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Abstract. We define a small functional calculus that expresses class-based ob-
ject oriented features and is modelled on the similar calculi of Featherweight Java
[34] and Middleweight Java [15], which are ultimately basedupon the Java pro-
gramming language. We define apredicatesystem, similar to the one defined in
[10], and show subject reduction and expansion, and argue that program analysis
systems can be built on top of this system. Generalising the concept of approxi-
mant from the Lambda Calculus, we show that all expressions that we can assign
a predicate to have an approximant that satisfies the same predicate. From this, a
characterisation of (head-)normalisation follows.

1 Introduction

Thefunctionalprogramming paradigm, exemplified by languages such as ML [46], was
developed around a pre-existing theoretical framework based upon the Lambda Calcu-
lus (λ-calculus) [12]. Theobject orientedprogramming paradigm, although developed
in parallel with functional languages, did not arise from a similar such framework: the
language Simula [23] was born out of a more practical need forimplementing sim-
ulation software. Object orientation was then popularisedin the 80s by the language
Smalltalk [31], and later C++ [57]. This paradigm has now become hugely popular
thanks to the languages Java [32] and C# [44].

It was only after the introduction of object oriented programming that attempts were
made to place it on the same theoretical foundations as functional programming. The
first were based around extending theλ-calculus and representing objects as records
[16, 48, 17, 29]. The seminal work of Abadi and Cardelli [1] constitutes perhaps the
most comprehensive formal treatment of object orientation, and introduces the Var-
sigma object calculus (ς-calculus). This calculus is a highly abstract view of the object
oriented programming paradigm, and describes many features found in a multiplicity
of programming languages. Despite this generality, theς-calculus was formulated us-
ing a particular view of the object oriented methodology – the object-basedvariety as
opposed to theclass-basedvariety. For this reason, work was carried out to develop sim-
ilar formal models describing class-based languages. Notable efforts are Featherweight
Java [34] and its successor Middleweight Java [15].

An integral aspect of the theory of programming languages istype theorywhich al-
lows for static analysis via abstract reasoning about programs, so that certain guarantees



can given about their behaviour. Type theory arose side-by-side with the formal mod-
els, one of the earliest being Curry’s system for theλ-calculus [22]. Type theory easily
found acceptance within the world of programming, not only through Milner’s claim
“ typed programs cannot go wrong”1, but also because static, compile time type analy-
sis allows for efficient code generation, and the generationof efficient code. The quest
for expressive type systems is still ongoing; for example, types with quantifiers [30, 52]
were investigated in the early nineties [47, 50, 51, 18], andthe intersection type disci-
pline (ITD), as first developed in the early 1980s [19, 20, 13, 4] are two good examples
of, in principle, undecidable systems that have found practical application.

ITD generalises Curry’s system by allowing more than one type for free and bound
variables, grouped inintersectionsvia the type constructor∩. This (for free variables)
is a feature also ofML [45, 24], where, in thelet-rule, a term-variablex can have a
generic type which can get instantiated into several types,effectively typingx with all
those types. In fact, theML system has similarities with Rank 2 intersection type as-
signment [40, 3]; the key idea for this system is to restrict the set of types to those of
the shape((σ1∩ . . . ∩σn)→ τ), where theσi are types that do not contain intersections.
This kind of types later were used outside the context of theλ-calculus in, e.g., [5, 25,
6, 59]. Since then, many decidable restrictions of various ranks have been defined by
A. Kfoury and J. Wells [38, 37]. However, in contrast toML , ITD also allows more than
one type forboundvariables, effectively opening the possibility to accept arguments of
more than one type (note that this is not the same as acceptingan argument ofpolymor-
phic type, which would correspond to System F [30]: there are terms typeable inITD

that are not typeable in System F). This slight generalisation causes a great change in
complexity; in fact, now all terms having a (head-)normal form can be characterised by
their assignable types (see also Section 7), a property thatimmediately shows that type
assignment is undecidable, since it would solve the haltingproblem. Also, by introduc-
ing this extension a system is obtained that is closed underβ-equality: if B ⊢ M : σ
andM =β N, thenB ⊢ N : σ (see also Section 4.1).

So intersection systems are too powerful. But they satisfy anumber of strong prop-
erties, that are preserved even when considering decidablerestrictions. For example,
soundness (subject reduction) will always hold, as does thefact that a term that satisfies
certain criteria will terminate (has a normal form), or, with different criteria, produce
output (has a head-normal form). What is normally lost when considering a restriction
is the ‘only if ’ part of the properties. And, in fact, intersection types have found their
way not only into programming languages [53–55,39, 26, 28, 49], but have long since
proved their worth within the area ofabstract interpretation[35, 21, 14].

The strength ofITD motivated de’Liguoro [27] to apply the principles of intersection
types to object oriented programming, in particular to the Varsigma Calculus. Over three
papers [8–10], several systems were explored, for various variants of that calculus.

In this work, we aim to follow up on these efforts and apply theprinciples of in-
tersection types, and the system of [10] specifically, to a formal model ofclass-based
object oriented programming. The model that we use is based on [34, 15]. We find that
we would like to use a slightly richer calculus than [34], butthat the collection of fea-

1 Here ‘wrong’ is a semantic value that represents an error state, createdwhen, for example,
trying to apply a number to a number



tures in [15] is, at least for the moment, too complex for our purposes. Therefore, we
define a new calculus, which we callLightweight Java. Having defined the calculus, we
will then prove subject reduction and expansion results.

Although the system we study here is based on the one presented in [10], and
thereby firmly rooted in the area of intersection types [19, 20, 13, 4, 7], this paper re-
quires no previous knowledge of those systems at all. In fact, the intersection type
constructor is not used at all in our system, albeit present implicitly in the join oper-
ation. We choose this approach to highlight the strength of the system, the main idea
of which is to allow more than one analysis (grouped in an object-predicate) to be used
simultaneously for an expression.

As with intersection types for theλ-calculus, the types we introduce here open
the way for defining semantics, building a filter model by interpreting expressions by
their assignable predicates. This is a straightforward extension of the results of this
paper, but is omitted because of space restrictions: we focus here on the presentation
of the calculus and the predicate assignment system, and thefact that this is closed
for reduction and expansion of typed terms; this then shouldsufficiently illustrate the
semantic properties of the system.

The goal of our research is to come to a semantics-based or type-based abstract in-
terpretation for object orientation, for which the presentpaper contains the first steps.
While the abstract interpretation of object-oriented languages has certainly been an
active topic of research, the majority of approaches taken thus far appear to have con-
centrated on control-flow and data-flow analysis techniquesrather than type-based ab-
stractions [43]. An exception to this is found in [33]. Another observation is that work
in this area has been centred around issues of optimisation:[36] presents aclass anal-
ysisof object-oriented programs which may be used to eliminate virtual function calls,
pointer analysis[56] generalises class analysis and also allows for the detection of null
pointer dereferencing, and other analyses [41, 42] have looked at inferring invariants
for classes which can be useful in many optimisations such asthe removal of checks
for array bounds. What is missing from this list is termination analysis, which is what
our treatment addresses. A termination analysis of Java bytecode has been done [2],
however our system aims at performing such an analysis directly at the level of the
object-oriented language rather than its intermediate form. We also note that while our
work takes termination analysis as its starting point, it isnot necessarily limited to this
type of analysis.

The normal, class-based type system for our variant of Java is sound, but not ex-
pressive enough to come to in-depth analysis of programs; wetherefore introduce the
additional concept of predicates, which express the functional behaviour of programs,
and allow their execution to be traced. We show that the standard (functional) proper-
ties hold and, moreover, put in evidence that we have a strongsemantic system: we can
prove an approximation result and characterise head-normalisation. The system, being
semi-decidable at best, would need to be limited in expressiveness before it can be used
for static analysis, but the main properties shown in this paper would hold also for such
a restriction; the one to fail would be thecompletenessside of things, where we reason
against the flow of execution.



2 A Class-based Calculus: Lightweight Java

In this section, we formally define the calculus that we study. It is based on aspects of
both Featherweight Java (FJ) and Middleweight Java (MJ), and so to continue with the
theme we have named itLightweight Java(LJ). We retain the functional nature ofFJ,
but add some features fromMJ (namely field assignment expressions andnull objects)
which do not conflict with this.

The following notational conventions will be used:

1. We usen (wheren is natural number) to represent the list1, . . . , n.
2. A sequence ofn elementsa1, . . . , an is denoted byan. The subscript can be omitted

when the exact number of elements in the sequence is not relevant. Both comma-
separated and space-separated sequences may be abbreviated in this way.

3. We writea ∈ an whenever there exists somej∈ {1, . . . , n} such thataj = a. Sim-
ilarly, we write a < an whenever there doesnot exist ani ∈ {1, . . . , n} such that
ai = a. Again, the subscriptn may be omitted as implicit.

4. The empty sequence is denoted byǫ.
5. If F is a partial function defined overn arguments, thenF(arg)↓ (F(arg)↑) denotes

thatF is (not) defined on the argumentsarg.

Definition 1 (Identifiers). We define the following sets of identifiers:

1. The set�����-���� of class nameswhich includes the distinguished element
Object, and is ranged over by C, D.

2. The set�����-�� of field identifiers, ranged over byf .
3. The set������-���� of method names, ranged over bym.
4. l ranges over the union of the set of field identifiers and methodnames, which we

call the set ofclass member labels.
5. The set�������� of variables, which includes the special variablethis, ranged

over byx.

Note that C, D,f , m andx aremeta-variableswhich range over sets. However, when
these letters are written in a fixed-width font (C, D, f, m, x), this indicates that we are
referring to actual members of the sets, and not meta-variables.

As in FJandMJ (and indeed full Java [32]), types are embedded within the syntax of
the language itself, allowing the programmer to explicitlyspecify the type of each field
and method. Thus, in order to define the syntax of our calculus, we must first define
types. Notice that, for simplicity, we do not assume the presence of basic types, like
INT or CHAR, nor constants; these can easily be added without affectingour results.

Definition 2 (Class and method types). 1. The types that can be assigned toLJ ex-
pressions are calledclasstypes, corresponding to the intuition that each expression
results in an object which is an instance of some class. The set of class types is
identical to the set of class names and, as such, we will also use C and D to range
over these types. As will be seen in the syntax definition below, we also use class
types as annotations in field definitions since fields are usedto store object values.



2. Themethod typesare defined by the following grammar:

µ ::= C1, . . . , Cn →D

Thus, each method takes a sequence of arguments of types C1, . . . , Cn, and returns
a result of type D.

Definition 3 (Program syntax). 1. We define a set ofexpressionsranged over bye.
We also define a subset of expressions ranged over byo, which is the set ofobjects:

e ::= x | (C) null | e. f | e. f = e′ | e.m(e) | new C(e)

o ::= x | (C) null | new C(o)

Notice that the expressionnew C(e) is an object only when allei are.
2. Classesare defined by the following grammar:

fd ::= C f

md ::= D m(C x) { e }

cd ::= class C extends C′ { fd md } (C , Object)

3. LJ Programs consist of anexecution context(which is a sequence of class defini-
tions), and an expression that is evaluated when the programis run:

EC ::= cd

P ::= (EC, e)

We now discuss these various syntactic elements. Expressions may create objects
that conform to a specified class template indicated by C, using thenew keyword. They
may also invoke methods, and retrieve and assign field valuesto objects or parameters.
Expressions may also refer to variables (method parameters) and the null value.

Classes contain a list of fields and a list of methods, the types of which must be
declared. Methods may take multiple arguments, and method bodies consist of a single
expression. Classes may also inherit from one another, meaning that they share field
and method definitions. There is a lack of symmetry between the structure of field
definitions and method definitions: in a field definition, the type of the field precedes
the field identifier, whereas the sequence of parameter typescomprising the method
type is mixed in with the sequence of formal parameters. However this is an intentional
decision, motivated by the desire to have the calculus conform to its predecessors (LJ

andMJ), as well as its namesake language.
Note that fields are more than just parameter-less methods: we allow the values

returned by fields to be updated during program execution, whereas the behaviour of
methods is fixed, once and for all, when a class is defined. However, the syntax of
Definition 3 does not disallow theredeclarationof any methods and fields that have be
defined in a superclass. We will specify that for an executioncontext to be well-formed
(and so in turn for expressions to be typeable), classes mustnot redeclare fields in this
way. We will also specify that if methods are redeclared, then the method type must
match that of the superclass, although the names of the formal parameters may differ.



We will not place any restrictions on thebodyof the redeclared method, thus allowing
a limited type-restricted form of methodoverride.

Unlike in FJandMJ, and indeed full Java itself, we do not include object constructor
methods in the language definition. Full Java allows objectsto be created in multiple
ways, thereby requiring the ability to define multiple constructor methods. BothFJ and
MJ enforce a single constructor method for each class to which initial values for all
fields must be passed as parameters. There is no loss of generality in this approach and
so we adopt it forLJ. However, inFJ and MJ, constructor methods are made explicit
and must appear in the method definition list of each class. This constructor method
is distinguished from the other methods through the use of separate typing rules. We
feel that this is an unnecessary complication of the language syntax, and so make the
constructor methodimplicit by requiring in the type rule for thenew keyword that the
types of the expressions appearing in the object creation construct match the types for
the sequence of fields defined by the class of the object being created.

Furthermore, we have chosen to omitcast expressionsfrom our language. It appears
that casts were included in FJ in order to support the compilation of FGJ programs to
FJ [34,§3]. Since that is not an objective of the current work, and thepresence of
downcasts makes the system unsound (in the sense that well-typed expressions can get
stuck), they are omitted. Upcasts are replaced by subsumption rules in the type system.
At this stage, we point out a slight departure from the usual Java syntax in our definition
of null object values. InLJ, eachnull value is annotated with a class type. Note that
this is not casting, since we do not define a specialnull type, but is simply a type
declaration similar in spirit to those of field and method definitions.

Definition 4 (Syntax look-up functions). We define the following look-up functions
to retrieve the various syntactic elements of a program:

1. The following three functions retrieve the names of a class, a method and a field
from their respective definitions:

CN(class C extends C′ { fd md }) , C
MN (D m(C x)) , m
FN(C f ) , f

2. Theclass table, CT, is a partial map from execution contexts and class names to
class definitions:

CT (EC, C) ,

{

cd CN (cd) = C & cd∈ EC

Undefined otherwise

We emphasize that the class table is to be undefined on the special classObject,
since this class should only serve as the root of the class hierarchy and contain no
fields and methods.

3. TheSuperClfunction is a partial map from execution contexts and class names
to class names, returning the direct superclass of a given class within the given
context.



4. The list of fields belonging to a class C in an execution context EC is given by the
following function:

F (EC, C) ,







F (EC, C′) · f n CT (EC, C) = class C extends C′ { fdn md }
& ∀i ∈ n [ f i = FN (fdi) ]

ǫ otherwise

Thus, the sequence returned by this function contains not only the fields declared
in the specified class, but all the fields that it inherits fromits superclasses.

5. The functionM returns a set of method names for a given class, corresponding to
the methods declared and inherited by that class. It is defined as follows:

M (EC, C) ,







M (EC, C′) ∪ { MN (md) | md∈md }
CT (EC, C) = class C extends C′ { fd md }

∅ otherwise

Note that we have defined this function to return a set rather than a list since, unlike
fields, the order of methods isnot important.

6. The functionMb, when given an execution contextEC, class name C and method
namem, returns a tuple(x, e), consisting of a sequence of the method’s formal
parameters and the method body:

Mb (EC, C, m) ,























(x, e) CT (EC, C) = class C extends C′ { fd md }
& C0 m(C x) { e } ∈md

Mb (EC, C′, m) CT (EC, C) = class C extends C′ { fd md }
& C0 m(C x) { e } < md

Undefined CT (EC, C)↑

We now define look-up functions which allow us to extract the type information that
is defined in a given class:

Definition 5 (Member type lookup). The field tableFT andmethod tableMT are
functions which return type information about the elementsof a given class within an
execution context. These functions allow us to retrieve thetypes of any given fieldf or
methodm declared in a particular class C in the contextEC:

FT (EC, C, f ) =























D CT (EC, C) = class C extends C′ { fd md }
& D f ∈ fd

FT (EC, C′, f ) CT (EC, C) = class C extends C′ { fd md }
& D f < fd

Undefined CT (EC, C)↑

MT is defined by:

MT (EC, C, m) =























Cn →D CT (EC, C) = class C extends C′ { fd md }
& D m(C x) { e } ∈md

MT (EC, C′, m) CT (EC, C) = class C extends C′ { fd md }
& D m(C x) { e } < md

Undefined CT (EC, C)↑



Notice that this look-up function is undefined for the special classObject, which does
not have any fields or methods.

We say that CextendsC′ in the contextEC whenCT (EC, C) = class C extends

C′ { fd md }. We say that C is asubclassof C′ in the contextEC when C extends C′, or
there is a non-empty sequence of classes C1, . . . , Cn in EC such that C extends C1, each
Ci extends Ci+1 for all i ∈ n−1, and Cn extends C′. We formalise this notion by:

Definition 6 (Subtypes). For a contextEC, thesubtype relationis defined as the small-
est transitive relation satisfying:SuperCl(EC, C) = C′ ⇒ C <:EC C′

Finally, we definevalidity of a type. We say that a type isvalid with respect to
an execution contextEC, written⊢EC C, when the corresponding class is defined in the
context.

Definition 7 (Valid types). We define type validity through the following judgements:

⊢EC Object
(CT (EC, C)↓)

⊢EC C
⊢EC C1 . . . ⊢EC Cn ⊢EC D

⊢EC C→D

Well formedness of a context is itself a necessary conditionfor the correct reduction
(execution) ofLJ programs.

Definition 8 (Well-formed context). An execution contextEC = cdn is well formed
(⊢ EC) if, and only if, it satisfies the following conditions:

1. There are no duplicate class definitions:∀ i, j∈ n [ i , j ⇒ CN (cdi) , CN (cdj) ].
2. The class hierarchy isacyclic.
3. All fields defined in a particular branch of the class hierarchy are uniquely named.
4. There are no duplicate method declarations within a givenclass, and the types of

any overridden methods must match.
5. The special variablethis must not appear as a parameter in any method definition.
6. All types declared for fields and methods must be valid types with respect to the

execution context, as must all classes that are inherited from.

Property 9 (Type consistency). We note that well-formed execution contexts exhibit
the following consistency properties:

1. The types of inherited fields in a subclass are consistent with the type of the field
in the superclass:

⊢ EC & FT (EC, C, f ) = C′ &
FT (EC, D, f ) = D′ &

C <:EC D ⇒ C′ = D′

2. The types of inherited and overridden methods are consistent with the type of the
method in the superclass:

⊢ EC & MT (EC, C, m) = Cn1 →C0 &

MT (EC, D, m) = Dn2 →D0 &
C <:EC D ⇒ C0 = D0 & n1 = n2 &

∀ i ∈ n [ Ci = D i]



We will now define a reduction relation,→, on LJ programs.

Definition 10 (Reduction). The one-step reduction relation is defined by the follow-
ing rules:

(R-FLD) : (new C(e)). f i →EC ei, if F (EC, C) = f n & i ∈ n;
(R-ASS) : (new C(e)). f j = e′j →EC new C(e1, . . . , e′j, . . . , en ), if F (EC, C) = f n,

j∈ n,
(R-INVK ) : (new C(e)).m(e′) →EC e[e′/x, new C(e)/this],

if Mb (EC, C, m) = (x, e);
(RC-FLD) : If e →EC e′, thene. f →EC e′. f ;
(RC-ASS1) : If e →EC e′′, then(e. f = e′) →EC (e′′. f = e′);
(RC-ASS2) : If e′ →EC e′′, then(e. f = e′) →EC (e. f = e′′);
(RC-INVK 1) : If e0 →EC e′0, thene0.m(e) →EC e′0.m(e);
(RC-INVK 2) : If ej →EC e′j, thene0.m(e) →EC e0.m(e1, . . . , e′j, . . . , en), if j∈ n.

(RC-NEW) : If ej →EC e′j, thennew C(e) →EC new C(e1, . . . , e′j, . . . , en ), if j∈ n.

If e →EC e′, we calle theredex, ande′ thereduct. We also say thate′ expandsto e.
We denote the transitive closure of→ by →∗, and thus writee →∗

EC e′ if there exists a
(possibly empty) sequencee such thate →EC e1 →EC . . . →EC en →EC e′.

We should point out that we have a notion of ‘free’ reduction,in that there might
be more than one reducible expression (redex) in a program, and that the reduction
rules above donot define a strategy, i.e. no redex is preferred over others. This is a
generalisation of the normal situation, since traditionally a notion of “lazy” reduction is
used, notably omitting the rules(RC-ASS2), (RC-INVK 2) and(RC-NEW), so we have
more possible reduction paths. However, our main approximation result is shown for
this free reduction, so is stronger than one we could have obtained for lazy reduction.

This notion of reduction isconfluent, which can be shown by the standard ‘colour-
ing’ argument. Of course confluence can easily be achieved byrestricting reduction to
lazy reduction.

3 The Type System

We define two type assignment systems forLJ expressions. The first directly corre-
sponds to the type systems found in [34] and [15], which in turn are modelled on the
full Java type system [32]. We call this theclasstype system. The second system is the
predicatetype system. For readability, when we refer to the type system from now on,
we will mean theclasstype system, and thepredicate systemwill refer to the predicate
type system. When we refer totypes, we will mean class types (as used in the class type
system), and similarlypredicateswill refer to predicate types.

The predicate system takes after the system of the same name in [10], with predi-
cates comprising sequences of statements, each of which describes a single behaviour
exhibited by the expression to which it is assigned.

We start our treatment of type assignment by defining type environments.



[T-NULL] :
EC ⊢ Γ ⊢EC C

Γ ⊢T
EC (C) null:C

[T-VAR] :
EC ⊢ Γ

(x:C∈ Γ)
Γ ⊢T

EC x:C

[T-FLD] :
Γ ⊢T

EC e:D
(FT (EC, D, f ) = C)

Γ ⊢T
EC e. f :C

[T-SUB] :
Γ ⊢T

EC e:C′

(C′ <:EC C)
Γ ⊢T

EC e:C

[T-ASS] :
Γ ⊢T

EC e:D Γ ⊢T
EC e′:C

(FT (EC, D, f ) = C)
Γ ⊢T

EC e. f = e′ :D

[T-INVK ] :
Γ ⊢T

EC e:C Γ ⊢T
EC ei :Ci (∀i ∈ n)

(MT (EC, C, m) = C→D)
Γ ⊢T

EC e.m(e):D

[T-NEW] :
Γ ⊢T

EC ei :Ci (∀i ∈ n)
(F (EC, C) = f & FT (EC, C, f i) = Ci (∀i ∈ n))

Γ ⊢T
EC new C(e):C

Fig. 1.Type assignment rules

Definition 11 (Type environments). 1. A type statementis of the forme:C, wheree
is anLJ expression, and C is a class type. The expressione is called thesubjectof
the statement, and the type C is called theconclusionof the statement.

2. A type environment, Γ, is a set of type statements with term variables as subjects.
3. We use the notationΓ, x:C to representΓ ∪ {x:C}. Similarly, we writeΓ, Γ′ to

representΓ ∪ Γ
′.

We writex ∈ Γ whenever there is a C such thatx:C∈ Γ.

Note that we do not require the term variables in a type environment to be distinct. This
is only the case forwell formedenvironments, defined below.

Definition 12 (Well-formed type environments). We say that a type environmentΓ

is well formedwith respect to some execution contextEC, when the execution context
is itself well formed and the statements inΓ all have distinct variables as subjects, and
the conclusion of each statement is a valid class type with respect toEC. This notion is
formalised through the following judgements:

⊢ EC

EC ⊢ ∅

EC ⊢ Γ ⊢EC C
(¬∃D [ x:D∈ Γ ])

EC ⊢ Γ, x:C

Definition 13 (Type assignment). Type assignment is a ternary relation between ex-
ecution contexts, type environments and type statements, written asΓ ⊢T

EC e:C. We say
that the type C can beassignedto the expressione in the contextEC using the type en-
vironmentΓ. The relation⊢T is defined using the natural deduction system of Figure 1.

Definition 14 (Type consistent execution contexts).We say that an execution con-
text is type consistent(⊢T

EC ⋄) when the bodies of all methods defined in the context can
be assigned their declared return type.

⊢T
EC ⋄ ⇔ ⊢ EC & ∀C [ CT (EC, C)↓ ⇒

∀m [ MT (EC, C, m) = D→D0 & Mb (EC, C, m) = (x, e0)

⇒ {x:D, this:C} ⊢T
EC e0:D0 ] ]



4 The Predicate System

We now define an extension to the class type system: the predicate type system. We
will see that the predicate system types exactly the same setof terms as the class type
system. This result is shown in Theorem 24.

Definition 15 (Predicates). The sets of predicates are inductively as follows:

predicates: φ, ψ ::= ⊤ | σ

object predicates: σ ::= 〈l1:τ1, . . . , ln:τn〉 (n ≥ 0)

member predicates: τ, ρ ::= φ | ψ :: φ1, . . . , φn → σ (n ≥ 0)

We abbreviate〈l1:τ1, . . . , ln:τn〉, by writing 〈li : τi
i∈n〉, and we call the object pred-

icate consisting of the empty sequence,〈ǫ〉, the emptypredicate. We call⊤ a trivial
predicate; all other predicates are, correspondingly,non-trivial.

The aim in defining predicates in this way is that they should describe the behaviour
of an object in terms of consecutive method or field calls. Thepredicate member state-
ments that comprise an object predicate each indicate that the object to which it is
assigned behaves in a particular way. The class member labelin each statement denotes
either a field or method belonging to the object, and its associated member predicate
then describes the result of accessing the field or invoking the method. In the case of
a method, the member predicateψ :: φ1, . . . , φn → σ also indicates therequiredbe-
haviour of the arguments (φ1, . . . , φn, as well as the receiver (ψ). The universal pred-
icate⊤ is intended to indicate non-terminating behaviour or a discarded computation,
as will be discussed in§4.2.

Definition 16 (Subpredicates). 1. The relationP is defined as the least pre-order on
predicates such that:

〈ǫ〉 P ⊤

〈li : τi
i∈n〉 P 〈lj:τj〉 ∀j∈ n

φ P 〈lj:τj〉 for all j∈ n ⇒ φ P 〈li : τi
i∈n〉 n ≥ 0

φ P ψ ⇒ 〈l:φ〉 P 〈l:ψ〉

2. The equivalence relationφ ∼ ψ is defined over member types by:

φ ∼ ψ ⇔ φ P ψ P φ

This definition captures the intuition that object predicates should be equivalent up to
reordering of predicate member statements. Thus

〈li:τi
i ∈ n〉 ∼ 〈l′i :τ

′
i

i ∈m〉 ⇒ n = m & ∀i ∈m ∃j∈ n [ lj = l′i & τj = τ′
i ]

Definition 17 (Predicate join). 1. Thejoin of two predicates,φ1 ⊔ φ2, is defined as
follows:

φ ⊔⊤ = φ ⊤⊔ φ = φ φ ⊔ φ = φ

〈li : τi
i∈n〉 ⊔ 〈l′i : τ′

i
i∈m〉 = 〈l′′i :τ′′

i
i ∈ k〉 where for eachi ∈ k



– τ′′
i = τ if l′′i :τ ∈ 〈li : τi

i∈n〉 and l′′i < 〈l
′
i : τ′

i
i∈m〉, and

– τ′′
i = τ if l′′i < 〈li : τi

i∈n〉 and l′′i :τ ∈ 〈l′i : τ′
i

i∈m〉.

– τ′′
i = φ ⊔ ψ if l′′i :φ ∈ 〈li : τi

i∈n〉 and l′′i :ψ ∈ 〈l′i : τ′
i

i∈m〉,
2. We also overload⊔ to define the following function which generalises the notion

of join to sequences of predicates:

⊔ǫ = 〈ǫ〉

⊔φ · φn = φ ⊔ (⊔φn)

The join operation is used in the proof of the subject expansion property for the
predicate system in Theorem 27.

This operation corresponds toimplicit intersection.

Definition 18 (Predicate environments). 1. A predicate statementis a construction
of the forme:C : φ, wheree is anLJ expression, C is a class type andφ is a predicate.
The expressione is called thesubject, C is called thetype conclusion, andφ is called
thepredicate conclusionof the statement.

2. A predicate environment, Π, is a set of predicate statements with term variables
as subjects. As for type environment, we do not require the term variables to be
distinct. Again, this is only a property of well formed environments, defined below.

3. As for type environments, we use the abbreviationΠ, x:C : φ to representΠ ∪
{x:C : φ}. Similarly, we writeΠ, Π′ to representΠ ∪ Π′.

4. We writex ∈Π whenever there are C,φ such thatx:C : φ ∈ Π.
5. We say the a predicate environmentΠ is anobjectpredicate environment when

the predicate conclusion of each statementΠ is an object predicate that does not
contain⊤.

6. We extend the subpredicate relation to predicate environments as follows:

Π P Π′ ⇔ ∀ x ∈ Π [ x:C : φ ∈Π ⇒ x:C : φ′ ∈ Π′ & φ P φ′ ]

The idea behind the predicates is to make a statement on the execution of an expres-
sion: for example, if〈 f : φ〉 is used to derive a predicate for the typed expressione:C,
then the fieldf will be invoked when runninge; to enforce this, we define:

Definition 19. For a type C, we define itslanguage, L(C), as follows:

1. ⊤∈L(C) and〈ǫ〉 ∈L(C).
2. If ψ ∈L(C), and there existsm ∈M (EC, C) such thatMT (EC, C, m) = Cn →D,

φi ∈L(Ci) for all i ∈ n, andσ ∈L(D), then〈m : ψ :: φn → σ〉 ∈L(C).
3. If f ∈F (EC, C), FT (EC, C, f ) = D, andφ ∈L(D), then〈 f :φ〉 ∈L(D).
4. If φ, ψ ∈L(C), thenφ ⊔ψ ∈L(C).

Definition 20 (Well-formed predicate environments). We say that a predicate envi-
ronmentΠ is well formedwith respect to some execution contextEC, when the state-
ments inΠ all have distinct variables as subjects, and the type conclusion of each state-
ment is a valid class type with respect toEC, and the predicate is an element of the
language of that class type. This notion is formalised through the following judgements:

⊢ EC

EC ⊢ ∅

EC ⊢ Π ⊢EC C
(φ ∈L(C) & ¬∃D, φ′ [ x:D : φ′ ∈Π ])

EC ⊢ Π, x:C : φ



[P-NULL ] :
EC ⊢ Π ⊢EC C

Π ⊢P
EC (C)null:C : 〈ǫ〉

[P-VAR] :
EC ⊢ Π

(x:C : φ∈Π & φ∈L(C))
Π ⊢P

EC x:C : φ

[P-NEWO] :
Π ⊢T

EC new C(e):C

Π ⊢P
EC new C(e):C : 〈ǫ〉

[P-FLD] :
Π ⊢P

EC e:D : 〈 f : φ〉
(FT (EC, D, f ) = C)

Π ⊢P
EC e. f :C : φ

[P-ASS1] :
Π ⊢P

EC e:C : 〈 f : ψ〉 Π ⊢P
EC e′:D : φ

(FT (EC, C, f ) = D)
Π ⊢P

EC e. f = e′:C : 〈 f : φ〉

[P-ASS2] :
Π ⊢P

EC e:C : 〈li : τi
i∈n〉 Π ⊢T

EC e′:D
( f < l & FT (EC, C, f ) = D)

Π ⊢P
EC e. f = e′:C : 〈li : τi

i∈n〉

[P-INVK ] :
Π ⊢P

EC e:D : 〈m : ψ :: φ → σ〉 Π ⊢P
EC ei :Ci : φi (∀i ∈ n) Π ⊢P

EC e:D : ψ

Π ⊢P
EC e.m(e):C : σ

(MT (EC, D, m) = C→C)

[P-NEWF] :
Π ⊢P

EC ej :Cj : φ Π ⊢T
EC Ci : (∀i ∈ n [ i , j ])

Π ⊢P
EC new C(e):C : 〈 f j : φ〉

(F (EC, C) = f & j∈ n & ∀ i ∈ n [ FT (EC, C, f i) = Ci ])

[P-NEWM] :
Π ⊢T

EC new C(e):C Π
′ ⊢P

EC e0:D : σ

Π ⊢P
EC new C(e):C : 〈m : ψ :: φn′ → σ〉

(
MT (EC, C, m) = Cn′ →D & Mb (EC, C, m)
= (xn′ , e0) & Π′ = {x:C : φn′ ,this:C : ψ}

)

[P-SUBT] :
Π ⊢P

EC e:C′ : φ
(C′ <:EC C & φ∈L(C))

Π ⊢P
EC e:C : φ

[P-TOP] :
Π ⊢T

EC e:C

Π ⊢P
EC e:C :⊤

[P-JOIN] :
Π ⊢P

EC e:C : φi (∀i ∈ n)

Π ⊢P
EC e:C : ⊔ φn

[P-SEQ] :
Π ⊢P

EC e:C : ψ
(ψ P φ)

Π ⊢P
EC e:C : φ

Fig. 2.Predicate Assignment Rules

Notice that, by simple induction on the derivation ofEC ⊢ Π, it is easy to see that
EC ⊢ Π′ for anyΠ′ ⊆ Π.

Definition 21 (Environment conversion). The notationΠ denotes the type environ-
ment obtained by discarding the predicate conclusions fromthe statements inΠ:

Π , { x:C | x:C : φ ∈Π }

Definition 22 (Predicate assignment). Predicate assignment is a ternary relation be-
tween execution contexts, predicate environments and predicate statements, written as
Π ⊢P

EC e:C : φ. The relation⊢P is defined using the natural deduction system of Figure 2.

We can see the predicate system as a Hoare-style system of preand post conditions.
For example, for rule(P-INVK ), the rule expresses that if the argumentsei for the
method call satisfy, respectively,φi, and the object satisfiesψ, that then the method that
is going to be called will satisfyσ, giving an annotation like:



:: pre: each ei satisfies φi & e satisfies ψ
e.m(ei)
:: post: σ

The results of this paper provide the semantic underpinningfor such a system.

4.1 Properties of the Type Systems

We now present some properties of the type systems defined above. We begin by show-
ing that the set of expressions typeable by the class type system is exactly the same as
the set of expressions typeable by the predicate system; because of space restrictions,
proofs are omitted.

Theorem 23. ∃ φ [ Π ⊢P
EC e:C : φ ] ⇔ Π ⊢T

EC e:C

The following results are a crucial part of the proof for subject expansion. The first
states that a label that occurs in a predicate is visible in the type, and the second that
predicate assignment is closed for subtyping, as long as thepredicate used is in the
language of the supertype.

Theorem 24. 1. If Π ⊢P
EC e:C : φ, thenφ∈L(C).

2. If Π ⊢P
EC e:C : φ, Π ⊢T

EC e:C′, andφ ∈L(C′), thenΠ ⊢P
EC e:C′ : φ.

The main result of this paper is now formulated be the next twotheorems: first, both
types and predicates are preserved by reduction:

Theorem 25. 1. ⊢T
EC ⋄ & Γ ⊢T

EC e:C & e →EC e′ ⇒ Γ ⊢T
EC e′:C

2. ⊢T
EC ⋄ & Π ⊢P

EC e:C : φ & e →EC e′ ⇒ Π ⊢P
EC e′:C : φ

Predicates are preserved by expansion:

Theorem 26. ⊢T
EC ⋄ & Π ⊢P

EC e′:C : φ & e →EC e′ & Π ⊢T
EC e:C ⇒ Π ⊢P

EC e:C : φ

4.2 Characterisation of Expressions

As with the intersection type system for theλ-calculus, the subject expansion result for
the predicate system allows us to characterise the behaviour of LJ expressions by the
predicates that we can assign to them.

We first see that (using an object predicate environment) anyLJ expression that
terminates in an object can be assigned a non-trivial predicate thatdoes notinclude⊤.

Theorem 27. If there existsΠ, C such thatΠ ⊢T
EC e:C ande →∗ o, then there existsφ

such thatφ , ⊤ andΠ ⊢P
EC e:C : φ.

We can illustrate this property by the following program:



EC = class C extends Object

{ C m( ) { this.m( ) } }

e = (new C ( )).m( )

The expressione runs to itself, thuse →EC e →EC . . . ad infinitum. Notice that∅ ⊢T
EC e:C,

and so by ruleP-TOP we have∅ ⊢P
EC e:C : ⊤. However, sincee only reduces to itself, a

consequence of the approximation result,⊤ is theonly predicate that we can assign to
e.

Now, consider the followingLJ program:

class C extends Object

{ C f

C m( ) { this.f = this.m( ) }
}

e = (new C ( (C) null)).m( )

which results in this sequence of reductions:

e ≡ (new C ( (C) null)).m( )
→EC (new C ( (C) null)).f = (new C ( (C) null)).m( )
→EC e1 ≡ new C ( (new C ( (C) null)).m( ) )
→EC new C ( (new C ( (C) null)).f = (new C ( (C) null)).m( ) )
→EC e2 ≡ new C (new C ( (new C ( (C) null)).m( ) ) )
→∗

EC e3 ≡ new C (new C (new C ( (new C ( (C) null)).m( ) ) ) ) etc

Thus, this expression constructs an ever increasingly nested object. Observe that∅ ⊢T
EC

e:C and so by ruleP-TOP it follows that ∅ ⊢P
EC e:C : ⊤. Given this, we can assign the

following predicates to the sequence of expressionse:

∅ ⊢P
EC e1:C : 〈f:⊤〉

∅ ⊢P
EC e2:C : 〈f:〈f:⊤〉〉

∅ ⊢P
EC e3:C : 〈f:〈f:〈f:⊤〉〉〉 etc

Then, by subject expansion, we can assign all of these predicates to the expressione
itself. Thus, we can assign a non-trivial predicate toe, but it must contain⊤, suggesting
that there is non-termination somewhere.

4.3 Expressiveness

A final point that we can make concerns the expressiveness of the predicate system over
the type system. A result of the type system (and similarly ofthe type systems ofFJ, MJ

and Java itself) is that if an expression is typeable, then executing the expression will
not result in any illegal field accesses or method invocations. In other words, whenever
a field is accessed, or a method invoked, such a field or method will always exist in
the receiving object. One thing thatmayhappen, however, is a null reference exception.
This occurs when a field is accessed or a method invoked on a null object. The type



system does not distinguish between the types of null objects and the types of non-
null objects; thus it cannot determine when such a mismatch will occur. The predicate
system, on the other hand,doesmake such a distinction: the only non-trivial predicate
that null objects may be assigned is the empty predicate〈ǫ〉. As such, a field access or a
method invocation on a null object cannot be assigned any predicate other than⊤, since
the premise for such a predicate assignment is that the receiver have an appropriate non-
empty object predicate. Thus, again by subject expansion, it follows that the execution
of any expression which can be assigned a non-trivial predicate will not result in a null
reference exception.

5 Approximants for Lightweight Java

In the context of formal calculi, termination - all computations finish - is an much stud-
ied problem, and often type theory makes this result achievable. For example, for the
λ-calculus [12], it is well-known that there exists non-terminating terms, but that (us-
ing simple type assignment) all typeable term terminate. Inthe context of intersection
types, on which our predicates are based, this property holds, but with modifications; in
fact, using intersection types, it is possible to show:

– If Γ ⊢ M : σ andM =β N, thenΓ ⊢ N : σ.
– Γ ⊢ M : σ andσ , ⊤, if and only if M has a head-normal form.
– Γ ⊢ M : σ and⊤ does not occur inΓ andσ, if and only if M has a normal form.
– Γ ⊢ M : σ and⊤ is not used at all, if and only ifM is strongly normalisable.

Another, perhaps less known property that holds for the intersection type assignment
system for theλ-calculus is the approximation theorem:

Γ ⊢ M : σ ⇔ ∃ A ∈A(M) [ Γ ⊢ A : σ ]

This result is based on the notion of approximant forλ-terms, as first presented by
C. Wadsworth in [61], which is defined as follows.

Definition 28. 1. The set ofλΩ-terms2 is defined as the set ofλ-terms by adding
the constantΩ to the syntax.

2. The notion of reduction→βΩ λΩ-termsis defined as→β , extended by:

λx.Ω →βΩ Ω ΩM →βΩ Ω.

3. The set ofnormal formswith respect to→βΩ is the setA of λΩ-normal forms
or approximate normal forms, ranged over byA, defined by:

A ::= Ω | λx.A (A , Ω) | xA1 . . . An (n ≥ 0)

We can viewΩ as hiding a place where (infinite) reduction might take place.

2 Ω is the symbol originally used in [61]; more common now is to, as [12], use the symbol⊥;
since this could be confused to be a predicate, we have opted for the old notation.



Definition 29 (Approximants). 1. The partial order⊑ is defined as the smallest
pre-order such that:

Ω ⊑ M
M ⊑ M′ ⇒ λx.M ⊑ λx.M′

M1 ⊑ M′
1 & M2 ⊑ M′

2 ⇒ M1 M2 ⊑ M′
1 M′

2

2. If A ⊑ M, thenA is called adirect approximantof M.
3. The relation∼ is defined by:A ∼ M ⇔ ∃ N [ M →→β N & A ⊑ N ].
4. If A ∼ M, thenA is called anapproximantof M.
5. A(M) = { A ∈A | A ∼ M }.

Since it is easy to show that, ifM →→β N, then, for allA, if A ⊑ M, thenA ⊑ N,
but not vice versa, we can see the approximants of a termM as representing the dy-
namics of runningM: if A ⊑ M is not Ω, thenA exposes some structure (either an
abstraction or a head-variable) and the above property thenstates that this structure will
not disappear while continuing the execution; it is the output of (running)M.

Definition 30. 1. The partial mapping⊔ (join) is defined by:

Ω ⊔ M = M ⊔Ω = M
x ⊔ x = x

(λx.M)⊔ (λx.N) = λx.(M⊔ N)
(M1M2)⊔ (N1N2) = (M1 ⊔ N1) (M2 ⊔ N2)

2. If M ⊔ N is defined, thenM andN are calledcompatible.

Now ⊔ acts as least upper bound of compatible terms. The set of approximants of
M corresponds to the finite, rooted segments ofBT(M), the Böhm tree ofM, a tree
that represents the (possible infinite) normal form ofM (see [12]).

⊔

{ A | A ∈A(M) } ∼ BT(M)

where (possibly infinite) subtrees are replaced byΩ; in fact, we can show thatM =β N
implies A(M) = A(N). This observation immediately gives that we can define a
model for theλ-calculus by interpreting terms by their approximants.

The approximation result stated above now directly links types with semantics, and
generalises the standard subject reduction result, which states that types are preserved
by reduction. To put the approximation result into words, itstates that, for every ty-
peable termM, during the execution ofM some intermediate result will be reached
that we can type in exactly the same way, perhaps masking someparts with⊤: so inter-
section types allow a look-ahead over execution.

We will now define a notion of approximants forLJ, and link the predicates we
assign an expressionse to its approximants in the same way in the next section. First
we define approximants.

Definition 31 (APPROXIMATE EXPRESSIONS). 1. We extend the syntax ofLJ ex-
pressions with an elementΩ, and defineapproximateexpressions using the follow-
ing grammar:

a ::= x | Ω | (C) null | a. f | a. f = a′ | a.m(a) | new C(a)



2. We extend the reduction relation to approximate expressions with the following
rules:

Ω. f →EC Ω Ω. f = a →EC Ω Ω.m(a) →EC Ω

The normal forms of approximate expressions (orapproximate normal forms) with
respect to this extended reduction relation are defined by the following grammar:

A ::= x | Ω | (C) null | new C(A) |
A. f | A. f = A′ | A.m(A) (A, A′

, Ω & A, A′
, new C(A))

3. The rules for type assignment are extended to type approximate expressions by
allowing expressions to containΩ; this implies that, ifa containsΩ, then⊤ is used
to cover a subterm ofa with ⊤. Moreover, the only predicate assignable toΩ (and
indeed to field and method invocations onΩ) is ⊤.

Definition 32 (APPROXIMANTS ). 1. The relation⊑ over approximate expressions
is defined as the smallest pre-order satisfying:

Ω ⊑ e
e ⊑ e′ ⇒ e. f ⊑ e′. f

e1 ⊑ e′1 & e2 ⊑ e′2 ⇒ e1. f = e2 ⊑ e′1. f = e′2
e ⊑ e′ & ∀ i ∈ n [ ei ⊑ e′i ] ⇒ e.m(en) ⊑ e′.m(e′n)

∀ i ∈ n [ ei ⊑ e′i ] ⇒ new C(en) ⊑ new C(e′n )

If A ⊑ e then we say thatA is adirect approximantof e (notice that this notion is
independent of the evaluation context).

2. We define the binary relation∼EC
on approximate normal forms and expressions

as follows:A ∼EC
e ⇔ ∃ e′ [ e →∗

EC e′ & A ⊑ e′ ]. If A ∼EC
e then we say thatA is

anapproximantof e.
3. We define:AEC(e) = { A | A ∼EC

e }.

We can now show the following properties:

Lemma 33. 1. If e →∗
EC e′ andA ⊑ e, thenA ⊑ e′.

2. If e →∗
EC e′ thenAEC(e) = AEC(e′).

With the second of these results, we have an approximation semantics forLJ: ⌈⌈e⌋⌋
A
EC =

AEC(e).

6 Approximation Result

We define a family of predicates that assert approximation ofan expression with a given
predicate type:

Definition 34. ApprEC(Π, e:C, φ) ⇔ Π ⊢T
EC e:C & ∃ A∈AEC(e) [ Π ⊢P

EC A:C : φ ]



In this section, we will show the approximation result for our notion of predicate as-
signment forLJ, that states:Π ⊢P

EC e:C : φ ⇔ ApprEC(Π, e:C, φ). This theorem states
that for every expressione to which we can assign the predicateφ, there exists an ap-
proximant ofe to which the same predicate can be assigned. This theorem will allow
us to characterise expressions which have a head normal formby their assignable pred-
icates.

First, we show that predicate assignment is upward closed for ⊑ :

Theorem 35. Π ⊢P
EC a:C : φ & Π ⊢T

EC a′:C′ & a ⊑ a′ ⇒ Π ⊢P
EC a′:C′ : φ.

Notice, in particular, this result holds when C= C′.
We define a subset of expressions that are those that start with a variable; we need

this notion because we want to show that all variables are computable of any type and
predicate. In order to show that, using of course the computability predicate, being
defined by induction on the structure of predicates, we have to consider arbitrary se-
quences of field of method invocations, or field overrides; the set of neutral terms is,
therefore, the set of variables, ‘closed’ for those calls.

Definition 36 (NEUTRAL EXPRESSIONS). Neutral expressionsare defined by the fol-
lowing grammar:

n ::= x | n. f | n. f = e | n.m(e)

Notice that neutral expressions are not, in general, in normal form, but any reduc-
tions that can take place will be performed on the arguments to method invocations
or field assignments. Thus, the ‘externally visible’ structure of the expression remains
constant, as stated by the following lemma:

Lemma 37. 1. A∈AEC(n) ⇒ A. f ∈AEC(n. f ).
2. A∈AEC(n) & A′ ∈AEC(e) ⇒ A. f = A′ ∈AEC(n. f = e).
3. A∈AEC(n) & ∀ i ∈m [ Ai ∈AEC(ei) ] ⇒ A.m(Am)∈AEC(n.m(em)).

We will use Taits’ proof method [58] involving acomputability predicate, which we
now define.

Definition 38 (COMPUTABILITY PREDICATE ). We define a family of computability
predicates, over execution contextsEC, inductively as follows:

CompEC(Π, e:C,⊤) ⇔ ApprEC(Π, e:C,⊤)

CompEC(Π, e:C, 〈ǫ〉) ⇔ ApprEC(Π, e:C, 〈ǫ〉)

Π ⊢T
EC e:C & FT (EC, C, f ) = D ⇒

(Comp
EC

(Π, e:C, 〈 f : ⊤〉) ⇒ Comp
EC

(Π, e. f :D,⊤))

Π ⊢T
EC e:C & FT (EC, C, f ) = D ⇒

(CompEC(Π, e:C, 〈 f : σ〉) ⇔ CompEC(Π, e. f :D, σ))

Π ⊢T
EC e:C & MT (EC, C, m) = Cn →D ⇒

(CompEC(Π, e:C, 〈m : ψ :: φn → σ〉) ⇔
(CompEC(Π, e:C, ψ) & ∀ i ∈ n [ CompEC(Π, ei :Ci, φi) ]

⇒ CompEC(Π, e.m(en):D, σ)))

D <:EC C ⇒ (CompEC(Π, e:C, φ) ⇔ CompEC(Π, e:D, φ))

Comp
EC

(Π, e:C,⊔φin) ⇔ ∀ i ∈ n [ Comp
EC

(Π, e:C, φi) ]



We now show that computability applies approximation, and that approximableneu-
tral terms are computable:

Theorem 39. 1. ApprEC(Π, n:C, φ) ⇒ CompEC(Π, n:C, φ).
2. CompEC(Π, e:C, φ) ⇒ ApprEC(Π, e:C, φ).

A corollary of this theorem is that variables are computableof any predicate which
is assignable to them.

Corollary 40. { x:C:φ } ⊢P
EC x:C : φ ⇒ CompEC({ x:C:φ }, x:C, φ)

The next step is to formulate areplacementlemma, which states that if we replace
all the variables in a predicable expression with expressions computable of appropriate
predicates, then we obtain a computable expression.

Lemma 41 (Replacement Lemma). If Π ⊢P
EC e:C : φ, and there existsΠ′, ei such that,

for all xi :Ci:φi ∈Π we haveCompEC(Π′, ei :Ci, φi), thenCompEC(Π′, e[ei/xi]:C, φ).

It is worthwhile to note that this technique, in the context of the λ-calculus, re-
quires the proof for the statementComp(Γ, M[N/x], σ) ⇔ Comp(Γ, (λx.M)N, σ);
this is needed mainly because theλ-calculus hasabstraction, accompanied by the type
assignment rule

Γ, x:A ⊢ M : τ

Γ ⊢ λx.M : σ → τ

where the subderivation has a larger context. Notice that none of the rules forLJ have
this particular feature, so we do not have the added complexity of having to reason over
the replacements used.

A corollary of the replacement lemma will be that if an expression can be assigned
a predicateφ, then it is computable of that predicate.

Corollary 42 (Typeability implies Computability).Π ⊢P
EC e:C : φ ⇒ CompEC(Π, e:C, φ).

Combining this with Theorem 40 gives that if an expression can be assigned a pred-
icateφ then it has an approximant which can also be assignedφ.

Theorem 43 (Typeability implies Approximability). If Π ⊢P
EC e:C : φ thenΠ ⊢T

EC e:C
and there existsA∈AEC(e) such thatΠ ⊢P

EC A:C : φ.

7 Characterisation of head-normalisation

In this section, we will show the main result of this paper:

If Π ⊢P
EC e:C : φ, andφ , ⊤, thene has a head-normal form.

and show that this follows from the approximation result.



Definition 44 (HEAD NORMAL FORMS ). The setH of expressions inhead-normal
form is defined by:

H ::= x | (C) null | new C(e) |
H. f | H. f = e | H.m(e) (H , new C(e))

Lemma 45. 1. If A ⊑ e, thene∈H.
2. If H∈H, then there existΠ, C, andφ such thatΠ ⊢P

EC H:C : φ.

We can now show the head-normalisation result:

Theorem 46. Assume there existsΠ, andC such thatΠ ⊢T
EC e:C. Then: there existφ

such thatΠ ⊢P
EC e:C : φ, andφ , ⊤ iff e has a head-normal form.

8 About normalisation

Another well-known result for intersection types in the context of theλ-calculus is the
characterisation ofnormalisationvia: Γ ⊢ M : σ and⊤ not in Γ andσ, if and only if
M has a normal form.

First, we define the notion of normal form with respect to→EC:

Definition 47 (NORMAL FORMS ). The setN of expressions innormal form is de-
fined by:

N ::= x | (C) null | new C(N) |
N. f | N. f = N′ | N.m(N) (N , new C(e))

As argued in [11], the characterisation of normalisation only holds in the context of
strong reduction, and we cannot show it for the system we are considering here.This is
not only because we can find normal forms that are only typeable with⊤ (like null. f ),
but also that a predicate need not showall fields that are visible in a type

Example 48.Take

class C extends Object

{ C f

C g

C m( ) { this . m( ) }
}

e = new C ( (C) null, new C ( (C) null, (C) null) . m( ) )

Now we can derive∅ ⊢P
EC e:C : 〈 f :〈ǫ〉〉, and∅ ⊢P

EC e:C : 〈g:⊤〉. Notice that we have
an infinite reduction frome:

new C ( (C) null, new C ( (C) null, (C) null) . m( ) ) →EC

new C ( (C) null, this . m( )[new C ( (C) null, (C) null)/this] ) =
new C ( (C) null, new C ( (C) null, (C) null) . m( ) ) →EC . . .

although we can assign a predicate not containing⊤.



So a characterisation of normalisation for the free reduction of this paper is not
achievable. However, if we switch to lazy reduction, then the head-normal forms are
exactly the normal forms, and the characterisation of head-normalisation and normali-
sation collapse onto one result, already show above.

Definition 49 (LAZY NORMAL FORMS ). The setNℓ of expressions inlazy normal
form is defined by:

Nℓ ::= x | (C) null | new C(e) |
Nℓ. f | Nℓ. f = e′ | Nℓ.m(e) (N , new C(e))

Theorem 50. When restricting tolazyevaluation, there existΠ, C, andφ such that
Π ⊢P

EC e:C : φ, andφ , ⊤ iff e has a lazy normal form.

9 Conclusions and Future Work

There are many directions that future research in this area could take. One such avenue
of investigation that would further cement the theoreticalfoundations of the class-based
object oriented paradigm is to define an encoding of the Lambda Calculus inLJ. This
has been done for theς-calculus in [1]. This would demonstrate the expressive power
and equivalence ofLJ with theλ-calculus. On a broader note, semantic models forLJ,
as well as other class-based calculi, could be developed. [10] addresses this issue for
theς-calculus, so it seems likely that a similar approach could be taken forLJ.

We have mentioned howLJ is a functional calculus and, as such, lacks imperative
features like the ones included inMJ. A further step might be to add these features to
LJ, and also extend the predicate system to handle them. It would be interesting to see
if they can be subsumed easily into the predicate system, or whether the presence of
side-effects will necessitate more drastic changes. Taking another lead from [15], we
could also incorporate an effects system into our calculus.Again, one would hope that
this extension would dovetail easily with the predicate system.

As was the case with intersection types for theλ-calculus, the predicates we allow
for the construction of a filter model by interpreting expressions by their assignable
predicates. We have also briefly touched on characterisation properties in Section 4.2.
One natural progression of our work will be to fully investigate this characterisation
of expressions, and show that all programs typeable in a system that excludes⊤ will
terminate.

Finally, thepredicateapproach of this paper opens the way for functional-style type-
based abstract interpretation, like side-effect analysisvia type-and-effect systems, and
systems that analyse aliasing. We aim to extend our approachinto that direction.
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