ λx.M : A→B | ∆
(→E) :

Γ ⊢ M : A→B | ∆ Γ ⊢ N : A | ∆

Γ ⊢ MN : B | ∆

We write Γ ⊢p N : A | ∆ for statements derivable using these rules.

We can think of [α]M as storing the type of M amongst the alternative conclusions by
giving it the name α.

Example 2.6 As an example illustrating the fact that this system is more powerful than the
system for the λ-calculus, Fig. 1 contains a proof of Peirce’s Law.

3 Semantics

The semantics considered here is due to Streicher and Reus [30]. Their idea is to work in
the category NR of ‘negated’ domains of the shape A→R, where R is a parameter for the
domain of results. In such a category, continuations are directly modelled and treated as the
fundamental concept, providing a semantics both to Felleisen’s λC-calculus and to a variant
of λµ, with three sorts of terms, instead of two.

In this section we adapt such a semantics to Parigot’s original λµ, which does not have
continuation terms M1 :: . . . :: Mk. We rephrase the model definition in the setting of ordinary
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categories of domains, getting something similar to the Hindley-Longo ‘syntactical models’,
but without pretending to achieve the general definition of what a λµ-model is, an issue
which is dealt with in [26, 20].

Definition 3.1 (λµ-Model) We say that a triple (R, D,C) is a λµ-model in a category of
domains D if R ∈ D is a fixed domain of results and D,C (called domains of denotations and
of continuations respectively), are solutions in D of the equations:

{

D = C→ R
C = D× C

(1)

In the terminology of [30] elements of D are denotations, while those of C are continuations.
We refer to these equations as the continuation domain equations.

Definition 3.2 (Term Interpretation) Let (R, D,C) be a λµ-model, and Env = (Var→ D) +
(Name→ C). The interpretation mappings · D : Trm→ Env→ D and · C : Cmd→ Env→ C
are mutually defined by the following equations, where e ∈ Env and k ∈ C:

x D e k = e x k

λx.M D e k = M D e[x := d] k′ where k = 〈d, k′〉

MN D e k = M D e 〈 N D e, k〉

µα.Q D e k = d k′ where 〈d, k′〉 = Q C e[α := k]

[α]M C e = 〈 M D e, e α〉

This definition has (of course), a strong similarity with Bierman’s interpretation of λµ [9];
however, he considers a typed version.

In the second equation the assumption k = 〈d, k′〉 is not restrictive: in particular, if k =
⊥C = 〈⊥D,⊥C〉 then d = ⊥D and k′ = k = ⊥C. We shall omit the superscripts in · C and
· D when clear from the context.

Remark 3.3 Let us recall Λµ, the variant of λµ deviced by de Groote [18] (see also [19]), where
there is no distinction between terms and commands:

Λµ-Trm : M, N ::= x | λx.M | MN | µα.M | [α]M

Then, given a solution D,C of the continuation domain equations, it is possible to define a
similar interpretation map · D : Λµ-Trm→ Env→ D, where the first three clauses are the
same as in Def. 3.2, while the last two become:

µα.M D e k = M D e[α := k]k

[α]M D e k = M D e (e α)

The distinctive feature of Λµ is that in µα.M the subterm M need not be a named term (of
the shape [α]L), and that there exist terms of the form λx.[α]M, which play a key role in [18]
to inhabit the type ¬¬A→A with a closed term.

The analogous of Thm. 3.7 below can be established for Λµ and the above semantics, with
the proviso that the renaming reduction rule:

[α]µβ.M→ M[α/β]

is unsound for arbitrary M. On the contrary, renaming is sound in the expected contexts:

[α]µβ.[γ]M→ ([γ]M)[α/β] and µα[α]µβ.M→ µα.M[α/β]

where the second one is essentially the same as Parigot’s. The form of the renaming rule is
a delicate point, for which we refer the reader to [19].
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Since Def. 3.2 does not coincide exactly with Streicher and Reus’s, we check below that it
actually models λµ convertibility.

Proposition 3.4 i) M[N/x] e = M e[x := N e]

ii) M[α/β] e = M e[β := e α]

The semantics satisfies the following “swapping continuations” equation1:

Lemma 3.5 µα.[β]M e k = M e[α := k] (e[α := k]β).

We can now show:

Lemma 3.6 M[α⇐N] e k = M e[α := 〈 N e, e α〉] k.

Theorem 3.7 (Soundness of λµ) ⊢λµ M = N⇒ M = N

The soundness property holds also in case rule (η) is taken into account. The proof of
Thm. 3.7 can in fact be easily extended with a further induction case.

Proposition 3.8 (Soundness of λµη) The (η) rule is sound with respect to the semantics, i.e. λx.Mx = M if

4 The filter domain

We look for a solution of the continuation domain equations (1) in the category ALG of ω-
algebraic lattices and Scott-continuous functions (see the classic [17]), described as a domain
of filters generated by a suitable intersection type theory (below, a domain is an object of
ALG). Filter models appeared first in the theory of intersection type assignment in [8]
(see also [2]). A general theory of Stone duality for domains is treated in [1]; more recent
contributions for filter models and recursive domain equations can be found in [13, 3].

Definition 4.1 (Intersection Type Language and Theory) An intersection type language is
a countable set of types L such that: ω ∈ L and σ,τ ∈ L⇒ σ∧τ ∈ L.

An intersection type theory T is a collection of inequalities among types in a language L,
closed under the following axioms and rules:

σ≤ σ σ∧τ ≤ σ σ∧τ ≤ τ σ≤ω

σ≤ τ τ≤ ρ

σ≤ ρ

ρ≤ σ ρ≤ τ

ρ≤ σ∧τ

We write σ≤T τ for σ≤ τ ∈ T , or just σ≤ τ when T is understood. The inequality ≤ is a
preorder over L and L/≤ is an inf-semilattice with top [ω] (the equivalence class of ω).

Let F be the set of subsets F ⊆ L which are non-empty, upward closed and closed under
finite intersection. Then one has F ≃ Filt(L/≤), the set of filters over L/≤, so that the
elements of F are called filters as well. A principal filter is a set ↑σ = {τ ∈L | σ≤ τ}; we write
Fp for the set of principal filters; clearly Fp ⊆ F .

The poset (F ,⊆) is an ω-algebraic lattice, whose set of compact points K(F) is Fp. By this,
F is called a filter domain. On the other hand, any ω-algebraic lattice X can be presented as
a filter domain, due to the isomorphism X ≃ Filt(Kop(X)) where Kop(X) is K(X) (the set
of compact elements in X) with the inverse ordering. This is an instance of Stone duality in
the case of the category ALG, which is a particular and simpler case than the general ones
studied in [1].

1The equation in [30] is actually µα.[β]M e k = M e[α := k] (e β), but this is a typo.
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Observing that
σ≤ τ ⇐⇒ ↑τ ⊆ ↑σ

we have that Fp ≃ L/≤op considered as sup-semilattices, where ↑σ ⊔ ↑τ = ↑(σ∧τ). Sup-
pose that, given X ∈ ALG, we have established the isomorphism L/≤op ≃ K(X) (as sup-
semilattices) or equivalently L/≤ ≃ Kop(X) (as inf-semilattices), then we obtain

F ≃ Filt(L/≤) ≃ Filt(Kop(X)) ≃ X.

Lemma 4.2 Let T be an intersection type theory over the language L and (L,≤) the induced preorder.
If X is a domain and Θ : L→ K(X) a surjective map such that

∀σ,τ ∈ L [σ≤ τ ⇐⇒ Θ(τ) ⊑Θ(σ) ]

then L/≤ ≃ Kop(X) as inf-semilattices.

Definition 4.3 (Type languages) Fix a domain R of results. For A ∈ {R,C, D}, we define
the languages of intersection types LA:

LR : ρ ::= υ | ω | ρ∧ρ

LC : κ ::= ω | δ×κ | κ∧κ

LD : δ ::= υ | ω | κ→ρ | δ∧δ

where the type constants υ = υa are in one-to-one correspondence with a ∈K(R).

Definition 4.4 (Type theories) The theories TR,TC and TD are the least intersection type
theories closed under the following axioms and rules, inducing the preorders≤R,≤C and ≤D

over LR,LC and LD respectively, where, for A∈{R,C, D}, σ =A τ is defined by σ≤A τ≤A σ:

υ⊥ =R ω υa⊔ b =R υa∧υb ω≤C ω×ω ω ≤D ω→ω υ =D ω→υ

(δ1×κ1)∧(δ2×κ2)≤C (δ1∧δ2)×(κ1∧κ2) (κ→δ1)∧(κ→δ2)≤D κ→(δ1∧δ2)

δ1 ≤D δ2 κ1 ≤C κ2

δ1×κ1 ≤C δ2×κ2

b ⊑ a ∈K(R)

υa ≤R υb

κ2 ≤C κ1 ρ1 ≤R ρ2

κ1→ρ1 ≤D κ2→ρ2

The filter-domain induced by T A is FA, ↑ρ is the principal filter generated by ρ, and FA
p is

the set of principal filters in FA. Define ΘR : LR→K(R) by:

ΘR(υa) = a, ΘR(ω) = ⊥, ΘR(ρ1∧ρ2) = ΘR(ρ1) ⊔ΘR(ρ2).

Lemma 4.5 FR ≃ R, and the isomorphism is the continuous extension of the mapping ↑ρ 7→ ΘR(ρ)
from Fp to K(R).

Definition 4.6 We define the following maps:

F : FD→ [FC→FR] F d k = {ρ ∈ LR | ∃κ→ρ ∈ d [κ ∈ k ]}

G : [FC→FR]→FD G f = ↑{
∧

i∈I κi→ρi ∈ LD | ∀i ∈ I [ρi ∈ f (↑κi)]}

H : FC→ (FD×FC) H k = 〈{δ ∈ LD | δ×κ ∈ k}, {κ ∈ LD | δ×κ ∈ k}〉

K : (FD×FC)→FC K〈d, k〉 = ↑{δ×κ ∈ LC | δ ∈ d & κ ∈ k}

where [ → ] is the space of continuous functions.

Theorem 4.7 FD ≃ [FC→FR] and FC ≃ FD×FC.

Combining Lem. 4.5 with Thm. 4.7, we conclude that the filter-domains FR,FD and FC

are solutions of the continuation equations in ALG. However, a closer look at their structure
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exhibits the choice of the type languages and theories in Def. 4.3 and 4.4.

Theorem 4.8 (Solution of Continuation Domain Equations [30]) Let D be a category of
domains, and R a fixed object of D. If C and D are initial/final solutions of the domain equations (1)
in the category D then

D ≃ [D→ D] and D ≃ R∞,

where R∞ is the inverse limit with respect to R0 = R and Rn+1 = Rn→ Rn.

The solution of the continuation domain equations in Thm. 4.8 is obtained by the inverse
limit technique, considering:

C0 = {⊥}

Dn = [Cn→ R]

Cn+1 = Dn×Cn

so that in particular D0 = [C0→R]≃ R. Following [13], to describe C and D as filter-domains
we stratify the languages LA according to the rank function:

rk (υ) = rk (ω) = 0
rk (σ×τ) = rk (σ∧τ) = max{rk (σ),rk (τ)}

rk(σ→τ) = max{rk (σ),rk (τ)}+ 1

Let LAn = {σ ∈LA | rk (σ)≤ n}, then ≤An
is ≤A restricted to LAn and FAn is the set of filters

over LAn .
Recall that if a ∈ K(A) and b ∈ K(B) then the step function (a⇒ b) : A→B is defined by

(a⇒ b)(x) = b if a⊑ x, and (a⇒ b)(x) =⊥ otherwise. The function (a⇒ b) is continuous and
compact in the space [A→B], whose compact elements are all finite sups of step functions.

Definition 4.9 (Type interpretation) The mappings ΘCn
: LCn

→ K(Cn) and ΘDn : LDn →
K(Dn) are defined through mutual induction by:

ΘC0
(κ) = ⊥

ΘDn(υ) = (⊥⇒ΘR(υ)) = λλ k ∈ Cn.ΘR(υ)
ΘDn(κ→ρ) = (ΘCn

(κ)⇒ΘR(ρ))
ΘCn+1

(δ×κ) = 〈ΘDn(δ),ΘCn(κ)〉

Finally, for An = Cn, Dn:
ΘAn

(ω) = ⊥
ΘAn

(σ∧τ) = ΘAn
(σ) ⊔ΘAn

(τ)

Proposition 4.10 The filter domains FD ≃ D and FC ≃ C are the initial/final solutions of the contin-
uation equations in ALG. The isomorphisms are given in terms of the mappings ΘC and ΘD where
ΘC(κ) = ΘCrk(κ)

(κ), and similarly for ΘD.

Remark 4.11 Thm. 4.7 and Prop. 4.10 suggest that FD in Thm. 4.7 is a λ-model (see [24]). On
the other hand, by Thm. 4.8 it is also isomorphic to a R∞ ≃ [R∞→R∞] model. To see this
from the point of view of the intersection type theory, consider the extension LD′ = · · · | δ→δ

of LD, adding to TD the equation δ×κ→ρ = δ→κ→ρ. In the intersection type theory TD′, the
following rules are derivable:

(δ→δ1)∧(δ→δ2)≤D′ δ→(δ1∧δ2)
δ′1 ≤D′ δ1 δ2 ≤D′ δ′2

δ1→δ2 ≤D′ δ′1→δ′2

By this, TD′ is a natural equated intersection type theory in terms of [3], and hence FD′ ≃
[FD′→FD′ ] (see [3], Cor. 28(4)). By an argument similar to Prop. 4.10 we can show that
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FD′ ≃ R∞, so that by the same Prop. and Thm. 4.8, we have FD ≃ FD′ .

We end this section by defining the interpretation of types in LA as subsets of A.

Definition 4.12 (Semantics) For A ∈ {R,C, D} define · A : LA→P(A):

υa
R = ↑a = {r ∈ R | a ⊑ r}

δ×κ C = δ D × κ C

κ→ρ D = {d ∈ D | ∀k ∈ κ C [d(k) ∈ ρ R} ]

υa
D = ω→υa

D = {d ∈ D | ∀k ∈ C [d(k) ∈ υa
R ]}

ω A = A

τ1∧τ2
A = τ1

A ∩ τ2
A

Theorem 4.13 (For A ∈ {R,C, D}) : a) σ A = ↑ΘA(σ).

b) ∀σ,τ ∈ LA [σ≤A τ⇐⇒ σ A ⊆ τ A ].

5 An intersection type assignment system and filter model

We now define a type assignment system for pure λµ, following a construction analogous
to that of filter-models for the λ-calculus. The central idea is that types completely deter-
mine the meaning of terms; this is achieved by tailoring the type assignment to the term
interpretation in the filter description of a model, usually called the filter-model. In fact,
by instantiating D to FD and C to FC, for closed M the interpretation of a type statement
M : δ (which is in general M D ∈ δ D) becomes δ ∈ M D, since ΘD(δ) = {d ∈ FD | δ ∈ d}.
Representing the environment by a pair of sets of assumptions Γ and ∆, the treatment can
be extended to open terms.

A set Γ = {x1:δ1, . . . , xn:δn} is a basis or variable environment where δi ∈ LD for all 1≤ i≤ n,
and the xi are distinct. Similarly, a set ∆= {α1:κ1, . . . ,αm:κm } is a name context, where κj ∈LC

for all 1≤ j≤m. A judgement is an expression of the form Γ⊢M : σ | ∆. We write Γ, x:δ for
the set Γ ∪ {x:δ}, and α:κ,∆ for {α:κ} ∪ Γ.

Definition 5.1 (Intersection type assignment for λµ)

(Ax): Γ, x:δ ⊢ x : δ | ∆ (×):
Γ ⊢ M :δ | α:κ,∆

Γ ⊢ [α]M : δ×κ | α:κ,∆
(µ):

Γ ⊢ Q : (κ′→ρ)×κ′ | α:κ,∆

Γ ⊢ µα.Q :κ→ρ | ∆

(→E):
Γ ⊢ M :δ×κ→ρ | ∆ Γ ⊢ N : δ | ∆

Γ ⊢ MN :κ→ρ | ∆
(→I):

Γ, x:δ ⊢ M :κ→ρ | ∆

Γ ⊢ λx.M : δ×κ→ρ | ∆

(∧):
Γ ⊢ M : σ | ∆ Γ ⊢ M : τ | ∆

Γ ⊢ M : σ ∧ τ | ∆
(ω): Γ ⊢ M : ω | ∆ (≤):

Γ ⊢ M : σ | ∆
(σ≤ τ)

Γ ⊢ M : τ | ∆

where δ ∈ LD, κ,κ′ ∈ LC and ρ ∈ LR.

To understand the above rules, we read them backward from the conclusion to the premises.
To conclude that MN is a function mapping a continuation with type κ to a value of type ρ,
rule (→E) requires that the continuation fed to M has type δ× κ, where δ is the type of N.
This mimics the storage of (the denotation of) N into the continuation fed to MN, which is
treated as a stack. Rule (→I) is just the rule symmetric to (→E).

Note that the (perhaps unusual) rules (→E) and (→I) are instances of the usual ones of
the simply typed λ-calculus, observing that δ× κ→ρ ∈ LD is equivalent to δ→(κ→ρ) ∈ LD′

so that, admitting types in LD′ , the following rules are admissible:

(→E′):
Γ ⊢ M : δ→(κ→ρ) | ∆ Γ ⊢ N : δ | ∆

Γ ⊢ MN : κ→ρ | ∆
(→I ′):

Γ, x : δ ⊢ M : κ→ρ | ∆

Γ ⊢ λx.M : δ→(κ→ρ) | ∆
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In rule (×), we conclude that the command [α]M has type δ × κ because [α]M C e =
〈 M D e, e α〉, so M must have type δ and the continuation type κ has to be the same as that
given to α in the name context.

Rule (µ) expresses (a part of) the concept of swapping the current continuation by stating
that µα.Q is able to produce a result of type ρ when applied to a continuation of type
κ; type ρ is of the result obtained from Q and the (in general different) continuation of
type κ′. Nonetheless, κ cannot be ignored, and indeed it contributes to the typing of the
command Q since it appears in the name environment; this corresponds to the fact that
in the semantics µα.Q D e k = d k′ where 〈d, k′〉 = Q C e[α := k], i.e. Q is evaluated in the
modified environment e[α := k]. We clarify the interaction between (×) and (µ) in the next
example, where this is compared to typing in Parigot’s system.

Example 5.2 Consider the following derivations in, respectively, Parigot’s system and ours.

Γ ⊢ M : A | β:A,α:B,∆
(⊥)

Γ ⊢ [β]M :⊥ | β:A,α:B,∆
(µ)

Γ ⊢ µα.[β]M : B | β:A,∆

Γ ⊢ M :κ→ρ | β:κ,α:κ′,∆
(×)

Γ ⊢ [β]M : (κ→ρ)×κ | β:κ,α:κ′,∆
(µ)

Γ ⊢ µα.[β]M :κ′→ρ | β:κ,∆

Both derivations express that µα.[β]M constitutes a context switch; in our case the computa-
tional side of the switch is (very elegantly) made apparent: before the switch, the type κ→ρ

expresses that M is a term working with the input-stream κ of terms, and returns ρ; after the
context switch, the type κ′→ρ for µα.[β]M now expresses that the input-stream κ′ is taken
instead.

The following lemma provides a characterisation of derivability in our system.

Lemma 5.3 (Generation lemma) If Γ⊢M : δ | ∆, then either δ is an intersection, or ω, or:

Γ, x:δ′ ⊢ x : δ | ∆ ⇐⇒ δ′ ≤ δ

Γ⊢λx.M : δ×κ→ρ | ∆ ⇐⇒ Γ, x:δ⊢M :κ→ρ | ∆
Γ⊢MN :κ→ρ | ∆ ⇐⇒ ∃δ [ Γ⊢M : δ×κ→ρ | ∆ & Γ ⊢N : δ | ∆ ]
Γ⊢ µα.Q :κ→ρ | ∆ ⇐⇒ ∃κ′ [ Γ ⊢Q : (κ′→ρ)×κ′ | α:κ,∆ ].
Γ⊢ [α]M : δ×κ | ∆ ⇐⇒ α:κ ∈ ∆ & Γ⊢M : δ | ∆.

We will now show that our notion of type assignment is closed under conversion. The
proofs of the properties of subject expansion and subject reduction are relatively standard;
the main theorems follow from the relative substitution lemmas.

Lemma 5.4 (Term substitution lemma) Γ⊢M[L/x] : σ | ∆ if and only if there exists δ such that
Γ, x:δ⊢M : σ | ∆ and Γ ⊢ L :δ | ∆.

A similar lemma for structural substitution is not as easily formulated. This is mainly due
to the fact that the µ-bound variable gets ‘re-used’ in the result of the substitution, but with
a different type, as can be observed from the following example.

Example 5.5 First observe that (µα.[β]µγ.[α]x)N reduces to (µα.[β]µγ.[α]xN). We can type
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the first term in our system as follows:

x:δ×κ→ρ ⊢ x : δ×κ→ρ | α:δ×κ, β:κ1,γ:κ1

x:δ×κ→ρ ⊢ [α]x : (δ×κ→ρ)×δ×κ | α:δ×κ, β:κ1,γ:κ1

x:δ×κ→ρ ⊢ µγ.[α]x :κ1→ρ | α:δ×κ, β:κ1

x:δ×κ→ρ ⊢ [β]µγ.[α]x : (κ1→ρ)×κ1 | α:δ×κ, β:κ1

x:δ×κ→ρ ⊢ µα.[β]µγ.[α]x : δ×κ→ρ | β:κ1 Γ ⊢ N : δ | ∆

Γ, x:δ×κ→ρ ⊢ (µα.[β]µγ.[α]x)N :κ→ρ | β:κ1,∆

Using the information of this derivation, the derivation for (µα.[β]µγ.[α]xN) implicitly con-
structed by the reduction is:

x:δ×κ→ρ ⊢ x : δ×κ→ρ | α:κ, β:κ1,γ:κ1 Γ ⊢ N : δ | ∆

x:δ×κ→ρ ⊢ xN :κ→ρ | α:κ, β:κ1,γ:κ1

x:δ×κ→ρ ⊢ [α]xN : (κ→ρ)×κ | α:κ, β:κ1,γ:κ1

x:δ×κ→ρ ⊢ µγ.[α]xN :κ1→ρ | α:κ, β:κ1

x:δ×κ→ρ ⊢ [β]µγ.[α]xN : (κ1→ρ)×κ1 | α:κ, β:κ1

x:δ×κ→ρ ⊢ µα.[β]µγ.[α]xN :κ→ρ | β:κ1

Γ, x:δ×κ→ρ ⊢ (µα.[β]µγ.[α]xN) :κ→ρ | β:κ1,∆

Notice that here the type for α has changed from δ×κ to κ.

Lemma 5.6 (Structural substitution lemma) Γ ⊢M[α⇐ L] : σ | α:κ,∆ if and only if there ex-
ists δ such that Γ⊢ L : δ | ∆, and Γ⊢M : σ | α:δ×κ,∆.

Using these two substitution results, the following theorems are easy to show.

Theorem 5.7 (Subject expansion) If M→ N, and Γ ⊢N : δ | ∆, then Γ ⊢M :δ | ∆.

Theorem 5.8 (Subject reduction) If M→ N, and Γ⊢M : δ | ∆, then Γ⊢N : δ | ∆

We define satisfaction in a λµ-model (R, D,C) and validity in the standard way.

Definition 5.9 (Satisfaction and Validity) LetM = (R, D,C). We define:

e |=M Γ,∆ ⇐⇒ ∀x:δ ∈ Γ [e(x) ∈ δ D ] & ∀α:κ ∈∆ [e(α) ∈ κ C ]
Γ |=M M : δ | ∆ ⇐⇒ ∀e ∈ Env [e |=M Γ,∆⇒ M e ∈ δ D ]
Γ |= M : δ | ∆ ⇐⇒ ∀M [Γ |=M M : δ | ∆]

We can now show soundness and completeness for our notion of intersection type assign-
ment with respect to the filter semantics:

Theorem 5.10 (Soundness) Γ ⊢M : δ | ∆ ⇒ Γ |= M : δ | ∆ .

Lemma 5.11 (Filter model) Let A∈{D,C}. Given an environment e∈ (Var→FD)+ (Name→
FC), we have

M F A
e = {σ ∈ LA | ∃Γ,∆ [e |= Γ,∆ & Γ⊢M : σ | ∆ ]}

Theorem 5.12 (Completeness) Γ |= M : δ | ∆ ⇒ Γ ⊢M : δ | ∆ .
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6 Type preservation from Parigot’s Type System to the

Intersection Type System

We conclude this paper by showing that typed λµ-terms have a non-trivial intersection typ-
ing in our system, i.e. they can be assigned a type different from ω.

Example 6.1 In Parigot’s system for λµ, we can derive x:A⊢p µα.[β]µγ.[α]x : A | β:C ; We can
type the same pure λµ-term in our system as well (where Γ = x:δ×κ→ρ):

(Ax)
x:A ⊢ x : A | α:A, β:C,γ:C

(⊥)
x:A ⊢ [α]x :⊥ | α:A, β:C,γ:C

(µ)
x:A ⊢ µγ.[α]x : C | α:A, β:C

(⊥)
x:A ⊢ [β]µγ.[α]x :⊥ | α:A, β:C

(µ)
x:A ⊢ µα.[β]µγ.[α]x : A | β:C

(Ax)
Γ ⊢ x : δ×κ→ρ | α:δ×κ, β:κ1,γ:κ1

(×)
Γ ⊢ [α]x : (δ×κ→ρ)×δ×κ | α:δ×κ, β:κ1,γ:κ1

(µ)
Γ ⊢ µγ.[α]x :κ1→ρ | α:δ×κ, β:κ1

(×)
Γ ⊢ [β]µγ.[α]x : (κ1→ρ)×κ1 | α:δ×κ, β:κ1

(µ)
Γ ⊢ µα.[β]µγ.[α]x : δ×κ→ρ | β:κ1

We can also type terms that are not typeable in Parigot’s system:

(Ax)
x:κ→ρ ⊢ x :κ→ρ | β:κ′,γ:κ∧((κ→ρ)×κ′)

(×)
x:κ→ρ ⊢ [γ]x : (κ→ρ)×(κ∧((κ→ρ)×κ′)) | β:κ′,γ:κ∧((κ→ρ)×κ′)

(≤)
x:κ→ρ ⊢ [γ]x : (κ→ρ)×κ | β:κ′,γ:κ∧((κ→ρ)×κ′)

(µ)
x:κ→ρ ⊢ µβ.[γ]x :κ′→ρ | γ:κ∧((κ→ρ)×κ′)

(→I)
⊢ λx.µβ.[γ]x : (κ→ρ)×κ′→ρ | γ:κ∧((κ→ρ)×κ′)

(×)
⊢ [γ](λx.µβ.[γ]x) : ((κ→ρ)×κ′→ρ)×(κ∧((κ→ρ)×κ′)) | γ:κ∧((κ→ρ)×κ′)

(≤)
⊢ [γ](λx.µβ.[γ]x) : ((κ→ρ)×κ′→ρ)×((κ→ρ)×κ′) | γ:κ∧((κ→ρ)×κ′)

(µ)
⊢ µγ.[γ](λx.µβ.[γ]x) : (κ∧((κ→ρ)×κ′))→ρ |

Notice that µγ.[γ](λx.µβ.[γ]x) is not typeable in Parigot’s system, since the two occur-
rences of [γ] need to be typed differently, with non-unifiable types.

We can strengthen the first observation and show that we can faithfully embed Parigot’s
system into ours; to this purpose, we define first an interpretation of Parigot’s types into our
intersection types.

Definition 6.2 We change the definition of types for Parigot’s system slightly by using

A, B ::= ϕ | ⊥A | A→B (A 6= ⊥C)

and change the rule (⊥) into a rule that registers to what type the contradiction was estab-
lished:

(⊥B) :
Γ ⊢ M : B | β:B,∆

Γ ⊢ [β]M :⊥B | β:B,∆

Taking an arbitrary a 6= ⊥∈ R, we define A and A simultaneously through:

ϕ = (υa×ω)→υa for all ϕ

⊥A = (A→υa)×A

A→B = A×κ→υa where B = κ→υa

ϕ = υa×ω for all ϕ

A→B = (A→υa)×B

We also define Γ = {x:A | x:A ∈ Γ} and ∆ = {α:A | α:A ∈∆}.

We can now show:

Theorem 6.3 (Type preservation) If Γ⊢p M : A | ∆, then Γ⊢M : A | ∆
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Example 6.4 To illustrate this result, consider the derivation in ⊢p on the left, which gets
translated into the one on the right (where Γ = x:(υa×ω)→υa):

x:ϕ ⊢ x : ϕ | α:ϕ, β:ϕ′

x:ϕ ⊢ [α]x :⊥ϕ | α:ϕ, β:ϕ′

x:ϕ ⊢ µβ.[α]x : ϕ′ | α:ϕ

⊢ λx.µβ.[α]x : ϕ→ϕ′ | α:ϕ

Γ ⊢ x : (υa×ω)→υa | α:υa×ω, β:υa×ω

Γ ⊢ [α]x : ((υa×ω)→υa)×(υa×ω) | α:υa×ω, β:υa×ω

Γ ⊢ µβ.[α]x : (υa×ω)→υa | α:υa×ω

⊢ λx.µβ.[α]x : ((υa×ω)→υa)×(υa×ω)→υ | α:υa×ω

Conclusions and Future Work

We have presented a filter model for the λµ-calculus which is an instance of Streicher and
Reus’s continuation model, and a type assignment system such that the set of types that can
be given to a term coincides with its denotation in the model. The type theory and the as-
signment system can be viewed as the logic for reasoning about the computational meaning
of λµ-terms, much as it is the case for λ-calculus. We expect that significant properties of
pure λµ can be characterised via their typing, and we see the characterisation of the strongly
normalisable pure terms as the first challenge.

We have also shown that λµ-terms which are typeable in Parigot’s first order type system
have non-trivial typing in our system in a strong sense. This opens the possibility of a new
proof of strong normalisation for typed λµ and, by using a variant of the system, of de
Groote’s typeable Λµ-terms.

The investigation of other significant properties of the calculi should also be possible with
the same tools, like confluence, standardisation, solvable terms, etc. More significantly, for
the λµ-calculus we are interested in the use of the type system for interpreting relevant
combinators, like in the case of de Groote’s encoding of Felleisen’s C operator, whose types
are essentially those of (the η-expansion of) identity, and, in general, for investigating the
computational behaviour of combinators representing proofs of non-constructive principles.
To this aim a study of the principal typing with respect to the present system would be of
great help.
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Appendix A Proofs

Lemma A.1 For all e ∈ Env:

i) x 6∈ fv(M)⇒ ∀d ∈ D [ M e = M e[x := d] ].

ii) α 6∈ fn (M)⇒ ∀k ∈ C [ M e = M e[α := k] ].

Proof: Easy.

Lemma A.2

i) The (β) rule is sound w.r.t. the semantics, i.e. (λx.M)N D = M[N/x] D

ii) The (µ) rule is sound w.r.t. the semantics, i.e. (µα.Q)N D = µα.Q[α⇐N] D

iii) The (µη) rule is sound w.r.t. the semantics, i.e. µα.[α]M = M if α 6∈ fn (M).

iv) Let e ∈ Env. Then [α]µβ.[γ]M Ce = 〈λλ h. M D e[β := h], (e[β := h]γ)〉(e α)

v) Let e ∈ Env. Then ([γ]M)[α/β] Ce = 〈λλ h. M D e[β := e α]h, (e[β := e α]γ)〉

Proof: In order to show the soundness of (β), (µ) and (µη), let e ∈ Env and k ∈ C.

((λx.M)N = M[N/x]) : (λx.M)N e k =
λx.M e 〈 N e, k〉 =
λx.M e[x := N e] k = by (i)) of Lem. 3.4
M[N/x] e k

((µα.[β]M)N = µα.[β]M[α⇐N] with α 6= β) :
(µα.[β]M)N e k =
µα.[β]M e 〈 N e, k〉 = (3.5)
M e[α := 〈 N e, k〉] (e[α := 〈 N e, k〉]β) = (α 6= β)
M e[α := 〈 N e, k〉] (e β) = (A.1 & α 6= β)
M e[α := 〈 N e[α := k], k〉] (e[α := k]β) =
M e[α := k][α := 〈 N e[α := k], e[α := k]α〉] (e[α := k]β) = (3.6)
M[α⇐N] e[α := k] (e[α := k]β) = (3.5)
µα.[β](M[α⇐N]) e k = (α 6= β)
µα.([β]M[α⇐N]) e k

((µα.[α]M)N = µα.[α]M[α⇐N]) : (µα.[α]M)N e k =
µα.[α]M e 〈 N e, k〉 = (3.5)
M e[α := 〈 N e, k〉] (e[α := 〈 N e, k〉]α) =
M e[α := 〈 N e, k〉] 〈 N e, k〉 =
M e[α := k][α := 〈 N e, k〉] 〈 N e, k〉 = (A.1)
M e[α := k][α := 〈 N e[α := k], k〉] 〈 N e[α := k], k〉 = (3.6)
M[α⇐N] e[α := k] 〈 N e[α := k], k〉 =
M[α⇐N]N e[α := k] k = (3.5)
µα.[α](M[α⇐N])N e k =
µα.([α]M)[α⇐N] e k

(µα.[α]M with α 6∈ fn (M)) : µα.[α]M e k = (3.5)
M e[α := k] (e[α := k]α) =
M e[α := k] k = (α 6∈ M & A.1(ii))
M e k

(iv)) : Let e ∈ Env. [α]µβ.[γ]M C e =
〈 µβ.[γ]M D e, e α〉 =
〈λλ h. µβ.[γ]M De h, e α〉 =
〈λλ h. µβ.[γ]M D e h, e α〉 = (3.5)
〈λλ h. M D e[β := h] (e[β := h]γ), e α〉
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(v)) : Let e ∈ Env. ([γ]M)[α/β] C e = (3.4(ii)))
([γ]M)[α/β] C e[β := e α] =
〈 M D e[β := e α], e[β := e α]γ〉 =
〈λλ h. M D e[β := e α]h, e[β := e α]γ〉

Theorem 3.7 (Soundness of λµ) ⊢λµ M = N⇒ M = N

Proof: By induction on the structure of terms.

(M ≡ x) : Trivial

(M ≡ λx.L) : Then L ∈ Trm and N = λx.L′, where L = L′. In such a case the thesis follows
easily by induction.

(M ≡ LH) : Then L, H ∈ Trm. We distinguish three cases according to the shape of L:

(L ≡ λx.L′ and N = L′[H/x]) : Immediate by Lem. A.2(i)).

(L ≡ µα.Q and N = µα.Q[α⇐ L]) : Immediate by Lem. A.2(ii)).

(Otherwise) : Then N ≡ L′H′ with L = L′ and H = H′, where L′, H′ ∈ Trm. In such a case
the thesis follows easily by induction.

(M ≡ µδ.Q) : Then Q ∈ Cmd. We consider three different cases:

(Q ≡ [α]µβ.[γ]L and N ≡ µδ.Q′ where Q′ ≡ ([γ]L)[α/β]) : (i.e. Q→ Q′ is an instance of
rule (ren)).
Then Q, Q′ ∈ Cmd. Let now e ∈ Env and k ∈ C.
By definition of interpretation of terms, we get M D e k= d k′ , where 〈d, k′〉= Q C e [δ := k].
We can then apply Lem. A.2(iv)), obtaining

Q C e[δ := k] = 〈λλ h. L D e′ (e′ γ), e[δ := k]α〉

where e′ = e[δ := k, β := h], and hence

M D e k = L D e1 (e1 γ)

where e1 = e[δ := k, β := (e[δ := k]α)].
By definition of interpretation of terms N D e k= d′ k′′, where 〈d′, k′′〉= Q C e[δ := k].
We can then apply Lem. A.2(v)), obtaining

Q′ C e[δ := k] = 〈λλ h. L D e2 h, (e2 γ)〉

where e2 = e[δ := k, β := (e[δ := k]α)].
and hence

N D e k = L D e2 (e2 γ)

Since e1 = e2, we immediately get

M D e k = N D e k

(Q ≡ [δ]L with δ 6∈ fn (L) and N ≡ L) : Immediate by Lem. A.2(iii)).

(Q ≡ [α]L and N ≡ µδ.[α]L′ where L = L′) : Then L′ ∈ Trm. In such a case the result fol-
lows easily by induction.

Lemma 3.5 µα.[β]M e k = M e[α := k] (e[α := k]β).

Proof: Easy by definition of interpretation of terms.
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Lemma 3.6 M[α⇐N] e k = M e[α := 〈 N e, (e α)〉] k.

Proof: By induction on the structure of M.

(M ≡ x) : Then x[α⇐N] ≡ x and by the simple fact that x 6= α, we have:

x e k = e x k = e[α := 〈 N e, (e α)〉] x k = x e[α := 〈 N e, (e α)〉] k

(M ≡ λx.L) : Then (λx.L)[α⇐N] ≡ λx.L[α⇐N] and we have:

λx.L[α⇐N] e k = where k = 〈d, k′〉
L[α⇐N] e[x := d] k′ = (IH)
L e[x := d,α := 〈 N e, e α〉] k′ =
λx.L e[α := 〈 N e, e α〉]〈d, k′〉 =
λx.L e[α := 〈 N e, e α〉] k

(M ≡ LH) : Then (LH)[α⇐N] ≡ (L[α⇐N])(H[α⇐N]) and:

(L[α⇐N])(H[α⇐N]) e k =
(L[α⇐N]) e 〈 (H[α⇐N]) e, k〉 = (IH)
L e[α := 〈 N e, e α〉] 〈 H e[α := 〈 N e, e α〉], k〉 =
LH e[α := 〈 N e, e α〉] k

(M ≡ µβ.[γ]L with α 6= β and γ 6= α) : Then (µβ.[γ]L)[α⇐N] ≡ µβ.[γ](L[α⇐N]), and

µβ.[γ]L[α⇐N] e k = (〈d, k′〉 = [γ]L[α⇐N] e[β := k])
d(k′) = (〈d, k′〉 = (IH) [γ]L e[β := k,α := 〈 N e, e α〉])

µβ.[γ]L e[α := 〈 N e, e α〉] k

(M ≡ µβ.[α]L with α 6= β) : Then (µβ.[α]L)[α⇐N] ≡ µβ.([α]L)[α⇐N]; moreover we can
safely assume β 6∈ fn (N).
Then

µβ.([α]L)[α⇐N] e k = (〈d, k′〉 = ([α]L)[α⇐N] e[β := k])
d(k′) = (〈d, k′〉 = (HI) [α]L e[β := k,α := 〈 N e[β := k], e[β := k]α〉])

L e[β := k,α := 〈 N e[β := k], e[β := k]α〉] 〈 N e[β := k], e[β := k]α〉 =
L e[β := k,α := 〈 N e, e α〉] 〈 N e, e α〉 = (by A.1 and β 6= α)

d′(k′′) = (〈d′, k′′〉 = 〈 [L e[β := k,α := 〈 N e, e α〉], 〈 N e, e α〉〉)
d′(k′′) = (〈d′, k′′〉 = [α]L e[β := k,α := 〈 N e, e α〉])
µβ.[α]L e[α := 〈 N e, e α〉] k

(M ≡ µα.[γ]L) : Then (µα.[γ]L)[α⇐N] ≡ µα.[γ]L and

µα.[γ]L e k =
µβ.([γ]L){β/α} e k =

d(k′) = (〈d, k′〉 = ([γ]L){β/α} e[β := k] = ([γ]L){β/α}[α⇐N] e[β := k])
d(k′) = (〈d, k′〉 = (HI) ([γ]L{β/α}) e[β := k][α := 〈 N e[β := k], e[β := k]α〉]
d(k′) = (〈d, k′〉 = (3.4) [γ]L e[β := 〈 N e[β := k], e[β := k]α〉] =
µβ.[γ]L e[β := k][α := 〈 N e[β := k], e[β := k]α〉] k =
µα.[γ]L e[α := 〈 N e, e α〉] k

[Soundness of λµη]3.8 The (η) rule is sound w.r.t. the semantics, i.e.
λ.Mx = M if x 6∈ fv (M) .



TLCA’11, LNCS 6690, pp. 229-244, 2011 18

Proof: Let e ∈ Env and k = 〈d, k′〉 ∈ C

λx.Mx e k =
Mx e[x := d] k′ =
M e[x := d] 〈 x e[x := d], k′〉 = (since x e[x := d] = d and k = 〈d, k′〉
M e[x := d] k) = (by x 6∈ fv (M) and A.1(i)))
M e k

Lemma 4.2 Let T be an intersection type theory over the language L and (L,≤) the induced
preorder. If X is a domain and there is a surjective map Θ : L −→K(X) such that

∀σ,τ ∈ L. σ≤ τ⇐⇒Θ(τ) ⊑Θ(σ)

then L/≤ ≃ Kop(X) as inf-semilattices.

Proof: Obvious: the isomorphism is the map Θ′ : L/≤ −→Kop(X) defined by Θ′([σ]) = Θ(σ).
Also we have that Θ′([σ ∧ τ]) = Θ(σ ∧ τ) = Θ(σ) ⊓op Θ(τ) = Θ(σ) ⊔Θ(τ), and Θ′([ω]) =
Θ(ω) = ⊥.

Lemma 4.5 R ≃ FR.

Proof: To use Lem. 4.2 we define ΘR : LR −→K(R) by:

ΘR(ω) = ⊥, ΘR(υa) = a, ΘR(ρ1 ∧ ρ2) = ΘR(ρ1) ⊔ΘR(ρ2).

Θ is surjective since there is a type constant υa for all a ∈ K(R). If ρ1 ≤R ρ2, then we see that
Θ(ρ1) ⊒ Θ(ρ2) by induction on the rules in definitions 4.1 and 4.4. In particular this implies
that if ρ1 =R ρ2 then Θ(ρ1) = Θ(ρ2).

Viceversa suppose that Θ(ρ1)⊒Θ(ρ2). Observe that either ρ1 ≡ ω, in which case ρ1 =R υ⊥,
or ρ1≡

∧

i∈I υai
=R υa where a =

⊔

i∈I ai. In both cases ρ1 = υa for some a∈K(R), and similarly
ρ2 =R υb for some b. Now

a = Θ(υa) = Θ(ρ1) ⊒Θ(ρ2) = Θ(υb) = b

which implies ρ1 =R υa ≤R υb =R ρ2.

Lemma A.3 The functions F, G and H,K are well defined and monotonic.

Proof: Easy. Note that in the defintion of G( f ) we could avoid to take the upward closure,
at the price of proving that if

∧

i∈I κi→ρi ≤D δ then δ =D
∧

j∈J κj→ρj and for all J′ ⊆ J there
exists I ′ ⊆ I such that if

∧

j∈J′ κj ≤C
∧

i∈I′ κi then
∧

i∈I′ ρj ≤R
∧

j∈J′ ρj.

Theorem 4.7 FD ≃ [FC→FR] and FC ≃ FD×FC.

Proof: By Lem. A.3 F, G, H and K are morphisms of posets. On the other hand, it is easy
to verify that F◦G = Id[FC→F R] and G◦F = IdFD , and similarly that H ◦K = IdFD×FC and
K ◦H = IdFC , so that they are bijective, and therefore isomorphisms in ALG.

Lemma A.4 ∀n. Cn ≃ FCn and Dn ≃ FDn .

Proof: It is routine to prove, by induction over n, that both ΘCn
and ΘDn satisfy the hypothesis

of Lem. 4.2.
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4.10 The filter domains FD and FC are the initial/final solutions of the continuation equa-
tions in ALG.

Proof: By Lem. A.4 and the fact that for A = C, D:

K(FA) = FA
p =

⋃

n

FAn
p =

⋃

n

K(FAn ).

Theorem 4.13 For A ∈ {R,C, D}:

i) σ A = ↑ΘA(σ)
ii) ∀σ,τ ∈ LA. σ≤A τ ⇐⇒ σ A ⊆ τ A

Proof: Part (ii.a)) is proven by a straightforward induction over the definition of ΘA.
Concerning (ii.b)), the only if part is proved by induction over the definition of ≤A, starting

with the base case where: υa ≤R υb⇐⇒ a ⊒ b⇐⇒ ↑a ⊆ ↑b.
For the if part, use part (ii.a)) and the fact that ΘA preserves and respects ≤A w.r.t. ⊒ in

the appropriate domain A.

Theorem 5.10 (Soundness) Γ⊢M : δ | ∆ ⇒ Γ |= M : δ | ∆

Proof: By induction on the structure of derivations.

(Ax) : Let e |= Γ, x:δ,∆. Then e(x) ∈ δ D. Hence, by definition of interpretation of terms
(Def. 3.2), we get x e ∈ δ D

(→E) : Let e |= Γ,∆. We need to show that MN e ∈ κ→ρ D. By definition of interpre-
tation of terms, MN e is such that, for any k ∈ C, MN ek = M e〈 N e, k〉. So we
need to show, by definition of interpretation of types (Def. 4.12) that, for any k′′ ∈ κ C,
M e〈 N e, k′′〉 ∈ ρ R.

By induction, we have that M e ∈ δ×κ→ρ , i.e., for any k = 〈d, k′〉 ∈ δ D× κ C =
δ×κ C, M e〈d, k′〉 ∈ ρ R. This implies our thesis since, by induction, we have also
N e ∈ δ D.

(→I) : Let e |= Γ,∆. We need to show that λx.M e ∈ δ×κ→ρ D. In order to do that, let
k = 〈d, k′〉 ∈ δ×κ C = δ D× κ C. We need to prove that λx.M ek ∈ ρ R, that is, by
definition of interpretation of terms, we need to prove that M e[x := d]k′ ∈ ρ R.

It is immediate to check that e[x := d] |= Γ, x:δ,∆. Then by induction we obtain M e[x :=
d] ∈ κ→ρ D. What we need is now straightforward by definition of κ→ρ D.

(⊥) : Let e |= Γ,α:κ,∆. We need to show that [α]M e ∈ δ×κ C, i.e., by definition of
interpretation of terms, that 〈 M De, e(α), ∈〉 δ×κ C. So, by definition of interpretation
of types we need to show that M De ∈ δ D and e(α) ∈ κ C. The former can be easily
obtained by induction, whereas the latter derives straightforwardly from e |= Γ,α:κ,∆.

(µ) : Let e |= Γ,∆. We need to show that µα.M e ∈ κ→ρ D. By definition of interpreta-
tion of types this means that we need to show that, for any k ∈ κ C, µα.M ek ∈ ρ R.
Then, let k ∈ κ C. It is easy to check that e[α: = k] |= Γ,α:κ∆. By induction we obtain
M e[α: = k]∈ (κ′→ρ)×κ′ C, that is π1( M e[α: = k])∈ κ′→ρ D and π2( M e[α: = k])∈
κ′ C. We then obtain that

π1( M e[α: = k])(π2( M e[α: = k]))∈ ρ R. We then get what we needed, that is µα.M ek∈
ρ R, since, by definition of interpretation of terms µα.M ek=π1( M e[α: = k])(π2( M e[α: = k]))

(∧I) : Easy by induction on the interpretation of an intersection type.

(ω) : Immediate by definition of interpretation of ω.
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(≤) : Easy, by induction and Theorem 4.13 .

Lemma A.5 Let A = D,C. σ F A
= { f ∈ FA | σ ∈ f}

Proof: Easy.

Lemma 5.11 Let A = D,C. Given a environment e ∈ (Var→FD) + (Name→FC), we have

M F A
e = {σ ∈ LA | ∃Γ,∆ [e |= Γ,∆ & Γ⊢M : σ | ∆ ]}

Proof: The proof is by induction on the structure of terms. In the following we shall use the
notions of filter application and filter pairing as induced by the maps of Definition 4.6.

(M ≡ x) : x F
D
e = e(x). We have to show that e(x) = {δ ∈LD | ∃Γ,∆ [e |= Γ,∆ & Γ⊢ x : δ | ∆ ]}.

Easy, by the Generation Lem. 5.3 and the fact that the elements of FD are upward closed.

(M ≡ λx.N) : Let 〈d, k′〉 ∈ FC.

λx.N FD
e 〈d, k′〉 =

N FD
e[x := d] k′ = (IH)

{δ ∈ LD | ∃Γ,∆,δ′ [e[x := d] |= Γ,∆ & Γ⊢N : δ | ∆ ]} · k′ =
{κ′→ρ ∈ LD | ∃Γ,∆ [e[x := d] |= Γ,∆ & Γ⊢N :κ′→ρ | ∆ ]} · k′ =

(since, by Lem. A.5, [x : d] |= x:δ′⇔ δ′ ∈ d)
{ρ ∈ LD | ∃Γ,∆ [e[x := d] |= Γ,∆ & Γ⊢N : κ′→ρ | ∆ & κ′ ∈ k′ ]} =
{ρ ∈ LD | ∃Γ,∆ [e[x := d] |= Γ, x:δ′,∆ &

Γ, x:δ′ ⊢N : δ′×κ′→ρ | ∆ & κ′ ∈ k′ & δ′ ∈ d ]} = (5.3)
{δ′×κ,→ρ ∈ LD | ∃Γ,∆ [e[x := d] |= Γ, x:δ′,∆ &

Γ, x:δ′ ⊢N : δ | ∆ ]} · 〈d, k′〉 =
{δ ∈ LD | ∃Γ,∆ [e |= Γ,∆ & Γ⊢λx.N : δ | ∆ ]} · 〈d, k′〉

(M ≡ LH) : Let k ∈ FC. By induction,
L e = {δ ∈ LD | ∃Γ,∆ [e |= Γ,∆ & Γ ⊢ L :δ | ∆ ]} and
H e = {δ ∈ LD | ∃Γ,∆ [e |= Γ,∆ & Γ ⊢H : δ | ∆ ]}

Then

LH FD
e k =

L F
D

e 〈 H FD
e, k〉 =

( L F
D

e) · 〈{δ ∈ LD | ∃Γ,∆ [e |= Γ,∆ & Γ⊢H : δ | ∆ ]}, k〉 =

( L F
D

e) · {δ×κ ∈ LC | ∃Γ,∆ [e |= Γ,∆, Γ⊢H : δ | ∆ & κ ∈ k ]} = (5.3)
{ρ ∈ LR | ∃Γ,∆ [e |= Γ,∆, Γ⊢ L : δ×κ→ρ|Γ ⊢H : δ | ∆ & κ ∈ k ]} =
{κ→ρ ∈ LD | ∃Γ,∆ [e |= Γ,∆ & Γ⊢ LH :κ→δ | ∆ ]} · k

(M ≡ µα.[β]N) : Let k ∈ FC. By induction,
Q e[α: = k] =
{δ×κ ∈ LC | ∃Γ,∆ [e[α: = k] |= Γ,α:κ,∆ & Γ⊢Q : δ×κ | ∆ ]} = 〈d, k′〉

Then

( µα.Q FD
e k) =

d(k′) =
{ρ ∈ LR | ∃Γ,∆ [e[α: = k] |= Γ,α:κ,∆ & Γ⊢Q : (κ′→ρ)×κ′ | α:κ,∆ ]} =
{ρ ∈ LR | ∃Γ,∆ [e |= Γ,∆ & Γ⊢Q : (κ′→ρ)×κ′ | α:κ,∆ & κ ∈ k ]} =

(since, by Lem. A.5, [α:κ] |= α:κ⇔ κ ∈ k)
{κ→ρ ∈ LD | ∃Γ,∆ [e |= Γ,∆ & Γ⊢Q : (κ′→ρ)×κ′ | α:κ,∆ ]} · k = (5.3)
{δ ∈ LD | ∃Γ,∆ [e |= Γ,∆ & Γ⊢ µα.[β]N : δ | ∆ ]} · k.
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(M ≡ [α]N) :

[α]N FC
e =

〈 N FD
e, e α〉 = (IH)

〈{δ ∈ LD | ∃Γ,∆ [e |= Γ,∆ & Γ ⊢N : δ,∆]}, e α〉 =
(since, by Lem. A.5, e |= α:κ′⇐⇒ κ′ ∈ e α)

{δ×κ′ ∈ LC | ∃Γ,∆ [e |= Γ,α:κ′,∆ & Γ⊢N : δ | α:κ′,∆ ]} = (5.3)
{κ ∈ LC | ∃Γ,∆ [e |= Γ,∆ & Γ⊢ [α]N : δ | ∆ ]}

Theorem 5.12 (Completeness) Γ |= M : δ | ∆ ⇒ Γ⊢M : δ | ∆ .

Proof: Let Γ |= M : δ | ∆. We begin by defining a particular environment eΓ,∆ as follows

eΓ,∆(x) =

{

↑δ if x:δ ∈ Γ

↑ω otherwise
eΓ,∆(α) =

{

↑κ if α:κ ∈ ∆

↑ω otherwise

By construction, eΓ,∆ |= Γ,∆. Now,

Γ |= M :δ | ∆ ⇒
M eΓ,∆ ∈ δ ⇒ (A.5)

δ ∈ M ⇒ (5.11)
∃Γ′,∆′ [eΓ,∆ |= Γ′,∆′ & Γ′ ⊢M : δ | ∆′ ]

If eΓ,∆ |= Γ′,∆′ then, for any x:δ′ ∈ Γ′ and k ∈ κ′ ∈∆′, we have that δ′ ∈ eΓ,∆(x) and κ′ ∈ eΓ,∆(x);
therefore there exist δ′′ and κ′′ such that x:δ′′ ∈ Γ and k ∈ κ′′ ∈ ∆, where δ′′ ≤ δ′ and κ′′ ≤ κ′.
Since we have that Γ′ ⊢M : δ | ∆′ , it is possible to use A.6 in order to obtain what we needed,
namely that Γ⊢M : δ | ∆.

Lemma A.6 (Thinning and Weakening) i) If Γ ⊢M : δ | ∆, then Γ′ ⊢M : δ | ∆′ , where Γ′= {x:δ∈
Γ | x ∈ fv (M)}, and ∆ = {α:κ ∈∆ | α ∈ fn (M)}.

ii) If Γ⊢M : δ | ∆, then Γ′ ⊢M : δ | ∆′ , where Γ′ ≤ Γ and ∆′ ≤∆.

Proof: Since the system is defined using an expressive ≤-relation, the proof is relatively easy.

Notice that the weakening result is surprising: we allow ∆ to become more specific, not
less; this underlines again that the intersection operator, whose occurrence in ∆ has a clear
motivation from the domains we constructed above, is not a logical operator.

In the next proofs, we will normally assume that (wlog) δ = κ→ρ; we can do this, because
the case δ1∧δ2 is dealt with by splitting up the two cases, and for δ = ω the proof becomes
trivial.

Lemma 5.4 (Term substitution lemma) Γ⊢M[L/x] : σ | ∆ iff there exists δ′ such that Γ, x:δ′ ⊢M : σ | ∆
and Γ ⊢ L :δ | ∆.

Proof: (M ≡ x) : (⇒) : If Γ ⊢ x[L/x] : δ, then Γ, x:δ⊢ x : δ and Γ⊢ L : δ.

(⇐ ) : If Γ, x:δ′ ⊢ x : δ | ∆, then δ′ ≤ δ by Lem. 5.3. From Γ⊢ L : δ′ | ∆ and rule (≤), we
have Γ⊢ L : δ | ∆, so also Γ⊢ x[L/x] : δ | ∆.

(M ≡ y 6= x) : (⇒) : By Thinning, since y[L/x] ≡ y, and x 6∈ fv (y).

(⇐) : Γ⊢ y[L/x] : δ | ∆⇒ Γ⊢ y : δ | ∆. Take δ′ = ω; by Weakening, Γ, x:ω ⊢ y : δ | ∆.
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(M ≡ λy.N) : ∃δ′ [ Γ, x:δ′ ⊢λy.N : δ′′×κ→ρ | ∆ & Γ⊢ L : δ′ | ∆ ] ⇐⇒ (→I, 5.3)
∃δ′ [ Γ, x:δ′,y:δ′′ ⊢N :κ→ρ | ∆ & & Γ⊢ L : δ′ | ∆ ] ⇐⇒ (IH)
Γ,y:δ′′ ⊢N[L/x] : κ→ρ | ∆ ⇐⇒ (→I, 5.3)
Γ⊢λy.(N[L/x]) : δ′′×κ→ρ | ∆ =∆ Γ ⊢ (λy.N)[L/x] : δ′′×κ→ρ | ∆

(M = M1M2) : Notice that (M1M2)[L/x] = P[L/x]Q[L/x].

(⇒) : Then, by Lem. 5.3, there exists δ′′,κ,ρ such that Γ ⊢M1[L/x] : δ′′×κ→ρ | ∆, δ =
κ→ρ, and Γ ⊢M2[L/x] : δ′′ | ∆. Then by induction, there are δ1,δ2 such that:

∗ Γ, x:δ1 ⊢M1 : δ′′×κ→ρ | ∆ and Γ ⊢ L :δ1 | ∆, as well as

∗ Γ, x:δ2 ⊢M2 : δ′′ | ∆ and Γ ⊢ L : δ2 | ∆.

Take δ′ = δ1∧δ2; then by weakening and (→E), we get Γ, x:δ′ ⊢M1M2 : δ | ∆; notice
that Γ⊢ L :δ′ | ∆ by (∧I).

(⇐) : If Γ, x:δ′ ⊢M1M2 : δ | ∆, then, by Lem. 5.3 there exists δ′′,κ,ρ such that δ= δ′′×κ→π,
Γ, x:δ′ ⊢M1 :κ→ρ | ∆ and Γ, x:δ′ ⊢M2 : δ′′ | ∆. Then, by induction, we have Γ⊢M1[L/x] : δ′′×κ→π | ∆
and Γ⊢M2[L/x] : δ′′ | ∆; the result follows by (→E).

(M ≡ µα.Q) : ∃δ′ [ Γ, x:δ′ ⊢µα.Q : δ | ∆ & Γ⊢ L : δ′ | ∆ ] ⇐⇒ (µ, 5.3)
∃δ′,κ,κ′,ρ [ Γ, x:δ′ ⊢Q :κ′→ρ×κ′ | α:κ,∆ & δ = κ→ρ & Γ ⊢ L :δ′ | ∆ ] ⇐⇒ (IH)
Γ, x:C⊢Q[L/x] :κ′→ρ×κ′ | α:κ,∆ ⇐⇒ (µ, 5.3)
Γ⊢ µα.Q[L/x] :κ→ρ | ∆ =∆ Γ ⊢ (µα.Q)[L/x] : δ | ∆

(M ≡ [α]N) : ∃δ′ [ Γ, x:δ′ ⊢ [α ]N : κ | ∆ & Γ⊢ L : δ′ | ∆] ⇐⇒ (×, 5.3)
∃δ′,δ′′,κ′ [ Γ, x:δ′ ⊢N : δ′′ | ∆ & κ = δ′′×κ′ & α:κ′ ∈∆ & Γ ⊢ L : δ′ | ∆ ] ⇐⇒ (IH)
∃δ′′,κ′′ [ Γ⊢N[L/x ] : δ′′ | ∆ & κ = δ′′×κ′ & α:κ′ ∈∆] ⇐⇒ (×, 5.3)
Γ⊢ [α]N[L/x] :κ | ∆ =∆ Γ⊢ ([α]N)[L/x] :κ | ∆

Lemma 5.6 (Structural substitution lemma) Γ⊢M[α⇐ L] : σ | α:κ,∆ if and only if there
exists δ′ such that Γ⊢ L :δ′ | ∆, and Γ⊢M : σ | α:δ′×κ,∆.

Proof: We only show the interesting cases.

(M = [α]N) : Γ ⊢ ([α]N)[α⇐ L] :κ1 | α:κ,∆ =∆

Γ⊢ [α]N[α⇐ L]L :κ1 | α:κ,∆ ⇐⇒ (×, 5.3)
∃δ1 [ Γ ⊢N[α⇐ L ]L : δ1 | α:κ,∆ & κ1 = δ1×κ] ⇐⇒ (→E, 5.3)
∃δ2,κ2 [ Γ ⊢N[α⇐ L ] : δ2×κ2→ρ | α:κ,∆ &

Γ⊢ L : δ2 | ∆ & κ1 = (κ2→ρ)×κ] ⇐⇒ (IH)
∃δ,δ2,κ2 [ Γ⊢N : δ2×κ2→ρ | α:δ×κ,∆ & Γ⊢ L : δ | ∆ &

Γ⊢ L : δ2 | ∆ & κ1 = (κ2→ρ)×κ ] ⇐⇒ (∧)
∃δ,δ2,κ2 [ Γ⊢N : δ2×κ2→ρ | α:δ×κ,∆ & Γ⊢ L : δ∧δ2 | ∆ &

& κ1 = (κ2→ρ)×κ ] ⇐⇒ (≤,W)
∃δ,δ2,κ2 [ Γ⊢N : δ∧δ2×κ2→ρ | α:δ∧δ2×κ,∆ & Γ⊢ L :δ∧δ2 | ∆ &

& κ1 = (κ2→ρ)×κ ] ⇐⇒ (×, 5.3)
∃δ′ [ Γ⊢ [α ]N : κ1 | α:δ′×κ,∆ & Γ ⊢ L :δ′ | ∆]

(M = [β]N with α 6= β) : Γ⊢ ([β]N)[α⇐ L] :κ1 | α:κ,∆ =∆

Γ ⊢ [β]N[α⇐ L] :κ1 | α:κ,∆ ⇐⇒ (×, 5.3)
∃δ,κ2 [ Γ ⊢N[α⇐ L ] : δ | α:κ,∆ & κ1 = δ×κ2 & β:κ2 ∈∆] ⇐⇒ (IH)
∃δ′,δ,κ2 [ Γ ⊢N : δ | α:δ′×κ,∆ & Γ⊢ L : δ′ | ∆ &

κ1 = δ×κ2 & β:κ2 ∈∆] ⇐⇒ (×, 5.3)
∃δ′ [ Γ ⊢ [β ]N : κ1 | α:δ′×κ,∆ & Γ ⊢ L :δ′ | ∆]

(M = x) : (⇒) : Assume there exists δ′ such that Γ ⊢ L :δ′ | ∆, and Γ⊢ x : δ | α:δ′×κ,∆;
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since α 6∈ fn (x), by thinning and weakening also Γ⊢ x : δ | α:κ,∆.

(⇐) : Let Γ⊢ x : δ | α:κ,∆; take δ′ = ω, then by rule (ω), Γ⊢ L : ω | ∆, and by thinning
and weakening Γ⊢ x : δ | α:ω×κ,∆.

(M = λx.N) : By induction.

(M = M1M2) : Then M1M2[α⇐ L] = P [α⇐ L] Q [α⇐ L].

(⇒) : By Lem. 5.3, σ = κ′→ρ and there exists δ′′ such that Γ⊢M2 [α⇐ L] : δ′′ | γ:κ,∆ and
Γ ⊢M1 [α⇐ L] : δ′′×κ′→ρ | α:κ,∆. Then by induction, there are δ1 and δ2 such that

∗ Γ ⊢M1 : δ′′×κ′→ρ | α:δ1×κ,∆ and Γ⊢ L : δ1 | ∆, as well as

∗ Γ ⊢M2 : δ′′ | α:δ2×κ,∆ and Γ⊢ L : δ2 | ∆.

Then by weakening and (→E), we get Γ⊢M1M2 :κ′→ρ | α:(δ1×κ)∧(δ2×κ),∆; notice
that
Γ ⊢N : δ1∧δ2 | ∆ by (∧), and Γ⊢M1M2 :κ′→ρ | α:(δ1∧δ2)×κ,∆ by weakening.

(⇐) : If Γ⊢M1M2 :κ′→ρ | α:κ,∆, then there exists δ such that Γ⊢M1 : δ×κ′→ρ | α:κ,∆
and
Γ ⊢M2 : δ | α:κ,∆. Then, by induction, Γ⊢M1[α⇐ L] : κ′→ρ | α:δ′×κ,∆ and
Γ ⊢M2[α⇐ L] : δ | α:δ′×κ,∆; the result follows by (→E).

(M = µβ.Q) : Γ⊢ µβ.Q : δ | α:κ,∆ ⇐⇒ (µ, 5.3)
∃κ1,κ2 [ Γ ⊢Q : (κ2→ρ)×κ2 | α:κ,∆ & δ = κ1→ρ & β:κ1 ∈∆] ⇐⇒ (IH)
∃δ′,κ1,κ2 [ Γ⊢Q[α⇐ L ] : (κ2→ρ)×κ2 | α:δ′×κ,∆ &

δ = κ1→ρ & β:κ1 ∈∆] ⇐⇒ (µ, 5.3)
∃δ′ [ Γ⊢ µβ.Q[α⇐ L ] : δ | α:δ′×κ,∆]

Theorem 5.7 (Subject expansion) If M→ N, and Γ⊢N : δ | ∆, then Γ⊢M : δ | ∆.

Proof: By induction on the definition of reduction, where we focus on the rules.

((λx.M)N→ M[N/x]) : If Γ, x:B⊢M[N/x] : δ | ∆, then by Lem. 5.4 there exists a δ′ such
that Γ, x:δ′ ⊢M :δ | ∆ and Γ⊢N : δ′ | ∆; assume (wlog) that δ = κ→ρ, then, by apply-
ing rule (→I) to the first result we get Γ⊢λx.M : δ′×κ→ρ | ∆ and by (→E) we get
Γ⊢ (λx.M)N : δ | ∆.

((µα.Q)N→ µα.Q[α⇐N]) : If Γ⊢ µα.Q[α⇐N] : δ | ∆, then (wlog) δ= κ→ρ, and by Lem. 5.3,
there exists κ′ such that Γ⊢Q[α⇐N] : (κ′→ρ)×κ′ | α:κ,∆. Then, by Lem. 5.6, there
exists δ′ such that Γ⊢N : δ′ | ∆, and Γ⊢Q : (κ′→ρ)×κ′ | α:δ′×κ,∆. Then, by rule (µ),
Γ⊢ µα.Q : δ′×κ→ρ | ∆, and Γ⊢ (µα.Q)N : κ→ρ | ∆ follows by rule (→E).

(µα[β]µγ.[α′ ]M→ µα.[α′]M[β/γ]) : If Γ ⊢µα.[α′]M[β/γ] : δ | ∆, then by Lem. 5.3 there exist
κ1,κ2,κ3 such that δ = κ2→ρ, and Γ ⊢M[β/γ] :κ2→ρ | α:κ1,α′:κ2, β:κ3,∆.

Γ ⊢ M[β/γ] :κ2→ρ | α:κ1,α′:κ2, β:κ3,∆
(×)

Γ ⊢ [α′]M[β/γ] : (κ2→ρ)×κ2 | α:κ1,α′:κ2, β:κ3,∆
(µ)

Γ ⊢ µα.[α′]M[β/γ] :κ1→ρ | α′:κ2, β:κ3,∆

Since M can contain β as well, this means that there are κ1,κ2 with κ3 = κ1∧κ2, such
that κ1 is an intersection of the types used for the ‘original’ β, and κ2 for those inserted
by the substitution. Then we have Γ ⊢M :κ | κ2→ρ |α:κ1,α′:κ2, β:κ1,γ:κ2,∆ as well, and, by
weakening, also
Γ⊢M :κ2→ρ | α:κ1,α′:κ2, β:κ3,γ:κ3,∆. We can now derive:
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Γ ⊢ M :κ2→ρ | α:κ1,α′:κ2, β:κ3,γ:κ3,∆
(×)

Γ ⊢ [α′]M : (κ2→ρ)×κ2 | α:κ1,α′:κ2, β:κ3,γ:κ3,∆
(µ)

Γ ⊢ µγ.[α′]M : k3→ρ | α:κ1,α′:κ2, β:κ3,∆
(×)

Γ ⊢ [β]µγ.[α′]M : (κ3→ρ)×κ3 | α:κ1,α′:κ2, β:κ3,∆
(µ)

Γ ⊢ µα.[β]µγ.[α′]M :κ1→ρ | α′:κ2, β:κ3,∆

which shows the result.

(µα.[α]M→ M, where α 6∈ fn (M)) : Assume Γ ⊢M :δ | ∆, such that α 6∈ fn(M), and (wlog)
that d = κ→ρ. Then, by Thinning and Weakening, we can assume that α does not occur in
∆, and we can derive Γ⊢M : δ | α:κ,∆. Then, by rule (×), also Γ⊢ [α]M : (κ→ρ)×κ | α:κ,∆,
and by rule µ, so Γ ⊢µα.[α]M :κ→ρ | ∆ by rule (µ).

Theorem 5.8 (Subject reduction) If M→ N, and Γ ⊢M : δ | ∆, then Γ⊢N : δ | ∆

Proof: ((λx.M)N→ M[N/x]) : Assume (wlog) that δ = κ→ρ. Then by Lem. 5.3 there
exists δ′ such that Γ⊢λx.M : δ′×κ→ρ | ∆ and also Γ⊢N : δ′ | ∆; from the first, by the same
lemma, also Γ, x:δ′ ⊢M :κ→ρ | ∆. Then, by Lem. 5.4, we have Γ⊢M[N/x] :κ→ρ | ∆.

((µα.Q)N→ µα.Q[α⇐N]) : Assume (wlog) that δ = κ→ρ. Then by Lem. 5.3 there exist δ′

such that Γ ⊢ µα.Q : δ′×κ→ρ | ∆ and Γ⊢N : δ′ | ∆, and, by the same lemma, from the first
there exists κ′ such that Γ⊢Q : (κ′→ρ)×κ′ | α:δ′×κ,∆. Then, by Lem. 5.6, Γ ⊢Q[α⇐N] : (κ′→ρ)×κ′ | α:κ,∆
and
Γ⊢ µα.Q[α⇐N] : κ→ρ | ∆ follows by rule (µ).

(µα.[β]µγ.[α′ ]M→ µα.[α′](M[β/γ])) : If Γ⊢ µα.[α′]µγ.[δ]M : δ | ∆, then by Lem. 5.3 there
exist ρ,κ1,κ2,κ3 such that Γ⊢M :κ2→ρ | α:κ1,α′:κ2, β:κ3,γ:κ3,∆ and δ = κ→ρ. Then, obvi-
ously, also
Γ⊢M[β/γ] :κ2→ρ | α:κ1,α′:κ2, β:κ3,∆, and applying rule (×) and (µ) to this derivation
gives
Γ⊢ µα.[α′](M[β/γ]) : δ | α′:κ2, β:κ3,∆.

(µα.[α]M→ M, where α 6∈ fn (M)) : Then by Lem. 5.3 there exists κ,κ′,ρ such that (wlog) δ =
κ→ρ, and Γ⊢ [α]M : (κ′→ρ)×κ′ | α:κ,∆. Then κ = κ′, so we have Γ⊢M : (κ→ρ)×κ | α:κ,∆,
so also
Γ⊢M :κ→ρ | α:κ,∆; by thinning, we have also Γ⊢M :κ→ρ | ∆.

Lemma A.7 A = A→υa.

Proof: (A = ϕ) : ϕ = (υa×ω)→υa = ϕ→υa.

(A = B→C) : B→C = B×κ→υa where C = κ→υa = (IH)
(B→υa)×κ→υa where C = κ =
(B→υa)×C→υa = (B→C)→υa

Theorem 6.3 (Type preservation) If Γ ⊢p M : A | ∆, then Γ⊢M : A | ∆

Proof: (Ax) : Then M = x, and x:A ∈ Γ; then also x:A ∈ Γ, so also Γ⊢M : A | ∆.

(⊥B) : Then M = [α]N, A = ⊥B and Γ⊢p N : B | ∆ and α:B ∈ ∆; by induction, we have
Γ⊢N : B | α:B,∆. By Lem. A.7 and Def. 6.2, we have Γ⊢N : B→υa | α:B,∆ and can derive

Γ⊢ [α]N : (B→υa)×B | α:B,∆ using rule (×). Since⊥B = (B→υa)×B, we have: Γ⊢ [α]N :⊥B | α:B,∆
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(µ) : Then M = µα.Q and Γ⊢p Q :⊥B | α:A,∆; by induction, Γ ⊢Q :⊥B | α:A,∆. Since α:A,∆=

α:A,∆ and ⊥B = (B→υa)×B, we have Γ ⊢ µα.Q : A→ϕ | ∆ by rule (µ).

(→I) : Then M = λx.N; notice that A 6= ⊥, so A = B→C, and Γ, x:B⊢p N : C | ∆; by induc-
tion, we have Γ, x:B⊢N : C | ∆. Let C = κ→ρ; since Γ, x:B = Γ, x:B, by rule (→I) we have
Γ⊢λx.N : B×κ→ρ | ∆; notice that B→C = B×κ→ρ.

(→E) : Then M = NL and there exists B such that both Γ ⊢p N : B→A | ∆ and Γ⊢p L : B | ∆;
by induction, we have Γ⊢N : B→A | ∆ and Γ⊢ L : B | ∆. Since B→A = B×κ→ρ, with
A = κ→ρ, by rule (→E) we have Γ⊢NL : A | ∆.
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