
Explicit Alpha Conversion and
Garbage Collection in X

Extended Abstract

Steffen van Bakel and Jayshan Raghunandan

Department of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2BZ, UK

{svb,jr200}@doc.ic.ac.uk

In this paper we study the calculus of circuits X , as first presented in [13] and studied in
detail in [2]. We will present improvements on the implementation for X using term graph
rewriting techniques that was presented in [3], which result in a far more efficient running
of the reduction engine. We show that alpha conversion can be dealt with ‘on the fly’, by
implementing the avoidance of capture by modifying the rewrite rules. We then study two
different approaches to garbage collection, and compare the various implementations by
presenting benchmarks.

Introduction

This paper will present improvements on the term graph rewriting model of implementation
for the (untyped) calculus X as presented in [3]. X is a new style calculus which embodies
both substitution and context call, that has first been defined in [13] and was later extensively
studied in [2].

The origin of X lies within the quest for a language designed to give a Curry-Howard cor-
respondence to the sequent calculus for Classical Logic. Starting from different approaches
in that area —we mention Herbelin and Curien [11] and Urban [16]— in [13] the calculus X
was introduced, and studied in the context of the λµµ̃-calculus [11].

We should point out that [13], as well as [16], did not study any property of untyped X , but
focused only on its typed aspects in connection with the sequent calculus. Urban [16] set out
to study the structure of proofs, so the terms there carry types and correspond only to proofs.
In the approach to X we take here, we study terms without types, and drop the condition that
terms should represent proofs of the logic altogether: we study a pure calculus; this opens
the research to notions as normalisation, recursion, normalising strategies, confluence, etc.

While studying X as an untyped language, some unexpected special properties surfaced:
it became apparent that X provides an excellent general purpose machine, very well suited
to encode various calculi; in [2], the expressive power of X is illustrated there by giving
consistent interpretations of calculi λ, λx, λµ, and λµµ̃. Amongst the calculi studied in
that paper, the Calculus of Explicit Substitutions, λx, stands out. Also, the calculus is ac-
tually symmetric [5]; the ‘cut’, represented by (P α̂ † x̂Q) represents, in a sense, the explicit
substitution of P for x in Q, but also that of Q for α in P.

Perhaps the main feature of X is that it constitutes a variable and substitution-free method
of computation. Rather than having variables like x representing places where terms can be
inserted, in X (where we speak of circuits) the symbol x represents a socket, to which a circuit

1

can be attached via a plug α; both plugs and sockets carry names, and the only substitution-
like operation is that of renaming. The definition of reduction on X shows nicely how the
interaction between the two subtly and gently percolates through the circuits.

Although the origin of X is a logic, and one could expect it to be close to the λ-calculus,
it is in fact specified as a conditional term rewriting system; the non-standard aspects are the
presence of binding, and that the rewrite rules are defined using three different classes of
open (variable) nodes (for plugs, sockets, and circuits).

This observation is in fact the reason for the research which led to the present paper. It
was decided to build an interpreter for X , so that researchers interested could familiarise
themselves with the reduction engine and, more importantly, with the calculus. A tool1 was
developed using the term graph rewriting technology, that allows users to input circuits from
X . We not only set out to study X and its properties, but also focus on trying to extend X
into a true programming language. With that in mind, we have concentrated on building an
efficient interpreter, and sought different, increasingly better solutions to garbage collection
and α-conversion. In [3] we reported on the first results of our implementation efforts. In
particular, to avoid problems caused by nested binding of connectors, a lazy copy mechanism
was introduced, and almost all rewrite rules were defined using this.

In this paper we will show that the special character of X , being a conditional term rewrit-
ing system, makes it possible to study α-conversion on the level of the language itself. This
study is of course motivated by the implementation issues in the tool built; we apply exist-
ing concepts to new situations, finding innovative solutions. In X , α-conversion is not just
an implementation issue, but a first-class citizen (as is substitution). The expressiveness of X
makes it an ideal implementation language, where no important details of computation are
hidden. This allows us to directly measure the cost of α-conversion using the same currency
as for the cost of substitution and redex-contraction. With minor changes to the rules we can
test all different solutions on the level of the language itself.

This paper does not claim to find innovative solutions to the problem of α-conversion itself;
many solutions to this problem exists, and we have, so far, chosen standard approaches.
What we do achieve is a platform on which it is easy to compare these various solutions in
terms of execution cost, thus enabling justification for the choice of a certain technology over
another.

We will present two solutions for the problem of α-conversion that are both expressed
as changes to the rules: one will preserve Barendregt’s convention, the other avoids the
capture of free connectors by binders. Much to our surprise, the resulting rewrite rules of
these two solutions are very similar, but for the fact that in the second freeness is an issue,
rather than being bound as in the first. The reduction engine thus obtained proved to be
impressively much more efficient, especially after the addition of two different notions of
garbage collection.

1 http://www.doc.ic.ac.uk/˜jr200/X

2

x = 〈x | ∅〉
α = 〈α | ∅〉

〈x·α〉 = 〈r | {r : cap(r1,r2)} ∪ G1 ∪ G2〉,
where 〈r1 | G1〉 = x ,

〈r2 | G2〉 = α

P α̂ † x̂Q = 〈r | {r : cut(r1,r2,r3,r4)}
∪G1 ∪ G2 ∪ G3 ∪ G4〉
where 〈r1 | G1〉 = P

〈r2 | G2〉 = α

〈r3 | G3〉 = x
〈r4 | G4〉 = Q

P α̂ [y] x̂ Q = 〈r | {r : med(r1,r2,r3,r4,r5)}
∪G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5〉
where 〈r1 | G1〉 = P

〈r2 | G2〉 = α

〈r3 | G3〉 = y
〈r4 | G4〉 = x
〈r5 | G5〉 = Q

ŷP α̂·β = 〈r | {r : exp(r1,r2,r3,r4)}
∪G1 ∪ G2 ∪ G3 ∪ G4〉
where 〈r1 | G1〉 = β

〈r2 | G2〉 = y
〈r3 | G3〉 = P
〈r4 | G4〉 = α

Term graph interpretation of circuits

1 A Term Graph Rewriting System for X
Although the origin of X is a logic, and one could expect it to be close to the λ-calculus, it is
in fact specified as a conditional term rewriting system; the non-standard aspects are a notion of
binding, and that the rewrite rules are defined using three different classes of variable nodes
(for plugs, sockets, and circuits). In our view, for a general term rewriting system the term-
graph technology is the best platform for an efficient implementation: this prompted us to
build an interpreter of X using this framework, as first reported on in [3]. The technique
applied is the conventional one of [15, 7, 8], where terms and rewrite rules are lifted to
graphs. We used the standard match, build, link, re-direct, and garbage collection approach.
By the process of lifting, the connectors appear only once in the generated graph, which
immediately introduces sharing. Rewrite rules also become graphs with two sub-graphs that
each possess a root, and are united via shared leaves. Term graphs are defined by:

Definition 1.1 (Term Graphs) Using the signature {cap, cut, cutl, cutr, exp, med}, an infinite
set of labels ranged over by k, l,m,n and the set of connectors, we define (ordered) graphs by
the following grammar:

G ::= k : cap (l:x,m:α) |
k : cut (G1, l:α,m:x, G2) |
k : cutl(G1, l:α,m:x, G2) |
k : cutr(G1, l:α,m:x, G2) |
k : exp(l:x, G,m:α,n:β) |
k : med (G1, l:α,m:y,n:x, G2)

cap

x α

cut
G1 G2

α x

G1αyxG2

exp β

x α
G

Notice that we do not need to use the ·̂, since it is immediately clear which connectors are
binding occurrences. In the last graph, for example, the connectors x, α and β could appear
in G; then edges would point out from G to these connectors. This leads to the following
formal definition of interpreting circuits in X as graphs (using the notation of [9]).

3

Definition 1.2 (Graph interpretation) For each circuit P, its graph interpretation, P , ex-
pressed as a pair consisting of a label for the root of the graph and its edges is defined in
Fig. .

Notice that, by α-conversion, we can always assume that all bound connectors in a circuit
have different names, which will keep bound connectors separate when building the graph
interpretation.

Example 1.3 〈x·α〉 α̂ † ŷ(〈x·β〉 β̂ [y] ẑ〈z·γ〉) becomes

cut

cap y med

x α cap cap

β z γ

Definition 1.4 (X -graphs) i) We define the set of initial X -graphs as the image of X cir-
cuits under · .

ii) The lifting of the reduction rules to term graph rewriting rules is expressed by:

left → right = 〈rl | Gl ∪ Gr〉
where 〈rl | Gl〉 = left

〈rr | Gr〉 = right

These rules induce a notion G→g G′ of term graph rewriting.
iii) We define the set of X -graphs by closure under rewriting of initial X -graphs.

Notice that since x = 〈x | ∅〉, and we can assume this to be unique, the left and right-hand
side graphs for a rule are joined on the connectors.

Example 1.5 The result of lifting rule (exp-out†) to a term graph rule becomes:

〈rl | {rl : cutl(1,2,3,4)
1 : exp(5,6,7,2)
2 : α
3 : x
4 : Q
5 : y
6 : P
7 : β

rr : cut(8,9,3,4)
8 : exp(5,10,7,9)
9 : γ

10 : cutl(6,2,3,4)}〉

rl rr

cutl cut

exp α x Q exp γ

y β

P cutl

Notice that an application of this rule would add the nodes containing cut, exp, γ, and
cutl (that are accessible from the right-hand root rr). Also, all edges coming into the node
in the graph that is matched against the left-hand root rl would be redirected into the new
node cut. The nodes containing cutl and exp accessible from the left-hand root would become
potential garbage.

4

In addition to the interpretation of circuits to graphs, we would like an operation that
transforms an X -graph with sharing into one whose structure more-closely resembles an
X -circuit. This is acheived by ‘unravelling’ the graph; copying out the shared nodes as far
down as the connectors (which only appear once in a graph).

Definition 1.6 Unrv G, the unravelling of a X -graph G is obtained by traversing the graph
top-down (notice that we have no cyclic structures), and copying, for all shared graphs, all
nodes in that graph that are not free connectors.

We have the following adequacy result for the term graph rewriting engine:

Theorem 1.7 Let G1, G2 be X -graphs, and P1, P2 be X -circuits such that
Unrv Gi = Pi , for i = 1,2. If G1→g G2, then P1→ P2. Moreover, if G2 is in normal form, then so
is P2.

Proof: Straightforward.

We can now prove the following result:

Theorem 1.8 If P → Q in one step, then there exists a X -graph G such that: P →g G, and
Unrv G = Q .
Proof: Easy.

Notice that, by the non-confluent character for X , we cannot prove a similar result for many-
steps reduction paths.

Example 1.9 Let P and Q be pure such that α �∈ fp(P) and x �∈ fp(Q), so P← P α̂ † x̂Q→ Q.
Now (assume z �= v):

(P α̂ † x̂Q) γ̂ † ẑ(〈z·β〉 β̂ [v] ŵ〈z·δ〉) → (†cut), (†d), (†d)
((P α̂ † x̂Q) γ̂ † ẑ〈z·β〉) β̂ [v] ŵ((P α̂ † x̂Q) γ̂ † ẑ〈z·δ〉)

→ (a†), (gc†), (†a), (†gc)
(P γ̂ † ẑ〈z·β〉) β̂ [v] ŵ(Q γ̂ † ẑ〈z·δ〉)

We cannot simulate this in our term-graph rewriting engine. Instead, we get

med

cut v w cut

cut γ cap cap

P Q z β δ

α x

for the circuit in the second line. Of course, the cut cut(P,α, x, Q) can be reduced only once,
implying that the above result cannot be achieved.

This is not unexpected, however, since all implementations of reduction systems will use a
reduction strategy, preferring certain redexes over others, and thereby excluding other reduc-
tion paths. We need to investigate the confluence of, for example, cbn and cbv-reduction
strategies before we can strengthen the above result.

5

cut

exp γ x med

cap cap cap

y µ δ w α

cut

exp γ z med

exp cap

cap δ w α

y µ

cut

cut cap

exp w α

δ

cap

y µ

cutl

exp cap

w α

cap

y µ

cut

exp η cap

cutl

cap cap

y µ w α

cut

exp cap

µ η w

cap

y α

exp

µ

cap

y α

Figure 1: Alpha-conversion problem when reducing (λx.xx)(λy.y) α
λ

2 Dealing with α-conversion

In this section we will discuss a number of solutions to the problem of α-conversion in the
context of X . α-conversion is a well-known implementation issue; the most familiar context
in which this problem occurs is of course the λ-calculus, where, when reducing a term like
(λxy.xy)(λxy.xy), α-conversion is essential. Without it, one would get

(λxy.xy)(λxy.xy) → λy.(λxy.xy)y → λyy.yy

The conflict is caused by the fact that during the second reduction step, the free occurrence
of y is brought under the binding.

A particular problem in dealing with α-conversion here is that the only reduction rule
is (λx.M)N → M[N/x], where the substitution is implicit, and supposed to be performed
immediately. For example, when reducing (λxy.xy)(λxy.xy)→ λy.(λxy.xy)y, the latter term
is identical to λy.xy[(λxy.xy)/x]; the actual performance of the substitution, which brings the
right-most binder under the left-most is not part of the reduction system itself, but specified
in the auxiliary definition of substitution. This makes α-conversion difficult to tackle in the
context of the pure λ-calculus.

To consider the substitution as a separate syntactic structure implies moving from the λ-
calculus to λx [10], and is of course a natural step when moving towards an implementation.

We will now present a solution for the α-conversion problem in X , by detecting and avoiding
it, without having to extend the syntax of the calculus. In contrast, notice that this is not
possible for the λ-calculus.

6

A particular problem with α-conversion is that, although intuitively very clear, it is diffi-
cult to formalise, since it is normally expressed in global terms over a calculus. Normally,
Barendregt’s convention is quoted. Especially the notion of ‘bound’ varies greatly (e.g. x is
considered bound not only in λx.M, but also in M

Because it is an implementation issue, and we aim to have an efficient implementation of
X , we deal with the problem more formally. First we show that it is an issue to begin with.

Example 2.1 (Reduction of (λx.xx)(λy.y) α
λ)

1. (λx.xx)(λy.y) α
λ → (med), (exp-imp), (ren†)

2. (ŷ〈y·µ〉 µ̂ ·γ) γ̂ † x̂(〈x·δ〉 δ̂ [x] ŵ〈w·α〉) →
(†a), (†imp-out), (†cap), (†d), (exp)

3. (ŷ〈y·µ〉 µ̂ ·γ) γ̂ † ẑ((ŷ〈y·µ〉 µ̂ ·δ) δ̂ [z] ŵ〈w·α〉) → (exp-imp)
4. ((ŷ〈y·µ〉 µ̂ ·δ) δ̂ † ŷ〈y·µ〉) µ̂ † ŵ〈w·α〉 → (exp), (a†)
5. (ŷ〈y·µ〉 µ̂ ·µ) µ̂ † ŵ〈w·α〉 → (exp-out†)
6. (ŷ(〈y·µ〉 µ̂ † ŵ〈w·α〉) µ̂ ·η) η̂ † ŵ〈w·α〉 → (d†), (cap)
7. (ŷ〈y·α〉 µ̂ ·η) η̂ † ŵ〈w·α〉 → (exp)
8. ŷ〈y·α〉 µ̂ ·α

This result is wrong; the error lies in step 5, where the rule (exp-out†) is erroneously applied.
The side condition of that rule just checks if the plug occurs free inside the term, not if it is
free in the left-hand side. The reduction should be:

5. (ŷ〈y·µ〉 µ̂ ·µ) µ̂ † ŵ〈w·α〉 =α

6′. (ŷ〈y·σ〉 σ̂·µ) µ̂ † ŵ〈w·α〉 → (d†), (exp)
7′. ŷ〈y·σ〉 σ̂·α =α ŷ〈y·µ〉 µ̂ ·α

This example is illustrated in Fig. 1.

2.1 Lazy copying of shared graphs [3]

The solution proposed in [3] for the above problem was to avoid, as for λ-graphs, the sharing
of graphs that were involved in multiple cuts with other graphs. Similarly to the case for the
λ-calculus [17], binding of connectors was considered problematic in the context of sharing.
Sharing an abstraction λx.G in λ-graphs is problematic, since the substitution is implemented
via a redirection on G. This can be done only once, blocking a re-use of a shared abstraction,
that therefore has to be copied first. To tackle this problem within the context of X , a notion
of rebinding of sockets and of plugs was introduced, the basic idea being to ‘peel off a copy’ of
the graphs which might get affected by the double binding of connectors.

This method is similar to that of [17], but, as argued in many papers since then, this is
too restrictive, in that it, even when done lazily, destroys a large amount of sharing. But
perhaps the main objection to the solution of [3] is that it creates unnecessary overhead
in that it invokes rebinding for non-nested double bindings of connectors, that created no
conflict what-so-ever.

2.2 Preserving Barendregt’s convention

After concluding [3], it was noticed that, as suggested above, the fact that a graph can be
involved with two different cuts is not problematic. In fact, using term graph rewriting tech-
niques, the particular λ-graph problem disappears; substitution is now specified explicitly by
reduction rules, and application of these rules will have the effect that a term is generated of

7

the same shape as G, to which the substitution has been applied. In fact, the necessary copying
is done during the building phase of the rewrite mechanism, and does not need to be treated
at the level of the reduction rules. The conclusion of this was that, unlike for λ-calculus
where the sharing in the graphs created the problem, here we are in reality dealing with the
problem of α-conversion.

This is the problem addressed in this paper. The first solution we propose is the preserve
Barendregt’s convention on names, i.e. make sure that names never occur both free and
bound. It is common practice to say that α-conversion is the machinery necessary to uphold
Barendregt’s convention, that states that an identifier should not appear both free and bound
in a context (where a context can be a term, but also a type statement). It is especially the
notion of binding that is important; for example, normally x is considered bound in all λx.M,
M

.
To tackle it in a formal way, we introduce the notion of α-safety.

Definition 2.2 (α-safety) We call a circuit (X -graph) α-safe if it adheres to Barendregt’s con-
vention, i.e. no connector occurs both free and bound, and no nesting of binders to the same
connector occurs. We call a rewrite rule α-safe if it respects α-safety, that is, it rewrites an
α-safe circuit (graph) to an α-safe circuit (graph). We call a rewrite system α-safe if all its
rules are α-safe.

For example, the circuit (ŷ〈y·µ〉 µ̂·µ) µ̂ † ŵ〈w·α〉 is not α-safe (it fails both criteria); neither is
(ŷ〈y·µ〉 µ̂·δ) µ̂ † ŵ〈w·α〉, by the first criterion.

In order to obtain an α-safe implementation of X , the rewrite rules that are not α-safe
were identified. In Example 2.1, the application of (exp-imp) in Step 3 violates our α-safety
property since µ is both bound and free in (ŷ〈y·µ〉 µ̂ ·δ) δ̂ † ŷ〈y·µ〉. So rule (exp-imp) is not
α-safe; for the left-hand side (ŷP β̂·α) α̂ † x̂(Q γ̂ [x] ẑ R) to be α-safe, the connectors y and z,
and β and γ are allowed to be the same: they are not nested. However, this is no longer true
for the right-hand sides: y and z occur nested in the first alternative Q γ̂ † ŷ(P β̂ † ẑR), and β

and γ in the second (Q γ̂ † ŷP) β̂ † ẑR, which might force an α-conversion to be necessary.
In dealing with the necessary renaming of bound connectors we can take advantage of the

explicit renaming feature of X , using new cuts such as 〈v·δ〉 δ̂ † ŷP or P β̂ † v̂〈v·δ〉 to rename
y by v, or β by δ respectively in P, where v,δ are fresh (see Lemma ??). By activating the
cuts, the renaming is forced to take place and stop other cuts from propagating over the
renaming.

This effectively makes the extension of [3] via rp and rs obsolete; on the down-side, it is
no longer possible to force eager or lazy evaluation of α-conversion without doing the same
with the general propagation rules.

It has become clear that we should perform the α-conversion in rule (exp-imp). Let us
consider the first choice (assume α and x are introduced):

(ŷR β̂·α) α̂ † x̂(Q γ̂ [x] ẑ P) → Q γ̂ † ŷ(R β̂ † ẑP)

In order to allow the rewrite to be executed like this, the side condition should express two
extra criteria to avoid α-clashes: y �= z, and y �∈ bs (P) (if either of the criteria do not hold, we
have a nested binding to y on the right-hand side). If one of these last tests fails, renaming
should take place. This implies that there are now two alternatives for this rule:

(ŷR β̂·α) α̂ † x̂(Q γ̂ [x] ẑ P) → Q γ̂ † ŷ(R β̂ † ẑP) y �= z,y �∈ bs (P)
(ŷR β̂·α) α̂ † x̂(Q γ̂ [x] ẑ P) → Q γ̂ † v̂((〈v·δ〉 δ̂ † ŷR) β̂ † ẑP)

(y = z ∨ y ∈ bs(P)),v,δfresh

8

We could even add the alternative

(ŷR β̂·α) α̂ † x̂(Q γ̂ [x] ẑ P) → Q γ̂ † v̂(R β̂ † ẑP) y �∈ fs(P),vfresh

Likewise, there are two alternatives for the second choice:

(ŷR β̂·α) α̂ † x̂(Q γ̂ [x] ẑ P) → (Q γ̂ † ŷR) β̂ † ẑP γ �= β �∈ bp(Q)

(ŷR β̂·α) α̂ † x̂(Q γ̂ [x] ẑ P) → (Q γ̂ † ŷ(R β̂ † v̂〈v·δ〉)) δ̂ † ẑP
(β = γ ∨ β ∈ bp (Q)),v,δfresh

Applying this solution to Example 2.1, we have, instead of the problematic step

(ŷ〈y·µ〉 µ̂ ·γ) γ̂ † k̂((ŷ〈y·µ〉 µ̂·δ) δ̂ [k] ŵ〈w·α〉) → (exp-imp)
((ŷ〈y·µ〉 µ̂·δ) δ̂ † ŷ〈y·µ〉) µ̂ † ŵ〈w·α〉

the correction

(ŷ〈y·µ〉 µ̂·γ) γ̂ † k̂((ŷ〈y·µ〉 µ̂ ·δ) δ̂ [k] ŵ〈w·α〉) → (exp-imp)
((ŷ〈y·µ〉 µ̂ ·δ) δ̂ † ŷ(〈y·µ〉 µ̂ † v̂〈v·β〉)) β̂ † ŵ〈w·α〉 → (d†)
((ŷ〈y·µ〉 µ̂·δ) δ̂ † ŷ(〈y·µ〉 µ̂ † v̂〈v·β〉)) β̂ † ŵ〈w·α〉 → (cap)

((ŷ〈y·µ〉 µ̂·δ) δ̂ † ŷ〈y·β〉) β̂ † ŵ〈w·α〉 → (exp)
(ŷ〈y·µ〉 µ̂·β) β̂ † ŵ〈w·α〉 → (exp)

ŷ〈y·µ〉 µ̂ ·α
To guarantee α-safety, we need to do this for each rule where a possible α-conflict is

introduced, like (†cut):

P α̂ † x̂(Q β̂ † ŷR) → (P α̂ † x̂Q) β̂ † ŷ(P α̂ † x̂R)

There are two points of concern here: α = β, and β or y occurs bound in P (notice that x �= y
as, by assumption, the left-hand side is an α-safe circuit). With this in mind, the rule (†cut)
is amended with extra side conditions and extended with the following variants (where v,δ
are fresh):

P α̂ † x̂(Q β̂ † ŷR) → (P α̂ † x̂Q) β̂ † ŷ(P α̂ † x̂ R) β �∈ bp (P),y �∈ bs (P)
P α̂ † x̂(Q β̂ † ŷR) → (P α̂ † x̂Q) β̂ † v̂(P α̂ † x̂(〈v·δ〉 δ̂ † ŷR))

β �∈ bp (P),y ∈ bs (P)
P α̂ † x̂(Q β̂ † ŷR) → (P α̂ † x̂(Q β̂ † v̂〈v·δ〉)) δ̂ † ŷ(P α̂ † x̂ R)

β ∈ bp(P),y �∈ bs (P)
P α̂ † x̂(Q β̂ † ŷR) → (P α̂ † x̂(Q β̂ † v̂〈v·δ〉)) δ̂ † v̂(P α̂ † x̂(〈v·δ〉 δ̂ † ŷR))

β ∈ bp(P),y ∈ bs(P)

Almost all propagation rules (exceptions are (d†), (cap†), (†d), and (†cap)) should be
treated like this; of the logical rules, only rule (exp-imp) needs dealing with as specified
above. The advantage of this approach is that α-conversion itself is detected and dealt with:

Theorem 2.3 Let P→α Q stand for the notion of rewriting on X obtained by changing the rules as
above. Then: if P is α-safe, and P→α Q, then Q is α-safe.

The computational cost is low compared to the approach defined in [3] (see also Section 4);
the price to pay is an increase in the number of rules.

9

2.3 Avoiding capture

Barendregt’s convention is a perfectly adequate solution to the α-conversion problem, since it
forbids a term with nested binders to the same variable to be created, thereby totally avoiding
any ambiguity to the system. However, one can justifiably argue that the convention is re-
strictive, and expensive to uphold at run-time. After all, allowing nesting of bound variables
as in λy.(λxy.xy)y (and therefore also of variables occurring free and bound variables as in
(λxy.xy)y) need not be ambiguous at all when considering the innermost of nested binders
the strongest; in this paradigm, the only thing that needs to be avoided during reduction is
that of capture of free connectors, bringing a connector under a binder.

When letting go of Barendregt’s convention, without the assumption of implicit α-conversion,
the problem for variable-capture arises. Notice that this problem does not arise in terms that
adhere to Barendregt’s convention: free and bound connectors there are different, so capture
is impossible. Instead, as discussed above, for those terms the problem is that of nesting
of binders; to avoid this happening, renaming was used. Trying to avoid capture permits
connectors to appear both free and bound; the needed modification of the rules is that they
should detect possible capture of connectors.

Referring back to Example 2.1, the left-propagating cut in Step 5 should check if the con-
nector µ occurs free in the left-hand term. This is not the case, so here α-conversion is neces-
sary.

We will show we can always detect capturing safely, and perform α-conversion only then.
The solution will, in appearance, be strikingly similar to that of Section 2.2 but for the fact
that freeness is used rather than boundness, but, as argued in Section 4, it will show to be
much more efficient; this is mainly because the solution of 2.2 α-converges circuits that are
left untouched here.

The original idea for the solution presented in this section comes from the way α-conversion
can be dealt with in the context of Bloo and Rose’s calculus of explicit substitutions, λx [10].

Definition 2.4 (λx [10]) The set λx is defined as follows:

M, N ::= x | λx.M | MN | M 〈x :=N〉
A term of the form M 〈x :=N〉 is called a closure. A term which contains no closure is called
a pure term.

Notice that the variable x is considered bound in M 〈x :=N〉.
Definition 2.5 (Reduction in λx [10]) The following reduction rules on λx terms are iden-
tified.

(λx.M)P → M 〈x :=P〉
x 〈x :=P〉 → P
y 〈x :=P〉 → y, (y �= x)

(MN) 〈x :=P〉 → M 〈x :=P〉N 〈x :=P〉
(λy.M) 〈x :=P〉 → λy.(M 〈x :=P〉)

M 〈x :=P〉 → M, if x �∈ fv (M)

In fact, the two bottom rules overlap; this is similar to the situation in X , with rules (cap†)
and (gc†), and (†cap) and (†gc). In the pure λ-calculus, it is impossible to deal with α-
conversion since capturing cannot be expressed. The historical definition contained a notion
of α-reduction, but now normally the problem is avoided altogether by considering terms
‘modulo α-conversion, thereby in fact leaving it to the implementer to treat. For λx the
situation is slightly better, in that now substitution is an explicit part of term manipulation,
so the creation of an α-conflict while reducing can be expressed. In fact, variable capturing
can be avoided radically by changing the reduction rule (λy.M)

If one could use side-conditions on the rules, we could say:

(λy.M)

10

Let us consider the first choice in rule (exp-imp) (assume that α, x are introduced):

(ŷR β̂·α) α̂ † x̂(Q γ̂ [x] ẑ P) → Q γ̂ † ŷ(R β̂ † ẑP)

In order to allow the rewrite to be executed like this, the side condition should express an
extra criterion to avoid the capture of a free y in P; if y ∈ fs(P), then the rule would bring that
y under the binder ŷ on the right-hand side, and renaming should take place. This implies
that there are now four alternatives for the rule (exp-imp). First, for the first alternative
(where again v,δ are fresh):

(ŷR β̂·α) α̂ † x̂(Q γ̂ [x] ẑ P) → Q γ̂ † ŷ(R β̂ † ẑP), y �∈ fs(P)
(ŷR β̂·α) α̂ † x̂(Q γ̂ [x] ẑ P) → Q γ̂ † v̂((〈v·δ〉 δ̂ † ŷR) β̂ † ẑP), y ∈ fs(P)

We could even add the alternative

(ŷR β̂·α) α̂ † x̂(Q γ̂ [x] ẑ P) → Q γ̂ † v̂(R β̂ † ẑP), y �∈ fs(R),y ∈ fs(P)

Likewise, there are two alternatives for the second choice:

(ŷR β̂·α) α̂ † x̂(Q γ̂ [x] ẑ P) → (Q γ̂ † ŷR) β̂ † ẑP, β �∈ fp(Q)

(ŷR β̂·α) α̂ † x̂(Q γ̂ [x] ẑ P) → (Q γ̂ † ŷ(R β̂ † v̂〈v·δ〉)) δ̂ † ẑP, β ∈ fp(Q)

Also, since now we explicitly allow for connectors to occur both free and bound in a circuit,
the rules need to check if the connector we try to connect to in a cut is actually really free.
For example, rule (exp-out†) now becomes:

(ŷQ β̂·α) α̂ † x̂ P → (ŷ(Q α̂ † x̂P) β̂·γ) γ̂ † x̂P, α ∈ fp(Q) & α �= β

(ŷQ β̂·α) α̂ † x̂ P → (ŷQ β̂·α) α̂ † x̂P, α �∈ fp(Q) ∨ α = β

and rule (exp) becomes:

(ŷP β̂·α) α̂ † x̂〈x·γ〉 → ŷP β̂·γ, α �∈ fp(Q) ∨ α = β

The reduction of Example 2.1 should have been:

(ŷ〈y·µ〉 µ̂·µ) µ̂ † ŵ〈w·α〉 → (exp-out† ′)
(ŷ〈y·µ〉 µ̂·µ) µ̂ † ŵ〈w·α〉 → (exp′) ŷ〈y·µ〉 µ̂·α

Although the structure of these new rules is similar to those in Section 2.2, the improvement
in execution speed is impressive, as can be seen in the last section.

3 Generalising X
3.1 Optimising garbage collection

A natural optimisation is to check whether the renaming invoked by the alpha conversions is
actually necessary, by checking if the connector to rename occurs free in the graph, thereby
implicitly calling a garbage collection rule. The applicability of the garbage collection rules
stated in Lemma ?? is limited, since they both involve pure terms. However, we are able to
generalise these results to include terms with active cuts.

We aim to add more generic rules; in fact, we will show their admissibility below (Theorem
3.3), for which we first need to show a number of results.

11

Lemma 3.1 i) For all X -circuits R ≡ P α̂ † x̂Q with P, Q pure, there exists a reduction path R→
R′, with R′ pure.

ii) For all X -circuits R ≡ P α̂ † x̂Q with P, Q pure, there exists a reduction path R→ R′, with R′
pure.

Proof: By induction on the depth d, of the active cut, where d = 0 if the cut does not appear
in the circuit.

We can now use this lemma to give a stronger result.

Lemma 3.2 For all X -circuits P, there exists a reduction path P→ P′, with P′ pure.

We are now ready to justify the more general garbage collection rules:

Theorem 3.3 (Generalized garbage collection) i) P α̂ † x̂Q =X P, α �∈ fp(P) .
ii) P α̂ † x̂Q =X Q, x �∈ fs(Q) .

Proof: i) The two cases to consider are: either P is pure or P is not pure.
(P is pure) : This follows from rule (gc†).
(P is not pure) : Then by Lemma 3.2, there exists a reduction path from P to a circuit

P′, such that P′ is pure. Note that this reduction path affects only the circuit P, thus,
so we can reduce P to P′ and also P α̂ † x̂Q to P′ α̂ † x̂Q. Since the reduction path
does not introduce α in P′, we can apply this first part of this proof, eliminating the
outermost flagged cut.

ii) The justification for this rule is similar.

This result now helps to justify more general deactivation rules.

Theorem 3.4 (Generalized deactivation) i) P α̂ † x̂Q =X P α̂ † x̂Q , if P introduces α.

ii) P α̂ † x̂Q =X P α̂ † x̂Q , if Q introduces x.

Proof: i) If P introduces α, we have two cases:
(P = 〈x·α〉) : By rule (d†).
(P = x̂P′ β̂·α) : Then α �∈ fp(P), and

(x̂P′ β̂·α) α̂ † x̂Q → (exp-out†)
(x̂(P′ α̂ † x̂Q) β̂·γ) γ̂ † x̂Q =X (3.3)

(x̂ P′ β̂·γ) γ̂ † x̂Q =α (x̂P′ β̂·α) α̂ † x̂Q
ii) If Q introduces x, we have two cases:

(Q = 〈x·β〉) : By rule (†d).
(Q = Q1 β̂ [x] ŷQ2) : Then x �∈ fs(Q1, Q2), and

P′ α̂ † x̂(Q1 β̂ [x] ŷQ2) → (†imp-out)
P′ α̂ † v̂((P′ α̂ † x̂Q1) β̂ [v] ŷ(P′ α̂ † x̂Q2)) =X (3.3)

P′ α̂ † v̂(Q1 β̂ [v] ŷQ2) =α P′ α̂ † x̂(Q1 β̂ [x] ŷQ2)

Adding these more generic reduction rules gave another significant improvement, on
which we report in Section 4.

3.2 Available connectors

Another optimisation of the reduction system that we will present in this section is based on
the notion of availability, as first defined in [12], where strong normalisation of reduction is
studied for λx using intersection types. An important role is played by the notion of available
variable in a term, which is a generalization of the classical notion of free variable.

12

Definition 3.5 The set of available sockets of a circuit is defined by:

as(〈x·α〉) = {x}
as(ŷP β̂·α) = as(P) \ {y}

as(P α̂ [y] x̂ Q) = as(P) ∪ {y} ∪ as(Q) \ {x}
as(P α̂ † x̂Q) = as(P) ∪ as(Q) \ {x}

as(P α̂ † x̂Q) =

{
as(P) ∪ as(Q) \ {x} x ∈ as(Q)

as(Q) x �∈ as(Q)

as(P α̂ † x̂Q) =

{
as(P) ∪ as(Q) \ {x} α ∈ ap(P)
as(P) α �∈ ap(P)

The set of available plugs, ap(P) of a circuit P is defined similarlyby:

ap(〈x·α〉) = {α}
ap(ŷP β̂·α) = ap(P) ∪ {α} \ {β}

ap(P α̂ [y] x̂ Q) = ap(P) ∪ ap(Q) \ {α}
ap(P α̂ † x̂Q) = ap(P) ∪ ap(Q) \ {α}

ap(P α̂ † x̂Q) =

{
ap(P) ∪ ap(Q) \ {α} x ∈ as(Q)

ap(Q) x �∈ as(Q)

ap(P α̂ † x̂Q) =

{
ap(P) ∪ ap(Q) \ {α} α ∈ ap(P)
ap(P) α �∈ ap(P)

First of all, much in the style of the results of Subsection 3.1, we can show that it is sound to
extend the reduction relation with the cases for garbage collection expressed using available
connectors, rather than free.

We first show the following lemma, which shows the commutativity of activated cuts:

Lemma 3.6 (P γ̂ † ŷQ) α̂ † x̂R =X (P α̂ † x̂R) γ̂ † ŷ(Q α̂ † x̂ R)
(P γ̂ † ŷQ) α̂ † x̂R =X (P α̂ † x̂R) γ̂ † ŷ(Q α̂ † x̂ R)
P γ̂ † ŷ(Q α̂ † x̂R) =X (P α̂ † x̂Q) γ̂ † ŷ(P α̂ † x̂R)
P γ̂ † ŷ(Q α̂ † x̂R) =X (P α̂ † x̂Q) γ̂ † ŷ(P α̂ † x̂R)

Proof: Straightforward, by induction on the structure of circuits.

Theorem 3.7 i) P α̂ † x̂Q =X P, α �∈ ap(P).

ii) P α̂ † x̂Q =X Q, x �∈ as(Q).

Proof: By induction on the structure of terms. The cases for P= 〈x·β〉, ŷP′ γ̂·β, or Q1 γ̂ [x] ŷQ2
are straightforward (by induction). As for the cuts, the case for the unactivated cut follows
by the corresponding propagation rule (either (†cut) or (cut†)) and induction, and the case
for activated cuts follows from Lemma 3.6 and induction.

By the above result, we can weaken our side-conditions on the rules and check for avail-
ability rather than free-ness. We know that the connectors that are not available but free will
disappear during reduction, as will the circuits that will be connected via them; such connec-
tions are redundant and would only slow down the reduction engine, not affecting reachable
normal forms. Using availability allows more sub-circuits to be considered garbage, thereby
optimising reduction.

We modify the logical rules in Definition ??, and generalised rules of Section 3.1, replacing
free connector checks with availability checks. Additionally, we attach a side condition to
each rule in Definition ?? to permit propagation only if the socket (plug) involved in the
right-cut (left-cut) is available in the corresponding sub-circuit.

With that in mind, the definitions below are a variant of the rules defined in [2], that define
an optimisation of the reduction relation, and depend on a notion of connectability:

13

Definition 3.8 Connectability of a connector in a circuit is defined by:

(x is connectable in P) : Either P = P α̂ [x] ŷQ, and x is not available in P, Q, or P = 〈x·δ〉.
(δ is connectable in P) : Either P = x̂Q β̂·δ, and δ is not available in Q, or P = 〈x·δ〉.
Notice that predicate essentially states that the connector has only one significant occurrence
on the outermost level.

Definition 3.9 (Reduction: Logical rules) Reduction of well-connected cuts, i.e., where both
connectors mentioned in the cut are connectable, is defined by:

(cap) : 〈y·α〉 α̂ † x̂〈x·β〉 → 〈y·β〉
(exp) : (ŷP β̂·α) α̂ † x̂〈x·γ〉 → ŷP β̂·γ
(med) : 〈y·α〉 α̂ † x̂(Q β̂ [x] ẑ R) → Q β̂ [y] ẑ R

(exp-imp) : (ŷP β̂·α) α̂ † x̂(Q γ̂ [x] ẑ R) →
{

Q γ̂ † ŷ(P β̂ † ẑR)
(Q γ̂ † ŷP) β̂ † ẑR

Definition 3.10 (Enabling) We define the following two enabling rules.

(a†) : P α̂ † x̂Q → P α̂ † x̂Q if α not connectable in P
(†a) : P α̂ † x̂Q → P α̂ † x̂Q if x not connectable in Q

The enabled cuts are different from the active cuts in that no longer the dagger is tilted
only if the connector is unique and only occurring at the outermost level. We now also allow
tilting if the connector is ‘out of reach’, i.e. present, but in a circuit that will certainly be
discarded.

Notice that a cut (ŷP β̂·α) α̂ † x̂(Q γ̂ [x] ẑ P) can be enabled if either the plug α is available
in P, or the socket x is available in Q or R; otherwise, the logical rule (cut) applies. This
change in activation, and the fact that availability rather than freenees is used in the logical
rules, causes a different formulation of the propagation rules.

Definition 3.11 (Left propagation)

Q α̂ † x̂P → Q α̂ † x̂ P, αconnectable in Q
Q α̂ † x̂P → Q, α �∈ ap(Q)

(ŷQ β̂·α) α̂ † x̂P → (ŷ(Q α̂ † x̂ P) β̂·γ) γ̂ † x̂P, γ fresh,α ∈ ap(Q)

(ŷQ β̂·γ) α̂ † x̂P → ŷ(Q α̂ † x̂ P) β̂·γ, γ �= α ∈ ap(Q)

(Q β̂ [z] ŷ R) α̂ † x̂P → (Q α̂ † x̂P) β̂ [z] ŷ(R α̂ † x̂P), α ∈ ap(Q, R)
(Q β̂ † ŷR) α̂ † x̂P → (Q α̂ † x̂P) β̂ † ŷ(R α̂ † x̂ P), α ∈ ap(Q, R)

Definition 3.12 (Right propagation)

P α̂ † x̂Q → P α̂ † x̂Q, xconnectable in Q
P α̂ † x̂Q → Q, x �∈ as(Q)

P α̂ † x̂(ŷQ β̂·γ) → ŷ(P α̂ † x̂Q) β̂·γ, x ∈ as(Q)

P α̂ † x̂(Q β̂ [x] ŷ R) → P α̂ † ẑ((P α̂ † x̂Q) β̂ [z] ŷ(P α̂ † x̂ R)),
z fresh, x ∈ as(Q, R)

P α̂ † x̂(Q β̂ [z] ŷ R) → (P α̂ † x̂Q) β̂ [z] ŷ(P α̂ † x̂ R), z �= x ∈ as(Q, R)
P α̂ † x̂(Q β̂ † ŷR) → (P α̂ † x̂Q) β̂ † ŷ(P α̂ † x̂R), x ∈ as(Q, R)

We write→o for the (transitive, compatible) reduction relation generated from these rules.

Of course, before implementing this system, also the capture-avoidance of the previous
section needs to be applied and checked; notice α-conversion would only be performed on
available connectors, though. This is left for future work.

14

Term Lazy-copying α-safety α-safety (Gen.) Capture (Gen.)
22II 11901 8939 3730 3370 2282 2178 2427 1233
222II 80695 35051 15636 7785 8949 3548
2222II 257179 78242 45294 16137 40511 6132
22222II 263528 79717 45657 16466 40924 6461
210II 3987 3226 5120 2163 2029 1685 1776 1148
2210II 107627 19182 13080 9280 5420 4977 4735 2690
22210II 180153 43292 25932 9303 13909 2875
Q(n=2) 23207 79401 8617 9053 6870 4212
Q(n=5) 30743 122391 12664 10955 7701 5043
Q(n=10) 44663 201521 15056 14125 9086 6428
Q(n=20) 77603 387831 23125 20465 11856 9198
Q(n=50) 217223 . . . 47305 39485 20166 17508

Figure 2: cbv (left) and cbn (right) benchmarks

4 Measurements

In this section we compare the efficiency of the solutions presented in this paper using the
term-graph rewriting tool. The tool is written Java and is based on standard term-graph
rewriting techniques, with support for conditional and higher-order rewriting.

We choose to measure the running of (interpreted) lambda terms since these are well-
known benchmarks [1, 14], and the efficiency of the various formalisms and abstract ma-
chines can be better compared. We can of course not confront (published) run-time mea-
surements because of differences in platforms and processor speeds. It could be interesting
to measure the running of circuits that are not interpreted lambda terms, but we would have
no means to compare those to other implementations.

We use the usual encoding for Church Numerals (n = λxy.xny). In addition, we use the
combinators, Q = (λz.(λx.zxxx)(λy.2(λx.y(xI))n))II, with n replaced with a chosen Church
Numeral and I = λx.x. The interpretation function from λ-calculus to X [2] (Definition ??)
is used to encode each benchmark before input in to the tool. We count the number of add
and remove operations for nodes and edges, together with the number of edge redirections.
For each system, we test two strategies: call-by-value and call-by-name.

Figure 2 lists our results, where terms taking more than 500,000 interactions to normalise
are omitted. Our experimental results emphasise the unnecessary restrictions imposed while
adhering to Barendregt’s convention, and show the importance of the generalised rules for
any efficient implementation of X .

Our various attempts to find efficient α-conversion solutions also involved optimisations
of the tool. The α-conversion variants for each rule and the use of side-conditions requiring
subgraph traversals created a bottleneck during the matching phase of the rewrite proce-
dure. An initial parse of the rewrite rules groups together rules whose LHS are structurally
equivalent. We also use labelled graphs to store and reuse information about the freeness of
connectors. The most optimal solution to date combines the notion of availability together
with the avoiding capture solution. Considering a term like, (x̂(〈x·δ〉 α̂ † ŷ〈y·β〉) µ̂·γ) β̂ † ẑP,
we observe that β is free, but not available; thus propagation of the outermost cut is permit-
ted using the freeness definition of garbage collection. Using the availability solution, (gc†)
is applicable, side-stepping an unnecessary reduction.

15

Conclusions and future work

We have studied various solutions for the problem of α-conversion in the context of a term-
graph rewriting implementation of the X -calculus. The first uses a rebinding technique, that
required an extension of the syntax, with additional rules. The second and third change the
reduction rules of X , but without extending the signature. The second solution guarantees
that (generated) term adhere to Barendregt’s convention, whereas the third checks for capti-
vation of free names. We have measured the efficiency of all these solutions, and conclude
that the latter, although syntactically very close to the second, is by far the best.

There are a number of questions still open that will be investigated in future work. We
aim to show that the reduction strategy used in the tool (essentially left-most outer-most) is
normalising. We also aim to show that the availability check actually improves reduction;
our measurements so far do not indicate much improvement, but this seems to be due to the
reduction strategy used.

References

[1] A. Asperti, C. Giovanetti, and A. Naletto. The bologna optimal higher-order machine. J. Funct.
Program., 6(6):763–810, 1996.

[2] S. van Bakel, S. Lengrand, and P. Lescanne. The language X : circuits, computations and classical
logic. In ICTCS’05, LNCS 3701, pages 81–96, 2005.

[3] S. van Bakel and J. Raghunandan. Implementing X . In TermGraph’04, ENTCS, 2005.
[4] S. van Bakel, J. Raghunandan, and A. Summers. Term Graphs, α-conversion and Principal Types

for X . Manuscript, 2005.
[5] F. Barbanera and S. Berardi. A symmetric lambda calculus for classical program extraction.

Information and Computation, 125(2):103–117, 1996.
[6] H. Barendregt. The Lambda Calculus: its Syntax and Semantics. North-Holland, Amsterdam, re-

vised edition, 1984.
[7] H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, J.R. Kennaway, M.J. Plasmeijer, and M.R.

Sleep. Term graph rewriting. In PARLE, LNCS 259-II:141–158, 1987.
[8] H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, J.R. Kennaway, M.J. Plasmeijer, and M.R.

Sleep. Towards an Intermediate Language based on Graph Rewriting. In PARLE, LNCS 259-
II:159–175, 1987.

[9] E. Barendsen and S. Smetsers. Conventional and Uniqueness Typing in Graph Rewrite Systems.
Mathematical Structures of Computer Science, 1996.

[10] R. Bloo and K.H. Rose. Preservation of strong normalisation in named lambda calculi with
explicit substitution and garbage collection. In CSN ’95, pages 62–72, 1995.

[11] Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In ICFP’00, pages 233–243.
ACM, 2000.

[12] S. Lengrand, P. Lescanne, D. Dougherty, M. Dezani-Ciancaglini, and S. van Bakel. Intersection
types for explicit substitutions. Information and Computation, 189(1):17–42, 2004.

[13] Stéphane Lengrand. Call-by-value, call-by-name, and strong normalization for the classical se-
quent calculus. In ENTCS 86, 2003.

[14] Ian Mackie. Efficient lambda-evaluation with interaction nets. In RTA, pages 155–169, 2004.
[15] R. Sleep, M.J. Plasmeijer, and M.C.J.C van Eekelen, editors. Term Graph Rewriting. Theory and

Practice. Wiley, 1993.
[16] Christian Urban. Classical Logic and Computation. PhD thesis, University of Cambridge, October

2000.
[17] C.P. Wadsworth. Semantics and pragmatics of the lambda calculus. PhD thesis, Oxford University,

1971. Thesis CST-33-85

16

