
An output-based semantics of λ in π

(Extended Abstract)

Steffen van Bakel and Maria Grazia Vigliotti

Department of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2BZ, UK

{s.vanbakel,maria.vigliotti}@imperial.ac.uk

Abstract

We define a compositional output-based interpretation of the λ-calculus with explicit sub-
stitution into a variant of the π-calculus with pairing, and show that this interpretation
preserves full single-step β-reduction with respect to contextual equivalence. For this in-
terpretation, we show the customary operational soundness for β-reduction, adequacy, and
operational completeness; using a notion of implicative type-context assignment for the π-
calculus, we also show that assignable Curry types are preserved by the interpretation. We
finish by showing that termination is preserved for reduction with respect to a notion of
lazy reduction for the π-calculus.

Introduction

The π-calculus and its dialects have proven to give an interesting model of computation.
Encoding of variants of pure [23, 27, 26, 7] and typed [21] λ-calculus [13, 8] and object
oriented calculi [19, 27] have been shown. Also, various encodings of calculi that represent
classical logic have been recently proposed [21, 5, 14].

In this paper we investigate the expressive power of the asynchronous π-calculus [23]
extended with pairing by showing a new compositional semantic interpretation of λx, the
explicit substitution λ-calculus [1, 10] that fully respects each individual reduction step i.e. also
under abstraction, in the right-hand side of an application, and inside the explicit substitu-
tion; through this result, using the fact that explicit substitution implements implicit substi-
tution, we will show that our interpretation gives a semantics 1for the λ-calculus.

The advantage of considering explicit substitution rather than the standard implicit sub-
stitution of the λ-calculusas considered in [27] was already argued in [7]. In that work we
showed that communication in the π-calculus has a fine semantic level of granularity that
‘faithfully mimics’ explicit substitution, and not the implicit one; we stress this point again
with the results presented in this paper. Our interpretation encodes not just lazy reduction
[3], but also under λ-abstraction, inside the right-hand side of an application, and inside the
substitution, thereby generalising previous results [23, 27, 26, 7].

As is usual with semantic interpretations, we test the correctness of our interpretation by
focussing on the two main criteria (see [22]), which offer a guarantee that reduction will be
simulated correctly:
(Preservation of observations:) : If M terminates, then every computation of M (a process)

signals “completion” to other processes in some manner.

1 Note that we do not present an implementation of the λ-calculus.

1

(Preservation of divergence:) : If M does not terminate, then no computation of M signals
completion.

These two criteria are arguably the main properties that have to be shown for an inter-
pretation, but there are many more that one could demand to hold, like preservation of
compositions, of reduction steps, of termination, of simulations, of equivalences, etc. But, since
the notions of reduction vary greatly between various calculi, it comes as no surprise that
normally not all these properties are provable for any given interpretation. For example, the
preservation of termination “if M terminates, then so does M ” is not automatically preserved.

Take the λ-calculus and Combinatory Logic (cl) [16]; although these are naturally linked,
the fact that reduction is strong in the first and weak in the second makes preservation of
termination dubious. Although the encoding of the λ-calculus into cl is well behaved, the
reverse encoding does preserves termination:

i) t = S(K (SII)) (K(SII)) is a normal form, but t λ →∗
β +λc.(λx.xx)(λx.xx), which does

not have a β-normal form, not even a head-normal form, so no observable behaviour.
ii) t = SK((SII) (SII)) has no normal form, while t λ →∗

β +λx.x.

When mapping one kind of reduction onto another, not all properties are preserved.
(See [6] for a discussion on approximation semantics and full abstraction for Combinatory

Systems).
Note that preservation of termination is not an issue when defining a semantics. For ex-

ample, when representing the computable functions into the λ-calculus, to encode recursive
functions a fixed-point constructor is used like λ f .(λx. f (xx))(λx. f (xx)), which already on
its own does not terminate, leaving interpreted functions with non-terminating parts2. This
could be solved by enforcing a reduction strategy on the target language, typically via lazy
reduction, but at the price that, for example, Church numerals no longer are a good inter-
pretation for numbers. It should be clear that this does not imply that the λ-calculus is not a
proper model of computation: termination is not a decisive criterion on the suitability of an
interpretation.

And in fact, as also stated by Clinger [15]:

“ the formal semantics of a (. . .) programming language may itself be interpreted to pro-
vide an (inefficient) implementation of the language. A formal semantics need not always
provide such an implementation, though, and to believe that semantics must provide an
implementation leads to confusion ”

Remark that completion does not equate to termination; completion gets signalled via an
observable action, like output, after which computation can continue, whereas termination
implies that computation will eventually halt.

In general, in the concurrency setting there are many criteria used to established whether
an interpretation is good; here we focus on the previous two criteria, that will be formally
translated into:

• Preservation of execution steps: if M → N then M →∗� N ;
• Preservation of divergences: if M diverges, then M diverges.

where · is the interpretation function, →∗ means the reflexive and transitive closure of
reduction in the target calculus, and � is an adequate equivalence relation. Milner checks
precisely the two criteria above for his interpretation of the lazy λ-calculus [23] (where re-
ductions are not allowed to take place under the λ-abstraction, nor in the right-hand side

2 For example, since the factorial function fac is defined recursively, fac n = if n = 0 then 1 else fac (n − 1)
the λ-term that represents fac 3 has an infinite reduction path (inside the fixed-point constructor) that does not
emit any result, as well as the normal form 6.

2

of application)3. Sangiorgi and Walker [27] extended Milner’s results also by showing that
also termination is preserved; this is achieved mainly because each reduction step taken to
reach the lazy normal form corresponds to a finite number of communication steps in the
π-calculus, and in the created process

νx(λy.R m u | x := N m) = νx(u(y).u(v). R m v | ! x(w). N m w)

no communication is possible inside R m v or N m w, since these are placed under input; this
result comes, therefore, at the price of restricting the interpreted reduction on λ-terms to the
large-step reduction to normal form of the lazy λ-calculus. Milner’s encoding does not re-
spect step-by-step lazy β-reduction (see also [7]), but rather large-step reduction, that reduces
to lazy normal form directly; therefore, not all individual reduction steps are modelled. In
fact, as argued in [7], it is not possible to show the first criterion for normal single step β-
reduction for Milner’s encoding, not even when restricted to lazy reduction. Departing from
Milner’s original result, most research in the direction of encodings into the π-calculus –
call-by-name, call-by-value and call-by-need [27] – consider a λ-calculus where β-reductions are
limited to lazy reduction; therefore, these encodings cannot model each single β-reduction
step. The focus of Milner and later results has been the correspondence/relation between ob-
servable behaviour in the lazy λ-calculus and the π-calculus. In this setting, the problem of full
abstraction is formulated towards an equivalence on λ-terms that is not β-equivalence, but
through applicative bisimilarity: this has the advantage that all unsolvable terms are equated.
The main result is stated as M ≈λ

c N ⇐⇒ M ≈π
c N , which formulates that if two λ-terms

have the same observable behaviour, then so do their interpretations in π, and vice-versa.
Also the interpretations we defined in the past [5, 7] do not model full reduction; this is

directly caused by the fact that those interpretations place terms under input (the operand
in an application, to be precise); the nature of the reduction relation on the π-calculus does
not permit reduction under an input. Moreover, β-reduction is not modelled in full in [7];
rather, we showed to faithfully represent explicit spine reduction (Def. 2.4) that allows reduc-
tion under abstraction as well, and which normal forms correspond (i.e. with perhaps some
substitutions pending) to β-reduction’s normal forms of head reduction.

In contrast, in this paper we show that we can faithfully model λx’s explicit reduction in
full4 and step-by-step, into the π-calculus. Since reduction in λx implements β-reduction,
it follows that we can model β-reduction as well; the result is stated through a symmetric
relation on processes, so we model β-equality also, which then gives that our interpretation
gives, in fact, a semantics. We achieve our results by generalising the logical interpretation
we presented in [7]. This interpretation is based on the encoding of implicative natural
deduction into the sequent calculus, and induces a notion of implicative type assignment for
the π-calculus, which we will use here as well.

Although our main objective is to study semantics for the λ-calculus, we can show a ter-
mination result, but only when restricting reduction in the π-calculus, where we do not
allow reduction inside a mute process, i.e. a process with no free output name. We call this
notion of reduction lazy as well; this solution to the termination problem corresponds to the
restriction to lazy reduction for the λ-calculus when modelling the computable functions.

To be precise, we define an interpretation of λ-terms · f ·, for which we will show5:

(Operational Soundness) : M →x N ⇒ M f a →∗
π∼c N f a;

3 Milner also considers an interpretation that respects call-by-value reduction.
4 Since we represent full λx-reduction, we model in particular the rewrite rule M → N ⇒ L 〈x :=M〉 →

L 〈x :=N〉, where reduction inside the substitution is explicitly allowed.
5 We use →+ and →∗ for the transitive, resp. reflexive and transitive closures; we use ↓ for convergence, and

↑ for divergence; ∼c represents contextual equivalence.

3

(Adequacy) : M =β N ⇒ M f a ∼c N f a;
(Operational Completeness) : M f a →π P ⇒ ∃N [P →∗

π∼c N f a & M →∗
x N];

(Type preservation) : Γ λ M : A ⇒ M f a : Γ π
io a:A;

(Termination) : M↓ ⇒ M f a↓lπ.

1 The asynchronous π-calculus with pairing

The notion of asynchronous π-calculus that we consider in this paper is the one we also
used in [5, 7], and is different from other systems studied in the literature. To successfully
preserve assignable types, inspired by [2] we also introduce a structure over names, such
that not only names but also pairs of names can be sent (but not a pair of pairs). We also
introduce the let-construct to deal with inputs of pairs of names that get distributed over the
continuation, and take the view that processes communicate by sending data over channels,
so not just names, but also pairs of names.

We first define the notion of π-calculus that we consider here.

Definition 1.1 • Channel names and data are defined by:

a,b, c,d names p ::= a | 〈a,b〉 data

Notice that pairing is not recursive.
• Processes are defined by the grammar (where x,y,z are variables):

P, Q ::= 0 | P |Q | ! P | (νa)P | a(x).P | a p | let 〈x,y〉= p in P

• A (process) context is simply a term with a hole [·].
• We consider n bound in (νn)P, x bound in a(x).P, and x and y to be bound in let 〈x,y〉= p in P.

We call n free in P if it occurs in P and is not bound; we write fn(P) for the set of free
names in P, and write fn(P, Q) for fn(P) ∪ fn(Q).

• We call a process mute if it has no free output name.

Whether or not a process is mute is decidable.
We abbreviate a(x).let 〈y,z〉=x in P by a(y,z).P, and (νm) (νn)P by (νmn)P, and write a p

for a p.0 . Notice that all channels are monadic.

Definition 1.2 (Congruence) The structural congruence relation ‘≡’ is the smallest equiv-
alence relation closed under contexts defined by the following rules:

(νn)0 ≡ 0 P | 0 ≡ P P | Q ≡ Q | P ! P ≡ P | ! P
(P | Q) | R ≡ P | (Q | R) (νm) (νn)P ≡ (νn) (νm)P

(νn) (P | Q) ≡ P | (νn)Q, if n �∈ fn(P) let 〈y,z〉= 〈a,b〉 in R ≡ R[a/z,b/z]

We will consider processes modulo congruence: this implies that we will not deal explicitly
with the process let 〈x,y〉= 〈a,b〉 in P, but rather with P[a/x,b/y].

Because of rule (P | Q) | R ≡ P | (Q | R), we will normally not write brackets in a parallel
composition of more than two processes. We explicitly convert ‘an output sent on a is to
be received as input on b’ via ‘a(w).b w’ (called a forwarder in [20]), which, following [27], is
abbreviated into a b.

Definition 1.3 (Reduction) i) The reduction relation over processes of the π-calculus is

4

defined by:

(synchronisation) : a p | a(x).Q →π Q[p/x]
(binding) : P →π P′ ⇒ (νn)P →π (νn)P′

(composition) : P →π P′ ⇒ P | Q →π P′ | Q
(congruence) : P ≡ Q & Q →π Q′ & Q′ ≡ P′ ⇒ P →π P′

ii) We write for the transitive closure of →π , and →∗
π for the reflexive, transitive closure of

→π.
iii) We define →lπ (lazy reduction) as →π, but do not allow reduction inside mute pro-

cesses6.

Notice that a〈b,c〉 | a(x,y).Q →π Q[b/x, c/y].
The following notions are standard, and of use:

Definition 1.4 i) We write P↓n (P outputs on n) if P ≡ (νb1 . . . bm) (n p | Q) for some Q,
where n �∈ {b1, . . . ,bm}.

ii) We write P⇓n (P will output on n) if there exists Q such that P →∗
π Q and Q↓n.

iii) We write P �c Q (and call �c the contextual ordering) if, for all contexts C[·] and for all n,
if C[P]↓n then C[Q]⇓n.

iv) We write P ∼c Q (and call P and Q contextually equivalent) if and only if P �c Q and
Q �c P.

The π-calculus is equipped with a rich type theory [27], from the basic type system for
counting the arity of channels [25] to sophisticated linear types in [21], which studies a rela-
tion between Call-by-Value λµ [24] and a linear π-calculus. The notion of type assignment
we use here (first defined in [5]) differs from systems presented in the past in that types
contain no channel information, and in that it expresses implication, i.e. has functional types
and describes the ‘input-output interface’ of a process.

Definition 1.5 (Types and Contexts) i) Types are defined by: A, B ::= ϕ | A→B where
ϕ is a basic type of which there are infinitely many.

ii) A context of inputs Γ is a mapping from names to types, denoted as a finite set of state-
ments n:A, such that the subject of the statements (n) are distinct. We write Γ1, Γ2 for the
compatible union of Γ1 and Γ2 (if n:A1 ∈ Γ1 and n:A2 ∈ Γ2, then A1 = A2) , and write Γ,n:A
for Γ,{n:A}.

iii) Contexts of outputs ∆, and the notions ∆1,∆2 and n:A,∆ are defined similarly.

So, for the context Γ,n:A, we have either n:A ∈ Γ, or Γ is not defined on n.

Definition 1.6 (Context assignment for π [5]) Functional type assignment for the π-cal-
culus is defined by the following sequent system7:

6 Lazy reduction can be seen as similar to garbage collection, since it ignores processes that produce no visible
output.

7 Notice that type assignment is classical in nature (i.e. not intuitionistic), since we can have more than one
conclusion.

5

(0) : 0 : Γ πio ∆

(!) :
P : Γ πio ∆

!P : Γ πio ∆

(ν) :
P : Γ, a:A πio a:A,∆

(a �∈ Γ,∆)
(νa)P : Γ πio ∆

(|) :
P1 : Γ πio ∆ · · · P n : Γ πio ∆

P1 | · · · | P n : Γ πio ∆

(〈〉-out) :
P : Γ,b:A πio c:B,∆

(b �= a, c)
a〈b,c〉.P : Γ,b:A πio a:A→B, c:B,∆

(out) :
P : Γ,b:A πio b:A,∆

(a �= b)
a b : Γ,b:A πio a:A,b:A,∆

(in) :
P : Γ, x:A πio x:A,∆

a(x).P : Γ, a:A πio ∆

(let) :
P : Γ,y:B πio x:A,∆ (y,z �∈∆;

x,z �∈ Γ)let 〈x,y〉= z in P : Γ,z:A→B πio ∆

As usual, we write P : Γ π
io ∆ if there exists a derivation using these rules that has this

expression in the conclusion.

Notice that the ‘input-output interface of a π-process’ property is nicely preserved by all the
rules; handling of arrow types is restricted to the rules (let) and (〈〉-out).

The above system is not trivial, since the process

(νcb) (x(w).c w | c(v,d).(! b v | d a) | ! x f b)

(the interpretation of the λ-term xx as defined below) is not typeable: the left-hand x would
need the type A→B, and the right-hand x the type A; x can only have one type, and A→B
and A cannot be unified.

Example 1.7 We can derive

P : Γ,y:B πio x:A,∆
(let)

let 〈x,y〉= z in P : Γ,z:A→B πio ∆
(in)

a(z). let 〈x,y〉=z in P : Γ, a:A→B πio ∆

so the following rule is derivable:

(〈〉-in) :
P : Γ,y:B πio x:A,∆

(y, a) �∈ ∆, x �∈ Γ
a(x,y).P : Γ, a:A→B πio ∆

We leave the exploration of the logical contents of this system for future work.
Since weakening is admissible, we allow ourselves to be a little less precise when we

construct derivations, and freely switch to multiplicative style where rules join contexts
whenever convenient, by using, for example, the rule

(|) :
P1 : Γ1 πio ∆1 · · · Pn : Γn πio ∆n

P1 | · · · | Pn : Γ1, . . . , Γn πio ∆1, . . . ,∆n

2 The λ-calculus and λx

We assume the reader to be familiar with the λ-calculus and just repeat the definition of the
relevant notions. We will look in particular at Bloo and Rose’s calculus λx [10], a version
of the λ-calculus with explicit substitution, and show our results for λx; since λx implements
β-reduction, we also show our results for normal β-reduction.

Definition 2.1 (Lambda terms and β-reduction [8])

i) The set Λ of λ-terms is defined by the grammar: M, N ::= x | λx.M | MN.

6

ii) The reduction relation →β is defined by:

(β) : (λx.M)N → M[N/x] M → N ⇒

ML → NL
LM → LN
λx.M → λx.N

where M[N/x] is the (implicit) substitution of N for x in M; =β is the smallest equiva-
lence relation that contains →β.

iii) Lazy reduction →l [3] for the λ-calculus is defined by limiting →β to:

(λx.M)N → M[N/x] M → N ⇒ ML → NL

iv) Spine reduction →s [7] for the λ-calculus is defined by limiting →β to:

(λx.M)N → M[N/x] M → N ⇒
{

ML → NL
λx.M → λx.N

We now present λx, a version of the λ-calculus with explicit substitution. Explicit substi-
tution λ-calculus treats substitution as a first-class operator, and describes all the necessary
steps to effectuate a substitution. It introduces the concept of substitution within the syntax,
making it explicit, by adding M 〈x :=N〉:
Definition 2.2 (c.f. [10]) i) The syntax of the explicit lambda calculus λx is defined by:

M, N ::= x | λx.M | MN | M 〈x :=N〉
ii) The reduction relation →x on terms in λx is defined by the following rules:

(λx.M)P → M 〈x :=P〉
(MN) 〈x :=P〉 → M 〈x :=P〉N 〈x :=P〉

(λy.M) 〈x :=P〉 → λy.(M 〈x :=P〉)
x 〈x :=P〉 → P
y 〈x :=P〉 → y, y �= x

M → N ⇒

ML → NL
LM → LN
λx.M → λx.N
M 〈x := L〉 → N 〈x := L〉
L 〈x :=M〉 → L 〈x :=N〉

Notice that these rules allow reduction to take place also inside the substitution term, as
expressed by the last rule.

Explicit substitution describes explicitly the process of executing a β-reduction, where the
implicit substitution of the β-reduction step is split up into reduction steps.

Proposition 2.3 (λx implements β-reduction) • M →β N ⇒ M →∗
x N.

• M ∈ λ & M →x N ⇒ ∃L ∈ Λ [N →∗
x L & M →∗

β L].

We will show our main results for λx; since λx implements β-reduction, we also show our
results for normal β-reduction (with implicit substitution).

In [7], we defined two restrictions of reduction in λx which are useful for the results of
this paper.

Definition 2.4 (λxl and λxs [7]) We define two sub-reduction systems of λx:

i) Explicit lazy reduction →xl is defined as follows.

(λx.M)N → M 〈x :=N〉
M 〈x :=N〉 → M (x �∈ fv (M))

((xM1· · ·Mn) 〈y := L〉) 〈x :=N〉 → ((NM1· · ·Mn) 〈y := L〉) 〈x :=N〉

M → N ⇒
{

ML → NL
M 〈x := L〉 → N 〈x := L〉

7

ii) Explicit spine reduction →xs is defined as →xl, but by adding

(λy.M) 〈x :=N〉 → λy.(M 〈x :=N〉)
M →π N ⇒ λx.M →π λx.N

The difference between these two notions is that explicit spine reduction allows a substitution
to propagate under an abstraction, and that explicit spine reduction can take place under an
abstraction as well.

In both these notions, substitution is lazy: notice that we are reducing only at the head of
a term, and only when the variable mentioned in the pending substitution appears in the
head will that substitution be executed; this appears to be the implicit approach of [23] (see
Lemma 4.5, case 3).

The notion of type assignment on λx is a natural extension of Curry’s system for the
λ-calculus by adding rule (cut).

Definition 2.5 Using the notion of types in Def. 1.5, type assignment for λx is defined by:

(Ax) :
Γ, x:A λ x : A (cut) :

Γ, x:A λ M : B Γ λ N : A

Γ λ M 〈x :=N〉 : B

(→I) :
Γ, x:A λ M : B

Γ λ λx.M : A→B
(→E) :

Γ λ M : A→B Γ λ N : A

Γ λ MN : B

3 A semantic interpretation of λ-terms for →x and →β

We will now define our full interpretation · f · of the λ-calculus (with explicit substitution)
into the π-calculus.
Definition 3.1 (Full logical interpretation)

x f a =
∆ x(w).a w

λx.M f a =
∆ (νxb) (M f b | a〈x,b〉)

MN f a =
∆ (νcb) (M f c | c(v,d).(! b v | d a) | ! N f b)

M〈x :=N〉 f a =
∆ (νx) (M f a | ! N f x)

Notice that we use of a b; we write a b for auxiliary forwarders generated by the inter-
pretation, and x(w).a w for the interpretation of x under the channel name a.

The replicated term in the interpretation of the substitution is not guarded, so can run on
its own; this in contrast to the case for Milner’s encoding (Def. 4.1), where it is guarded via
input; this is intentional: we aim to interpret λx, where substitution is explicit, and reductions
are allowed to take place inside N in M 〈x :=N〉.

In particular: – we see a variable x as an input channel, and we need to retransmit its input
to the output channel a that we interpret it under;
• for an abstraction λx.M, we give the name b to the output of M; that M has input x and

output b gets sent out over a – the name of λx.M – so that a process that wants to call on
this functionality, knows which channel to send the input to, and on which channel to pick
up the result;
• for an application MN, the output of M, transmitted over c, is received as a pair 〈v,d〉 of

input-output names in the synchronisation cell c(v,d).(! b v | d a); the received input v name
is used to redirect the output for N arriving over b (since N f b gets replicated, so does b v)
and d gets redirected to the output of the application a.

8

• substitution is implemented via two parallel processes, which will communicate if nec-
essary, effectuating the substitution.
• all interpretations of terms have only one free output name.
• since we aim to represent all reductions taking place inside an application MN, we need

to express MN f a in terms of M f b and N f c, where neither can appear under an input,
since that would imply that reduction would be blocked, as is the case for the traditional
approaches.
• Our interpretation generates a highly parallel implementation of λ-terms, with no nesting

at all; the processes we generate are, essentially, a flat parallel composition of components
like

x(w).a w b(v,d).(! a v | d c) a〈y,b〉
using replication where needed. Moreover, we model explicit substitution via the commu-
nication of two processes, so can faithfully take into account all steps of reduction in the
explicit λ-calculus (λx [10]) as well.

To underline the significance of our results, notice that the interpretation is not trivial, since
λyz.y and λx.x are interpreted by (νybzb1) (y(w).b1 w | b〈z,b1〉 | a〈y,b〉) and (νxb) (x(w).b w |
a〈x,b〉), respectively, processes that differ under ∼c.

Even though our interpretation · f · is fundamentally different form the one we presented
in [7] (see Def. 4.3), we can still show that typeability is preserved:

Theorem 3.2 (· f · preserves Curry types) If Γ λ M : A, then M f a : Γ π
io a:A.

Proof: By induction on the structure of derivations in λ; notice that we use implicit weak-
ening.
(Ax) : Then M = x, and Γ = Γ′, x:A. Notice that x f a = x(w).a w, and that

(out)
a w : Γ′,w:A πio a:A,w:A

(in)
x(w).a w : Γ′, x:A πio a:A

(→I) : Then M = λx.N, A = C→D, and Γ, x:C λ N : D, and λx.N f a = (νxb) (N f b | a〈x,b〉).
Then, by induction, D :: N f b : Γ, x:C π

io b:D exists, and we can construct:

D
N f b : Γ, x:C πio b:D

(〈〉-out)
a〈x,b〉 : x:C πio Γ, a:C→D,b:D,∆

(|)
N f b | a〈x,b〉 : Γ, x:C πio a:C→D,b:D,∆

(ν)
(νb) (N f b | a〈x,b〉) : Γ, x:C πio a:C→D

(ν)
(νxb) (N f b | a〈x,b〉) : Γ πio a:C→D

(→E) : Then M = PQ, and there exists B such that Γ λ P : B→A and Γ λ Q : B, and PQ f a =
(νcb) (P f c | c(v,d).(! b v | d a) | ! Q f b). By induction, there exist D1 :: P f c : Γ π

io c:B→A
and D2 :: Q f b : Γ π

io b:B, and we can construct:

9

D1

P f c : Γ πio c:B→A

(out)
v w : Γ,w:B πio v:B,w:B,∆

(in)
b v : b:B πio v:B

(!)
! b v : b:B πio v:B

(out)
a w : Γ,w:A πio a:A,w:A,∆

(in)
d a : d:A πio a:A

(|)
! b v | d a : Γ,b:B,d:A πio v:B, a:A

(〈〉-in)
c(v,d).(!b v | d a) : Γ,b:B, c:B→A πio a:A

D2

Q f b : Γ πio b:B
(!)

! Q f b : Γ πio b:B
(|)

P f c | c(v,d).(!b v | d a) | ! Q f b : Γ,b:B, c:B→A πio c:B→A, a:A
(ν)

(νb) (P f c | c(v,d).(!b v | d a) | ! Q f b) : Γ, c:B→A πio c:B→A, a:A
(ν)

(νcb) (P f c | c(v,d).(!b v | d a) | ! Q f b) : Γ πio a:A

(cut) : Then M = P 〈x :=Q〉, and there exists B such that Γ, x:B λ P : A and Γ λ Q : B, and
P〈x :=Q〉 f a = (νx) (P f a | ! Q f x). By induction, there exist D1 :: P f c : Γ, x:B πio a:A and
D2 :: Q f x : Γ πio x:B, and we can construct:

D1

P f a : Γ, x:B πio a:A

D2

Q f x : Γ πio x:B
(!)

! Q f x : Γ πio x:B
(|)

P f a | ! Q f x : Γ, x:B πio x:B, a:A
(ν)

(νx) (P f a | ! Q f x) : Γ πio a:A

Example 3.3 The interpretation of a redex reduces as:

(λx.P)Q f a =
∆

(νcb) ((νxb1) (P f b1 | c〈x,b1〉) | c(v,d).(! b v | d a) | ! Q f b) →π (c)
(νbxb1) (P f b1 | ! b x | b1 a | ! Q f b)

So reduction in π implements β-reduction by at least performing this step; this implies
that we model each β-reduction step by at least one π-reduction.

The next example illustrates that we can now model more than lazy reduction.

Example 3.4 (λx.(λz.(λy.M)x))N f a =
∆ ,≡

(νcb) ((νxb1) (λz.(λy.M)x f b1 | c〈x,b1〉) | c(v,d).(! b v | d a) | ! N f b) →π (c)
(νb) ((νxb1) ((νzb2) ((νc1b3) ((νyb4) (M f b4 | c1〈y,b4〉) |

c1(v,d).(! b3 v | d b2) | ! x f b3) | b1〈z,b2〉) | ! b x | b1 a) | ! N f b) →π (c1)
(νb) ((νxb1) ((νzb2) ((νb3) ((νyb4) (M f b4 | ! b3 y | b4 b2) | ! x f b3) |

b1〈z,b2〉) | ! b x | b1 a) | ! N f b) →π (b1)
(νzb2) ((νyb4) (M f b4 | b4 b2 |

(νbxb3) (! b3 y | ! x f b3 | ! b x | ! N f b)) | a〈z,b2〉) ∼c (b, x,b3)
(νzb2) ((νyb4) (M f b4 | b4 b2 | ! N f y) | a〈z,b2〉) ∼c (b4)
(νzb2) ((νy) (M f b2 | ! N f y) | a〈z,b2〉) =

∆ λz.(M〈y :=N〉) f a

Lemma 3.5 The following are admissible.

i) ! P ≡ ! P | ! P.
ii) (νa) ((νb) (Q | R) | ! P) ≡ (νb) ((νa) (Q | ! P) | (νa) (R | ! P)) provided a is the name of the

only (private) channel that is used between Q and P, and between R and P (in one direction
only).

iii) (νx) (! N f b | ! P f x) ∼c !((νx) N f b | ! P f x).

Proof: Easy.

10

We will now show that our interpretation fully respects the explicit reduction →x, modulo
contextual equivalence, using renaming of output. Renaming is defined and justified via
the following lemma, which states that we can safely rename the output of an interpreted
λ-term.

Proposition 3.6 (νxb) (c(v,d).(! b v | d e)) ∼c (νa) (a e | (νxb) (c(v,d).(! b v | d a))).

We use this result to show the following:

Lemma 3.7 (Renaming lemma) (νa) (a e | M f a) ∼c M f e .

Proof: i) (νa) (a e | x f a) =
∆ (νa) (a e | x(w).a w) ∼c x(w).e w =

∆ x f e

ii) (νa) (a e | λx.M f a) =
∆ (νa) (a e | (νxb) (M f b | a〈x,b〉)) ≡

(νaxb) (a e | M f b | a〈x,b〉) ∼c (νxb) (M f b | e〈x,b〉) ∼c λx.M f e

iii) (νa) (a e | MN f a) =
∆

(νa) (a e | (νcb) (M f c | c(v,d).(! b v | d a) | ! N f b)) ∼c (3.6)
(νcb) (M f c | c(v,d).(! b v | d e) | ! N f b) =

∆ MN f e

iv) (νa) (a e | M〈x :=N〉 f a) =
∆ (νa) (a e | (νx) (M f a | ! N f x)) ≡

(νx) ((νa) (a e | M f a) | ! N f x) ∼c (IH)
(νx) (M f e | ! N f x) =

∆ M〈x :=N〉 f e

Using this lemma, we can show that:

(νbxb1) (M f b1 | !b x | b1 a | ! N f b) ∼c (νx) (M f a | ! N f x)

which, in part, justifies the last case of Def. 3.1.
Since M〈x :=N〉 f a places M f a and N f x in parallel, we can even show that the λx-

variant of the Substitution Lemma is preserved:

Lemma 3.8 P〈y :=Q〉〈x :=R〉 f a ∼c P〈x :=R〉〈y :=Q〈x :=R〉〉 f a .

Proof: P〈y :=Q〉〈x :=R〉 f a =
∆ (νx) ((νy) (P f a | ! Q f y) | ! R f x) ≡

(νxy) (P f a | ! Q f y | ! R f x) ∼c (νxy) (P f a | ! R f x | ! Q f y | ! R f x) ∼c
(νy) ((νx) (P f a | ! R f x) | (νx) (! Q f y | ! R f x)) ∼c

(νy) ((νx) (P f a | ! R f x) | ! Q〈x :=R〉 f y) =∆ (νy) (P 〈x :=R〉 f a | ! (Q 〈x :=R〉) f y) =∆

P〈x :=R〉〈y :=Q〈x :=R〉〉 f a

As in [23, 27], we can now show a reduction preservation result for full explicit reduction
for λx, by showing that · f · preserves →x up to ∼c. As for Thm. 4.4, we do not require the
terms to be closed:

Theorem 3.9 (Preservation of reduction) M →x N ⇒ M f a ∼c N f a.

Proof: By induction on explicit reduction.
((λx.M)P →π M 〈x :=P〉) : (λx.M)P f a =

∆

(νcb) ((νxb1) (M f b1 | c〈x,b1〉) | c(v,d).(! b v | d a) | ! P f b) ∼c (c)
(νcb) (M f b1 | ! b x | b1 a | ! P f b) ∼c (νx) (M f a | ! P f x)

((MN) 〈x :=P〉 →π M 〈x :=P〉N 〈x :=P〉) : MN〈x :=P〉 f a =
∆

(νx) (MN f a | ! P f x) =
∆

(νx) ((νcb) (M f c | c(v,d).(! b v | d a) | ! N f b) | ! P f x) ∼c (3.5(ii))
(νcb) ((νx) (M f c | ! P f x) | c(v,d).(! b v | d a) | (νx) (! N f b | ! P f x)) ∼c (3.5(iii))
(νcb) ((νx) (M f c | ! P f x) | c(v,d).(! b v | d a) | ! N〈x :=P〉 f b) =

∆

(νcb) (M 〈x :=P〉 f c | c(v,d).(! b v | d a) | ! N 〈x :=P〉 f b) =
∆

M〈x :=P〉N〈x :=P〉 f a

11

((λy.M) 〈x :=P〉 →π λy.(M 〈x :=P〉)) : (λy.M)〈x :=P〉 f a =
∆

(νx) ((νyb) (M f b | a〈y,b〉) | ! P f x) ≡ (νyb) ((νx) (M f b | ! P f x) | a〈y,b〉) =
∆

λy.M〈x :=P〉 f a

(x 〈x :=P〉 →π P) : x〈x :=P〉 f a =
∆ (νx) (x f a | ! P f x) ≡

(νx) (x(w).a w | P f x | ! P f x) ∼c (3.7) (νx) (P f a | ! P f x) ≡
P f a | (νx) (! P f x) ∼c P f a

(y 〈x :=P〉 →π y) : y〈x :=P〉 f a =
∆ (νx) (y f a | ! P f x) ≡ y f a | (νx) (! P f x) ∼c y f a

(M →π N ⇒ ML →π NL) : ML f a =
∆

(νcb) (M f c | c(v,d).(! b v | d a) | ! L f b) ∼c (IH)
(νcb) (N f c | c(v,d).(! b v | d a) | ! L f b) =

∆ NL f a

(M →π N ⇒ LM →π LN) : LM f a =
∆

(νcb) (L f c | c(v,d).(! b v | d a) | ! M f b) ∼c (IH)
(νcb) (L f c | c(v,d).(! b v | d a) | ! N f b) =

∆ LN f a

(M →π N ⇒ λx.M →π λx.N) : λx.M f a =
∆ (νxb) (M f b | a〈x,b〉) ∼c (IH)

(νxb) (N f b | a〈x,b〉) =
∆ λx.N f a

(M →π N ⇒ M 〈x := L〉 →π N 〈x := L〉) : M〈x := L〉 f a =
∆

(νx) (M f a | ! L f x) ∼c (IH) (νx) (N f a | ! L f x) =
∆ N〈x := L〉 f a

(M →π N ⇒ L 〈x :=M〉 →π L 〈x :=N〉) : L〈x :=M〉 f a =
∆ (νx) (L f a | ! M f x) ∼c (IH)

(νx) (L f a | ! N f x) =
∆ L〈x :=N〉 f a

Since λx implements β-reduction, faithful to the principle we introduced, we can show the
two criteria as mentioned in the introduction:

Theorem 3.10 (Operational Soundness for →β) i) M →∗
β N ⇒ M f a ∼c N f a.

ii) M↑ ⇒ M f a↑.

The first is shown by induction using Thm. 3.9; the second follows from Ex. 3.3.
Since ∼c is symmetric, Thm. 3.10 immediately gives that · f · preserves =β up to ∼c, which

states that our interpretation gives, in fact, a semantics for the λ-calculus.

Corollary 3.11 (Adequacy) If M =β N, then M f a ∼c N f a.

This property gives an easy proof for operational completeness for λx:

Theorem 3.12 (Operational Completeness for →β and →x) i) Let M be a term in λx. If
M f a →π P then there is N such that P ∼c N f a, and M →∗

x N.
ii) Let M ∈ Λ, i.e. a (pure) λ-term. If M f a →π P then there exists N ∈ Λ such that P ∼c N f a,

and M →∗
β N.

We cannot show “if M f a ∼c N f a, then M =β N” (i.e. completeness), since different un-
solvable terms like (λx.xx)(λx.xx) and (λy.yyy)(λy.yyy) are not β-equivalent, but are con-
textually equivalent; their interpretations under · f · also never exhibit an output (see the
third example in Ex. 3.13). It seems that =bt (which equates terms that have the same Böhm
tree) is suitable; we will investigate this in future work.

To illustrate the expressiveness of our interpretation, we now give some examples:

12

Example 3.13 The interpretation of an unsolvable term has no observable output:

∆∆f a =
∆ (νcb) ((νxb1) (xx f b1 | c〈x,b1〉) | c(v,d).(! b v | d a) | ! ∆ f b) →π (c)

(νb) ((νxb1) (xx f b1 | ! b x | b1 a) | ! ∆
f b) ≡,=∆

(νb) ((νxb1) ((νc1b2) (x(w).c1 w | c1(v,d).(! b2 v | d b1) | ! x f b2)|
! b x | b1 a) | (νyb3) (yy f b3 | b〈y,b3〉) | ! ∆ f b) →π (b, x)

(νb) ((νxb1) ((νc1b2) ((νyb3) (yy f b3 | c1〈y,b3〉)|
c1(v,d).(! b2 v | d b1) | ! x f b2) | ! b x | b1 a) | ! ∆ f b) =

∆

(νb) ((νxb1) ((νc1b2) (∆ f c1|
c1(v,d).(! b2 v | d b1) | ! x(w).b2 w) | ! b x | b1 a) | ! ∆ f b) ∼c (b, x)

(νb1) ((νc1b2) (∆ f c1 | c1(v,d).(! b2 v | d b1) | b1 a | ! ∆ f b2) ∼c (b1)
(νc1b2) (∆ f c1 | c1(v,d).(! b2 v | d a) | ! ∆ f b2) =

∆ ∆∆f a

This shows that the interpretation of ∆∆ reduces (even using lazy reduction) in more than
one step to an equivalent process, without creating output over a.

We can run inside the right-hand side of an application:

I(I I) f a =
∆ (νcb) (I f c | c(v,d).(! b v | d a) | ! I I f b) ≡,=∆

(νcb) (I f c | c(v,d).(! b v | d a) | (νc1b1) ((νzb2) (z f b2 | c1〈z,b2〉) |
c1(v,d).(! b1 v | d b) | ! I f b1) | ! (λz.z)I f b) →π (c1)

(νcb) (I f c | c(v,d).(! b v | d a) | (νb1) ((νzb2) (z(w).b2 w | !b1 z | b2 b)|
(νyb4) (y f b4 | b1〈y,b4〉) | ! I f b1) | ! I I fb) →π (b1,z,b2)

(νcb) ((νxb5) (x f b5 | c〈x,b5〉) | c(v,d).(! b v | d a) | (νyb4) (y f b4 | b〈y,b4〉) |
(νb1z) (! b1 z | ! I f b1) | ! I I fb) →π (c)

(νb) ((νxb5) (x(w).b5 w | ! b x | b5 a) | (νyb4) (y f b4 | b〈y,b4〉)|
(νb1z) (! b1 z | ! I f b1) | ! I I fb) →π (b, x,b5)

(νyb4) (y f b4 | a〈y,b4〉) | (νb1z) (! b1 z | ! I f b1) | (νbx) (! b x | ! I I fb) ∼c I f a

Notice that we created a copy of the replicated right-hand side first, and model more
than just lazy or spine reduction. Since we reduced under the bound name b, this is not a
reduction in →lπ ; we can, however, also reduce I(I I) f a using lazy reduction:

I(I I) f a =
∆ (νcb) ((νxb1) (x f b1 | c〈x,b1〉) | c(v,d).(! b v | d a) | ! I I f b) →lπ (c)

(νb) ((νxb1) (x f b1 | ! b x | b1 a|
(νcb2) ((νyb3) (y f b3 | c〈y,b3〉) | c(v,d).(! b2 v | d b) | ! I f b2) | ! I I f b)) →lπ (c)

(νb) ((νxb1) (x(w).b1 w | b x | !b x | b1 a | (νb2) ((νyb3) (y(w).b3 w | b2 y | ! b2 y|
b3 b) | (νzb4) (z f b4 | b2〈z,b4〉) | ! I f b2) | ! I I f b)) →lπ (b2,y,b3,b, x,b1)

(νzb4) (z f b4 | a〈z,b4〉) | (νbxb1b2y) (! b x | !b2 y | ! I f b2 | ! I I f b) ∼c I f a

Notice that the term that gets discarded in the last step is mute.
In x(∆∆) f a =

∆ (νcb) (x f c | c(v,d).(! b v | d a) | ! ∆∆
f b), the output b of ∆∆

f b is bound,
so that process is mute, and x(∆∆) f a is in lazy normal form.

4 Termination

Since through · f · we interpret full λx-reduction, we explicitly want the interpretation of N
to be runnable in the interpretation of MN, as well as in the interpretation of the substitution
term M 〈x :=N〉, so we are forced to introduce potential infinite computations, whereas the
corresponding λ-term might be terminating.

For the spine interpretation, as done in [?], this is relatively easy to fix by placing a guard
on the replicated term, similar to what is done in Milner’s encoding; see [?] for details. We
cannot use that approach here, since it would invalidate our main representation result. We
can, however, show termination for β-reduction, via limiting reduction for the π-calculus
to lazy reduction as well, i.e. by limiting π’s notion of reduction by not allowing reduction

13

to take place in a term that has no visible output and is contextually equal to 0 . 8 This
corresponds to the solution for termination of the representation of computable functions in
the λ-calculus, as mentioned above.

To illustrate this, consider the interpretation of the term M 〈x :=N〉 (i.e. the process
(νx) (M s a | ! N s x)), and notice that ! N s x ≡ N s x | · · · | N s x | ! N s x. Now in case x ap-
pears in M, only finitely many of the N s x will eventually communicate with the x(w).b w
that appear in the interpretation of M. Once these communications take place, the receiving
xs will have disappeared, and we obtain a process of the shape P | (νx) (! N s x); since each
interpreted λ-term has at most one visible output (the name it is interpreted under), in this
case x, which is restricted, the replicated term becomes unobservable, i.e. equivalent to 0.

Example 4.1 We can remove infinite computations that do not contribute to output:

(λx.I)(∆∆) f a =
∆

(νcb) ((νxb1) (I f b1 | c〈x,b1〉) | c(v,d).(! b v | d a) | ! ∆∆f b) →π (c)
(νbxb1) (I f b1 | ! b x | b1 a | ! ∆∆f b) ≡
(νb1) (I f b1 | b1 a) | (νbx) (! b x | ! ∆∆

f b) ∼c
(νx) (I f a | ! ∆∆

f x) ≡
I f a | (νx) (! ∆∆

f x) ∼c I f a

In fact, when running the interpretation of a terminating λ-term, this results in a pro-
cess where the only possible reductions take place as τ-actions, inside terms with restricted
outputs, that are equivalent to the process with these parts removed.

Theorem 4.2 (Termination) M↓, then M f a↓lπ.

Notice that the normal form of M f a need not be the interpretation of the normal form
of M, but that these are contextually equivalent; this is also the case for Milner’s interpreta-
tion. However, when interpreting explicit spine reduction we never need to reduce inside the
argument of an application or inside a substitution, so we can show:

Theorem 4.3 M →xs N, and N is in normal form, then N f a is in lazy normal form.

This is a stronger result than the one obtained in [7] (Thm. 4.6 here) where it is shown with
respect to the explicit spine reduction. Notice that lazy π-reduction is used in these results.

Moreover, the notion of type assignment we defined above catches this: since N f x has
at most only one visible output (which is x), the process (νx) (! N f x) has no visible output,
and can therefore be typed by (νx) (! N f x) : Γ π

io , i.e. with an empty right-hand context; this
means that the type system is capable of indicating those processes that can be ignored and
stopped from running, which could be used for a type-based reduction. We leave this for
future research.

Conclusions and Future Work

Our research focusses on the expressive power of the π-calculus, which has proven to pro-
vide a conceptual abstraction to understand passing private information and modelling mo-
bile systems. Moreover, it has been shown that in principle (limited) functional and objective
programming languages could be developed [27]. With the body of our work, we have also
shown that the π-calculus can give computational content to the implicative fragment of
the Intuitionistic Logic through its related calculus, where cut-elimination corresponds to a
computational step, without restrictions.

8 Alternatively, we could replace the congruence rule ! P ≡ P | ! P by (νa) (a(y).R | Q | ! P) ≡ (νa) (! a(y).R | P) |
(νa) (Q | ! P) only if a is an output in P.

14

We have found a new, simple and intuitive interpretation of λ-terms in π that respects
explicit reduction, full step-by-step β-reduction, and encompasses Milner’s lazy reduction
on closed terms. We have shown that, for our context assignment system that uses the type
constructor → for π and is based on classical logic, typeable λ-terms are interpreted by our
interpretation as typeable π-processes, preserving the types.

By the nature of our interpretation, where all λ-terms are interpreted as a flat parallel
composition of x(w).a w, b(v,d).(! a v | d c), and a〈y,b〉, it is clear that the interpretations
of a variable x in a term M occur in parallel as x(w).a1 w | · · · | x(w).an w inside M f a; it
seems plausible to use broadcast communication [18] – this would also solve the problem of
termination. We will investigate this in future work.

We will also look on how to extend our results to a full equivalence relation on the λ-
calculus that interprets λ-terms by their Böhm tree; we expect to be able to show a full
abstraction result with respect to this relation.

The next naturally arising issue is to understand what the interpretations we presented
here tell us about either the interpreted calculi, or the π-calculus itself. For one, we need
to focus on the notion of type assignment we have used here, and study it in its own right,
especially its relation with logic.

Also, it seems that the interpretations generate a notion of proof net in π; in fact, it seems
promising to encode linear X (∗X , defined in [29]), a calculus with explicit contraction and
weakening, since there reduction can generate non-connected terms, a feature we observe
also in our interpretations; we hope to then strengthen our results by, perhaps, using strong
bi-simulation.

References

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit Substitutions. Journal of Functional
Programming, 1(4):375–416, 1991.

[2] M. Abadi and A. Gordon. A Calculus for Cryptographic Protocols: The Spi Calculus. In Proceed-
ings of the Fourth ACM Conference on Computer and Communications Security, pages 36–47. ACM
Press, 1997.

[3] S. Abramsky. The lazy lambda calculus. In Research topics in functional programming, pages 65–116.
Addison-Wesley Longman Publishing Co., Inc, Boston, MA, USA, 1990.

[4] S. Abramsky. Proofs as Processes. Theoretical Computer Science, 135(1):5–9, 1994.
[5] S. van Bakel, L. Cardelli, and M.G. Vigliotti. From X to π; Representing the Classical Sequent

Calculus in the π-calculus. In Electronic Proceedings of International Workshop on Classical Logic and
Computation 2008 (CL&C’08), Reykjavik, Iceland, 2008.

[6] S. van Bakel and M. Fernández. Normalisation, Approximation, and Semantics for Combinator
Systems. Theoretical Computer Science, 290:975–1019, 2003.

[7] S. van Bakel and M.G. Vigliotti. A logical interpretation of the λ-calculus into the π-calculus,
preserving spine reduction and types. In M. Bravetti and G. Zavattaro, editors, Proceedings of
20th International Conference on Concurrency Theory (CONCUR’09), Bologna, Italy, volume 5710 of
Lecture Notes in Computer Science, pages 84 – 98. Springer Verlag, 2009.

[8] H. Barendregt. The Lambda Calculus: its Syntax and Semantics. North-Holland, Amsterdam, re-
vised edition, 1984.

[9] G. Bellin and P.J. Scott. On the pi-Calculus and Linear Logic. Theoretical Computer Science,
135(1):11–65, 1994.

[10] R. Bloo and K.H. Rose. Preservation of Strong Normalisation in Named Lambda Calculi with
Explicit Substitution and Garbage Collection. In CSN’95 – Computer Science in the Netherlands,
pages 62–72, 1995.

[11] P. Bruscoli. A Purely Logical Account of Sequentiality in Proof Search. In P.J. Stuckey, editor,
18th International Conference on Logic Programming (ICLP ’02), Copenhagen, Denmark, volume 2401
of Lecture Notes in Computer Science, pages 302–316. Springer Verlag, 2002.

15

[12] P. Bruscoli and A. Guglielmi. A Linear Logic Programming Language with Parallel and Se-
quential Conjunction. In M. Alpuente and M.I. Sessa, editors, Joint Conference on Declarative
Programming (GULP-PRODE’95), Marina di Vietri, Italy, pages 409–420, 1995.

[13] A. Church. A Note on the Entscheidungsproblem. Journal of Symbolic Logic, 1(1):40–41, 1936.
[14] M. Cimini, C. Sacerdoti Coen, and D. Sangiorgi. λµµ̃ calculus, π-calculus, and abstract machines.

2009.
[15] M.D. Clinger. Foundations of Actor Semantics. PhD thesis, MIT Artificial Intelligence Laboratory,

1981. Technical Report 633.
[16] H.B. Curry. Grundlagen der Kombinatorischen Logik. American Journal of Mathematics, 52:509–

536, 789–834, 1930.
[17] G. Gentzen. Untersuchungen über das Logische Schliessen. Mathematische Zeitschrift, 39:176–210

and 405–431, 1935.
[18] M. Hennessy and J. Rathke. Bisimulations for a Calculus of Broadcasting Systems. Theoretical

Computer Science, 200(1-2):225–260, 1998.
[19] K. Honda and M. Tokoro. An Object Calculus for Asynchronous Communication. In Pierre

America, editor, ECOOP’91 European Conference on Object-Oriented Programming, Geneva, Switzer-
land, July 15-19, 1991, Proceedings, volume 512 of Lecture Notes in Computer Science, pages 133–147.
Springer Verlag, 1991.

[20] K. Honda and N. Yoshida. On the reduction-based process semantics. Theoretical Computer
Science, 151:437–486, 1995.

[21] K. Honda, N. Yoshida, and M. Berger. Control in the π-Calculus. In Proceedings of Fourth ACM-
SIGPLAN Continuation Workshop (CW’04), 2004.

[22] S. Maffeis and I.C.C. Phillips. On the Computational Strength of Pure Ambient Calculi. In
Proceedings of Express’03, volume 91 of Electronic Notes in Theoretical Computer Science, 2004.

[23] R. Milner. Functions as Processes. Mathematical Structures in Computer Science, 2(2):269–310, 1992.
[24] M. Parigot. An algorithmic interpretation of classical natural deduction. In Proceedings of 3rd

International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR’92),
volume 624 of Lecture Notes in Computer Science, pages 190–201. Springer Verlag, 1992.

[25] B.C. Pierce and D. Sangiorgi. Typing and Subtyping for Mobile Processes. Mathematical Structures
in Computer Science, 6(5):409–453, 1996.

[26] D. Sangiorgi. Lazy functions and mobile processes. Rapport de Recherche 2515, INRIA, Sophia-
Antipolis, France, 1995.

[27] D. Sangiorgi and D. Walker. The Pi-Calculus. Cambridge University Press, 2001.
[28] H. Thielecke. Categorical Structure of Continuation Passing Style. PhD thesis, University of Edin-

burgh, 1997. LFCS technical report ECS-LFCS-97-376.
[29] D. Žunić. Computing with Sequents and Diagrams in Classical Logic - Calculi ∗X , dX , and c©X . PhD

thesis, École Normale Supèrieure de Lyon, 2007.

16

