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Abstract

This paper studies the calculus X , that has its foundation in Classical Logic; we present an
implementation for X using term graph rewriting techniques, and discuss improvements
thereof which result in an increasingly more efficient running of the reduction engine. We
show that name capture can be dealt with ‘on the fly’, by realising the avoidance of capture
through adding or modifying the rewrite rules. We study two different approaches to garbage
collection, and compare the various implementations by presenting benchmarks.

1 Introduction

This paper presents a term graph rewriting implementation for the (untyped) calculus X as
first presented in [4], and studies the efficiency of a number of approaches towards implemen-
tation issues, in particular that of α-conversion. X is a sequent calculus which embodies both
substitution and context call; it was first been defined in [24, 25, 18] and was later extensively
studied in [2, 3].

The origin of X lies within the quest for a Curry-Howard correspondence to Gentzen’s se-
quent calculus LK for Classical Logic, introduced in [14]. In particular, X corresponds to the
implicative fragment of Kleene’s G3 [17], with implicit weakening and contraction. LK is a log-
ical system in which the rules only introduce connectives (but on either side of a sequent), in
contrast to natural deduction (also introduced in [14]) which uses rules that introduce or elimi-
nate connectives in the logical formulae. Natural deduction normally derives statements with
a single conclusion, whereas LK allows for multiple conclusions, deriving sequents of the form
A1, . . . , An ⊢ B1, . . . , Bm, where A1, . . . , An is to be understood as A1∧ . . .∧An and B1, . . . , Bm is
to be understood as B1∨ . . .∨Bm. G3 has four rules: axiom, left introduction of the arrow, right
introduction, and cut.

(Ax) :
Γ, A ⊢ A,∆ (cut) :

Γ ⊢ A,∆ Γ, A ⊢ ∆

Γ ⊢ ∆

(⇒R) :
Γ, A ⊢ B,∆

Γ ⊢ A⇒B,∆
(⇒L) :

Γ ⊢ A,∆ Γ, B ⊢ ∆

Γ, A⇒B ⊢ ∆

Since LK has only introduction rules (or better, no elimination rules), the only way to eliminate
a connective is to eliminate the whole formula in which it appears via an application of the
(cut)-rule. Gentzen defined an informal procedure that eliminates all applications of the
(cut)-rule from a proof of a sequent, generating a proof in normal form of the same sequent,
that is, without a cut; this procedure is defined via local reductions of the proof tree which
essentially correspond to innermost reduction.

Starting from different approaches in that area, in [18] Lengrand introducedX as a calculus
that enjoys the Curry-Howard isomorphism for G3; similar work was presented by Urban
[24, 25], who defined an expressive restriction of cut-elimination that is strongly normalisable.
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X can be seen as an extension of Urban’s calculus, and was studied in [2, 3] in the context of
a number of calculi. A notable difference with Urban’s work is that he set out to study the
structure of proofs, so the terms of his calculus carry types and correspond only to proofs.
In the approach to X of [2, 3] which we take also here, we study terms without types, and
drop the condition that terms should represent proofs of the logic altogether: we study a pure
calculus. This opens the research to notions as recursion, normalising strategies, confluence,
etc.

The calculus X achieves a Curry-Howard isomorphism for the proofs in LK by construct-
ing witnesses for derivable sequents. In establishing the isomorphism, similar to calculi like
Parigot’s λµ [20] and λµµ̃ [13], Roman names are attached to formulae in the left context, and
Greek names for those on the right, and syntactic structure is associated to the rules. Names
on the left can be seen as inputs to the term, and names to the right as outputs; since multiple
formulae can appear on both sides, this implies that a term can not only have more than one
input, but also more than one output. There are two kinds of names (connectors) in X : sockets
(inputs, with Roman names, that are reminiscent of values) and plugs (outputs, with Greek
names, that are reminiscent of continuations), that correspond to variables and co-variables,
respectively, in [28], or, alternatively, to Parigot’s λ and µ-variables [20].

Gentzen’s proof reductions by cut-elimination become the fundamental principle of com-
putation in X . Cuts in proofs are witnessed by P α̂ † x̂Q (called the cut of P and Q via α and
x), and the reduction rules specify how to remove them: a term is in normal form if and only if
it has no sub-term of this shape. The generalisation with respect to Gentzen’s proof reduction
is that now all cuts can be eliminated, not just those that are innermost.
X as an untyped language provides an excellent general purpose machine, very well suited

to encode various calculi; [3] illustrates the expressive power of X by giving consistent inter-
pretations of the Lambda Calculus [12, 5], Bloo and Rose’s calculus of explicit substitution λx

[10], λµ, and λµµ̃.
Perhaps the main feature of X is that it constitutes a variable, application, and substitution-

free method of computation. Rather than having variables like x representing places where
terms can be inserted, in X the symbol x represents a socket, to which a term can be attached
via a plug α; both plugs and sockets carry names, and the only substitution-like operation
is that of renaming. The definition of reduction on X constitutes of rules that describe the
reorganisation of a term in small steps, and shows the subtle interaction between plugs and
sockets.

Reduction in X can be specified as a conditional term rewriting system; the only non-standard
aspects is the presence of binding structures. It is this observation that led us to the research
we report on in this paper; i.e. the building of an interpreter for X using the term graph
rewriting technology. A tool was developed that allows users to input terms fromX , reducing
cuts at will in X ’s full reduction system, or to limit reduction to either call-by-name or call-
by-value.

We not only set out to studyX and its properties, but also focus on trying to extendX into a
true programming language. With that in mind, we have concentrated on building an efficient
interpreter, and sought different, increasingly better solutions to garbage collection, capture
avoidance and name capture. In [4] we reported on the first results of our implementation
efforts. In particular, to avoid problems caused by nested binding of connectors, a lazy copy
mechanism was introduced, and almost all rewrite rules were defined using this.

In this paper we will improve on this result, and show that the special character of X ,
being a conditional term rewriting system based on renaming, makes it possible to study
α-conversion on the level of the language itself. So in X , α-conversion is not just a hidden im-
plementation issue, but a first-class citizen. This allows us to directly measure the cost of
α-conversion using the same currency as for the cost of cut-elimination: with minor changes
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to the rules, we can test our different solutions on the level of the language itself.
This paper does not claim to find innovative solutions to the problem of capture itself; many

solutions to this problem exists, and we have, so far, chosen standard approaches. What we
do achieve is a the creation of a platform on which it is easy to compare these various solutions
in terms of execution cost, thus enabling justification for the choice of a certain technology
over another.

We will present improvements on the reduction engine in the tool as first presented in [4],
and show that these are expressible directly in X itself. We will present three solutions for
the problem of capture that are both expressed as changes to the rules: the first will use the
rebinding of bound connectors, the second will preserve Barendregt’s convention, whereas
the third avoids the capture of free connectors by binders. Much to our surprise, the resulting
rewrite rules of the latter two solutions are very similar, but for the fact that in the last freeness
is an issue, rather than being bound as in the second. The reduction engine thus obtained
proved to be impressively much more efficient though, especially after the addition of two
different notions of garbage collection.

Outline of this paper. This paper is organised as follows. In Section 2 we will repeat the
X -calculus, and some of its main properties. In Section 3, we will show that more expressive
rules regarding garbage collection and deactivation can be safely added to the calculus. Sec-
tion 4 presents the term graph rewriting engine that is used for our implementation, and in
Section 5 we discuss three ways to deal with α-conversion. In Section 6 we formally define
our reduction strategy combinators, that help us implement our three solutions in comparable
ways, and give our measurement results.

2 The X -calculus

In this section we will give the definition of the X -calculus [18] that was proven to be a fine-
grained implementation model for various well-known calculi in [2]. X features two separate
categories of ‘connectors’, plugs and sockets, that act as input and output channels.

As mentioned in the introduction, X enjoys the Curry-Howard relation with Kleene’s vari-
ant G3 of Gentzen’s LK. This is achieved by labelling the formulae with term information,
and building witnesses for proofs by associating derivation rules to syntactical constructs. In
the construction of the witness of a logical statement, when in applying a rule a premise or
conclusion disappears from the sequent, the corresponding name gets bound in the term that
is constructed, and when a premise or conclusion gets created, a different, free (often new)
name is associated to it. For example, in the creation of the term for right introduction of the
arrow

P ··· Γ, x:A ⊢X α:B,∆

x̂ P α̂·β ··· Γ ⊢X β:A→B,∆

the input x and the output α are bound, and β is free. This case is interesting in that it high-
lights a special feature of X , not found in other calculi. In (applicative) calculi related to
natural deduction, like the λ-calculus, only inputs are named, and the linking to a term that
will be inserted is done via λ-abstraction and application. The output (i.e. result) on the other
hand is anonymous; where a term ‘moves to’ carries a name via a variable that acts as a pointer
to the positions where the term is to be inserted, but where it comes from is not mentioned,
since it is implicit. Since in X a term P can have many inputs and outputs, it is unsound to
consider P a function; however, fixing one input x and one output α, we can see P as a function
‘from x to α’. We make this limited view of P available via the output β, thereby exporting ‘P
is a function from x to α’. The types given to the connectors confirm this view, which is also
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supported by the logic.

Definition 2.1 (SYNTAX) The terms of the X -calculus are defined by the following grammar,
where x,y range over the infinite set of sockets, and α, β over plugs.

P, Q ::= 〈x·α〉 | ŷP β̂·α | P β̂ [y] x̂ Q | P α̂ † x̂Q

capsule export import cut.

Notice that X has no notion of abstraction; in particular, P β̂ and x̂Q are not terms.

The ·̂ symbolises that the socket (plug) underneath is bound in the term directly to the right
(left). The unconnected inputs and outputs in a term make up the collection of free connectors,
that are inactive during a computational step.

Definition 2.2 (FREE AND BOUND) The sets of free and bound sockets and free and bound plugs
in a term are defined by:

fs(〈x·α〉) = {x}

fs(ŷP β̂·α) = fs(P)\{y}

fs(P β̂ [y] x̂ Q) = fs(P)∪(fs(Q)\{x})

fs(P α̂ † x̂Q) = fs(P)∪(fs(Q)\{x})

fp(〈x·α〉) = {α}

fp(x̂P α̂·β) = fp(P)\{α}

fp(P α̂ [y] x̂ Q) = (fp(P)\{α})∪fp(Q)

fp(P α̂ † x̂Q) = (fp(P)\{α})∪fp(Q)

bs(〈x·α〉) = ∅

bs(ŷP β̂·α) = bs(P)∪{y}

bs(P β̂ [y] x̂ Q) = bs(P)∪bs(Q)∪{x}

bs(P α̂ † x̂Q) = bs(P)∪bs(Q)∪{x}

bp(〈x·α〉) = ∅

bp(x̂ P α̂·β) = bp(P)∪{α}

bp(P α̂ [y] x̂ Q) = bp(P)∪{α}∪bp(Q)

bp(P α̂ † x̂Q) = bp(P)∪{α}∪bp(Q)

The set of bound connectors is defined as bc(P) = bs(P)∪bp(P), and we sometimes write, for
example, bs(P, Q) as shorthand for bs(P)∪bs(Q); we use the notation fc(P) (= fs(P)∪fp(P))
for the free connectors.

Note that, in x̂〈x·α〉 α̂·α, α is bound and free. The standard way to avoid this anomaly is to
assume Barendregt’s convention, which states that free and bound names should be distinct.
As illustrated in Section 5, this then becomes an implementation issue, which we will address
here for X . As usual, we will identify terms that only differ in the names of bound connectors
(modulo α-conversion, as usual). To maintain this convention during reduction, implicit α-
conversion needs to take place, which is the main issue we tackle in this paper (see Section 5).

2.1 Reduction on X

The calculus, defined by the reduction rules below, explains in detail how cuts are propagated
through terms to be eventually evaluated at the level of capsules.

The intuition behind reduction is: the cut P α̂ † x̂Q expresses the intention to connect all αs
in P and xs in Q, and reduction will realise this by either connecting all αs to all xs (if x does
not exist in Q, P will disappear), or all xs to all αs (if α does not exist in P, Q will disappear).

Reduction is defined by specifying both the interaction between well-connected syntactic
structures, and how to deal with propagating active nodes to points in the term where they
can interact. This strongly depends on the following notion.

Definition 2.3 (INTRODUCTION OF CONNECTORS) P introduces x : Either P= Q β̂ [x] ŷ R and x 6∈ fs(Q, R),
or P = 〈x·α〉.

P introduces α : Either P = x̂Q β̂·α and α 6∈ fp(Q), or P = 〈x·α〉.
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We consider P and Q in P α̂ † x̂Q well connected when both α and x are introduced.
The main reduction rules are:

Definition 2.4 (LOGICAL RULES) The logical rules are presented by (where both α and x are
introduced in the cuts):

(cap) : 〈y·α〉 α̂ † x̂〈x·β〉 → 〈y·β〉

(exp) : (ŷP β̂·α) α̂ † x̂〈x·γ〉 → ŷP β̂·γ

(imp) : 〈y·α〉 α̂ † x̂(P β̂ [x] ẑQ) → P β̂ [y] ẑ Q

(exp-imp) : (ŷP β̂·α) α̂ † x̂(Q γ̂ [x] ẑ R) →

{
Q γ̂ † ŷ(P β̂ † ẑR)

(Q γ̂ † ŷP) β̂ † ẑR

The first three logical rules above specify a renaming (reconnecting) procedure, whereas
the last rule specifies the basic computational step: it links the export of a function, available
on the plug α, to an adjacent import via the socket x.

In case the connectors in a cut are not introduced, the logical rules cannot be directly ap-
plied, and the propagation rules specified below come into play. Applying these will either
try to connect the socket to the plug, or the plug to the socket. This choice is expressed via the
activation of a cut, represented by the tilting of a dagger.

Definition 2.5 (ACTIVE CUTS) The syntax is extended with two flagged or active cuts:

P, Q ::= . . . | P α̂ † x̂Q | P α̂ † x̂Q

Terms constructed without these flagged cuts are called pure.

A right-activated cut P α̂ † x̂Q corresponds to the substitution of P for x via α, and will attempt
to connect all αs to all xs, whereas the left-activated cut P α̂ † x̂Q is its dual, the substitution of
Q for α via x, and will attempt to connect all xs to all αs.

Definition 2.6 (ACTIVATING) We define two cut-activation rules.

(a† ) : P α̂ † x̂Q → P α̂ † x̂Q if P does not introduce α

( †a) : P α̂ † x̂Q → P α̂ † x̂Q if Q does not introduce x

An activated cut is processed by ‘pushing’ it systematically through the syntactic structure
of the term in the direction indicated by the tilting of the dagger, as described by the propaga-
tion rules below. The pushing of the active cut continues until the level of capsules is reached,
where it is either deactivated or destroyed.

Definition 2.7 (PROPAGATION RULES) Left propagation:

(d† ) : 〈y·α〉 α̂ † x̂P → 〈y·α〉 α̂ † x̂P

(cap† ) : 〈y·β〉 α̂ † x̂P → 〈y·β〉, (β 6= α)

(exp-outs† ) : (ŷQ β̂·α) α̂ † x̂P → (ŷ(Q α̂ † x̂P) β̂·γ) γ̂ † x̂P, (γ fresh)

(exp-ins† ) : (ŷQ β̂·γ) α̂ † x̂P → ŷ(Q α̂ † x̂P) β̂·γ, (γ 6= α)

(imp† ) : (Q β̂ [z] ŷ R) α̂ † x̂P → (Q α̂ † x̂P) β̂ [z] ŷ(R α̂ † x̂P)

(cut† ) : (Q β̂ † ŷR) α̂ † x̂P → (Q α̂ † x̂P) β̂ † ŷ(R α̂ † x̂P)
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Right propagation:

( †d ) : P α̂ † x̂〈x·β〉 → P α̂ † x̂〈x·β〉

( †cap) : P α̂ † x̂〈y·β〉 → 〈y·β〉, (y 6= x)

( †exp) : P α̂ † x̂(ŷQ β̂·γ) → ŷ(P α̂ † x̂Q) β̂·γ

( †imp-outs) : P α̂ † x̂(Q β̂ [x] ŷ R) → P α̂ † ẑ((P α̂ † x̂Q) β̂ [z] ŷ(P α̂ † x̂ R)),

(z fresh)

( †imp-ins) : P α̂ † x̂(Q β̂ [z] ŷ R) → (P α̂ † x̂Q) β̂ [z] ŷ(P α̂ † x̂R), (z 6= x)

( †cut ) : P α̂ † x̂(Q β̂ † ŷR) → (P α̂ † x̂Q) β̂ † ŷ(P α̂ † x̂R)

Whenever an active cut meets a term exhibiting the connector it is trying to communicate
with, a new (inactive) cut, with that connector made fresh, is ‘created’, as in rules (exp-outs† )
and ( †imp-outs), representing an attempt to communicate at this level. This new inactive cut
can reduce via a logical rule, or pushing can continue in the other direction; notice that the
freshly created connector is introduced in (exp-outs† ) and ( †imp-outs).

Right-propagation is reminiscent of substitution of terms for term-variables; left-propagation
P α̂ † x̂Q then is its dual: it expresses the connection of the continuation Q, accessible via x, to
all the ‘calls’ α in P.

Definition 2.8 We write

→ : for the reduction relation generated by the contextual closure of the logical, propagation
and activation rules;

→∗ : for the reflexive, transitive closure of→;

P =X Q : if P and Q have exactly the same normal forms1.

In [2] some basic properties were shown, which essentially show that the calculus is well
behaved.

Lemma 2.9 (GARBAGE COLLECTION AND RENAMING [2])

P α̂ † x̂Q →∗ P (α 6∈ fp(P), P pure)

Q α̂ † x̂ P →∗ P (x 6∈ fs(P), P pure)

P δ̂ † ẑ〈z·α〉 →∗ P[α/δ] (P pure)

〈z·α〉 α̂ † x̂ P →∗ P[z/x] (P pure)

In Lemma 3.5 and 3.6, below, we will show that we can drop the restriction that P has to be
pure.

The reduction relation → is not confluent; this comes in part from the critical pair that
activates a cut P α̂ † x̂Q of pure P and Q in two ways: if P does not contain (so does not
introduce) α and Q does not contain x; then we have both

P α̂ † x̂Q → (a† )

P α̂ † x̂Q →∗ (2.9)

P

and

P α̂ † x̂Q → ( †a)

P α̂ † x̂Q →∗ (2.9)

Q

In [2] two sub-systems of reduction are defined, that correspond to call-by-name (CBN) and
call-by-value (CBV) reduction.

Definition 2.10 i ) Call by value reduction P →V Q is defined as the reduction system ob-
tained by replacing rules ( †a) and (exp-imp) by:

( †a V) : P α̂ † x̂Q → P α̂ † x̂Q, (if P introduces α and

Q does not introduce x)

(exp-imp V) : (ŷP β̂·α) α̂ † x̂(Q γ̂ [x] ẑ R) → Q γ̂ † ŷ(P β̂ † ẑR)

1Since reduction is X is non-confluent, normal forms are not unique.
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ii ) Likewise, we define call by name reduction P→N Q as the reduction system obtained by
replacing rules (a† ) and (exp-imp) by:

(a† N) : P α̂ † x̂Q → P α̂ † x̂Q, (if Q introduces x and

P does not introduce α)

(exp-imp N) : (ŷP β̂·α) α̂ † x̂(Q γ̂ [x] ẑ R) → (Q γ̂ † ŷP) β̂ † ẑR

If a cut can be activated in two ways, the CBV strategy only allows to activate it via (a† ); the
CBN strategy can only activate such a cut via ( †a).

This way, we obtain two notions of reduction that are clearly confluent: all rules are left-
linear and non-overlapping.

2.2 Typing for X

The notion of type assignment on X corresponds to the basic implicative system G3 for Clas-
sical Logic.

Definition 2.11 (TYPES AND CONTEXTS [2]) i ) The set of types2, ranged over by A, B, is de-
fined over a set of type-variables ranged over by ϕ, by the grammar:

A, B ::= ϕ | A→B

ii ) A context of sockets Γ is a mapping from sockets to types, denoted as a finite set of statements
x:A, such that the subjects of the statements (the sockets) are distinct. We write Γ, x:A for
the context Γ∪{x:A}.

Contexts of plugs ∆ and the notation α:A,∆ are defined similarly.

Definition 2.12 (TYPING FOR X [2]) i ) Type judgements are expressed via the ternary relation
P ··· Γ ⊢ ∆, where Γ is a context of sockets and ∆ is a context of plugs, and P is a term. We
say that P is the witness of this judgement.

ii ) Type assignment for X is defined by the following sequent rules:

(ax) : 〈x·α〉 ··· Γ, x:A ⊢ α:A,∆ (cut) :
P ··· Γ ⊢ α:A,∆ Q ··· Γ, x:A ⊢ ∆

P α̂ † x̂ Q ··· Γ ⊢ ∆

(⇒R) :
P ··· Γ, x:A ⊢ α:B,∆

x̂ P α̂·β ··· Γ ⊢ β:A→B,∆
(⇒L) :

P ··· Γ ⊢ α:A,∆ Q ··· Γ, x:B ⊢ ∆

P α̂ [y] x̂ Q ··· Γ,y:A→B ⊢ ∆

We write P ··· Γ ⊢ ∆ if there exists a derivation built out of these rules that has this
judgement in the bottom line.

Notice that, by the special meaning we associate to the comma in contexts, contraction is
implicit. Also, since Γ and ∆ are non-specific, so is weakening.

In P ··· Γ ⊢ ∆, the term P acts as a witness of the judgement; Γ and ∆ carry the types of the
free connectors in P, as unordered sets.

The following result was shown in [2]:

Theorem 2.13 (WITNESS REDUCTION [2]) If P ··· Γ ⊢ ∆, and P→ Q, then Q ··· Γ ⊢ ∆.

2The types considered in this paper are normally known as Curry types.
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2.3 X as a reduction machine for the λ-calculus

In [2] the relation between X and many other calculi is studied; as an illustration, in this
section, we will briefly highlight the relation between the λx and X . We assume the reader to
be familiar with the λ-calculus [5].

Definition 2.14 (λx [10]) The set of λx-terms is defined by the grammar:

M, N ::= x | λx.M | MN | M〈x :=N〉

A term of the form M〈x :=N〉 is called a closure. A term which contains no closure is called a
pure term.

The set of free and bound variables in a term M, fv(M) and bv(M), are defined by:

fv(x) = {x}

fv(λx.M) = fv(M) \ {x}

fv(MN) = fv(M) ∪ fv(N)

fv(M〈x :=N〉) = fv(M) \ {x} ∪ fv(N)

bv(x) = ∅

bv(λx.M) = bv(M) ∪ {x}

bv(MN) = bv(M) ∪ bv(N)

bv(M〈x :=N〉) = bv(M) ∪ bv(N) ∪ {x}

We accept Barendregt’s convention on free and bound variables, so assume that no variable
appears both free and bound in a term.

Definition 2.15 (REDUCTION IN λx [10]) Reduction in λx is defined through the rules:

(B) : (λx.M)P → M〈x :=P〉

(VarI) : x〈x :=P〉 → P

(VarK) : y〈x :=P〉 → y, (y 6= x)

(App) : (MN)〈x :=P〉 → M〈x :=P〉N〈x :=P〉

(Abs) : (λy.M)〈x :=P〉 → λy.M〈x :=P〉

The λxgc calculus is defined by adding a rule for garbage collection. We point out that this
rule requires the use of a more complicated side-condition.

(gc) M〈x :=P〉 → M, (x 6∈ fv(M))

In fact, the rules (VarK) and (gc) overlap.
To illustrate the expressive power of X , we now define the direct encoding of λx-terms into
X , inspired by Gentzen’s encoding of natural deduction into the sequent calculus [14].

Definition 2.16 (INTERPRETING THE λ-CALCULUS [2]) The interpretation of λ-terms into terms
of X in the context α, M α

G, is defined by:

x α
G = 〈x·α〉

λx.M α
G = x̂ M β

G
β̂·α, (β fresh)

MN α
G = M γ

G
γ̂ † x̂( N β

G
β̂ [x] ŷ〈y·α〉), (x,y, β,γ fresh)

M〈x :=N〉] α
G = N γ

G
γ̂ † x̂ M α

G, (γ fresh)

For this encoding, [2] shows:

Theorem 2.17 ([2]) If Γ ⊢λ M : A, then M α
G

··· Γ ⊢ α:A.

In [2], also the following relation is shown between reduction in λx and X :

Theorem 2.18 ([2]) i ) If M→x N, then M α
G→∗ N α

G
.
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ii ) If M→β N, then M α
G→∗ N α

G.

Alternatively, we can consider Prawitz’ encoding of natural deduction into classical logic
[21, 23]. This encoding preserves normal forms when interpreting a particular test case (i.e. if
a λ-term is in normal form, then the interpretation in the X -calculus is also in normal form),
and will also allow us to indirectly obtain a cost of using the X -calculus to reduce arbitrary
λ-terms in Section 6.

Definition 2.19 (PRAWITZ’ INTERPRETATION) There are three parts to the interpretation. We
use the symbol ‘:’ to represent the list concatenation operator and ‘[ ]’ for the empty list.
In addition, we use the symbols L to represent lists of λ-terms, and the symbols M, N, P to
represent arbitrary λ-terms.

x α
P = 〈x·α〉

λx.M α
P = x̂ M β

P
β̂·α

MN α
P = MN, [ ] α

P

M〈x :=N〉 α
P = N γ

P
γ̂ † x̂ N α

P

xN, L α
P = N β

P
β̂ [x] ŷ L α

P
y

(λx.M)N, L α
P = λx.M β

P
β̂ † ŷ( N γ

P
γ̂ [y] ẑ L α

P
z)

MNP, L α
P = MN, P : L α

P

[ ] α
P
x = 〈x·α〉

M : L α
P
x = M β

P
β̂ [x] ŷ L α

P
y

For this encoding, we can show the expected results.

Theorem 2.20 i ) If M→x N, then M α
P→∗ N α

P
.

ii ) If M→∗β N, then M α
P→∗ N α

P
.

Proof: By induction on the definition of one-step explicit reduction, of which we show the
more interesting cases.

(λx.M)N→β M〈x :=N〉 : (λx.M)N α
P

=∆

(λx.M)N, [ ] α
P

=∆

λx.M β
P

β̂ † ŷ( N γ
P

γ̂ [y] ẑ [ ] α
P
z) =∆

(x̂ M δ
P
δ̂·β) β̂ † ŷ( N γ

P
γ̂ [y] ẑ〈z·α〉) → (exp-imp)

N γ
P

γ̂ † x̂( M δ
P
δ̂ † ẑ〈z·α〉) → (2.9)

N γ
P

γ̂ † x̂ M α
P → ( †a)

N γ
P

γ̂ † x̂ M α
P

=∆ M〈x :=N〉 α
P

x〈x :=P〉 → P : x〈x :=P〉 α
P
=∆ P γ

P
γ̂ † x̂〈x·α〉 →∗ ( †d ,2.9) P α

P

y〈x :=P〉 → y, if y 6= x : y〈x :=P〉 α
P
=∆ P γ

P
γ̂ † x̂〈y·α〉 →∗ (2.9) 〈y·α〉 =∆ y α

P

(MN)〈x :=P〉 → M〈x :=P〉N〈x :=P〉 : (MN)〈x :=P〉 α
P
=∆

P γ
P

γ̂ † x̂ MN α
P
=∆ P γ

P
γ̂ † x̂ MN, [] α

P

We now distinguish the cases:

M = x : P γ
P

γ̂ † x̂ xN, [] α
P

=∆

P γ
P

γ̂ † x̂( N β
P

β̂ [x] ẑ〈z·α〉) → ( †imp-outs), (2.9)

P γ
P

γ̂ † v̂(( P γ
P

γ̂ † x̂ N β
P) β̂ [v] ẑ〈z·α〉) =∆

P γ
P

γ̂ † v̂ vN〈x :=P, [ ]〉 α
P

=∆

vN 〈x :=P〉〈v :=P〉, [ ] α
P

=∆ xN〈x :=P〉, [ ] α
P

9



M = y, y 6= x : P γ
P

γ̂ † x̂ yN, [] α
P

=∆

P γ
P

γ̂ † x̂( N β
P

β̂ [y] ẑ〈z·α〉) → ( †imp-ins), (2.9)

( P γ
P

γ̂ † x̂ N β
P) β̂ [y] ẑ〈z·α〉 =∆

N〈x :=P〉 β
P

β̂ [y] ẑ〈z·α〉 =∆ yN 〈x :=P〉, [ ] α
P

The other cases follow by induction.
The second part follows from the fact that→x implements→β.

3 Optimising reduction

We should point out that, using the rules above, not all typeable terms are strongly normal-
isable. For example, to allow for the propagation of cuts over cuts immediately leads to non-
termination, since we can always choose the outermost cut as the one to contract. Although
the notion of cut-elimination as proposed here has no rule that would allow this behaviour, it
can be mimicked, which can lead to non-termination for typeable terms, as already observed
by Urban [24].

Take P α̂ † x̂(〈x·β〉 β̂ † ẑQ), such that x 6∈ fs(Q), β 6∈ fp(P), and P, Q pure, then:

P α̂ † x̂(〈x·β〉 β̂ † ẑQ) →∗ ( †a), ( †cut)

(P α̂ † x̂〈x·β〉) β̂ † ẑ(P α̂ † x̂Q) →∗ ( †d ), (2.9)

(P α̂ † x̂〈x·β〉) β̂ † ẑQ →∗ (a† ), (cut† )

(P β̂ † ẑQ) α̂ † x̂(〈x·β〉 β̂ † ẑQ) →∗ (d † ), (2.9)

P α̂ † x̂(〈x·β〉 β̂ † ẑQ)

(example communicated by Alexander J. Summers)
Urban gives a solution for this unwanted reduction behaviour, and shows it sufficient to

obtain strong-normalisation of typeable terms. He adds the rules

(P α̂ † x̂〈x·β〉) β̂ † ŷQ → (P β̂ † ŷQ) α̂ † ŷQ

P α̂ † x̂(〈x·β〉 β̂ † ŷQ) → P α̂ † ŷ(P α̂ † x̂Q)

and gives them priority over the rules (cut† ) and ( †cut) by changing those to

(P α̂ † x̂Q) β̂ † ŷR → (P β̂ † ŷR) α̂ † x̂(Q β̂ † ûR), Q 6= 〈x·β〉

P α̂ † x̂(Q β̂ † ŷR) → (P α̂ † x̂Q) β̂ † ŷ(P α̂ † x̂ R), Q 6= 〈x·β〉

Notice that the side-condition Q 6= 〈x·β〉 is quite different in character from the rules for X
we presented above, in that now syntactic equality between terms is tested, rather than just a
syntactic property of a term.

We can remedy this by avoiding the deactivation of cuts altogether.

Definition 3.1 We can remove the rules (d† ) and ( †d ), and add the following rules:

(flip †) : 〈z·α〉 α̂ † x̂P → 〈z·α〉 α̂ † x̂P, (P does not introduce x)

(† imp) : 〈y·α〉 α̂ † x̂(P δ̂ [x] ẑQ) → P δ̂ [y] ẑ Q, (x introduced)

(† cap) : 〈z·α〉 α̂ † x̂〈x·β〉 → 〈z·β〉

(† flip) : P α̂ † x̂〈x·β〉 → P α̂ † x̂〈x·β〉, (P does not introduce α)

(exp †) : (ŷP δ̂·α) α̂ † x̂〈x·γ〉 → ŷP δ̂·γ, (α introduced)

(cap †) : 〈x·α〉 α̂ † ŷ〈y·β〉 → 〈x·β〉

10



We do not need to check if a term matches another, nor need to give priority to rules.
This new set of rules does not change the end result of reduction:

Theorem 3.2 Let→o denote the notion of reduction obtained by the changes as suggested above, and
assume P and Q are pure.

i ) If P→∗o Q, then P→∗X Q.

ii ) If P→∗X Q and Q is in normal form, then P→∗o Q.

Proof: Easy.

In Section 6, we will present an evaluation strategy that will choose to run the inactive cut
that is created by the deactivation rule immediately after its creation, thus side-stepping the
problem.

The set of reduction rules can be optimised further than just those expressed in Lemma 2.9.
For example, the applicability of the garbage collection rules is limited, since they both in-
volve pure terms. However, we are able to generalise these results to include terms with
active cuts.

We aim to add more generic garbage collection rules; in fact, we will show their admissi-
bility below (Theorem 3.5), for which we first need to show a number of results.

Lemma 3.3 i ) For all P, Q pure, there exists an R pure such that P α̂ † x̂Q→∗ R.

ii ) For all P, Q pure, there exists an R pure such that P α̂ † x̂Q→∗ R.

Proof: i ) By induction on structure of terms. We highlight one case:

P = ŷP′ β̂·α : (ŷP′ β̂·α) α̂ † x̂Q →

(ŷ(P′ α̂ † x̂Q) β̂·α) α̂ † x̂Q →∗ (IH, R pure)

(ŷR β̂·α) α̂ † x̂Q

Notice that this last term is pure.

ii ) By induction on structure of terms. We highlight again one case:

Q = Q1 β̂ [x] ŷQ2 : P α̂ † x̂(Q1 β̂ [x] ŷQ2) → (Q1, Q2 pure)

P α̂ † v̂((P α̂ † x̂Q1) β̂ [v] ŷ(P α̂ † x̂Q2)) →∗ (IH, R1, R2 pure)

P α̂ † v̂(R1 β̂ [v] ŷR2)

Notice again that this last term is pure.

We can now use this lemma to give a stronger result.

Lemma 3.4 For all X -terms P, there exists a reduction path P→∗ P′, with P′ pure.

Proof: For each active cut in a term, we define its depth d as the distance (calculated in nodes)
from the root of the tree that represents the term. For any particular depth of the term, we
define its group size, g, as the number of active cuts at that depth of the tree. We define the
class, c, of a term as the pair of the depth of the innermost cut and its group size: c = 〈d, g〉.
We finish the proof by lexicographic induction on the class of a term.

If P is pure, then P≡ P′. Otherwise: take the set (of size g) of innermost active cuts at depth
d. There are two cases to consider:

g > 1 : take any term T in this set, T = R α̂ † x̂Q (or T = R α̂ † x̂Q). Then R and Q are pure
(being involved in an innermost flagged cut). By Lemma 3.3, we know T →∗ S (pure).
This eliminates the active cut from the proof, so the group-size (g) of the term reduces by
one, and the class decreases.

g = 1 : the active cut is eliminated from the term by Lemma 3.3. Since there are no more
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active cuts at this level, the depth of the innermost cut decreases (to the next lowest), and
the class reduces.

We are now ready to justify some more general garbage collection rules, that essentially
equates the nets P α̂ † x̂Q and P, provided α 6∈ fp(P).

Lemma 3.5 (GENERALISED GARBAGE COLLECTION)

i ) If α 6∈ fp(P), then P α̂ † x̂Q =X P.

ii ) If x 6∈ fs(Q), then P α̂ † x̂Q =X Q .

Proof: i ) For the second part (nf(P)⊆ nf (P α̂ † x̂Q)), take T∈nf P, reduce P α̂ † x̂Q to T α̂ † x̂Q,
remark that T is pure, and apply Lemma 2.9.

For the first, we show that if P α̂ † x̂Q→∗ T, then P→∗ T, where T is a normal form. We
achieve this by showing that we can run a reduction on P, mimicking a reduction taking
place on P α̂ † x̂Q by essentially ignoring all reductions inside Q; the only problem might
be when the presence of [ ] α̂ † x̂Q disturbs the reduction behaviour.

The proof completes by co-induction (we only show some interesting cases):

• P = (P1 β̂ [v] ŷP2) γ̂ † ẑP3. We can run ((P1 β̂ [v] ŷP2) γ̂ † ẑP3) α̂ † x̂Q in a number of
ways. Any reduction inside P1, P2 or P3 is dealt with by induction, so we can focus on the
cuts involved. Assume we apply rule (cut† ) to propagate the outermost cut and obtain

((P1 β̂ [v] ŷP2) α̂ † x̂Q) γ̂ † ẑ(P3 α̂ † x̂Q)

Now the top-most (inactive) cut can be activated in two directions; let’s go left:

((P1 β̂ [v] ŷP2) α̂ † x̂Q) γ̂ † ẑ(P3 α̂ † x̂Q)

This (outermost) activated cut cannot propagate, since the cut directly underneath it is
active; propagating that first gives

((P1 α̂ † x̂Q) β̂ [v] ŷ(P2 α̂ † x̂Q)) γ̂ † ẑ(P3 α̂ † x̂Q)

Now the top-cut can propagate, to give

((P1 α̂ † x̂Q) γ̂ † ẑ(P3 α̂ † x̂Q)) β̂ [v] ŷ((P2 α̂ † x̂Q) γ̂ † ẑ(P3 α̂ † x̂Q))

By induction we can mimic Pi α̂ † x̂Q by Pi, for i∈ {1,2,3}. We can simulate this particular
reduction on P as follows:

(P1 β̂ [v] ŷP2) γ̂ † ẑP3 →
∗ (a† ), (imp† ) (P1 γ̂ † ẑP3) β̂ [v] ŷ(P2 γ̂† ẑP3)

• P = (ŷP1 β̂·γ) γ̂ † ẑP2. As above, a reduction inside P1 or P2 creates no problems, so
we can focus on the cuts involved. When we propagate the top cut, we get

((ŷP1 β̂·γ) α̂ † x̂Q) γ̂ † ẑ(P2 α̂ † x̂Q)

If we now left-activate the top cut, similar to above, we can only propagate the innermost
cut, and obtain:

(ŷ(P1 α̂ † x̂Q) β̂·γ) γ̂† ẑ(P2 α̂ † x̂Q)

Now applying rule (exp-outs† ) will give:

(ŷ((P1 α̂ † x̂Q) γ̂† ẑ(P2 α̂ † x̂Q)) β̂·δ) δ̂ † ẑ(P2 α̂ † x̂Q)
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Now, if γ is introduced in ŷP1 β̂·γ, then γ does not appear free inside P1 nor in Q, and,
by induction, we can assume that (P1 α̂ † x̂Q) γ̂ † ẑ(P2 α̂ † x̂Q) can be simulated by P1, and
that P2 α̂ † x̂Q can be simulated by P2. We can mimic this reduction with a reduction path
of length zero, performing an α-conversion:

(ŷP1 β̂·γ) γ̂ † ẑP2→ (ŷP1 β̂·δ) δ̂ † ẑP2

If γ is not introduced, we still can assume that Pi α̂ † x̂Q can be simulated by Pi, for i ∈
{1,2}, and we can simulate this reduction on P via a series of steps:

(ŷP1 β̂·γ) γ̂ † ẑP2→ (ŷP1 β̂·γ) γ̂ † ẑP2→ (ŷ(P1 γ̂ † ẑP2) β̂·δ) δ̂ † ẑP2

• All other cases are shown in a similar fashion.

So every reduction to a normal form, starting from P α̂ † x̂Q, can be mimicked by reduc-
ing P, so every normal form of P α̂ † x̂Q, can be reached from P.

ii ) Similar.

This result now helps to justify more general deactivation rules.

Theorem 3.6 (GENERALISED DEACTIVATION) i ) P α̂ † x̂Q =X P α̂ † x̂Q , if P introduces α.

ii ) P α̂ † x̂Q =X P α̂ † x̂Q , if Q introduces x.

Proof: i ) If P introduces α, we have two cases:

P = 〈x·α〉 : By rule (d † ).

P = x̂ P′ β̂·α : Then α 6∈ fp(P), and

(x̂P′ β̂·α) α̂ † x̂Q → (exp-outs† )

(x̂(P′ α̂ † x̂Q) β̂·γ) γ̂ † x̂Q =X (3.5)

(x̂P′ β̂·γ) γ̂ † x̂Q =α (x̂P′ β̂·α) α̂ † x̂Q

ii ) If Q introduces x, we have two cases:

Q = 〈x·β〉 : By rule ( †d ).

Q = Q1 β̂ [x] ŷQ2 : Then x 6∈ fs(Q1, Q2), and

P′ α̂ † x̂(Q1 β̂ [x] ŷQ2) → ( †imp-outs)

P′ α̂ † v̂((P′ α̂ † x̂Q1) β̂ [v] ŷ(P′ α̂ † x̂Q2)) =X (3.5)

P′ α̂ † v̂(Q1 β̂ [v] ŷQ2) =α P′ α̂ † x̂(Q1 β̂ [x] ŷQ2)

Using coinduction, similar to the results above, we can also show:

Lemma 3.7 (GENERALISED RENAMING) i ) P α̂ † x̂〈x·β〉 =X P[β/α] .

ii ) 〈y·α〉 α̂ † x̂P =X P[y/x] .

These results give that we can safely extend the notion of reduction on terms by adding:

(d† ) : P α̂ † x̂Q → P α̂ † x̂Q (P introduces α)

(d† ) : P α̂ † x̂Q → P α̂ † x̂Q (Q introduces x)

(† gc) : P α̂ † x̂Q → P (α 6∈ fp(P))

(gc †) : P α̂ † x̂Q → Q (x 6∈ fs(Q))

thereby replacing the original deactivation rules, and (cap† ) and ( †cap).
Adding these more generic reduction rules gave another significant improvement on the

efficiency of reduction, on which we report in Section 6.
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4 A Term Graph Rewriting System for X

As mentioned in the introduction, X corresponds to sequent calculus rather than natural
deduction, leading to a reduction mechanism that is quite different from the applicative style
of the λ-calculus. In fact, it is not specified through (implicit) substitution, but as a conditional
term rewriting system; the non-standard aspect with respect to rewriting is a notion of binding.

The choice to use term graph rewriting for the implementation of an interpreter of X was
therefore the natural one: it provides the best platform for an efficient, elegant, and transpar-
ent implementation of a term rewriting system. The technique applied is the conventional one
of [22, 6, 7], where terms and rewrite rules are lifted to graphs, and we use the standard match,
build, link, re-direct, and garbage collection approach. By the process of lifting, the connectors
appear only once in the generated graph, which immediately introduces sharing. Rewrite
rules also become graphs with two sub-graphs that each possess a root, and are joined via
shared leaves.

Term graphs are defined by:

Definition 4.1 (TERM GRAPHS) Using the signature { Cap, Exp, Imp, Cut, CutL, CutR}, an infi-
nite set of graph variables ranged over by P, Q, R, . . ., an infinite set of labels ranged over by
k, l,m, n, . . . and the set of connector variables, ranged over by x,y,z, . . . and α, β,γ, . . ., we define
(ordered) graphs by the following grammar:

G ::= k : P | k : Cap (l:x,m:α) | k : Exp(l:x, G,m:α,n:β) |

k : Imp(G1, l:α,m:y,n:x, G2) | k : Cut (G1, l:α,m:x, G2) |

k : CutL (G1, l:α,m:x, G2) | k : CutR(G1, l:α,m:x, G2)

which in graphs get represented by:

Cap

x α

Exp β

x α
G

Imp

G1 G2

α x
y

Cut
G1 G2

α x

CutL
G1 G2

α x

CutR
G1 G2

α x

Since the graphs for left and right-activated cuts are much like unactivated cuts, we will only
treat them separately when necessary.

In the second graph, for example, the connectors x, α and β could appear in G; then edges
would point out from G to these connectors. We now give a formal definition of interpreting
terms in X as graphs (using the notation of [9]).

Definition 4.2 (GRAPH INTERPRETATION) i ) For each term, its graph interpretation, · G, expres-
sed as a pair consisting of a label for the root of the graph and its edges and sub-graphs is
inductively defined by in Figure 1.

ii ) We define the set of initial X -graphs as the image of X terms under · G.

Notice that, by α-conversion, we can always assume that all bound connectors in a term
have different names, and therefore will keep bound connectors separate when building the
graph interpretation.
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x G = 〈x | ∅〉

α G = 〈α | ∅〉

〈x·α〉 G = 〈r | {r : Cap(r1,r2)}∪G1∪G2〉,

where 〈r1 | G1〉 = x G,

〈r2 | G2〉 = α G

ŷ P α̂·β G = 〈r | {r : Exp(r1,r2,r3,r4)}∪G1∪G2∪G3∪G4〉

where 〈r1 | G1〉 = β G

〈r2 | G2〉 = y G

〈r3 | G3〉 = P G

〈r4 | G4〉 = α G

P α̂ [y] x̂ Q G = 〈r | {r : Imp(r1,r2,r3,r4,r5)}

∪G1∪G2∪G3∪G4∪G5〉

where 〈r1 | G1〉 = P G

〈r2 | G2〉 = α G

〈r3 | G3〉 = y G

〈r4 | G4〉 = x G

〈r5 | G5〉 = Q G

P α̂ † x̂ Q G = 〈r | {r : Cut(r1,r2,r3,r4)}∪G1∪G2∪G3∪G4〉

where 〈r1 | G1〉 = P G

〈r2 | G2〉 = α G

〈r3 | G3〉 = x G

〈r4 | G4〉 = Q G

Figure 1: Term graph interpretation of terms

Example 4.1 〈x·α〉 α̂ † ŷ(〈x·β〉 β̂ [y] ẑ〈z·γ〉) G becomes

Cut
Cap y Imp

x α Cap Cap
β z γ

Definition 4.3 (X -GRAPH REWRITING) i ) The lifting of the reduction rules to term graph rewrit-
ing rules is expressed by first extending the interpretation of terms to graphs with the case
for the (term) variables that occur in the rewrite rules:

P G = 〈P | ∅〉

and then to define:
left → right G = 〈rl | Gl∪Gr〉

where 〈rl | Gl〉 = left G

〈rr | Gr〉 = right G

Following [6, 7], these rules induce a notion G→G G′ of term graph rewriting.

ii ) We define the set of X -graphs by closure under rewriting of initial X -graphs.

Notice that since x G = 〈x | ∅〉, and we can assume this to be unique, the left and right-
hand side graphs for a rule are joined on the connectors.

Example 4.2 We give some term graph rules3:

3Notice that it is perhaps more common to use ⊥ for the nodes that can be matched against a graph or a
connector node; we write the original names for readability and ease of definition of the interpretation function.
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• (exp) : (ŷP β̂·α) α̂ † x̂〈x·γ〉 → ŷP β̂·γ

rl rr

Cut Exp
Exp α Cap

y β x γ
P

• (exp-imp) : (ŷP β̂·α) α̂ † x̂(Q γ̂ [x] ẑ R) → Q γ̂ † ŷ(P β̂ † ẑR)

rl rr

Cut Cut
Exp α x Imp Cut

y β Q R
P γ z

• (exp-outs† ) : (ŷQ β̂·α) α̂ † x̂P → (ŷ(Q α̂ † x̂P) β̂·γ) γ̂ † x̂P, (γ fresh)

rl rr

CutL Cut
Exp α x Q Exp γ

y β
P CutL

• ( †imp-outs) : P α̂ † x̂(Q β̂ [x] ŷ R) → P α̂ † ẑ((P α̂ † x̂Q) β̂ [z] ŷ(P α̂ † x̂R)),
with z fresh (with apologies for the spaghetti):

rl rr

CutR Cut
P Imp Imp

α x Q R z CutR CutR
β y

As can be seen, the amount of nodes added to the graph is small in comparison to the
complexity of the graph generated by the rewriting; notice, for example, that an application
of the third rule (exp-outs† ) would only add the nodes containing Cut, Exp, γ, and CutL
(that are accessible from the right-hand root rr). Also, all edges coming into the node in the
graph that is matched against the left-hand root rl would be redirected into the new node
Cut. The nodes containing CutL and Exp accessible from the left-hand root would become

potential garbage.

Example 4.3 Take the reduction:

(ŷ〈y·β〉 β̂·γ) γ̂ † x̂(〈x·δ〉 δ̂ [x] v̂〈v·α〉) →∗ ( †a), ( †imp-outs), ( †d ), (exp)

(ŷ〈y·β〉 β̂·γ) γ̂ † ẑ((ŷ〈y·β〉 β̂·δ) δ̂ [z] v̂〈v·α〉) →∗ (exp-imp)

(ŷ〈y·β〉 β̂·σ) σ̂ † ŷ(〈y·β〉 β̂ † v̂〈v·α〉) →∗ (cap)

(ŷ〈y·β〉 β̂·σ) σ̂ † ŷ〈y·α〉 →∗ (exp)

ŷ〈y·β〉 β̂·α
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1)

Cut
Exp Imp

γ Cap Cap

Cap x δ v α

y β 2)

Cut
Exp Imp

γ z Exp Cap

δ v α
Cap

y β

3)

Cut
Exp Cut

δ Cap

Cap z α

x β
4)

Cut
Exp Cap

δ x α
Cap

β

5)

Exp
α

Cap
x γ

Figure 2: Graphs for Example 4.3

Cut

Exp Imp

α z CutR CutR
Cap Cap Cap

v γ x β y δ

Cut

Exp Imp

α z CutR CutR
Cap Exp Cap β y Exp Cap

v γ x δ

Cap Cap
v γ v γ

Figure 3: Unravelling a graph

The graph interpretation of this first term gives the first graph in Figure 2; reducing that graph
using the corresponding term-graph rewriting rules generates the corresponding consecutive
graphs.

In addition to the interpretation of terms to graphs, we would like an operation that trans-
forms an X -graph with sharing into one whose structure more closely resembles an X -term.
This is achieved by ‘unravelling’ the graph; copying out the shared nodes as far down as the
connectors (which only appear once in a graph).

Definition 4.4 (CF [16]) Unrv G, the unravelling of a X -graph G is obtained by traversing the
graph top-down (notice that we have no cyclic structures), and copying, for all shared graphs,
all nodes in that graph that are not free connectors.

Notice that both the set of initial X -graphs and the image of the set ofX -graphs under Unrv
are graphs containing sharing only at the level of connectors. This setup gives us a method of
comparing an X -term P with an X -graph G, by comparing P G with Unrv G. This will be
useful for formulating results later in the paper.
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Example 4.4 Take G to be the first graph in Figure 3, then Unrv G is the second. Notice that
the bound connectors v and γ within the shared graph

Exp(1:v, Cap(1,2), 2:γ,α)

are copied out, but α is not, and that the in-degree of α increases from four to six.

We now have the following results.

Lemma 4.5 If G1 →G G2, then there exists G3 such that Unrv G1 →G G3, as well as Unrv G2 =
Unrv G3.

Proof: In each step of G1 →G G2 a cut K is contracted. Using colouring, we can build a re-
duction sequence Unrv G1 →G G3, for some G3, by contracting, for each step in G1 →G G2,
always only all copies of K (using the same rule repeatedly). Notice that this reduction might
have introduced sharing, and that G2 and G3 differ only in that G3 contains less sharing than
G2, i.e. G3 is a partially unravelled version of G2. Since no other manipulation has been per-
formed, we get Unrv G2 = Unrv G3.

We also have the following adequacy result:

Theorem 4.6 (ADEQUACY) Let G1, G2 be X -graphs, and P1, P2 be X -terms such that Unrv Gi =
Pi G, for i = 1,2. If G1→G G2, then P1→ P2. Moreover, if G2 is in normal form, then so is P2.

Proof: By Lemma 4.5, we get that there exists a G3 such that P1 G→G G3, as well as P2 G =
Unrv G3. This reduction induces, similar to Lemma 4.5, a reduction from P1 to P2. If G2

contains no cuts, then neither does P2 G, nor P2.

We can now prove the following result:

Theorem 4.7 If P → Q in one step, then there exists a X -graph G such that: P G →G G, and
Unrv G = Q G.

Proof: Easy: in P G, redexes are not shared; the only sharing in G is introduced by the re-
duction, which gets erased by unravelling.

Notice that, by the non-confluent character for X , we cannot prove a similar result for
many-steps reduction paths, as illustrated by the following example.

Example 4.5 Let P and Q be such that α 6∈ fp(P) and x 6∈ fp(Q), so P← P α̂ † x̂Q→ Q. Now
(assume z 6= v):

(P α̂ † x̂Q) γ̂ † ẑ(〈z·β〉 β̂ [v] ŵ(ŷ〈z·δ〉 δ̂·ǫ)) → ( †imp-ins), ( †exp), ( †d )(2×)

((P α̂ † x̂Q) γ̂ † ẑ〈z·β〉) β̂ [v] ŵ(ŷ((P α̂ † x̂Q) γ̂ † ẑ〈z·δ〉) δ̂·ǫ)

→∗ (a† ), (2.9), ( †a), (2.9)

(P γ̂ † ẑ〈z·β〉) β̂ [v] ŵ(ŷ(Q γ̂ † ẑ〈z·δ〉) δ̂·ǫ)

Notice that we have explicitly used the non-confluence of the cut P α̂ † x̂Q, and reduced it
once to P, and once to Q.

We cannot simulate this in the setting of Term Graph Rewriting. Instead, we get the follow-
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ing graph for the first term

CutR
Cut γ Imp

P Q Cap Exp ǫ
α x z β w y

v Cap
δ

which, by ( †imp-ins), ( †exp), and ( †d )(2×) reduces to the graph

Imp

Cut v w Exp ǫ

Cut γ Cap y Cut
P Q z β Cap

α x δ

Of course, although shared, the cut Cut(P,α, x, Q) can be reduced only once, resulting in
either P or Q, implying that the above result cannot be achieved.

This is not unexpected, however, since all implementations of reduction systems will use a
reduction strategy, preferring certain redexes over others, and thereby excluding other reduc-
tion paths; unfortunately, in a non-confluent setting, this means that certain reachable normal
forms are no longer achievable.

5 Dealing with α-conversion in X

In the rest of this paper we will discuss a number of solutions to the problem of capture avoid-
ance / α-conversion in the context of X . Capture avoidance is a well-known implementation
issue; the most familiar context in which this problem occurs is perhaps the λ-calculus, where,
when reducing a term like (λxy.xy)(λxy.xy), α-conversion is essential. Without it, one would
get

(λxy.xy)(λxy.xy) → (λy.xy)[λxy.xy/x]

= λy.(λxy.xy)y

→ λy.(λy.xy)[y/x] → λyy.yy

The conflict is caused by the fact that during the second reduction step, the free occurrence of
y in (λxy.xy)y is brought under the binding λy, i.e. is captured.

A particular problem in dealing with α-conversion here is that the only reduction rule is
(λx.M)N→M[N/x], where the substitution is implicit, and supposed to be performed imme-
diately. For example, when reducing

(λxy.xy)(λxy.xy)→ λy.(λxy.xy)y,

the latter term is identical to λy.xy[(λxy.xy)/x]. The actual performance of the substitution,
which brings the right-most binder under the left-most is not part of the reduction system
itself, but specified in the auxiliary definition of substitution.

A way to avoid this problem is, normally, to assume Barendregt’s convention. In the reduc-
tion above, the first term satisfies this criterion, but the second does not: y is free as well as
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bound in (λxy.xy)y. Since this is not true for (λy.xy)[λxy.xy/x], α-conversion must take place
during the execution of substitution, and replace the bound name; hence, the result should be:

(λxy.xy)(λxy.xy) → (λy.xy)[λxy.xy/x]

= λy.(λxz.xz)y

→ λy.(λz.xz)[y/x] = λyz.yz

In the pure λ-calculus, it is impossible to deal with α-conversion since capturing cannot
be expressed. The historical definition contained a notion of α-reduction in the language
itself, but now normally the problem is avoided altogether by considering terms ‘modulo α-
conversion’, and Barendregt’s convention is cited, stating that bound and free names should
be kept distinct by, when necessary, performing a silent α-conversion, thereby in fact leaving
it to the implementer to treat.

For λx the situation is slightly better, in that now substitution is an explicit part of term
manipulation, so the creation of a naming conflict while reducing can be expressed. In fact,
variable capturing can be avoided radically by changing the reduction rule

(λy.M)〈x :=P〉 → λy.(M〈x :=P〉)

into
(λy.M)〈x :=P〉 → λz.(M〈y := z〉〈x :=P〉), (z fresh)

thereby preventing a capture on a possibly bound y in P. This is expensive though, as it is
performed on all substitutions on abstractions, and does not actually detect the capture, but
just prevents it.

If one could use side-conditions on the rules as in λxgc we could express that a free occur-
rence in a term will be captured, and define:

(λy.M)〈x :=P〉 → λz.(M〈y := z〉〈x :=P〉), (z fresh & y ∈ fs(P))

(λy.M)〈x :=P〉 → λz.(M〈x :=P〉), (y 6∈ fs(P))

This observation lies at the basis of how we deal with α-conversion in Section 5.3.
Because it is an implementation issue, and we aim to have an efficient implementation of
X , we deal with the problem more formally. First we show that it is an issue to begin with.

Example 5.1 Take the term4

(ŷ〈y·µ〉 µ̂·γ) γ̂ † x̂(〈x·δ〉 δ̂ [x] ŵ〈w·α〉)

which is also used in Example 4.3. Reducing this term differently, we get:

(ŷ〈y·µ〉 µ̂·γ) γ̂ † x̂(〈x·δ〉 δ̂ [x] ŵ〈w·α〉) →∗ ( †a), ( †imp-outs)

(ŷ〈y·µ〉 µ̂·γ) γ̂ † ẑ(((ŷ〈y·µ〉 µ̂·γ) γ̂ † x̂〈y·µ〉) δ̂ [z] ŵ((ŷ〈y·µ〉 µ̂·γ) γ̂ † x̂〈w·α〉))

→∗ ( †d ), (exp), ( †cap)

(ŷ〈y·µ〉 µ̂·γ) γ̂ † ẑ((ŷ〈y·µ〉 µ̂·δ) δ̂ [z] ŵ〈w·α〉) → (exp-imp)

(ŷ〈y·µ〉 µ̂·δ) δ̂ † ŷ(〈y·µ〉 µ̂ † ŵ〈w·α〉) →∗ ( †a), ( †cut), ( †d ), ( †cap)

((ŷ〈y·µ〉 µ̂·δ) δ̂ † ŷ〈y·µ〉) µ̂ † ŵ〈w·α〉 → (exp)

(ŷ〈y·µ〉 µ̂·µ) µ̂ † ŵ〈w·α〉

4it is easy to check this term results from reducing the λ-term xx〈x :=λy.y〉; reducing this λ-term poses no
α-conversion problem.
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Figure 4: Graphs for Example 5.1

Notice that, in this term, µ is bound twice. To reduce the cut, we first check if µ is introduced;
this is not so, since µ ∈ fp(〈y·µ〉), thus denying the intended application of the rule (exp).
Instead, we propagate the cut and obtain, using rules (a† ), (exp-outs† ) and (d† ),

(ŷ〈y·µ〉 µ̂·µ) µ̂ † ŵ〈w·α〉 →∗ (a† ), (exp-outs† ), (d † )

(ŷ(〈y·µ〉 µ̂ † ŵ〈w·α〉) µ̂·σ) σ̂ † ŵ〈w·α〉 →∗ (cap), (exp)

ŷ〈y·α〉 µ̂·α

which is not the intended ŷ〈y·µ〉 µ̂·α. The problem is of course that we should have renamed
one of the bound µ: this is an α-conversion problem, which is not solved by merely running
the graph interpretation, as can be seen in Figure 4, where we show the corresponding graph
reduction.

5.1 Lazy copying of shared graphs

The solution to the problem of capture we propose in this section is the one we first presented
in [4]; it aims to avoid, as for λ-graphs, the sharing of graphs that are involved in more than one
cut. Similarly to the case for the λ-calculus [29, 15], binding of connectors can be considered
problematic in the context of sharing. Sharing an abstraction λx.G in λ-graphs is problematic
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since the substitution is implemented via a redirection on G. This can be done only once,
blocking a re-use of a shared abstraction, that therefore has to be copied first. To tackle this
problem within the context of X , a notion of rebinding of sockets and of plugs was introduced.

The basic idea is the following: suppose we are dealing with the graph

Med
CutL CutL

P Q y R
α x v

The fact that α is bound twice might cause the binders to become nested during computation.
We avoid that by copying that part P that depends on α: we will ‘peel off a copy’ of the graphs
which might get affected by the double binding of connectors.

This method is similar to that of [29], and differs in that we must copy several constructors
and considering two classes of variables. An eager copy method will be too restrictive, in that
it destroys a large amount of sharing. We will specify a lazy strategy that avoids much of the
unnecessary copying in Section 6.3.

We extend the syntax of X -graphs with two further constructors

P ::= . . . | rp(P,α, β) | rs(P, x,y)

that will represent the renaming of a bound (rebinding) plug or socket, respectively. This
results in the (term graph) definition of rebinding a socket (rp) as given in Definition 5.1.
These prevent a connector from being doubly bound by, essentially, copying that structure of
a graph which contains that binder whilst introducing the new connector, thereby destroying
the sharing of the connector via binding edges.

The function rp(P,α, β) as given in Definition 5.1 is defined to build a new graph G′ where
the free occurrences of α in G are replaced with β and any binders encountered in G are made
fresh. Since this is, essentially, a copying function, when we move the rebinding mechanism
under binders, as in the third case below, we would create double binders for those bound
connectors we have just passed. Therefore, we need to rebind those as well.

Definition 5.1 (REBINDING REWRITE RULES) The function rp is defined by the term graph rewrit-
ing rules in Figure 5.

(rpGC) rp(P, β,γ) → P, β not free in P

(rpCapRen) rp(〈x·β〉, β,γ) → 〈x·γ〉

(rpExp) rp(ŷP α̂·η, β,γ) → k̂ rs(rp(rp(P, β,γ),α,λ),y,k) λ̂·η, (η 6= β)

(rpExpRen) rp(ŷP α̂·β, β,γ) → k̂ rs(rp(rp(P, β,γ),α,λ),y,k) λ̂·γ

(rpMed) rp(P α̂ [x] ŷQ, β,γ) → rp(rp(P, β,γ),α,η) η̂ [x] ẑ rs(rp(Q, β,γ),y,z)

(rpCut) rp(P α̂ † ŷQ, β,γ) → rp(rp(P, β,γ),α,η) η̂ † ẑ rs(rp(Q, β,γ),y,z)

(The function rs is defined similarly.) Notice that the call to the function rp builds a version of
P that uses a fresh socket γ to connect rather than β. Also, all bound connectors are renamed:
evaluating the rebinding rules builds a version of P with fresh binder names. This ensures
there is only ever one pointer to nodes that bind over P or the local binders in P. This comes,
however, at the price of a large rebinding overhead.

The functions rs and rp are expressed as higher-order term-graph rewriting rules. Because
these higher-order functions may not necessarily be evaluated eagerly, they may interfere

22



rl rr

rp

P β γ

(rpGC)

rl rr

rp Cap

Cap γ

x β

(rpCapRen)

rl rr

rp Exp

Exp η β γ rs

y α rp k

P rp λ

(rpExp)

rl rr

rp Exp

Exp β γ rs

y α rp k

P rp λ

(rpExpRen)

rl rr

rp Imp

Imp β γ rp rs

P Q rp η z rp

α x y

(rpMed)

rl rr
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P α y Q rp η rp

(rpCut)

Figure 5: Rebinding plugs

with the reductions of the X -calculus: if the sub-circuit of an inactive cut is a rebinding term,
an activation will be forced even though the sub-circuit of the rebinding term introduces the
appropriate connector of the cut (and a logical rule should therefore have be applied).

Rather than forcing the evaluation of these rebinding constructs to completion via an ‘ea-
ger’ reduction strategy, we will define a lazier evaluation strategy that avoids this mis-activation
in Section 6.3.

Using the functions rs and rp gives a different formal definition of interpreting rewrite rules
in X as graphs. As suggested by the example above (Example 5.1), term rewrite rules which
introduce sharing of binders need to copy these in order to avoid capture.

Definition 5.2 (COPYING TGRS REWRITE RULES) Left propagation

(exp-outs† ) : (ŷP β̂·α) α̂ † x̂Q → (ŷ(P α̂ † x̂Q) β̂·γ) γ̂ † ẑ rs(Q, x,z)

rl rr

CutL Cut

Exp α x Q Exp γ rs

y β CutL z
P
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(ŷ〈y·µ〉 µ̂·γ) γ̂ † x̂(〈x·δ〉 δ̂ [x] ŵ〈w·α〉) →∗ ( †a), ( †imp-outs)

(ŷ〈y·µ〉 µ̂·γ) γ̂ † ẑ((rp((ŷ〈y·µ〉 µ̂·γ),γ,τ) τ̂ † x̂〈x·δ〉) β̂ [z] ŷ(rp(ŷ〈y·µ〉 µ̂·γ,γ,σ) σ̂ † x̂〈w·α〉)) →∗ (rp)
(ŷ〈y·µ〉 µ̂·γ) γ̂ † ẑ(((v̂〈v·ν〉 ν̂·τ) τ̂ † x̂〈x·δ〉) δ̂ [z] ŵ((û〈u·η〉 η̂ ·σ) σ̂ † x̂〈w·α〉))

→∗ ( †d ), (exp), ( †cap)

(ŷ〈y·µ〉 µ̂·γ) γ̂ † ẑ((v̂〈v·ν〉 ν̂·δ) δ̂ [z] ŵ〈w·α〉) → (exp-imp)

(v̂〈v·ν〉 ν̂·δ) δ̂ † ŷ(〈y·µ〉 µ̂ † ŵ〈w·α〉) →∗ ( †a), ( †cut), ( †exp), ( †d )

((v̂〈v·ν〉 ν̂·δ) δ̂ † ŷ〈y·µ〉) µ̂ † ŵ〈w·α〉

Figure 6: Correction using rebinding of Example 5.1.

(imp† ) : (Q β̂ [z] ŷ R) α̂ † x̂P → (Q α̂ † x̂P) β̂ [z] ŷ(R α̂ † k̂ rs(P, x,k))

(cut† ) : (Q β̂ † ŷR) α̂ † x̂ P → (Q α̂ † x̂P) β̂ † ŷ(R α̂ † k̂ rs(P, x,k))

Right propagation

( †imp-outs) : P α̂ † x̂(Q β̂ [x] ŷ R) →

P α̂ † ẑ((rp(P,α,µ) µ̂ † x̂Q) β̂ [z] ŷ(rp(P,α,η) η̂ † x̂R))

rl rr

CutR Cut

P Imp z Imp
α x Q R CutR CutR

β y rp rp
δ σ

( †imp-ins) : P α̂ † x̂(Q β̂ [z] ŷ R) → (P α̂ † x̂Q) β̂ [z] ŷ(rp(P,α,γ) γ̂ † x̂R)

( †cut) : P α̂ † x̂(Q β̂ † ŷR) → (P α̂ † x̂Q) β̂ † ŷ(rp(P,α,γ) γ̂ † x̂R)

That this (partial) copy action gives a solution to the name capture problem is perhaps not
obvious. In fact, running the modified system on terms that have a bound connector occur
more than once would not guaranteed to be safe. However, if the initial term has different
names for all bound connectors, which in turn are different from all free names, then this
property is preserved during reduction. So it is impossible for names to be captured.

Example 5.2 A corrected reduction, using rebinding, for Example 5.1 can be found in Figure 6.
Notice that this time there is no possibility of variable clash, since there are no shared binders
(the other copy of the µ binder together with the µ in the capsule is renamed to ν). The
highlighted cut µ̂ † ŵ can be activated and safely propagated through the left sub-circuit.

The solution using rebinding is surprisingly easy to formulate, and only the rules that use
explicit replication need to be changed, but comes at the price of having to extend the sig-
nature of the calculus, as well as the set of rewrite rules. Moreover, it turns out to be highly
inefficient; this is of course mainly due to the loss of sharing. The main objection to rebinding
is that it creates unnecessary overhead in that it invokes rebinding for all double bindings
of connectors, regardless of whether or not they created a conflict; as we will see in the final
section, the cost of rebinding is high.
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5.2 Preserving Barendregt’s convention

Although the solution of the previous section is correct in that it avoids the creation of nested
bindings, the implementation was slow, mainly due to the large amount of extra reduction
that were introduced as a result of the copying process, even when done lazily.

More importantly, we observed that, using term graph rewriting techniques, the particular
λ-graph problem disappears; substitution on a graph G is now specified explicitly by reduc-
tion rules, and application of these rules will have the effect that a term is generated of the same
shape as G, to which the substitution has been applied. In fact, a large part of the necessary
copying action is done during the build phase of the rewrite mechanism, and does not need
to be treated at the level of the reduction rules. The conclusion of this was that, although the
copying solved the α-conversion problem, here the problem is of a different nature, i.e. that
of capturing.

In this section, we will propose a solution for the α-conversion problem in X , by preserv-
ing Barendregt’s convention on names, i.e. make sure that names never occur both free and
bound. We will achieve this by detecting and avoiding name clashes, without having to ex-
tend the syntax of the calculus; we just modify the (side-conditions of) the rules.

To tackle it in a formal way, we first introduce the notion of α-safety.

Definition 5.3 (α-SAFETY) We call a term (X -graph) α-safe if it adheres to Barendregt’s con-
vention, i.e.: (1) no connector occurs both free and bound, and (2) no nesting of binders to
the same connector occurs. We call a rewrite rule α-safe if it respects α-safety, that is, it rewrites
an α-safe term (graph) to an α-safe term (graph). We call a rewrite system α-safe if all its rules
are α-safe.

Example 5.4 The term (ŷ〈y·µ〉 µ̂·µ) µ̂ † ŵ〈w·α〉 is not α-safe (it fails both criteria); neither is
(ŷ〈y·µ〉 µ̂·δ) µ̂ † ŵ〈w·α〉, by the first criterion.

In order to obtain an α-safe implementation of X , we need to identify the rewrite rules that
are not α-safe.

Example 5.5 In Example 5.1, the application of (exp-imp) in Step 3 violates our α-safety prop-

erty since µ is both bound and free in (ŷ〈y·µ〉 µ̂·δ) δ̂ † ŷ〈y·µ〉. So rule (exp-imp) is not α-safe;

for the left-hand side (ŷP β̂·α) α̂ † x̂(Q γ̂ [x] ẑ R) to be α-safe, the connectors y and z, and β and
γ are allowed to be the same: they are not nested. However, this is no longer true for the

right-hand sides: y and z occur nested in the first alternative Q γ̂ † ŷ(P β̂ † ẑR), and β and γ in

the second (Q γ̂ † ŷP) β̂ † ẑR, which might force an α-conversion to be necessary.

Since we do not necessarily need to avoid connectors being bound twice (as long as they are
not nested), in dealing with the necessary renaming of bound connectors we can take advan-

tage of the explicit renaming feature ofX , using new cuts such as 〈v·δ〉 δ̂ † ŷP or P β̂ † v̂〈v·δ〉 to
rename y by v, or β by δ respectively in P, where v,δ are fresh (see Lemma 2.9). By activating
the cuts, the renaming is forced to take place and other cuts are prohibited from propagating
over the renaming.

On the down-side, unlike for the rebinding solution where we added extra nodes to our
graphs to express the copying, it is no longer possible to force eager or lazy evaluation of
α-conversion without doing the same with the general propagation rules.

We discussed above in Example 5.5 that we should perform the α-conversion in rule (exp-imp).
Let us consider the first choice (assume α and x are introduced); remember that y might be z
or appear bound in P without violation of Barendregt’s convention:

(ŷR β̂·α) α̂ † x̂(Q γ̂ [x] ẑ P) → Q γ̂ † ŷ(R β̂ † ẑP)
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If we assume that the α-safety criterion holds on an instance of the left-hand side of the rule

(so γ 6∈ bp(ŷP β̂·α) and y 6∈ bs(Q γ̂ [x] ẑ R)), then the application of the rule should not break
the α-safety criterion. We require the right-hand side of the rule to also be α-safe. Notice that
in its current form, the rule does indeed break the criterion, since β and γ are nested on the
right-hand side and the left-hand side places no constraints on the relation between β and γ.
A term graph on which this rule is applied may have β=γ, in which case the application of
the rule will have created a nested binding.

Since now we do not necessarily need to avoid connectors being bound twice (as long as
they are not nested), we do not need to completely copy terms. Instead, in dealing with the
necessary renaming of bound connectors we can take advantage of the explicit renaming fea-

ture of X , introducing to the rules new cuts such as 〈v·δ〉 δ̂ † ŷP or P β̂ † v̂〈v·δ〉 to rename y by
v, or β by δ respectively in P, where v,δ are fresh (see Lemma 2.9). By activating the cuts, the
intention is to force the renaming to take place first. We will also need to adopt our proposed
strongly normalising rules, which prevent a cut from deactivating, thereby enforcing priority
to the renaming cuts.

Returning to the violation in the (exp-imp N) rule, in order to ensure the rewrite will be
executed correctly (with respect to α-safety), we need to introduce an extra constraint to the

applicability of the rule (exp-imp N), namely γ 6∈ bs(ŷP β̂·α). (This can be equivalently for-
mulated as γ 6∈ bs(P) ∧ β 6= γ.) If the side-condition does not hold, then applying the rule
will create a nested binding of (the image of) γ in the term graph. To remedy the situation,
we must pay the cost of a renaming. This implies that there are now two alternatives for this
rule:

(ŷR β̂·α) α̂ † x̂(Q γ̂ [x] ẑ P) →





Q γ̂ † ŷ(R β̂ † ẑP) (y 6= z,y 6∈ bs(P))

Q γ̂ † v̂((〈v·δ〉 δ̂ † ŷR) β̂ † ẑP)

(y = z ∨ y ∈ bs(P),v,δ fresh)

Likewise, there are two alternatives for the second choice:

(ŷR β̂·α) α̂ † x̂(Q γ̂ [x] ẑ P) →





(Q γ̂ † ŷR) β̂ † ẑP (γ 6= β 6∈ bp(Q))

(Q γ̂ † ŷ(R β̂ † v̂〈v·δ〉)) δ̂ † ẑP

(β = γ ∨ β ∈ bp(Q),v,δ fresh)

Example 5.6 Applying this solution to Example 5.1, we have, instead of the problematic step

(ŷ〈y·µ〉 µ̂·γ) γ̂ † k̂((ŷ〈y·µ〉 µ̂·δ) δ̂ [k] ŵ〈w·α〉) → (exp-imp)

((ŷ〈y·µ〉 µ̂·δ) δ̂ † ŷ〈y·µ〉) µ̂ † ŵ〈w·α〉

the correction

(ŷ〈y·µ〉 µ̂·γ) γ̂ † k̂((ŷ〈y·µ〉 µ̂·δ) δ̂ [k] ŵ〈w·α〉) → (exp-imp)

((ŷ〈y·µ〉 µ̂·δ) δ̂ † ŷ(〈y·µ〉 µ̂ † v̂〈v·β〉)) β̂ † ŵ〈w·α〉 → (d† ,∩)

((ŷ〈y·µ〉 µ̂·δ) δ̂ † ŷ〈y·β〉) β̂ † ŵ〈w·α〉 → (exp)

(ŷ〈y·µ〉 µ̂·β) β̂ † ŵ〈w·α〉 → (exp)

ŷ〈y·µ〉 µ̂·α

To guarantee α-safety, we need to make a similar change to each rule where a possible
α-conflict is introduced, like ( †cut):

P α̂ † x̂(Q β̂ † ŷR) → (P α̂ † x̂Q) β̂ † ŷ(P α̂ † x̂ R)

There are two points of concern here: α = β, and β or y occurs bound in P (notice that x 6= y
as, by assumption, the left-hand side is an α-safe term). With this in mind, the rule ( †cut )
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is amended with extra side conditions and replaced by the following variants (where v,δ are
fresh):

P α̂ † x̂(Q β̂ † ŷR)→



(P α̂ † x̂Q) β̂ † ŷ(P α̂ † x̂ R) (β 6∈ bp(P) & y 6∈ bs(P))

(P α̂ † x̂Q) β̂ † v̂(P α̂ † x̂(〈v·δ〉 δ̂ † ŷR)) (β 6∈ bp(P) & y ∈ bs(P))

(P α̂ † x̂(Q β̂ † v̂〈v·δ〉)) δ̂ † ŷ(P α̂ † x̂ R) (β ∈ bp(P) & y 6∈ bs(P))

(P α̂ † x̂(Q β̂ † v̂〈v·δ〉)) δ̂ † v̂(P α̂ † x̂(〈v·δ〉 δ̂ † ŷR)) (β ∈ bp(P) & y ∈ bs(P))

Almost all propagation rules (except for (d† ), (cap† ), ( †d ), and ( †cap)) should be treated
like this; of the logical rules, only rule (exp-imp) needs dealing with as specified above. In
all, this gives a much more complicated rewriting system, with a great many rewrite rules.
The advantage of this approach is that α-conversion itself is detected and dealt with:

Theorem 5.7 Let →α stand for the notion of rewriting on X obtained by changing the rules as above.
Then: if P, Q are pure terms such that P is α-safe, and P→α Q, then Q is α-safe.

Proof: Straightforward, by verifying that each individual rewriting step preserves α-safeness.

The computational cost of this approach is low compared to the rebinding approach; the
price to pay is an increase in the number of rules. However, the detection of a possible ‘α-
danger’ in a rule is straightforward, since it only depends on the information present in the
rule, so it is even possible to, at the user level, allow for the definition of the normal rules, and
to automatically generate the α-safe variants.

5.3 Avoiding capture

Barendregt’s convention is a perfectly adequate solution to the α-conversion problem, since it
forbids a term with nested binders to the same variable to be created, thereby totally avoid-
ing any ambiguity to the system. However, one can justifiably argue that the convention is
restrictive, and expensive to uphold at run-time. After all, allowing nesting of bound vari-
ables as in λy.(λxy.xy)y (and therefore also of variables occurring free and bound variables as
in (λxy.xy)y) need not be ambiguous at all when considering the innermost of nested binders
the strongest; in this paradigm, the only thing that needs to be avoided during reduction is
that of capture of free connectors, bringing a connector under a binder.

Example 5.8 Referring back to Example 5.1, recognising that µ is bound twice, we would like
to apply rule (exp) to the term

(ŷ〈y·µ〉 µ̂·µ) µ̂ † ŵ〈w·α〉

But since that rule checks if µ occurs free in 〈y·µ〉, which it does, we are forced to left-activate
the term, which eventually gives the wrong result. However, once we accept that we only
need to check that a connector does not get captured - notice that this is not the case here -
and that we allow connectors to appear both free and bound, we only need to check that those
free occurrences of α are indeed those that we would associate with the free α on the outside
of the export term. So, instead of applying rule (exp),

(x̂ P β̂·α) α̂ † ŷ〈y·γ〉 → x̂P β̂·γ (α 6∈ fp(P))

we should apply the variant

(x̂ P β̂·α) α̂ † ŷ〈y·γ〉 → x̂P α̂·γ (α = β ∨ α 6∈ fp(P))
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Then the reduction of Example 5.1 should contain:

(ŷ〈y·µ〉 µ̂·µ) µ̂ † ŵ〈w·α〉 → ŷ〈y·µ〉 µ̂·α

We will show that we can identify the situations in which the application of a rule results
in capturing, and will modify the rules in such a way that the necessary α-conversions are au-
tomatically preformed. The solution is, in appearance, strikingly similar to that of Section 5.2
but for the fact that freeness is used rather than boundness. In Section 6.6, this approach will
be shown to be much more efficient; this is mainly because the solution of Section 5.2, many
terms which are not ‘α-safe’ (Definition 5.3) are left untouched here.

Example 5.9 Let us consider the rule (exp-impN):

(ŷR β̂·α) α̂ † x̂(Q γ̂ [x] ẑ P) → (Q γ̂ † ŷR) β̂ † ẑPα, (x introduced)

In order to allow the rewrite to be executed like this, the side condition should express an
extra criterion to avoid the capture of a free β in Q; if β∈fs(Q), then the rule would bring
that β under the binder ŷ on the right-hand side, and renaming should take place. Also,
notice that if β=γ, there would be no capture, since the order of nested binders are preserved.
This implies that there are now two alternatives for the rule (exp-impN). We define these
respectively as:

(ŷR β̂·α) α̂ † x̂(Q γ̂ [x] ẑ P) →





(Q γ̂ † ŷR) β̂ † ẑP (β 6∈ fp(Q) ∨ β = γ)

(Q γ̂ † ŷ(R β̂ † v̂〈v·δ〉)) δ̂ † ẑP

(β ∈ fp(Q) ∧ β 6= γ)

where v,δ are fresh. Likewise, the respective rules for the CBV variant are:

(ŷR β̂·α) α̂ † x̂(Q γ̂ [x] ẑ P) →





Q γ̂ † ŷ(R β̂ † ẑP) (y 6∈ fs(P) ∨ y = z)

Q γ̂ † v̂((〈v·δ〉 δ̂ † ŷR) β̂ † ẑP)

(y ∈ fs(P) ∧ y 6= z)

where v,δ are fresh.

Also, since now we explicitly allow for connectors to occur both free and bound in a term,
the rules need to check if the connector we try to connect to in a cut is actually really free.

For example, rule (exp-outs† ) now becomes:

(ŷQ β̂·α) α̂ † x̂P →

{
(ŷ(Q α̂ † x̂P) β̂·γ) γ̂ † x̂P, (α ∈ fp(Q) & α 6= β)

(ŷQ β̂·α) α̂ † x̂P, (α 6∈ fp(Q) ∨ α = β)

Rule ( †cut) becomes:

P α̂ † x̂(Q β̂ † ŷR)→



(P α̂ † x̂Q) β̂ † ŷ(P α̂ † x̂R) (y 6∈ fs(P) ∧ y 6= x ∧ β 6∈ fp(P) ∧ β 6= α)

(P α̂ † x̂Q) β̂ † v̂(P α̂ † x̂(〈v·δ〉 δ̂ † ŷR))

(y 6∈ fs(P) ∧ y 6= x ∧ (β ∈ fp(P) ∨ β = α))

(P α̂ † x̂(Q β̂ † v̂〈v·δ〉)) δ̂ † ŷ(P α̂ † x̂R)

((y ∈ fs(P) ∨ y = x) ∧ β 6∈ fp(P) ∧ β 6= α)

(P α̂ † x̂(Q β̂ † v̂〈v·δ〉)) δ̂ † v̂(P α̂ † x̂(〈v·δ〉 δ̂ † ŷR))

(y ∈ fs(P) ∨ y = x ∨ β ∈ fp(P) ∨ β = α)

All the rules need to be modified to check for possible capture of connectors. Although the
structure of these new rules is similar to those in Section 5.2, the improvement in execution
speed is impressive, as can be seen in the last section.
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6 Reduction Strategies for X

In Section 5, we studied different schemes for avoiding capture in the context of the X -
calculus. In this section, we compare the cost of each scheme when used to reduce expres-
sions, and obtain a cost of the renaming operations required to uphold a particular α-safety
criteria; e.g. in the ‘preserving Barendregt’s convention’ scheme, the cost refers to the rewrite
operations that must be carried out to ensure no nested binding is created during a reduction.

To allow for a fair and accurate comparison across the schemes we proposed, it is important
that, aside from the α-conversion steps, the same reduction paths are chosen when evaluating
a term. This implies the need for a deterministic reduction strategy. Furthermore, this strat-
egy should not be affected by any renaming cuts performing α-conversions. The following
example shows how a naive reduction strategy (in the call-by-name subsystem) could be af-
fected, and motivates the need for an extension to the X implementation to allow for complex
strategies to be defined.

Example 6.1 Consider an instance of a graph where the rule (insRrenP) from the capture avoid-
ance scheme (Section 5.3) is applicable. Let us assume the subgraphs Q and R are pure and R
introduces y. We have the following reduction.

1. (ŷR β̂·α) α̂ † x̂(〈v·β〉 δ̂ [x] ẑQ) →

2. (〈v·β〉 δ̂ † ŷ(R β̂ † f̂ 〈 f ·σ〉)) σ̂ † ẑQ

Note that if the α-conversion steps had been instantaneous, we would have obtained:

2′. (〈v·β〉 δ̂ † ŷR′) υ̂ † ẑQ

(where R′ = R[σ/β]). In Step 2, although R introduces y, we cannot evaluate the cut δ̂ † ŷ
without activating it first, which will cause it to (wastefully) propagate through R′ (once the

renaming cut β̂ † f̂ has been evaluated) searching for sockets named y. Each time this effect
is observed, the cost of the α-conversion scheme will be skewed by a factor proportional to
the size of the subgraph R when no optimization is used, and by a constant factor when the
(optimized) garbage collection rules are used.

One way of avoiding this is to ensure the reduction strategy prioritises reduction of the
cuts which perform α-conversions. How these extra cuts are identified from renaming cuts
that belong to the original circuit is also a point that needs to be addressed. In Example 6.1,

this would involve evaluating the renaming cut β̂ † f̂ in step 2, before the other cuts in the

expression. This action would rightly prevent the cut δ̂ † ŷ activating, then propagating, to
the right.

Although the X -calculus specifies three kinds of cut (inactive, left-activated and right-
activated), an input term should only contain instances of inactive cuts5. When an inactive
cut is chosen as the next redex, there is an implicit understanding that the cut should be run to
‘completion’. That is, when we choose to execute a redex P α̂ † x̂Q, we are making the choice
to connect all α’s in P with all x’s in Q; a good reduction strategy will evaluate all cuts in
this way. The following example enforces this view and illustrates why a naive outermost
reduction strategy is not a favourable strategy in the setting of the X -calculus.

5The system of active cuts was originally designed by Urban [24] to obtain a strongly normalising cut-
elimination transformation on sequent proofs. They were specified as annotations on cut formulae used to direct
cut-rule permutations to the leaves of a sequent derivation.

29



Example 6.2 We begin with a nesting of cuts between arbitrary terms P, Q, R, and S. A call-
by-value left-most outermost reduction strategy is applied to the graph root node, which tra-
verses the term attempting to match each rule with the current graph node. After a successful
rewrite, the redex searching process restarts from the root node of the term graph. Recall that
active cuts cannot propagate over each other.

1. (P α̂ † x̂Q) β̂ † ŷR → (a† )

2. (P α̂ † x̂Q) β̂ † ŷR → (cut† )

3. (P β̂ † ŷR) α̂ † x̂(Q β̂ † ŷR) → (a† )

4. (P β̂ † ŷR) α̂ † x̂(Q β̂ † ŷR) → ·· ·

In this relatively simple example, we are left in a situation resembling a traffic-jam. By step
(4), the propagation of the outermost cut is blocked by the innermost active cuts. When the
innermost cut propagates down the graph one level, the second innermost cut is permitted to
propagate down one level. This pattern expands to more complicated examples, where each
outer cut follows in the wake of an innermost cut (as would be seen in a traffic-jam, one cut
moves along a place, and each following cut shifts along, filling the empty space).

The overall effect of this is an undesired increase in the cost of searching for the next redex
(which involves graph traversal, structural matching and checking side-conditions).

When a term graph is rewritten using the standard notion of graph rewriting, new nodes
may be added to the graph. In step 1 of Example 6.2, an inactive cut is activated. Although

the graph nodes Cut and CutL (for the cuts δ̂ † ẑ and δ̂ † ẑ) are represented by two distinct
node objects, our strategy must recognise that they are related in order to evaluate the cut to
completion. The strategy will need to sequentially apply a number of rules to the term graph
while ‘following’ the propagating cut through the expression.

Visser [26] proposes a generic language for specifying reduction strategies on term graphs.
This language is rich enough to describe the kind of strategies we seek. The following section
introduces the idea of strategy combinators and explains how to implement a reduction strategy
for X that can reduce a cut to completion.

6.1 Strategy Combinators

Strategy combinators as defined by Visser [26, 11, 27] allow for the controlled traversal of a
data structure. These combinators are then extended with rewrite rules, which allow on-site
modification of the graph. Examples of some strategies that may be constructed with these
combinators are: (1) normalize the graph using a set of rules, R, according to an innermost
strategy; (2) repeatedly apply a rewrite rule to a node until failure; or (3) visit all nodes at
level three of the graph, and so on.

For our purposes, it is sufficient to restrict ourselves to a subset of the language made up of
the following combinators.

Definition 6.3 (STRATEGY COMBINATOR LANGUAGE [26])

s ::= id Identity

| fail Fail

| L→R Rewrite rule

| [L→R] List of Rewrite rules

| seq(s,s) Sequential Composition

| choice(s,s) Left-biased choice

| all(s) All immediate children

| one(s) One immediate child
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failure in applying s

failure in applying s

s@ni success

Figure 7: Applications of Basic Strategy Combinators to Arbitrary Graphs

Definition 6.4 (APPLICATION OF A STRATEGY) The application of a strategy to an X -graph is a
pair consisting of a strategy combinator, s, and a rooted subgraph (g|n). The strategy combi-
nator system has a global fail flag which, when raised, indicates a fail state; this fail state affects
the operational behaviour of some of the combinators.

We will write s@(n) for the application of the strategy combinator s to the X graph rooted
at n.

The main results for the application of strategy combinators are either: (1) the strategy
results in another set of strategies being applied to some node(s) of the graph; (2) the graph is
modified by a rewrite rule; or (3) the state of the global fail flag is altered.

Figure 7 accompanies the following description of strategy combinators.

id@(n) : the identity strategy which simply leaves the supplied node unmodified.

fail@(n) : raise the fail flag indicating a state of failure.

L→R@(n) : attempt to match the left-hand side L with the subgraph rooted at n. If the match
is successful, n will be rewritten to some subgraph rooted at n′ as dictated by the rewrite
rule; any further strategies to be applied to n are updated to refer to n′. If the match is
unsuccessful, the fail flag is raised.

[L→R]@(n) : sequentially traverse a list of rewrite rules while attempting to apply each rewrite
rule to n. The strategy terminates the traversal of the list upon the successful application
of a rewrite rule. If the list is exhausted and no rule was applicable, the fail flag is raised.

seq(s1,s2)@(n) : sequentially apply the argument strategies to n; if at any time a state of fail-
ure is reported the entire sequence strategy fails.

choice(s1,s2)@(n) : applies s1@(n), then applies s2@(n) if and only if s1@(n) reported a fail-
ure.

all(s)@(n) : attempt to apply s to each immediate successor (left-to-right) of the node n. Any
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successive applications are aborted if at any point the fail flag is raised by the application
of s to the immediate successors of n.

one(s)@(n) : attempt to apply s left-to-right to a single immediate successor of n; if no suc-
cessful application is found, the entire strategy fails.

In addition to these basic combinators, we will allow users to define their own complex
combinators via the following construction.

C(x1, . . . ,xk) = s

C’s arguments x1, . . . ,xn may occur, and are bound, in the definition body, s. Definition 6.3
is then extended with a case for a user-defined combinator:

s ::= . . .

| C(s1, . . . ,sk) User-defined combinator

An application of a user-defined combinator to a node n, C(s1, . . . ,sk)@(n), denotes the in-
stantiation s[x1 = s1, . . . ,xk = sk] of the body of s in the definition of C. Because this exten-
sion allows recursive strategies to be defined, we will dismiss nonsense definitions such as
C(x) = C(x), by forbidding left-recursion.

We will also make use of some helper strategies, which can each be defined using the strat-
egy language described above.

Definition 6.5 (HELPER STRATEGY COMBINATORS [27]) Below, we define some helper
combinators, followed by an informal description of the effect of applying the combinator to
a node of some term graph. We assume that, before the application of each strategy, the fail
flag is not raised.

try(s) = choice(s, id) : attempt to apply the argument strategy s to the node. If s fails, clear the
fail flag.

repeat(s) = try(seq(s, repeat(s))) : repeatedly apply the strategy s to the node, until no more
applications are possible, leaving the system in an unfail state.

oncetd(s) = choice(s,one(oncetd(s))) : search once top-down from the node and terminate af-
ter the first successful application of s. Raise the fail flag if no application was successful.

outermost(s) = repeat(oncetd(s)) : search depth-first from the node and attempt to apply s to
each node of the term graph; after a successful application restart the search from the
node on which the strategy was first called (modulo rewriting of the subgraph rooted at
that node).

6.2 Reduction Strategies for X

In this section we will define a strategy combinator that when applied toX -graphs will evalu-
ate an inactive cut to completion. We will then extend this strategy to work with our proposed
solutions to the problems of name clash and capture.

First, however, we will give a detailed example of the steps involved in applying a rewrite
rule strategy to an X -graph following a simple traversal scheme. The example is intended to
mimic the steps taken by our implementation.

Example 6.6 (A REDUCTION USING oncetd) In Figure 8, we illustrate the steps taken by the strat-
egy language to apply oncetd(cap) to the term graph

〈y·γ〉 γ̂ [z] k̂(〈k·α〉 α̂ † x̂〈x·µ〉) G

During the application of a strategy, we maintain:
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choice

(cap) one

(a) oncetd strategy

1:med

2:cap 3:z 4:k 5:†

6:y 7:γ cap cap

α x µ
(b) steps 1–34

1:med

2:cap 3:z 4:k 8:cap

6:y 7:γ µ

(c) steps 35–36

Figure 8: Application of oncetd (cap ) to 〈y·γ〉 γ̂ [z] k̂(〈k·α〉 α̂ † x̂〈x·µ〉).

a node stack : a stack of node ids that records the path of the strategy through the term;

a combinator stack : a stack of combinator states which records the progress of the strategy;
and

a failure flag : to record whether a strategy has resulted in failure.

The stack trace in Figure 8(a) begins with the root node of the term graph (Figure 8(b))
and the root node of the strategy graph (Figure 9) on the node stack and combinator stack,
respectively; the failure flag is cleared. We write ch/i to indicate the choice strategy is cur-
rently evaluating its ith argument strategy, and one/j to indicate the one strategy currently is
applying its argument strategy to the jth child of the node at which it was first applied. We
summarise the interesting steps of the strategy below.

1-2 : The zeroth argument of choice is pushed onto the combinator stack.

3-4 : The failed match of the rule (cap) with node 1, results in a failure state. The choice

combinator recovers from the failure, expanding its second argument.

5 : The one strategy pushes the zeroth child of node 1 (i.e. node 2) onto the node stack, and
pushes its argument strategy (one) onto the combinator stack. Notice that one’s argument
strategy results in a recursive call being made to choice.

6-9 : The application of the rule (cap) to node 2 fails. The choice combinator recovers from
the failure, pushing the one strategy onto the combinator stack. Since one is a traversal
combinator, it pushes node 2’s zeroth child onto the node stack.

10-14 : The application of the rule (cap) to node 6 fails, and the choice strategy once again
recovers from the failure. However, notice that this time the one strategy also fails, since
node 6 has no children.

15 : The combinators are popped off the stack until a combinator is found that can reset the
failure flag. The combinator happens to be the one combinator which was evaluating the
zeroth child of node 2. one clears the failure flag and proceeds to apply its argument
strategy to the first child of node 2 (i.e. node 7).

16-19 : A repeat of the steps 10-14 occurs, except with node 7 on the node stack.

20-21 : Upon returning to the one combinator which was visiting the first child of node 2, it
finds node 2 has no more children. Therefore, the one strategy fails and propagates the
failure state.

22 : The one strategy failed to apply its argument strategy to the zeroth child of node 1 (i.e.
node 2). It recovers from the failure state and attempts to apply the same argument strat-
egy to the first child of node 1 (i.e. node 3).

23-34 : This application fails, and one applies the argument strategy to the second child of
node 1 (i.e. node 4), then to the third child (node 5) when this fails.

35 : The application of the rule (cap) is successful and node 5 is rewritten to node 8 (see Figure
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Node
Stack

Combinator Stack Fail

1 1 -

2 1 ch/0, (cap)

3 1 ch/0 ×

4 1 ch/1

5 1,2 ch/1, one/0

6 1,2 ch/1, one/0, ch/0, (cap)

7 1,2 ch/1, one/0, ch/0 ×

8 1,2 ch/1, one/0, ch/1

9 1,2,6 ch/1, one/0, ch/1, one/0

10 1,2,6 ch/1, one/0, ch/1, one/0, ch/0, (cap)

11 1,2,6 ch/1, one/0, ch/1, one/0, ch/0 ×

12 1,2,6 ch/1, one/0, ch/1, one/0, ch/1

13 1,2,6 ch/1, one/0, ch/1, one/0, ch/1, one/0

14 1,2,6 ch/1, one/0, ch/1, one/0, ch/1 ×

15 1,2,7 ch/1, one/0, ch/1, one/1

16 1,2,7 ch/1, one/0, ch/1, one/1, ch/0, (cap)

17 1,2,7 ch/1, one/0, ch/1, one/1, ch/0 ×

18 1,2,7 ch/1, one/0, ch/1, one/1, ch/1

19 1,2,7 ch/1, one/0, ch/1, one/1, ch/1, one/0

20 1,2,7 ch/1, one/0, ch/1, one/1, ch/1 ×

Node
Stack

Combinator Stack Fail

21 1,2,7 ch/1, one/0, ch/1, one/1 ×

22 1,3 ch/1, one/1

23 1,3 ch/1, one/1, ch/0, (cap)

24 1,3 ch/1, one/1, ch/0 ×

25 1,3 ch/1, one/1, ch/1

26 1,3 ch/1, one/1, ch/1, one/0

27 1,3 ch/1, one/1, ch/1 ×

28 1,4 ch/1, one/2

29 1,4 ch/1, one/2, ch/0, (cap)

30 1,4 ch/1, one/2, ch/0 ×

31 1,4 ch/1, one/2, ch/1

32 1,4 ch/1, one/2, ch/1, one/0

33 1,4 ch/1, one/2, ch/1 ×

34 1,5 ch/1, one/3

35 1,5 ch/1, one/3, ch/0, (cap)

36 1,8 ch/1, one/3, ch/0

37 1 -

Figure 9: Stack Traces

8(c)), and the node stack is updated.

36-37 : choice does not evaluate its second argument strategy since the failure state is clear
when it is the head of the combinator stack. The remaining combinators are popped off
the stack and the reduction terminates.

Many optimisations have been made to this reduction engine that can bypass a significant
number of stack operations. For example, noticing that the Cap-nodes have only child nodes
which are names (i.e. no variable nodes), steps 9-21 may be skipped.

In the previous section, we discussed some features we would require in an X -calculus
reduction strategy—these are summarised below.

Definition 6.7 (CRITERIA FOR EVALUATING A CUT) Given a pure X -term, for any single inac-
tive cut, a ‘good’ X -calculus reduction strategy will:

i ) Evaluate the inactive cut, P α̂ † x̂Q, to completion so that all the plugs α in P are connected
with all the sockets x in Q. The resultant term should have eliminated the cut α̂ † x̂ from
the term, as well as the connectors α and x.

ii ) Transform a pure term to a pure term. This will involve ‘following’ related active cuts
through the term until they are all destroyed.

iii ) Give priority to α-conversion/renaming cuts over other cuts so that they do not interfere
with parts ((a) and ((b).

We will consider the (call-by-name) X -calculus rules as described in Section 2 to explain
how the criteria is met. Realising that the X -calculus rewrite rules are fixed, we can use our
knowledge of the rules to guide the propagation of active cuts through X -terms. We first
define the following strategies as strict partitions over the set of rewrite rules (as ordered
lists).
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Definition 6.8

rename = [(cap), (exp), (med )]

logical = [(exp-imp N), (exp-imp V), renaming]

activate = [( †a), (a† )]

prop a1 = [(exp-ins† ), (imp† ), (cut† ), ( †exp), ( †imp-ins), ( †cut)]

prop a2i0 = [(exp-outs† ), ( †imp-outs)]

gc = [(cap† ), ( †cap)]

deact = [(d † ), ( †d )]

Notice that, in fact, rule (exp-imp V) is obsolete here, since it will never match if (exp-impN)
does not.

Using the above combinators, we will describe a user-defined strategy combinator for re-
ducing an inactive cut so that the criteria outlined in Definition 6.7 are obeyed.

The first two rule definitions (rename and logical) deal directly with inactive cuts. Their
application is straightforward since they destroy the inactive cut being reduced. The next
rule definition (activate) replaces an inactive cut with an active cut. To uphold part (c) of our
criteria, we must continue evaluation of this active cut until it is destroyed. To that purpose,
we will build a user defined strategy, propagate(), which propagates an active cut through a
term until it is destroyed. Clearly propagate() will make use of the remaining definitions since
they cover the cases that deal with activated cuts. We can now define a strategy evalcut()
which evaluates a cut to completion.

evalcut() = choice(logical,

seq(activate, propagate())

)

This strategy considers the only two cases of how to evaluate an inactivate cut: it can either be
reduced by a logical rule, or activated and then propagated through the term. The remainder
of this section looks at how to define the propagate() combinator.

We can break down the work that needs to be done by the propagate() combinator into
four cases: (1) propagate an active cut through a circuit that does not mention any connectors
involved in the cut; (2) propagate an active cut through a circuit that does mention the connec-
tors involved in the cut; (3) garbage collect the active cut, since it has reached the level of the
capsules; and (4) deactivate the cut, and attempt to reduce the deactivated cut.

The first two cases are covered by the following combinators.

(1) seq(prop a1,

all(try(propagate()))

)

(2) seq(prop a2i0,

seq(all(all(try(propagate()))),

evalcut()

) )

We explain these terms in the following paragraphs. First we remark that by nesting several
‘all’ combinators, we can visit all the nodes at a particular depth of a term graph (relative to
the node at which the strategy was first applied). For instance, all(s)@(n) will apply s to the
nodes at depth 1 relative to the node n, while all(all(s))@(n) will apply s to the nodes of n at
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depth 2, and so on.
For (1), all the rules in the list prop a1 have active cuts (that must be further propagated) at

depth 1. Therefore, after a rule in prop a1 has been applied, the propagate() strategy is applied
to the nodes at depth 1 to propagate these newly introduced cuts.

For (2), all the rules of prop a2i0 have active cuts at depth 2 in addition to an inactive cut at
depth 0. The newly introduced active cuts at depth 2 must be further propagated, so there is
a double nesting of the all combinator. The inactive cut at depth 0 also needs to be evaluated,
so the evalcut() strategy is recursively applied; notice that to avoid the situation shown in
Example 6.2, the active cuts are propagated before the inactive cut is evaluated.

The final two cases for the propagate strategy are described by the following combinators:

(3) gc

(4) seq(deact, evalcut())

For (3), the strategy gc is applicable if the active cut is with a capsule that does not introduce
the connector bound by the active cut. The rewrite rules state that in this case the active cut
should be destroyed. Therefore, following a successful application of a gc strategy, no further
work needs to be done: there is no more active cut to propagate.

For (4), if the strategy deact is applicable, the active cut is deactivated, creating a new in-
active cut at that level which must be evaluated; therefore the evalcut strategy is recursively
applied to that inactive cut.

Combining these four parts, we obtain a definition for the propagate() strategy.

propagate() = choice(gc,

choice(seq(deact, evalcut()),

choice( seq(prop a1,

all(try(propagate()))),

),

seq( prop a2i0,

seq(all(all(try(propagate()))),

evalcut()

) ) ) )

The nesting of ‘choice’ combinators ensures each propagation case is considered at the cur-
rent node. If no case is successful, the strategy combinator leaves the system in the fail state.

The above discussion shows how to evaluate a cut to completion in the CBN X -calculus -
notice that in activate, rule ( †a) comes first, as does (exp-imp N) (see also Definition 6.9). We
would like to extend this strategy to the sets of rules that solve the name clash and name
capture problems described in Section 5. This involves working with a larger set of rules, but
the same idea of evaluating a cut exists. We have two sets of rules to consider: the renam-
ing using activated-cuts schemes and the lazy-copying α-conversion schemes with special
rebinding symbols.

6.3 α-conversion with Rebinding Nodes

In this section, we look to define a ‘good’ strategy for evaluating an inactive cut for the solu-
tion of lazy copying as defined in Section 5.1. We can follow a similar strategy to that of the
previous section, except some extra care must be taken with regards to the rebinding nodes.
The nodes which perform the rebinding (rs and rp) are not part of the X -calculus and would
ideally be transparent.
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Barendsen and Smetsers remark in [8]:

“ mixing copy rules with the reduction rules [in the set of rewrite rules] may destroy properties
[of the set of rewrite rules] such as confluence, or at least make it very difficult to check whether
known properties [of the term graph rewriting system] extend to [the term graph rewriting
system with copy rules added]. ”

This turns out to be true in our case; the rebinding nodes interfere with structural matching
and the ‘introduces’ side conditions of the rewrite rules. For example, the term rs(〈x·α〉,α, β)
does not introduce β, although it evaluates to 〈x·β〉.6 A naive solution could force the copying
operation to completion, though this may turn out to be unnecessary.

We propose a lazier solution that hides the existence of rebinding nodes from the structural
matching step of the rewriting procedure. Observing the lazy copying rewrite rules (Defini-
tion 5.2), this can be achieved by ensuring all rebinding nodes are at least two levels from any
redex; in other words, a rebinding node should never be an immediate successor of a cut.

We specify a strategy pushRebind(), which when applied to a rebinding node, pushes that
rebinding node down through the term-graph by one level. There are two cases to consider—
either a rebinding rule (from Definition 5.1) is directly applicable to the current rebinding
node, or not — i.e. there is a chain of one or more successive rebinding nodes prohibiting
propagation. When such a chain exists, the strategy traverses to the lowest rebind node of
that chain where a rule will be applicable. The lowest node is propagated one level further,
followed in turn by each blocked ancestor.

The skeleton definition of this strategy is given below and makes use a group of all the
rebinding evaluation rules (rebind rules) as given in Definition 5.1, and a strategy repeat′(s)
which repeatedly applies its argument strategy to the current node or fails.

repeat′() = seq(s, repeat′(s))

pushRebind() = choice(repeat′(rebind rules),

choice(seq(all(try(pushRebind())),

rebind rules

),

fail

) )

The propagate() strategy can now be extended to make use of pushRebind(). For each re-
binding node introduced by a rewrite rule of the X -calculus, the pushRebind() strategy is
applied to that node, guaranteeing it is never the successor of a cut.

6.4 α-conversion with Renaming Cuts

The strategy evalcut() is first extended to cater for the case of (exp-imp N) when a plug needs
renaming. In this case, the active cut (at depth 2) is propagated through the term, using

seq(exp-imp N,

all(all( try(propagate() ) ) )

)

6We could alter our definition of introduces so that rs(〈x·α〉,α, β) introduces β, but this will still not side-step
the problem of the rebinding node structure interfering with the graph matching process.
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The propagate() strategy should then be modified to cater for any additional α-conversion
structure. This involves partitioning this larger set of rules into lists of rules which have cuts
(to be further propagated) at common depths. The renaming cuts, which will be the innermost
active cuts, must then be given priority over the other cuts in the rule. We will consider the
variant of the rule ( †exp):

Q α̂ † x̂(ŷP β̂·δ) → ŵ(Q α̂ † x̂(〈w·µ〉 µ̂ † ŷP)) β̂·δ (y ∈ fs(Q), β 6∈ fp(Q))

(the side-conditions of the rule do not come into play in the following discussion).
This rule would have been placed in a ‘list of rewrite rules’ combinator named prop a1a2,

indicating the rule has active cuts at a depth of 1 and also at a depth of 2; in the rule above
these are respectively the cuts α̂ † x̂ and µ̂ † ŷ on right-hand side of the rule. The propagation
of active cuts for this combinator is described by the combinator:

seq (prop a1a2,

seq ( seq(all (all ( try (propagate() ) ) ),

all ( try (propagate() ) )

) ) )

In other words, if a rule from the combinator prop a1a2 is applied, propagate the inner
active cuts at depth 2, and then propagate the remaining inner active cuts at depth 1. Lists
of rules grouped together by the common depth of active and inactive cuts also need to be
modified appropriately.

Now a ‘good’ outermost reduction strategy for the X -calculus can be defined as:

outermost(evalcut() )

This strategy will search for the outermost inactive cut, which, when found, will apply the
evalcut() strategy to that cut, evaluating that cut to completion.

6.5 Optimisations

We highlight a simple optimisation to the outermost strategy that will greatly decrease the
search time for the next redex. Currently, after a successful reduction of an inactive cut, the
search for the next inactive cut restarts from the point at which the original call to the strategy
was made, i.e. the root node of the term graph. For a general outermost strategy, this is a
safe course of action, since an outermost redex may have been skipped while an inner redex
is evaluated c.f. call-by-value reduction in the λ-calculus. The X -terms we evaluate are pure
terms, and according to our evalcut() reduction strategy inactive cuts are evaluated to com-
pletion. Since inactive cuts cannot block propagating active cuts, the depth the subsequent
outermost cuts are therefore guaranteed to be at a depth lower or equal to the current node.
Using this fact, we can define an outermost reduction strategy to continue redex-searching
from the current node pointed to.

outermost′ (s) = seq(repeat(s),

all(try(outermost′(s)))

)

By parametising evalcut with an ordered list of activation rules and a variant of the (exp-imp)
rule, we can define two outermost strategies for call-by-name and call-by-value as follows.
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Definition 6.9 (CBN AND CBV REDUCTION STRATEGIES)

cbnact = [( †a), (a† )]

cbvact = [(a† ), ( †a)]

outermostCBN = outermost′(evalcut(cbnact, (exp-impN)))

outermostCBV = outermost′(evalcut(cbvact, (exp-impV)))

6.6 Benchmarks

In this section we present our benchmarks comparing the costs of the solutions to name clash
and capture we proposed above. In the previous section we described how to extended our
implementation with ‘strategy combinators’ in order to define a fair reduction strategy that
could be used to compare the proposed solutions. Incorporating the strategy combinator
language into our tool presented us with some problems, which we summarise below.

Visser has provided the community with a Java implementation of the strategy combinator
framework, called JJTraveler. The framework allows modular extensions to the combinator
language, allowing one to add user-defined combinators to the system by inheritance. A full
description of this framework can be found in [27].

Integration of the framework with ourX implementation, also written in Java, was straight-
forward. Unfortunately, preliminary testing revealed the implementation was unable to tra-
verse some of the larger term-graphs generated by our benchmarks (which can contain in ex-
cess of 300,000 nodes) resulting in stack-overflows. The reason for this was the heavy reliance
on recursion due to the use of a modified Visitor design-pattern7. We chose to re-implement
the framework taking an iterative approach instead. The set of strategy combinators (Defi-
nition 6.3) extended with ‘user-defined combinators’ allows recursive strategies to be built.
These were implemented as cyclic graphs (following the implementation of JJTraveller).

To maintain the state of the strategy (i.e., to track how much of the strategy had been pro-
cessed during an application), we used two stacks. The working details of these structures
were exemplified in Example 6.6. Recall that the ‘combinator stack’ tracked the current po-
sition within the strategy combinator graph, and the ‘node stack’ tracked the node of term
graph which the current combinator was being applied to. The approach allowed us to ob-
tain an accurate measure of the cost of traversing the graph searching for redexes: it was a
count of the number of (constant-time) stack operations, plus the number of node matchings,
plus the cost of checking the side-conditions.

We chose to measure the running of (interpreted) λ-terms since these are well-known bench-
marks [1, 19], and the efficiency of the various formalisms and abstract machines can be better
compared. We can of course not confront their (published) run-time measurements because
of differences in platforms and processor architectures.

We use the usual encoding for Church Numerals (n = λxy.xny). In addition, we use the
combinators P = (λz.(λx.zxxx)(λy.2(λx.y(xI))n))II, with n replaced by a chosen Church Nu-
meral and I = λx.x.

Note that we do not wish to consider the cost of encoding λ-terms to X as we are inter-
ested in comparing the efficiency of the α-conversion mechanisms for the systems presented;
because of this, we use Prawitz’s encoding (Definition 2.19). Our benchmarking results are
listed in Figures 10 and 11. For each test case we record the following two measurements:

7Simply increasing the stack size of the JVM was not seen to be a scalable solution. Although recent Java
implementations do include recursion optimisations, these mainly work on performance. Since our benchmarks
will count atomic operations rather than measure time, our main concern is heap usage, which we can manage
more efficiently with an iterative approach.
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TestCase rebind - GC α-safe - GC α-safe + GC avoid capt. - GC

Search Rewrite Search Rewrite Search Rewrite Search Rewrite

22II 0.861 0.163 0.264 0.0765 0.159 0.0421 0.0994 0.0330

222II 62.0 15.7 3.64 0.942 0.841 0.208 0.495 0.153

2222II - - - - 4650 715 1690 522

210II 0.372 0.0682 0.140 0.0401 0.0762 0.0214 0.0548 0.0194

2210II 2.40 0.471 0.649 0.165 0.269 0.0660 0.173 0.0541

22210II 225 56.7 10.6 1.84 1.53 0.305 0.805 0.236

P2 32.9 7.85 4.01 0.857 0.999 0.218 0.429 0.145

P3 51.4 12.5 5.54 1.11 1.20 0.256 0.487 0.165

P5 110 27.2 9.94 1.74 1.63 0.331 0.602 0.206

P10 429 109 31.4 4.01 2.98 0.519 0.890 0.309

P20 2240 575 143 11.6 6.71 0.895 1.47 0.514

P50 26100 6780 1550 58.4 26.3 2.02 3.19 1.13

Figure 10: CBV Results: Cost measured in units of 106 operations (to 3.s.f)

TestCase rebind + GC α-safe - GC α-safe - GC avoid capt. - GC

Search Rewrite Search Rewrite Search Rewrite Search Rewrite

22II 0.914 0.156 0.314 0.0908 0.173 0.0439 0.0963 0.0322

222II 17.0 3.27 3.86 1.01 1.42 0.305 0.551 0.178

2222II - - 146000 29700 13100 1460 2490 805

210II 0.458 0.0819 0.164 0.0441 0.0868 0.0227 0.0559 0.0198

2210II 2.12 0.360 0.726 0.177 0.315 0.0742 0.151 0.0507

22210II 32.1 6.38 7.29 1.60 2.11 0.441 0.754 0.246

P2 540 138 22.5 3.02 3.51 0.582 0.902 0.308

P3 875 224 30.6 3.67 4.23 0.670 1.04 0.354

P5 2000 515 52.6 5.22 5.85 0.847 1.32 0.447

P10 8670 2240 152 10.5 11.0 1.29 2.02 0.679

P20 49600 12900 624 27.2 25.9 2.17 3.41 1.14

P50 626000 163000 6050 126 107 4.81 7.59 2.54

Figure 11: CBN Results: Cost measured in units of 106 operations (to 3.s.f)

Search Cost : a count of atomic operations involved in traversing the graph and searching
for redexes, i.e. the number of push/pop stack operations to evaluate the strategy, plus the
number of attempted matchings made between the rule heads and graph nodes, plus the cost
of testing the side-condition.

Rewrite Cost : a count of the (more expensive) graph transforming operations, i.e. the num-
ber of nodes added and deleted plus the number of edges added and deleted.

A straightforward numerical comparison of costs suggests the following relationship of
efficiency between α-conversion schemes, under either reduction strategy (CBN or CBV).

Rebinding GC <α-Safe - GC < α + Safe GC < Capture Avoid GC

Another observable trend is the linear relationship between the redex search cost and graph
rewrite cost. As the size of the graph increases, the search cost increases since more operations
are required to traverse the graph structure. Once a suitable redex (a cut) is found, the cost
of reducing that cut is related to the size of its subterms since it must be propagated through
them.

There is a significant difference between the cost of reduction under the rebinding scheme
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versus the other schemes tested. In fact, our original attempt at implementing the rebinding
solution was not lazy at all, and often resulted in memory requirements greater than the 2GiB
limit. We recorded the size of the graph (number of node objects) as the reduction progressed
for each test-case in order to gain insight into this vast requirement of system resources. Re-
sults from the eager strategy are shown in Figures 12(a) and 13(a). As explained in Section
5.1, the rebinding scheme works by destroying the sharing in portions of the term-graph as so
to guarantee that no binder occurs more than once. This copying-out effect, seen as peaks in
the graphs, shows an increase in the number of nodes whenever a cut is propagated through
varying sizes of subterm causing all sharing to be destroyed. Looking closer at these graphs
the cost of searching is also clearly visible. As the number of nodes in a graph increases, small
horizontal ‘platforms’ can be observed. These regions represent pure search costs consisting
only of traversal stack operations plus unsuccessful rule matches.

Switching to a lazy mechanism as detailed in Section 6.3, although still relatively expensive,
kept the size of the graph low enough for many previously failed tests to run to completion.
The results of the lazy strategy are shown in Figures 12(b) and 13(b). The CBV graph high-
lights nicely the copying out of each argument when it is supplied to a function.

We also investigated the variation of graph size under the α-conversion schemes; the results
are displayed in Figures 12(c) and 13(c). The shapes of these graphs appear to be less random
than those from the rebinding scheme, and we see that for a particular reduction strategy
(CBN or CBV) the overall shape of the graphs are similar. This is an expected side effect of
the reduction strategy evalcut(), designed to make α-conversions transparent from the point
of view of the term being reduced. The reductions therefore only diverges at points where the
need for α-conversions differ.

Conclusions and future work

We have studied various solutions for the problem of name capture in the context of a term-
graph rewriting implementation of the X -calculus. The first uses a rebinding technique, that
required an extension of the syntax, with additional rules. The second and third change the
reduction rules of X , but without extending the signature. The second solution guarantees
that (generated) term adhere to Barendregt’s convention, whereas the third checks for capti-
vation of free names. We have measured the efficiency of all these solutions, and conclude
that the latter, although syntactically very close to the second, is by far the best.

There are a number of questions still open that will be investigated in future work. First of
all, we need to understand why the CBN measurement of the pure α-safe system are only for
the Q terms so much worse than the CBV measurements. We aim to show that the reduction
strategy used in the tool is normalising.
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(a) CBN Eager Rebinding Scheme
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Figure 12: Variation of Graph Size over ‘time’ for reducing 222I I δ under different α-
conversion schemes (AS=αSafe-NoGC, ASgc=αSafe-GC, AC=AvoidCapture-GC)
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(a) CBV Eager Rebinding Scheme

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200
ThousandsCumulative Number of Stack Operations

N
o

. o
f 

G
ra

p
h

 N
o

d
es

(b) CBV Lazy Rebinding Scheme

(c) CBV Schemes

Figure 13: Variation of Graph Size over ‘time’ for reducing 222I I δ under different α-
conversion schemes (AS=αSafe-NoGC, ASgc=αSafe-GC, AC=AvoidCapture-GC)
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