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Abstract

We define the calculus LK - a variant of the calculus X - that enjoys the Curry-Howard
correspondence for Gentzen’s calculus lk; the variant consists of allowing arbitrary progress
of cut over cut. We study the π-calculus enriched with pairing, for which we define a notion
of implicative type assignment. We translate the terms of LK into this variant of π, and show
that reduction and assignable types are preserved. This implies that all proofs in lk have a
representation in π, and that cut-elimination is effectively simulated by π’s synchronisation,
congruence, and bisimilarity between processes.
We present two interpretations for which we show soundness results (but with respect to
different notions of reduction), as well as type preservation. Using the second interpretation,
we show that we preserve Gentzen’s Hauptsatz result, and prove completeness.
We then enrich the logic with the connector ¬ (negation), and show that this also can be
represented in π, whilst preserving the results.

keywords: classical logic, sequent calculus, pi calculus, translation, type assignment

Introduction

In this paper we present two translations of proofs of Gentzen’s (implicative) proof calculus
for Classical Logic lk [28] into the π-calculus [42] that respect cut-elimination. These transla-
tions are attained through using the intuition of the calculus X , which gives a computational
content to lk (a first version of this calculus was proposed in [46, 48, 47]; the implicative
fragment of X was studied in [9]). We will here use a variant of X , called LK – obtained
by not using X ’s activated cuts but allowing arbitrary cut-over-cut reduction – which satisfies
most properties shown to hold for X (with the exception of strong normalisation, but this is
as expected for any calculus that models full cut-elimination).

LK enjoys the Curry-Howard isomorphism for lk, which it achieves by inhabiting the infer-
ence rules with term information, constructing witnesses for derivable sequents. Terms in LK
are different from those in other calculi used for logic in that they have multiple named inputs
and multiple named outputs, that are collectively called connectors. Reduction in LK is ex-
pressed via a set of rewrite rules that represent/correspond to cut-elimination in lk; reducing
a term using these rules eventually leads to renaming of connectors and gives computational
meaning to classical (sequent) proof reduction.

The two main features of X –non-confluence and reduction as (re-)connection of terms via
the exchange of names– are also manifest in the π-calculus, an observation which inspired us
to consider the π-calculus as a means to model cut-elimination and proofs in lk. The aim of
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this paper is to link lk and π via LK; we achieve this through the definition of two different
translations that map (untyped) LK-terms to π-processes.

Main considerations

In setting up the translations we present here, some difficulties had to be overcome.
The first is that of non-confluence: it is well known that cut-elimination in lk is not conflu-

ent, and, since LK is Curry-Howard for lk and its reduction respects cut-elimination, neither
is reduction in LK. Moreover, the calculus is symmetric, where call-by-value and call-by-name
coexists as sub-reduction systems that differ in how cuts are evaluated. A cut P α̂ † x̂Q in LK
(see Definition 1.1) expresses two terms that need to be connected via α and x, which can be
realised both through the substitution of Q for α in P (which is essentially part of cbv) as well
as through that of P for x in Q (part of cbn), which normally give different results: reduction
will realise this by either connecting all αs to all xs (if x does not exist in Q, P will disappear),
or all xs to all αs (if α does not exist in P, Q will disappear)

An important difference between LK and the π-calculus is that LK has explicit duplication
of terms through reduction rules, whereas in the π-calculus this can only be achieved through
replication, effectively “flooding the system.” If we model P and Q in π through · , then
we obtain one process sending on α, and one receiving on x (we can link these via α(w).x w).
Since each output on α in P takes place only once, and Q might want to receive in more
than one x, we need to replicate the sending; likewise, since each input x in Q takes place
only once, and P might have more than one send operation on α, Q needs to be repli-
cated; this implies that the translation of the cut has to use replication for both sub-terms (see
Definition 4.1 and 5.1).

As a consequence of this abundance of replication, we cannot simply show that the reduc-
tion of the interpretation of a cut runs to the interpretation of its contractum; for example,
when the reduction of P α̂ † x̂Q substitutes Q for α in P , only one copy of P is used,
leaving ! P which can generate superfluous observable behaviour. Therefore, we will rather
show that the interpretation of the contractum of a cut has less observable behaviour than the
interpretation of the cut itself. This is, in fact, common for interpretations of non-confluent
calculi , where the interpretation of terms decreases under reduction (see Remark 2.7).

The second point is that we aim for our interpretation to be meaningful also from the
point of view of the logic, and would like to not only link lk and the π-calculus as systems
of reduction, but also a systems of proofs and have the interpretation of terms respect the
assignable types. In this precise sense we aim to view processes in π as giving an alternative
(computational) meaning to proofs in classical logic. The problem there is that there does not
exist a notion of type assignment for the π-calculus that naturally deals with function (arrow)
types. Some attempts have been made, for example by linearising the calculus, but these seem
very much to be based on the principle of type assignment as can be found in the λ-calculus
and its siblings: if Γ �λ M : A , where A is the type of the ‘result’ of M, we can construct an
abstraction over M towards any of its free variables x, which occurs in Γ with a type B, but
only to its result type A to derive Γ \ {x:B} �λ λx.M : B→A . However, this is not the right
approach for the π-calculus, since a process does not have a unique type itself since not a
unique result, but rather has many types associated to it through its outputs.

We see this same feature in LK, where a term is associated to two contexts through P : Γ �lk
∆, with Γ containing the types for its inputs, and ∆ for its outputs. Now in the rule (exp),
where the term representation for right-introduction of the arrow is typed,
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P : Γ, x:A � α:B,∆

x̂ P α̂·β : Γ � β:A→B,∆

any type in the left context can be paired to any type in the right context to introduce an arrow
type, essentially not just binding an input, but also an output in one go. Since in LK a term
P can have many inputs and outputs, it is unsound to consider P a function per se; however,
fixing one input x and one output α, the ‘classical logic’ point of view is that P is a function
‘from x to α’. We make this limited view of P available via the output β, thereby exporting via
β that ‘P can be used as a function from x to α’. The types given to the connectors confirm
this view. This case is interesting in that it highlights a special feature of LK, not found in
other calculi, which is the simultaneous binding of two free names.

Perhaps surprisingly, we can do something similar for the π-calculus to define a natural
notion of functional type assignment: since processes have in general multiple input and
output channels, it is natural from a classical logic point of view to see a process P as an entity
over which we can construct functions by picking (binding) both input and output. Since we
now ‘capture’ two channel names in one action, we have to introduce a notion of pairing to
the π-calculus, and define π〈〉 , the π-calculus is extended with pairing [2] (see Definition 3.1);
we can naturally assign arrow types to channel names over which pairs are transmitted, and
come to the notion of implicative type assignment we define in Section 6. We will establish
a relation between Classical Logic and the π-calculus through that notion of type assignment
by showing that the translations also preserve types, i.e. the image of a typeable term gives a
process that is a witness to the same judgement. We thereby establish that the π-calculus has
a strong link to functional languages with control and is thereby inherently more expressive
than just the λ-calculus; see also below where we discuss our results for Parigot’s λµ-calculus
[43].

Classical sequents

The sequent calculus lk, introduced by Gentzen in [28], is a logical system in which the rules
only introduce connectives (but on either side of a sequent), in contrast to natural deduction
(also introduced in [28]) which uses rules that introduce or eliminate connectives in the logical
formulae. Natural deduction normally derives statements with a single conclusion, whereas
lk allows for multiple conclusions, deriving sequents of the form A1, . . . , An � B1, . . . , Bm, where
A1, . . . , An is to be understood as A1∧ . . .∧An and B1, . . . , Bm is to be understood as B1∨ . . .∨Bm.
Kleene’s version G3 [39], with implicit weakening and contraction, of Implicative lk has four
rules: axiom, cut, left introduction of the arrow, and right introduction:

(Ax) :
Γ, A �lk A,∆ (cut) :

Γ �lk A,∆ Γ, A �lk ∆

Γ �lk ∆

(⇒R) :
Γ, A �lk B,∆

Γ �lk A⇒B,∆
(⇒L) :

Γ �lk A,∆ Γ, B �lk ∆

Γ, A⇒B �lk ∆

Since lk has no elimination rules, the only way to eliminate a connective is to eliminate
the whole formula in which it appears via an application of the (cut)-rule. Gentzen defined
a procedure that eliminates all applications of the (cut)-rule from a proof of a sequent using
an innermost strategy, defined via local reductions of the proof-tree, which has –with some
discrepancies– the flavour of term rewriting [40] or the evaluation of explicit substitutions [19,
1]. His Hauptsatz result expresses that this kind of proof reduction is normalising.

The calculus LK 1 achieves a Curry-Howard isomorphism - first discovered for Combina-

1 Since the main difference between X [8, 9] and LK is in the reduction rules, the observations in this section
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tory Logic [27] - for the proofs in lk by constructing witnesses for derivable sequents. This is
established by, similar to calculi like Parigot’s λµ and Curien and Herbelin’s λµµ̃ [26], attach-
ing Roman names to formulae in the left context, and Greek names to those on the right, and
to associate syntactic structure to the rules. Names on the left can be seen as inputs to the
term, and names to the right as outputs; since multiple formulae can appear on both sides,
this implies that a term can not only have more than one input, but also more than one output.
There are two kinds of names (connectors) in LK: sockets (inputs, with Roman names) and
plugs (outputs, with Greek names), that correspond to variables and co-variables, respectively,
in [49], or to Parigot’s λ and µ-variables (see also [26]).

In the construction of the witness, when in applying a rule, a premise or conclusion dis-
appears from the sequent and the corresponding name gets bound in the term that is con-
structed; when a premise or conclusion gets created, a different free (often, but not necessarily,
new) name is associated to it.

Gentzen’s proof reductions by cut-elimination2 become the fundamental principle of com-
putation in LK. Cuts in proofs are witnessed by P α̂ † x̂Q (called the cut of P and Q via α and
x), and the reduction rules specify how to remove them: ergo, a term is in normal form if
and only if it has no sub-term of this shape. Note that reduction in LK is not confluent; for
example, as suggested above, when P does not contain α and Q does not contain x, reducing
P α̂ † x̂Q can lead to both P and Q, two different terms.

Related work

Logic and computation

The relation between logic and computation hinges around the Curry-Howard isomorphism
(also attributed to de Bruijn), which expresses the fact that, for certain calculi with a notion
of types, there exists a corresponding logic such that it becomes possible to associate terms
with proofs, thus linking the term’s type to the proposition shown by the proof, and proof
contractions become term reductions. This phenomenon was first discovered for Combinatory
Logic [27], and played an important part in de Bruijn’s Automath.3

Before Herbelin’s PhD [33] and Urban’s PhD [46], the study of the relation between compu-
tation, programming languages and logic has concentrated mainly on natural deduction systems
(of course, exceptions exist [30, 31]). In fact, these carry the predicate ‘natural’ deservedly; in
comparison with, for example, sequent style systems, natural deduction systems are easy to
understand and reason about. This holds most strongly in the context of non-classical logics;
for example, the Curry-Howard relation between Intuitionistic Logic and the Lambda Calculus
with types – of which the basic system is formulated by:

(Ax) :
Γ, x:A � x : A (→I) :

Γ, x:A � M : B

Γ � λx.M : A→B
(→E) :

Γ � M : A→B Γ � N : A

Γ � MN : B

– is well studied and understood, and has resulted in a vast and well-investigated area of
research, resulting in, amongst others, functional programming languages and much further
to system F [29] and the Calculus of Constructions [24]. In fact, all these calculi are applicative
in that abstraction and application (corresponding to arrow introduction and elimination) are
the main constructors in the syntax.

are true also for X .
2 In his original paper [28], Gentzen never considered progressing a cut over a cut. In that sense, reduction in

LK as we consider it here is much more ‘liberal’; this comes at the price of losing strong normalisation of typeable
terms.

3 http://www.win.tue.nl/automath
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The link between Classical Logic and continuations and control was first established by
Griffin for the λC-Calculus [32] (where C stands for Felleisen’s C operator). Not much later,
Parigot presented his λµ-calculus [43], an approach for representing classical proofs via a
natural deduction system in which there is one main conclusion that is being manipulated,
and possibly several alternative ones; the corresponding logic is one with focus. The λµ-
calculus is presented as an extension of the λ-calculus, by extending the syntax with two new
constructs that act as witness to the rules that deal with conflict (⊥):

(⊥) :
Γ �Λµ M : A | α:A,∆

Γ �Λµ [α]M : ⊥ | α:A,∆
(µ) :

Γ �Λµ M : ⊥ | α:A,∆

Γ �Λµ µα.M : A | ∆

It uses two disjoint sets of variables (Roman and Greek characters). That control can be
expressed in the lazy variant of λµ was shown in [25].

The introduction-elimination approach is easy to understand and convenient to use, but
is also rather restrictive: for example, the handling of negation is not as nicely balanced, as
is the treatment of contradiction (for a detailed discussion, see [45]). This imbalance can be
observed in the λµ-calculus: adding ⊥ as pseudo-type (only negation, or A→⊥, is expressed;
⊥→A is not a type), the λµ-calculus corresponds to minimal classical logic [5].

Herbelin has studied the calculus λµµ̃ as an extension of λµ without application, which
gives a fine-grained account of manipulation of sequents [33, 26, 34]. The relation between
call-by-name and call-by-value in the fragment of lk with negation and conjunction is studied
in Wadler’s Dual Calculus [49]; as in calculi like λµ and λµµ̃, that calculus considers a logic
with active formulae, so these calculi do not achieve a direct Curry-Howard isomorphism with
lk. The relation between X and λµµ̃ has been investigated in [8, 9]; there it was shown that
it is straightforward to map λµµ̃-terms into X whilst preserving reduction, but that it is only
partially possible to do the converse.

π-calculus and logic

In the past, there have been several investigations of translations from various calculi (or
logics) into the π-calculus [42], starting with Milner’s seminal paper, presenting his input-
based translation of the λ-calculus [14] into the π-calculus, and showing that the translation
of closed λ-terms respects lazy reduction to normal form up to substitution. Many papers
have been published in that area; here we concentrate on a review of the literature on the
relationship between logic and the π-calculus.

The original idea of giving a computational translation of the cut as a communication prim-
itive that we propose in this paper is also used by Abramsky in [4]; that paper was more
a philosophical exposition of ideas, rather than a detailed presentation of an encoding with
proofs. Abramsky’s ideas were taken further by Bellin and Scott [17] and later by Bruscali
and Gugliemi [21, 20]. On the relation between Girard’s linear logic [30] and the π-calculus,
Bellin and Scott [17] give a treatment of information flow in proof-nets; only a small fragment
of Linear Logic was considered, and the translation between proofs and π-calculus was left
rather implicit as also noted by [22].

To illustrate this, notice that [17] uses the standard syntax for the polyadic π-calculus

P ,Q ::= 0 | P |Q | ! P | (νa)P | a(x).P | a c .P

similar to the one we use here (see Definition 3.1) but for the fact that for us output is not
synchronous, and there the let -construct is not used. However, the encoding of a ‘cut’ in
linear logic
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� x:A ⊗ B,y:(A ⊗ B)⊥
� n:A,m:A⊥ � z:B,w:B⊥

� m:A⊥,w:B⊥,v:A ⊗ B

� x:A ⊗ B,m:A⊥,w:B⊥

i.e. the ‘term’ x:A ⊗ B,m:A⊥,w:B⊥, gets translated in [17] into a ‘language of proofs’ which
looks like:

Cutk(I,
⊗n,z

v (I, I)mwz)x, (m,w) = (νk)
(

I[k/y] |⊗n,z
v (I, I)mwz[k/v]

)
where the terms Cut and I are (rather loosely) defined. Notice the use of arbitrary application
of processes to channel names, and the operation of pairing; the authors of [17] do not specify
how to relate this notation to the above syntax of processes they consider.

However, even if this relationship is made explicit, even then a different π-calculus is
needed to make the encoding work. To clarify this point, consider the translation in the
π-calculus of the term above, which according to the definition given in [17] becomes:

(νk)
(

x(a).k(a) | (νnz)(k (n,z).
(
n(b).m(b) | z(b).w(b)

)
)).

Although intended, no communication is possible in this term (we have underlined the de-
sired communication which is impossible, as the arity of the channel k does not match). To
overcome this kind of problem, Bellin and Scott would need the let -construct with use of pairs
of names as we have introduced in this paper in Definition 3.1. Moreover, there is no relation
between the interpreted terms and proofs stated in [17] in terms of logic, types, or provable
statements; here, we make a clear link between interpreted proofs and the logic through our
notion of type assignment for the π-calculus.

Honda and Laurent [35] studied a typed π-calculus and show that a specific form of po-
larised linear logic [41] and a typed version of the asynchronous π-calculus [38] are essentially
different ways of presenting the same structure. In contrast, our translations are very natural
and intuitive by interpreting the cut operationally as a synchronisation in the basic, untyped
π-calculus.

Honda, Yoshida, and Berger [38] study a relation between a typed (i.e. types are part of
the syntax of a term) Call-by-Value λµ and a linear π-calculus. The syntax of processes there
considered is

P ::= ! x(y).P | (νy) (x y |P) | P |Q | (νx)P | 0

and the notion of reduction on processes is extended to that of ↘, defined as the least com-
patible relation over typed processes (i.e. closed under typed contexts), taken modulo ≡, that
includes:

! x(y).P | (νa) (x a |Q) → ! x(y).P | (νa) (P [a/y] |Q)

as the basic synchronisation rule, as well as

C[(νa) (x a |P)] | ! x(y).Q ↘r C[(νa) (P [a/y] |Q)] | ! x(y).Q
(νx) (! x(y).Q) ↘g 0

where C[·] is an arbitrary (typed) context; note that ↘ synchronises with any occurrence
of x a , no matter what guards they may be placed under. The resulting calculus is thereby
very different from the original π-calculus. Types for processes prescribe usage of names, and
name passing is restricted to bound (private, hidden) name passing. 4

4 This is a feature of all related interpretations into the π-calculus.
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The translation of typed λµ they present is type dependent, in that, for each term, there
are different π-processes assigned, depending on the original type; this makes the translation
quite cumbersome. That paper achieves a full abstraction result, but at the price of considering
only an explicitly typed version of λµ, restricted to CBV, and then only the lazy version of
that, since it is essentially based on Milner’s translation, i.e. does not model reduction in the
right-hand side of an application; expressiveness of the results is obtained by changing the
reduction strategy of the π-calculus by allowing synchronisations also under guard and under
replication. So the results of [38] and our paper cannot really be compared; we just remark
that our translation is type-free, maps onto a version of the π-calculus that does not allow for
reduction to take place under replication or guard, deals with untypeable terms as well, and
that our semantic translation deals with reduction in a sequent calculus.

An accurate and elegant result on the relationship between π-calculus and linear logic is
achieved by Beffara [15, 16]. In particular, in [16] various mappings of the λµ-calculus with
linear logic types are encoded into synchronous π-calculus with forwarders. Observe that
λµ encodes a ‘natural deduction’ style of reasoning, while in this paper we are considering a
sequent calculus kind of reasoning for classical logic.

In [12], two of the authors presented a compositional output-based translation for the Λµ-
calculus (a variant of λµ with separate naming and µ-binding operations) extended with
explicit substitution, into the π-calculus with pairing, and showed that this translation pre-
serves single-step explicit head reduction with respect to contextual equivalence. Since Λµ is
a λ-calculus where reduction is confluent, the result of [12] is only partial with respect to the
results we present here. They showed a full abstraction result for their encoding in [13], but
restricted to λµ.

A result on the relation between classical logic and the π-calculus has appeared as [23], but
for the fact that there a relation is established between the λµµ̃-calculus and the π-calculus;
since the focus for the translation as defined there is termination, it preserves only outer-
most reduction, which does not get formally motivated as a significant restriction of (proof)-
reduction. Also, since in that approach all communication takes place via channels named λ,
µ and µ̃, it is not immediately clear that a natural notion of type assignment exists for π so
that also type assignment is preserved.

Main results

In this paper, we will show results for two interpretations of LK into the π-calculus, each with
their own strengths and provable properties. We will first present a natural translation · n
that respects a notion of head reduction through synchronisation, and a semantic translation
· s that respects weak bisimilarity in full. Although the origin of terms in LK are the proofs

in lk, these translations in no way depend on type information, but map type-free terms (so
also terms that do not correspond to proofs) to type-free processes. The translations focus, as
is usual in semantics, on observable behaviour, and as mentioned above we will show that, if P
reduces to Q, then the observable behaviour of Q is included in that of P, and that individual
reduction steps are preserved in that sense.

The first translation is called natural since it closely follows the nature and structure of
proofs in lk, and is, in approach, closely related to Milner’s encoding and the output-based
spine translation of [11]. The results we will show for this translation are:

Soundness (Theorems 4.8 and 7.8) : If P reduces to Q using head reduction, then the observa-
tional behaviour of P n contains that of Q n (as we will see in Remark 2.7, given the
non-confluent nature of both LK and the π-calculus, we cannot show that P n = Q n)
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and if all head-reduction paths from P contain an infinite number of (exp-imp) steps, then
P n diverges.

Preservation of types (Theorems 6.8 and 7.10) : If P is a witness for the judgement Γ � ∆, then
so is P n, effectively showing that all proofs in lk have a representation in the π-calculus.

These results show that the natural translation is strong, but as translation of full cut-
elimination it falls short: not all reductions are modelled, and the translation is not complete
(see Example 4.12). The first is almost standard in the literature: for example, [42, 44] can
only model lazy reduction, and, as argued in [11], only explicit lazy reduction in a step-by-
step fashion. The second is a direct consequence of the fact that reduction in LK is a term
rewriting system, where pattern matching takes place; we cannot fully express in the π-
calculus. The only way to ’hold’ the reduction of the synchronisation in the implementation
of the rule (†imp-out) (as in Example 4.12) would be to put the whole process under input,
thereby blocking other cuts as well. That the process involved in the synchronisation is, in
fact, the interpretation of an import can not be seen from the process itself.

We will show here that we can overcome these restrictions by presenting a second trans-
lation, · s, that we call semantical; it interprets terms as infinite resources, and is capable
of representing cut-elimination in full, albeit not through mimicking reduction, but through
bisimilarity (hence the moniker “semantical”). It is a generalisation of the natural translation
in that it treats the interaction between a term and a context not through an input over the
translation of the latter, as the natural translation does. For this second translation, we will
show:

Operational Soundness (Theorems 5.4 and 7.8) : If P reduces to Q in LK’s full reduction, then
the observational behaviour of P s contains that of Q s.

Preservation of types (Theorems 6.9 and 7.11) : If P is a witness for the judgement Γ � ∆, so is
P s.

Operational completeness (Theorem 5.6) : If P s can be executed, then so can P, and these exe-
cutions are related via · s by: if P s →π Q then there exists P′ ∈LK, R such that Q →∗

π R ,
! R ≈ P′

s, and P →∗ P′.
Preservation of typeable termination (Corollary 5.10) : If P is typeable, then P s is bisimilar to

a process in normal form; we hereby emulate Gentzen’s Hauptsatz result; this is not
possible for the normal encoding.

There are many more properties that one could demand to hold for these translations, like
preservation of compositions, of termination, of simulations, of equivalences, full abstraction, etc. It
is not immediately clear if checking these properties, or even aiming for them, makes sense
in the context of the translations of LK we define here. After all, we are not interpreting one
model of computation into another, but rather study the relation between cut-elimination in
classical logic and communication in a process calculus. The calculus LK we present here has
not been proposed as a calculus to represent computation, is not a programming language
and should not be treated as such; so it seems unreasonable to demand that the criteria we set
on models of computation should also hold for LK.

We will see that, for the kind of cut-elimination for lk as we consider in this paper, when
allowing cut-over-cut reduction, cut-elimination is highly non-terminating, even looping for
terms that intuitively should not; since for many terms that have a finite reduction path also
a looping reduction path exists and our translations respect single reduction steps, we cannot
hope to show that termination is preserved by our translations. However, this does not imply
that no termination results can be shown; in fact, for the semantic translation we will show
that Gentzen’s Hauptsatz result (i.e. every provable judgement Γ � ∆ has a cut-free proof) is, in
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a sense, preserved.
In [7], we first presented our results on the translation of LK-terms into the π-calculus; that

paper also presented the notion of type assignment as defined here, as well as a proof that
type assignment and cut-elimination are preserved by the translation. Since some details of
the translations differ, we repeat these results here, with all particulars of the proofs; moreover,
here we define head reduction ‘→h’ for LK, and show that the translation ·n respects →h;
we also add the semantic translation · s and show that this is faithful with respect to LK’s
full reduction. In addition to [7] (and [9]), we treat the connective ¬ as well.

Overview of this paper

In Section 1, we give the definition of (implicative) LK, followed by the notion of type assign-
ment which establishes the Curry-Howard isomorphism. In Section 2, we show how to rewrite
LK-terms, and show the relation with lk’s cut-elimination. The π-calculus with pairing is pre-
sented in Section 3. Section 4 defines the natural translation · n of LK-terms into π-processes
that closely follows the intuition of LK, and shows a soundness and type-preservation result.
In Section 5 we will modify the natural translation to represent LK’s reduction in full, via
the semantic translation · s and show soundness, type-preservation, and completeness. We
will use this translation to show that every typeable term corresponds to a process in normal
form, which emulates Gentzen’s Hauptsatz result. In Section 6, we define a notion of type
assignment for the π-calculus, and show that, under the two interpretations, typeable terms
translate to processes that are typeable in the same way. Then, in Section 7 we look at how
to represent negation in LK, and study the relation between that representation and reduc-
tion. We conclude by representing negation directly in π, and show that type assignment is
preserved also here.

1 The calculus LK
In this section and the next we will give the definition of LK, a variant of the calculus X
which has been proven to be a fine-grained implementation model for various well-known
calculi [8], like the λ-calculus, λµ, and λµµ̃. As discussed in the introduction, the calculus LK
is linked to Gentzen’s sequent calculus lk; the system we will consider in this section has only
implication, no structural rules and a changed axiom. LK features two separate categories
of ‘connectors’, plugs and sockets, that act as output and input channels, respectively, and is
defined without any notion of substitution or application. For the sake of clarity, we will
develop our results first just for the implicative fragment of lk; we will consider negation in
Section 7.

We would like to stress that the calculus LK we define here is not proposed as an abstract
machine to model computation (X and λµµ̃ are better suited for that), but just as a language
that allows us to treat Gentzen’s cut-elimination in a syntactical manner; we will see that
reduction is highly inefficient, since looping on normalisable terms.

Definition 1.1 (Syntax) The terms of the LK-calculus are defined by the following syntax,
where the Roman characters x,y range over the infinite set of sockets, and the Greek characters
α, β over the infinite set of plugs.
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P, Q ::= 〈x·β〉 capsule
| ẑP α̂·β export
| P α̂ [x] ẑQ import
| P α̂ † ẑQ cut

We can represent these terms via the following diagrams (given just as a visual aid).

�x β� �̂z P �̂α �β P �̂α [ ] ẑ� Q�x P �̂α ẑ Q

As an aid to intuition, ignoring the explicitly named outputs, we can see these terms with
the view of other calculi:

LK λx Λµ λµµ̃

〈x·β〉 x [β]x 〈x |β〉
ẑP α̂·β λz.P [β]µα.λz.P 〈λz.µα.P |β〉

P α̂ [x] ẑQ xPQ1· · ·Qn [ω](µα.P)(λv.[ω]xvλz.Q) 〈x |µα.P · µ̃z.Q〉
P α̂ † ẑQ Q 〈z :=P〉 [ω](µα.P)(λz.Q) 〈µα.P | µ̃z.Q〉

(where λx is Bloo and Rose’s λ-calculus with explicit substitution [18], and in the third case
Q is seen as a context, acting as a stack of terms Q1, . . . , Qn; for details, see [6] and [9]).

The encoding of the λ-calculus, λx, and λµ into LK are defined in [9] through:

x α =
∆ 〈x·α〉

λx.M α =
∆ x̂ M β β̂·α

MN α =
∆ M γ γ̂ † x̂( N β β̂ [x] ŷ〈y·α〉)

M 〈x :=N〉 α =
∆ N β β̂ † x̂ M α

µδ.[γ]M α =
∆ M γ δ̂ † x̂〈x·α〉

Notice that terms are defined ‘under output’. That paper also defines an interpretation of λµµ̃

into LK:

〈v | e〉 =
∆ v α α̂ † x̂ e x

x α =
∆ 〈x·α〉

λx.v α =
∆ x̂ v β β̂·α

µβ.c α =
∆ c β̂ † x̂〈x·α〉

α x =
∆ 〈x·α〉

v·e x =
∆ v α α̂ [x] ŷ e y

µ̃y.c x =
∆ 〈x·β〉 β̂ † ŷ c

Here terms are interpreted under output, and contexts under input.

Definition 1.2 i) The bound sockets and bound plugs in a term are defined by:

bs(〈x·α〉) = ∅
bs(ẑP α̂·β) = bs(P) ∪ {z}
bs(P α̂ [x] ẑQ) = bs(P) ∪ bs(Q) ∪ {z}
bs(P α̂ † ẑQ) = bs(P) ∪ bs(Q) ∪ {z}
bp(〈x·α〉) = ∅
bp(ẑP α̂·β) = bp(P) ∪ {α}
bp(P α̂ [x] ẑQ) = bp(P) ∪ {α} ∪ bp(Q)

bp(P α̂ † ẑQ) = bp(P) ∪ {α} ∪ bp(Q)

ii) The set of bound connectors of P is defined by: bc(P) = bs(P) ∪ bp(P).
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iii) A socket x or plug α occurring in P which is not bound is called free, written x ∈ fs(P) and
α ∈ fp(P).

We will identify terms that only differ in the names of bound connectors, as usual, and write
x ∈� fs(P, Q) for x ∈� fs(P) & x ∈� fs(Q), etc.

Notice that each term in LK has at least one free plug.
We accept Barendregt’s convention on names, which states that no name can occur both free

and bound in a context; α-conversion is supposed to take place silently, whenever necessary.
In order to come to a notion of type (or better: context) assignment for LK, we define types

and contexts.

Definition 1.3 (Types and Contexts) i) The set of (implicative) types is defined by the gram-
mar:

A, B ::= ϕ | A→B

where ϕ is a basic type of which there are countably many.5

ii) A context of sockets Γ is a mapping from sockets to types, denoted as a finite set of statements
x:A such that the subject of the statements (x) are distinct. We write Γ1, Γ2 for the compatible
union of Γ1 and Γ2 (if x:A1 ∈ Γ1 and x:A2 ∈ Γ2 then A1 = A2), and write Γ, x:A for Γ,{x:A}.
We write x ∈ Γ if there exists A such that x:A ∈ Γ, and x ∈� Γ if this is not the case. We
write Γ\x for Γ \ {x:A} if x ∈ Γ or Γ if x ∈� Γ.

iii) Contexts of plugs ∆, and the notions ∆1,∆2, α:A,∆, α ∈ ∆, and ∆\α are defined in a similar
way.

So, when writing a context as Γ, x:A, this implies that x:A ∈ Γ, or Γ is not defined on x.
The notion of type assignment on LK that we present in this section is Kleene’s basic

implicative system for Classical Logic (Gentzen’s system lk) as described above. The Curry-
Howard property is easily achieved by erasing all term-information.

Definition 1.4 (Typing for LK) i) Type judgements6 for LK are expressed via a ternary rela-
tion P : Γ �lk ∆, where Γ is a context of sockets and ∆ is a context of plugs, and P is a term.
We say that P is the witness of this judgement.

ii) Type assignment for LK is defined by the following rules:

(cap) : 〈x·α〉 : Γ, x:A � α:A,∆ (cut) :
P : Γ � α:A,∆ Q : Γ,z:A � ∆

P α̂ † ẑQ : Γ\z � ∆\α

(exp) :
P : Γ,z:A � α:B,∆

ẑP α̂·β : Γ\z � β:A→B,∆\α
(imp) :

P : Γ � α:A,∆ Q : Γ,z:A � ∆

P α̂ [x] ẑQ : Γ\z, x:A→B � ∆\α

We write P : Γ �lk ∆ if there exists a derivation using these rules that has this judgement
in the bottom line.

It is easy to show that weakening is admissible.
Notice that each term in LK has at least one free plug, so it is impossible to derive a

statement like P : Γ �lk ∅ 7 and that Γ and ∆ carry the types of the free connectors in P, as
unordered sets. There is no notion of type for P itself, instead the derivable statement shows
how P is connectable.

5 These types are normally known as natural (or Curry) types.
6 We use the notation of [9].
7 This is possible in the extended system we will consider in Section 7.
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Example 1.5 (A proof of Peirce’s Law) The following is a proof for Peirce’s Law in lk:

(Ax)
A � A, B

(⇒R)� A⇒B, A
(Ax)

A � A
(⇒L)

(A⇒B)⇒A � A
(⇒R)� ((A⇒B)⇒A)⇒A

and its inhabitation in LK:
(cap)〈y·δ〉 : y:A � δ:A,η:B

(exp)
ŷ〈y·δ〉 η̂·α : � α:A→B,δ:A

(cap)〈w·δ〉 : w:A � δ:A
(imp)

(ŷ〈y·δ〉 η̂·α) α̂ [z] v̂〈v·δ〉 : z:(A→B)→A � δ:A
(exp)

ẑ((ŷ〈y·δ〉 η̂·α) α̂ [z] v̂〈v·δ〉) δ̂·γ : � γ:((A→B)→A)→A

2 Reduction on LK
The reduction rules for the calculus LK are directly inspired by the cut-elimination rules in
lk. It is possible to define proof reduction in many ways; Gentzen decided to consider the
simplest contractions, and considered only the last rule applied in the two sub-derivations of
cuts:

(r)
Γ �lk A,∆

(l)
Γ, A �lk ∆

(cut)
Γ �lk ∆

In case the formula A is introduced in both these sub-derivations (i.e. either (⇒R) and
(⇒L), or (Ax) and (⇒L), or (⇒R) and (Ax), or (Ax) and (Ax)) the cut can be contracted
directly; otherwise, a sub-proof gets ‘pushed’ into the one does not introduce the formula,
one proof-step at the time; notice that this might apply to both, so a choice might have to be
made, which in itself might lead to different results, i.e. different proofs for the same sequent.

We model these proof-contraction steps via term rewriting rules for LK. For example, since

D1

Γ, A �lk B,∆
(⇒R)

Γ �lk A⇒B,∆

D2

Γ �lk A,∆

D3

Γ, B �lk ∆
(⇒L)

Γ, A⇒B �lk ∆
(cut)

Γ �lk ∆

contracts to both:

D2

Γ �lk A,∆
(Wk)

Γ �lk A, B,∆

D1

Γ, A �lk B,∆
(cut)

Γ �lk B,∆

D3

Γ, B �lk ∆
(cut)

Γ �lk ∆

and
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D2

Γ �lk A,∆

D1

Γ, A �lk B,∆

D3

Γ, B �lk ∆
(Wk)

Γ, A, B �lk ∆
(cut)

Γ, A �lk ∆
(cut)

Γ �lk ∆

the witness for the first proof, (ŷP α̂·β) β̂ † x̂(Q γ̂ [x] ẑR)

�̂y P �̂α �β �̂β x̂ Q �̂γ [ ] ẑ� R�x

reduces to both Q γ̂ † ŷ(P α̂ † ẑR) and (Q γ̂ † ŷP) α̂ † ẑR

Q �̂γ ŷ P �̂α ẑ R Q �̂γ ŷ P �̂α ẑ R

being the witnesses for the two resulting proofs; also this might lead to different results
(i.e. cut-free proofs).

This behaviour is reflected in rule (exp-imp), as presented in Definition 2.2. We can see
the cut (ŷP β̂·α) α̂ † x̂(Q γ̂ [x] ẑR) as a function ŷP β̂·α (with body P, that takes input on y and
outputs on β) interacting with a context Q γ̂ [x] ẑR (consisting of the function’s argument Q, x
as the hole that the function should occupy, and R the context of the ‘explicit substitution’ of
P in Q). The contraction of the cut expresses (in the left-hand diagram) that the body of the
function (which represents the result of the function, but with the substitution of the argument
still pending) interacts with the context before using the argument; the other contraction first
uses the argument, before interacting with the context, which corresponds to the standard
way.8

Following Gentzen’s approach, LK’s term rewriting rules explain in detail how cuts are
propagated through terms to be eventually evaluated at the level of capsules, where renaming
takes place. Reduction is defined by specifying both the interaction between well-connected
basic syntactic structures, and how to deal with propagating nodes to points in the term
where they can interact. For this, it is important to know when a connector is introduced,
i.e. is exposed and unique; informally, a term P introduces a socket x if P contains x and is
constructed from sub-terms which do not contain x as free socket, so x only occurs at the ‘top
level.’ This means that P is either an import with a middle connector [x] or a capsule with left
part x. Similarly, a term introduces a plug α if it is an export that ‘creates’ α or a capsule with
right part α.

Definition 2.1 (Introduction) P introduces α : Either P= x̂Q β̂·α and α �∈ fp(Q), or P= 〈x·α〉.
P introduces x : Either P = Q β̂ [x] ŷR with x �∈ fs(Q, R), or P = 〈x·α〉.

The logical reduction rules specify how to reduce a term that cuts sub-terms which intro-
duce connectors. These rules are naturally divided in four categories: when a capsule is cut
with a capsule, an export with a capsule, a capsule with an import or an export with an import.
There is no other pattern in which a plug is introduced on the left of a ‘†’ and a socket is
introduced on the right.

Definition 2.2 (Logical rules) Let α and x be introduced in, respectively, the left and right-
hand side of the main cuts below.

8 In fact, in λµµ̃ only the second alternative is represented.



Under submission 14

(cap) : 〈y·α〉 α̂ † x̂〈x·β〉 → 〈y·β〉
(exp) : (ŷP β̂·α) α̂ † x̂〈x·γ〉 → ŷP β̂·γ
(imp) : 〈y·α〉 α̂ † x̂(Q β̂ [x] ẑR) → Q β̂ [y] ẑR

(exp-imp) : (ŷP β̂·α) α̂ † x̂(Q γ̂ [x] ẑR) →
{

Q γ̂ † ŷ(P β̂ † ẑR)
(Q γ̂ † ŷP) β̂ † ẑR

The first three logical rules above specify a renaming procedure, whereas the last rule
specifies the basic computational step: it links the export of a function, available on the plug
α, to an adjacent import via the socket x. The effect of the reduction will be that the exported
function is placed in-between the two sub-terms of the import, acting as interface. Notice that
two cuts are created in the result, that can be grouped in two ways; these alternatives do not
necessarily have the same normal forms (since reduction is not confluent, normal forms are
not unique).

We now define how to reduce a cut when one of its sub-terms does not introduce a connector
mentioned in the cut. This will involve moving the cut inwards, towards a position where the
connector is introduced. In case both connectors are not introduced, this search can start in
either direction, giving another source of non-confluence.

Similarly to the reasoning above, also the rules dealing with propagating cuts are inspired
by Gentzen’s cut-elimination rules. Take

D1

Γ, A �lk A⇒B, B,∆
(⇒R)

Γ �lk A⇒B,∆

D2

Γ, A⇒B �lk ∆
(cut)

Γ �lk ∆

(notice the contraction towards A⇒B in the left-hand sub-derivation, so the plug associated
to this formula would not be introduced in the witness for Γ �lk A⇒B,∆) which reduces to

D1

Γ, A �lk A⇒B, B,∆

D2

Γ, A⇒B �lk ∆
(cut)

Γ, A �lk B,∆
(⇒R)

Γ �lk A⇒B,∆

D2

Γ, A⇒B �lk ∆
(cut)

Γ �lk ∆

Notice that now in the conclusion of the left-hand sub-derivation, the formula A⇒B is not
contracted: therefore, in the witness for this proof, this is represented by an introduced plug;
in fact, the witness for the first proof, the term (ŷQ β̂·α) α̂ † x̂ P, reduces to the witness for
the second proof (ŷ(Q α̂ † x̂ P) β̂·γ) γ̂ † x̂ P where now γ is introduced,9 as reflected in rule
(exp-out†) below. So the diagram

�̂y Q �̂β �α �̂α x̂ P

with α free in Q, reduces to:

�̂y Q �̂α x̂ P �̂β �γ �̂γ x̂ P

Also, since

9 We rename the outermost α to γ in order to adhere to Barendregt’s convention.
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D1

Γ �lk A⇒B,∆

D2

Γ, A⇒B �lk A,∆

D3

Γ, A⇒B, B �lk ∆
(⇒L)

Γ, A⇒B �lk ∆
(cut)

Γ �lk ∆

(again, notice the contraction) reduces to

D1

Γ �lk A⇒B,∆

D1

Γ �lk A⇒B,∆

D2

Γ, A⇒B �lk A,∆
(cut)

Γ �lk A,∆

D1

Γ �lk A⇒B,∆

D3

Γ, A⇒B, B �lk ∆
(cut)

Γ, B �lk ∆
(⇒L)

Γ, A⇒B �lk ∆
(cut)

Γ �lk ∆

the term P α̂ † x̂(Q β̂ [x] ŷR) reduces to P α̂ † ẑ((P α̂ † x̂Q) β̂ [z] ŷ(P α̂ † x̂ R)), or:

P �̂α x̂ Q �̂β [ ] ŷ� R�x

(where x occurs free in Q or R) reduces to

P �̂α ẑ P �̂α x̂ Q �̂β [ ] ŷ� P �̂α x̂ R�z

as reflected in rule (†imp-out).
This leads to the next set of rules that deal with cuts that do not have both connectors

introduced, and define how to move that cut inwards.

Definition 2.3 (Propagation rules) Left propagation:

(cap†) : 〈y·β〉 α̂ † x̂ P → 〈y·β〉 (β �= α)

(exp-out†) : (ŷQ β̂·α) α̂ † x̂ P → (ŷ(Q α̂ † x̂ P) β̂·γ) γ̂ † x̂P
(γ fresh,α not introduced)

(exp-in†) : (ŷQ β̂·γ) α̂ † x̂ P → ŷ(Q α̂ † x̂ P) β̂·γ (γ �= α)

(imp†) : (Q β̂ [z] ŷR) α̂ † x̂ P → (Q α̂ † x̂ P) β̂ [z] ŷ(R α̂ † x̂P)
(cut†) : (Q β̂ † ŷR) α̂ † x̂ P → (Q α̂ † x̂ P) β̂ † ŷ(R α̂ † x̂P)

Right propagation:

(†cap) : P α̂ † x̂〈y·β〉 → 〈y·β〉 (y �= x)
(†exp) : P α̂ † x̂(ŷQ β̂·γ) → ŷ(P α̂ † x̂Q) β̂·γ
(†imp-out) : P α̂ † x̂(Q β̂ [x] ŷR) → P α̂ † ẑ((P α̂ † x̂Q) β̂ [z] ŷ(P α̂ † x̂ R)),

(z fresh, x not introduced)
(†imp-in) : P α̂ † x̂(Q β̂ [z] ŷR) → (P α̂ † x̂Q) β̂ [z] ŷ(P α̂ † x̂ R) (z �= x)
(†cut) : P α̂ † x̂(Q β̂ † ŷR) → (P α̂ † x̂Q) β̂ † ŷ(P α̂ † x̂ R)

Definition 2.4 (Reduction) i) We write →∗
LK for the reduction relation defined as the smallest

pre-order that includes the logical and propagation rules, extended with the contextual
rules10

10 Reduction in LK is defined as a term rewriting system, where the contextual rules are normally left implicit;
we mention them here because we define a restriction of reduction that also limits the contextual rules.
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(ẑP δ̂·γ) γ̂ † û(Q τ̂ [u] x̂ R) →LK (†imp-out)
(ẑP δ̂·γ) γ̂ † ŷ(((ẑP δ̂·γ) γ̂ † ûQ) τ̂ [y] x̂((ẑP δ̂·γ) γ̂ † ûR)) →LK (†cap)
(ẑP δ̂·γ) γ̂ † ŷ(((ẑP δ̂·γ) γ̂ † ûQ) τ̂ [y] x̂ R) →LK (exp),=α

(v̂〈v·ρ〉 ρ̂·γ) γ̂ † ŷ((ẑP δ̂·τ) τ̂ [y] x̂ R) →LK (exp-imp)
(ẑP δ̂·τ) τ̂ † v̂(〈v·ρ〉 ρ̂ † x̂ R) →LK (†cut)
((ẑP δ̂·τ) τ̂ † v̂〈v·ρ〉) ρ̂ † x̂((ẑP δ̂·τ) τ̂ † v̂ R) →LK (exp,†cap)
(ẑP δ̂·ρ) ρ̂ † x̂ R →LK (exp) ẑP δ̂·σ

Figure 1: Running (ẑP δ̂·γ) γ̂ † û(Q τ̂ [u] x̂ R) of Example 2.5.

P → Q ⇒



x̂ P α̂·β → x̂Q α̂·β
P α̂ [x] ŷR → Q α̂ [x] ŷR
R α̂ [x] ŷP → R α̂ [x] ŷQ
P α̂ † ŷR → Q α̂ † ŷR
R α̂ † ŷP → R α̂ † ŷQ

ii) We define the notion of head reduction, →h, by excluding reductions in and toward import,
via the elimination of the propagation rules that move into an import (i.e. (imp†), (†imp-out),
and (†imp-in), as well as the second and third contextual rule).

iii) We define innermost reduction →i by allowing the rules to be applied only to cuts com-
posed out of terms in normal form (i.e. that contain no cuts).

iv) We write P↑ (and say that P diverges) if all reduction paths starting from P contain an
infinite number of (exp-imp) steps.11

Notice that this notion of reduction has many critical pairs, making reduction highly non-
confluent.

The main difference between this reduction and that of X is that, essentially, in X activated
cuts P α̂ † x̂Q and P α̂ † x̂Q are added to the syntax, and only those are allowed to propagate
over non-activated cuts; this is crucial for the Strong Normalisation result as shown by Urban
(for a syntactic variant of X ), without sacrificing expressivity [46]. The idea is that, once
activated, a cut has to run to completion, and cannot be ‘crossed’ with another cut. Instead,
the rewriting we consider here corresponds more closely to free cut-elimination.

Example 2.5 Taking P = 〈z·δ〉, Q = 〈u·τ〉 and R = 〈x·σ〉 (notice that then u is not introduced
in Q τ̂ [u] x̂R), we can reduce (ẑP δ̂·γ) γ̂ † û(Q τ̂ [u] x̂ R) as in Figure 1 (notice that we have
marked the cut that gets contracted).

Unlike a similar notion for the λ-calculus, our notion of head reduction is not deterministic:
notice that

(ŷ((v̂P δ̂·σ) σ̂ † ẑ〈z·γ〉) γ̂·α) α̂ † x̂〈x·β〉 →h

{
(ŷ(v̂P δ̂·γ) γ̂·α) α̂ † x̂〈x·β〉
ŷ((v̂P δ̂·σ) σ̂ † ẑ〈z·γ〉) γ̂·β

so both cuts can be contracted under →h.

Notice that our cut-elimination is different from Gentzen’s original (implicit) definition: he
in fact did not consider a cut-over-cut step, and used innermost reduction for his Hauptsatz
result (see Proposition 5.7).

The soundness result of type assignment with respect to reduction is stated as usual:

11 By seeing only exp-imp as a true computational step, all other rules are considered administrative, comparable
to dealing with explicit substitution.
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Theorem 2.6 (Witness Reduction for LK) If P : Γ � ∆, and P →∗
LK Q, then Q : Γ � ∆.

Proof : As in [9].

Although the reduction rules of LK are different from those of X , since activated cuts are no
longer used, given that activated cuts are typed in the same way as normal cuts the proof is
almost identical to that presented in [9].

Remark 2.7 (On non-confluence) We have already remarked that the reduction relation is
not confluent. In fact, let P and Q be such that α is not free in P and x is not free in Q, then
we can show both P α̂ † x̂Q →∗

LK P and P α̂ † x̂Q →∗
LK Q. So, in particular, a term P can have

more than one normal form.
Now when interpreting a term through its set of normal forms via · nf, it is easy to

show that, if P →∗
LK Q, then Q nf ⊆ P nf; so picking one reduction from P can then ex-

clude the reachability of some of the other normal forms, and the set of reachable normal
forms decreases during reduction. Something similar also holds for our translations into the
π-calculus: if P →∗

LK Q, then P has more observable behaviour than Q , expressed via
P �∼ Q ; see below.

In [9, 10] some basic properties are shown for X , which essentially show that the calculus is
well behaved, as well as the relation between X and a number of other calculi. These results
are valid also for LK, and motivate the formulation of admissible rules:

Lemma 2.8 (Garbage Collection and Renaming [10])

(†gc) : P α̂ † x̂Q →LK Q if x ∈� fs(Q)

(gc†) : P α̂ † x̂Q →LK P if α ∈� fp(P)
(†ren) : 〈z·α〉 α̂ † x̂P →LK P[z/x]
(ren†) : P β̂ † ẑ〈z·α〉 →LK P[α/β]

We can have looping reductions, even without rule (exp-imp).

Example 2.9 As an example of a looping reduction, take:

P α̂ † x̂(〈x·β〉 β̂ † ẑQ) →LK (†cut)
(P α̂ † x̂〈x·β〉) β̂ † ẑ(P α̂ † x̂Q) →LK (†gc) (x ∈� fs(Q))

(P α̂ † x̂〈x·β〉) β̂ † ẑQ →LK (cut†)
(P β̂ † ẑQ) α̂ † x̂(〈x·β〉 β̂ † ẑQ) →LK (gc†) (β ∈� fp(P))
P α̂ † x̂(〈x·β〉 β̂ † ẑQ)

Moreover, assuming P : Γ � α:A,∆ and Q : Γ,z:A � ∆, we can construct a derivation for
P α̂ † x̂(〈x·β〉 β̂ † ẑQ) : Γ � ∆ and all the intermediate terms in the reduction above are typeable
by the Witness Reduction result: so also cut-elimination does not terminate and typeability
does not guarantee termination.

Notice that, following the innermost reduction path, this loop is immediately broken:

P α̂ † x̂(〈x·β〉 β̂ † ẑQ) →LK (†ren) P α̂ † x̂Q[x/z] =α P α̂ † ẑQ

We hazard a guess that this is why Gentzen considers only innermost reduction.

3 The asynchronous π-calculus with pairing

The notion of asynchronous π-calculus that we consider in this paper is different from the
standard system defined by Honda and Tokoro in [36]. One reason for the change we make lies
directly in the calculus that is going to be interpreted, LK, in which a term can be constructed
binding two connectors simultaneously. We will model function and context interaction into
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processes communication by sending data over channels, i.e. not just names, but also pairs
of names, so, inspired by [2], add pairing: we introduce a structure over names, such that a
channel may pass along not only names but also pairs of names (but not a pair of pairs). This
does not imply that the calculus we consider is polyadic, however: always only one item can
be sent, which is either a name of a pair of names. We also introduce the let-construct to deal
with inputs of pairs of names that get distributed over the continuation.

To ease this definition, we deviate slightly from the normal practice, and write either Greek
characters α, β,υ, . . . or Roman characters x,y,z, . . . for channel names; we use a,b, c,n for either
a Greek or a Roman name.

The reason we use the asynchronous π-calculus rather than the normal synchronous variant
will become clear after Definition 4.1; notice that this choice is not a restrictive one, since the
asynchronous π-calculus is included in the synchronous one.

Definition 3.1 (π〈〉 : the asynchronous π-calculus with pairing) i) Channel names and
data are defined by:

a,b, c,d ::= x | α names
p ::= a | 〈a,b〉 data

Notice that pairing is not recursive.
ii) Processes are defined by the grammar:

P ,Q ::= 0 nil
| P |Q composition
| ! P replication
| (νa)P restriction
| a(x).P input
| a p (asynchronous) output
| let 〈x,y〉= p in P let construct

iii) We consider n bound in (νn)P , x bound in a(x).P , and x and y to be bound in the let-
construct let 〈x,y〉= p in P . We call n free in P if it occurs in P and is not bound; we write
fn(P) for the set of free names in P , and write fn(P ,Q) for fn(P)∪fn(Q).

iv) We abbreviate a(x).let 〈y,z〉=x in P with x∈� fn(P) by a(y,z).P , and (νm) (νn)P by (νmn)P ,
and write a〈c,d〉 rather than a 〈c,d〉.

v) We write a b for the forwarder [37] a(w).b w (called a wire in [44]).
vi) A (process) context is simply a term with a hole [·].

Some remarks on the structure of processes should be made. Notice that data occurs only in
two cases: a p and let 〈x,y〉= p in P , and that then p is either a single name, or a pair of names.
This implies that we do not allow 〈a,b〉.P , nor a(〈b,c〉).P , nor a 〈〈b,c〉,d〉, nor (ν〈a,b〉)P , nor
let 〈〈a,b〉,y〉= p in P , etc. Therefore substitution P [p/x] is a partial operation, which depends
on the places in P where x occurs.

Definition 3.2 (Congruence) The structural congruence is the smallest equivalence relation
closed under contexts containing the following rules:

P | 0 ≡ P
P |Q ≡ Q |P

(P |Q) |R ≡ P | (Q |R)

(νn)0 ≡ 0

(νm) (νn)P ≡ (νn) (νm)P
(νn) (P |Q) ≡ P | (νn)Q (n �∈ fn(P))

! P ≡ P | ! P
let 〈x,y〉= 〈a,b〉 in P ≡ P [a/x,b/y]
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Because of the last clause, we will not treat let 〈x,y〉= 〈a,b〉 in P as syntactic representation of a
process; this implies, for example, that we do not deal explicitly with the process let 〈x,y〉= 〈a,b〉 in P
in our type assignment system.

As usual, we will consider processes modulo congruence.12 Because of rule (P |Q) |R ≡
P | (Q |R), we will normally not write brackets in a parallel composition of more than two

processes.

Definition 3.3 (Reduction) i) The reduction relation →π over the processes of the π〈〉-calculus
is defined by following (elementary) rules:

a b | a(x).Q → Q [b/x] synchronisation
a〈b,c〉 | a(x).Q → Q [〈a,b〉/x], if well defined

P → Q ⇒ (νn)P → (νn)Q binding
P → Q ⇒ P |R → Q |R composition

ii) We write →+
π for the transitive closure of →π, →∗

π for its reflexive and transitive closure;
we write →π (a) if we want to point out that a synchronisation took place over channel a,
and write (=α) if we want to point out that α-conversion has taken place.

As remarked above, Q [p/x] as used in the synchronisation rule needs to be well defined
for the synchronisation to take place; this implies that, for example, a synchronisation like
a p | a(z).z c is stuck, as is a p | a(z).b〈z,v〉, etc. Note that

a〈b,c〉 | a(x,y).P =
∆ a〈b,c〉 | a(z).let 〈x,y〉=z in P
→π let 〈x,y〉= 〈b,c〉 in P
≡ P [b/x, c/y]

exactly as intended.
Moreover, we explicitly allow the forwarder to accept data, so do not enforce a fixed arity

on channels.
There are several notion of equivalence defined for the π-calculus: the one we consider

here, and will show is related to our encodings, is that of weak bisimilarity.

Definition 3.4 (Weak bisimilarity) i) We write P ↓n (and say that P outputs on n) if P ≡
(νb1 . . . bm) (n p |Q) for some Q , where n ∈� {b1 . . . bm }. We write P ⇓n (P will output on n)

if there exists Q such that P →∗
π Q and Q ↓n. P ↓n (P inputs on n) and P ⇓n (P will input

on n) are defined similarly.
ii) A weak barbed similarity � is the largest relation such that P � Q satisfies the following

clauses:
a) if for each name n: if P ↓n then Q ⇓n, and if P ↓n then Q ⇓n;
b) for all P ′, if P →∗

π P ′, then there exists Q ′ such that Q →∗
π Q ′ and P ′ � Q ′.

iii) Weak similarity �∼ is defined by: P �∼ Q when C[P ]� C[Q ] for all contexts C[·].
iv) Weak bisimilarity ≈ is defined by: P ≈ Q if and only if P �∼ Q and Q �∼ P .

Weak bisimilarity as we define here is also known as ‘barbed congruence’.
The following property is standard:

Proposition 3.5 i) ≡ ⊆ �∼ .
ii) �∼ is a preorder.

12 For example, we need not define the rule P ≡ Q & Q → Q ′ & Q ′ ≡ P ′ ⇒ P → P ′.



Under submission 20

The following is easy to show, and will be used to show that synchronisations inside the
image of our encodings takes place over hidden channels.

Proposition 3.6 Let P ,Q not contain a and a �= b, then

(νa) (a b.P | a(x).Q ) ≈ P |Q [b/x]

(νa) (! a b.P | a(x).Q ) ≈ P |Q [b/x]

We will need the following property:

Lemma 3.7 i) Let a be at most only used as output channel in P and as input channel in Q , and the
only channel that is used for input in one, and for output in the other. Then:

(νa) (! P | ! Q) �∼ ! (νa) (! P | ! Q)

ii) Let x, α both be different from β, and β not used for input in Q , then:

(νxα) (! Q | ! β〈x,α〉) �∼ ! (νxα) (! Q | ! β〈x,α〉)
iii) Let a be at most only used as output channel in Q and as x as input channel in R , y not used for

output in either Q or R , and no other channel is used for input in one, and for output in the other.
Then:

(νxa) (! Q | ! y(v,d).(! a v | ! d x) | ! R) �∼ ! (νxa) (! Q | ! y(v,d).(! a v | ! d x) | ! R)

iv) Let a be at most only used as output channel in Q and as x as input channel in R , and no other
channel is used for input in one, and for output in the other. Then:

(νxα) (! Q | ! α x | ! R) �∼ ! (νxα) (! Q | ! α x | ! R)

Proof : For part (i), notice that for any context that interacts just with P or Q and does not
enable synchronisation over a, the observable behaviour is the same. If a context enables
synchronisation over a in (νa) (! P | ! Q) by interacting with both P and Q , then it might be
that it interacts with P in (νa1) (! P | ! Q) and with Q in (νa2) (! P | ! Q), thus not enabling the
synchronisation. So ! (νa) (! P | ! Q) has less observable behaviour.

The other cases are similar.

4 A natural translation for LK into π〈〉 that respects head reduction

In this section we will present a first translation · n of LK into π〈〉 ; it is called natural since it
will create processes that output on names that are associated to plugs, and input on names
that are associated to sockets, and tries as much as possible to encode the joining of connectors
through substitution, following the syntactic structure of terms. Also, it is natural since we
can show that head reduction LK is implemented through synchronisation in π〈〉 (see Theo-
rem 4.8); for the semantic translation of the next section we can show that reduction in LK is
represented through weak bisimilarity (see Theorem 5.4).

Although departing from LK it is natural to use Greek names for outputs and Roman
names for inputs, by the very nature of the communication of the π-calculus (it is only possible
to communicate using the same channel for in and output), in the implementation we are
forced to use Greek names also for inputs, and Roman names for outputs.

We will first give the definition of the natural translation, and then explain the details.

Definition 4.1 (Natural translation of LK in π〈〉 ) The natural translation is defined by:
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〈x·β〉 n = x(w).β w

ẑP α̂·β n = (νzα) (! P n | β〈z,α〉)
P α̂ [x] ẑQ n = x(α,z).(! P n | ! Q n)

P α̂ † ẑQ n = (νz) (! P n[z/α] | ! Q n)

Let us investigate the intuition behind this definition for a moment. The interpretation of
P α̂ † ẑQ will generate a process P n that (possibly) outputs on α, and Q that inputs on z;
since the intention of the cut is that α and z are connected, we realise this directly by renaming
α by z: 13

P α̂ † ẑQ n = (νz) (! P n[z/α] | ! Q n)

Since z (and α) are bound in P α̂ † ẑQ, z is restricted.
Likewise, when constructing the process that represents the term P α̂ [x] ẑQ, we will gener-

ate a process P n that outputs on α, and Q n that inputs on z. Notice that when that term is
placed in a cut with an export

(ŷR β̂·γ) γ̂ † x̂(P α̂ [x] ẑQ)

a reduction step can be made that generates the term P α̂ † ŷ(R β̂ † ẑQ). Therefore, we can see
the synchronisation over x as enabling the connection of α to y and β to z. So, in effect, then
the synchronisation over x exchanges two names (hence the need for pairing), and we can see
x in P α̂ [x] ẑQ n as an input that receives the names (here y and β) that will be connected to
the names α and z, which in [7] we defined as:

x(v,d)((να) (! P n | ! α v) | (νz) (! d z | ! Q n))

Here we can improve on that naturally by treating α and z as variables. We place the interpre-
tations of P and Q in parallel and introduce a guard using x, that receives on x the channel
names that are going to be substituted for α and z:

P α̂ [x] ẑQ n = x(α,z).(! P n | ! Q n)

This then causes the use of pairing in the interpretation of the export ẑP α̂·β as well. When
we see R n as a process that can input on z and output on α, then ẑP α̂·β n is the process that
communicates that fact over β, by sending the two names:

ẑP α̂·β n = (νzα) (! P n | β〈z,α〉)
since z and α are bound in ẑP α̂·β, they are restricted.

Remark 4.2 We can now better illustrate why we have not used an output guard on the inter-
pretation of exports ŷP β̂·α as in (νyβ) (α〈y,β〉.! P ), as might have been expected, but have
placed the communication of the interface in parallel as in (νyβ) (! P n |α〈y,β〉). Take the term
(ŷP β̂·α) α̂ † x̂〈x·γ〉, which by rule (exp) reduces to ŷP β̂·γ. We would want the interpretation
of the first term to at least include (in terms of �∼) that of the second. Assume we would have
defined

ŷP β̂·α = (νyβ) (α〈y,β〉.! P )

then we can only show:

13 Notice that (νz) (! P n[z/α] | ! Q n) =α (να) (! P n | ! Q n[α/z]) since z does not occur free in P and α not
in Q; we will not distinguish these and swap between them whenever convenient.
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(ŷP β̂·α) α̂ † x̂〈x·γ〉 =
∆

(νx) (! (νyβ) (x〈y,β〉.! P ) | ! x(w).γ w) ≡, =∆

(νx) ((νyβ) (x〈y,β〉.! P ) | x(w).γ w | ! ŷP β̂·x | ! x(w).γ w) →π (x)
(νyβ) (! P |γ〈y,β〉) | (ŷP β̂·α) α̂ † x̂〈x·γ〉

Notice that this last process then does not include ŷP β̂·γ ; in fact, (νyβ) (γ〈y,β〉.! P ) and
(νyβ) (! P |γ〈y,β〉) are not even weakly bisimilar. So we are forced to place the output α〈y,β〉
in parallel to P n in ŷP β̂·α n.

Remark 4.3 (On confluence and �∼ ) As observed in Remark 2.7, the cut P α̂ † x̂Q – with α not
in P and x not in Q – in LK runs via erasure to either P or Q, and reducing it decreases the
set of reachable normal forms. Observe that in the image of LK in π, being built without
using ‘choice’, there is no notion of erasure of processes; this implies that, using reduction in
the π-calculus, we cannot model P α̂ † x̂Q →LK P; we can at most show:

P α̂ † x̂Q n =
∆ (νx) (! P n[x/α] | ! Q n) ≡ ! P n | ! Q n

assuming α ∈� fp(P) and x ∈� fs(Q). Now all reductions will take place in either P n or Q n,
and both parts will remain under reduction. This implies that, in this case, it is clear that the
interpreted cut P α̂ † x̂Q n must contain the behaviour of either its contractea, so, evidently, has
more behaviour than both P n and Q n separately. As stated in Remark 2.7, this is natural
for translations of non-confluent calculi, since there P →LK Q implies Q ⊆ P . We see this
return in the formulation of the correctness result (Theorem 4.8) for the natural translation,
which is formulated through the relation �∼ .

Since in this translation some sub-terms are placed under input, a full representation of
reduction in LK cannot be achieved: it is not possible to reduce the (interpreted) terms that
appear under an input. To accommodate for this shortcoming, to achieve a simulation re-
sult using this first translation, we have to restrict the notion of reduction on LK to that
of head reduction. In view of the literature that exists on translations into the π-calculus,
this is unfortunate but standard: the encoding forces a restriction on the modelled reduction
rules. A similar limitation was already evident for Milner’s encoding of the λ-calculus in [42],
which manages only to show a preservation result for (large step) lazy reduction [3] for the
λ-calculus, and is thereby also present in all research that is based on that approach; also [11]
has to limit the notion of reduction to spine reduction, and [12] to head reduction.

As can be seen in Definition 4.1, input is used for the translation of import, so the restriction
will consist of removing the rules that reduce under import; notice that this forces the exclusion
of the second and third contextual rule, as well as the propagation rules (imp†), (†imp-out),
and (†imp-in).

The choice for the terminology head-reduction can be motivated as follows. The only re-
maining reduction rules that deal with imports are:

(imp) : 〈y·α〉 α̂ † x̂(Q β̂ [x] ẑR) → Q β̂ [y] ẑR

(exp-imp) : (ŷP β̂·α) α̂ † x̂(Q γ̂ [x] ẑR) →
{

Q γ̂ † ŷ(P β̂ † ẑR)
(Q γ̂ † ŷP) β̂ † ẑR

The restriction we put on the rewriting system in head-reduction implies that we can only
contract a cut T α̂ † x̂(Q γ̂ [x] ẑR) if T is a term with α introduced; as observed above, we can
compare this term, with discrepancies, to TQRi (where R is the context [ ]Ri). In particular,
under head-reduction, in the term T α̂ † x̂(Q γ̂ [x] ẑR) all reduction takes place exclusively
inside T (so in the head of the term TQRi), and the cut mentioned explicitly will only be
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contracted after that reduction produces a term that introduces α in an export. Moreover,
even when T α̂ † x̂(Q γ̂ [x] ẑR) reduces to (ŷP β̂·α) α̂ † x̂(Q γ̂ [x] ẑR), we can continue running
inside P. In any case, the contraction of this cut is postponed (for an introduced x; if x is not
introduced, it will always be blocked, since propagation into an import is no longer allowed)
until the head introduces α. Notice that head reduction in LK models more than just what
we suggest here: continuing on the metaphor of the λ-calculus, the cut P α̂ † x̂Q corresponds
to Q 〈x :=P〉; head reduction allows reduction in both components of the cut, so allows for
reduction during substitution.

Following on from these observations, it is clear that in terms of the representation of
computable functions, head reduction is still fully expressive. In fact, the spine translation of
[11] is a combination of the mapping of the λ-calculus into X (or of natural deduction into
the sequent calculus) and the natural translation we define here; a similar observation can be
made with respect to the interpretation of Λµ and λµ presented in [12, 13]. In that paper it is
shown that explicit λ-spine reduction is preserved step-by-step by the induced combination
of LK’s head reduction and π’s synchronisation; it also shows that typeability is preserved.

Remark 4.4 We can make the following observations:

• The synchronisations generated by the natural translation only involve processes of the
shape:

x(w).α w β〈x,α〉 z(β,y).(P |Q)

so in particular, substitution P [p/x] as generated by synchronisation is always well de-
fined. These synchronisations are of the shape:

– (νx) ((νyβ) (P | x〈y,β〉) | x(α,z).(R |Q)) →π (νyβ) (P |R [y/α] |Q [β/z]), and
after the synchronisation over x, P can receive over y from R [y/α] and send over β to
Q [β/z]; or

– (νx) ((νyβ) (P | x〈y,β〉) | x(w).α w) →π (νyβ) (P | α〈y,β〉).
• All synchronisation takes place only over channels whose names are bound connectors in

the terms that are interpreted. In particular,

– no synchronisation is possible in P α̂ † x̂Q n =
∆ (νx) (! P n[x/α] | ! Q n) between and

P n[x/α] and Q n but over channel x; and
– no direct synchronisation is possible in P α̂ [x] ŷQ n =

∆ x(α,y).(! P n | ! Q n) between
P n and Q n, even after input has been received over x.

• The translation is not trivial, since

ŷ(ẑ〈y·β〉 β̂·γ) γ̂·α n = (νyγ) (! (νzβ) (! y(w).β w |γ〈z,β〉) | α〈y,γ〉)
x̂〈x·δ〉 δ̂·α n = (νxδ) (! x(w).δ w | α〈x,δ〉)

(witnesses of, respectively, � A→B→A and �C→C) yielding processes that differ under
≈.

As mentioned in the introduction, we added pairing to the π-calculus in order to be able
to deal with arrow types. Notice that using the polyadic π-calculus instead would not be
sufficient: since we would like the translation to respect reduction, in particular we need to
be able to reduce the translation of (x̂P α̂·β) β̂ † ẑ〈z·γ〉 to that of x̂P α̂·γ (when β not free in P).
So, choosing to interpret the export of x and α over β as β〈x,α〉 would force the translation of
〈z·γ〉 to always receive a pair of names. But requiring for the translation of a capsule to always
deal with pairs of names is too restrictive: we will see that then only arrow types could be
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assigned. Therefore it is desirable to allow those to deal with single names as well. So, rather
than moving towards the polyadic π-calculus, we opt for letting communication send a single
item, which is either a name or a pair of names.

Example 4.5 The translation of ẑ((ŷ〈y·δ〉 η̂·α) α̂ [z] v̂〈v·δ〉) δ̂·γ n, the witness of Peirce’s law of
Example 1.5, becomes:

(νzδ) (z(α,v).(! (νyη) (! y(w).δ w | α〈y,η〉) | ! v(w).δ w) | γ〈z,δ〉)
That this process is a witness of � ((A→B)→A)→A is a straightforward application of Theo-
rem 6.8.

The following is straightforward:

Proposition 4.6 (Free name preservation) α, x �∈ fc(P), if and only if α, x �∈ fn( P n).

We will show in Theorem 4.8 that we can mimic LK’s head reduction in π〈〉 : if P →h Q, the
image of the LK-term P under the translation in π〈〉 reduces to some π〈〉-process that contains
the behaviour of Q, but might have some extra behaviour as well. As will become clear also in
the proofs below, this is in part due to the presence of replicated processes in the translation
of the cut, but also comes from the fact that reduction in LK is not confluent, as discussed in
Remark 4.3.

First we need to show the following:

Lemma 4.7 i) Assume γ does not occur free in P[α/x], and x can only be a free socket in P, then:
(να) (! (νyβ) (! Q n |γ〈y,β〉) | ! P n[α/x]) �∼
(νyβ) (! (να) (! Q n | ! P n[α/x]) |γ〈y,β〉)

ii) Assume α can only be a plug in Q, and x can only be a socket in P, then:
(νx) (! (νyβ) (! Q n[x/α] | x〈y,β〉) | ! P n) ≈
(νγ) (! (νyβ) (! (νx) (! Q n[x/α] | ! P n) |γ〈y,β〉) | ! P n[γ/x])

iii) Assume x can only be a socket in P, and α is only a plug in Q or R, then:
(να) (! (νy) (! Q n[y/β] | ! R n) | ! P n[α/x]) ≈
(νy) (! (να) (! Q n[y/β] | ! P n[α/x]) | ! (να) (! R n | ! P n[α/x]))

Proof : i) Notice that γ and y do not occur in P n[α/x]. Therefore

(να) (! (νyβ) (! Q n |γ〈y,β〉) | ! P n[α/x]) �∼
(να) ((νyβ) (! Q n |γ〈y,β〉) | ! P n[α/x]) ≡ (α �= γ,y, β ∈� P n[α/x])
(νyβ) ((να) (! Q n | ! P n[α/x])) |γ〈y,β〉 �∼ (3.7(i))
(νyβ) (! (να) (! Q n | ! P n[α/x]) |γ〈y,β〉)

ii) Notice that x does not occur in Q, might occur as socket in P, and that α is a plug in Q;
therefore x is only used for output in Q n[x/α]. We observe that

(νx) (! (νyβ) (! Q n[x/α] | x〈y,β〉) | ! P n | ! P n)

and

(νγ) ((νx) (! (νyβ) (! Q n[x/α] | γ〈y,β〉) | ! P n) | ! P n[γ/x])

are weakly bisimilar since the substitution of γ for x does not introduce any transition
in the term (x〈y,β〉 and γ〈y,β〉 could communicate only with ! P n and ! P n[γ/x] re-
spectively) and is not restricting other transitions (! Q n[x/α] can only communicate with
! P n). Therefore:
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(νx) (! (νyβ) (! Q n[x/α] | x〈y,β〉) | ! P n) ≈
(νx) (! (νyβ) (! Q n[x/α] | x〈y,β〉) | ! P n | ! P n) ≈ (=α,γ fresh)
(νγ) ((νx) (! (νyβ) (! Q n[x/α] | γ〈y,β〉) | ! P n) | ! P n[γ/x]) ≈ (as in (i))
(νγ) (! (νyβ) (! (νx) (! Q n[x/α] | ! P n) |γ〈y,β〉) | ! P n[γ/x])

iii) Notice that α is not used for input in either R n or Q n[y/β]. The processes

(να) (! (νy) (! Q n[y/β] | ! R n) | ! P n[α/x] | ! P n[α/x])

and

(νy) (! (να) (! Q n[y/β] | ! P n[α/x]) | ! (να) (! R n | ! P n[α/x]))

are weakly bisimilar for a reasoning similar to the one above. Therefore:

(να) (! (νy) (! Q n[y/β] | ! R n) | ! P n[α/x]) ≈
(να) (! (νy) (! Q n[y/β] | ! R n) | ! P n[α/x] | ! P n[α/x]) ≈
(νy) (! (να) (! Q n[y/β] | ! P n[α/x]) | ! (να) (! R n | ! P n[α/x]))

We can show the following correctness result for head reduction, →h:

Theorem 4.8 (Operational Soundness of · n with respect to →h) If P→∗
h Q, then there ex-

ists R such that P n →∗
π R with R �∼ Q n.

Proof : By induction on the definition of reduction. We only show the more illustrative cases,
and deal with the rules in the order they were presented in Section 2.

Logical rules: (cap) : 〈y·α〉 α̂ † x̂〈x·γ〉 → 〈y·γ〉 :
〈y·α〉 α̂ † x̂〈x·γ〉 n =

∆ (νx) (! y(w).x w | ! x(w).γ w) ≈ ! y(w).γ w =
∆

! 〈y·γ〉 n �∼ 〈y·γ〉 n

(exp) : (ŷP β̂·α) α̂ † x̂〈x·γ〉 → ŷP β̂·γ :
(ŷP β̂·α) α̂ † x̂〈x·γ〉 n =

∆

(νx) (! (νyβ) (! P n | x〈y,β〉) | ! x(w).γ w) ≡
(νx) ((νyβ) (! P n | x〈y,β〉) | x(w).γ w | ! (νyβ) (! P n | x〈y,β〉) | ! x(w).γ w) →π (x)
(νyβ) (! P n |γ〈y,β〉) | (ŷP β̂·α) α̂ † x̂〈x·γ〉 n =

∆

ŷP β̂·γ n | (ŷP β̂·α) α̂ † x̂〈x·γ〉 n �∼ ŷP β̂·γ n

(imp) : 〈y·α〉 α̂ † x̂(Q β̂ [x] ẑR)→ Q β̂ [y] ẑR :
〈y·α〉 α̂ † x̂(Q β̂ [x] ẑP)n =

∆ (νx) (! y(w).x w | ! x(β,z).(! Q n | ! R n)) ≈
! y(β,z).(! Q n | ! R n) =

∆ ! Q β̂ [y] ẑR n �∼ Q β̂ [y] ẑR n

(exp-imp) : (ŷP β̂·α) α̂ † x̂(Q γ̂ [x] ẑR)→ Q γ̂ † ŷ(P β̂ † ẑR) :
(ŷP β̂·α) α̂ † x̂(Q γ̂ [x] ẑR)n =

∆

(νx) (! ŷP β̂·x n | ! Q γ̂ [x] ẑR n) =
∆

(νx) (! (νyβ) (! P n | x〈y,β〉) | ! x(γ,z).(! Q n | ! R n)) ≡, =∆

(νx) ((νyβ) (! P n | x〈y,β〉) | x(γ,z).(! Q n | ! R n) |
! ŷP β̂·x n | ! Q γ̂ [x] ẑR n) →π (x)

(νyβ) (! P n | ! Q n[y/γ] | ! R n[β/z]) | (ŷP β̂·α) α̂ † x̂(Q γ̂ [x] ẑR)n ≡,�∼
(νy) (! Q[y/γ] n | (νβ) (! P n | ! R[β/z] n)) �∼ (3.7(i))
(νy) (! Q n[y/γ] | ! (νβ) (! P n | ! R n[β/z])) =

∆

(νy) (! Q n[y/γ] | ! P β̂ † ẑR n) =
∆

Q γ̂ † ŷ(P β̂ † ẑR)n

For (ŷP β̂·α) α̂ † x̂(Q γ̂ [x] ẑR)→ (Q γ̂ † ŷP) β̂ † ẑR the proof is similar, since



Under submission 26

(νyβ) (! P n | ! Q n[y/γ] | ! R n[β/z]) ≡
(νβ) ((νy) (! Q[y/γ] n | ! P n) | ! R[β/z] n) �∼ (3.7(i))
(νβ) (! (νy) (! Q n[y/γ] | ! P n) | ! R n[β/z]) =

∆

(νβ) (! Q γ̂ † ŷP n | ! R n[β/z]) =
∆ (Q γ̂ † ŷP) β̂ † ẑR n

Left propagation: (cap†) : 〈y·β〉 α̂ † x̂P → 〈y·β〉, β �= α :
〈y·β〉 α̂ † x̂ P n =

∆ (νx) (! 〈y·β〉 n | ! P n) ≡
! 〈y·β〉 n | (νx) (! P n) �∼ 〈y·β〉 n

(exp-out†) : (ŷQ β̂·α) α̂ † x̂P → (ŷ(Q α̂ † x̂P) β̂·γ) γ̂ † x̂ P, γ fresh :
(ŷQ β̂·α) α̂ † x̂ P n =

∆

(νx) (! (νyβ) (! Q n[x/α] | x〈y,β〉) | ! P n) ≈ (4.7(ii))
(νγ) (! (νyβ) (! (νx) (! Q n[x/α] | ! P n) | γ〈y,β〉) | ! P n[γ/x]) =

∆

(ŷ(Q α̂ † x̂ P) β̂·γ) γ̂ † x̂P n

(exp-in†) : (ŷQ β̂·γ) α̂ † x̂P → ŷ(Q α̂ † x̂P) β̂·γ,γ �= α.
(ŷQ β̂·γ) α̂ † x̂P n =

∆

(να) (! (νyβ) (! Q n |γ〈y,β〉) | ! P n[α/x]) �∼ (4.7(i))
(νyβ) (! (να) (! Q n | ! P n[α/x]) |γ〈y,β〉) =

∆

(νyβ) (! Q α̂ † x̂ P n |γ〈y,β〉) =
∆ ŷ(Q α̂ † x̂P) β̂·γ n

(imp†) : Excluded from →h.

(cut†) : (Q β̂ † ŷR) α̂ † x̂P → (Q α̂ † x̂P) β̂ † ŷ(R α̂ † x̂ P) :
(Q β̂ † ŷR) α̂ † x̂ P n =

∆

(να) (! (νy) (! Q n[y/β] | ! R n) | ! P n[α/x]) ≈ (4.7(iii))
(νy) (! (να) (! Q n[y/β] | ! P n[α/x]) | ! (να) (! R n | ! P n[α/x])) =

∆

(Q α̂ † x̂ P) β̂ † ŷ(R α̂ † x̂P)n

Right propagation: (†cap) : P α̂ † x̂〈y·β〉 → 〈y·β〉,y �= x :
P α̂ † x̂〈y·β〉 n =

∆ (να) (! P n | ! 〈y·β〉 n) ≡
(να) (! P n) | ! 〈y·β〉 n �∼ P n

(†exp) : P α̂ † x̂(ŷQ β̂·γ)→ ŷ(P α̂ † x̂Q) β̂·γ. : Like (exp-in†).
(†imp-out), (†imp-in) : Excluded from →h.

(†cut) : P α̂ † x̂(Q β̂ † ŷR)→LK (P α̂ † x̂Q) β̂ † ŷ(P α̂ † x̂ R) :
P α̂ † x̂(Q β̂ † ŷR)n =

∆

(νx) (! P n[x/α] | ! (νy) (! Q n[y/β] | ! R n)) ≈ (4.7(iii))
(νy) (! (νx) (! P n[x/α] | ! Q n[y/β]) | ! (νx) (! P n[x/α] | ! R n)) =

∆

(P α̂ † x̂Q) β̂ † ŷ(P α̂ † x̂R)n

Contextual rules: By induction.

Notice that, in this proof, the only place where reduction plays a role is in the logical rules
(exp) and (exp-imp). All other steps are dealt with by equivalence and replication. Moreover,
notice that in the formulation of this result, we remove a replication or remove a larger process
in rules (cap†) and (†cap) and restrict the observable behaviour.

The following is thereby an immediate consequence.

Theorem 4.9 If P →LK
∗ Q, and in this reduction sequence infinitely many steps are made using rule

(exp-imp), then P n diverges.

Proof : From the previous proof it is clear that a synchronisation is possible in the encoding of
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P α̂ † x̂(〈x·β〉 β̂ † ẑQ)n =
∆

(να) (! P n | ! (νz) (! 〈α·z〉 n | ! Q n)) ≈ (4.7(iii))
(νz) (! (να) (! P n | ! 〈α·z〉 n) | ! (να) (! P n | ! Q n)) ≡ α ∈� fp(Q), z ∈� fs(P)
(νz) (! (να) (! P n | ! 〈α·z〉 n) | ! Q n) | ! (να) ! P n �∼
(νz) (! (να) (! P n | ! 〈α·z〉 n) | ! Q n) =

∆

(P α̂ † x̂ 〈x·z〉) β̂ † ẑQ n ≈ (4.7(iii))
(να) (! (νz) (! P n | ! Q n) | ! (νz) (! 〈α·z〉 n | ! Q n)) ≡ z ∈� fs(P), α ∈� fp(Q)

! (νz) ! Q n | (να) (! P n | ! (νz) (! 〈α·z〉 n | ! Q n)) �∼
(να) (! P n | ! (νz) (! 〈α·z〉 n | ! Q n)) =

∆ P α̂ † x̂(〈x·z〉 β̂ † ẑQ)n

Figure 2: Translation of the looping reduction

reduction rule (exp-imp).

Snce all reductions in the translation in the cases (exp) and (exp-imp) satisfy the condition
of Proposition 3.6, the above result can be restated as:

Corollary 4.10 If P →∗
h Q, then P n �∼ Q n.

Example 4.11 Since all reduction steps in Example 2.9 are steps not involving imports, the
interpretation of the first and last terms there are related via �∼, and no reduction takes place
in the simulation of the LK-reduction, as illustrated in Figure 2. Notice that this shows that
there the processes ignored through �∼ do not contribute to the observable behaviour.

Example 4.12 (On completeness) We cannot show that the interpretation is complete, since not
all reductions in the image of the interpretation correspond to head reduction in LK. Consider
the term (ẑP δ̂·γ) γ̂ † û(Q τ̂ [u] x̂R), and assume that u is not introduced in Q τ̂ [u] x̂ R. Observe
that this term is in →h-normal form.

However, notice that, since

(ẑP δ̂·γ) γ̂ † û(Q τ̂ [u] x̂R)n =
∆ (νu) (! (νzδ) (! P n | u〈z,δ〉) | ! u(τ, x).(! Q n | ! R n))

the translation builds a communication for the top-most cut γ†u, which can run:

(νu) (! (νzδ) (! P n | u〈z,δ〉) | ! u(τ, x).(! Q n | ! R n)) →π (u)

(νu) (! (νzδ) (! P n | u〈z,δ〉) |
(νzδ) (! P n | ! Q n[z/τ] | ! R n[δ/w]) |

! u(τ, x).(! Q n | ! R n))

This is caused by the fact that, in the π-calculus the ‘connections’ between γ and u are all
established ‘individually’, rather than all ‘in one go’ as they are in lk.

So in the translation we can perform synchronisations, whereas the translated term is in
normal form, therefore we cannot show a completeness result for head reduction.

5 A semantic translation

In this section, we define a translation from terms in LK onto processes in π〈〉 that fully re-
spects reduction in LK, modulo bisimulation, as a variant of the natural translation presented
above.

In the approach of · n, the import P α̂ [x] ŷQ is expressed using x(α,y).(! P n | ! Q n), where
the plug α and the socket x become variables that will be replaced by, respectively, an output
and input name of the communicating process. We will now modify that definition to make
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also reduction inside the translation of an import possible; for that, we need to revert to a
previous version of the natural translation.

The original approach of [7] was, essentially following the translation of X into λµµ̃, to
interpret P α̂ [x] ŷQ via

x(v,d).((να) (! P | ! α v) | (νy) (! d y | ! Q ))

so, rather than seeing α as an input variable, it sees α as the name of an output channel, and
send its output to the input name that will be received in the variable v using the forwarder
α v; similarly, y is seen as an input channel, and the output from the channel which name
will arrive in d is redirected to y via d y. Since output on α might be generated more than
once inside P , as well as input might be called for more than once on y inside Q , both
forwarders are replicated.

However, using this approach the variables v and d appear only in the redirections, not
in P or Q , so these two processes appear unnecessarily under input in the translation.
This is what the new translation · s fixes: we build what we call a communication cell in
x(v,d).(! α v | ! d y), which deals with the redirections of the received import’s interface, which
we put in parallel with the translations of P s and Q s.

We also choose to see terms as infinite resources rather than using replication to model
substitution, so use inherent replication for all synchronisation. This is achieved by replicating
all interpreted terms. This replicated translation is easier to understand, but differs from the
natural one in that it does not model reduction via reduction, but via bisimilarity (so does not
really constitute an interpretation, but more a semantics),14 whereas the natural translation
truly uses π〈〉 ’s reduction in the proofs.

We define:

Definition 5.1 (Semantic translation of LK into π〈〉 )

〈x·β〉 s = ! x(w).βw
ẑP α̂·β s = ! (νzα) ( P s | β〈z,α〉)

P α̂ [x] ẑQ s = ! (ναz) ( P s | x(v,d).(! α v | ! d z) | Q s)

P α̂ † ẑQ s = ! (ναz) ( P s | ! α z | Q s)

Notice that (for technical reasons) we also choose to use the forwarder in the translation of
the cut, rather than using the renaming mechanism of Definition 4.1.

Remark 5.2 The encoding · s generates a flat parallel composition of processes of the shape

x(w).a w α〈y,γ〉 x(v,d).(! α v | ! d y) α x

where all channel names (so not the variables) are coming from the interpreted LK-terms.
Synchronisation over these channel names is possible only if generated by the interpretation
of cuts.

For this translation, we can show that replication is implicit for encoded terms:

Lemma 5.3 P s ≈ ! P s.

Proof : Immediate.

Notice that this lemma implies that we cannot model reduction in LK via synchronisation;
however, as above (Theorem 4.8), we can show a preservation result for this translation modulo

14 This is comparable to [44], where a similar result is shown for β-equality in the λ-calculus.
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weak bisimilarity.

Theorem 5.4 (Operational soundness for · s with respect to →LK)
If P →∗

LK Q, then P s �∼ Q s.

Proof : By induction on the definition of reduction in LK: again we only show the interesting
cases.

(cap) : 〈y·α〉 α̂ † x̂〈x·γ〉 s =
∆ ! (ναx) ( 〈y·α〉 s | ! α x | 〈x·γ〉 s) =

∆

! (ναx) (! y(w).αw| ! α x | ! x(w).γw) ≈ ! y(w).γw =
∆ 〈y·γ〉 s

Logical rules: (exp) : (ŷP β̂·α) α̂ † x̂〈x·γ〉 s =
∆

! (ναx) ( ŷP β̂·α s | ! α x | 〈x·γ〉 s) =
∆

! (ναx) (! (νyβ) ( P s | α〈y,β〉) | ! α x | ! x(w).γw) ≈ (α, x)
! (νyβ) ( P s |γ〈y,β〉) =

∆ ŷP β̂·γ s

(imp) : 〈y·α〉 α̂ † x̂(Q β̂ [x] ẑP) s =
∆

! (ναx) (! y(w).αw| ! α x | ! (νβz) ( Q s | x(v,d).(! β v | ! d z) | P s)) ≈ (α, x)
! (νβz) ( Q s | y(v,d).(! β v | ! d z) | P s) =

∆ Q β̂ [y] ẑP s

(exp-imp) : (ŷP β̂·α) α̂ † x̂(Q γ̂ [x] ẑR) s =
∆

! (ναx) (! (νyβ) ( P s | α〈y,β〉) | ! α x |
! (νγz) ( Q s | x(v,d).(! γ v | ! d z) | R s)) ≈ (α, x)

(νyβγz) ( P s | Q s | ! γ y | ! β z | R s) ≈
! (νγy) ( Q s | ! γ y | ! (νβz) ( P s | ! β z | R s)) =

∆ Q γ̂ † ŷ(P β̂ † ẑR) s

For the second alternative of this rule, the proof is similar.

Left propagation: (cap†) : 〈y·β〉 α̂ † x̂ P s =
∆

! (ναx) ( 〈y·β〉 s | ! α x | P s) ≡ (β �= α)

〈y·β〉 s | (ναx) (! α x | P s) �∼ 〈y·β〉 s

(exp-out†) : (ŷQ β̂·α) α̂ † x̂ P s =
∆

! (ναx) (! (νyβ) ( Q s | α〈y,β〉) | ! α x | P s) ≈ (5.3)
! (ναx) (! (νyβ) ( Q s | α〈y,β〉) | ! α x | P s | ! α x | P s) =α

! (νγx) (! (νyβ) (! (ναx) ( Q s | ! α x | P s) |γ〈y,β〉) | ! γ x | P s) =
∆

(ŷ(Q α̂ † x̂ P) β̂·γ) γ̂ † x̂P s

(imp†) : (Q β̂ [z] ŷR) α̂ † x̂P s =
∆

! (ναx) (! (νβy) ( Q s | z(v,d).(! β v | ! d y) | R s) | ! α x | P s) ≈ (5.3)
! (ναx) (! (νβy) ( Q s | z(v,d).(! β v | ! d y) | R s) | ! α x | P s | ! α x | P s) =α

! (νβy) (! (ναx) ( Q s | ! α x | P s) |
z(v,d).(! β v | ! d y) | ! (ναx) ( R s | ! α x | P s)) =

∆

! (νβy) ( Q α̂ † x̂ P s | z(v,d).(! β v | ! d y) | R α̂ † x̂ P s) =
∆

(Q α̂ † x̂ P) β̂ [z] ŷ(R α̂ † x̂P) s

Right propagation: (†exp) : P α̂ † x̂(ŷQ β̂·γ) s =
∆

! (ναx) ( P s | ! α x | ! (νyβ) ( Q s |γ〈y,β〉)) ≡
! (νyβ) (! (ναx) ( P s | ! α x | Q s) |γ〈y,β〉) =

∆

! (νyβ) ( P α̂ † x̂Q s | γ〈y,β〉) =
∆ ŷ(P α̂ † x̂Q) β̂·γ s
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Example 5.5
(ẑP δ̂·γ) γ̂ † û(Q τ̂ [u] ŵR) s =

∆

! (νγu) ( ẑP δ̂·γ s | ! γ u | Q τ̂ [u] ŵ R s) =
∆

! (νγu) ( ẑP δ̂·γ s | ! γ u | ! (ντw) ( Q s | u(v,d).(! τ v | ! d w) | R s)) ≈ (5.3)
! (νγy) ( ẑP δ̂·γ s | ! γ y | ! (ντw) (! (νγu) ( ẑ P δ̂·γ s | ! γ u | Q s) |

y(v,d).(! τ v | ! d w) | ! (νγu) ( ẑP δ̂·γ s | ! γ u | R s))) �∼, =
∆ (=α)

! (νγy) ( x̂ P ρ̂·γ s | ! γ y | ! (ντw) (! (νγu) (! (νzδ) ( 〈x·ρ〉 s |γ〈z,δ〉) | ! γ u |
! u(w).τw) | y(v,d).(! τ v | ! d w) | R s)) ≈ (γ,u)

! (νγy) ( x̂ P ρ̂·γ s | ! γ y | ! (ντw) (! (νzδ) ( 〈x·ρ〉 s | τ〈z,δ〉) |
y(v,d).(! τ v | ! d w) | R s)) =

∆

! (νγy) (! (νxρ) ( 〈x·ρ〉 s |γ〈x,ρ〉) | ! γ y |
! (ντw) ( ẑP δ̂·τ s | y(v,d).(! τ v | ! d w) | R s)) ≈ (γ,y)

! (νγy) ((νxρ) ( 〈x·ρ〉 s | (ντw) ( ẑP δ̂·γ s | ! τ x | ! ρ w | ! R s))) ≡
! (ντx) ( ẑP δ̂·τ s | ! τ x | ! (νρw) (! x(w).ρw| ! ρ w | R s)) =

∆

(ẑP δ̂·τ) τ̂ † x̂(〈x·ρ〉 ρ̂ † ŵ R) s ≈ (5.3)
! (νρw) (! (ντx) ( ẑP δ̂·τ s | ! τ x | ! x(w).ρw) | ! ρ w |

! (ντz) ( ẑP δ̂·τ s | ! τ z | R s)) �∼, =
∆

! (νρw) (! (ντx) (! (νzδ) ( P s | τ〈z,δ〉) | ! τ x | ! x(w).ρw) | ! ρ w | R s) ≈ (τ, x,ρ,w)

! (νzδ) ( P s | σ〈z,δ〉)
Figure 3: Running the semantic translation of the term of Example 2.5

(†imp-out) : P α̂ † x̂(Q β̂ [x] ŷR) s =
∆

! (ναx) ( P s | ! α x | ! (νβy) ( Q s | x(v,d).(! β v | ! d y) | R s)) ≈ (5.3)
! (ναx) ( P s | ! α x | P s | ! α x | P s | ! α x |

! (νβy) ( Q s | x(v,d).(! β v | ! d y) | R s)) =α

! (ναz) ( P s | ! α z | ! (νβy) (! (ναx) ( P s | ! α x | Q s) |
z(v,d).(! β v | ! d y) | ! (ναx) ( P s | ! α x | R s))) =

∆

P α̂ † ẑ((P α̂ † x̂Q) β̂ [z] ŷ(P α̂ † x̂R)) s

(†imp-in) : P α̂ † x̂(Q β̂ [z] ŷR) s =
∆

! (ναx) ( P s | ! α x | ! (νβy) ( Q s | z(v,d).(! β v | ! d y) | R s)) ≈ (5.3)
! (ναx) ( P s | ! α x | P s | ! α x | ! (νβy) ( Q s | z(v,d).(! β v | ! d y) | R s)) ≈
! (νβy) (! (ναx) ( P s | ! α x | Q s) | z(v,d).(! β v | ! d y) | ! (ναx) ( P s | ! α x | R s)) =

∆

(P α̂ † x̂Q) β̂ [z] ŷ(P α̂ † x̂R) s

The contextual rules, as well as the transitive closure, follow by induction.

Notice that in this proof �∼ is only needed in part (cap†) and (†cap), where we eliminate part
of a process, otherwise the images of the terms are congruent or bisimilar.

Simulating the reduction of Example 2.5, using the semantic translation, runs as in Figure 3.
As suggested by the proof of Theorem 5.4, the �∼ steps correspond to (cap†) and (†cap).

This observation leads to:

Theorem 5.6 (Operational completeness for · s with respect to →LK) If P s →π Q then
there exists P′ ∈ LK, R such that Q →∗

π R , ! R �∼ P′
s, and P →+

LK P′.

Proof : From Remark 5.2 we know that the encoding · s generates a flat parallel composition
of processes of the shape
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! x(w).a w ! α〈y,γ〉 ! x(v,d).(! α v | ! d y) ! α x

where all channel names are coming from the interpreted LK-terms, and synchronisation over
these channel names is possible only if generated by the interpretation of cuts. By Theorem 5.4,
all synchronisations that become possible later correspond to interpreted cuts as well.

As mentioned in Section 2, Gentzen has shown that the innermost reduction strategy on
cut-elimination for lk is normalising; in the context of LK, this corresponds to showing that
the innermost reduction strategy →i on LK is normalising for typeable terms.

Proposition 5.7 (Gentzen’s Hauptsatz Result for LK) If P : Γ �lk ∆ (so P is typeable), then
there exists Q in normal form such that P →∗

i Q.

We will show the equivalent of this result in the setting of the semantic interpretation. We
first show:

Lemma 5.8 If P is in normal form, then so is P s.

Proof : First, notice that in P, the alphabets of sockets and plugs are distinct, and so are the
names of input and output channels in P s. The only exceptions are when P is a cut Q α̂ † ẑR
and Q α̂ † ẑR s = ! (ναz) ( Q s | ! α z | R s) where the forwarder ! α z = α(w).z w is added;
notice that here the output α is used as input, and the input z as output. Also in the syn-
chronisation cell inside the interpretation of the import Q α̂ [x] ẑR, ! (ναz) ( Q s | x(v,d).(! α v |
! d z) | R s), this reversal is there. However, since in both cases α and z are restricted, these
are not ‘reachable’ from outside, so can be ignored in this reasoning.

We continue by induction on the structure of terms; notice that P cannot be a cut.

P = 〈x·α〉 : Since 〈x·α〉 s = ! x(w).αw, this is immediate.
P = x̂Q α̂·β : x̂Q α̂·β s = ! (νxα) ( Q s |β〈x,α〉), and by induction, Q s is in normal form. Since

β is not used inside Q s as input, no synchronisation is possible in ! (νxα) ( Q s | β〈x,α〉)
over β and also x̂Q α̂·β s is in normal form.

P = Q α̂ [x] ẑR : Q α̂ [x] ẑR s = ! (ναz) ( Q s |x(v,d).(! α v | ! d z) | R s), and by induction, Q s
and R s are in normal form. Since x is not an output in either Q s or R s, and input and
output names are distinct, no synchronisation is possible between Q s and R s, so also

Q α̂ [x] ẑR s is in normal form.

Now for termination, we can show:

Theorem 5.9 If P →∗
i Q, and Q is in normal form, then there exists an R in normal form such that

P s ≈ R and R �∼ Q s.

Proof : By Lemma 5.8, Q s is in normal form. By Theorem 5.4, there exists R such that P s ≈ R
and R �∼ Q s. By the proof of that theorem, �∼ is only needed in part (cap†) and (†cap),
where we eliminate part of a process, otherwise the images of the terms are congruent or
bisimilar. Since now only innermost reduction steps in P →∗

i Q are simulated, ≈ deals with
communications between processes in normal form, so by Lemma 5.8, whenever (cap†) or
(†cap) are simulated, the ‘discarded’ term corresponds to a process in normal form. So when
reaching Q s, the whole process R is in normal form.

Combining this with Gentzen’s Hauptsatz result, we get:

Theorem 5.10 (Preservation of typeable termination) Let P be a typeable term, then there
exists R in normal form such that P s ≈ R .

Proof : If P is typeable, then by Gentzen’s result, innermost reduction terminates, so there
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exists Q in normal form such that P →∗
i Q; then, by Theorem 5.9, there exists an R in normal

form such that P s ≈ R .

Notice that we cannot show this result for the natural translation this way, since by Exam-
ple 4.12 not every term in →h normal form is interpreted by a process in normal form.

Example 5.11 As to the significance of typeability in the previous result, remark that we can
encode, via · ·

λ (an encoding that maps λ-terms to lk-terms; for details, see [9]), the (non-
terminating) λ-term (λx.xx)(λx.xx) = ∆∆ in LK.

Using that definition, we have

xx σ
λ

=
∆ x γ

λγ̂ † ŷ( x δ
λ δ̂ [y] v̂〈v·β〉)

=
∆ 〈x·γ〉 γ̂ † ŷ(〈x·δ〉 δ̂ [y] v̂〈v·β〉)
→i 〈x·δ〉 δ̂ [x] ŷ〈y·β〉

We write this last term as xxβ; notice that there is a redex inside xx β
λ.

Now ∆∆ β
λ reduces innermost as follows:

∆∆ β
λ

=
∆ λx.xx γ

λγ̂ † ẑ( λx.xx γ
λ γ̂ [z] ŷ〈y·β〉) =

∆

(x̂ xx α
λ α̂·δ) δ̂ † ẑ((x̂ xx α

λ α̂·γ) γ̂ [z] ŷ〈y·β〉) →i (2×)

(x̂ xxα α̂·δ) δ̂ † ẑ((x̂ xxσ σ̂·γ) γ̂ [z] ŷ〈y·β〉) →i

(x̂ xxσ σ̂·γ) γ̂ † x̂(xxα α̂ † ŷ〈y·β〉) =
∆

(x̂ xxσ σ̂·γ) γ̂ † x̂((〈x·δ〉 δ̂ [x] ŷ〈y·α〉) α̂ † ŷ〈y·β〉) →i

(x̂ xxσ σ̂·γ) γ̂ † x̂((〈x·δ〉 α̂ † ŷ〈y·β〉) δ̂ [x] ŷ(〈y·α〉 α̂ † ŷ〈y·β〉)) →i (2×)

(x̂ xxσ σ̂·γ) γ̂ † x̂ xxβ =
∆

(x̂ xxσ σ̂·γ) γ̂ † x̂(〈x·δ〉 δ̂ [x] ŷ〈y·β〉) →i

(x̂ xxσ σ̂·γ) γ̂ † ẑ((((x̂ xxσ σ̂·γ) γ̂ † x̂〈x·δ〉)) δ̂ [z]
ŷ((x̂ xxσ σ̂·γ) γ̂ † x̂〈y·β〉)) →i (2×)

(x̂ xxσ σ̂·γ) γ̂ † ẑ((x̂ xxσ σ̂·δ) δ̂ [z] ŷ〈y·β〉)
So the term Ω = (x̂ xxσ σ̂·γ) γ̂ † ẑ((x̂ xxσ σ̂·δ) δ̂ [z] ŷ〈y·β〉) reduces innermost to itself, and

all its reducts contain at least one cut. By the proof of Theorem 5.4, each cut of the shape
(ŷP β̂·α) α̂ † x̂(Q γ̂ [x] ẑR) s gets interpreted by a process in which a synchronisation is pos-

sible; therefore in particular, each innermost reduction sequence (there are many, since rule
(exp-imp) has two alternatives) from Ω s contains infinitely many processes that are not in
normal form. Of course Ω is not typeable.

6 Type assignment

In this section, we discuss a notion of type assignment �π for processes in π〈〉 , as first pre-
sented in [7], that describes the ‘input-output interface’ of a process. Typeability of a process is
expressed via the ternary relation

P : Γ �π
io

∆

(so almost identical to that for LK), where P is a process that is said to be the witness to the
judgement Γ � ∆, the left context Γ contains pairs of channel names and types for all the input
channels of P , and the right context ∆ for its output channels; since in P a channel can be
used for both, it can appear in both contexts. Our system thereby gives an abstract functional
translation of processes by stating the connectability of a process via giving the names of the
available (connectable) channels and their types.
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We aim to show that all typeable terms in lk translate to typeable processes, i.e.: if P is
a witness to a judgement (in �lk), then its translations via ·n and · s are as well. Together
with the preservation results we have shown above, this implies that we can not only interpret
reduction in lk through synchronisation (similarly to what was done, for example, in [42] for
the lazy λ-calculus), but actually show that the processes we create through our interpretations
accurately represent the actual proofs, so our synchronisations correctly model cut-elimination,
and transform a proof into a proof.

We first define a notion of type assignment that is more traditionally stated, in that if assigns
a collection of types to (free) channel names of a process and derives statements of the shape
Ψ �π P . We will show a subject reduction result for this system, and then define a second
notion, that separates input and outputs, and derives statements of the shape P : Γ �π

io ∆, and
show that then that judgement is equivalent to Γ,∆ �π P .

Definition 6.1 (Functional type assignment for π〈〉 ) i) The types A and contexts Ψ we con-
sider for π〈〉 are defined like those of Definition 1.3, generalised to names.

ii) Functional type assignment for π〈〉 is defined by the following deduction system:

(0) : � 0
(!) :

Ψ � P

Ψ � ! P

(ν) :
Ψ, a:A � P

(a ∈� Ψ)
Ψ � (νa)P

(|) :
Ψ � P1 · · · Ψ � Pn

Ψ � P1 | · · · |P n

(Wk) :
Ψ � P

(Ψ′ ⊇ Ψ)
Ψ′ � P

(out) : (a �= b)
a:A,b:A � a b

(〈〉-out) : (a,b, c different)
a:A→B,b:A, c:B � a〈b,c〉

(in) :
Ψ, x:A � P

(a �= x, x ∈� Ψ)
Ψ, a:A � a(x).P

(let) :
Ψ, x:A,y:B � P (x,y,z ∈� Ψ

and different)Ψ,z:A→B � let 〈x,y〉=z in P

iii) As usual, we write Ψ �π P if there exists a derivation using these rules that has the expres-
sion Ψ � P in the conclusion.

Notice that the rule (let) is only applicable when z is not free in P .
The notion �π is a true type assignment system which does not (directly) relate back to

lk. 15 For example, rule (0) makes 0 a witness to an unprovable judgement, and rules (|) and
(!) do not change the contexts, so do not correspond to any rule in the logic, not even to a
λµ-style [43] activation step. Moreover, rule (ν) just removes a formula, and rule (〈〉-out) is
clearly not an instance of an axiom in lk; notice that that rule does not directly correspond to
the logical rule (⇒R), as that (〈〉-in) does not directly correspond to (⇒L). However, in view
of the intended property - preservation of context assignment - this is not problematic, since
we will not map rules to rules, but proofs to type derivations. This apparent discrepancy is
solved by Theorem 6.8.

This notion is novel in that it assigns to channels the type of the input or output that is sent
over the channel; in that it differs from normal notions, that would state:

� a b : b:A, a:ch(A) or � a b : b:A, a:[A]

Moreover, we use arrow types, expressing that processes can be seen as functions from an
input to an output channel. In order to be able to interpret proofs in lk, types in our system
need not be decorated with channel information, but will express functionality instead.

Example 6.2 We can derive

15 We leave the exploration of the logical contents of this system for future work.
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Ψ,y:B, x:A �π P
(let )

Ψ,z:A→B �π let 〈x,y〉= z in P
(in)

Ψ, a:A→B �π a(z). let 〈x,y〉= z in P

so the following rule is derivable:

(〈〉-in) :
Ψ,y:B, x:A � P (y, a ∈� ∆, x ∈� Ψ

a, x,y different)Ψ, a:A→B � a(x,y).P

We can show a consistency result for this notion of type assignment, for which we first need
to prove a substitution lemma.

Proposition 6.3 (Substitution) If Ψ, x:A �π P , then Ψ,b:A �π P [b/x] for b fresh or b:A ∈ Ψ.

Proof : Easy.

Theorem 6.4 (Subject reduction for �π ) If Ψ �π P and P →∗
π Q , then Ψ �π Q .

Proof : We only deal with the base cases.

a b | a(z).P → P [b/z] : The derivation for a b | a(z).P is shaped like:

(out)
a:A,b:A �π a b

Ψ,z:A �π P
(in)

Ψ, a:A �π a(z).P
(|)

Ψ, a:A→B �π a b | a(z).P

By Lemma 6.3, we can derive

Ψ,b:A �π P [b/z]

a〈b,c〉 | a(z).P → P [〈a,b〉/z] : By induction on the structure of P ; we only show the two base
cases in which 〈a,b〉/z is well defined:

P = d z : Then P [〈b,c〉/z] = d〈b,c〉. The derivation for a〈b,c〉 | a(z).d z is shaped like:

(〈〉-out)
b:A, a:A→B, c:B �π a〈b,c〉

(out)
d:A→B,z:A→B �π d z

(in)
d:A→B, a:A→B �π a(z).d z

(|)
b:A, a:A→B, c:B,d:A→B �π a〈b,c〉 | a(z).d z

We can construct:
(〈〉-out)

b:A,d:A→B, c:B �π d〈b,c〉
(Wk)

b:A, a:A→B, c:B,d:A→B �π d〈b,c〉
P = let 〈x,y〉=z in Q : Then P [〈b,c〉/z] = Q [b/x, c/y]. The derivation for the process a〈b,c〉 |

a(z).let 〈x,y〉=z in Q is shaped like:

(〈〉-out)
b:A, a:A→B, c:B �π a〈b,c〉

Ψ, x:A,y:B �π Q
(let )

Ψ,z:A→B �π let 〈x,y〉=z in Q
(in)

Ψ, a:A→B �π a(z). let 〈x,y〉=z in Q
(|)

Ψ,b:A, a:A→B, c:B �π a〈b,c〉 | a(z). let 〈x,y〉=z in Q

By Lemma 6.3, we can derive
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Ψ,b:A, c:B �π Q [b/x, c/y]
(Wk)

Ψ,b:A, a:A→B, c:B �π Q [b/x, c/y]

We will now come to our type preservation results. Note that we could aim to show that
if P : Γ �lk ∆, then Γ,∆ �π P ; however, in this result the latter sequent does not respect the
left and right context. So rather, we will introduce the notion of type assignment we defined
in [7]; it was formulated slightly differently, more in the style of lk, by separating input and
output channels in the derivable sequents.

Definition 6.5 (Implicative IO type assignment for π〈〉 [7]) i) The types and contexts we con-
sider for π〈〉 are defined like those of Definition 1.3, generalised to names, but allowing
both Roman and Greek names on both sides of the turnstile.

ii) Type assignment for π〈〉 is defined by the following sequent system:16

(0) :
0 : � (!) :

P : Γ � ∆

! P : Γ � ∆

(ν) :
P : Γ, a:A � a:A,∆

(a ∈� Γ,∆)
(νa)P : Γ � ∆

(|) :
P1 : Γ � ∆ · · · P n : Γ � ∆

P1 | · · · |P n : Γ � ∆

(Wk) :
P : Γ � ∆

(Γ′ ⊇ Γ,∆′ ⊇ ∆)
P : Γ′ � ∆′

(〈〉-out) : (b �= a, c)
a〈b,c〉 : b:A � a:A→B, c:B

(out) : (a �= b)
a b : b:A � a:A,b:A

(in) :
P : Γ, x:A � x:A,∆

a(x).P : Γ, a:A � ∆

(let) :
P : Γ,y:B � x:A,∆ (y,z ∈� ∆;

x,z ∈� Γ)let 〈x,y〉= z in P : Γ,z:A→B � ∆

iii) We write P : Γ �πio ∆ if there exists a derivation using these rules that has the expression
P : Γ �π

io ∆ in the conclusion.

Notice that the ‘input-output interface of a π-process’ property is nicely preserved by all the
rules; it also explains how the handling of pairs is restricted by the type system to the rules
(let) and (〈〉-out).

As in Example 6.2 the following rule is derivable:

(〈〉-in) :
P : Γ,y:B �πio x:A,∆ (y, a ∈� ∆, x ∈� Γ

a, x,y different)a(x,y).P : Γ, a:A→B �πio ∆

Since in the synchronisation step a〈b,c〉 | a(x,y).Q →π Q [b/x, c/y], in a〈b,c〉 the name b is
used for input, and c for output whereas their role is reversed in Q [b/x, c/y], we cannot show
a straightforward witness reduction result for �π

io as we did for �π in Theorem 6.4. We can,
however, show that there exists a strong link between the two notions of type assignment.
First we need to formally define the notions of input and output names for processes.

Definition 6.6 For a process P we define the set of its input names I (P) and that of its output
names O (P) as follows:

16 Notice that we have taken the liberty to reuse the names of the rules.
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I (0) = ∅
I (P |Q) = I (P)∪I (Q)

I (! P) = I (P)

I ((νa)P ) = I (P) \ { a}
I (a(x).P ) = I (P)∪{ a} \ {x}
I (a b) = {b}
I (a〈b,c〉) = {b}
I (let 〈x,y〉=z in P) = I (P) ∪ {z} \ {y}

O (0) = ∅
O (P |Q) = O (P)∪O (Q)

O (! P) = O (P)

O ((νa)P ) = O (P) \ { a}
O (a(x).P ) = O (P) \ { x}
O (a b) = { a,b}
O (a〈b,c〉) = { a, c}
O (let 〈x,y〉=z in P) = O (P) \ { x}

We can now show a direct relation between �π and �π
io.

Lemma 6.7 i) If Ψ �π P , and Γ = { a:A∈Ψ | a∈ I (P)}, ∆= { a:A∈Ψ | a∈O (P)}, then P : Γ �π
io

∆.
ii) If P : Γ �π

io
∆, then Γ,∆ �π P .

Proof : By induction on the structure of derivations. We only give the more interesting parts.
Remember that, by Definition 1.3, we allow a:B to occur in Γ when we write Γ, a:A, but then
A = B, and that Γ, a:A = Γ\x∪{x:A}.

(ν) : Then P = (νd)Q . For (i), then Ψ,d:A �π Q for some A, with d ∈� Ψ. Take Γ = { a:A ∈
Ψ,d:A | a∈ I (Q)} and ∆= { a:A∈Ψ,d:A | a∈O (Q)}, then by induction Q : Γ �πio ∆; a priori,
we do not know if d:A occurs in either context, but in any case we can construct

Q : Γ � ∆
(Wk)

Q : Γ,d:A � d:A,∆
(ν)

(νd)Q : Γ\d � ∆\d

Notice that Γ\d = { a:A ∈ Ψ | a ∈ I ((νd)Q )} and ∆\d = { a:A ∈ Ψ | a ∈ O ((νa)Q )}. For
(ii), then Q : Γ,d:A �π

io d:A,∆, for some A. By induction, Γ,d:A,∆ �π Q , and by (ν), also
Γ,∆ �π (νd)Q .

(in) : Then P = d(x).Q . For (i), then Ψ = Ψ′,d:A, for some A, and Ψ′, x:A �π Q , with x ∈� Ψ′.
Take Γ = { a:A∈ Ψ′, x:A | a ∈ I (Q)} and ∆= { a:A∈ Ψ′, x:A | a ∈O (Q)}, then by induction
Q : Γ �π

io
∆ and we can construct

Q : Γ �πio ∆
(Wk)

Q : Γ, x:A �πio x:A,∆
(in)

d(x).Q : Γ\x,d:A �πio d:A,∆\x

Notice that Γ\x,d:A = { a:A ∈ Ψ′,d:A | a ∈ I (d(x).Q)} and ∆\x,d:A = { a:A ∈ Ψ′,d:A | a ∈
O (d(x).Q)}. For (ii), then Q : Γ,d:A �πio d:A,∆, for some A. By induction, Γ,d:A,∆ �π Q ,
and by (ν), also Γ,∆ �π d(x).Q .

(let) : Then P = let 〈x,y〉= z in Q . For (i), then Ψ = Ψ′,z:A→B, for some A, and Ψ′, x:A,y:B �π

Q , with x,y,z ∈� Ψ′. Take Γ = { a:A ∈ Ψ′, x:A,y:B | a ∈ I (Q)} and ∆ = { a:A ∈ Ψ′, x:A,y:B |
a ∈ O (Q)}, then by induction Q : Γ �π

io ∆ and we can construct

Q : Γ �πio ∆
(Wk)

Q : Γ,y:B �πio x:A,∆
(let)

let 〈x,y〉= z in Q : Γ\y,z:A→B �πio ∆\x

Notice that Γ\y,z:A→B = { a:A ∈ Ψ′,z:A→B | a ∈ I (let 〈x,y〉=z in Q)} and ∆\x = { a:A∈
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Ψ′,z:A→B | a ∈ O (let 〈x,y〉=z in Q)}.
For (ii), then Q : Γ,y:A �π

io x:A,∆, for some A, with y∈� Γ, x∈� ∆, and z∈� Γ,∆. By induction,
Γ,y:A, x:B,∆ �π Q , and Γ,∆,z:A→B �π let 〈x,y〉=z in Q follows by applying (let).

This result implies that we can see �π
io as a ‘sugared’ version of �π, where for readability channel

names are separated in input and output names.
We now come to the main soundness result for our notion of type assignment for π〈〉 . The

following theorem shows that the natural translation ·n preserves assignable types.

Theorem 6.8 (Type preservation for the natural interpretation) P : Γ �lk ∆ if and only if
P n : Γ �πio ∆.

Proof : By induction on the structure of terms in LK.

〈x·α〉 : Then 〈x·α〉 n = x(w).α w, and there exists A such that the LK-derivation is shaped
like:

(cap)〈x·α〉 : Γ′, x:A � α:A,∆′

Since 〈x·α〉 n = x(w).α w, the structure of the derivation for 〈x·α〉 n : Γ �π
io ∆ must in-

clude an (in), preceded by (out). By that last rule, there exists A such that α w : w:A �π
io

α:A,w:A, yielding

(out)
α w : w:A �πio α:A,w:A

(in)
x(w).α w : x:A �πio α:A

(Wk)
x(w).α w : Γ′, x:A �πio α:A,∆′

adding weakening to generalise the result.

x̂ P α̂·β : Since x̂ P α̂·β n = (νxα) (! P n | β〈x,α〉), by induction we have P : Γ � ∆ if and only if
P n : Γ �π

io
∆. Then there exists A and B such that LK-derivation is shaped like:

P : Γ′, x:A � α:B,∆′
(exp)

x̂ P α̂·β : Γ′ � β:A→B,∆′

The structure of the derivation for (νxα) (! P n | β〈x,α〉) : Γ �π
io ∆ must include instances

of (ν), (|), (! ), and (〈〉-out). By this last rule there exists A and B such that β〈x,α〉 : x:A �π
io

α:B, β:A→B, yielding

P n : Γ′, x:A �π
io α:B,∆′

(!)
! P n : Γ′, x:A �πio α:B,∆′ (〈〉-out)

β〈x,α〉 : x:A �πio α:B, β:A→B
(|)

! P n | β〈x,α〉 : Γ′, x:A �πio α:B, β:A→B,∆′
(ν)

(να) (! P n | β〈x,α〉) : Γ′, x:A �πio β:A→B,∆′
(ν)

(νxα) (! P n | β〈x,α〉) : Γ′ �πio β:A→B,∆′

P α̂ [y] x̂Q : Since P α̂ [y] x̂Q n = y(α, x).(! P n | ! Q n), by induction we have P : Γ � ∆ if and
only if P n : Γ �π

io
∆. and Q : Γ � ∆ if and only if Q n : Γ �π

io
∆.

There exists A and B such that the LK-derivation is shaped like:

P : Γ′ � α:A,∆′ Q : Γ′, x:B � ∆′
(imp)

P α̂ [y] x̂ Q : Γ′,y:A→B � ∆′
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The structure of the derivation for y(α, x).(! P n | ! Q n) : Γ �π
io ∆ must include instances

of (〈〉-in), (|), and (! ). By rule (〈〉-in) there are A and B such that y:A→B, yielding

P n : Γ′ �π
io α:A,∆′

(!)
! P n : Γ′ �πio α:A,∆′

Q n : Γ′, x:B �πio ∆′
(!)

! Q n : Γ′, x:B �πio ∆′
(|)

! P n | ! Q n : Γ′, x:B �πio α:A,∆′
(〈〉-in)

y(α, x).(! P n | ! Q n) : Γ′,y:A→B �πio ∆′

P α̂ † x̂Q : Since P α̂ † x̂Q n = (νx) (! P n[x/α] | ! Q n), by induction we have P : Γ � ∆ if and
only if P n : Γ �π

io
∆ and Q : Γ � ∆ if and only if Q n : Γ �π

io
∆.

Then the LK-derivation is shaped like:

P : Γ′ � α:A,∆′ Q : Γ′, x:A � ∆′
(cut)

P α̂ † x̂ Q : Γ′ � ∆′

Since x does not occur in P , by Lemma 6.3 also for P n[x/α] : Γ′ �π
io x:A,∆′ . The structure

of the derivation for (νx) (! P n[x/α] | ! Q n) : Γ �πio ∆ must include instances of (ν), (|), and
(! ), yielding:

P n[x/α] : Γ′ �πio x:A,∆′
(!)

! P n[x/α] : Γ′ �πio x:A,∆′
Q n : Γ′, x:A �πio ∆′

(!)
! Q n : Γ′, x:A �πio ∆′

(|)
! P n[x/α] | ! Q n : Γ′, x:A �πio x:A,∆′

(ν)
(νx) (! P n[x/α] | ! Q n) : Γ′ �πio ∆′

As a corollary, through Lemma 6.7 we immediately obtain P : Γ �lk ∆⇒ Γ,∆ �π P n.
We can also show that the semantic translation · s preserves assignable types.

Theorem 6.9 (Type preservation for the semantic interpretation) P : Γ �lk ∆ if and only if
P s : Γ �π

io ∆.

Proof : By induction on the structure of terms in LK.

〈x·α〉, x̂P α̂·β : These cases are almost identical to those for Theorem 6.8, but for the additional
use of rule (!).

P α̂ [y] x̂Q : Since P α̂ [y] x̂Q s = ! (ναx) ( P s | y(v,d).(! α v | ! d x) | Q s), by induction we
have P : Γ � ∆ if and only if P s : Γ �π

io
∆. and Q : Γ � ∆ if and only if Q s : Γ �π

io
∆.

There exists A and B such that the LK-derivation is shaped like:

P : Γ′ � α:A,∆′ Q : Γ′, x:B � ∆′
(imp)

P α̂ [y] x̂ Q : Γ′,y:A→B � ∆′

The structure of the derivation for ! (ναx) ( P s | y(v,d).(! α v | ! d x) | Q s) : Γ �π
io

∆ must
include instances of (ν), (〈〉-in), (|), (in), (out), and (! ). By rule (〈〉-in) there are A and B
such that y:A→B, yielding
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P s : Γ′ �πio α:A,∆′

(out)
v w : w:A �πio v:A,w:A

(in)
α v : α:A �πio v:A

(!)
! α v : α:A �πio v:A

(out)
x w : w:B �πio x:B,w:B

(in)
d x : d:B �πio x:B

(!)
! d x : d:B �πio x:B

(|)
! α v | ! d x : α:A,d:B �πio x:B,v:A

(〈〉-in)
y(v,d).(! α v | ! d x) : α:A,y:A→B �πio x:B Q s : Γ′, x:B �π

io ∆′
(|)

P s | y(v,d).(! α v | ! d x) | Q s : Γ′, x:B,α:A,y:A→B �πio x:B,α:A,∆′
(ν)

(νx) ( P s | y(v,d).(! α v | ! d x) | Q s) : Γ′,α:A,y:A→B �πio α:A,∆′
(ν)

(ναx) ( P s | y(v,d).(! α v | ! d x) | Q s) : Γ′,y:A→B �πio ∆′
(!)

! (ναx) ( P s | y(v,d).(! α v | ! d x) | Q s) : Γ′,y:A→B �πio ∆′

P α̂ † x̂Q : Since P α̂ † x̂Q n = ! (ναx) ( P s | ! α x | Q s), by induction we have P : Γ � ∆ if and
only if P s : Γ �π

io
∆ and Q : Γ � ∆ if and only if Q s : Γ �π

io
∆. Then the LK-derivation is

shaped like:

P : Γ′ � α:A,∆′ Q : Γ′, x:A � ∆′
(cut)

P α̂ † x̂ Q : Γ′ � ∆′

The structure of the derivation for (νx) (! P n[x/α] | ! Q n) : Γ �π
io

∆ must include instances
of (ν), (|), and (! ), yielding:

P s : Γ′ �π
io α:A,∆′

(out)
x w : w:A �πio x:A,w:A

(in)
α x : α:A �πio x:A

(!)
! α x : α:A �πio x:A Q s : Γ′, x:A �πio ∆′

(|)
P s | ! α x | Q s : Γ′,α:A, x:A �πio α:A, x:A,∆′

(ν)
(νx) ( P s | ! α x | Q s) : Γ′,α:A �πio α:A,∆′

(ν)
(ναx) ( P s | ! α x | Q s) : Γ′ �πio ∆′

(!)
! (ναx) ( P s | ! α x | Q s) : Γ′ �πio ∆′

and P α̂ † x̂Q s = ! (ναx) ( P s | ! α x | Q s).

The following is a direct result of the last two theorems:

Proposition 6.10 (Simulation of cut-elimination) Assume P →LK Q, then :
i) If P n : Γ �π

io
∆, then Q n : Γ �π

io
∆.

ii) If P s : Γ �π
io

∆, then Q s : Γ �πio ∆.

Proof : By Theorem 2.6, 6.8, and 6.9.

Although we have lost subject reduction as a general property for �π
io, we can show that in

�π
io it is preserved for reductions in the image of our translations, for which we first show a

contraction result.

Lemma 6.11 (Contraction) i) If a does not occur in Q , a �= b, and (νb) a b | a(x).Q : Γ, a:C �π
io

a:C,∆, then (νb) (Q [b/x]) : Γ �πio ∆.
ii) If a does not occur in P , a �= e, and (νbc) (P | a〈b,c〉) | a(x).e x : Γ, a:C �π

io a:C,∆, then
(νbc) (P | e〈b,c〉) : Γ �π

io ∆.
iii) If a does not occur in P and Q and (νbc) (P | a〈b,c〉) | a(x,y).Q : Γ, a:C �π

io a:C,∆, then (νbc) (P |Q [b/x, c/y]) :
Γ �π

io
∆.
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iv) If a does not occur in P and (νbc) (P | a〈b,c〉) | a(v,d).(! x v | ! d y) : Γ, a:C �π
io a:C,∆, then (νbc) (P | ! x b | ! c y)

Γ �π
io

∆.

Proof : i) Then the derivation is shaped like:

(out)
a b : b:A �πio a:A,b:A

(ν)
(νb) a b : �πio a:A

Q : Γ′, x:A �πio x:A,∆′
(in)

a(x).Q : Γ′, a:A �πio ∆′
(|)

(νb) a b | a(x).Q : Γ′, a:A �πio a:A,∆′

Since b is restricted, it does not occur in Q , by Lemma 6.3 also Q [b/x] : Γ,b:A �π
io b:A,∆,

and we can construct:

Q [b/x] : Γ′,b:A �πio b:A,∆′
(ν)

(νb)Q [b/x] : Γ′ �πio ∆′

ii) Then the derivation is shaped like:

P : Γ′ �πio ∆′
(〈〉-out)

a〈b,c〉 : b:A �πio a:A→B, c:B
(|)

P | a〈b,c〉 : Γ′,b:A �πio a:A→B, c:B,∆′
(ν)

(νc) (P | a〈b,c〉) : Γ′,b:A �πio a:A→B,∆′
(ν)

(νbc) (P | a〈b,c〉) : Γ′ �πio a:A→B,∆′

(out)
e x : x:A→B �πio e:A→B, x:A→B

(in)
a(x).e x : a:A→B �πio e:A→B

(|)
(νbc) (P | a〈b,c〉) | a(x).e x : Γ′, a:A→B �πio a:A→B, e:A→B,∆′

Since b and c are restricted, they are different from e and we can construct:

P : Γ′ �π
io ∆′ (〈〉-out)

e〈b,c〉 : b:A �π
io e:A→B, c:B

(|)
P | e〈b,c〉 : Γ′,b:A �πio e:A→B, c:B,∆′

(ν)
(νc) (P | e〈b,c〉) : Γ′,b:A �πio e:A→B,∆′

(ν)
(νbc) (P | e〈b,c〉) : Γ′ �πio e:A→B,∆′

iii) The derivation is of the shape

P : Γ �π
io ∆

(〈〉-out)
a〈b,c〉 : Γ,b:A �πio a:A→B, c:B,∆

(|)
P | a〈b,c〉 : Γ,b:A �πio a:A→B,∆

(ν)
(νc) (P | a〈b,c〉) : Γ,b:A �πio a:A→B,∆

(ν)
(νbc) (P | a〈b,c〉) : Γ �πio a:A→B,∆

Q : Γ,y:B �πio x:A,∆
(〈〉-in)

a(x,y).Q : Γ, a:A→B �πio ∆
(|)

(νbc) (P | a〈b,c〉) | a(x,y).Q : Γ, a:A→B �πio a:A→B,∆

Since b and c are restricted, they do not occur in Q , so by Lemma 6.3 also Q [b/x, c/y] :
Γ, c:B �π

io b:A,∆ and we can construct:

P : Γ �πio ∆ Q [b/x, c/y] : Γ, c:B �πio b:A,∆
(|)

P |Q [b/x, c/y] : Γ, c:B �πio b:A,∆
(ν)

(νc) (P |Q [b/x, c/y]) : Γ �πio b:A,∆
(ν)

(νbc) (P |Q [b/x, c/y]) : Γ �πio ∆

iv) Then the derivation is of the shape
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P : Γ′ �πio ∆′ (〈〉-out)
a〈b,c〉 : b:A �π

io a:A→B, c:B
(|)

P | a〈b,c〉 : Γ′,b:A �πio a:A→B,∆′
(ν)

(νc) (P | a〈b,c〉) : Γ′,b:A �πio a:A→B,∆′
(ν)

(νbc) (P | a〈b,c〉) : Γ′ �πio a:A→B,∆′

..

..

..

.

(out)
v w : w:A �πio v:A,w:A

(in)
x v : x:A �πio v:A

(!)
! x v : x:A �πio v:A (out)

y w : w:B �πio y:B,w:B
(in)

d y : d:B �πio y:B
(!)

! d y : d:B �πio y:B
(|)

! x v | ! d y : x:A,d:B �πio y:B,v:A
(〈〉-in)

a(v,d).(! x v | ! d y) : x:A, a:A→B �πio y:B
(|)

(νbc) (P | a〈b,c〉) | a(v,d).(! x v | ! d y) : Γ′, x:A, a:A→B �πio a:A→B,y:B,∆′

Since b and c are restricted, they are different from x and y and we can construct:

P : Γ′ �πio ∆′

(out)
b w : w:A �π

io b:A,w:A
(in)

x b : x:A �π
io b:A

(!)
! x b : x:A �π

io b:A

(out)
y w : w:B �πio y:B,w:B

(in)
c y : c:B �π

io y:B
(!)

! c y : c:B �π
io y:B

(|)
P | ! x b | ! c y : Γ′, x:A, c:B �πio b:A,y:B,∆′

(ν)
(νc) (P | ! x b | ! c y) : Γ′, x:A �πio b:A,y:B,∆′

(ν)
(νbc) (P | ! x b | ! c y) : Γ′, x:A �πio y:B,∆′

Using this result, we can also show a witness reduction result:

Theorem 6.12 i) If P n : Γ �π
io ∆, and P n →∗

π Q , then Q : Γ �π
io ∆.

ii) If P s : Γ �π
io

∆, and P s →∗
π Q , then Q : Γ �πio ∆.

Proof : By Remark 4.4 and 5.2, and Lemma 6.11.

7 Expressing Negation

In this section we will look at the logical connective ¬, how it is dealt with within LK, 17

and how to interpret it in the π-calculus. Together with the treatment of implication it is then
possible to also express all other first-order logical connectives, but we will not deal with those
explicitly here.

Definition 7.1 The sequent rules that correspond to negation are as follows:

(¬R) :
Γ, x:A � ∆

Γ � α:¬A,∆
(¬L) :

Γ � α:A,∆

Γ, x:¬A � ∆

To extend the Curry-Howard isomorphism of LK also to negation, we follow the same ap-
proach as used for the arrow: a disappearing formula in a context corresponds to a connector
that gets bound, and a formula that appears in a context corresponds to a connector that is
introduced.

Definition 7.2 i) We extend LK’s syntax with the following constructs:

17 An alternative way of treating negation is to add the type ⊥, but in arrow types only on the right-hand side,
and let export and import deal with it, but this would need separate constructs to introduce ⊥ on either the right
or the left; we feel our present approach is more clear.
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P ::= . . . | x·P α̂ left inversion
| x̂P·α right inversion

ii) We extend the set of types by

A, B ::= · · · | ¬A

(as usual, ¬A→B stands for (¬A)→B).
iii) We add the type assignment rules:

(r-inv) :
P : Γ, x:A � ∆

x̂ P·α : Γ � α:¬A,∆
(l-inv) :

P : Γ � α:A,∆

x·P α̂ : Γ, x:¬A � ∆

Example 7.3 We can inhabit ¬¬A→A:

(cap)〈y·α〉 : y:A � α:A
(r-inv)

ŷ〈y·α〉·γ : � γ:¬A,α:A
(l-inv)

x· (ŷ〈y·α〉·γ) γ̂ : x:¬¬A � α:A
(exp)

x̂ (x· (ŷ〈y·α〉·γ) γ̂) α̂·β : � β:¬¬A→A

The notion of reduction is extended naturally by adding the following rules.

Definition 7.4 We extend the notion of introduced connector by saying that also P = x·Q α̂

with x �∈ fs(Q) introduces x, and P = x̂Q·α with α �∈ fp(Q) introduces α.
The logical reduction rule for negation is (with β and x introduced):

(ŷP·β) β̂ † x̂ (x·Q α̂) → Q α̂ † ŷP

We add the propagation rules:

(y·Q β̂) α̂ † x̂P → y·(Q α̂ † x̂P) β̂

(ŷQ·β) α̂ † x̂P → ŷ(Q α̂ † x̂P)·β (α �= β)

(ŷQ·α) α̂ † x̂P → (ŷ(Q α̂ † x̂P)·β) β̂ † x̂ P (β fresh,α not introduced)

P α̂ † x̂ (y·Q β̂) → y·(P α̂ † x̂Q) β̂ (x �= y)
P α̂ † x̂ (x·Q β̂) → P α̂ † ŷ (y·(P α̂ † x̂Q) β̂) (y fresh, x not introduced)
P α̂ † x̂ (ŷQ·β) → ŷ(P α̂ † x̂Q)·β

and the contextual rules

P → Q ⇒
{

y·P α̂ → y·Q α̂

ŷP·α → ŷQ·α

Notice that now we have cuts that do not contract, as

(ŷQ γ̂·α) α̂ † x̂ (x·P β̂)

where α ∈� fp(Q), and x ∈� fs(P), since none of the rules are applicable; however, typeable cuts
do contract:

Theorem 7.5 If P α̂ † x̂Q : Γ �lk ∆, then P α̂ † x̂Q can be contracted.

Proof : Easy.

We can show:
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Theorem 7.6 (Witness reduction) If P : Γ �lk ∆ and P →LK Q, then Q : Γ �lk ∆.

Proof : We just show the cases for some of the added rules; as mentioned above, the proof for
the other rules can be found in [9].

(ŷ P·β) β̂ † x̂ (x·Q α̂)→ Q α̂ † ŷP : If (ŷP·β) β̂ † x̂ (x·Q α̂) : Γ �lk ∆, then the derivation is shaped
like:

P : Γ,y:A � ∆
(r-inv)

ŷ P·β : Γ � β:¬A,∆

Q : Γ � α:A,∆
(l-inv)

x·Q α̂ : Γ, x:¬A � ∆
(cut)

(ŷ P·β) β̂ † x̂ (x·Q α̂) : Γ � ∆

Then we can construct:

Q : Γ � α:A,∆ P : Γ,y:A � ∆
(cut)

Q β̂ † x̂ P : Γ � ∆

(ŷQ·α) α̂ † x̂P → (ŷ(Q α̂ † x̂P)·β) β̂ † x̂P (β fresh,α not introduced) : The derivation for the left-
hand side is shaped like:

Q : Γ,y:A � α:¬A,∆
(r-inv)

ŷQ·α : Γ � α:¬A,∆ P : Γ, x:¬A � ∆
(cut)

(ŷQ·α) α̂ † x̂ P : Γ � ∆

Then we can construct:

Q : Γ,y:A � α:¬A,∆

P, x:¬A : Γ � ∆
(Wk)

P : Γ, x:¬A,y:A � ∆
(cut)

Q α̂ † x̂ P : Γ,y:A � ∆
(r-inv)

ŷ(Q α̂ † x̂ P)·β : Γ � β:¬A,∆ P : Γ, x:¬A � ∆
(cut)

(ŷ(Q α̂ † x̂ P)·β) β̂ † x̂ P : Γ � ∆

P α̂ † x̂ (y·Q β̂)→ y·(P α̂ † x̂Q) β̂ (x �= y) : The derivation for the left-hand side is shaped like:

P : Γ,y:¬B � α:A,∆

Q : Γ, x:A � β:B,∆
(l-inv)

y·Q β̂ : Γ, x:A,y:¬B � ∆
(cut)

P α̂ † x̂ (y·Q β̂) : Γ,y:¬B � ∆

and we can construct:

P : Γ,y:¬B � α:A,∆
(Wk)

P : Γ,y:¬B � α:A, β:B,∆

Q : Γ, x:A � β:B,∆
(Wk)

Q : Γ,y:¬B, x:A � β:B,∆
(cut)

P α̂ † x̂ Q : Γ,y:¬B � β:B,∆
(l-inv)

y·(P α̂ † x̂ Q) β̂ : Γ,y:¬B � ∆

The other cases are similar.

We will now extend the two translations so that we deal with the added connective as well.
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Definition 7.7 (Negation) Negation gets represented in the π-calculus via the natural trans-
lation as:

x·P α̂ n = x(α). ! P n

x̂ P·α n = (νx) (! P n | α x)

via the semantic translation as:
x·P α̂ s = ! (να) ( P s | x(z). ! α z)
x̂P·α s = ! (νx) ( P s | α x)

This translation of inversion explains the role of negation in detail. If P is outputting on α,
but no connection to α is available, input is needed from a process Q that will send one of its
input names z. Once received, P can output on α which gets connected to z; so Q will provide
a means for P to continue, and is therefore aptly called a continuation.

The natural and semantic translations of the witness for ¬¬A→ A now become:

x̂ (x· (ŷ〈y·α〉·γ) γ̂) α̂·β n = (νxα) (! x(γ). ! (νy) (! y(w).α w |γ y) | β〈x,α〉)
x̂ (x· (ŷ〈y·α〉·γ) γ̂) α̂·β s =

! (νxα) (! (νγ) (! (νy) (! y(w).αw|γ y) | x(z). ! γ z) | β〈x,α〉)
The following consistency results are easy to prove.

Theorem 7.8 Let (ŷP·β) β̂ † x̂ (x·Q α̂) be such that β, x are introduced. Then
i) (ŷP·β) β̂ † x̂ (x·Q α̂)n �∼ Q α̂ † ŷP n.

ii) (ŷP·β) β̂ † x̂ (x·Q α̂) s ≈ Q α̂ † ŷP s.

Proof : i) (ŷP·β) β̂ † x̂ (x·Q α̂)n =
∆

(νx) (! (νy) (! P n | x y) | ! x(α). ! Q n) →π (x)
(νy) (! Q n[y/α] | ! P n) | (νx) (! (νy) (! P n | x y) | ! x(α). ! Q n) =

∆

Q α̂ † ŷP n | (ŷP·β) β̂ † x̂ (x·Q α̂)n �∼ Q α̂ † ŷP n

.

ii) (ŷP·β) β̂ † x̂ (x·Q α̂) s =
∆

! (νβx) (! (νy) ( P s | β y) | ! β x | ! (να) ( Q s | x(z). ! α z)) ≈ (β, x)
! (ναy) ( Q s | ! α y | P s) =

∆ Q α̂ † ŷP s

We add the following type assignment rules for negation:

Definition 7.9 (Type assignment rules in �π for ¬)

(inv-r) : a x : x:A �πio a:¬A (inv-l) :
P : Γ �πio x:A,∆

(a ∈� Γ)
a(x).P : Γ, a:¬A �πio ∆

The correctness of the propagation rules follows as above in Theorems 4.8 and 5.4; notice that,
since negation gets interpreted in the natural translation using input, the first contextual rule
has to be excluded from →h.

Theorem 7.10 P : Γ �lk ∆ if and only if P n : Γ �π
io

∆.

Proof : By induction on the structure of of terms in LK; we only show the two added cases.

x·P α̂ : Then x·P α̂ n = x(α). ! P n, and, by induction, P : Γ �lk ∆ if and only if P n : Γ �πio ∆.
The last rule applied in the LK-derivation is (l-inv):



Under submission 45

P : Γ′ � α:A,∆′
(l-inv)

x·P α̂ : Γ′, x:¬A � ∆′

If x(α). ! P n : Γ �π
io ∆, then we know that x has a negated type,18 and the derivation uses

the rules (inv-l) and (!), yielding

P n : Γ �π
io α:A,∆

(!)
! P n : Γ �πio α:A,∆

(inv-l)
x(α). ! P n : Γ, x:¬A �πio ∆

x̂ P·α : Then x̂ P·α n = (νx) (! P n | α x), and, by induction, P : Γ �lk ∆ if and only if P n : Γ �π
io

∆ The last rule applied in the LK-derivation is (r-inv):

P : Γ, x:A � ∆
(r-inv)

x̂ P·α : Γ � α:¬A,∆

If (νx) (! P n | α x) : Γ �π
io ∆, then we know that α has a negated type, and the derivation

uses the rules ν, (inv-l), (|), and (!), yielding

P n : Γ, x:A �πio ∆
(!)

! P n : Γ, x:A �πio ∆
(inv-r)

α x : x:A �πio α:¬A
(|)

! P n | α x : Γ, x:A �πio α:¬A,∆
(ν)

(νx) (! P n | α x) : Γ �πio α:¬A,∆

We can now check that the extended translation preserves assignable types as well; unlike
in Theorem 6.8 and 6.9, the property is shown in only one direction. This is because, by not
choosing new syntactic constructions to model negation, a process like a(x).P not necessarily
represents negation.

Theorem 7.11 P : Γ �lk ∆ if and only if P s : Γ �π
io ∆.

Proof : Much the same as that for Theorem 7.10.

So our extended translations respect the classical sequent logic rules.

Conclusions

In this paper we have bridged the gap between classical cut-elimination and the semantics
of concurrent calculi, by presenting translations of Gentzen’s classical sequent calculus lk to
the π-calculus that preserve cut-elimination. This was achieved through an embedding of the
calculus LK into the π-calculus that translates a cut as synchronisation. LK’s terms directly
represent proofs in lk, by naming assumptions with Roman characters, and conclusions with
Greek characters, and seeing these as input and output, respectively, but terms in LK can also
not correspond to proofs.

LK introduces a natural concept of input and output that naturally translates into the input

18 Notice that this would not be necessarily true for x(α). ! P, with P not the result of the interpretation.
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and output primitives of the π-calculus. We presented two different translations, each with
specific interesting properties. We first presented the natural translation, and showed that
it preserves LK’s head-reduction; in this translation we cannot represent full cut-elimination
because we place some interpreted terms under input, in particular when interpreting the
witness for (→L). This seems to be a natural consequence, and is a feature also in the various
translations of the λ-calculus.

We then went on to show that the limitation of input can easily be avoided. To that pur-
pose, we introduced the concept of synchronisation cell, and managed to show that, by slightly
modifying our translation and interpreting terms as infinite resources, we can represent full
cut-elimination, but not through synchronisation, but rather weak bisimilarity. We have seen
that this translation successfully represents Gentzen’s Hauptsatz result, in that innermost re-
duction on typeable terms terminates.

The variant of the π-calculus we considered uses a pairing facility which enables the defi-
nition of a notion of implicative type assignment on processes. Using this notion, we proved
that proofs in lk have a representation in π; our cut-elimination results then show that not
only do we correctly represent reduction on the calculus LK, but also can model proofs in
lk in all detail in such a way that cut-elimination is preserved by weak bisimilarity. We also
represented negation in LK by extending the syntax and reduction rules, and extended our
translations to deal with the added construct. We have shown that all representation results
still hold; since we have successfully represented both implication and negation, this implies
that this can then easily be extended to the other logical connectives.
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