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Abstract

We define call-by-name and call-by-value reduction strategies for the calculi sλµ (symmetric
λµ), λµµ̃, and Xis (X with implicit substitution). We establish a strong relation between
these notions through defining a single interpretation from sλµ to λµµ̃ that respects normal
reduction, as well as the call-by-name and call-by-value strategies in sλµ within the their
counterpart in λµµ̃. We also define a single mapping from λµµ̃ to Xis, and show that this
also respects all three notions. We conclude with studying the natural encoding of Xis into
λµµ̃, and show that only full reduction is respected, but that reduction steps are needed to
model substitution, so the cbn and cbv strategies cannot be respected. This result underlines
that Xis and λµµ̃ are similar, but different calculi.

keywords: classical logic, call by name, call by value, interpretations

Introduction

The λ-calculus [11, 9] has long served as a foundation for functional programming languages

through its Call-by-Name (cbn) and Call-by-Value (cbv) subsystems. The former models a

‘lazy’ notion of reduction, in which computation of an argument is delayed until used within

a function; the latter employs ‘eager’ evaluation, which always reduces an argument before

being given to a function. Although both are subsystems of the same calculus, their semantics

can vary greatly. For example, the Krivine machines (KAM) [21] for cbn need only have

operations for pushing and popping arguments from the stack, whereas a cbv KAM also

requires a notion of stack-frames [24] in which the function is frozen onto the stack whilst its

argument is evaluated.1 Such semantics give an operational meaning to functional languages,

and the differences in the semantics can explain the difference between the behaviour of said

languages.

(Classical) Logic and Computation: The λ-calculus also serves as a proof-term syntax for

(an implicative fragment of) intuitionistic logic. This link between computation and logic is

known as the Curry-Howard correspondence, where a proof of a proposition A corresponds

to a program that will compute an answer of type A. This supports calling intuitionistic logic

‘constructive’, as a proof corresponds to a program that will compute an answer.

Classical logic is known to be non-constructive. It was thus thought that only intuitionis-

tic logic enjoyed a computational counterpart, but Griffin [16] discovered an extension of the

Curry-Howard correspondence [20] by typing control operators, which allow for manipula-

tion of the current program continuation. In particular, they presented a typed λ-calculus ex-

tended with Felleisen’s C-operator of [14], for which Griffin gave the type of double-negation

1 This feature is also present in λµµ̃’s rule λ; see Def. 2.2.
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elimination, ¬¬A→ A (or better: ((A→⊥)→⊥)→A). In this calculus, a continuation vari-

able k : ¬A represents a continuation expecting a term of type A. The logical correspondence

means a notion of ‘backtracking’ realises classical propositions such as double-negation elimi-

nation and Pierce’s law. Naturally, this led to the exploration of many ‘classical calculi’ – those

with control operators – of which we highlight a few.

One of the earliest was Parigot’s [27] λµ, which extends the λ-calculus with the µ-operator

and a separate set of µ-variables used to denote continuations. λµ allows for terms of the

form µα.[β]M, which represents a switch from the current context, which µ labels by α, to the

context β. With this operator, λµ implements minimal classical logic [1] through the Curry-

Howard principle. A key difference compared with λC is that λµ has a separate domain

of variables for dealing with continuations, the µ-variables, that are (implicitly) typed with

negated types, enabling it to express the ‘proof by contradiction’ proof step. This allows

for Parigot’s alternate interpretation of continuation variables as representing the ‘alternative

conclusions’ of a sequent, rather than negated propositions.

A next significant step was the calculus λµµ̃ [18, 12], a proof-term syntax for Gentzen’s [15]

sequent calculus lk, which expanded on λµ’s alternative conclusions. Curien and Herbelin

observed the term syntax needed to reflect the symmetry of the sequents – in particular the

ability to manipulate and combine assumptions. Continuations were thus made first-class as

an explicit part of the syntax, where 〈t|e〉 denotes the running of term t in the continuation

e. Where terms encode the proof tree of a formula on the right of a sequent, co-terms (or

continuations) encode that of a formula on the left (see Def. 2.3); computation in λµµ̃ then

induces a cut-elimination in the corresponding proof tree by letting the term on the left interact

with the continuation on the right. The link with cut-elimination also marks a step away from

confluence.

The type system of λµµ̃ is subtly different to lk, due to the management of the focus of

a sequent, which states if it is concerned with a formula on the left or right of the sequent.

Indeed there a two versions of the axiom rule (for focusing on the left or right), and the typing

rules for µ and µ̃ only shift the focus of the sequent from a neutral position: logically they

perform a no-op. The shift in focus is necessary as the formula under focus is not explicitly

named (assigned to a variable) by the proof-term. It would seem a true proof-term syntax for

lk could be achieved by explicitly naming all formulae.

This led to the calculus X [7], which also came from the investigation of the computational

aspects of cut-elimination [31, 22]. Whereas terms in λµµ̃ represent the derivation of a par-

ticular formula, terms (or nets) in X represent the entire sequent, such that all formulae in

the sequent are named by free variables (or plugs and sockets); this means that no partic-

ular formula is given precedence. X turns out not to just be a strong representation of lk,

but is also provides a fine-grained view of computation, including the implementation of ex-

plicit substitutions. In fact, X represents lk rather too strongly, in that it allows for arbitrary

cut-elimination, which is not strongly normalising, but of course restrictions can be made to

counteract this, such as cbn and cbv.

Sub-reduction versus strategies: Although each of λ, λµ, λµµ̃ and X have notions of cbn

and cbv reduction, these can be expressed in different ways, making obtained results obscure.

One method is to specify what is considered to be a valid reducible expression (redex) for

λ, respectively (λx.M)N for cbn, and (λx.M)V for cbv, where V is a value, i.e. either a

variable or an abstraction. cbn allows for the contraction of a redex irrespective of the shape

of the argument N, whereas cbv forces the evaluation of the argument (to a value) before

allowing the redex to contract. For the λ-calculus, cbv effectively becomes a sub-reduction

system of cbn: all cbv redexes are cbn redexes, whereas the term (λx.x) (yy) is a cbn redex,

but not one for cbv. Another method is to also specify uniquely which out of a possible

2



multitude of redexes can be contracted, by limiting the evaluation contexts; cbn and cbv are

then considered reduction strategies, deterministic sub-reduction systems.

For Parigot’s [27] λµ-calculus, the situation is slightly different. Parigot’s original presenta-

tion of λµ was cbn, as is that of the λ-calculus. Surprisingly, the cbv λµ, denoted λµv, requires

extending the reduction relation of λµ with an additional rule allowing for a µ-abstraction to

pull in a term on the left of an application [26], combined with the usual restrictions of ar-

guments as values. Adding that rule to standard (cbn) λµ would break confluence (this was

already noted by Parigot [27]), a property that λµ is set up to satisfy. But this problem dis-

appears once the redexes are restricted to those with value for arguments, and the extra rule

can be added safely. So for λµ, cbv is not a sub-reduction system of cbn; in fact, they are

both sub-reduction systems for sλµ, David and Nour’s symmetric λµ [13], which is the non-

confluent system obtained from λµ by adding that extra rule. For these two notions it is also

possible to define cbn and cbv strategies, by limiting the evaluation contexts, and these have

been studied extensively.

For Curien and Herbelin, Herbelin’s [12, 18] λµµ̃-calculus, the situation is again different.

Reduction in λµµ̃ is not confluent; it has a critical pair in the term 〈µα.c1 |µ̃x.c2〉, that can

be contracted in both directions, to both c1{µ̃x.c2/α} and c2{µα.c1/x} (see Def. 2.2), with

possibly different results. Herbelin and Curien [12] define cbn reduction by not allowing

the first contraction, and cbv by not allowing the second; they do not consider strategies for

either. Herbelin and Curien show that their interpretation of λµ into λµµ̃ (see Def. 5.3) respects

reduction in the cbn and cbv sub-systems, but does not show that for reduction strategies;

similar results are obtained in [29], but for an extended notion of λµ.

A similar situation exists for X [5], a term calculus for the implicative fragment of Gentzen’s

[15] sequent calculus lk. This also has a critical pair in P α̂ † x̂ Q that in certain circumstances

(see Def. 3.3) can reduce to both P α̂† x̂ Q and P α̂ † x̂ Q, terms that (can) run to different

results, and cbn and cbv reduction can be defined by blocking one or the other. [5] defines an

interpretation of λµ and λµµ̃ into X , and shows that reduction is respected; it deals with cbn

and cbv reduction only for the interpretations of the λ-calculus and λx into X .

Notions of cbn and cbv sub-reduction system for each of the calculi λµ, λµµ̃, and X are

thus obtained as restrictions on their respective notions of reduction, that differ strongly in

origin and character, but are shown to correspond through various interpretations. This now

naturally leads to the following questions: what if reduction strategies are considered? what

then, if any, is the relation between these different notions? are these the same and correct

restrictions? More broadly, can one be sure that the notions of cbn and cbv strategies are

compatible between the calculi?

We will argue in Rem. 5.4 that it is not possible to show that Herbelin’s interpretations

respects the cbn and cbv reduction strategies of sλµ; in Def. 5.5 we will give an interpretation

with which such results can be shown. In this paper, we mainly focus on cbn and cbv reduction

strategies, for all calculi we consider. Although these are defined in very different ways, we will

see that there exists a single, natural interpretation from sλµ to λµµ̃ that preserves both cbn

and cbv strategies. To achieve a similar result when comparing λµµ̃ and X , the situation is

slightly more complex. The reason for this is that X is a calculus defined without substitution;

reduction is defined by explicitly moving a term through the syntactic structure of another in

small steps, much like explicit substitution is defined for Bloo and Rose’s λx [10]. Defining a

reduction strategy for a calculus with explicit substitutions is a different story altogether: for

the λ-calculus, it would only propagate towards the head-variable, not the other variables, as

done, for example, in [6]. Is it therefore not straightforward to compare cbn and cbv strategies

for λµµ̃ and X ; to remedy this, here we will define Xis, a version of X that uses (implicit)

substitution, for which we will follow Summers [30] and define cbn and cbv strategies, and
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establish the relation between λµµ̃ and Xis.

Subsystems of Classical Calculi: Previous work has shown that each of the cbn and cbv

subsystems agree – that is, for example, there is a mapping of by-name λµ into by-name

λµµ̃, and λµv into by-value λµµ̃ [12] – but the mappings are per evaluation discipline, and thus

do not answer if the restrictions on reduction are analogous. For example, in λµv we have

x(µα.C)→ µγ.C[x·γ/α]. However, the cbn translation of Curien and Herbelin [12], which

gives µγ.〈x |µα.c·γ〉, is not equal to the translation of µγ.C[x·γ/α].

The question we address in this paper is: is there is a single mapping from sλµ into λµµ̃,

and a single mapping from λµµ̃ into X , such that equality is preserved after restricting the

constituent systems through cbn and cbv reduction strategies. Concretely, if M and N are

a sλµ-terms such that M→ N, then we wish not just for JMK =λ JNK, but also if M→v N

then JMK =v

λ
JNK, and if M→n N then JMK =n

λ
JNK (where the latter two equations mean the

two terms are equal through paths using only by-value and by-name reductions, respectively;

we will see that it is impossible to show these results with respect to reduction, but have to

consider equality).

This paper presents two such novel mappings, satisfying a subtly stronger property, that

a single reduction M→ N in the source calculus induces at least one reduction in the target.

More specifically, for the λµ to λµµ̃ translation, there is a t such that JMK→+
λ

t and JNK→∗
λ

t,

and similarly for→v

λ
and→n

λ
. The key in the mapping from λµ to λµµ̃ is that it allows for an

extra possible reduction which allows the head of an application to capture its context in cbv.

Overview: The first four sections introduce the three calculi of concern: sλµ, λµµ̃, and Xis.

The first mapping, J·
s
, from sλµ to λµµ̃ is given in Sect. 5. Sect. 7 defines the second mapping,

J·Kλ, from λµµ̃ into X . Both the mappings J·Kλ and J·Kλ respect equality, assignable types, and

call-by-name and call-by-value equality, and furthermore respect that a reduction in the source

calculus gives rise to at least one reduction in the target. In Sect. 8 we will study the natural

encoding of ⌈·
X

of X ’s terms into λµµ̃. Optimising that encoding slightly by avoiding to create

too many cuts, we will show that J·Kλ is the right-inverse of ⌈·
X
, but that ⌈·

X
is only J·Kλ’s left-

inverse up to extensionality. We will show that ⌈·
X

respects reduction in Xis by equality in

λµµ̃: to simulate Xis’s substitution in λµµ̃ under the encoding, in the image rules (µ) and (µ̃)

are needed, so this encoding cannot respect the two strategies.

1 The symmetric λµ-calculus

The variant of λµ considered in this paper extends that defined by Parigot in [27] by including

the ‘left-µ’ reduction rule (discussed at the end of Section 3.2 in [27]); this ends up incorporat-

ing the cbv-variant as defined by Ong and Stewart [26]. The resulting calculus corresponds

to David and Nour’s symmetric λµ (sλµ) [13], and has a non-confluent reduction system, a

property shared by the two other calculi we wish to compare with.

An example of an approach for representing classical proofs, Parigot’s λµ-calculus [27] is

a natural deduction system in which there is one main conclusion that is being manipulated

and possibly several alternative ones. It is a terms-as-proofs representation of a classical logic

with focus. The formulas for this system are:

A, B ::= ϕ | A→B

and a context Γ is a set of formulas, and the inference rules are defined through:

(Ax) : Γ, A ⊢ A |∆ (�I) :
Γ, A ⊢ B |∆

Γ ⊢ A→B |∆
(�E) :

Γ ⊢ A→B |∆ Γ ⊢ A |∆

Γ ⊢ B |∆
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(Act) :
Γ ⊢ ⊥ | A,∆

Γ ⊢ A |∆
(Pass) :

Γ ⊢ A | A,∆

Γ ⊢ ⊥ | A,∆

The intention of this system is to express classical logic, and for this it encapsulates the

‘Proof by Contradiction’ inference rule, (Pbc). The formulas in ∆ are seen as negated, any

statement Γ ⊢f A | ∆ can be seen as Γ,¬∆ ⊢ni A (where ¬∆ lists the negated versions of all

types in ∆). With that view, the rules (Act) and (Pass) corresponds to allowing the following

variants of rules (Pbc) and (¬E)

Γ,¬∆,¬A ⊢ ⊥
(Pbc)

Γ,¬∆⊢ A

(Ax)
Γ,¬∆,¬A ⊢ ¬A Γ,¬∆,¬A ⊢ A

(¬E)
Γ,¬∆,¬A ⊢ ⊥

Definition 1.1 (Syntax of sλµ) The terms we consider for sλµ are those of λµ [28], defined

by the grammar:

M, N ::= V | MN | µα.C (terms)

V ::= x | λx.M (values)

C ::= [β]M (named terms, commands)

Recognising both λ and µ as binders, the notion of free and bound names and variables is

defined as usual, and we accept Barendregt’s convention to keep free and bound names and

variables distinct, using (silent) α-conversion whenever necessary.

We write x ∈M (α ∈M) if x (α) occurs in M, either free of bound, and call a term closed if it

has no free names or variables. We will treat the pseudo-terms of the shape [α]M as terms for

reasons of brevity, whenever convenient.

As with Implicative Intuitionistic Logic, the reduction rules for the terms that represent the

proofs correspond to proof contractions, but in ⊢f. The reduction rules for the λ-calculus are

the logical reductions, i.e. they deal with the removal of a introduction-elimination pair for a

type construct; in addition to these, Parigot expresses also the structural rules that change the

focus of a proof, where elimination essentially deals with negation and takes place for a type

constructor that appears in one of the alternative conclusions (the Greek variable is the name

given to a subterm). Parigot therefore needs to express that the focus of the derivation (proof)

changes (see the rules in Def. 1.5), and this is achieved by extending the syntax with two

new constructs [α]M and µα.M 2 that act as witness to passivation and activation of ⊢f, which

together move the focus of the derivation, and together are called a context switch.

In λµ, reduction of terms is expressed via implicit substitution, and as usual, M{N/x}

stands for the (instantaneous) substitution of all occurrences of x in M by N. Two kinds of

structural substitution are defined: the first is the standard one, defined by Parigot [27], where

M{N·γ/α} stands for the term obtained from M in which every command of the form [α]P

is replaced by [γ]PN (here γ is a fresh name). The second originates from cbv reduction,

defined by Ong and Stewart [26], where {N·γ/α}M stands for the term obtained from M in

which every [α]P is replaced by [γ]NP.

They are formally defined by:

Definition 1.2 (Structural substitution) Right-structural substitution, M{N·γ/α}, and left-

structural substitution, {N·γ/α}M, are defined inductively over pseudo terms by:

2 Notice that these constructs are pseudo terms in that they always occur together in terms.
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x{N·γ/α} =
∆ x

(λx.M){N·γ/α} =
∆ λx.(M{N·γ/α})

(PQ){N·γ/α} =
∆ (P{N·γ/α}) (Q{N·γ/α})

[α]M{N·γ/α} =
∆ [γ](M{N·γ/α})N

[β]M{N·γ/α} =
∆ [β](M{N·γ/α}) (β 6= α)

(µδ.C){N·γ/α} =
∆ µδ.(C{N·γ/α})

{N·γ/α}x =
∆ x

{N·γ/α}(λx.M) =
∆ λx.({N·γ/α}M)

{N·γ/α}(PQ) =
∆ ({N·γ/α}P) ({N·γ/α}Q)

{N·γ/α}[α]M =
∆ [γ]N ({N·γ/α}M)

{N·γ/α}[β]M =
∆ [β]{N·γ/α}M (β 6= α)

{N·γ/α}µδ.C =
∆ µδ.{N·γ/α}C

[27] only defines the first variant of these notions of structural substitutions (so does not use

the prefix ‘right’); the two notions are defined together, albeit rather informally, using a notion

of contexts in [26].

We have the following notions of reduction on sλµ. For the second and third, call by name

and value, different variants exists in the literature; we follow the definitions of [1].

Definition 1.3 (sλµ reduction) i) The reduction rules of sλµ are:

logical (β) : (λx.M)N → M{N/x}

right-structural (µr) : (µα.C)N → µγ.C{N·γ/α} (γ fresh)

left-structural (µl) : M (µα.C) → µγ.{M·γ/α}C (γ fresh)

renaming (ρ) : [β]µγ.C → C{β/γ}

erasing (θ) : µα.[α]M → M (α 6∈M)

ii) We write→s∗
λµ for the reflexive, transitive, and compatible closure of these steps.

Notice that for µr reduction, we have:

(µα.[β]M)N → µγ.[β]M{N·γ/α} (β 6= α) and

(µα.[α]M)N → µγ.[γ](M{N·γ/α})N

and that for µl reduction, we have:

N (µα.[β]M) → µγ.[β]{N·γ/α}M (β 6= α) and

N (µα.[α]M) → µγ.[γ]N ({N·γ/α}M)

Observe that sλµ has two critical pairs given by the terms

(µα.[β]M) (µγ.[δ]N) and

(λx.M) (µγ.[δ]N)

The first reduces to both µσ.[β]M{µγ.[δ]N ·σ/α} and µτ.[δ]{µα.[β]M·τ/γ}N (where we as-

sume all names are distinct), not necessarily with the same result, and similarly for the second,

thus reduction in sλµ is not confluent.

Historically, removing the critical pairs has led to the definition of cbn and cbv sub-

reduction systems. For cbn, the standard restriction is to simply remove the rule (µl), which

then yields Parigot’s original λµ calculus. For cbv, many different approaches exist: one is to

eliminate the critical pairs by limiting the applicability of rules (µl) and (β) through allowing

the contraction only in case the operand is a value V (i.e. a variable, or an abstraction):

(λx.M)V → M{V/x}

V (µα.C) → µγ.{V·γ/α}C (γ fresh)

Notice that then the term (µα.[β]M) (µγ.[δ]N) can only be a (µr)-redex, and (λx.M) (µγ.[δ]N)

can only be a (µl)-redex. To make this work, it is crucial that a µ-abstraction is not considered

a value, although one could argue that it can be seen as a meaningful term.

This suggests allowing the contraction of any redex only when the argument is a value and

changing rule (µr) as well:

(µα.C)V → µγ.C{V·γ/α} (γ fresh)
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as for example done by Rocheteau [29], but not every cbv reduction for λµ is defined this way.

Definition 1.4 (cbn and cbv reduction strategies for sλµ)

i) The cbn evaluation strategy →sn

λµ is defined by removing rule (µl), and limiting the con-

textual rules to:

P→Q ⇒

{
P M → QM

µα.[β]P → µα.[β]Q

ii) The cbv evaluation strategy →sv

λµ is defined by restricting rules β and µl to:

(βv) : (λx.M)V → M{V/x}

(µlv) : V (µα.C) → µγ.{V·γ/α}C (γ fresh)

and limiting the contextual rules to:

P→Q ⇒





P M → QM

V P → V Q

µα.[β]P → µα.[β]Q

Notice that rule µl is not a part of the cbn strategy.

Both→sn

λµ and→sv

λµ are reduction strategies in that they pick exactly one sλµ-redex to contract;

notice that a term may be in either cbn or cbv-normal form (i.e. reduction has stopped), but

need not be in normal form for→s
βµ. From this point onwards, we will use cbn-reduction for

reduction using the cbn-reduction strategy, and likewise for cbv.

Observe that, other than in [8], we do consider the simplification rule θ; as argued in that

paper, there it cannot be represented semantically, but creates no problems here for our inter-

pretations.

Type assignment for sλµ is defined below; since terms of sλµ are the terms of λµ, type

assignment is defined in exactly the same way. Judgements are of the shape Γ ⊢λµ M : A | ∆,

where ∆ consists of pairs of Greek characters (the names) and types; the left-hand context Γ,

as for the λ-calculus, contains pairs of Roman characters and types, and represents the types

of the free term variables of M. There is a main, or active, conclusion, labelled by the term M,

and the alternative conclusions are labelled by names α, β, etc in the co-context.

Definition 1.5 (Typing for λµ [28]) i) Let ϕ range over a countable (infinite) set of type-

variables. The set of types is defined by the grammar:

A, B ::= ϕ | A→B

ii) A context (of term variables) Γ is a partial mapping from term variables to types, denoted

as a finite set of statements x:A, such that the subjects of the statements (x) are distinct. We

write Γ1, Γ2 for the compatible union of Γ1 and Γ2 (if x:A1 ∈ Γ1 and x:A2∈ Γ2, then A1 = A2),

and write Γ, x:A for Γ,{x:A}, x 6∈ Γ if there exists no A such that x:A ∈ Γ, and Γ x for

Γ {x:A}.

iii) A context of names ∆ (or co-context) is a partial mapping from names to types, denoted as a

finite set of statements α:A, such that the subjects of the statements (α) are distinct. Notions

∆1,∆2, as well as ∆,α:A and α 6∈∆ are defined as for Γ.

iv) A judgement is an expression of the shape Γ ⊢λµ M : A |∆; we extend the notion of free and

bound variables and names to judgements Γ ⊢λµ M : A |∆ and consider the term variables

appearing in Γ and the names occurring in ∆ as binding the free occurrences in M.

v) The type assignment rules for λµ are:

(Ax) : Γ, x:A ⊢ x : A |∆ (�I) :
Γ, x:A ⊢ M : B |∆

Γ ⊢ λx.M : A→B |∆
(�E) :

Γ ⊢ M : A→B |∆ Γ ⊢ N : A |∆

Γ ⊢ MN : B |∆
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Γ ⊢ M : A→B | α:A→B,γ:D,∆
(µ)

Γ ⊢ µγ.[α]M : D | α:A→B,∆

Γ ⊢ C⌈µγ.[α]M⌋ : C | α:A→B,∆
(µ)

Γ ⊢ µα.[β]C⌈µγ.[α]M⌋ : A→B |∆ Γ ⊢ N : A |∆
(�E)

Γ ⊢ (µα.[β]C⌈µγ.[α]M⌋)N : B |∆

Γ ⊢ M : A→B | δ:B,γ:D,∆

Γ ⊢ N : A |∆
(Wk)

Γ ⊢ N : A | δ:B,γ:D,∆
(�E)

Γ ⊢ MN : B | δ:B,γ:D,∆
(µ)

Γ ⊢ µγ.[δ]MN : D | δ:B,∆

Γ ⊢ C⌈µγ.[δ]MN⌋ : C | δ:B,∆
(µ)

Γ ⊢ µδ.[β]C⌈µγ.[δ]MN⌋ : B |∆

Γ ⊢ N : A→B |∆

Γ ⊢ M : A | α:A,γ:D,∆
(µ)

Γ ⊢ µγ.[α]M : D | α:A,∆

Γ ⊢ C⌈µγ.[α]M⌋ : C | α:A,∆
(µ)

Γ ⊢ µα.[β]C⌈µγ.[α]M⌋ : A |∆
(�E)

Γ ⊢ N (µα.[β]C⌈µγ.[α]M⌋) : B |∆

Γ ⊢ N : A→B |∆
(Wk)

Γ ⊢ N : A→B | δ:B,γ:D,∆ Γ ⊢ M : A | δ:B,γ:D,∆
(�E)

Γ ⊢ N M : B | δ:B,γ:D,∆
(µ)

Γ ⊢ µγ.[δ]N M : D | δ:B,∆

Γ ⊢ C⌈µγ.[δ]N M⌋ : C | δ:B,∆
(µ)

Γ ⊢ µδ.[β]C⌈µγ.[δ]N M⌋ : B |∆

Figure 1: An illustration of structural reduction in λµ.

(µ) :
Γ ⊢ M : B | α:A, β:B,∆

Γ ⊢ µα.[β]M : A | β:B,∆

Γ ⊢ M : A | α:A,∆

Γ ⊢ µα.[α]M : A |∆

We will write Γ ⊢λµ M : A |∆ for judgements derivable in this system.

We can think of [α]M as storing the type of M amongst the alternative conclusions by giving

it the name α.

Notice that, if we erase all term information from the inference rules, we get the rules from

⊢f, except for the variants of rule (µ); these we can infer,

Γ ⊢ B | A, B,∆
(Pass)

Γ ⊢ ⊥ | A, B,∆
(Act)

Γ ⊢ A | B,∆

Γ ⊢ A | A,∆
(Pass)

Γ ⊢ ⊥ | A,∆
(Act)

Γ ⊢ A |∆

so they are derivable.

Fig. 1 shows type assignments for the reduction steps

(µr) : (µα.[β]C⌈µγ.[α]M⌋)N →s
βµ µδ.[β]C⌈µγ.[δ]MN⌋

(µl) : N (µα.[β]C⌈µγ.[α]M⌋) →s
βµ µδ.[β]C⌈µγ.[δ]N M⌋

(where β:C ∈∆ and α does not occur in M).

The following result is standard and of use in the proofs below.

Lemma 1.6 (Weakening and thinning for ⊢λµ ) The following rules for weakening and thin-

ning are admissible for ⊢λµ:

(Wk) :
Γ ⊢ M : A |∆

(Γ ⊆ Γ′,∆⊆ ∆′)
Γ′ ⊢ M : A |∆′

(Th) :
Γ ⊢ M : A |∆ (Γ′ = {x:B ∈ Γ | x ∈ fv(M)},

∆′ = {α:B ∈∆ | α ∈ fn(M)})Γ′ ⊢ M : A |∆′

Proof : Standard.

We will now show that type assignment is closed under reduction. This result might itself

be as expected, and is presented here mostly for completeness.
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First we show results for the three notions of term substitution.

Lemma 1.7 (Substitution lemma) i) If Γ, x:B ⊢λµ M : A |∆ and Γ ⊢λµ L : B |∆, then Γ ⊢λµ M{L/x} :

A |∆.

ii) If Γ ⊢λµ M : A | α:B→C,∆ and Γ ⊢λµ L : B |∆, then Γ ⊢λµ M{L·γ/α} : A | γ:C,∆.

iii) If Γ ⊢λµ L : B→C |∆ and Γ ⊢λµ M : A | α:B,∆, then Γ ⊢λµ {L·γ/α}M : A | γ:C,∆.

Proof : i) By induction on the definition of term substitution.

ii) By induction on the definition of right-structural substitution.

(µδ.[α]N{L·γ/α} =
∆ µδ.[γ](N{L·γ/α}L)) : Then by rule (µ) Γ ⊢λµ N : B→C | δ:A,α:B→C,∆,

and by induction Γ ⊢λµ N{L·γ/α} : B→C | δ:A,γ:C,∆. Since α, δ and γ all do not occur

(free) in N, we can construct

Γ ⊢ N{L·γ/α} : B→C | δ:A,γ:C,∆

Γ ⊢ L : B |∆
(Wk)

Γ ⊢ L : B | δ:A,γ:C,∆
(�E)

Γ ⊢ (N{L·γ/α})L : C | δ:A,γ:C,∆
(µ)

Γ ⊢ µδ.[γ](N{L·γ/α})L : A | γ:C,∆

((µδ.[β]N){L·γ/α} =
∆ µδ.[β](N{L·γ/α}) (β 6= α)) : Then by rule (µ) there exists D such

that ∆= β:D,∆′, and Γ ⊢λµ N : D | δ:A, β:D,α:B→C,∆′ , and by induction Γ ⊢λµ N{L·γ/α} :

D | δ:A, β:D,γ:C,∆′ . But then, by rule (µ), also µδ.[β]N{L·γ/α} : A : Γ ⊢λµ β:D,γ:C,∆′.

iii) By induction on the definition of left-structural substitution.

({L·γ/α}µδ.[α]N =
∆ µδ.[γ]L ({L·γ/α}N)) : Then by rule (µ) Γ ⊢λµ N : B | δ:A,α:B,∆, and by

induction Γ ⊢λµ {L·γ/α}N : B | δ:A,γ:C,∆. Since δ and γ do not occur (free) in L, we

can construct

Γ ⊢ L : B→C |∆
(Wk)

Γ ⊢ L : B→C | δ:A,γ:C,∆ Γ ⊢ {L·γ/α}N : B | δ:A,γ:C,∆
(�E)

Γ ⊢ L{L·γ/α}N : C | δ:A,γ:C,∆
(µ)

Γ ⊢ µδ.[γ]L{L·γ/α}N : A | γ:C,∆

({L·γ/α}(µδ.[β]N) =
∆ µδ.[β]({L·γ/α}N) (β 6= α)) : Then by rule (µ) there exists D such

that β:D,∆′ = ∆, and Γ ⊢λµ N : D | δ:A,α:B, β:D,∆′ . Then by induction we have Γ ⊢λµ

{L·γ/α}N : D | δ:A,γ:C, β:D,∆′ . But then, by rule (µ), also Γ ⊢λµ µδ.[β]{L·γ/α}N : A |

γ:C, β:D,∆′ .

Theorem 1.8 (Soundness) If Γ ⊢λµ M : A |∆, and M→sn

λµ N, then Γ ⊢λµ N : A |∆.

Proof : By induction on the definition of→sn

λµ.

((λx.M)N→sn

λµ M{N/x}) : The derivation for Γ ⊢λµ (λx.M)N : A |∆ is shaped like

Γ, x:B ⊢ M : A |∆
(�I)

Γ ⊢ λx.M : B→A |∆ Γ ⊢ N : B |∆
(�E)

Γ ⊢ (λx.M)N : A |∆

Then, by Lem. 1.7, we have Γ ⊢λµ M{N/x} : A |∆.

((µα.[α]M)N→sn

λµ µγ.[γ](M{N·γ/α})N) : The derivation for (µα.[α]M)N is shaped like
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Γ ⊢ M : B→A | α:B→A,∆
(µ)

Γ ⊢ µα.[α]M : B→A |∆ Γ ⊢ N : B |∆
(�E)

Γ ⊢ (µα.[α]M)N : A |∆

Then by Lem. 1.7, we have Γ ⊢λµ M{N·γ/α} : B→A |γ:A,∆. Since γ is fresh, by weakening

also Γ ⊢λµ N : B | γ:A,∆, and we can construct

Γ ⊢ M{N·γ/α} : B→A | γ:A,∆ Γ ⊢ N : B | γ:A,∆
(�E)

Γ ⊢ M{N·γ/α}N : A | γ:A,∆
(µ)

Γ ⊢ µγ.[γ](M{N·γ/α})N : A |∆

((µα.[δ]M)N→sn

λµ µγ.[δ]M{N·γ/α}, with α 6= δ) : The derivation for (µα.[δ]M)N is shaped

like

Γ ⊢ M : C | α:B→A,δ:C,∆′
(µ)

Γ ⊢ µα.[δ]M : B→A | δ:C,∆′ Γ ⊢ N : B | δ:C,∆′
(�E)

Γ ⊢ (µα.[δ]M)N : A | δ:C,∆′

with ∆ = δ:C,∆′. Then by Lem. 1.7, we have Γ ⊢λµ M{N·γ/α} : C | γ:A,δ:C,∆′ , and we can

construct

Γ ⊢ M{N·γ/α} : C | γ:A,δ:C,∆′
(µ)

Γ ⊢ µγ.[δ]M{N·γ/α} : A | δ:C,∆′

(M (µα.[α]N)→sn

λµ µγ.[γ]M ({M·γ/α}N)) : The derivation for M (µα.[α]N) is shaped like

Γ ⊢ M : B→A |∆

Γ ⊢ N : B | α:B,∆
(µ)

Γ ⊢ µα.[α]N : B |∆
(�E)

Γ ⊢ M (µα.[α]N) : A |∆

Then by Lem. 1.7, we have Γ ⊢λµ {M·γ/α}N : B | γ:A,∆, and we can construct

Γ ⊢ M : B→A |∆
(Wk)

Γ ⊢ M : B→A | γ:A,∆ Γ ⊢ {M·γ/α}N : B | γ:A,∆
(�E)

Γ ⊢ M ({M·γ/α}N) : A | γ:A,∆
(µ)

Γ ⊢ µγ.[γ]M ({M·γ/α}N) : A |∆

(M (µα.[δ]N)→sn

λµ µγ.[δ]{M·γ/α}N, with α 6= δ) : The derivation for M (µα.[δ]N) is shaped

like

Γ ⊢ M : B→A | δ:C,∆′

Γ ⊢ N : C | α:B,δ:C,∆′
(µ)

Γ ⊢ µα.[δ]N : B | δ:C,∆′
(�E)

M (µα.[δ]N) : A : Γ ⊢ δ:C,∆′

with ∆= δ:C,∆′. Then by Lem. 1.7, we have Γ ⊢λµ {M·γ/α}N : C | γ:A,δ:C,∆′ , and by rule

(µ) we have Γ ⊢λµ µγ.[δ]{M·γ/α}N : A | δ:C,∆′ .

(µα.[β]µγ.[δ]M→sn

λµ µα.([δ]M){β/γ}) : The derivation for (µα.[δ]M)N is shaped like
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Γ ⊢ M : D | α:A, β:B,γ:B,δ:D,∆′
(µ)

Γ ⊢ µγ.[δ]M : B | α:A, β:B,δ:D,∆′
(µ)

µα.[β]µγ.[δ]M : A : Γ ⊢ β:B,δ:D,∆′

So in particular, replacing all occurrences of γ by β, we obtain a derivation for Γ ⊢λµ

M{β/γ} : D | α:A, β:B,δ:D,∆′ . Now either:

(δ 6= γ) : Then we can construct:

Γ ⊢ M{β/γ} : D | α:A, β:B,δ:D,∆′
(µ)

Γ ⊢ µα.[δ]M{β/γ} : A | β:B,δ:D,∆′

(δ = γ) : Then D = B as well, and we can construct:

Γ ⊢ M{β/γ} : B | α:A, β:B,∆′
(µ)

Γ ⊢ µα.[β]M{β/γ} : A | β:B,∆′

(µα.[α]M→M, with a 6∈M) : The derivation for µα.[α]M is shaped like

Γ ⊢ M : A | α:A,∆
(µ)

Γ ⊢ µα.[α]M : A |∆

Since a 6∈M, by thinning we get Γ ⊢λµ M : A |∆.

The contextual rules follow by induction.

This result of course also holds for cbv and cbn-reduction as a simple corollary.

2 The calculus λµµ̃

This section will give a short summary of Curien and Herbelin’s calculus λµµ̃, as first pre-

sented in [12]. In its typed version, λµµ̃ is a proof-term syntax for a classical sequent calculus

that treats a logic with focus, and can be seen as an extension of Parigot’s λµ and a variant of

Gentzen’s lk, restricted to implication, by adding activation and deactivation rules.

(cut) :
Γ ⊢ A | ∆ Γ | A ⊢ ∆

Γ ⊢ ∆
(Act-R) :

c : Γ ⊢ A,∆

Γ ⊢ A | ∆
(Act-L) :

c : Γ, A ⊢ ∆

Γ | A ⊢ ∆

(AxR) : Γ, A ⊢ A | ∆ (AxL) : Γ | A ⊢ A,∆ (�R) :
Γ, A ⊢ B | ∆

Γ ⊢ A→B | ∆
(�L) :

Γ ⊢ A | ∆ Γ | B ⊢ ∆

Γ | A→B ⊢ ∆

As in λµ, for λµµ̃ there are two sets of variables: x,y,z, etc., label the types of the hypotheses

and α, β,γ, etc., label the types of the conclusions. The syntax of λµµ̃ has three different

categories: commands, terms, and environments. Commands c form the computational units

in λµµ̃ and are composed of a pair 〈t|e〉 of a term t and its environment e.

Reduction in λµµ̃ is dual, in that both parameter call and environment call are represented:

parameter call through the environment µ̃x.c that can pull the corresponding term in to the

places marked by x, and environment call through the term µα.c that places the corresponding

environment in the places marked by α.

Definition 2.1 (Commands, Terms, and Contexts [12]) Let x,y,z, . . . range over an infinite,

countable set of term variables and α, β,γ, . . . range over an infinite countable set of environment

variables (or names).
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There are three categories of expressions in λµµ̃, defined by:

c ::= 〈t|e〉 (commands)

t ::= x | λx.t | µβ.c (terms)

e ::= α | t·e | µ̃x.c (environments)

Here λ, µ, and µ̃ are binders, and the notion of free or bound term and environment variables

is defined as usual.

The environment t·e can be thought of as e[[ ] t], and the environment t1·(· · ·(tn·α)· · ·) (we

can omit these brackets and write t1·· · ·tn·α) as a stack; µα.c is inherited from λµ, as is 〈t|α〉

which corresponds to λµ’s naming construct [α]t, giving name α to the implicit output name

of t; the construct µ̃x.c can be thought of as let x = [ ] in c, so is an environment that can pull

in a term.

Notice that each environment is a sequence of terms, ending either with a name or with an

environment of the shape µ̃x.c:

e ::=

{
t1 · · · · · tn·α

t1 · · · · · tn·µ̃x.c

Commands can be computed (thus eliminating the cut in the corresponding proof):

Definition 2.2 (Reduction in λµµ̃ [12, 19]) Let c{e/β} stand for the implicit substitution of

the free occurrences of the environment variable β by the environment e, and c{t/x} for that

of x by the term t. The reduction rules are defined by:

logical rules

(λ) : 〈λx.t1 |t2·e〉 → 〈t2 | µ̃x.〈t1 |e〉〉

(µ) : 〈µβ.c|e〉 → c{e/β}

(µ̃) : 〈t|µ̃x.c〉 → c{t/x}

extensional rules

(η) : λx.µβ.〈t|x·β〉 → t (x, β 6∈ fv(t))

(ηµ) : µα.〈t|α〉 → t (α 6∈ fv(t))

(ηµ̃) : µ̃x.〈x|e〉 → e (x 6∈ fv(e))

contextual rules

t→ t′ ⇒





〈t|e〉→〈t′ |e〉

λx.t→λx.t′

t·e→ t′·e

e→ e′ ⇒

{
〈t|e〉→〈t|e′〉

t·e→ t·e′
c→ c′ ⇒

{
µβ.c→µβ.c′

µ̃x.c→ µ̃x.c′

We use→λ for this notion of reduction and =λ for the induced equality.

We say that the reductions 〈µβ.c|e〉 →λ c{e/β} and 〈t|µ̃x.c〉 →λ c{t/x} take place over β,

respectively x, and write c→λ (n) c′ when the reduction step takes place over n, mainly to

help the reader.

The rules (λ), (µ), and (µ̃) reduce commands to commands, rules (η) and (ηµ) reduce

a term to a term, and rule (ηµ̃) reduces an environment to an environment. Apart from

Thm. 5.8, the extensional rules play no role in this paper. Not all commands can be reduced:

e.g. 〈x|α〉, 〈λx.t|α〉 and 〈x|t·e〉 are irreducible; this is one of the differences between lk and

λµµ̃.

Although λµµ̃ has abstraction, it does not have application, as that corresponds to an elim-

ination rule, which are not part of lk. In fact, abstraction’s counterpart is that of environment

construction t·e, where a term with a hole is built, offering the operand t and the continuation

e. The main operators are µ and µ̃ abstraction, which, in a sense correspond to (delayed)

substitution (parameter call) and to environment call.

λµµ̃ has both explicit and implicit variables: the implicit variables are for example in t·e,

where the hole · (which acts as input) does not have an identity, and in λx.t where the envi-

ronment (output) is anonymous. We can make these variables explicit by naming, respectively,

µ̃y.〈y|t·e〉 and µα.〈λx.t|α〉; when y (α) is fresh, these terms are η redexes, but, in general, the
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implicit variable can be made to correspond to one that already occurs.

Herbelin’s λµµ̃-calculus expresses elegantly the duality of lk’s left- and right introduction

in a very symmetric syntax. However, this duality notwithstanding, λµµ̃ does not fully repre-

sent lk. The lk proof

Γ, A ⊢ B,∆
(�R)

Γ ⊢ A→B,∆

Γ ⊢ A,∆ Γ, B ⊢ ∆
(�L)

Γ, A→B ⊢ ∆
(cut)

Γ ⊢ ∆

reduces to both

Γ ⊢ A,∆

Γ, A ⊢ B,∆

Γ, B ⊢ ∆
(Wk)

Γ, A, B ⊢ ∆
(cut)

Γ, A ⊢ ∆
(cut)

Γ ⊢ ∆

and

Γ ⊢ A,∆
(Wk)

Γ ⊢ A,B,∆ Γ, A ⊢ B,∆
(cut)

Γ ⊢ B,∆ Γ, B ⊢ ∆
(cut)

Γ ⊢ ∆

The first result is represented in the normal reduction system of λµµ̃ through rule (λ), but

the second is not, whereas both are represented in X , by the two right-hand sides of rule

(exp-imp) (see Def. 3.3). This implies of course that there does not exist a full reduction-

preserving interpretation of X into λµµ̃. One solution would be to add the second alternative

to λµµ̃ as well, which would result in the reduction rule

〈λy.t|t′·e〉 →

{
〈t′ | µ̃y.〈t|e〉〉 cbv

〈µγ.〈t′ | µ̃y.〈t|γ〉〉 | e〉 (γ fresh) cbn

Since γ is fresh, we have

〈µγ.〈t′ | µ̃y.〈t|γ〉〉 | e〉 →λ (γ) 〈t
′ | µ̃y.〈t|e〉〉

We will do that in Def. 8.5.

Adding this alternative would extend the expressivity of λµµ̃, since now we would have

also the reduction:

〈λy.t | t′·µ̃z.c〉 → 〈µγ.〈t′ | µ̃y.〈t|γ〉〉 | µ̃z.c〉

→ c{µγ.〈t′ | µ̃y.〈t|γ〉〉/z}

As to the encoding of cbv-reduction, little is gained by adding this rule; the positioning of

sub-terms in 〈µβ.〈t′ | µ̃z.〈t|β〉〉 | e〉 and 〈t′ | µ̃z.〈t|e〉〉 is very similar.

(Implicative) Typing for λµµ̃ is defined by:

Definition 2.3 (Typing for λµµ̃ [12]) Using the notion of types, and contexts of variables and

names of Definition 1.5, type assignment for λµµ̃ is defined via the rules:

(cut) :
Γ ⊢λ t : A |∆ Γ | e : A ⊢λ ∆

〈t|e〉 : Γ ⊢λ ∆

(AxR) : Γ, x:A ⊢λ x : A |∆ (AxL) : Γ | α : A ⊢λ α:A,∆

(�R) :
Γ, x:A ⊢λ t : B |∆

Γ ⊢λ λx.t : A→B |∆
(�L) :

Γ ⊢λ t : A |∆ Γ | e : B ⊢λ ∆

Γ | t·e : A→B ⊢λ ∆

(µ) :
c : Γ ⊢λ α:A,∆

Γ ⊢λ µα.c : A |∆
(µ̃) :

c : Γ, x:A ⊢λ ∆

Γ | µ̃x.c : A ⊢λ ∆

We write c : Γ ⊢λ ∆ , Γ ⊢λ t : A |∆ , and Γ | e : A ⊢λ ∆ if there exists a derivation built using these

rules that has this judgement in the bottom line.
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We will now show soundness, i.e. that type assignment is respected by reduction; first we

show a substitution lemma.

Lemma 2.4 i) If c : Γ, x:A ⊢λ ∆ , and Γ ⊢λ t : A |∆ , then c{t/x} : Γ ⊢λ ∆ .

ii) If c : Γ ⊢λ β:A,∆, and Γ | e : A ⊢λ ∆ , then c{e/β} : Γ ⊢λ ∆ .

Proof : Straightforward by induction.

We can now show that assignable types are preserved under reduction.

Theorem 2.5 (Subject reduction) i) If c : Γ ⊢λ ∆ , and c→λ c′, then c′ : Γ ⊢λ ∆ .

ii) If Γ ⊢λ t : A |∆ , and t→λ t′, then Γ ⊢λ t′ : A |∆ .

iii) If Γ | e : A ⊢λ ∆ , and e→λ e′, then Γ | e′ : A ⊢λ ∆ .

Proof : Simultaneous by induction on the definition of→∗
λ
; we will only show the base cases.

(〈λx.t1 |t2·e〉 → 〈t2 | µ̃x.〈t1 |e〉〉) : If 〈λx.t1 |t2·e〉 : Γ ⊢λ ∆ , then the derivation is shaped like on

the left; regrouping the sub-derivations, we can construct the one on the right.

Γ, x:A ⊢λ t1 : B |∆

Γ ⊢λ λx.t1 : A→B |∆

Γ ⊢λ t2 : A |∆ Γ | e : B ⊢λ ∆

Γ | t2·e : A→B ⊢λ ∆

〈λx.t1 |t2·e〉 : Γ ⊢λ ∆ Γ ⊢λ t2 : A |∆

Γ, x:A ⊢λ t1 : B |∆

Γ | e : B ⊢λ ∆
(Wk)

Γ, x:A | e : B ⊢λ ∆

〈t1 |e〉 : Γ, x:A ⊢λ ∆

Γ | µ̃x.〈t1 |e〉 : A ⊢λ ∆

〈t2 | µ̃x.〈t1 |e〉〉 : Γ ⊢λ ∆

(〈µβ.c|e〉 → c{e/β}) : If 〈µβ.c|e〉 : Γ ⊢λ ∆ , then the derivation is shaped like

c : Γ ⊢λ β:A,∆

Γ ⊢λ µβ.c : A |∆ Γ | e : A ⊢λ ∆

〈µβ.c|e〉 : Γ ⊢λ ∆

By Lemma 2.4 we get c{e/β} : Γ ⊢λ ∆ .

(〈t|µ̃x.c〉 → c{t/x}) : If 〈t|µ̃x.c〉 : Γ ⊢λ ∆ , then the derivation is shaped like

Γ ⊢λ t : A |∆

c : Γ, x:A ⊢λ ∆

Γ | µ̃x.c : A ⊢λ ∆

〈t|µ̃x.c〉 : Γ ⊢λ ∆

By Lemma 2.4 we get c{t/x} : Γ ⊢λ ∆ .

(λx.µβ.〈t|x·β〉→ t, x, β 6∈ fv(t)) : If Γ ⊢λ λx.µβ.〈t|x·β〉 : A | ∆ , then the derivation is shaped

like

Γ, x:A ⊢λ t : A→B | β:B,∆

Γ, x:A ⊢λ x : A | β:B,∆ Γ, x:A | β : B ⊢λ β:B,∆

Γ, x:A | x·β : A→B ⊢λ β:B,∆

〈t|x·β〉 : Γ, x:A ⊢λ β:B,∆

Γ, x:A | µβ.〈t|x·β〉 : B ⊢λ ∆

Γ ⊢λ λx.µβ.〈t|x·β〉 : A→B |∆

From Γ, x:A ⊢λ t : A→B | β:B,∆ and x, β 6∈ fv(t), by Thinning we get Γ ⊢λ t : A→B |∆ .

(µα.〈t|α〉 → t, α 6∈ fv(t)) : If Γ ⊢λ µα.〈t|α〉 : A |∆ , then the derivation is shaped like
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Γ ⊢λ t : A | α:A,∆ Γ | α : A ⊢λ α:A,∆

〈t|α〉 : Γ ⊢λ α:A,∆

Γ ⊢λ µα.〈t|α〉 : A |∆

From Γ ⊢λ t : A | α:A,∆ and α 6∈ fv(t), by Thinning we get Γ ⊢λ t : A |∆ .

(µ̃x.〈x|e〉 → e, x 6∈ fv(e)) : If Γ ⊢λ µα.〈t|α〉 : A |∆ , then the derivation is shaped like

Γ, x:A ⊢λ x : A |∆ Γ, x:A | e : A ⊢λ ∆

〈x|e〉 : Γ, x:A ⊢λ ∆

Γ | µ̃x.〈x |e〉 : A ⊢λ ∆

From Γ, x:A | e : A ⊢λ ∆ and x 6∈ fv(e), by Thinning we get Γ | e : A ⊢λ ∆ .

We can extend this last result also for the second alternative to rule (λ), since we can derive:

Γ ⊢λ t′ : A |∆

Γ, x:A ⊢λ t : B |∆ Γ,y:A ⊢λ γ : B | γ:B,∆

〈t|γ〉 : Γ,y:A ⊢λ γ:B,∆

Γ | µ̃y.〈t|γ〉 : A ⊢λ γ:B,∆

〈t′ | µ̃y.〈t|γ〉〉 : Γ ⊢λ γ:B,∆

Γ ⊢λ µγ.〈t′ | µ̃y.〈t|γ〉〉 : A |∆ Γ | e : B ⊢λ ∆

〈µγ.〈t′ | µ̃y.〈t|γ〉〉 | e〉 : Γ ⊢λ ∆

λµµ̃ has a critical pair in the command 〈µα.c1 |µ̃x.c2〉, which reduces to both c1{µ̃x.c2/α}

and c2{µα.c1/x}; since cut-elimination of the classical sequent calculus is not confluent, neither

is reduction in λµµ̃. For example, in lk the proof (where (W) is the admissible weakening

rule)

D1

Γ ⊢ ∆
(W)

Γ ⊢ A,∆

D2

Γ ⊢ ∆
(W)

Γ, A ⊢ ∆
(cut)

Γ ⊢ ∆

reduces to both D1 and D2, different proofs, albeit for the same sequence; likewise, in ⊢λ we

can derive (where α does not appear in c1, and x does not appear in c2):

c1 : Γ ⊢λ ∆
(W)

c1 : Γ ⊢λ α:A,∆
(µ)

Γ ⊢λ µα.c1 : A |∆

c2 : Γ ⊢λ ∆
(W)

c2 : Γ, x:A ⊢λ ∆
(µ̃)

Γ | µ̃x.c2 : A ⊢λ ∆
(cut)

〈µα.c1 |µ̃x.c2〉 : Γ ⊢λ ∆

and 〈µα.c1 |µ̃x.c2〉 reduces to both c1 and c2: witnesses to the same sequent, but not necessarily

the same proof.

On the other hand, the term µγ.〈λx.t |µα.c·γ〉 is not a λµµ̃ critical pair, whereas its sλµ-

counterpart (λx.M) (µα.C) (see Sect. 5) is a sλµ critical pair. We will come back to this at the

end of Sect. 5.

The λµµ̃-calculus expresses the duality of lk’s left and right introduction in a very sym-

metric syntax. But the duality goes beyond that: for instance, the symmetry of the reduction

rules displays syntactically the duality between the cbv and cbn evaluations (see also [33]).

In [12] the cbv sub-reduction is not defined as a strategy but is obtained by forbidding a

µ̃-reduction when the command is also a µ-redex, whereas the cbn sub-reduction forbids a
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µ-reduction when the redex is also a µ̃-redex; there is no other restriction defined in [12, 19]

in terms of not permitting certain contextual rules in the definition of cbv and cbn. Since

we want cbn and cbv to be reduction strategies in the sense that each term has at most one

contractable cut, we will define those here.

Definition 2.6 (cbn and cbv reduction strategies for λµµ̃) i) Values V are defined by

V ::= x | λx.t, and stacks3 S are defined by S ::= α | t·S.

ii) The cbn-reduction strategy→n

λ
is defined by limiting rule (µ) and restricting the contex-

tual rules:

(λ) : 〈λx.t1 |t2·e〉 → 〈t2 | µ̃x.〈t1 |e〉〉

(µn) : 〈µβ.c |S〉 → c{S/β}

(µ̃) : 〈t|µ̃x.c〉 → c{t/x}

(ηµ) : µα.〈t|α〉 → t (α 6∈ fv(t))

t→ t′ ⇒ 〈t|e〉 → 〈t′ |e〉

c→ c′ ⇒ µβ.c→ µβ.c′

iii) The cbv-reduction strategy→v

λ
is defined by limiting rule (µ̃) and restricting the contex-

tual rules:

(λ) : 〈λx.t1 |t2·e〉 → 〈t2 | µ̃x.〈t1 |e〉〉

(µ) : 〈µβ.c|e〉 → c{e/β}

(µ̃v) : 〈V |µ̃x.c〉 → c{V/x}

(ηµ) : µα.〈t|α〉 → t (α 6∈ fv(t))

t→ t′ ⇒ 〈t|e〉 → 〈t′ |e〉

c→ c′ ⇒ µβ.c→ µβ.c′

Both notions only reduce terms or commands, never environments.

Of course Thm. 2.5 holds for the cbn and cbv strategies as well.

3 The calculus X

In this section we will give the definition of the X -calculus which has been proven to be a fine-

grained implementation model for various well-known calculi [7, 5], like the λ-calculus, λx,

λµ, and λµµ̃. The calculus X is inspired by the sequent calculus lk, introduced by Gentzen

in [15]; the fragment of lk we will consider has only implication, and no structural rules.

lk is a logical system in which the rules only introduce connectives (but on both sides of

a sequent), in contrast to natural deduction which uses introduction and elimination rules.

The only way to eliminate a connective is to eliminate the whole formula in which it appears,

via an application of the (cut)-rule. Gentzen’s calculus for classical logic LK allows sequents

of the form A1, . . . , An ⊢ B1, . . . , Bm, where A1, . . . , An is to be understood as A1∧ . . .∧An and

B1, . . . , Bm is to be understood as B1∨ . . .∨Bm. Thus, lk appears as a very symmetrical system.

The variant of the sequent calculus we consider offers an extremely natural presentation of

the classical propositional calculus with implication, and is a variant of system lk. It has four

rules: axiom, right introduction of the arrow, left introduction and cut.

(ax): Γ, A ⊢ A,∆ (⇒L):
Γ ⊢ A,∆ Γ, B ⊢ ∆

Γ, A⇒ B ⊢ ∆
(⇒R):

Γ, A ⊢ B,∆

Γ ⊢ A⇒ B,∆
(cut):

Γ ⊢ A,∆ Γ, A ⊢ ∆

Γ ⊢ ∆

The elimination of rule (cut) plays a major role in lk, since for proof theoreticians, cut-

free proofs enjoy nice properties. Proof reductions by cut-elimination have been proposed by

Gentzen; those reductions become the fundamental principle of computation in X .

X features two separate categories of ‘connectors’, plugs and sockets, that act as input and

output channels, respectively.

3 In [19], stacks are called linear evaluation contexts.
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Definition 3.1 (Syntax for X [5]) The terms (or nets) of the X -calculus are defined by the

following syntax, where x,y range over the infinite set of term variables (also called sockets),

and α, β over the infinite set of context variables (also called plugs); the common name for both

is connector.

P, Q ::= 〈x·α〉 | ŷ P β̂ ·α | P β̂ [y] x̂ Q | P α̂ † x̂ Q

capsule export import cut

The syntax is extended with two flagged or active cuts:

P, Q ::= . . . | P α̂† x̂ Q | P α̂ † x̂ Q

Terms constructed without these flagged cuts are called pure.

We borrow the terminology from λµµ̃, and call P in P α̂ † x̂ Q or P β̂ [y] x̂ Q a term, and Q a

context.

The ·̂ symbolises that the connector underneath is bound in the adjacent term. The notion of

bound and free connector is defined as usual, and we will identify terms that only differ in

the names of bound connectors, as usual.

Definition 3.2 ([5]) The bound connectors in a term are defined through:

bs(〈x·α〉) = ∅

bs(x̂ P α̂ ·β) = bs(P) ∪ {x}

bs(P α̂ [y] x̂ Q) = bs(P) ∪ bs(Q) ∪ {x}

bs(P α̂ † x̂ Q) = bs(P) ∪ bs(Q) ∪ {x}

bp(〈x·α〉) = ∅

bp(x̂ P α̂ ·β) = bp(P) ∪ {α}

bp(P α̂ [y] x̂ Q) = bp(P) ∪ {α} ∪ bp(Q)

bp(P α̂ † x̂ Q) = bp(P) ∪ {α} ∪ bp(Q)

A connector occurring in P which is not bound is called free, and we write x ∈ fs(P) and

α ∈ fp(P). We will write x ∈ fs(P, Q) for x ∈ fs(P) ∧ x ∈ fs(Q), etc.

We adopt Barendregt’s convention in that free and bound connectors of terms will be different.

The calculus, defined by the reduction rules below, explains in detail how cuts are propa-

gated through terms to be eventually evaluated at the level of capsules, where renaming takes

place. Reduction is defined by specifying both the interaction between well-connected basic

syntactic structures, and how to deal with propagating active nodes to points in the term

where they can interact.

It is important to know when a connector is introduced, i.e. is connectable, i.e. is exposed

and unique; this will play a crucial role in the reduction rules.

Definition 3.3 (Reduction on X [5]) (Introduction) :

(P introduces x) : Either P = Q β̂ [x] ŷ R with x 6∈ fs(Q, R), or P = 〈x·α〉.

(P introduces α) : Either P = x̂ Q β̂ ·α and α 6∈ fp(Q), or P = 〈x·α〉.

(Logical rules) : Let α and x be introduced in, respectively, the left and right-hand side of the

main cuts below.

(cap) : 〈y·α〉 α̂ † x̂〈x·β〉 → 〈y·β〉

(exp) : (ŷ P β̂ ·α) α̂ † x̂〈x·γ〉 → ŷ P β̂ ·γ

(imp) : 〈y·α〉 α̂ † x̂ (Q β̂ [x] ẑ R) → Q β̂ [y] ẑ R

(exp-imp) : (ŷ P β̂ ·α) α̂ † x̂ (Q γ̂ [x] ẑ R) →

{
Q γ̂ † ŷ (P β̂ † ẑ R)

(Q γ̂ † ŷ P) β̂ † ẑ R

(Activation) : We define two cut-activation rules.

(a† ) : P α̂ † x̂ Q → P α̂† x̂ Q (P does not introduce α)

( †a) : P α̂ † x̂ Q → P α̂ † x̂ Q (Q does not introduce x)

(Propagation rules) : Left propagation rules:
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(d† ) : 〈y·α〉 α̂† x̂ P → 〈y·α〉 α̂ † x̂ P

(cap† ) : 〈y·β〉 α̂† x̂ P → 〈y·β〉 (β 6= α)

(exp-out† ) : (ŷ Q β̂ ·α) α̂† x̂ P → (ŷ (Q α̂† x̂ P) β̂ ·γ) γ̂ † x̂ P, (γ fresh)

(exp-in† ) : (ŷ Q β̂ ·γ) α̂† x̂ P → ŷ (Q α̂† x̂ P) β̂ ·γ (γ 6= α)

(imp† ) : (Q β̂ [z] ŷ R) α̂† x̂ P → (Q α̂† x̂ P) β̂ [z] ŷ (R α̂† x̂ P)

(cut† ) : (Q β̂ † ŷ R) α̂† x̂ P → (Q α̂† x̂ P) β̂ † ŷ (R α̂† x̂ P)

Right propagation rules:

( †d) : P α̂ † x̂ 〈x·β〉 → P α̂ † x̂ 〈x·β〉

( †cap) : P α̂ † x̂ 〈y·β〉 → 〈y·β〉 (y 6= x)

( †exp) : P α̂ † x̂ (ŷ Q β̂ ·γ) → ŷ (P α̂ † x̂ Q) β̂ ·γ

( †imp-out) : P α̂ † x̂ (Q β̂ [x] ŷ R) → P α̂ † ẑ ((P α̂ † x̂ Q) β̂ [z] ŷ (P α̂ † x̂ R)) (z fresh)

( †imp-in) : P α̂ † x̂ (Q β̂ [z] ŷ R) → (P α̂ † x̂ Q) β̂ [z] ŷ (P α̂ † x̂ R) (z 6= x)

( †cut) : P α̂ † x̂ (Q β̂ † ŷ R) → (P α̂ † x̂ Q) β̂ † ŷ (P α̂ † x̂ R)

(Reduction) : We write →X for the compatible closure of the above logical, propagation and

activation rules, and use →∗X for the reflexive, transitive reduction relation generated by

→X .

The first three logical rules above specify a renaming procedure, whereas the fourth rule

specifies the basic computational step: it links the export of a function, available on the plug

α, to an adjacent import via the socket x. The effect of the reduction will be that the exported

function is placed in-between the two sub-terms of the import, acting as interface. Notice that

two cuts are created in the result, that can be grouped in two ways; these alternatives do

not necessarily share all normal forms (reduction is non-confluent, so normal forms are not

unique). And in fact, this rule presents a critical pair.

Notice that, by the activation rules, in case both α is not introduced in P and x is not

introduced in Q, activation can take place in both directions, so the cut P α̂ † x̂ Q forms another

critical pair, which is a second source of non-confluence. The activation rules define how to

reduce a cut when one of its sub-terms does not introduce a connector mentioned in the

cut. This will involve moving the cut inwards, towards a position where the connector is

introduced. In case both connectors are not introduced this search can start in either direction,

indicated by the tilting of the dagger, via the activation of the cut.

The (full) reduction relation→X is not confluent: assuming α does not occur in P and x does

not occur in Q, then P α̂ † x̂ Q reduces to both P and Q.

As observed in [5], although activated cuts cannot ‘cross’, it can be mimicked, which can

lead to non-termination for typeable nets.

Example 3.4 Assume x 6∈ fs(Q), β 6∈ fp(P), and P, Q both pure, then:

P α̂ † x̂ (〈x·β〉 β̂ † ẑ Q) →( †a) P α̂ † x̂ (〈x·β〉 β̂ † ẑ Q) →( †cut)

(P α̂ † x̂ 〈x·β〉) β̂ † ẑ (P α̂ † x̂ Q) →( †d), ( †gc) (P α̂ † x̂ 〈x·β〉) β̂ † ẑ Q →(a† )

(P α̂ † x̂ 〈x·β〉) β̂† ẑ Q →(cut† ) (P β̂† ẑ Q) α̂ † x̂ (〈x·β〉 β̂† ẑ Q) →(d† ), (gc† )

P α̂ † x̂ (〈x·β〉 β̂ † ẑ Q)

[5] defines cbn and cbv sub-reduction systems by limiting the activation rules, favouring

one kind of activating whenever the above critical pair occurs.

Definition 3.5 ([5]) • If a cut can be activated in two ways, cbn only allows to activate it via

( †a); this is obtained by replacing rule (a† ) by:

(a†
n
) : P α̂ † x̂ Q → P α̂† x̂ Q (P does not introduce α and Q introduces x)
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• cbv can only activate such a cut via (a† ). We can reformulate this as the reduction system

obtained by replacing rule ( †a) by:

( †av) : P α̂ † x̂ Q → P α̂ † x̂ Q (P introduces α and Q does not introduce x)

It is possible to define reduction on terms in X without using activation, allowing cuts to

propagate over cuts at will; of course then it would be difficult to define cbn or cbv reduction

as we do here. Urban and Bierman introduced the activated cuts to obtain a more controlled

(limited) reduction, making a proof of strong normalisation for typeable terms possible [32].

We have the following results.

Lemma 3.6 (Renaming and Garbage Collection [5]) The following rules are admissible:

i) P α̂† x̂ 〈x·β〉→∗X P{β/α}, and P α̂ † x̂ 〈x·β〉→∗X P{β/α}.

ii) 〈y·α〉 α̂ † x̂ P→∗X P{y/x}, and 〈y·α〉 α̂ † x̂ P→∗X P{y/x}.

iii) († gc): Q α̂† x̂ P→∗X Q, α 6∈ fn(Q).

iv) ( †gc): P α̂ † x̂ Q→∗X Q, x 6∈ fv(Q).

The propagation rules in fact correspond to explicit substitution, as is exemplified by the

fact that λx, Bloo and Rose’s calculus of explicit substitution can easily be embedded in X .

Definition 3.7 ([10]) The syntax of λx is an extension of that of the λ-calculus:

M, N ::= x | λx.M | MN | M〈x:=N〉

The reduction relation is defined as the compatible closure of the following rules:

(B) : (λx.M)P → M〈x:=P〉

(App) : (MN)〈x:=P〉 → M〈x:=P〉N〈x:=P〉

(Abs) : (λy.M)〈x:=P〉 → λy.(M〈x:=P〉)

(Var) : x〈x:=P〉 → P

(VarK) : y〈x:=P〉 → y

(gc) : M〈x:=P〉 → M (x 6∈ fv(M))

The notion of reduction λx is obtained by deleting rule (gc), and the notion of reduction λxgc

is obtained by deleting rule (VarK). The rule (gc) is called ‘garbage collection’, as it removes

useless substitutions.

Definition 3.8 (Interpretation of λ, λx, and λµ in X [5]) J·Kα
λ,4 the interpretation of λ terms

into X , is defined as follows:

JxKα
λ

=
∆ 〈x·α〉

Jλx.MKα
λ

=
∆ x̂ JMKβ

λ β̂ ·α

JMNKα
λ

=
∆ JMKγ

λ γ̂ † x̂ (JNKβ
λ β̂ [x] ŷ 〈y·α〉)

This can be extended to J·Kα
λx, that maps λx-terms to X , by adding:

JM〈x:=N〉Kα
λx

=
∆ JNKβ

λx β̂ † x̂ JMKα
λx

The interpretation of λµ-term to X , J·Kα
λµ, is obtained by adding

Jµδ.[γ]MKα
λµ

=
∆ JMKγ

λµ δ̂ † x̂ 〈x·α〉

to J·Kα
λ.

Notice that the case for application directly represents how the natural deduction rule

Modes Ponens (�E) gets represented in lk.

4 We should remark that the notation introduced here might be misleading. Indexing of terms, as in t1 and t2,

is normally done to use the same identifier for two different items. This is not the case for JxKα
λ and JxKβ

λ, which

yield 〈x·α〉 and 〈x·β〉. Perhaps a notation like JMK(α) would have been better, since that correctly suggests that α
is a parameter to the interpretation of M; unfortunately, this notation becomes rather unreadable, especially in the
proofs that follow.
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Γ ⊢ A⇒ B
(W)

Γ ⊢ A⇒ B, B

Γ ⊢ A
(W)

Γ ⊢ A, B
(Ax)

Γ, B ⊢ B
(�L)

Γ, A⇒ B ⊢ B
(cut)

Γ ⊢ B

(cf [15]). [5] shows that the interpretations of Def. 3.8 respect reduction.

Type assignment for X is defined as follows:

Definition 3.9 (Typing for X [7]) Using the notion of types, and contexts of variables and

names of Definition 1.5, type assignment for X is defined through:

i) Type judgements are expressed via the ternary relation P ··· Γ ⊢X ∆, where Γ is a context of

sockets and ∆ is a context of plugs, and P is a term. We say that P is the witness of this

judgement.

ii) Context assignment for X is defined by the following rules:

(cap) : 〈y·β〉 ··· Γ,y:A ⊢ β:A,∆ (imp) :
P ··· Γ ⊢ α:A,∆ Q ··· Γ, x:A ⊢ ∆

P α̂ [y] x̂ Q ··· Γ,y:A→B ⊢ ∆

(exp) :
P ··· Γ, x:A ⊢ α:B,∆

x̂ P α̂ ·β ··· Γ ⊢ β:A→B,∆
(cut) :

P ··· Γ ⊢ α:A,∆ Q ··· Γ, x:A ⊢ ∆

P α̂ † x̂ Q ··· Γ ⊢ ∆

We write P ··· Γ ⊢X ∆ if there exists a derivation that has this judgement in the bottom

line.

Notice that Γ and ∆ carry the types of the free connectors in P, as unordered sets. There is

no notion of type for P itself, instead the derivable statement shows how P is connectable.

The soundness result of simple type assignment with respect to reduction is stated as usual:

Theorem 3.10 (Witness reduction [5]) If P ··· Γ ⊢X ∆, and P→X Q, then Q ··· Γ ⊢X ∆.

4 X with implicit substitution

In [5] it is argued that X is a calculus with explicit substitution, which makes it suitable to

encode calculi like the λ-calculus, λx, λµ and λµµ̃, as shown in that paper; these results are

shown with respect to full reduction. Since in this paper we look to model similar results

for restrictions of those calculi to cbn or cbv strategies, this explicit character of X poses a

problem.

When modelling λµµ̃’s reduction rule (µ), a property like

J〈µβ.c|e〉Kλ→∗X Jc{e/β}Kλ

needs justification, for we would need to show that substitution is preserved under the trans-

lation function J·Kλ. Since substitution is not part of the definition of X , the only thing that

is possible to show, as is done in [5], is that the interpretation of the implicit substitution of

λµµ̃ gets executed through reduction in X , mainly through the propagation rules. This implies

that, in a proof for this result, to fully achieve Jc{e/β}Kλ, these steps need to be executed in

full, irrespective of the restriction in evaluation contexts that the cbn or cbv-reduction strategy

might impose, thus forcing us, in practice, to allow for reduction, at least of the propagation

rules, to take place everywhere.

To avoid this problem altogether, here we choose to work with Xis, a variant of X defined

by Summers [30] that has a notion of implicit substitution. In [30], Summers defines X i as a

variant or X (adding also negation), that replaces the propagation rules by a substitution-like

operation Pα ] x and α ] xQ; the benefit of this change is that activated and unactivated cuts
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cannot interfere, and makes it more clear that the intention of reduction is that activated cuts

run to completion. We agree with Summers that separating the rules that express propagation

of activated cuts from the logical reduction rules gives a notion of reduction that is easier to

deal with; it should be noted, however, that treating activated cuts as implicit substitution,

rather than explicit substitution, as was the case in [5], restricts X ’s notion of reduction and

possible reducts.

As we will see below, when defining cbn and cbv reduction strategies on X , it becomes

natural to separate the propagation steps from the logical steps. In particular, to show the

preservations results in Sect. 7 for our encoding of λµµ̃ into X , we need to be able to simulate

the implicit substitution of λµµ̃; this is non-problematic for full reduction, as shown in [5],

but when modelling the cbn and cbv strategies, in the proofs of Lem. 7.3 and 7.4 we would

be forced to propagate the active cuts all through the terms, even where not permitted under

cbn or cbv strategies for X , so would not be able to show full simulation.

No longer considering active cuts as reducible terms, but rather expressing propagation of

active cuts through substitution, avoids that problem. We therefore change our definition to

that of Xis, X with implicit substitutions; notice that part of the justification of this definition

lies in Lem. 3.6.

Definition 4.1 (Substitution on Xis) The terms of Xis are those of X :

P, Q ::= 〈x·α〉 | ŷ P β̂ ·α | P β̂ [y] x̂ Q | P α̂ † x̂ Q

Right substitution on Xis is defined through:

(dr) : 〈y·α〉{α† x̂ P} = P{y/x}

(gcr) : Q{α† x̂ P} = Q (α 6∈ fn(Q))

(exp-outr) : (ŷ Q β̂ ·α){α† x̂ P} = (ŷ (Q{α† x̂ P}) β̂ ·γ) γ̂ † x̂ P (γ fresh)

(exp-inr) : (ŷ Q β̂ ·γ){α† x̂ P} = ŷ (Q{α† x̂ P}) β̂ ·γ (γ 6= α)

(impr) : (Q β̂ [z] ŷ R){α† x̂ P} = (Q{α† x̂ P}) β̂ [z] ŷ (R{α† x̂ P})

(cutr) : (Q β̂ † ŷ R){α† x̂ P} = (Q{α† x̂ P}) β̂ † ŷ (R{α† x̂ P})

and left substitution on Xis through:

(dl) : {P α̂ †x}〈x·β〉 = P{β/α}

(gcl) : {P α̂ †x}Q = Q (x 6∈ fv(Q))

(expl) : {P α̂ †x}(ŷ Q β̂ ·γ) = ŷ ({P α̂ †x}Q) β̂ ·γ

(imp-outl) : {P α̂ †x}(Q β̂ [x] ŷ R) = P α̂ † ẑ (({P α̂ †x}Q) β̂ [z] ŷ ({P α̂ †x}R)) z fresh)

(imp-inl) : {P α̂ †x}(Q β̂ [z] ŷ R) = ({P α̂ †x}Q) β̂ [z] ŷ ({P α̂ †x}R) (z 6= x)

(cutl) : {P α̂ †x}(Q β̂ † ŷ R) = ({P α̂ †x}Q) β̂ † ŷ ({P α̂ †x}R)

Notice that these now no longer are reduction rules, but define a notion of implicit substi-

tution that percolates through the terms; the only reduction rules now are the logical rules

(cap), (exp), (imp), and (cut) (as in Def 3.3), as well as the two rules that start the substitution.

However, rules (exp-outr) and (expl) introduce new cuts.

Definition 4.2 (Reduction on Xis) The single step reduction steps for Xis are defined through:

(cap) : 〈y·α〉 α̂ † x̂〈x·β〉 → 〈y·β〉

(exp) : (ŷ P β̂ ·α) α̂ † x̂〈x·γ〉 → ŷ P β̂ ·γ

(imp) : 〈y·α〉 α̂ † x̂ (Q β̂ [x] ẑ R) → Q β̂ [y] ẑ R

(exp-imp) : (ŷ P β̂ ·α) α̂ † x̂ (Q γ̂ [x] ẑ R) →

{
Q γ̂ † ŷ (P β̂ † ẑ R)

(Q γ̂ † ŷ P) β̂ † ẑ R

(subr) : P α̂ † x̂ Q → P{α† x̂ Q} (P does not introduce α)

(subl) : P α̂ † x̂ Q → {P α̂ †x}Q (Q does not introduce x)
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We write P→Xis
Q if P reduces to Q using one of the above logical or substitution activation

rules, and use →∗
Xis

for the reflexive, transitive, compatible reduction relation generated by

→Xis
.

Notice that, by these rules, in case both α is not introduced in P and x is not introduced in Q,

activation can take place in both directions, so then the cut P α̂ † x̂ Q again forms a critical pair.

As to the reduction in Exm. 3.4, this problem is now avoided:

P α̂ † x̂ (〈x·β〉 β̂ † ẑ Q) →(subl) {P α̂ †x}(〈x·β〉 β̂ † ẑ Q) = (cutl)

({P α̂ †x}〈x·β〉) β̂ † ẑ ({P α̂ †x}Q) →(dl,gcl) P{β/α} β̂ † ẑ Q

We will now define the cbn and cbv reduction strategies for Xis.

Definition 4.3 (Call By Name reduction strategy for Xis) For Xis, the cbn-reduction strat-

egy→n∗
Xis

is defined by limiting →∗
Xis

through:

• We replace rule (subr) with:

(subn

r
) : P α̂ † x̂ Q →n P{α† x̂ Q}, (if P does not introduce α and Q introduces x).

• As in [23], we only allow one variant of (exp-imp):

(ŷ P β̂ ·α) α̂ † x̂ (Q γ̂ [x] ẑ R) →n Q γ̂ † ŷ (P β̂ † ẑ R)

• The contextual rule for the cbn-evaluation strategy is defined through:

P→n∗
Xis

Q ⇒ P α̂ † x̂ R→n∗
Xis

Q α̂ † x̂ R

Definition 4.4 (Call By Value reduction strategy for Xis ) The cbv-reduction strategy→v∗
Xis

is defined by limiting →∗
Xis

through:

• We replace rule (subl) with:

(subv

l
) : P α̂ † x̂ Q →v {P α̂ †x}Q, (P introduces α and Q does not introduce x).

• As for cbn, we only allow the first variant of (exp-imp):

(ŷ P β̂ ·α) α̂ † x̂ (Q γ̂ [x] ẑ R) →v Q γ̂ † ŷ (P β̂ † ẑ R)

• The contextual rule for the cbv-evaluation strategy is defined through:

P→v∗
Xis

Q ⇒ P α̂ † x̂ R→v∗
Xis

Q α̂ † x̂ R

This way, we obtain two notions of reduction that are clearly confluent because of the

absence of critical pairs. Notice that the only difference between cbn and cbv reduction

lies in activation and that both strategies do not allow for reduction in contexts, nor inside

substitutions.

By the way reduction in Xis is defined, directly based on that of X , reduction in X imple-

ments that of Xis, and the following result is straightforward.

Theorem 4.5 If P→Xis
Q, then P→∗X Q.

Since→∗X is more fine-grained, of course the converse does not hold.

We have the following results. These are already shown in [5], but for X ; since here the

exact steps that are needed in the reduction must be known when modelling cbn or cbv, we

give the proofs in detail.

Lemma 4.6 i) P{α† x̂ 〈x·β〉}= P{β/α}, and P α̂ † x̂ 〈x·β〉→∗
Xis

P{β/α}.

ii) {〈y·α〉 α̂ †x}P = P{y/x}, and 〈y·α〉 α̂ † x̂ P→∗
Xis

P{y/x}.

iii) (gcr): Q{α† x̂ P}= Q, α 6∈ fn(Q).

iv) (gcl): {P α̂ †x}Q = Q, x 6∈ fv(Q).

Proof : By induction on the structure of nets.
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i) (P = 〈y·α〉) : 〈y·α〉{α† x̂ 〈x·β〉} =(dr) 〈y·β〉 =
∆ 〈y·α〉{β/α}

(P = 〈y·γ〉, γ 6= α) : 〈y·γ〉{α† x̂ 〈x·β〉} =(gcr) 〈y·γ〉 =
∆ 〈y·γ〉{β/α}

(P = ŷ Q γ̂ ·α) : (ŷ Q γ̂ ·α){α† x̂ 〈x·β〉} = (exp-outr) ŷ (Q{α† x̂ 〈x·β〉}) γ̂ ·β =(ih)

ŷ Q{β/α} γ̂ ·β =
∆ (ŷ Q γ̂ ·α){β/α}

(P = ŷ Q γ̂ ·δ, δ 6= α) : (ŷ Q γ̂ · δ){α† x̂ 〈x·β〉} =(exp-inr) ŷ (Q{α† x̂ 〈x·β〉}) γ̂ · δ =(ih)

ŷ Q{β/α} γ̂ ·δ =
∆ (ŷ Q γ̂ ·δ){β/α}

(P = Q γ̂ [y] ẑ R) : (Q γ̂ [y] ẑ R){α† x̂ 〈x·β〉} = (impr) (Q{α† x̂ 〈x·β〉}) γ̂ [y] ẑ (R{α† x̂ 〈x·β〉})

= (ih) Q{β/α} γ̂ [y] ẑ R{β/α} =
∆ (Q γ̂ [y] ẑ R){β/α}

(P = Q γ̂ † ẑ R) : (Q γ̂ † ẑ R){α† x̂ 〈x·β〉} = (cutr) (Q{α† x̂ 〈x·β〉}) γ̂ † ẑ (R{α† x̂ 〈x·β〉})

= (ih) Q{β/α} γ̂ † ẑ R{β/α} =
∆ (Q γ̂ † ẑ R){β/α}

For the second part, if α is introduced in P, the result follows by rules (cap) or (exp);

otherwise P α̂ † x̂ 〈x·β〉→X (subr) P{α† x̂ 〈x·β〉}, and the result follows by the first part.

ii) (P = 〈x·β〉) : {〈y·α〉 α̂ †x}〈x·β〉 =(dl) 〈x·β〉 =
∆ 〈y·β〉{y/x}

(P = 〈z·β〉, z 6= x) : {〈y·α〉 α̂ †x}〈z·β〉 =(gcl) 〈z·β〉 =
∆ 〈z·β〉{y/x}

(P = ẑ Q γ̂ ·β) : {〈y·α〉 α̂ †x}(ẑ Q γ̂ ·β) =(expl) ẑ ({〈y·α〉 α̂ †x}Q) γ̂ ·β =(ih) ẑ Q{y/x} γ̂ ·β

=
∆ (ẑ Q γ̂ ·β){y/x}

(P = Q γ̂ [x] ẑ R) : {〈y·α〉 α̂ †x}(Q γ̂ [x] ẑ R) = (imp-outl)

({〈y·α〉 α̂ †x}Q) γ̂ [y] ẑ ({〈y·α〉 α̂ †x}R) = (ih)

Q{y/x} γ̂ [y] ẑ R{y/x} =
∆ (Q γ̂ [x] ẑ R){y/x}

(P = Q γ̂ [v] ẑ R, v 6= x) : {〈y·α〉 α̂ †x}(Q γ̂ [v] ẑ R) = (imp-inl)

({〈y·α〉 α̂ †x}Q) γ̂ [v] ẑ ({〈y·α〉 α̂ †x}R) = (ih)

Q{y/x} γ̂ [v] ẑ R{y/x} =
∆ (Q γ̂ [v] ẑ R){y/x}

(P = Q γ̂ † ẑ R) : {〈y·α〉 α̂ †x}(Q γ̂ † ẑ R) = (cutl) ({〈y·α〉 α̂ †x}Q) γ̂ † ẑ ({〈y·α〉 α̂ †x}R)

= (ih) Q{y/x} γ̂ † ẑ R{y/x} =
∆ (Q γ̂ † ẑ R){y/x}

For the second part, if x is introduced in P, the result follows by rules (cap) or (imp);

otherwise 〈y·α〉 α̂ † x̂ P→X {〈y·α〉 α̂ †x}P, and the result follows by the first part.

iii) (Q = 〈y·γ〉, γ 6= α) : 〈y·γ〉{α† x̂ P} =(gcr) 〈y·γ〉

(Q = ŷ R γ̂ ·δ, δ 6= α) : (ŷ R γ̂ · δ){α† x̂ P} =(exp-inr) ŷ (R{α† x̂ P}) γ̂ · δ =(ih) ŷ R γ̂ ·δ

(Q = R γ̂ [y] ẑ S) : (R γ̂ [y] ẑ S){α† x̂ P} =(impr) (R{α† x̂ P}) γ̂ [y] ẑ (S{α† x̂ P}) =(ih)

Q γ̂ [y] ẑ R

(P = R γ̂ † ẑ S) : (R γ̂ † ẑ R){α† x̂ P} =(cutr) (R{α† x̂ P}) γ̂ † ẑ (S{α† x̂ P}) =(ih) R γ̂ † ẑ S

iv) (P = 〈z·β〉, z 6= x) : {P α̂ †x}〈z·β〉 =(gcl) 〈z·β〉

(P = ẑ R γ̂ ·β) : {P α̂ †x}(ẑ R γ̂ ·β) =(expl) ẑ ({P α̂ †x}R) γ̂ ·β =(ih) ẑ R γ̂ ·β

(P = Q γ̂ [v] ẑ R, v 6= x) : {P α̂ †x}(Q γ̂ [v] ẑ R) =(imp-inl) ({P α̂ †x}Q) γ̂ [v] ẑ ({P α̂ †x}R)

= (ih) Q γ̂ [v] ẑ R

(P = Q γ̂ † ẑ R) : {P α̂ †x}(Q γ̂ † ẑ R) =(cutl) ({P α̂ †x}Q) γ̂ † ẑ ({P α̂ †x}R) =(ih)

Q γ̂ † ẑ R

Notice that substitution activation plays no role in this proof.

Type assignment for Xis is defined as for X , and the following soundness result of type

assignment with respect to→Xis
reduction is stated as usual and is easy to show.

Theorem 4.7 (Witness reduction for→Xis
) If P ··· Γ ⊢X ∆, and P→Xis

Q, then Q ··· Γ ⊢X ∆.
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Proof : By Thm. 3.10 and 4.5.

5 Embedding the sλµ-calculus in to λµµ̃

Essentially following [12], an interpretation J·K of sλµ into λµµ̃ can be defined as follows:

JxK =
∆ x

Jλx.MK =
∆ λx.JMK

JMNK =
∆ µα.〈JMK | JNK·α〉

Jµβ.[γ]MK =
∆ µβ.〈JMK|γ〉

Using this interpretation, and the observation that

JPQRK =
∆ µα.〈JPQK|JRK·α〉 =

∆ µα.〈µβ.〈JPK | JQK·β〉 | JRK·α〉 →λ µα.〈JPK | JQK·JRK·α〉

we can point out the fundamental difference between µ-reduction in λµ and λµµ̃.

Remark 5.1 In λµ, as discussed above, the intention of µ-reduction is to redirect an applicative

context, but it has to do that ‘one term at the time’.

(µα.[τ]x (µσ.[α]M))PQR →λµ (µγ.[τ]x (µσ.[γ]MP))QR →λµ

(µδ.[τ]x (µσ.[δ]MPQ))R →λµ

µβ.[τ]x (µσ.[β]MP QR)

and therefore has to be recursive in nature. This is not the case for λµµ̃, where we have the

reduction

J(µα.[τ]x (µσ.[α]M))PQRK =
∆

µβ.〈µγ.〈µδ.〈µα.〈µρ.〈x |µσ.〈JMK|α〉·ρ〉 |τ〉 | JP
s
·δ〉 |JQ

s
·γ〉 | JR

s
·β〉 →∗

λ

µβ.〈µα.〈µρ.〈x |µσ.〈JMK|α〉·ρ〉 |τ〉 | JP
s
·JQ

s
·JR

s
·β〉 →λ (α)

µβ.〈µρ.〈x |µσ.〈JMK |JP
s
·JQ

s
·JR

s
·β〉·ρ〉 |τ〉 =

∆

where the whole environment JP
s
·JQ

s
·JR

s
·β gets pulled in in one step (notice that the first

sequence of steps does not deal with the µα-redex contraction, but just prepares the environ-

ment, contracting the µ-redexes that are generated by the interpretation). We can also reduce

the term as follows:

J(µα.[τ]x (µσ.[α]M))PQRK =
∆

µβ.〈µγ.〈µδ.〈µα.〈µρ.〈x |µσ.〈JMK|α〉·ρ〉 |τ〉 | JP
s
·δ〉 |JQ

s
·γ〉 | JR

s
·β〉 →λ (α)

µβ.〈µγ.〈µδ.〈µρ.〈x |µσ.〈JMK|JP
s
·δ〉·ρ〉 |τ〉 | JQ

s
·γ〉 |JR

s
·β〉 →λ (δ)

µβ.〈µγ.〈µρ.〈x |µσ.〈JMK |JP
s
·JQ

s
·γ〉·ρ〉 |τ〉 |JR

s
·β〉 →v

λ
(γ)

µβ.〈µρ.〈x |µσ.〈JMK |JP
s
·JQ

s
·JR

s
·β〉·ρ〉 |τ〉

which ‘pulls in one term at the time’, but does not do that using α but rather the µ-redexes

generated by the interpretation for applications. In fact, in a way the µ-abstractions added by

the interpretation implement the repetitive character of λµ’s µ-reduction; for each surrounding

application, a µ-abstraction is inserted, that will be used to execute one of the recursive steps.

Example 5.2 It is worthwhile to remark that reduction in the image of J·K, even when restricted

to the λ-calculus, is not confluent. In fact, we have both:
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J(λz.zz) (pp)K =
∆

µα.〈Jλz.zzK |JppK·α〉 =
∆

µα.〈λz.(zz)n |JppK·α〉 →λ (λ)

µα.〈JppK | µ̃z.〈(zz)n |α〉〉 =
∆

µα.〈µβ.〈p|p·β〉 | µ̃z.〈(zz)n |α〉〉 →v

λ
(µ)

µα.〈p | p·µ̃z.〈(zz)n |α〉〉 =
∆

µα.〈p | p·µ̃z.〈µγ.〈z|z·γ〉 |α〉〉

J(λz.zz) (pp)K →λ (λ)

µα.〈JppK | µ̃z.〈(zz)n |α〉〉 =
∆

µα.〈JppK | µ̃z.〈µγ.〈z|z·γ〉 |α〉〉 →n

λ
(µ̃)

µα.〈µγ.〈JppK | JppK·γ〉 |α〉 →n

λ
(µ)

µα.〈JppK | JppK·α〉 =
∆

µα.〈µβ.〈p|p·β〉 |JppK·α〉 →n

λ
(µ)

µα.〈p | p·JppK·α〉 =
∆

µα.〈p | p·µβ.〈p|p·β〉·α〉

This holds for all the interpretations from sλµ to λµµ̃ we discuss in this paper. Notice that the

right reduction is in cbn. The left is cbv; it can be extended with

µα.〈p | p·µ̃z.〈µγ.〈z|z·γ〉 |α〉〉 →λ (µ) µα.〈p | p·µ̃z.〈z|z·α〉〉

but here reduction takes place in the environment.

Curien and Herbelin [12] define two separate encodings, one, ·n, to model cbn and another,

·v, to model cbv:

Definition 5.3 ([12]) The interpretations ·v and ·n of λµ into λµµ̃ are defined by:

xv
=
∆ x

(λx.M)v
=
∆ λx.Mv

(MN)v
=
∆ µα.〈Nv | µ̃x.〈Mv |x·α〉〉

(µβ.C)v
=
∆ µβ.Cv

([α]M)v
=
∆ 〈Mv |α〉

xn
=
∆ x

(λx.M)n
=
∆ λx.Mn

(MN)n
=
∆ µα.〈Mn |Nn·α〉

(µβ.C)n
=
∆ µβ.Cn

([α]M)n
=
∆ 〈Mn |α〉

Note that these also deal with Λµ, where naming and µ-binding are separate.

Observe that ·n is the interpretation J·K we mentioned above, and that these interpretations

only differ in the case for application; remark that we have:

µα.〈t1 | µ̃x.〈t2 |x·α〉〉 →n

λ
(x) µα.〈t2 |t1·α〉

and in effect, Herbelin only considers ·v in [12].

Now the problem signalled above disappears, since we have (assuming that Mv→v∗
λ

Nv):

(V M)v
=
∆ µα.〈Mv | µ̃x.〈Vv |x·α〉〉 →v∗

λ
µα.〈Nv | µ̃x.〈Vv |x·α〉〉 =

∆ (V N)v

so we can simulate the evaluation of the argument of a redex without allowing reduction in

the environment.

[12] in fact only deals with (β) and (µr)-reduction, and defines cbv reduction by limiting

the operands in those rules to values. It states some preservation results, but gives very few

details.

We wanted to investigate if there could be an interpretation that respects both cbn and cbv

strategies for sλµ as well. We first make the following observations:

Remark 5.4 • The interpretation ·n creates problems when interpreting the cbv (µl)-reduction

N (µβ.[β]M) →s
βµ µγ.[γ]N ({N·γ/β}M)

We would like to show that

(N (µβ.[β]M))n
=
∆

µα.〈Nn |µβ.〈Mn |β〉 · α〉 ↓v

λ (?) µα.〈Nn | ({[N·γ]/β}M)n · α〉
v

λ
← (γ) µγ.〈µα.〈Nn | ({N·γ/β}M)n · α〉 |γ〉

=
∆ (µγ.[γ]N ({N·γ/β}M))n

(as will be explained below, the interpretation respects reduction through equality; not
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through reduction), but cannot: the term µα.〈Nn |µβ.〈Mn |β〉 · α〉 is not a (µ)-redex (over

β). In Sect. 6 we will discuss adding this kind of term to the redexes of λµµ̃.

• As already observed above, ·n also does not deal well with the contextual reduction rules

for cbv. For the rule M→v

λ
N ⇒ V M→v

λ
V N we have:

(V M)n
=
∆ µα.〈Vn |Mn·α〉 ↓v

λ (?) µα.〈Vn |Nn·α〉 =
∆ (V N)n

which asks for reduction in the environment.

• That ·v deals correctly with (µl) is illustrated by:

(N (µβ.[β]M))v
=
∆

µα.〈µβ.〈Mv |β〉 | µ̃x.〈Nv |x·α〉〉 →λ (µ) µα.〈Mv{µ̃x.〈Nv |x·α〉/β} | µ̃x.〈Nv |x·α〉〉
∗
λ
← µα.〈({N·α/β}M)v | µ̃x.〈Mv |x·α〉〉

=
∆ (M ({N·α/β}M))v

provided of course that we verify that Mv{µ̃x.〈Nv |x·α〉/β} = ({N·α/β}M)v
; we will do

so in Lem. 5.13 and in Sect. 6.

• There is a problem in showing M→v

λµ N ⇒ Mv ↓v

λ Nv when dealing with the contextual

reduction rules. The first, M→ N ⇒ V M→V N now follows easily, since we have:

(V M)v
=
∆ µα.〈Mv | µ̃x.〈Vv |x·α〉〉 ↓v

λ (ih) µα.〈Nv | µ̃x.〈Vv |x·α〉〉 =
∆ (V N)v

benefitting from the swap between the terms, but for the second M→ N ⇒ MP→ NP

we now have:

(MP)v
=
∆ µα.〈Pv | µ̃x.〈Mv |x·α〉〉 ↓v

λ (?) µα.〈Pv | µ̃x.〈Nv |x·α〉〉 =
∆ (V N)v

for which we need to allow for reduction to take place inside a µ̃-term, so inside the

environment.

When modelling cbn reduction under this interpretation, there is no need to reduce in

the environment, since we can then contract the (µ̃)-redexes:

(MP)v
=
∆ µα.〈Pv | µ̃x.〈Mv |x·α〉〉 →n∗

λ
(x) µα.〈Mv |Pv·α〉 ↓n

λ (ih)

µα.〈Nv |Pv·α〉 ↓n

λ (x) µα.〈Pv | µ̃x.〈Nv |x·α〉〉 =
∆ (V N)v

This is not allowed for cbv, since Pv need not be a value.

• We could argue that the encoding ·v actually represents of a cbv-reduction strategy vari-

ant on sλµ with the contextual rules:

Cv ::= ⌈⌋ | CvV | MCv | µα.[β]Cv

which would force the evaluation of the parameter until it becomes a value, after which

the term in function position gets reduced; this corresponds to a reduction like (where

we assume that each Pi runs to a value Vi):

(λx.M)P1 P2· · ·Pn−1 Pn →∗v (λx.M)P1 P2 · · ·Pn−1Vn →∗v (λx.M)P1 P2 · · ·Vn−1Vn →∗v
(λx.M)P1V2· · ·Vn−1Vn →v (λx.M)V1V2 · · ·Vn−1Vn →v M{V1/x}V2· · ·Vn−1Vn

which would perhaps be too great a deviation from a ‘normal’ cbv strategy.

We would then have:

(P M)v
=
∆ µα.〈Mv | µ̃x.〈Pv |x·α〉〉 ↓v

λ (ih) µα.〈Nv | µ̃x.〈Pv |x·α〉〉 =
∆ (PN)v

(MV)v
=
∆ µα.〈Vv | µ̃x.〈Mn |x·α〉〉 →n∗

λ
(x) µα.〈Mv |Vn·α〉 ↓n

λ (ih)

µα.〈Nv |Vn·α〉 ↓n

λ (x) µα.〈Vv | µ̃x.〈Nn |x·α〉〉 =
∆ (NV)v

without the need to reduce inside the environment.5

Curien and Herbelin [12] state reduction preservation results for their encodings (formu-

5 This might be well suited to model reduction in the Call by Push Value calculus [25], where reduction inside
parameters is not permitted.
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lated as if λµ-reduction is represented through λµµ̃-reduction, modulo (µ)-expansion). These

are stated with respect to the notion of cbn and cbv-reduction for λµµ̃ that just remove the

(µ), (µ̃) critical pair, so are sub-reduction systems, not the notions we have defined here, which

are reduction strategies. We will see in the proofs of Lem. 5.9 and Thm. 5.10 that in order to

model (µr)-reduction, some reverse reduction steps are needed as well.

We will now show that we can strengthen the results of [12], and show that we can define

one interpretation with which we can successfully represent all three notions of reduction and

strategy. We will essentially show that our interpretation can be used to represent not only

the (traditional) λµ calculus, but also sλµ, and not only for the cbv reduction strategy, but

also cbn, as well as unrestricted reduction.

We will first define our interpretation.

Definition 5.5 Interpretation J·
s

of sλµ into λµµ̃:

Jx
s

=
∆ x

Jλx.M
s

=
∆ λx.JM

s

JMN
s

=
∆ µα.〈JM

s
| µ̃x.〈JN

s
| µ̃y.〈x|y·α〉〉〉

Jµβ.[γ]M
s

=
∆ µβ.〈JM

s
|γ〉

Notice that this interpretation also is a mapping from the λ-calculus to λµµ̃.

It is straightforward to show that this interpretation respects assignable types:

Theorem 5.6 If Γ ⊢λµ M : A |∆, then Γ ⊢λ JM
s

: A |∆ .

Proof : (Ax) : Then M ≡ x and x:A ∈ Γ; since JM
s
= x, also Γ ⊢λ x : A |∆ by rule (Ax).

(�I) : Then M ≡ λx.N, A ≡ B→C, and Γ, x:B ⊢λµ N : C |∆. By induction, Γ, x:B ⊢λ JN
s

: C |∆ ,

and by rule (�I), Γ ⊢λ λx.JN
s

: A |∆ .

(�E) : Then M ≡ PQ, and there exists B such that Γ ⊢λµ P : B→A | ∆ and Γ ⊢λµ Q : B | ∆.

Then by induction, Γ ⊢λ JP
s

: B→A |∆ and Γ ⊢λ JQ
s

: B |∆ ; by weakening, we also have

Γ ⊢λ JP
s

: B→A | α:A,∆ and Γ, x:B→A ⊢λ JQ
s

: B | α:A,∆, and we can construct (where

Γ′ = Γ, x:B→A,y:B):

Γ ⊢λ JP s : B→A | α:A,∆

Γ, x:B→A ⊢λ JQ s : B | α:A,∆

Γ′ ⊢λ x : B→A | α:A,∆

Γ′ ⊢λ y : B | α:A,∆ Γ′ | α : A ⊢λ α:A,∆

Γ′ | y·α : B→A ⊢λ α:A,∆

〈x |y·α〉 : Γ′ ⊢λ α:A,∆

Γ, x:B→A | µ̃y.〈x|y·α〉 : B ⊢λ α:A,∆

〈JQ s | µ̃y.〈x|y·α〉〉 : Γ, x:B→A ⊢λ α:A,∆

Γ | µ̃x.〈JQ s | µ̃y.〈x |y·α〉〉 : B→A ⊢λ α:A,∆

〈JP s | µ̃x.〈JQ s | µ̃y.〈x |y·α〉〉〉 : Γ ⊢λ α:A,∆

Γ ⊢λ µα.〈JP
s | µ̃x.〈JQ

s | µ̃y.〈x |y·α〉〉〉 : A |∆

(µ) : We have two cases: M ≡ µα.[β]N, ∆ = β:B,∆′, and Γ ⊢λµ N : B | α:A, β:B,∆′ ; then by

induction we have Γ ⊢λ JN
s

: B | α:A, β:B,∆′ . We can construct:

Γ ⊢λ JN s : B | α:A, β:B,∆′ Γ | β : B ⊢λ α:A, β:B,∆′

〈JN
s|β〉 : Γ ⊢λ α:A, β:B,∆′

Γ ⊢λ µα.〈JN s|β〉 : A | β:B,∆′

Or M≡ µα.[α]N and Γ ⊢λµ N : A | α:A,∆; then by induction we have Γ ⊢λ JN
s
: A | α:A,∆.

We can construct:
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Γ ⊢λ JN s : A | α:A,∆ Γ | α : A ⊢λ α:A,∆

〈JN s|α〉 : Γ ⊢λ α:A,∆

Γ ⊢λ µα.〈JN
s|α〉 : A |∆

Remark that we have:

JPQ
s

=
∆ µα.〈JP

s
| µ̃x.〈JQ

s
| µ̃y.〈x|y·α〉〉〉 → µα.〈JQ

s
| µ̃y.〈JP

s
|y·α〉〉 → µα.〈JP

s
| JQ

s
·α〉

(PQ)v
=
∆ µα.〈Qv | µ̃y.〈Pv |y·α〉〉 → µα.〈Pv |Qv·α〉

(PQ)n
=
∆ µα.〈Pn |Qn·α〉

a relation that will be useful when doing the proofs.

We will show our encoding respects the three notions of reduction by showing, in Thm. 5.15,

5.16, and 5.17 that the encoding respects reduction through equality:

M→s∗
λµ N ⇒ JM

s
=λ JN

s
(1)

M→sv∗
λµ N ⇒ JM

s
↓v

λ JN
s

(2)

M→sn∗
λµ N ⇒ JM

s
↓n

λ JN
s

(3)

For the basic steps in reduction this will be shown through Thm. 5.8 that shows that the

encoding respects the (β)-reduction rule:

J(λz.M)N
s
→∗

λ
JM{N/z}

s

Thm. 5.10 shows it respects (µr)-reduction:

J(µδ.[β]M)N
s
=λ Jµγ.[β]M{N·γ/δ}

s
, (β 6= δ)

J(µδ.[δ]M)N
s
=λ Jµγ.[γ](M{N·γ/δ})N

s

and Thm. 5.14 shows it respects (µl)-reduction:

JN (µα.[δ]M)
s
=λ Jµγ.[δ]{N·γ/α}M

s
, (α 6= δ)

JN (µα.[α]M)
s
=λ Jµγ.[γ]N ({N·γ/α}M)

s

We will, for each of these last three results, argue that all the contractions that take place in

the proofs would still be allowed when restricting to the cbv and cbn reduction strategies, so

prove the three results (1), (2), and (3) simultaneously. The only exception to this is Thm. 5.10

the proof of which is not sound for cbn; Thm. 5.12 will show that result for cbn. Note that,

for cbv, we need to check that: 1) only values are substituted through (µ̃)-reduction steps; 2) no

reduction takes place in environments, and for cbn that: 1) only stacks are substituted through

(µr)-reduction steps; 2) no reduction takes place in environments.

We start by showing that the interpretation respects β-reduction, for which we first need to

show it respects term substitution.

Lemma 5.7 JM
s
{JN

s
/z} = JM{N/z}

s

Proof : By induction on the structure of terms.

(M = z) : Jz
s
{JN

s
/z} =

∆ z{JN
s
/z} =

∆ JN
s

=
∆ Jz{N/z}

s

(M = y, y 6= z) : Jy
s
{JN

s
/z} =

∆ y{JN
s
/z} =

∆ y =
∆ Jy

s

=
∆ Jy{N/z}

s

(M = λy.P) : Jλy.P
s
{JN

s
/z} =

∆ λy.JP
s
{JN

s
/z} =(ih)λy.JP{N/z}

s

=
∆ Jλy.P{N/z}

s

(M = PQ) : JPQ
s
{JN

s
/z} =

∆ µα.〈JP
s
| µ̃x.〈JQ

s
| µ̃y.〈x|y·α〉〉〉{JN

s
/z} =

∆

µα.〈JP
s
{JN

s
/z} | µ̃x.〈JQ

s
{JN

s
/z} | µ̃y.〈x|y·α〉〉〉 = (ih)

µα.〈JP{N/z}
s
| µ̃x.〈JQ{N/z}

s
| µ̃y.〈x|y·α〉〉〉 =

∆

J(P{N/z})(Q{N/z})
s

=
∆ J(PQ){N/z}

s
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(M = µβ.[γ]P) : Jµβ.[γ]P
s
{JN

s
/z} =

∆ µβ.〈JP
s
|γ〉{JN

s
/z} =

∆ µβ.〈JP
s
{JN

s
/z} |γ〉 =(ih)

µβ.〈JP{N/z}
s
|γ〉 =

∆ Jµβ.[γ]P{N/z}
s

=
∆ J(µβ.[γ]P){N/z}

s

Reduction does not play a role in this result.

Theorem 5.8 J(λz.M)N
s
→+

λ
JM{N/z}

s
.

Proof : J(λz.M)N
s

=
∆ µα.〈λz.JM

s
| µ̃x.〈JN

s
| µ̃y.〈x|y·α〉〉〉 →λ (x)

µα.〈JN
s
| µ̃y.〈λz.JM

s
|y·α〉〉 →λ (y) µα.〈λx.JM

s
|JN

s
·α〉 →λ (λ)

µα.〈JN
s
| µ̃z.〈JM

s
|α〉〉 →λ (z) µα.〈JM

s
{JN

s
/z} |α〉 = (5.7)

µα.〈JM{N/z}
s
|α〉 →λ (ηµ) JM{N/z}

s

When restricting to cbv, JN
s

and λz.JM
s

are both values, so the (µ̃) contractions over x, y

and z would be permitted. There are no cbn considerations here. There are five reduction

steps involved here, so the simulation of this single reduction step requires multiple steps in

the image.

For right-structural reduction, the situation is slightly more complicated, in that we cannot

show that, for example,

J(µδ.[δ]M)N
s
→∗

λ
Jµγ.[γ](M{N·γ/δ})N

s
.

For that, we would like to show (something like) JM
s
{JN

s
·γ/δ} →∗

λ
JM{N·γ/δ}

s
, as in the

proof above (step 5.7) but cannot: in fact, the only relation we can show is with the components

switched (so reduction takes place in the opposite direction) as is shown in the following

lemma. This is directly related to the fact that the two µ abstractions are fundamentally

different: in λµ, µ-reduction reconstructs the µ-abstraction, whereas in λµµ̃ it disappears.

The proofs for the preservation of right-structural reduction come in two parts. First,

in Thm. 5.10, we will show that the interpretation preserves full reduction and cbv, using

Lem. 5.9; these proofs will make (µ)-reduction steps that are not allowed in cbn. This is

followed by Thm. 5.12, where we show the result for cbn, using Lem. 5.11; these proofs will

make (µ̃)-reduction steps that are not allowed in cbv.

In the following two results, we will write JN·γ
s

for µ̃x.〈JN
s
| µ̃y.〈x|y·γ〉〉 for reasons of

readability; notice that then JPQ
s
= µα.〈JP

s
| JQ·α

s
〉.

Lemma 5.9 JM{N·γ/δ}
s
→∗

λ
JM

s
{JN·γ

s
/δ}.

Proof : (M = z) : Jz{N·γ/δ}
s
= Jz

s

=
∆ z = z{JN·γ

s
/δ} =

∆ Jz
s
{JN·γ

s
/δ}

(M = λz.P) : J(λz.P){N·γ/δ}
s
= Jλz.P{N·γ/δ}

s

=
∆ λz.JP{N·γ/δ}

s
→∗

λ
(ih)

λz.JP
s
{JN·γ

s
/δ} = (λz.JP

s
){JN·γ

s
/δ} =

∆ Jλz.P
s
{JN·γ

s
/δ}

(M = PQ) : J(PQ){N·γ/δ}
s
= J(P{N·γ/δ}) (Q{N·γ/δ})

s

=
∆

µα.〈JP{N·γ/δ}
s
| µ̃x.〈JQ{N·γ/δ}

s
| µ̃y.〈x|y·α〉〉〉 →∗

λ
(ih)

µα.〈JP
s
{JN·γ

s
/δ} | µ̃x.〈JQ

s
{JN·γ

s
/δ} | µ̃y.〈x|y·α〉〉〉 =

µα.〈JP
s
| µ̃x.〈JQ

s
| µ̃y.〈x|y·α〉〉〉{JN·γ

s
/δ} =

∆ JPQ
s
{JN·γ

s
/δ}

(M = µβ.[τ]P, τ 6= δ) : J(µβ.[τ]P){N·γ/δ}
s

= Jµβ.[τ]P{N·γ/δ}
s

=
∆

µβ.〈JP{N·γ/δ}
s
|τ〉 →∗

λ
(ih) µβ.〈JP

s
{JN·γ

s
/δ} |τ〉 = µβ.〈JP

s
|τ〉{JN·γ

s
/δ} =

∆

Jµβ.[τ]P
s
{JN·γ

s
/δ}

(M = µβ.[δ]P) : J(µβ.[δ]P){N·γ/δ}
s

=
∆ Jµβ.[γ](P{N·γ/δ})N

s

=
∆

µβ.〈µα.〈JP{N·γ/δ}
s
|JN·α

s
〉 |γ〉 →λ (α) µβ.〈JP{N·γ/δ}

s
| JN·γ

s
〉 →∗

λ
(ih)

µβ.〈JP
s
{JN·γ

s
/δ} | JN·γ

s
〉 = µβ.〈JP

s
|δ〉{JN·γ

s
/δ} =

∆

Jµβ.[δ]P
s
{JN·γ

s
/δ}

So modelling right substitution could require reduction. The only contraction takes place for
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Jµβ.[δ]P
s
, where a (µ)-step takes place. Since induction gets applied twice when M is an

application, the reduction in general requires more than one step.

We write M ↓λ N if there exists P such that M→∗
λ

P and N→∗
λ

P.

Theorem 5.10 i) J(µδ.[β]M)N
s
↓λ Jµγ.[β]M{N·γ/δ}

s
, β 6= δ.

ii) J(µδ.[δ]M)N
s
↓λ Jµγ.[γ](M{v·γ/δ})N

s
.

Proof : i) J(µδ.[β]M)N
s

=
∆ µγ.〈µδ.〈JM

s
|β〉 | JN·γ

s
〉 →λ (δ)

µγ.〈JM
s
{JN·γ

s
/δ} |β〉 ∗

λ
← (5.9) µγ.〈JM{N·γ/δ}

s
|β〉 =

∆ Jµγ.[β]M{N·γ/δ}
s

ii) J(µδ.[δ]M)N
s

=
∆ µγ.〈µδ.〈JM

s
|δ〉 | JN·γ

s
〉 →λ (δ)

µγ.〈JM
s
{JN·γ

s
/δ} | JN·γ

s
〉 ∗

λ
← (5.9) µγ.〈JM{N·γ/δ}K |JN·γ

s
〉 n

λ
← (α)

µγ.〈µα.〈JM{N·γ/δ}
s
| JN·α

s
〉 |γ〉 =

∆ Jµγ.[γ](M{N·γ/δ})N
s

The (µ)-contractions over δ pull in JN·γ
s
= µ̃x.〈JN

s
| µ̃y.〈x|y·γ〉〉, a µ̃-term, so this step would

not be allowed in cbn; reduction takes place in two directions. There are no cbv considerations

here.

We will now show that the interpretation also respects (µr)-reduction under cbn. First we

show that result for right substitution.

Lemma 5.11 JM{N·γ/δ}
s
→n∗

λ
JM

s
{JN

s
·γ/δ}.

Proof : (M = z) : Jz{N·γ/δ}
s

=
∆ Jz

s

=
∆ Jz

s
{JN

s
·γ/δ}

(M = λz.P) : J(λz.P){N·γ/δ}
s

=
∆ λz.JP{N·γ/δ}

s
→n∗

λ
(ih) λz.JP

s
{JN

s
·γ/δ} =

(λz.JP
s
){JN

s
·γ/δ} =

∆ Jλz.P
s
{JN

s
·γ/δ}

(M = PQ) : J(PQ){N·γ/δ}
s

=
∆ µα.〈JP{N·γ/δ}

s
| µ̃x.〈JQ{N·γ/δ}

s
| µ̃y.〈x|y·α〉〉〉 →n∗

λ
(ih)

µα.〈JP
s
{JN

s
·γ/δ} | µ̃x.〈JQ

s
{JN

s
·γ/δ}| µ̃y.〈x|y·α〉〉〉 =

µα.〈JP
s
| µ̃x.〈JQ

s
| µ̃y.〈x|y·α〉〉〉{JN

s
·γ/δ} =

∆ JPQ
s
{JN

s
·γ/δ}

(M = µβ.[τ]P, τ 6= δ) : J(µβ.[τ]P){N·γ/δ}
s

= Jµβ.[τ]P{N·γ/δ}
s

=
∆

µβ.〈JP{N·γ/δ}
s
|τ〉 →n∗

λ
(ih) µβ.〈JP

s
{JN

s
·γ/δ} |τ〉 = µβ.〈JP

s
|τ〉{JN

s
·γ/δ} =

∆

Jµβ.[τ]P
s
{JN

s
·γ/δ}

(M = µβ.[δ]P) : J(µβ.[δ]P){N·γ/δ}
s

= Jµβ.[γ](P{N·γ/δ})N
s

=
∆

µβ.〈µα.〈JP{N·γ/δ}
s
| µ̃x.〈JN

s
| µ̃y.〈x|y·α〉〉〉 |γ〉 →n

λ
(α)

µβ.〈JP{N·γ/δ}
s
| µ̃x.〈JN

s
| µ̃y.〈x|y·γ〉〉〉 →n

λ
(x) µβ.〈JN

s
| µ̃y.〈JP{N·γ/δ}

s
|y·γ〉〉 →n

λ
(y)

µβ.〈JP{N·γ/δ}
s
| JN

s
·γ〉 →n∗

λ
(ih) µβ.〈JP

s
{JN

s
·γ/δ} | JN

s
·γ〉 =

∆

µβ.〈JP
s
|δ〉{JN

s
·γ/δ} =

∆ Jµβ.[δ]P
s
{JN

s
·γ/δ}

Notice that the only contractions are in the last part: one over α, a (µ)-step that pulls in

γ, a stack which is a cbn reduction step. The (µ̃)-step over x pulls in JP{N·γ/δ}
s
, which

need not be a value when restricting to cbv, so this proof would not work for cbv. In cbn,

(µ̃)-contractions are unrestricted.

With this result we can show that our encoding deals with cbn µr-reduction through equal-

ity.

Theorem 5.12 i) J(µδ.[β]M)N
s
↓n

λ Jµγ.[β]M{N·γ/δ}
s
, β 6= δ.

ii) J(µδ.[δ]M)N
s
↓n

λ Jµγ.[γ](M{N·γ/δ})N
s
.
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Proof : i) J(µδ.[β]M)N
s

=
∆ µγ.〈µδ.〈JM

s
|β〉 | µ̃x.〈JN

s
| µ̃y.〈x|y·γ〉〉〉 →n

λ
(x)

µγ.〈JN
s
| µ̃y.〈µδ.〈JM

s
|β〉 |y·γ〉〉 →n

λ
(y) µγ.〈µδ.〈JM

s
|β〉 |JN

s
·γ〉 →n

λ
(δ)

µγ.〈JM
s
{JN

s
·γ/δ} |β〉 n∗

λ
← (5.11) µγ.〈JM{N·γ/δ}

s
|β〉 =

∆

Jµγ.[β]M{N·γ/δ}
s

ii) J(µδ.[δ]M)N
s

=
∆ µα.〈µδ.〈JM

s
|δ〉 | µ̃x.〈JN

s
| µ̃y.〈x|y·α〉〉〉 →n

λ
(x)

µγ.〈JN
s
| µ̃y.〈µδ.〈JM

s
|δ〉 |y·γ〉〉 →n

λ
(y) µγ.〈µδ.〈JM

s
|δ〉 |JN

s
·γ〉 →n

λ
(δ)

µγ.〈JM
s
{JN

s
·γ/δ} |JN

s
·γ〉 n∗

λ
← (5.11) µγ.〈JM{N·γ/δ}

s
|JN

s
·γ〉 n

λ
← (y)

µγ.〈JN
s
| µ̃y.〈JM{N·γ/δ}

s
|y·γ〉〉 n

λ
← (α) µγ.〈µα.〈JN

s
| µ̃y.〈JM{N·γ/δ}

s
|y·α〉〉 |γ〉 n

λ
← (x)

µγ.〈µα.〈JM{N·γ/δ}
s
| µ̃x.〈JN

s
| µ̃y.〈x|y·α〉〉〉 |γ〉 =

∆ Jµγ.[γ](M{N·γ/δ})N
s

Notice that the (µ)-contractions are over δ and α and pull in JN
s
·γ and γ, respectively, which

are stacks, so these steps are allowed in cbn. Moreover, the (µ̃)-contraction over x pulls in

µδ.〈JM
s
|δ〉 which is not a value and JM{N·γ/δ}

s
, which need not be a value, so this proof

does not hold for cbv.

The main difference between this proof and that for Thm. 5.10 is that in cbv, we can contract

the (µ)-redex in

µγ.〈µδ.〈JM
s
|δ〉 | µ̃x.〈JN

s
| µ̃y.〈x|y·γ〉〉〉

over δ immediately, by pulling in the environment µ̃x.〈JN
s
| µ̃y.〈x|y·γ〉〉. In cbn, this is not

allowed since the latter term is not a stack; we therefore need to first contract the (µ̃)-redexes

on x and y, creating the term µγ.〈µδ.〈JM
s
|β〉 | JN

s
·γ〉 where now the (µ)-redex over δ can be

contracted. But this is not allowed in cbv, since the (µ̃)-contraction over x pulls in µδ.〈JM
s
|δ〉,

which is not a value.

The following lemma shows that we can implement left-structural substitution in λµµ̃ with-

out extending the reduction relation. In the following two results, we will now write JN·γ
s

for µ̃x.〈JN
s
|x·γ〉.

Lemma 5.13 J{N·γ/δ}M
s
→∗

λ
JM

s
{µ̃y.〈JN

s
|y·γ〉/δ} →∗

λ
JM

s
{JN·γ

s
/δ}.

Proof : By induction on the structure of terms.

(M = x) : J{N·γ/δ}x
s
= Jx

s

=
∆ x = x{JN·γ

s
/δ} =

∆ Jx
s
{JN·γ

s
/δ}

(M = λx.P) : J{N·γ/δ}(λx.P)
s
= Jλx.{N·γ/δ}P

s

=
∆ λx.J{N·γ/δ}P

s
→∗

λ
(ih)

λx.JP
s
{JN·γ

s
/δ} = (λx.JP

s
){JN·γ

s
/δ} =

∆ Jλx.P
s
{JN·γ

s
/δ}

(M = PQ) : J{N·γ/δ}(PQ)
s
= J({N·γ/δ}P) ({N·γ/δ}Q)

s

=
∆

µα.〈J{N·γ/δ}P
s
| µ̃x.〈J{N·γ/δ}Q

s
| µ̃y.〈x|y·α〉〉〉 →∗

λ
(ih)

µα.〈JP
s
{JN·γ

s
/δ} | µ̃x.〈JQ

s
{JN·γ

s
/δ} | µ̃y.〈x|y·α〉〉〉 =

µα.〈JP
s
| µ̃x.〈JQ

s
| µ̃y.〈x|y·α〉〉〉{JN·γ

s
/δ} =

∆ JPQ
s
{JN·γ

s
/δ}

(M = µα.[β]P, δ 6= β) : J{N·γ/δ}(µα.[β]P)
s

= Jµα.[β]{N·γ/δ}P
s

=
∆

µα.〈J{N·γ/δ}P
s
|β〉 →∗

λ
(ih) µα.〈JP

s
{JN·γ

s
/δ} |β〉 = µα.〈JP

s
|β〉{JN·γ

s
/δ} =

∆

Jµα.[β]P
s
{JN·γ

s
/δ}

(M = µα.[δ]P) : J{N·γ/δ}(µα.[δ]P)
s

=
∆ Jµα.[γ]N ({N·γ/δ}P)

s

=
∆

µα.〈µβ.〈JN
s
| µ̃x.〈J{N·γ/δ}P

s
| µ̃y.〈x|y·β〉〉〉 |γ〉 →λ (β)

µα.〈JN
s
| µ̃x.〈J{N·γ/δ}P

s
| µ̃y.〈x|y·γ〉〉〉 →λ (x) µα.〈J{N·γ/δ}P

s
| JN·γ

s
〉 →∗

λ
(ih)

µα.〈JP
s
{JN·γ

s
/δ} |JN·γ

s
〉 = µα.〈JP

s
|δ〉{JN·γ

s
/δ} =

∆

Jµα.[δ]P
s
{JN·γ

s
/δ}

The (µ̃)-step over x pulls in JN
s
, which would be a value in cbv; the (µ)-step over β pulls in

γ, so would be allowed in cbn.
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With this result, we can now show that λµ’s reduction rule (µl) can be simulated in λµµ̃.

Theorem 5.14 i) JN (µα.[δ]M)
s
↓λ Jµγ.[δ]{N·γ/α}M

s
, with α 6= δ.

ii) JN (µα.[α]M)
s
↓λ Jµγ.[γ]N ({N·γ/α}M)

s
.

Proof : i) JN (µα.[δ]M)
s

=
∆ µγ.〈JN

s
| µ̃x.〈µα.〈JM

s
|δ〉 | µ̃y.〈x|y·γ〉〉〉 →λ (x)

µγ.〈µα.〈JM
s
|δ〉 | µ̃y.〈JN

s
|y·γ〉〉 →λ (α) µγ.〈JM

s
{JN·γ

s
/α} |δ〉 ∗

λ
← (5.13)

µγ.〈J{N·γ/α}M
s
| δ〉 =

∆ Jµγ.[δ]{N·γ/α}M
s

ii) JN (µα.[α]M)
s

=
∆ µγ.〈JN

s
| µ̃x.〈µα.〈JM

s
|α〉 | µ̃y.〈x|y·γ〉〉〉 →λ (x)

µγ.〈µα.〈JM
s
|α〉 | µ̃y.〈JN

s
|y·γ〉〉 →λ (α) µγ.〈JM

s
{JN·γ

s
/α} | JN·γ

s
〉 ∗

λ
← (5.13)

µγ.〈J{N·γ/α}M
s
|JN·γ

s
〉 λ← (x) µγ.〈JN

s
| µ̃x.〈J{N·γ/α}M

s
| µ̃y.〈x|y·γ〉〉〉 λ← (δ)

µγ.〈µδ.〈JN
s
| µ̃x.〈J{N·γ/α}M

s
| µ̃y.〈x|y·δ〉〉〉 |γ〉 =

∆ Jµγ.[γ]N({N·γ/α}M)
s

The (µ̃)-reductions on x are permitted in cbv, since then N and JN
s

will be values. The (µ)

reduction over δ pulls in γ so would be permitted in cbn, but the reductions on α pull in a µ̃-

term JN·γ
s
= µ̃x.〈JN

s
|x·γ〉, which is not allowed in cbn, which shows that this interpretation

is not suited for cbn. Fortunately, µl is not part of cbn reduction in sλµ, so this is not an

issue.

We can now state our main result for our encoding.

Theorem 5.15 (Preservation of reduction) If M→s∗
λµ N, then JM

s
↓λ JN

s
.

Proof : ((λz.M)N→λµ M{N/z}) : By Theorem 5.8.

((µα.C)N→λµ µγ.C{N·γ/α}) : By Theorem 5.10.

(N (µα.C)→λµ µγ.{N·γ/α}C) : By Theorem 5.14.

(µα.[β]µγ.[δ]M→ µα.[δ]M{β/γ}, γ 6= δ) : Jµα.[β]µγ.[δ]M
s

=
∆ µα.〈µγ.〈JM

s
|δ〉 |β〉 →λ

µα.〈JM
s
{β/γ} |δ〉 =

∆ µα.〈JM{β/γ}
s
|δ〉 =

∆ Jµα.[δ]M{β/γ}
s

(µα.[β]µγ.[γ]M→ µα.[β]M{β/γ}) : Jµα.[β]µγ.[γ]M
s

=
∆ µα.〈µγ.〈JM

s
|γ〉 |β〉 →λ

µα.〈JM
s
{β/γ} |β〉 =

∆ µα.〈JM{β/γ}
s
|β〉 =

∆ Jµα.[β]M{β/γ}
s

(µα.[α]M→λµ M (α 6∈M)) : Jµα.[α]M
s

=
∆ µα.〈JM

s
|α〉 →λ (ηµ) JM

s

(P→λµ Q⇒ λx.P→λµ λx.Q) : Jλx.P
s

=
∆ λx.JP

s
↓λ (ih) λx.JQ

s

=
∆ Jλx.Q

s

(P→λµ Q⇒ PR→λµ QR) : JPR
s

=
∆ µα.〈JP

s
| µ̃x.〈JR

s
| µ̃y.〈x|y·α〉〉〉 ↓λ (ih)

µα.〈JQ
s
| µ̃x.〈JR

s
| µ̃y.〈x|y·α〉〉〉 =

∆ JQR
s

(P→λµ Q⇒ RP→λµ RQ) : JRP
s

=
∆ µα.〈JR

s
| µ̃x.〈JP

s
| µ̃y.〈x|y·α〉〉〉 ↓λ (ih)

µα.〈JR
s
| µ̃x.〈JQ

s
| µ̃y.〈x|y·α〉〉〉 =

∆ JRQ
s

(P→λµ Q⇒ µα.[β]P→λµ µα.[β]Q) : Jµα.[β]P
s

=
∆ µα.〈JP

s
|β〉 ↓λ (ih) µα.〈JQ

s
|β〉 =

∆

Jµα.[β]Q
s

As argued above, the proofs and the observations made on them also justify the following

two results.

Theorem 5.16 (Preservation of cbv-reduction) If M→sv∗
λµ N, then JM

s
↓v

λ JN
s
.

Proof : ((λz.M)V→v

λµ M{V/z}) : By Theorem 5.8.

((µα.C)V→v

λµ µγ.C{V·γ/α}) : By Theorem 5.10.

(N (µα.C)→v

λµ µγ.{N·γ/α}C) : By Theorem 5.14.

(µα.[β]µγ.[δ]M→v

λ
µα.[δ]M{β/γ}, γ 6= δ) : Jµα.[β]µγ.[δ]M

s

=
∆ µα.〈µγ.〈JM

s
|δ〉 |β〉 →v

λ

µα.〈JM
s
{β/γ} |δ〉 =

∆ µα.〈JM{β/γ}
s
|δ〉 =

∆ Jµα.[δ]M{β/γ}
s

32



(µα.[β]µγ.[γ]M→v

λµ µα.[β]M{β/γ}) : Jµα.[β]µγ.[γ]M
s

=
∆ µα.〈µγ.〈JM

s
|γ〉 |β〉 →v

λ

µα.〈JM
s
{β/γ} |β〉 =

∆ µα.〈JM{β/γ}
s
|β〉 =

∆ Jµα.[β]M{β/γ}
s

(µα.[α]M→v

λµ M (α 6∈M)) : Jµα.[α]M
s

=
∆ µα.〈JM

s
|α〉 →v

λ
(ηµ) JM

s

(P→v

λµ Q⇒ PR→v

λµ QR) : JPR
s

=
∆ µα.〈JP

s
| µ̃x.〈JR

s
| µ̃y.〈x|y·α〉〉〉 ↓v

λ (ih)

µα.〈JQ
s
| µ̃x.〈JR

s
| µ̃y.〈x|y·α〉〉〉 =

∆ JQR
s
.

(P→λµ Q⇒ V P→λµ VQ) : JV P
s

=
∆ µα.〈JV

s
| µ̃x.〈JP

s
| µ̃y.〈x|y·α〉〉〉 →v

λ
(x)

µα.〈JP
s
| µ̃y.〈JV

s
|y·α〉〉 ↓v

λ (ih) µα.〈JQ
s
| µ̃y.〈JV

s
|y·α〉〉 v

λ
← (x)

µα.〈JV
s
| µ̃x.〈JQ

s
| µ̃y.〈x|y·α〉〉〉 =

∆ JVQ
s
.

(P→λµ Q⇒ µα.[β]P→λµ µα.[β]Q) : Jµα.[β]P
s

=
∆ µα.〈JP

s
|β〉 ↓v

λ (ih) µα.〈JQ
s
|β〉 =

∆

Jµα.[β]Q
s
.

Notice that the (µ̃)-contractions over x are allowed in the penultimate part, since JV
s

is a

value.

Theorem 5.17 (Preservation of cbn-reduction) If M→sn∗
λµ N, then JM

s
↓n

λ JN
s
.

Proof : ((λz.M)N→n

λµ M{N/z}) : By Theorem 5.8.

((µα.C)N→n

λµ µγ.C{N·γ/α}) : By Theorem 5.12.

(µα.[β]µγ.[δ]M→n

λ
µα.[δ]M{β/γ}, γ 6= δ) : Jµα.[β]µγ.[δ]M

s

=
∆ µα.〈µγ.〈JM

s
|δ〉 |β〉 →n

λ

µα.〈JM
s
{β/γ} |δ〉 =

∆ µα.〈JM{β/γ}
s
|δ〉 =

∆ Jµα.[δ]M{β/γ}
s

(µα.[β]µγ.[γ]M→n

λ
µα.[β]M{β/γ}) : Jµα.[β]µγ.[γ]M

s

=
∆ µα.〈µγ.〈JM

s
|γ〉 |β〉 →n

λ

µα.〈JM
s
{β/γ} |β〉 =

∆ µα.〈JM{β/γ}
s
|β〉 =

∆ Jµα.[β]M{β/γ}
s

(µα.[α]M→n

λµ M (α 6∈M)) : Jµα.[α]M
s

=
∆ µα.〈JM

s
|α〉 →n

λ
(ηµ) JM

s

(P→n

λµ Q⇒ PR→n

λµ QR) : JPR
s

=
∆ µα.〈JP

s
| µ̃x.〈JR

s
| µ̃y.〈x|y·α〉〉〉 →n

λ
(ih)

µα.〈JQ
s
| µ̃x.〈JR

s
| µ̃y.〈x|y·α〉〉〉 =

∆ JQR
s
.

(P→n

λµ Q⇒ µα.[β]P→n

λµ µα.[β]Q) : Jµα.[β]P
s

=
∆ µα.〈JP

s
|β〉 ↓n

λ (ih) µα.〈JQ
s
|β〉 =

∆

Jµα.[β]Q
s
.

Notice that reduction only takes places in terms, never in contexts.

We have shown that there exists a single interpretation from sλµ to λµµ̃ that respects re-

duction, and the cbn and cbv reduction strategies, thus establishing a strong relation between

sλµ, λµ, and λµv on one side, and λµµ̃ on the other, as well as between the respective cbn

and cbv strategies in sλµ and λµµ̃.

6 How about left µ contraction in λµµ̃?

We have remarked above that the term µγ.〈λx.t |µα.〈t′ |β〉·γ〉 is not a λµµ̃ critical pair, whereas

its sλµ-counterpart (λx.M) (µα.[β]N) is a sλµ critical pair. Notice that

(λx.M) (µα.[β]N) →sv

λµ µγ.[β]{λx.M·γ/α}N,

but ((λx.M) (µα.[β]N))v = µγ.〈λx.Mv |µα.〈Nv |β〉·γ〉 is not reducible under cbn or cbv. We

have shown that we can represent (implement) this reduction step under J·
s
, but there is an

alternative path to this.

Definition 6.1 We extend λµµ̃’s notion of reduction by adding the reduction rule:

(µl) : 〈t |µα.c·γ〉 → c{µ̃y.〈t|y·γ〉/α}

This rule is added for full reduction, but excluded from cbn and restricted in the normal way

for cbv.
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We can show that this reduction makes logical sense: first we show that the substitution

·{µ̃y.〈t|y·γ〉/α} is sound.

Lemma 6.2 i) If Γ ⊢λ t : A→B | γ:B,∆ and c : Γ ⊢λ α:A,∆, then c{µ̃y.〈t|y·γ〉/α} : Γ ⊢λ γ:B,∆.

ii) If Γ ⊢λ t : A→B | γ:B,∆ and Γ ⊢λ t′ : C | α:A,∆, then Γ ⊢λ t′{µ̃y.〈t|y·γ〉/α} : C | γ:B,∆.

iii) If Γ ⊢λ t : A→B | γ:B,∆ and Γ | e : C ⊢λ α:A,∆, then Γ | e{µ̃y.〈t|y·γ〉/α} : C ⊢λ γ:B,∆.

Proof : By induction on the definition of type assignment.

(cut) : Then c = 〈t|v〉, and both Then by induction, both Γ ⊢λ t{µ̃y.〈t|y·γ〉/α} : A | γ:B,∆ and

Γ | e : A ⊢λ γ:B,∆. By rule (cut) we have

Γ ⊢λ t{µ̃y.〈t|y·γ〉/α} : A | γ:B,∆ Γ | e{µ̃y.〈t|y·γ〉/α} : A ⊢λ γ:B,∆

〈t{µ̃y.〈t|y·γ〉/α} | e{µ̃y.〈t|y·γ〉/α}〉 : Γ ⊢λ ∆

and 〈t{µ̃y.〈t|y·γ〉/α} | e{µ̃y.〈t|y·γ〉/α}〉 = 〈t|e〉{µ̃y.〈t|y·γ〉/α}.

(AxR) : Then t = x; since x:C ∈ Γ, by rule (AxR) also Γ ⊢λ x : C | γ:B,∆

(AxL) : Then e = β, and β:C ∈∆. We have two cases:

(α = β) : Then C = A; we can construct:

Γ ⊢ t : A→B | γ:B,∆
(Wk)

Γ,y:A ⊢ t : A→B | γ:B,∆

(AxR)
Γ,y:A ⊢ y : A | γ:B,∆

(AxL)
Γ,y:A | γ : B ⊢ γ:B,∆

(�L)
Γ,y:A | y·γ : A→B ⊢ γ:B,∆

(cut)
〈t|y·γ〉 : Γ,y:A ⊢ γ:B,∆

(µ̃)
Γ | µ̃y.〈t|y·γ〉 : A ⊢ γ:B,∆

and α{µ̃y.〈t|y·γ〉/α} = µ̃y.〈t|y·γ〉.

(α 6= β) : Since β:C ∈∆, by rule (AxL) also Γ | β : C ⊢λ γ:B,∆.

(�L), (�R), (µ), (µ̃) : By induction.

With this result, we can now show:

Theorem 6.3 (Soundness for rule (µl)) If 〈t |µα.c·γ〉 : Γ ⊢λ γ:B,∆, then c{µ̃y.〈t|y·γ〉/α} : Γ ⊢λ

γ:B,∆.

Proof : If 〈t |µα.c·γ〉 : Γ ⊢λ ∆ , then the derivation is shaped like:

Γ ⊢ t : A→B | γ:B,∆

c : Γ ⊢ α:A,γ:B,∆

Γ ⊢ µα.c : A | γ:B,∆ Γ | γ : B ⊢ γ:B,∆

Γ | µα.c·γ : A→B ⊢ γ:B,∆

〈t |µα.c·γ〉 : Γ ⊢ γ:B,∆

Then, in particular, we have Γ ⊢λ t : A→B | γ:B,∆ and c : Γ ⊢λ α:A,γ:B,∆, and by Lem. 6.2, we

have c{µ̃y.〈t|y·γ〉/α} : Γ ⊢λ γ:B,∆.

So this new rule is sound. We have shown above that we have full representation of the

three notions of reductions we focus on for standard λµµ̃, so do not need to extend reduction

on λµµ̃ to achieve this. It will nonetheless be interesting to see if adding this reduction step

to λµµ̃ would yield different interpretations of sλµ; we leave this for future work.

7 Interpreting λµµ̃ in Xis

[23] presents a translation of λµµ̃ into X (called λξ there) which preserves the typing and

shows that it respects reduction; since here we use a slight variation, that uses substitution
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rather than a renaming cut when dealing with µα.c or µ̃x.c, we need to give new proofs for

this result.

We could say that, in λµµ̃, not all inputs (normally present as term variables) and outputs

(context variables) are explicitly named; for example, a term like λx.t has no named output,

which we can make explicit through η-expanding it into µβ.〈λx.t|β〉; similarly, t·e has no

named input, which we can make explicit through µ̃x.〈x|t·e〉. This is the essence of the

translation we define now: it interprets terms under an output, and environments under an

input, making the implicit names explicit. The first version was defined in [23] through:

(〈t|e〉)ξ = (t)α
ξ α̂ † x̂ (e)x

ξ (α, x fresh)

(x)α
ξ = 〈x·α〉

(λx.t)α
ξ = x̂ (t)β

ξ β̂ ·α (β fresh)

(µβ.c)α
ξ = (c)ξ {α/β}

(α)x
ξ = 〈x·α〉

(t·e)x
ξ = (t)γ

ξ γ̂ [x] ẑ (e)z
ξ (γ,z fresh)

(µ̃y.c)x
ξ = (c))ξ {x/y}

In [5], the results were obtained for an interpretation where the last two alternatives are

defined through:

(µβ.c)α
ξ = (c)ξ β̂ † x̂ 〈x·α〉

(µ̃y.c)x
ξ = 〈x·β〉 β̂ † ŷ (c)ξ

showing that even here implicit substitutions are not needed. Since we can show

(c)ξ β̂ † x̂ 〈x·α〉 →∗
Xis

(c)ξ{β† x̂ 〈x·α〉} →∗
Xis
(4.6) (c)ξ {α/β}

〈x·β〉 β̂ † ŷ (c)ξ →∗Xis
{〈x·β〉 β̂ †y}(c)ξ →∗Xis

(4.6) (c)ξ {x/y}

and in Lem. 7.3 and 7.4 we want the be able to simulate λµµ̃-substitution through Xis-

substitution, we avoid adding the extra cuts, but use implicit substitution in the interpretation.

A disadvantage of this encoding is that it treats 〈x|α〉 as a cut, rather than as 〈x·α〉. However,

we can show:

(〈y|β〉)ξ
=
∆ (y)α

ξ α̂ † x̂ (β)x
ξ

=
∆ 〈y·α〉 α̂ † x̂ 〈x·β〉 →X (cap) 〈y·β〉

(〈y|t·e〉)ξ
=
∆ (y)α

ξ α̂ † x̂ (t·e)x
ξ

=
∆ 〈y·α〉 α̂ † x̂ ((t)γ

ξ γ̂ [x] ẑ (e)z
ξ)

→X (imp) (t)γ
ξ γ̂ [y] ẑ (e)z

ξ
=
∆ (t·e)y

ξ

(〈y|µ̃z.c〉)ξ
=
∆ (y)α

ξ α̂ † x̂ (µ̃z.c)x
ξ

=
∆ 〈y·α〉 α̂ † x̂ (c)ξ {x/z}

→X (4.6) (c)ξ {y/z} =
∆ (µ̃z.c)y

ξ

(〈λy.t|β〉)ξ
=
∆ (λy.t)α

ξ α̂ † x̂ (β)x
ξ

=
∆ (ŷ (t)β

ξ β̂ ·α) α̂ † x̂ (β)x
ξ

→X (exp) ŷ (t)β
ξ β̂ ·β =

∆ (λy.t)y
ξ

(〈µγ.c|β〉)ξ
=
∆ (µγ.c)α

ξ α̂ † x̂ (β)x
ξ

=
∆ (c)ξ {α/γ} α̂ † x̂ (β)x

ξ

→X (4.6) (c)ξ {β/γ} =
∆ (µγ.c)β

ξ

The interpretation we will consider here is an optimised version, that uses these observa-

tions and will induce less reduction in the image: this will yield stronger results.

Definition 7.1 (Translation of λµµ̃ into Xis)

J〈y|β〉Kλ = 〈y·β〉

J〈t|e〉Kλ = JtKα
λ α̂ † x̂ JeKx

λ (α, x fresh, otherwise)

J〈y|e〉Kλ = JeKy
λ

J〈t|β〉Kλ = JtKβ
λ

JxKα
λ = 〈x·α〉

Jλx.tKα
λ = x̂ JtKβ

λ β̂ ·α (β fresh)

Jµβ.cKα
λ = JcKλ{α/β}

JαKx
λ = 〈x·α〉

Jt·eKx
λ = JtKγ

λ γ̂ [x] ẑ JeKz
λ (γ,z fresh)

Jµ̃y.cKx
λ = JcKλ{x/y}

There are overlapping cases in this definition. However, we have

J〈y|β〉Kλ = JβKy
λ = JyKβ

λ = 〈y·β〉
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so this does not inconvenience the proofs. This translation will only create a cut when inter-

preting a command that does not involve a term or context variable.

If t is a λµµ̃-value that does not contain α, then JtKα
λ introduces α, and if e is a λµµ̃-stack

that does not contain x, then JeKx
λ introduces x:

JxKα
λ = 〈x·α〉

Jλx.tKα
λ = x̂ JtKβ

λ β̂ ·α

JαKx
λ = 〈x·α〉

Jt·e′Kx
λ = JtKγ

λ γ̂ [x] ẑ Je′Kz
λ

We will need this observation later.

This interpretation preserves typeability:

Lemma 7.2 i) If Γ | t : A ⊢λ ∆ , then JtKα
λ
··· Γ ⊢X α:A,∆.

ii) If Γ ⊢λ e : A |∆ , then JeKx
λ
··· Γ, x:A ⊢X ∆.

iii) If c : Γ ⊢λ ∆ , then JcKλ
··· Γ ⊢X ∆.

Proof : This follows from a similar result for the original interpretation as shown in [5], the

type preservation result shown there, and the observation we made above.

We will now show the relation between implicit substitution in Xis and in λµµ̃. A similar

result was show in [23], but with respect to X . We show the proof in full since we need to

know if reduction will stay within cbn or cbv.

First we show that Xis successfully encodes λµµ̃’s context substitution ·{e/α} through right

substitution ·{α† x̂ JeKx
λ}.

Lemma 7.3 i) JcKλ{α† x̂ Je′Kx
λ}= Jc{e′/α}Kλ.

ii) If α 6= β, then JtKβ
λ{α† x̂ Je′Kx

λ}= Jt{e′/α}Kβ
λ.

iii) JeKy
λ{α† x̂ Je′Kx

λ}= Je{e′/α}Ky
λ.

Proof : By simultaneous induction on the structure of nets.

i) (c = 〈y|α〉) : J〈y|α〉Kλ{α† x̂ Je′Kx
λ} =

∆ 〈y·α〉{α† x̂ Je′Kx
λ} =(dr) Je′Kx

λ{y/x} = Je′Ky
λ =

J〈y|e′〉Kλ = J〈y|α〉{e′/α}Kλ

(c = 〈y|β〉, α 6= β) : J〈y|β〉Kλ{α† x̂ Je′Kx
λ} =

∆ 〈y·β〉{α† x̂ Je′Kx
λ} = 〈y·β〉 =(gcr) J〈y|β〉Kλ =

J〈y|β〉{e′/α}Kλ

(c = 〈λz.t|α〉) : J〈λz.t|α〉Kλ{α† x̂ Je′Kx
λ} =

∆ (ẑ JtKβ
λ β̂ ·α){α† x̂ Je′Kx

λ}= (exp-outr)

(ẑ (JtKβ
λ{α† x̂ Je′Kx

λ}) β̂ ·γ) γ̂ † x̂ Je′Kx
λ = (ih,α 6= β) (ẑ Jt{e′/α}Kλ β̂ ·γ) γ̂ † x̂ Je′Kx

λ
=
∆

J〈λz.t{e′/α} | e′〉Kλ
=
∆ J〈λz.t|α〉{e′/α}Kλ

(c = 〈µβ.c|α〉) : J〈µβ.c|α〉Kλ{α† x̂ Je′Kx
λ} =

∆ Jµβ.cKα
λ{α† x̂ Je′Kx

λ} =
∆

JcKλ{α/β}{α† x̂ Je′Kx
λ} =

∆ (JcKλ{α† x̂ Je′Kx
λ}){α/β}{α† x̂ Je′Kx

λ} = (ih)

Jc{e′/α}Kλ{α/β}{α† x̂ Je′Kx
λ} =

∆ Jµβ.c{e′/α}Kα
λ{α† x̂ Je′Kx

λ} =
∆

J〈µβ.c{e′/α} |α〉Kλ{α† x̂ Je′Kx
λ} =

∆ (ih) J〈µβ.c{e′/α} | e′〉Kλ
=
∆

J〈µβ.c|α〉{e′/α}Kλ

(c = 〈y|e〉) : J〈y|e〉Kλ{α† x̂ Je′Kx
λ} =

∆ 〈y·e〉{α† x̂ Je′Kx
λ} =

∆ JeKy
λ{α† x̂ Je′Kx

λ} =(ih)

Je{e′/α}Ky
λ

=
∆ J〈y | e{e′/α}〉Kλ

=
∆ J〈y|e〉{e′/α}Kλ

(c = 〈t|e〉) : J〈t|e〉Kλ{α† x̂ Je′Kx
λ} =

∆ (JtKβ
λ β̂ † ŷ JeKy

λ){α† x̂ Je′Kx
λ} =(cutr)

(JtKβ
λ{α† x̂ Je′Kx

λ}) β̂ † ŷ (JeKy
λ{α† x̂ Je′Kx

λ}) = (ih,α 6= β)

Jt{e′/α}Kβ
λ β̂ † ŷ Je{e′/α}Ky

λ
=
∆ J〈t{e′/α} | e{e′/α}〉Kλ

=
∆ J〈t|e〉{e′/α}Kλ

ii) (t = y) : JyKβ
λ{α† x̂ Je′Kx

λ} =
∆ 〈y·β〉{α† x̂ Je′Kx

λ} =(gcr) 〈y·β〉 =
∆ JyKβ

λ
=
∆ Jy{e′/α}Kβ

λ
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(t = λy.t) : Jλy.tKβ
λ{α† x̂ Je′Kx

λ} =
∆ (ŷ JtKδ

λ δ̂ ·β){α† x̂ Je′Kx
λ} = (exp-outr)

ŷ (JtKδ
λ{α† x̂ Je′Kx

λ}) δ̂ ·β = (ih,α 6= δ) ŷ Jt{e′/α}Kδ
λ δ̂ ·β =

∆

Jλy.t{e′/α}Kβ
λ

=
∆ J(λy.t){e′/α}Kβ

λ

(t = µγ.c) : Jµγ.cKβ
λ{α† x̂ Je′Kx

λ} =
∆ JcKλ{β/γ}{α† x̂ Je′Kx

λ} = (ih,α 6= β,γ)

Jc{e′/α}Kλ{β/γ} =
∆ Jµγ.c{e′/α}Kβ

λ
=
∆ J(µγ.c){e′/α}Kβ

λ

iii) (e = α) : JαKy
λ{α† x̂ Je′Kx

λ} =
∆ 〈y·α〉{α† x̂ Je′Kx

λ} =(dr) Je′Kx
λ{y/x} =

∆

Je′Ky
λ

=
∆ Jα{e′/α}Ky

λ

(e = β 6= α) : JβKy
λ{α† x̂ Je′Kx

λ} = 〈y·β〉{α† x̂ Je′Kx
λ} =(gcr) 〈y·β〉 =

∆ JβKy
λ
=
∆ Jβ{e′/α}Ky

λ

(e = t·e′′) : Jt·e′′Ky
λ{α† x̂ Je′Kx

λ} =
∆ (JtKγ

λ γ̂ [y] ẑ Je′′Kz
λ){α† x̂ Je′Kx

λ} =(impr)

(JtKγ
λ{α† x̂ Je′Kx

λ}) γ̂ [y] ẑ (Je′′Kz
λ{α† x̂ Je′Kx

λ}) = (ih,α 6= γ)

Jt{e′/α}Kγ
λ γ̂ [y] ẑ Je′′{e′/α}Kz

λ
=
∆ J(t{e′/α} · e′′{e′/α})Ky

λ
=
∆ J(t·e′′){e′/α}Ky

λ

(e = µ̃y.c) : Jµ̃z.cKy
λ{α† x̂ Je′Kx

λ} =
∆ JcKλ{y/z}{α† x̂ Je′Kx

λ} =
∆ (JcKλ{α† x̂ Je′Kx

λ}){y/z}

= (ih) Jc{e′/α}Kλ{y/z} =
∆ Jµ̃z.c{e′/α}Ky

λ
=
∆ J(µ̃z.c){e′/α}Ky

λ

Notice that no reduction steps are used in this proof.

Likewise, we can show that Xis successfully encodes λµµ̃’s term substitution ·{t/x} through

left substitution {JtKα
λ α̂ †x}·.

Lemma 7.4 i) {Jt′Kα
λ α̂ †x}JcKλ = Jc{t′/x}Kλ.

ii) {Jt′Kα
λ α̂ †x}JtKβ

λ = Jt{t′/x}Kβ
λ.

iii) If z 6= x, {Jt′Kα
λ α̂ †x}JeKz

λ = Je{t′/x}Kz
λ.

Proof : By simultaneous induction on the structure of nets.

i) (c = 〈y|α〉) : {Jt′Kα
λ α̂ †x}J〈x|β〉Kλ

=
∆ {Jt′Kα

λ α̂ †x}〈x·β〉 =
∆ (dl) Jt′Kα

λ{β/α} = Jt′Kβ
λ =

J〈t′ |β〉Kλ = J〈x|β〉{t′/x}Kλ

(c = 〈y|α〉, y 6= x) : {Jt′Kα
λ α̂ †x}J〈y|β〉Kλ

=
∆ {Jt′Kα

λ α̂ †x}〈y·β〉 =
∆ (gcl) 〈y·β〉 =

J〈y|β〉Kλ = J〈y|β〉{t′/x}Kλ

(c = 〈t|α〉) : {Jt′Kα
λ α̂ †x}J〈t|β〉Kλ

=
∆ {Jt′Kα

λ α̂ †x}JtKβ
λ =(ih) Jt{t′/x}Kβ

λ
=
∆

J〈t{t′/x} |β〉Kλ
=
∆ J〈t|β〉{t′/x}Kλ

(c = 〈y|e〉) : {Jt′Kα
λ α̂ †x}J〈y|e〉Kλ

=
∆ {Jt′Kα

λ α̂ †x}〈y·e〉 =
∆ {Jt′Kα

λ α̂ †x}JeKy
λ =(ih)

Je{t′/x}Ky
λ

=
∆ J〈y | e{t′/x}〉Kλ

=
∆ J〈y|e〉{t′/x}Kλ

(c = 〈y|t·e〉) : {Jt′Kα
λ α̂ †x}J〈y|t·e〉Kλ

=
∆ {Jt′Kα

λ α̂ †x}Jt·eKy
λ

=
∆

{Jt′Kα
λ α̂ †x}(JtKγ

λ γ̂ [y] ẑ JeKz
λ) =

∆ ({Jt′Kα
λ α̂ †x}JtKγ

λ) γ̂ [y] ẑ ({Jt′Kα
λ α̂ †x}JeKz

λ) = (ih)

Jt{t′/x}Kγ
λ γ̂ [y] ẑ Je{t′/x}Kz

λ
=
∆ J〈y | t{t′/x}·e{t′/x}〉Kλ =

J〈y|t·e〉{t′/x}Kλ

(c = 〈x|µ̃z.c〉) : {Jt′Kα
λ α̂ †x}J〈x|µ̃z.c〉Kλ

=
∆ {Jt′Kα

λ α̂ †x}Jµ̃z.cKx
λ

=
∆

{Jt′Kα
λ α̂ †x}(JcKλ{x/z}) = {Jt′Kα

λ α̂ †x}(({Jt′Kα
λ α̂ †x}JcKλ){x/z}) = (ih)

{Jt′Kα
λ α̂ †x}(Jc{t′/x}Kλ{x/z}) =

∆ {Jt′Kα
λ α̂ †x}(Jµ̃z.c{t′/x}Kx

λ
=
∆

{Jt′Kα
λ α̂ †x}(J〈x | µ̃z.c{t′/x}〉Kλ = (ih) J〈t′ | µ̃z.c{t′/x}〉Kλ =

J〈x|µ̃z.c〉{t′/x}Kλ

(c = 〈y|µ̃z.c〉, y 6= x) : {Jt′Kα
λ α̂ †x}J〈y|µ̃z.c〉Kλ

=
∆ {Jt′Kα

λ α̂ †x}Jµ̃z.cKy
λ

=
∆

{Jt′Kα
λ α̂ †x}JcKλ{y/z} = {Jt′Kα

λ α̂ †x}JcKλ{y/z} = (ih) Jc{t′/x}Kλ{z/y} =
∆

J〈y | µ̃z.c{t′/x}〉Kλ = J〈y|µ̃z.c〉{t′/x}Kλ
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(c = 〈t|e〉) : {Jt′Kα
λ α̂ †x}J〈t|e〉Kλ

=
∆ {Jt′Kα

λ α̂ †x}(JtKβ
λ β̂ † ŷ JeKy

λ) = (cutl)

({Jt′Kα
λ α̂ †x}JtKβ

λ) β̂ † ŷ ({Jt′Kα
λ α̂ †x}JeKy

λ) = (ih, x 6= y)

Jt{t′/x}Kβ
λ β̂ † ŷ Je{t′/x}Ky

λ = J〈t{t′/x} | e{t′/x}〉Kλ
=
∆ J〈t|e〉{t′/x}Kλ

ii) (t = x) : {Jt′Kα
λ α̂ †x}JxKβ

λ
=
∆ {Jt′Kα

λ α̂ †x}〈x·β〉 =(dl) Jt′Kα
λ{β/α} = Jt′Kβ

λ
=
∆ Jx{t′/x}Kβ

λ

(t = y 6= x) : {Jt′Kα
λ α̂ †x}JyKβ

λ
=
∆ {Jt′Kα

λ α̂ †x}〈y·β〉 =(gcl) 〈y·β〉 =
∆ JyKβ

λ
=
∆ Jy{t′/x}Kβ

λ

(t = λy.t′′) : {Jt′Kα
λ α̂ †x}Jλy.t′′Kβ

λ
=
∆ {Jt′Kα

λ α̂ †x}(ŷ Jt′′Kδ
λ δ̂ ·β) = (expl)

ŷ ({Jt′Kα
λ α̂ †x}Jt′′Kδ

λ) δ̂ ·β = (ih) ŷ Jt′′{t′/x}Kδ
λ δ̂ ·β =

∆ Jλy.t′′{t′/x}Kβ
λ
=
∆

J(λy.t′′){t′/x}Kβ
λ

(t = µγ.c) : {Jt′Kα
λ α̂ †x}Jµγ.cKβ

λ
=
∆ {Jt′Kα

λ α̂ †x}JcKλ{β/γ} = (ih)

Jc{t′/x}Kλ{β/γ} =
∆ Jµγ.c{t′/x}Kβ

λ
=
∆ J(µγ.c){t′/x}Kβ

λ

iii) (e = β) : {Jt′Kα
λ α̂ †x}JβKz

λ
=
∆ {Jt′Kα

λ α̂ †x}〈z·β〉 =(gcl) 〈z·β〉 =
∆ JzKβ

λ
=
∆ Jz{t′/x}Kβ

λ

(e = t·e) : {Jt′Kα
λ α̂ †x}Jt·eKz

λ
=
∆ {Jt′Kα

λ α̂ †x}(JtKβ
λ β̂ [z] ŷ JeKy

λ) =(imp-inl)

({Jt′Kα
λ α̂ †x}JtKβ

λ) β̂ [z] ŷ ({Jt′Kα
λ α̂ †x}JeKy

λ) = (ih, x 6= y)

Jt{t′/x}Kβ
λ β̂ [z] ŷ Je{t′/x}Ky

λ
=
∆ Jt{t′/x} · e{t′/x}Kz

λ
=
∆ J(t·e){t′/x}Kz

λ

(e = µ̃y.c) : {Jt′Kx
λ α̂ †x}Jµ̃y.cKz

λ
=
∆ {Jt′Kx

λ α̂ †x}JcKλ{z/y} =
∆ ({Jt′Kx

λ α̂ †x}JcKλ){z/y}

= (ih) Jc{t′/x}Kλ{z/y} =
∆ Jµ̃y.c{t′/x}Kz

λ
=
∆ J(µ̃y.c){t′/x}Kz

λ

As above, no reduction steps are used in this proof.

We now strengthen these results by stating that this encoding preserves evaluations:

Theorem 7.5 (Simulation of→λ ) • If c→λ c′ then JcKλ→+
Xis

Jc′Kλ.

• If t→λ t′ then JtKα
λ→+

Xis
Jc′Kα

λ.

• If e→λ e′ then JeKx
λ→+

Xis
Je′Kx

λ.

Proof : Simultaneously by induction of the definition of→λ.

(λ) : J〈λy.t1 |t2·e〉K
λ

=
∆ (ŷ Jt1Kβ

λ β̂ ·α) α̂ † x̂ (Jt2Kγ
λ γ̂ [x] ẑ JeKz

λ)→X (exp-imp)

Jt2Kγ
λ γ̂ † ŷ (Jt1Kβ

λ β̂ † ẑ JeKz
λ) =

∆ Jt2Kγ
λ γ̂ † ŷ J〈t1 |e〉K

λ =α Jt2Kγ
λ γ̂ † ẑ J〈t1 |e〉K

λ{z/y} =
∆

Jt2Kγ
λ γ̂ † ẑ Jµ̃y.〈t1 |e〉Kz

λ
=
∆ J〈t2 | µ̃y.〈t1 |e〉〉K

λ

(µ) : J〈µβ.c|e〉Kλ
=
∆ Jµβ.cKα

λ α̂ † x̂ JeKx
λ

=
∆ JcKλ{α/β} α̂ † x̂ JeKx

λ =α (α fresh)

JcKβ
λ β̂ † x̂ JeKx

λ →X (subr) JcKλ{β† x̂ JeKx
λ} = (7.3) Jc{e/β}Kλ

(µ̃) : J〈t|µ̃y.c〉Kλ
=
∆ JtKα

λ α̂ † x̂ Jµ̃y.cKx
λ

=
∆ JtKα

λ α̂ † x̂ JcKλ{x/y} =α (x fresh)

JtKα
λ α̂ † ŷ JcKλ →X (subl) {JtKα

λ α̂ †y}JcKλ = (7.4) Jc{t/y}Kλ

(ηµ) : Jµα.〈t|α〉Kβ
λ
=
∆ J〈t|α〉Kλ{β/α} =

∆ JtKγ
λ γ̂ † ẑ 〈z·α〉{β/α} =

∆ JtKγ
λ γ̂ † ẑ 〈z·β〉

Now either γ is introduced in JtKγ
λ, and we have

JtKγ
λ γ̂ † ẑ 〈z·β〉→X JtKβ

λ

by either (cap) or (exp), or it is not, and we have

JtKγ
λ γ̂ † ẑ 〈z·β〉 →X (subr) JtKγ

λ{γ† ẑ 〈z·β〉} =(4.6) JtKβ
λ

(ηµ̃) : Jµ̃x.〈x|e〉Ky
λ
=
∆ J〈x|e〉Kλ{y/x} =

∆ (〈x·γ〉 γ̂ † ẑ JeKz
λ){y/x} = 〈y·γ〉 γ̂ † ẑ JeKz

λ

Now either z is introduced in JeKz
λ, and we have

〈y·α〉 α̂ † ẑ JeKz
λ→X JeKz

λ

by either (cap) or (imp), or it is not, and we have

〈y·α〉 α̂ † ẑ JeKz
λ →X (subl) {〈y·α〉 α̂ †z}JeKz

λ =(4.6) JeKy
λ

The contextual rules all follow by straightforward induction.
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Notice that we cannot model the η reduction rule λx.µβ.〈t|x·β〉 →X t (x, β 6∈ fv(t)), since the

‘surrounding’ λ-abstraction produces an export term that can never be removed; Xis itself is

not extensional.

We can also show that the cbn strategy is respected. We need to check that (subn

r
) gets

correctly applied, and no reduction takes place in the environment.

Theorem 7.6 (Simulation of→n

λ
) • If c→n

λ
c′ then JcKλ→n+

Xis
Jc′Kλ.

• If t→n

λ
t′ then JtKα

λ→n+
Xis

Jt′Kα
λ.

Proof : Simultaneously by induction of the definition of reduction. The proof is mostly as that

of Thm. 7.5, which showed this result for full reduction; we will highlight the differences.

(λ) : No cbn issues.

(µ) : J〈µβ.c|S〉Kλ
=
∆ Jµβ.cKα

λ α̂ † x̂ JSKx
λ

=
∆ JcKλ{α/β} α̂ † x̂ JSKx

λ =α JcKλ β̂ † x̂ JSKx
λ

Notice that JSKx
λ introduces x; also, c = 〈t|e〉, so JcKβ

λ is a cut and does not introduce β,

and we have

JcKβ
λ β̂ † x̂ JSKx

λ →X (subn

r
) JcKλ{β† x̂ JSKx

λ} =(7.3) Jc{S/β}Kλ

Since JSKx
λ introduces x, (subn

r
) is permitted.

(µ̃) : No cbn issues.

(ηµ) : The (subr) step in the proof of Thm. 7.5 becomes (subn

r
) since 〈z·β〉 introduces z.

(ηµ̃) : No cbn issues.

(t→n

λ
t′ ⇒ 〈t|e〉 →n

λ
〈t′ |e〉) : Reduction takes place inside a term in a cut, which is allowed in

cbn.

(c→n

λ
c′ ⇒ µα.c→n

λ
µα.c′) : Reduction inside a cut is allowed in cbn.

The other rules are not part of→n

λ
.

We can also show that the cbv strategy is respected. Now we need to check that now (subv

l
)

gets correctly applied, and again no reduction takes place in the environment.

Theorem 7.7 (Simulation of→v

λ
) • If c→v

λ
c′ then JcKλ→v+

Xis
Jc′Kλ.

• If t→v

λ
t′ then JtKα

λ→v+
Xis

Jc′Kα
λ.

Proof : Simultaneously by induction of the definition of reduction. The proof is mostly as that

for Thm. 7.5; we will highlight the differences.

(λ) : No cbv issues.

(µ) : No cbv issues.

(µ̃) : J〈V |µ̃y.c〉Kλ
=
∆ JVKα

λ α̂ † x̂ Jµ̃y.cKx
λ

=
∆ JVKα

λ α̂ † x̂ JcKλ{x/y} =α JVKα
λ α̂ † ŷ JcKλ

Notice that JVKα
λ introduces α; also, c = 〈t|e〉, so JcKλ is a cut that does not introduce y,

and we have

JVKα
λ α̂ † ŷ JcKλ →X (subv

l
) {JVKα

λ α̂ †y}JcKλ =(7.4) Jc{V/y}Kλ

(ηµ) : No cbv issues.

(ηµ̃) : The (subl) step in the proof of Thm. 7.5 becomes (subv

l
) since 〈y·α〉 introduces α.

(t→λ t′ ⇒ 〈t|e〉 →λ 〈t
′ |e〉) : Allowed in cbv, as reduction takes place in a term in a cut.

(c→λ c′ ⇒ µα.c→λ µα.c′) : Allowed in cbv.

The other rules are not part of→v

λ
.

So J·Kλ, the natural encoding of λµµ̃ in X (and Xis), that names the implicit term and

context variables, strongly connects the two calculi: not only the standard λµµ̃ reduction is

embedded into the reduction of Xis, but also the cbn and cbv reduction strategies of λµµ̃ are

respected by their Xis counterparts.
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8 Embedding Xis in λµµ̃

In this section we will study the reverse of the previous section, and investigate if the natural

interpretation of X into λµµ̃, as first suggested in [12], respects the three notions of reduction

we focus on in this paper.

Definition 8.1 (Translation of X into λµµ̃ [12, 23]) The interpretation of terms of X into

commands of λµµ̃ is defined by:

⌈〈x·α〉
X

=
∆ 〈x|α〉

⌈x̂ P α̂ ·β
X

=
∆ 〈λx.µα.⌈P

X
|β〉

⌈P α̂ [y] x̂ Q
X

=
∆ 〈y |µα.⌈P

X
· µ̃x.⌈Q

X
〉

⌈P α̂ † x̂ Q
X

=
∆ 〈µα.⌈P

X
| µ̃x.⌈Q

X
〉

In fact, this is the origin of X : in Remark 4.1 of [12], Curien and Herbelin give a hint

on a way to connect LKµµ̃ (as presented there) and lk. The proofs of lk embed in LKµµ̃ by

considering the following sub-syntax of λµµ̃:

c ::= 〈x | α〉 | 〈λx.µα.c | β〉 | 〈y | µα.c·µ̃x.c〉 | 〈µα.c | µ̃x.c〉

Later it was discovered that this corresponded closely to Urban’s approach in [31]; however,

the approaches differ.

As can be expected, the interpretations from λµµ̃ to Xis and back are strongly related, as

that they act as each other’s inverse, albeit with some reductions involved, as can be expected.

These mainly deal with converting implicit names to explicit names, as discussed above.

First we look at λµµ̃ 7→ Xis 7→ λµµ̃, and show that ⌈·
X

is J·Kλ’s left-inverse up to extension-

ality. We will write =η for the equivalence relation on λµµ̃ terms generated by rules (ηµ) and

(ηµ̃).

Theorem 8.2 ⌈JcKλ X =η c, µα.⌈JtKα
λ X =η t, and µ̃x.⌈JeKx

λ X =η e.

Proof : Simultaneous by induction.

• – ⌈J〈y|β〉Kλ X = ⌈〈y·β〉
X
= 〈y|β〉

– ⌈J〈λy.t|β〉Kλ X = ⌈Jλy.tKβ
λ X = 〈λy.µγ.⌈JtKγ

λ X |β〉 =η (ih) 〈λy.t|β〉

– ⌈J〈µα.c|β〉Kλ X = ⌈Jµα.cKβ
λ X = ⌈JcKλ{β/α}

X
= ⌈JcKλ X {β/α} =η (ih)

c{β/α} (ηµ)← 〈µα.c|β〉

– ⌈J〈y|t·e〉Kλ X = ⌈Jt·eKy
λ X = ⌈JtKγ

λ γ̂ [y] ẑ JeKz
λ X = 〈y |µγ.⌈JtKγ

λ X.µ̃z.⌈JeKz
λ X〉 =η (ih) 〈y|t·e〉

– ⌈J〈y|µ̃z.c〉Kλ X = ⌈Jµ̃z.cKy
λ X = ⌈JcKλ{y/z}

X
= ⌈JcKλ X {y/z} =η (ih)

c{y/z} (ηµ̃)← 〈y|µ̃z.c〉

– ⌈J〈t|e〉Kλ X = ⌈JtKα
λ α̂ † x̂ JeKx

λ X = 〈µα.⌈JtKα
λ X | µ̃x.⌈JeKx

λ X〉 =η (ih) 〈t|e〉

• – µα.⌈JxKα
λ X = µα.⌈〈x·α〉

X
= µα.〈x|α〉 →λ (ηµ) x

– µα.⌈Jλx.tKα
λ X = µα.⌈x̂ JtKβ

λ β̂ ·α
X
= µα.〈λx.µβ.⌈JtKβ

λ X |α〉 =η (ih)

µα.〈λx.t|α〉 →λ (ηµ) λx.t.

– µα.⌈Jµβ.cKα
λ X = µα.⌈JcKλ{α/β}

X
= µα.⌈JcKλ X {β/α} =η (ih) µα.c{β/α} =α µβ.c

• – µ̃x.⌈JαKx
λ X = µ̃x.⌈〈x·α〉

X
= µ̃x.〈x|α〉 →λ (ηµ̃) α

– µ̃x.⌈Jt·eKx
λ X = µ̃x.⌈JtKγ

λ γ̂ [x] ẑ JeKz
λ X = µ̃x.〈x |µγ.⌈JtKγ

λ X · µ̃z.⌈JeKz
λ X〉 =η (ih)

µ̃x.〈x|t·e〉 →λ (ηµ̃) t·e

– µ̃x.⌈Jµ̃y.cKx
λ X = µ̃x.⌈JcKλ{x/y}

X
=α µ̃x.⌈JcKλ X {x/y} =η (ih) µ̃x.c{x/y} =α µ̃y.c

Notice that the only reduction steps needed here are (ηµ) and (ηµ̃), in both directions, so the

compositions of encodings gives identity modulo η-reduction, i.e. extensional equality.

Had we stuck to the interpretation as defined in [23], then reduction would have been
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involved.

Example 8.3 • (⌈〈y·β〉
X
)ξ = (〈y|β〉)ξ = (y)α

ξ α̂ † x̂ (β)x
ξ = 〈y·α〉 α̂ † x̂ 〈x·β〉→Xis

〈y·β〉

• (⌈ŷ P γ̂ ·β
X
)ξ = (〈λy.µγ.⌈P

X
|β〉)ξ = (λy.µγ.⌈P

X
)α

ξ α̂ † x̂ (β)x
ξ =

(ŷ (µγ.⌈P
X
)δ

ξ δ̂ ·α) α̂ † x̂ 〈x·β〉→Xis
ŷ (µγ.⌈P

X
)δ

ξ δ̂ ·β = ŷ (⌈P
X
{δ/γ})ξ δ̂ ·β =α

ŷ (⌈P
X
)ξ γ̂ ·β→∗

Xis
(ih) ŷ P γ̂ ·β

• (⌈P α̂ [y] x̂ Q
X
)ξ = (〈y |µα.⌈P

X
· µ̃x.⌈Q

X
〉)ξ = 〈y·b〉 β̂ † ẑ ((⌈P

X
)ξ α̂ [z] x̂ (⌈Q

X
)ξ)→Xis

(⌈P
X
)ξ α̂ [y] x̂ (⌈Q

X
)ξ →∗

Xis
(ih) P α̂ [y] x̂ Q

Notice that, in these cases, the rules (cap), (exp), and (imp) are used.

Now we look at Xis 7→ λµµ̃ 7→ Xis, and show that ⌈·
X

is J·Kλ’s right-inverse.

Theorem 8.4 J⌈P
X
Kλ = P.

Proof : Simultaneous by induction.

• J⌈〈y·β〉
X
Kλ

=
∆ J〈y|β〉Kλ

=
∆ 〈y·β〉

• J⌈ŷ P γ̂ ·β
X
Kλ

=
∆ J〈λy.µγ.⌈P

X
|β〉Kλ

=
∆ Jλy.µγ.⌈P

X
Kβ

λ
=
∆ ŷ Jµγ.⌈P

X
Kδ

λ δ̂ ·β =
∆

ŷ J⌈P
X
{δ/γ}Kλ δ̂ ·β =α ŷ J⌈P

X
Kλ γ̂ ·β = (ih) ŷ P γ̂ ·β

• J⌈P α̂ [y] x̂ Q
X
Kλ

=
∆ J〈y |µα.⌈P

X
· µ̃x.⌈Q

X
〉Kλ

=
∆ J⌈P

X
Kλ α̂ [y] x̂ J⌈Q

X
Kλ =(ih) P α̂ [y] x̂ Q

• J⌈P α̂ † x̂ Q
X
Kλ

=
∆ J〈µα.⌈P

X
| µ̃x.⌈Q

X
〉Kλ

=
∆ Jµα.⌈P

X
Kβ

λ β̂ † ẑ Jµ̃x.⌈Q
X
Kz

λ
=
∆

J⌈P
X
{β/α}Kλ β̂ † ẑ J⌈Q

X
{z/x}Kλ =α J⌈P

X
Kλ α̂ † x̂ J⌈Q

X
Kλ =(ih) P α̂ † x̂ Q

We will now show that reduction in Xis is respected by the interpretation ⌈·
X
, for which, as

suggested above, we need to extend λµµ̃.

Definition 8.5 (Extended λµµ̃) We define λµµ̃
e

by adding the rule:

(λ′) : 〈λy.t|t′·e〉 → 〈µγ.〈t′ | µ̃y.〈t|γ〉〉 | e〉 (γ fresh)

We will first show that the two implicit substitutions of Xis are respected by the interpreta-

tion; we need to involve reduction for these results as well, but in both directions.

We will write =µµ̃ for the equivalence relation on λµµ̃ generated by rule (µ) and (µ̃.

Lemma 8.6 ⌈Q{α† x̂ P}
X
=µµ̃ ⌈Q

X
{µ̃x.⌈P

X
/α}.

Proof : By induction on the structure of terms in Xis.

(Q = 〈y·β〉) : We have two cases:

(α = β) : ⌈〈y·α〉{α† x̂ P}
X

=
∆ ⌈P{y/x}

X
= ⌈P

X
{y/x} (µ̃) λ← 〈y | µ̃x.⌈P

X
〉 =

〈y|α〉{µ̃x.⌈P
X
/α} =

∆ ⌈〈y·α〉
X
{µ̃x.⌈P

X
/α}

(α 6= β) : ⌈〈y·β〉{α† x̂ P}
X

=
∆ ⌈〈y·β〉

X

=
∆ ⌈〈y·β〉

X
{µ̃x.⌈P

X
/α}

(Q = ŷ R β̂ ·α) : ⌈(ŷ R β̂ ·α){α† x̂ P}
X

=
∆ ⌈(ŷ (R{α† x̂ P}) β̂ ·γ) γ̂ † x̂ P

X

=
∆

〈µγ.〈λy.µβ.⌈R{α† x̂ P}
X
|γ〉 | µ̃x.⌈P

X
〉 →λ (µ) 〈λy.µβ.⌈R{α† x̂ P}

X
| µ̃x.⌈P

X
〉 =µµ̃ (ih)

〈λy.µβ.⌈R
X
{µ̃x.⌈P

X
/α} | µ̃x.⌈P

X
〉 = 〈λy.µβ.⌈R

X
|α〉{µ̃x.⌈P

X
/α} =

∆

⌈ŷ R β̂ ·α
X
{µ̃x.⌈P

X
/α}

(Q = ŷ R β̂ ·γ, with γ 6= α) : ⌈(ŷ R β̂ ·γ){α† x̂ P}
X

=
∆ ⌈ŷ (R{α† x̂ P}) β̂ ·γ

X

=
∆

〈λy.µβ.⌈R{α† x̂ P}
X
|γ〉 =µµ̃ (ih) 〈λy.µβ.⌈R

X
{µ̃x.⌈P

X
/α} |γ〉 =

∆ 〈λy.µβ.⌈R
X
|γ〉{µ̃x.⌈P

X
/α}

The other cases follow, as the last one, by induction.

Notice that reduction is limited to two steps, using rules (µ̃) and (µ), in both directions.

Similarly, we have:

Lemma 8.7 ⌈{P α̂ †x}Q
X
=µµ̃ ⌈Q

X
{µα.⌈P

X
/x}.
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Proof : By induction on the structure of terms.

(Q = 〈y·β〉) : We have two cases:

(y = x) : ⌈{P α̂ †x}〈x·β〉
X

=
∆ ⌈P{β/α}

X
= ⌈P

X
{β/α} (µ) λ← 〈µα.⌈P

X
|β〉 =

〈x|β〉{µα.⌈P
X
/x} =

∆ ⌈〈x·β〉
X
{µα.⌈P

X
/x}

(y 6= x) : ⌈{P α̂ †x}〈y·β〉
X

=
∆ ⌈〈y·β〉

X

=
∆ ⌈〈y·β〉

X
{µα.⌈P

X
/x}

(Q = R β̂ [x] ŷ S) : ⌈{P α̂ †x}(R β̂ [x] ŷ S)
X

=
∆

⌈P α̂ † ẑ (({P α̂ †x}R) β̂ [z] ŷ ({P α̂ †x}S))
X

=
∆

〈µα.⌈P
X
| µ̃z.〈z |µβ.⌈{P α̂ †x}R

X
· µ̃y.⌈{P α̂ †x}S

X
〉〉 →λ (µ̃)

〈µα.⌈P
X
|µβ.⌈{P α̂ †x}R

X
·µ̃y.⌈{P α̂ †x}S

X
〉 =µµ̃ (ih)

〈µα.⌈P
X
|µβ.⌈R

X
{µα.⌈P

X
/x}·µ̃y.JS

s
{µα.⌈P

X
/x}〉 =

〈x |µβ.⌈R
X
· µ̃y.⌈S

X
〉{µα.⌈P

X
/x} = ⌈R β̂ [x] ŷ S

X
{µα.⌈P

X
/x}

The other cases follow by induction.

Also here reduction is limited to two steps, using rules (µ̃) and (µ), but in opposite direction

with respect to the previous proof.

We can now show that the interpretation respects reduction.

Theorem 8.8 If P→X Q, then ⌈P
X
=λ
⌈Q

X
.

Proof : (cap) : ⌈〈y·α〉 α̂ † x̂ 〈x·β〉
X

=
∆ 〈µα.〈y|α〉 | µ̃x.〈x|β〉〉 → (µ) 〈y | µ̃x.〈x|β〉〉 → (µ̃)

〈y|β〉 =
∆ ⌈〈y·β〉

X

(exp) : ⌈(ŷ P β̂ ·α) α̂ † x̂ 〈x·γ〉
X

=
∆ 〈µα.〈λy.µβ.⌈P

X
|α〉 | µ̃x.〈x|γ〉〉 → (µ)

〈λy.µβ.⌈P
X
| µ̃x.〈x|γ〉〉 → (µ̃) 〈λy.µβ.⌈P

X
|γ〉 =

∆ ⌈ŷ P β̂ ·γ
X

(imp) : ⌈〈y·α〉 α̂ † x̂ (Q β̂ [x] ẑ R)
X

=
∆ 〈µα.〈y|α〉 | µ̃x.〈x |µβ.⌈Q

X
· µ̃z.⌈R

X
〉〉 → (µ)

〈y | µ̃x.〈x |µβ.⌈Q
X
· µ̃z.⌈R

X
〉〉 → (µ̃) 〈y |µβ.⌈Q

X
· µ̃z.⌈R

X
〉 =

∆ ⌈Q β̂ [y] ẑ R
X

(exp-imp) : ⌈(ŷ P β̂ ·α) α̂ † x̂ (Q γ̂ [x] ẑ R)
X

=
∆

〈µα.〈λy.µβ.⌈P
X
|α〉 | µ̃x.〈x |µγ.⌈Q

X
· µ̃z.⌈R

X
〉〉 →(µ)

〈λy.µβ.⌈P
X
| µ̃x.〈x |µγ.⌈Q

X
· µ̃z.⌈R

X
〉〉 → (µ̃) 〈λy.µβ.⌈P

X
|µγ.⌈Q

X
·µ̃z.⌈R

X
〉 → (λ)

〈µγ.⌈Q
X
| µ̃y.〈µβ.⌈P

X
| µ̃z.⌈R

X
〉〉 =

∆ ⌈Q γ̂ † ŷ (P β̂ † ẑ R)
X

(exp-imp) : ⌈(ŷ P β̂ ·α) α̂ † x̂ (Q γ̂ [x] ẑ R)
X

=
∆

〈µα.〈λy.µβ.⌈P
X
|α〉 | µ̃x.〈x |µγ.⌈Q

X
· µ̃z.⌈R

X
〉〉 →(µ)

〈λy.µβ.⌈P
X
| µ̃x.〈x |µγ.⌈Q

X
· µ̃z.⌈R

X
〉〉 → (µ̃) 〈λy.µβ.⌈P

X
|µγ.⌈Q

X
·µ̃z.⌈R

X
〉 → (λ′)

〈µδ.〈µγ.⌈Q
X
| µ̃y.〈µβ.⌈P

X
| δ〉〉 | µ̃z.⌈R

X
〉 → (µ) 〈µδ.〈µγ.⌈Q

X
| µ̃y.⌈P

X
{δ/β}〉 | µ̃z.⌈R

X
〉 =α

〈µβ.〈µγ.⌈Q
X
| µ̃y.⌈P

X
〉 | µ̃z.⌈R

X
〉 =

∆ ⌈(Q γ̂ † ŷ P) β̂ † ẑ R
X

(subr) : ⌈P α̂ † x̂ Q
X

=
∆ 〈µα.⌈P

X
| µ̃x.⌈Q

X
〉 → (µ) ⌈P

X
{µ̃x.⌈Q

X
/α} =µµ̃ (8.6) ⌈P{α† x̂ Q}

X

(subl) : ⌈P α̂ † x̂ Q
X

=
∆ 〈µα.⌈P

X
| µ̃x.⌈Q

X
〉 → (µ̃) ⌈Q

X
{µα.⌈P

X
/x} =µµ̃ (8.7) ⌈{P α̂ †x}Q

X

Notice that in the first four cases we can swap the (µ) and (µ̃) reduction steps.

Since reduction is used in the simulation of substitution (Lem. 8.6 and 8.7), we cannot show

a similar result for the cbn and cbv reduction strategies. Also, the (µ)-reduction step in the

second (exp-imp) case (over β) takes place in the environment, which would not be allowed

in either cbn or cbv, which strengthens our choice to exclude the second alternative of rule

(exp-imp) for both those strategies on Xis.

This means that, even when changing the active cuts of X into substitution, and the strong

relationship we have established between λµµ̃ and Xis, these calculi are fundamentally dif-

ferent. The absence of implicit variables and names gives Xis a more direct control over

cut-elimination, and mapping Xis’s substitution onto λµµ̃ creates additional (µ) and (µ̃) re-
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dexes.

Conclusion and Future Work

This paper has presented mappings from sλµ to λµµ̃, and from λµµ̃ to Xis, which preserve

the cbn and cbv reduction strategies. Furthermore, these mappings are strict in the sense

that if M→ N, then JMK and JNK are joinable with t such that JMK→+
λ

t; otherwise put, no

reductions are ‘lost’ in the mapping. It follows from these results that there are mappings

from λ-calculus into λµµ̃ and X which preserve cbn and cbv.

Other reduction disciplines: Our focus has been on preserving the cbn and cbv reduction

strategies, as these are the most commonly considered. It should be interesting to see if

these mappings preserve other evaluation disciplines, such as call-by-need or even call-by-co-

need. Of course, this would first require defining call-by-need and co-need for X , although

these definitions already exist for sλµ and λµµ̃. Such definitions may even follow from our

translation into X .

µ-reductions: It may be surprising that a translation from λµ to λµµ̃ such as the one we

defined here exists; as mentioned in Sect. 5, the nature of µ reductions in both is distinct.

Although µ-reductions in sλµ are often understood to capture their context, they need not

capture their entire context. Consider the term M (µα.C) (µβ.C′), and the reduction sequence,

M (µα.C) (µβ.C′) → (µγ.C{M·γ/α}) (µβ.C′)

→ (µδ.C′{(µγ.C[{M·γ/α}])·δ/β})

The context of the subterm µα.C is (M⌈⌋) (µβ.C′), yet only M is captured by µα.C. The

µ-reductions in λµ are performed term-by-term, which allows for the continuation to be

captured piecewise instead of at-once; this is in contrast with µ in λµµ̃, which necessarily

substitutes its entire continuation in a command.

Furthermore, there is no direct analogue of the (µl) reduction in λµµ̃; the term µα.〈t |µβ.c·α〉

does not have a (head) redex, whereas its sλµ analogue [α]M(µβ.C) is reducible;

[α]M(µβ.C) → [α]µγ.{M·γ/β}C → {M·γ/β}C{α/γ} = {M·α/β}C

(notice that γ does not appear in C).

The translation of Def. 7.1 circumvents this by introducing extra redexes around the appli-

cands so that its image reduces:

J[α]M (µβ.C)
s

= 〈µγ.〈JM
s
| µ̃x.〈µβ.JC

s
| µ̃y.〈x|y·γ〉〉〉 |α〉

→∗ 〈µβ.JC
s
| µ̃y.〈JM

s
|y·α〉〉,

which then allows for the (µl) reduction to be simulated.

An alternative solution could be to add a (µl) reduction to λµµ̃,

〈t | (µβ.c)·e〉 → c{µ̃x.〈t|x·e〉/β}

This would then allow for (µl) to be directly reflected, rather than just simulated.

Relating Semantics per-discipline: The translations could provide a unified way to relate the

by-name and by-value semantics of each calculi. For example, the operational semantics of

λµ in an abstract machine (KAM) could be directly translated into λµµ̃ (and thus X ), making

λµµ̃ and X capable of simulating cbn and cbv λµ-machines in a uniform way. This could

furthermore be used to inspect the behaviour of classical realizability models of λµ through

λµµ̃ and X .

In a similar vein, one obtains CPS translations from λµ into the λ-calculus by combining J·K

with the CPS translations of λµµ̃ given by Curien and Herbelin [12]. The resulting translations
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agree up to equality with the CPS translations of λµ given in [12], however that given by

our mapping has extra redexes that are ‘clerical’ in nature. These precisely come from the

extra µ̃ redex given in JMNK when compared with (MN)v
and (MN)n

. This would give the

operational semantics obtained as suggested subtly different intensional properties.

Type Systems: It was relatively simple to show the simple type systems of sλµ and λµµ̃ are

respected by the translations. The case for polymorphic types would be more subtle; in the

presence of control, restrictions are needed to determine when a term can have a polymorphic

type [17, 19]. The translation must be ensured to preserve the appropriate restrictions.

The existence of a mapping of sλµ into λµµ̃ means the former probably cannot be given

a sound and complete notion of intersection type assignment [2]. Nonetheless, λµµ̃ and X

is known to enjoy such a system once restricted to cbn or cbv [2, 4]. Intersection types for

cbn λµ have been explored before [3], and the mapping preserving cbv suggests one is also

possible for λµv.
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