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Abstract. We define a small functional calculus that expresses classebob-
ject oriented features and is modelled on the similar catdiHeatherweight Java
[34] and Middleweight Java [15], which are ultimately basgubn the Java pro-
gramming language. We defingpeedicatesystem, similar to the one defined in
[10], and show subject reduction and expansion, and argig@tbgram analysis
systems can be built on top of this system. Generalising dheeapt of approxi-
mant from the Lambda Calculus, we show that all expressiwaisie can assign
a predicate to have an approximant that satisfies the sardiegte From this, a
characterisation of (head-)normalisation follows.

1 Introduction

Thefunctionalprogramming paradigm, exemplified by languages such as M), as
developed around a pre-existing theoretical frameworktagpon the Lambda Calcu-
lus (A-calculus) [12]. Theobject orientedorogramming paradigm, although developed
in parallel with functional languages, did not arise fromraikar such framework: the
language Simula [23] was born out of a more practical neednfiptementing sim-
ulation software. Object orientation was then popularisethe 80s by the language
Smalltalk [31], and later C++ [57]. This paradigm has nowdrae hugely popular
thanks to the languages Java [32] and C# [44].

It was only after the introduction of object oriented pragraing that attempts were
made to place it on the same theoretical foundations asiuradtprogramming. The
first were based around extending thealculus and representing objects as records
[16,48,17,29]. The seminal work of Abadi and Cardelli [1hstitutes perhaps the
most comprehensive formal treatment of object orientatiord introduces the Var-
sigma object calculus;{calculus). This calculus is a highly abstract view of th¢geob
oriented programming paradigm, and describes many fesafarend in a multiplicity
of programming languages. Despite this generalitygtoalculus was formulated us-
ing a particular view of the object oriented methodology e-dbject-basedariety as
opposed to thelass-basedariety. For this reason, work was carried out to develop sim
ilar formal models describing class-based languages biotdforts are Featherweight
Java [34] and its successor Middleweight Java [15].

An integral aspect of the theory of programming languagggoie theorywhich al-
lows for static analysis via abstract reasoning about @mogt so that certain guarantees



can given about their behaviour. Type theory arose sidsitby-with the formal mod-
els, one of the earliest being Curry’s system for Ahealculus [22]. Type theory easily
found acceptance within the world of programming, not ohisotigh Milner’s claim
“typed programs cannot go wrohl but also because static, compile time type analy-
sis allows for efficient code generation, and the generatfafificient code. The quest
for expressive type systems is still ongoing; for exampiees with quantifiers [30, 52]
were investigated in the early nineties [47,50, 51, 18], tredntersection type disci-
pline (1ITD), as first developed in the early 1980s [19, 20, 13, 4] are taadgexamples
of, in principle, undecidable systems that have found prakapplication.

ITD generalises Curry’s system by allowing more than one typé&ée and bound
variables, grouped imtersectionsvia the type constructan. This (for free variables)
is a feature also ofiL [45, 24], where, in the et -rule, a term-variable can have a
generic type which can get instantiated into several typ#sctively typingx with all
those types. In fact, theL system has similarities with Rank 2 intersection type as-
signment [40, 3]; the key idea for this system is to resttiet $et of types to those of
the shapé(c1n...No,) — 7), where they; are types that do not contain intersections.
This kind of types later were used outside the context ofitealculus in, e.g., [5, 25,
6,59]. Since then, many decidable restrictions of varianks have been defined by
A. Kfoury and J. Wells [38, 37]. However, in contrastsa, ITD also allows more than
one type foboundvariables, effectively opening the possibility to accegienents of
more than one type (note that this is not the same as acceptiaggument gpolymor-
phic type, which would correspond to System F [30]: there are seypeable inTD
that are not typeable in System F). This slight generatisatauses a great change in
complexity; in fact, now all terms having a (head-)normahfican be characterised by
their assignable types (see also Section 7), a propertynima¢diately shows that type
assignment is undecidable, since it would solve the hafinoplem. Also, by introduc-
ing this extension a system is obtained that is closed udsquality: if B - M : ¢
andM =g N, thenB - N : o (see also Section 4.1).

So intersection systems are too powerful. But they satisfyraber of strong prop-
erties, that are preserved even when considering decidestiections. For example,
soundness (subject reduction) will always hold, as doefatitiehat a term that satisfies
certain criteria will terminate (has a normal form), or, lwdifferent criteria, produce
output (has a head-normal form). What is normally lost whemstdering a restriction
is the ‘only if’ part of the properties. And, in fact, intersection typesééound their
way not only into programming languages [53-55, 39, 26, 2B,dut have long since
proved their worth within the area abstract interpretatiorf35, 21, 14].

The strength ofTD motivated de’Liguoro [27] to apply the principles of intecsion
types to object oriented programming, in particular to thesigma Calculus. Over three
papers [8—10], several systems were explored, for variatiams of that calculus.

In this work, we aim to follow up on these efforts and apply fhrciples of in-
tersection types, and the system of [10] specifically, torenéd model ofclass-based
object oriented programming. The model that we use is bas¢84) 15]. We find that
we would like to use a slightly richer calculus than [34], thdt the collection of fea-

1 Here wrong is a semantic value that represents an error state, cregied, for example,
trying to apply a number to a number



tures in [15] is, at least for the moment, too complex for ourpmses. Therefore, we
define a new calculus, which we chalghtweight JavaHaving defined the calculus, we
will then prove subject reduction and expansion results.

Although the system we study here is based on the one presen{d0], and
thereby firmly rooted in the area of intersection types [1913, 4, 7], this paper re-
quires no previous knowledge of those systems at all. In thet intersection type
constructor is not used at all in our system, albeit pregapticitly in the join oper-
ation. We choose this approach to highlight the strengtthefsystem, the main idea
of which is to allow more than one analysis (grouped in ancthpeedicate) to be used
simultaneously for an expression.

As with intersection types for thé-calculus, the types we introduce here open
the way for defining semantics, building a filter model by ipteting expressions by
their assignable predicates. This is a straightforwarérestbn of the results of this
paper, but is omitted because of space restrictions: wesfbete on the presentation
of the calculus and the predicate assignment system, anfh¢h¢hat this is closed
for reduction and expansion of typed terms; this then sheufficiently illustrate the
semantic properties of the system.

The goal of our research is to come to a semantics-basedebiygped abstract in-
terpretation for object orientation, for which the prespaper contains the first steps.
While the abstract interpretation of object-oriented laages has certainly been an
active topic of research, the majority of approaches takas far appear to have con-
centrated on control-flow and data-flow analysis technigateer than type-based ab-
stractions [43]. An exception to this is found in [33]. Anetlfobservation is that work
in this area has been centred around issues of optimisf@iéhpresents &lass anal-
ysisof object-oriented programs which may be used to eliminataal function calls,
pointer analysig56] generalises class analysis and also allows for thectieteof null
pointer dereferencing, and other analyses [41, 42] havebbat inferring invariants
for classes which can be useful in many optimisations sudhesemoval of checks
for array bounds. What is missing from this list is terminatanalysis, which is what
our treatment addresses. A termination analysis of Javecbgle has been done [2],
however our system aims at performing such an analysisttjiratthe level of the
object-oriented language rather than its intermediata fa¥e also note that while our
work takes termination analysis as its starting point, itas necessarily limited to this
type of analysis.

The normal, class-based type system for our variant of Jagaund, but not ex-
pressive enough to come to in-depth analysis of programsherefore introduce the
additional concept of predicates, which express the fanatibehaviour of programs,
and allow their execution to be traced. We show that the stah¢functional) proper-
ties hold and, moreover, put in evidence that we have a ssermgntic system: we can
prove an approximation result and characterise head-risatian. The system, being
semi-decidable at best, would need to be limited in expressiss before it can be used
for static analysis, but the main properties shown in thjsgpavould hold also for such
a restriction; the one to fail would be tlktempletenesside of things, where we reason
against the flow of execution.



2 A Class-based Calculus: Lightweight Java

In this section, we formally define the calculus that we stiidig based on aspects of
both Featherweight Javad and Middleweight JavaM3J), and so to continue with the
theme we have namedlLlightweight JavaLJ). We retain the functional nature efj,
but add some features fromu (namely field assignment expressions antll objects)
which do not conflict with this.

The following notational conventions will be used:

1. We useér (wheren is natural number) to represent the list. ., n.

2. Asequence af elements, ..., a, is denoted byr,,. The subscript can be omitted
when the exact number of elements in the sequence is noarglé&oth comma-
separated and space-separated sequences may be abthiaviateway.

3. We writea € @, whenever there exists somie {1,...,n} such that; = a. Sim-
ilarly, we write 2 ¢ @, whenever there doa®ot exist ani € {1, ...,n} such that
a; = a. Again, the subscript may be omitted as implicit.

. The empty sequence is denotecdby

. If Fis a partial function defined overarguments, thefi(arg)| (F(arg)T) denotes
thatF is (not) defined on the argumeraits.

[

Definition 1 (Identifiers). We define the following sets of identifiers:

1. The selCILASS-NAME of class namesvhich includes the distinguished element
bj ect, and is ranged over by C, D.

. The sefFIELD-ID of field identifiers, ranged over by

. The seMETHOD-NAME of method names, ranged over fay

4. [ ranges over the union of the set of field identifiers and mettades, which we
call the set otlass member labels

5. The setvARIABILE of variables, which includes the special variatih s, ranged
over byx.

w N

Note that C, D,f, m andx aremeta-variablesvhich range over sets. However, when
these letters are written in a fixed-width fo@ O, f , m x), this indicates that we are
referring to actual members of the sets, and not meta-vasab

As in FJandmJ (and indeed full Java [32]), types are embedded within tinéesyof
the language itself, allowing the programmer to explicihecify the type of each field
and method. Thus, in order to define the syntax of our cal¢cubesmust first define
types. Notice that, for simplicity, we do not assume the @nes of basic types, like
INT Or CHAR, nor constants; these can easily be added without affeatingesults.

Definition 2 (Class and method types). 1. The types that can be assigned iex-

pressions are calledasstypes, corresponding to the intuition that each expression

results in an object which is an instance of some class. Thefs#ass types is
identical to the set of class names and, as such, we will @sduand D to range
over these types. As will be seen in the syntax definitionuwelee also use class
types as annotations in field definitions since fields are tsetbre object values.



2. Themethod typeare defined by the following grammar:
u = C,...,C,—D

Thus, each method takes a sequence of arguments of types (C,;, and returns
a result of type D.

Definition 3 (Program syntax). 1. We define a set afxpressionsanged over by.
We also define a subset of expressions ranged ovenlkich is the set obbjects

x| (C)null |e.f|ef=¢e|em(e)|newC(8)
o= x| (C)null | newC(3)

Notice that the expressiorew C(€) is an object only when ad; are.
2. Classesare defined by the following grammar:

fd :=Cf
md ::= Dm(Cx){e}
cd ::= class Cextends C' {fdmd} (C# bject)

3. LJ Programs consist of aexecution contexwhich is a sequence of class defini-
tions), and an expression that is evaluated when the proigreum:

& == cd
P = (&,e)

We now discuss these various syntactic elements. Expresgiay create objects
that conform to a specified class template indicated by @gusienew keyword. They
may also invoke methods, and retrieve and assign field vabugisjects or parameters.
Expressions may also refer to variables (method parametedshe null value.

Classes contain a list of fields and a list of methods, thestyfevhich must be
declared. Methods may take multiple arguments, and metbdib consist of a single
expression. Classes may also inherit from one another, imgémat they share field
and method definitions. There is a lack of symmetry betweensthucture of field
definitions and method definitions: in a field definition, tipe of the field precedes
the field identifier, whereas the sequence of parameter typeprising the method
type is mixed in with the sequence of formal parameters. Hewthis is an intentional
decision, motivated by the desire to have the calculus confo its predecessorsJ
andmJ), as well as its namesake language.

Note that fields are more than just parameter-less methoglsallow the values
returned by fields to be updated during program executioereds the behaviour of
methods is fixed, once and for all, when a class is defined. Menvéhe syntax of
Definition 3 does not disallow thedeclarationof any methods and fields that have be
defined in a superclass. We will specify that for an executmmtext to be well-formed
(and so in turn for expressions to be typeable), classes motisedeclare fields in this
way. We will also specify that if methods are redeclarednttfee method type must
match that of the superclass, although the names of the fgramameters may differ.



We will not place any restrictions on thedyof the redeclared method, thus allowing
a limited type-restricted form of methax/erride

Unlike in Fyandmy, and indeed full Java itself, we do not include object carcttir
methods in the language definition. Full Java allows objertse created in multiple
ways, thereby requiring the ability to define multiple canstor methods. Bothiand
MJ enforce a single constructor method for each class to whiithali values for all
fields must be passed as parameters. There is no loss of liggrierthis approach and
so we adopt it for.d. However, inFJ andmJ, constructor methods are made explicit
and must appear in the method definition list of each clasis ddnstructor method
is distinguished from the other methods through the use mdirsge typing rules. We
feel that this is an unnecessary complication of the langsygtax, and so make the
constructor methodplicit by requiring in the type rule for theew keyword that the
types of the expressions appearing in the object creatinstaact match the types for
the sequence of fields defined by the class of the object bedager.

Furthermore, we have chosen to orast expressionfsom our language. It appears
that casts were included in FJ in order to support the comilaof FGJ programs to
FJ [34,83]. Since that is not an objective of the current work, and ghesence of
downcasts makes the system unsound (in the sense thafpet-¢xpressions can get
stuck), they are omitted. Upcasts are replaced by subsampties in the type system.
At this stage, we point out a slight departure from the usard $yntax in our definition
of nul | object values. In.J, eachnul | value is annotated with a class type. Note that
this is not casting, since we do not define a speaiall type, but is simply a type
declaration similar in spirit to those of field and method wigifins.

Definition 4 (Syntax look-up functions). We define the following look-up functions
to retrieve the various syntactic elements of a program:

1. The following three functions retrieve the names of aglasmethod and a field
from their respective definitions:

CN(cl ass Cextends C' {fdmd}) = C
MN (D m(Cx)) L m
FN(C f) = f

2. Theclass table C7; is a partial map from execution contexts and class names to
class definitions:

, [cd CN(cd) =C&cde &

r(&,C) = {Undefined otherwise
We emphasize that the class table is to be undefined on thabplessj ect ,
since this class should only serve as the root of the clasarhley and contain no
fields and methods.

3. The SuperCifunction is a partial map from execution contexts and clas®es
to class names, returning the direct superclass of a giass abithin the given
context.



4. The list of fields belonging to a class C in an execution extr# is given by the
following function:

F(&,C)-f, C€r(&,C)=class Cextends C {fd, md}
F(&,C) = &Vien | f; =FN(fd;)]
€ otherwise

Thus, the sequence returned by this function contains rgttba fields declared
in the specified class, but all the fields that it inherits fritgrsuperclasses.

5. The functionM returns a set of method names for a given class, correspptalin
the methods declared and inherited by that class. It is dbéiadollows:

M (&,C")U{MN (md) | md€md }
M(&,C) £ CT(&,C) =cl ass Cextends C' {fd md }
%) otherwise

Note that we have defined this function to return a set ratiaer & list since, unlike
fields, the order of methods i®timportant.

6. The functionMb, when given an execution context, class name C and method
namem, returns a tuplgx, e), consisting of a sequence of the method’s formal
parameters and the method body:

(%, e) CT(&,C) = cl ass Cextends C' {fdmd }
& Cym(Cx){e}emd
Mb(&,C,m) £ ¢ Mb(&,C,m) CT(&,C) = cl ass Cextends C' {fdmd }
& Cym(Cx){e} ¢ md
Undefined CT(&,C)n

We now define look-up functions which allow us to extract §yetinformation that
is defined in a given class:

Definition 5 (Member type lookup). Thefield table 77T and method tableMT are
functions which return type information about the elemaerita given class within an
execution context. These functions allow us to retrieveypes of any given field or
methodm declared in a particular class C in the cont&kxt

D CT(&,C) =class Cextends C' {fdmd }
&D fefd

FT(&,C,f) = < FT(&,C,f) c1(&,C) =class Cextends C' {fdmd }
&D f ¢ fd

Undefined CT(&,C)1
MT is defined by:

C,—D CT(&,C) = class Cextends C' {fdmd }
&Dm(Cx){e}emd
MT(&,C,m) = § MT(&,C,m) CT(&,C) = class Cextends C' {fdmd }

&Dm(Cx){e}¢md
Undefined CT(&,C)n



Notice that this look-up function is undefined for the spediassoj ect , which does
not have any fields or methods.

We say that Gxtend<C’ in the contextC whencT (&, C) = cl ass C ext ends
C' { fd md }. We say that C is aubclasof C' in the context when C extends Cor
there is a non-empty sequence of classgs C, C,, in & such that C extends;Ceach
C; extends G, for alli € n—1, and G, extends € We formalise this notion by:

Definition 6 (Subtypes). For a contextC, thesubtype relatioris defined as the small-
est transitive relation satisfyingSuperC(&,C) = C' = C <:o C/

Finally, we definevalidity of a type. We say that a type islid with respect to
an execution context’, written . C, when the corresponding class is defined in the
context.

Definition 7 (Valid types). We define type validity through the following judgements:

e Ct ... ke Cy kD
fFze 0)] ect FgcC(CT(‘SC’C)l) : '?Cé_’D

Well formedness of a context is itself a necessary conditiothe correct reduction
(execution) ofLJ programs.

Definition 8 (Well-formed context). An execution contexfC = cd,, is well formed
(- &) if, and only if, it satisfies the following conditions:

1. There are no duplicate class definitiowis; j €7 [ i # j = CN (cd;) # CN (cd;) |.

2. The class hierarchy &cyclic

3. All fields defined in a particular branch of the class hielgrare uniquely named.

4. There are no duplicate method declarations within a gilass, and the types of
any overridden methods must match.

. The special variablehi s must not appear as a parameter in any method definition.

. All types declared for fields and methods must be valid sypith respect to the
execution context, as must all classes that are inheritexd. fr

o O

Property 9 (Type consistency). We note that well-formed execution contexts exhibit
the following consistency properties:

1. The types of inherited fields in a subclass are consistéhtthe type of the field
in the superclass:

&L &FT(&,Cf) = C &
FI(&,D,f) = D &
C < D = C=D
2. The types of inherited and overridden methods are cemgistith the type of the
method in the superclass:

& & MT(&,Cm) = Cy—C &
MT(&,D,m) = D,,—Dy &
C <ie D = Co=Dg&n =mé&

\V/iEﬁ[Ci:D i}



We will now define a reduction relatiors, onLJ programs.

Definition 10 (Reduction). The one-step reduction relation is defined by the follow-
ing rules:
1

(R-FLD): (newC(8)).f; =z e, If F(&,C)=F, &icT;

(R-ass): (new C(8)).f; = e; —g New C(el,...,e;,...,en), if 7(&,C) = f,,
jen,

(R-INVK) : (newC(&)).m(&') —g e[e’/x,newC(8)/t hi s],
if Mb(&,C,m) = (%,e);

(Rc-FLD) : If e —g €, thene.f —g €'.f;

(RC-ASS)): If e =g €”, then(e.f =€) —g (¢”.f =¢');

(RC-ASSy): If e/ —g €”,then(e.f =€) —x (e.f =€");

(RC-INVK 1) : If &g —¢ €], theney.m(8) —g ef).m(&);

( en), if jE.

(

RC-INVK3) : If e —¢ e;-, theneg.m(8) —g eg.m(eq, .. .,e;, ey

RC-NEW) : If &j —g e;-, thennew C(8) —¢ newC(el,...,e;-,...,en), if jen.

If e —4 €', we calle theredex ande’ thereduct We also say that’ expandgo e.
We denote the transitive closure-ef by —*, and thus write —}, €’ if there exists a
(possibly empty) sequen@esuch thae —g e; —g ... —x ey —w €.

We should point out that we have a notion of ‘free’ reductionthat there might
be more than one reducible expression (redex) in a prograchiteat the reduction
rules above daot define a strategy, i.e. no redex is preferred over others iBha
generalisation of the normal situation, since traditibnalnotion of “lazy” reduction is
used, notably omitting the rulg§Rc-Ass;), (RC-INVK ) and (RC-NEW), so we have
more possible reduction paths. However, our main appraidmaesult is shown for
this free reduction, so is stronger than one we could hawaimdd for lazy reduction.

This notion of reduction isonfluentwhich can be shown by the standard ‘colour-
ing’ argument. Of course confluence can easily be achieveddiyicting reduction to
lazy reduction.

3 The Type System

We define two type assignment systems iforexpressions. The first directly corre-
sponds to the type systems found in [34] and [15], which im @anre modelled on the
full Java type system [32]. We call this tlelasstype system. The second system is the
predicatetype system. For readability, when we refer to the type sy$tem now on,
we will mean theclasstype system, and tharedicate systemwill refer to the predicate
type system. When we refer tgpes we will mean class types (as used in the class type
system), and similarlpredicateswill refer to predicate types.

The predicate system takes after the system of the same mah@]; with predi-
cates comprising sequences of statements, each of whichliesa single behaviour
exhibited by the expression to which it is assigned.

We start our treatment of type assignment by defining typaé@mments.



EFT KC & T

[T-nuLL] L Cnul1:C [T-VAR] : m(x:cer)
[T-FLD] : %:}?C (FT(&,D,f) =C) [T-suB| : % (C' < C)
[T-Asq : I %ng.fr_%:gzc (FT(&c,D,f) =C)

[T-INVK] : I e:(; h{ Zitziéz)(?g(Vieﬁ) (MT(&,C,m) = C—D)

[T-NEW] : I erG; (vien) (F (&c,C) = f & FT(£C,C, f;) = C; (Vien))

I H newC(g):C

Fig. 1. Type assignment rules

Definition 11 (Type environments). 1. Atype statemeris of the forme:C, wheree
is anLJ expression, and C is a class type. The expressiercalled thesubjectof
the statement, and the type C is called ¢baclusionof the statement.
2. Atype environment’, is a set of type statements with term variables as subjects.
3. We use the notatiofi, x:C to represent’ U {x:C}. Similarly, we write[,T” to
represenf UT’.
We writex € I’ whenever there is a C such tha€C € T.

Note that we do not require the term variables in a type enwirent to be distinct. This
is only the case fowell formedenvironments, defined below.

Definition 12 (Well-formed type environments). We say that a type environmelit

is well formedwith respect to some execution cont&t when the execution context
is itself well formed and the statementslirall have distinct variables as subjects, and
the conclusion of each statement is a valid class type withaet tofC. This notion is
formalised through the following judgements:

F&c EFT kKC
&E-o ECFT,x:C

Definition 13 (Type assignment). Type assignment is a ternary relation between ex-
ecution contexts, type environments and type statemenitsewasl . e:C. We say
that the type C can bassignedo the expressioa in the contextC using the type en-
vironmentl'. The relatior- is defined using the natural deduction system of Figure 1.

(-3D [x:D€T))

Definition 14 (Type consistent execution contexts) We say that an execution con-
text istype consistenft;, ¢) when the bodies of all methods defined in the context can
be assigned their declared return type.

Ho o k& &VC[ cr(&,C) = B
Vm [ MT(&,C,m) =D — Dy & Mb (&, C,m) = (%, ep)
= {ﬁ,t hi S:C} F;C eo:Dog ] ]



4 The Predicate System

We now define an extension to the class type system: the ptedigpe system. We
will see that the predicate system types exactly the samef $etms as the class type
system. This result is shown in Theorem 24.

Definition 15 (Predicates). The sets of predicates are inductively as follows:

predicates o =T |o
object predicates o= (i, oo eT) (n>0)
member predicates T,p == ¢ | Py, ..., pp—0 (1 >0)

We abbreviatél;:t, ... ,1,:T,), by writing (I;: 7; ‘"), and we call the object pred-
icate consisting of the empty sequen¢e, the emptypredicate. We calll" a trivial
predicate; all other predicates are, correspondimgii;trivial.

The aim in defining predicates in this way is that they shoeltdibe the behaviour
of an object in terms of consecutive method or field calls. fiteglicate member state-
ments that comprise an object predicate each indicate lieabbject to which it is
assigned behaves in a particular way. The class membeiitted@th statement denotes
either a field or method belonging to the object, and its aaset member predicate
then describes the result of accessing the field or invokiegtiethod. In the case of
a method, the member predicate: ¢4, ... , ¢, — o also indicates theequired be-
haviour of the argumentsy, ... , ¢, as well as the receivep]. The universal pred-
icate T is intended to indicate non-terminating behaviour or aatided computation,
as will be discussed if¥4.2.

Definition 16 (Subpredicates). 1. The relationd is defined as the least pre-order on
predicates such that:

(€ <
(li:7 i€ﬂ> d <l]T]> . vVien

¢ Q(lpT) foralljen = j
¢ <Ly = (L) < ()

2. The equivalence relatiagh~ ¢ is defined over member types by:

g~y < oYL

This definition captures the intuition that object predésashould be equivalent up to
reordering of predicate member statements. Thus

It €M~ (1t STy > n=m&ViemIjen |l =1 &t =1/ ]

1

Definition 17 (Predicate join). 1. Thejoin of two predicatesp; LI ¢, is defined as
follows:

pUT =¢  TUP=¢ PUP=¢

(=t By L (1 Sy = (17:1) P<F) where for eachi € k



— T =Tif I'te (7 €ty and 1) ¢ (I/: 7 %), and
1 =Tif "¢ (l;:; ") and /T € (1] 7] iemy,
— ' = pUpif I"pe (l7 ) and 1My € (I '),

2. We also overload! to define the following function which generalises the niotio

of join to sequences of predicates:
Le = (e)
g~ pu = ¢ U (Lign)

The join operation is used in the proof of the subject exmgangiroperty for the
predicate system in Theorem 27.

This operation correspondsitaplicit intersection.

Definition 18 (Predicate environments). 1. A predicate statemems a construction
of the forme:C: ¢, wheree is anLJ expression, C is a class type apib a predicate.
The expressioais called thesubject C is called theype conclusiorandg is called
thepredicate conclusionf the statement.

2. A predicate environment], is a set of predicate statements with term variables
as subjects. As for type environment, we do not require tha tariables to be
distinct. Again, this is only a property of well formed erwirments, defined below.

3. As for type environments, we use the abbreviafidnx:C: ¢ to represenil U
{x:C: ¢}. Similarly, we writel], I to represenfI UTT'.

4. We writex € IT whenever there are @,such that:C: ¢ € I'1.

5. We say the a predicate environméhtis anobject predicate environment when
the predicate conclusion of each statemidnis an object predicate that does not
containT.

6. We extend the subpredicate relation to predicate enviems as follows:

NIl & Vxell [x:C:pell = x:C:¢' €Il & ¢ < ¢’ ]

The idea behind the predicates is to make a statement ondlatén of an expres-
sion: for example, if(f : ¢) is used to derive a predicate for the typed expressiGn
then the fieldf will be invoked when running; to enforce this, we define:

Definition 19. For a type C, we define ilanguage £(C), as follows:

1. Te L(C)and(e) € L(C). L

2. If p € L£(C), and there exists: € M (&, C) such thatM7T (&,C,m) = C, — D,
¢; € L(C;) foralli € 77, ando € L(D), then(m : ¢ :: ¢, — ) € L(C).

3. IffeFr(&,C), FT(&,C, f) =D, and¢ € L(D), then(f:¢) € L(D).

4. Ifp,p e L(C), thenp Ly € L(C).

Definition 20 (Well-formed predicate environments). We say that a predicate envi-
ronmentlT is well formedwith respect to some execution conté&gt when the state-
ments inl 1 all have distinct variables as subjects, and the type csiuiwf each state-
ment is a valid class type with respect&0, and the predicate is an element of the
language of that class type. This notion is formalised tghathe following judgements:

=& ECHII HeC
ECHQ EC I, x:C:¢p

(¢ L(C) & —3ID, ¢’ [x:D:¢' €I1])



EFIT kKC ECHII

Pl T G g PR T ey (WO ETTEPELO)
) I1 Hy newC(8):C ] I+, eD: (f:¢) B
[P-nEWO] : I Hy, newC(8):C: () [P-FLo] - [+ e.f:C:¢ (FT(£€,D,f) = ©)
e eC:(f:p) IMipe':D:g _
[P-Ass] : Tt ef—eC (/@) (FT(&C,C,f) =D)
P aC:-(]. -7 €1y 1T, & R
M e.f =e:C: (l;:1; <L)
IMbpeD:(m:yp:¢—o) Iipe:Coug; (Vien) Mg eD:y
[P-invK] 1+ em(8):C:o
. - . o (MT(&c,D,m) =C—C)
[P-NEWF} . IT e,-:C,-:qb H}_EC C: (Vleﬁ[li]})
’ I+, neWC(é):C:(fj:(p>
(F(éc,c)=F&jen&Vien|[FI(&,C f;) =Ci])
_ TIH, newC(8):C IT I epD:0o
[P-nEwM] : 1+ newC(8):C: (m: ¢ :: gy — )
(MT(SC,C,m) =Cy —D& Mb(&,C,m) )
= (%y,e0) &IT' = {x:C: ¢, t hi s:C: ¢}
CHigpeC:p , - Tt ecC
[P-suBT] : T eCp (C'<:x C&peL(C)) [pP-TOM: Tec T
[+, eC:¢p;, (Vien I1Hy e:C:
[P-J0IN] : ﬁi’; efPC: S% ) [P-sEQ : #‘;C:i( <4¢)

Fig. 2. Predicate Assignment Rules

Notice that, by simple induction on the derivation&f + IT, it is easy to see that
& +IT for anyIl’ C II.

Definition 21 (Environment conversion). The notation[I denotes the type environ-
ment obtained by discarding the predicate conclusions frenstatements ifl:

M2 {xC|xC:¢pecll}

Definition 22 (Predicate assignment). Predicate assignment is a ternary relation be-
tween execution contexts, predicate environments andgatiedstatements, written as
[T+, e:C: ¢. The relatiort” is defined using the natural deduction system of Figure 2.

We can see the predicate system as a Hoare-style systemasfghpmst conditions.
For example, for rulgp-INvK ), the rule expresses that if the argumesgtdor the
method call satisfy, respectively;, and the object satisfies that then the method that
is going to be called will satisfy, giving an annotation like:



pre: eache;satisfies¢; &esatisfiesy
e.m (&)
post: o

The results of this paper provide the semantic underpinfioinguch a system.

4.1 Properties of the Type Systems

We now present some properties of the type systems definee alve begin by show-
ing that the set of expressions typeable by the class tygernyis exactly the same as
the set of expressions typeable by the predicate systeraube®f space restrictions,
proofs are omitted.

Theorem 23.3 ¢ [T1H, e:C:¢ | < TIH, e:C

The following results are a crucial part of the proof for @dijexpansion. The first
states that a label that occurs in a predicate is visibleéntype, and the second that
predicate assignment is closed for subtyping, as long aprimicate used is in the
language of the supertype.

Theorem 24. 1. IfI1+, e:C: ¢, thenp € L(C).
2. IfTIH, e:C: ¢, TT H, e:C’, and¢p € L(C'), thenIT 1, e:C': .

The main result of this paper is now formulated be the nextheorems: first, both
types and predicates are preserved by reduction:

Theorem 25. 1. H,0 & T H,e:C&e —g e’ =T H,e:C
2. o &It eCip&e —ge =T, e:C:¢

Predicates are preserved by expansion;

Theorem 26. H,0 & IT+y, ¢':C:p & e —g e’ &I H, e:C = I1H, e:C: ¢

4.2 Characterisation of Expressions

As with the intersection type system for thecalculus, the subject expansion result for
the predicate system allows us to characterise the behaviaw expressions by the
predicates that we can assign to them.

We first see that (using an object predicate environment)Langxpression that
terminates in an object can be assigned a non-trivial pagglibatdoes noinclude T.

Theorem 27. If there existd 1, C such thafl 1 H. e:Cande —* o, then there existe
such thatp # T andI I, e:C: ¢.

We can illustrate this property by the following program:



& =cl ass C ext ends Obj ect

{om) {thisn()} }
e = (newC()).m()

The expressioaruns to itself, thug —g e —¢ ... ad infinitum. Notice tha® -, e:C,
and so by rulee-ToP we have? I, e:C: T. However, since only reduces to itself, a
consequence of the approximation resliltis theonly predicate that we can assign to
e.

Now, consider the followingJ program:

cl ass C ext ends Obj ect
{Cf
cm){thisf =thism)}
}

= (newC ((C)null )).m()

which results in this sequence of reductions:

e = (newC((C)null )).m(
—g (newC ((C)null )).f = (newC((C)null )).m()
—g €1 = newC ((newC ((C)null)).m)
—g newC ((newC((C)null )).f = (newC((C)null )).m())
—g e = newC (newC ((newC((C)null )).m))
—} e3 = newC(newC (newC ((newC((C)null)).m()))) etc

Thus, this expression constructs an ever increasingledesiject. Observe that I,

e:C and so by rulee-Top it follows that@ F. e:C: T. Given this, we can assign the
following predicates to the sequence of expresséns

@ by ep:C:(f:T)
D by ex:Ci(F:(f:T))
@ by ex:Ci{(f:(f:(f:T))) etc

Then, by subject expansion, we can assign all of these @atedi¢o the expressian
itself. Thus, we can assign a non-trivial predicate,tbut it must containl’, suggesting
that there is non-termination somewhere.

4.3 Expressiveness

A final point that we can make concerns the expressivenehbs giredicate system over
the type system. A result of the type system (and similartheftype systems afy, MJ

and Java itself) is that if an expression is typeable, thete@ing the expression will
not result in any illegal field accesses or method invocatitmother words, whenever
a field is accessed, or a method invoked, such a field or metlibdlways exist in
the receiving object. One thing thattayhappen, however, is a null reference exception.
This occurs when a field is accessed or a method invoked onl alnject. The type



system does not distinguish between the types of null abject the types of non-
null objects; thus it cannot determine when such a mismattttoecur. The predicate
system, on the other handipesmake such a distinction: the only non-trivial predicate
that null objects may be assigned is the empty predigateAs such, a field access or a
method invocation on a null object cannot be assigned ardigate other thar, since
the premise for such a predicate assignment is that thevezdeive an appropriate non-
empty object predicate. Thus, again by subject expandifwilaws that the execution
of any expression which can be assigned a non-trivial pa¢eliwill not result in a null
reference exception.

5 Approximants for Lightweight Java

In the context of formal calculi, termination - all compudats finish - is an much stud-
ied problem, and often type theory makes this result achlev&or example, for the
A-calculus [12], it is well-known that there exists non-témating terms, but that (us-
ing simple type assignment) all typeable term terminatéhéncontext of intersection
types, on which our predicates are based, this propertyghbld with modifications; in
fact, using intersection types, it is possible to show:

—IfI'EM:candM =4 N, thenI' - N : 0.

—T'F M:cando # T, ifand only if M has a head-normal form.

— ' M:coandT does not occur i ando, if and only if M has a normal form.
—I'F M:candT is notused at all, if and only iM is strongly normalisable.

Another, perhaps less known property that holds for thersetgion type assignment
system for thel-calculus is the approximation theorem:

I'-M:ce3JAcAM)[TFA:0]

This result is based on the notion of approximant Aeterms, as first presented by
C. Wadsworth in [61], which is defined as follows.

Definition 28. 1. The set oAQ)-termg is defined as the set dfterms by adding
the constan€) to the syntax.
2. The notion of reduction—gn AQ-termsis defined as— g , extended by:

3. The set ohormal formswith respect to— g, is the setd of AQ-normal forms
or approximate normal formsanged over byd, defined by:

A= QA A£Q)|xA1... Ay (n>0)
We can view() as hiding a place where (infinite) reduction might take place

2 () is the symbol originally used in [61]; more common now is ®]#2], use the symbal ;
since this could be confused to be a predicate, we have opteldef old notation.



Definition 29 (Approximants). 1. The partial orderC is defined as the smallest
pre-order such that:

QLC M
MCM = AxMLC Ax.M
M, C Mi & M, C Mé = MM, C MiM&

2. If AC M, thenA is called adirect approximanbf M.

3. TherelationC, is definedbyAC M« IN[M g N& ACN|.
4. If AT M, thenA is called arapproximanof M.

5. AMM)={AcA|ACM}.

Since it is easy to show that, M —»p N, then, forallA, if A C M, thenA C N,
but not vice versa, we can see the approximants of a fdrias representing the dy-
namics of runningM: if A C M is not(), then A exposes some structure (either an
abstraction or a head-variable) and the above propertystia¢es that this structure will
not disappear while continuing the execution; it is the atigf (running)M.

Definition 30. 1. The partial mapping! (join) is defined by:

QUM=MUO =M
xUx = x
(Ax.M)U (Ax.N) = Ax.(MUN)
(MiMz) U(N1N) = (M1 UN7) (M2 UN>)

2. If MU N is defined, therM andN are calleccompatible

Now LI acts as least upper bound of compatible terms. The set ob=ipmants of
M corresponds to the finite, rooted segment8®{ M), the Bohm tree oMM, a tree
that represents the (possible infinite) normal formvb{see [12]).

L{A| A€ AM)} ~ BT(M)

where (possibly infinite) subtrees are replacedhyn fact, we can show tha¥l =5 N
implies A(M) = A(N). This observation immediately gives that we can define a
model for theA-calculus by interpreting terms by their approximants.

The approximation result stated above now directly linkgetywith semantics, and
generalises the standard subject reduction result, wiétbssthat types are preserved
by reduction. To put the approximation result into wordsstates that, for every ty-
peable termM, during the execution oM some intermediate result will be reached
that we can type in exactly the same way, perhaps masking partewithT: so inter-
section types allow a look-ahead over execution.

We will now define a notion of approximants fao, and link the predicates we
assign an expressioledo its approximants in the same way in the next section. First
we define approximants.

Definition 31 (APPROXIMATE EXPRESSIONS). 1. We extend the syntax ab ex-
pressions with an elemefit, and definepproximateexpressions using the follow-
ing grammar:

ax=x|Q|(C)null |af]|af=a|am(d)]|newC(d)



2. We extend the reduction relation to approximate expoesswith the following
rules:

The normal forms of approximate expressionsgjoproximate normal formavith
respect to this extended reduction relation are defineddfoltowing grammar:

Ax=x]Q](C)null | newC(A) |
Af|Af=A|AmA) (AA #Q&AA £newC(A))

3. The rules for type assignment are extended to type appeigi expressions by
allowing expressions to contafn; this implies that, ifa containg}, thenT is used
to cover a subterm af with T. Moreover, the only predicate assignabl€ldqand
indeed to field and method invocations@)is T.

Definition 32 (APPROXIMANTS ). 1. The relationC over approximate expressions
is defined as the smallest pre-order satisfying:

Q

eC e
eCel&eCe)
eCe&Vien|[e Cell
Vien[e Cel]

e
efCe.f
ei.f =exCel.f=¢)

em(ey) Ce'm(ely)
newC(e;) C newC(e;,)

$ 4 in

If A C e then we say that is adirect approximanbf e (notice that this notion is
independent of the evaluation context).

2. We define the binary reIatiol;gc on approximate normal forms and expressions
asfollowsAL e« Je'[e—p e’ &AL e | IFAL  ethenwe say thakis
anapproximanbf e.

3. We defineAg(e) = {A[AL e}

We can now show the following properties:

Lemma33. 1. Ife —} ¢’ andAC e, thenaC ¢’
2. Ife =% ¢ thenAg(e) = Ax(e).

With the second of these results, we have an approximatioastcs fon J: Heﬂé =
Agc(@) .

6 Approximation Result

We define a family of predicates that assert approximati@mafxpression with a given
predicate type:

Definition 34. Appre(I1,e:C,¢) < TTH, e:C& FAE Ag(e) [TTH, A:C:¢ ]



In this section, we will show the approximation result for aotion of predicate as-
signment forJ, that statesT] b, e:C: ¢ < Appre(I1,e:C,¢). This theorem states
that for every expressiomto which we can assign the predicgtethere exists an ap-
proximant ofe to which the same predicate can be assigned. This theordralleil
us to characterise expressions which have a head normabfptheir assignable pred-
icates.

First, we show that predicate assignment is upward closedfo

Theorem 35.T1+, a:C: ¢ & T1 H, :C' & aC a’ = I1+, a’:C': ¢

Notice, in particular, this result holds when=£C'.

We define a subset of expressions that are those that starawiriable; we need
this notion because we want to show that all variables argotable of any type and
predicate. In order to show that, using of course the contjlittapredicate, being
defined by induction on the structure of predicates, we hawohsider arbitrary se-
quences of field of method invocations, or field overrides;sbt of neutral terms is,
therefore, the set of variables, ‘closed’ for those calls.

Definition 36 (NEUTRAL EXPRESSIONS). Neutral expressiongre defined by the fol-
lowing grammar:
n:o=x|nf|nf=e|nme
Notice that neutral expressions are not, in general, in abfarm, but any reduc-
tions that can take place will be performed on the argumentadthod invocations
or field assignments. Thus, the ‘externally visible’ stuwetof the expression remains
constant, as stated by the following lemma:

Lemma37. 1. A€ Agx(n) = A.f € Ag(n.f).
2. A€ Ag(n) & A' € Ag(e) = Af = A€ Ag(n.f =e).
3. A€ Ag(n) &Viem [A € Ax(e;) | = Am(An) € Ag(nm(en)).
We will use Taits’ proof method [58] involvingeomputability predicatevhich we
now define.

Definition 38 (COMPUTABILITY PREDICATE ). We define a family of computability
predicates, over execution conte&fs inductively as follows:
Comp,(I1,e:C, T) & Appre(IL,e:C, T)
Comp,,(IL,e:C, (e)) < Appre(I1,e:C, (€))
MK, eC& FT(&,C,f) =D =
(Comp,,(IT,e:C, (f: T)) = Comp,,(I1,e.f:D, T))
MK, eC& FT(&,C,f) =D =
(Comp,,(IT,e:C, (f:0)) & Comp,,(I1,e.f:D,0))
MM+, e:C& MT(&,C,m)=C, —D =
(Comp,(ILe:C, (m: ¢ :: g — 0)) <
(Comp g (I1,e:C, ¢p) & Vien [ Comp,.(I1,e;:Cj, ¢;) |
= Comp,,(I1,e.m(e,):D,0)))
D<igC= (Comp,(IT,e:C, ¢) < Comp,,(I1,e:D, ¢))
Comp,,(I1,e:C,U¢iz;) < Vien [ Comp,,(I1,e:C,¢;) |



We now show that computability applies approximation, dvad approximablaeu-
tral terms are computable:

Theorem 39. 1. Appre(I1,n:C, ¢) = Comp,,(I1,n:C, ¢).
2. Comp,,(I1,e:C, ¢) = Appre(I1,e:C, ¢).

A corollary of this theorem is that variables are computaibleny predicate which
is assignable to them.

Corollary 40. { x:C:¢ } ty, x:C: ¢ = Comp,,({ x:C:¢p }, x:C, )

The next step is to formulateraplacementemma, which states that if we replace
all the variables in a predicable expression with expressimmputable of appropriate
predicates, then we obtain a computable expression.

Lemma 41 (Replacement Lemma). If IT I, e:C: ¢, and there existEl’, &; such that,
for all xi:Ci:gbl- ellwe haveCompgc (H/, e;:C;, ¢i)v thenCompgc (H/, e[ei/xi}:C, 4))

It is worthwhile to note that this technique, in the contektte A-calculus, re-
quires the proof for the stateme@bmyI’, M[N/x|,0) < ComfT, (Ax.M)N,0);
this is needed mainly because thealculus hasibstraction accompanied by the type
assignment rule

IF''xAFM:T
THFAXM:0—T1

where the subderivation has a larger context. Notice thaé md the rules forJ have
this particular feature, so we do not have the added contplekhaving to reason over
the replacements used.

A corollary of the replacement lemma will be that if an exjgies can be assigned
a predicatep, then it is computable of that predicate.

Corollary 42 (Typeability implies Computability)IT t, e:C: ¢ = Comp,,(I1,e:C, ¢).

Combining this with Theorem 40 gives that if an expressianlmaassigned a pred-
icate¢ then it has an approximant which can also be assigned

Theorem 43 (Typeability implies Approximability). If IT I, e:C: ¢ thenII H, e:C
and there exista € Ag (e) such thaf 1 k, A:C: ¢.

7 Characterisation of head-normalisation

In this section, we will show the main result of this paper:
If IT +, e:C: ¢, andg # T, thene has a head-normal form.

and show that this follows from the approximation result.



Definition 44 (HEAD NORMAL FORMS ). The setH of expressions irhead-normal
formis defined by:

H:= x| (C)null | newC(g) |
)

H.f |H.f =e|Hm(e (H # newC(g))

Lemma45. 1. IfAC e, theneeH.
2. IfH € H, then there existl, C, and¢ such thaflT k, H:C: ¢.

We can now show the head-normalisation result:

Theorem 46. Assume there exisig, andC such thaflT H,. e:C. Then: there exisp
such thafl1 I, e:C: ¢, and¢ # T iff e has a head-normal form.

8 About normalisation

Another well-known result for intersection types in the @ of theA-calculus is the
characterisation afiormalisationvia:I' = M : o and T notinT andc, if and only if
M has a normal form.

First, we define the notion of normal form with respecttq.:

Definition 47 (NORMAL FORMS ). The set\ of expressions imormal formis de-
fined by:
N ::= x| (C)null | newC(N) |
N.f [N.f =N | Nm(N) (N #newC(g))

As argued in [11], the characterisation of normalisatioly tiolds in the context of
strong reductionand we cannot show it for the system we are considering fiigis
not only because we can find normal forms that are only tygeatth T (like nul | .f),
but also that a predicate need not shadirfields that are visible in a type

Example 48.Take

cl ass C ext ends hj ect
{Cf
Cg

}cm{this.nm

e=newC((C)null, newC((C)null, (C)null).m))

Now we can derivé t, e:C: (f:(€)), and® H. e:C: (g:T). Notice that we have
an infinite reduction frone:

newC ((C)null, newC((C)null, (C)null).m)) —a
newC ((C)null, this.m()[newC((C)null, (C)null )/this]) =
newC ((C)null, newC((C)nul'l, (C)null).m)) e

although we can assign a predicate not contaifiing



So a characterisation of normalisation for the free reductf this paper is not
achievable. However, if we switch to lazy reduction, thea liead-normal forms are
exactly the normal forms, and the characterisation of he@dialisation and normali-
sation collapse onto one result, already show above.

Definition 49 (LAzZY NORMAL FORMS ). The setN; of expressions ifazy normal
formis defined by:

Ny 2= x| (C)null | newC(8) |
No.f | Ng.f =€ | Np.m(8) (N #newC(8))

Theorem 50. When restricting tdazy evaluation, there exidil, C, and¢ such that
I1+; e:C: ¢, and¢ # T iff e has a lazy normal form.

9 Conclusions and Future Work

There are many directions that future research in this ayvell¢ake. One such avenue
of investigation that would further cement the theoretioahdations of the class-based
object oriented paradigm is to define an encoding of the Lan@aiculus inLJ. This
has been done for thgcalculus in [1]. This would demonstrate the expressive grow
and equivalence afJ with the A-calculus. On a broader note, semantic models for
as well as other class-based calculi, could be develop8 alddresses this issue for
theg-calculus, so it seems likely that a similar approach coelddken fon J.

We have mentioned hows is a functional calculus and, as such, lacks imperative
features like the ones included . A further step might be to add these features to
LJ, and also extend the predicate system to handle them. ItdWamiinteresting to see
if they can be subsumed easily into the predicate systemhether the presence of
side-effects will necessitate more drastic changes. Gaétivother lead from [15], we
could also incorporate an effects system into our calc#lgain, one would hope that
this extension would dovetail easily with the predicateeys

As was the case with intersection types for thealculus, the predicates we allow
for the construction of a filter model by interpreting exm@iess by their assignable
predicates. We have also briefly touched on charactensptioperties in Section 4.2.
One natural progression of our work will be to fully investig this characterisation
of expressions, and show that all programs typeable in @sy#tat excludes will
terminate.

Finally, the predicateapproach of this paper opens the way for functional-stypety

based abstract interpretation, like side-effect anablyisisype-and-effect systems, and
systems that analyse aliasing. We aim to extend our appiotxthat direction.
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