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Abstract

We study the λµ-calculus, extended with explicit substitution, and define a compositional
output-based interpretation into a variant of the π-calculus with pairing. We show that this
interpretation preserves single-step explicit head-reduction with respect to weak bisimilarity.
We use this result to show operational soundness for head reduction, adequacy, and opera-
tional completeness. Using a notion of implicative type-context assignment for the π-calculus,
we also show that assignable types are preserved by the interpretation. We define four no-
tions of weak equivalence for λµ – one based on weak reduction ∼wβµ, two modelling weak
head-reduction and weak explicit head reduction, ∼wh and ∼wxh respectively (all considering
terms without weak head-normal form equivalent as well), and one based on weak approx-
imation ∼A – and show they all coincide. We will then show full abstraction results for our
interpretation for the weak equivalences with respect to weak bisimilarity on processes.

Introduction

The research presented in this paper is part of an ongoing investigation into the suitability
of classical logic in the context of programming languages with control. Rather than looking
at how to encode known control features into calculi like the λ-calculus [21, 14], Parigot’s
λµ-calculus [39], or Λµ 1 [26], as has been done in great detail by others, we focus on trying to
understand what is exactly the notion of computation that is embedded in calculi like λµ; we
approach that problem here by presenting a fully abstract interpretation for that calculus into
the (perhaps better understood) π-calculus [37].

λµ is a proof-term syntax for classical logic expressed in Natural Deduction, defined as an
extension of the Curry type assignment system for the λ-calculus by adding naming [α]M and
context binding µα.M features, as well as structural reduction (see Definition 1.4). In λµ, the
naming and context binding features always come together as in µα.[β]M; in Λµ, they can be
used separately, so there also µα.λx.x is a term. The naming feature [α]M expresses that α
serves as label for the term M, and µα.M is used to redirect operands (terms) to those labeled
α. A context switch µα.[β]M now expresses that the focus of the derivation (proof), to which
the term corresponds, changes; the idea is that the applicative context of M is not meant for
that term itself, but rather for the subterms labeled with α. It is the naming feature, together
with the structural rules, that make λµ difficult to reason over; this is reflected in [27] and [9],
where the interpretation of λµ into λµµ̃ and X , respectively, does not respect reduction.

1 The name Λµ was first introduced in [45], that also introduced a different notation for terms, in placing names
behind terms, rather than in front, as done by Parigot and de Groote; we use their notation here.
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Over the last two decades, the π-calculus and its dialects have proven to give an interesting
and expressive model of computation. Encodings of variants of the pure λ-calculus [21, 14]
started with Milner’s encoding of the lazy λ-calculus [37] and quickly led to more thorough
investigations (see [18, 44, 10]; many more papers were written on the topic), also in the di-
rection of object oriented calculi [29, 44]. The strength of the results that have been shown in
those papers – like soundness, completeness, termination, and full abstraction – has encour-
aged researchers to investigate interpretations into the π-calculus of various calculi that have
their foundation in classical logic, as done in, for example, [30, 7, 22, 15]. From these papers
it might seem that the interpretation of such ‘classical’ calculi comes at a great expense; for
example, to encode typed λµ, [30] defines an extension of Milner’s encoding and considers a
version of the π-calculus that is strongly typed; [7] shows preservation of reduction in X only
with respect to the contextual ordering �c (so not with respect to contextual equivalence ∼c,
nor with respect to weak bisimilarity ≈); [22] defines a non-compositional interpretation of
λµµ̃ that strongly depends on recursion, and does not regard the logical aspect at all.

Here we contribute to this line of research and study an output-based encoding of λµ into
the π-calculus; it is an extension of the one we defined for the λ-calculus [10] and is a nat-
ural variant of that for Λµ we presented in [11]; our approach was compared to the tradi-
tional input-based one in [28]. In those papers, we have shown that those encodings respects
single-step explicit head-reduction →xh (which only ever replaces the head variable of a term,
see Definition 5.2) modulo contextual equivalence ∼c; here we restate those properties with
respect to weak bisimilarity ≈. We show that by extending the output-based interpretation
M a of λ-terms [10] (where M is a λ-term and a is the name given to its anonymous output)

to λµ, adding cases for context binding and naming, gives a very natural interpretation of
λµ-terms to processes. In fact, naming and µ-abstraction can be soundly treated separately,
so it perfectly possible to encode Λµ and our first results in this direction were indeed on that
calculus [11]; as we will argue below, to achieve full abstraction here we have to focus on λµ.

To accurately define the notion of reduction that is modelled by our interpretation, following
[10], in [11] we defined (untyped) Λµx, a version with explicit substitution [1, 17] of the Λµ-
calculus, together with a notion of explicit head-reduction, which can be seen as the minimal
system (with explicit substitution) to reduce a term to head-normal form, if possible. The
advantage of considering explicit substitution rather than the standard implicit substitution
as considered in [37, 44] has been strongly argued by us in [10, 11], and makes an important
contribution here as well. In [10] we showed that communication in the π-calculus has a fine
semantic level of granularity that ‘faithfully mimics’ explicit substitution, and not the implicit
one; we stress this point again with the results presented in this paper, and the relative ease
with which these are achieved.

As was the case for Milner’s interpretation, our interpretation places sub-terms (in particu-
lar, those that are to be substituted, and therefore also the operand in an application) under
guarded replication. Since in the pure π-calculus it is not possible to simulate reductions that
take place in terms that are placed under guards, thereby the calculus that can be effectively
represented is limited (note that this restriction is dropped in [30]); also other interpretations
defined in the past do not model full reduction for the same reason. In our case, as in [10],
thanks to the fact that abstraction is encoded through an asynchronous output, the restriction
is to that of head reduction.

Although the notion of structural reduction in λµ is very different from normal β-reduction,
no special measures had to be taken in order to be able to express it through our interpreta-
tion. The component of the interpretation that deals with pure λ-terms is almost exactly that
of [10] (ignoring for the moment that substitution is modelled using a guard, which affects
also the interpretation of variables), but for the use of replication in the case for application.
In fact, the distributive character of application in λµ, and of both term and context substitu-
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tion is dealt with entirely by congruence in π (see also Example 6.7), and both naming and
context binding are dealt with statically, by the interpretation. In fact, through our encoding it
becomes clear that (explicit) structural substitution is just a distributed variant of application
(see Remark 6.3).

We will show a number of results we also showed in [10, 11] for the λ and Λµ calculi,
respectively. Using a notion of functional type assignment for the π-calculus, we show in
Theorem 6.10 that the encoding respects assignable types, using the notion of functional type
assignment for the π-calculus we defined in [7]. In Theorem 7.1, we show that single-step
explicit head reduction is respected by the encoding in such a way that each β-reduction step
is implemented through at least one synchronisation; this leads to an operational soundness
and completeness result. In Theorem 7.5 we show that the encoding also respects equality on
λx, but modulo weak bisimulation, and in Theorem 7.6 that it gives a semantics for λµ.

As for full abstraction (i.e. two terms that are equivalent under the interpretation are also
operational equivalent), Sangiorgi has shown a full abstraction result [43, 44] for (essentially)
Milner’s encoding M m a, by showing that M m a ≈ N m a if and only if M =∼ N, where =∼ is
the applicative bisimilarity on λ-terms [4]. However, this result comes at a price: applicative
bisimulation equates terms that are not weakly bisimilar under the interpretation. To solve
this, Sangiorgi extends the encoding to Λc, a λ-calculus enriched with constants and changes it
into a mapping onto the Higher Order π-calculus, a variant of the π-calculus with higher-order
communications.

To achieve a full-abstraction result we will use a new, considerably different technique. First
we characterise what is exactly the equivalence between terms in λµ that is representable in the
π-calculus through · ·; this turns out to be weak equivalence (see Section 9), that essentially
equates terms that have the same λµ-Lévy-Longo tree [35, 36] (a lazy variant of Böhm trees
[14]). 2 We will show that our interpretation respects →xh modulo ≈ and extend this result to
weak explicit head equivalence ∼wxh, the equivalence relation generated by →xh that equates also
terms without weak head-normal form. The main proof of the full abstraction result is then
achieved through showing that ∼wxh equates to ∼wβµ, the equivalence relation generated by
standard reduction that also equates terms without weak head normal form: this latter result
is stated entirely within λµ and does not depend on the encoding.

To achieve the latter result, we define a choice of operational equivalences for the λµ-
calculus, both with and without explicit substitution. Next to ∼wxh we define weak head equiva-
lence ∼wh and show that for λµ-terms without explicit substitution, ∼wxh corresponds to ∼wh.
Following essentially [48, 49], we also define a notion of weak approximation and show that
the relations ∼Aw , which expresses that terms have the same set of weak approximants, ∼wh,
and ∼wβµ all correspond. The combination of these results then yields full abstraction.

Organisation of this paper: We start with revisiting the λµ-calculus in Section 1 and define a
notion of head-reduction →h. In Section 2 we revisit the π-calculus, enriched with pairing, and
will discuss some of the context and background of our work in Section 3.

In Section 4 we define λµx, a version of λµ with explicit substitution, as well as a notion of
explicit head-reduction and in Section 6 define our logical interpretation of λµx in to π and prove
a soundness result for explicit head-reduction with respect to weak bisimilarity in Section 7.

Working towards our full abstraction result, in Section 8 we will define notions of weak
reduction, in particular weak head reduction and weak explicit head reduction. In Section 9 we
define the two notions of equivalence these induce, also equating terms without weak head-
normal form and show that these notions coincide on pure λµ terms (i.e. without explicit

2 In that sense, Sangiorgi’s full abstraction result [44] and ours do correspond.
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substitutions). We also define the equivalence ∼wβµ induced by →βµ on pure λµ terms, that
also equates terms without weak head-normal form. In Section 10, we define a notion of weak
approximation for λµ, and show the semantics this induces is fully abstract with respect to both
∼wh and ∼wβµ.

Then, in Section 11, we show that our logical interpretation is fully abstract with respect to
weak bisimilarity ≈ on processes and ∼wxh, ∼wh, ∼Aw , and ∼wβµ on pure λµ-terms.

This paper is an extended version of [11, 13], but dealing with λµ (rather than Λµ as in [11]).

Notation: We will write n for the set {1, . . . ,n}. We will use a vector notation · as abbreviation
for any sequence: for example, xi stands for x1, . . . , xn, for any irrelevant n, or for {x1, . . . , xn },
and 〈αi := Ni · βi〉 for 〈α1 :=N1·β1〉 · · · 〈αn :=Nn·βn〉 , Mi =h Ni for ∀ i ∈ n [Mi =h Ni ], etc. When
possible, we will drop the indices.

1 The λµ calculus

In this section, we will briefly discuss Parigot’s λµ-calculus [39]; we assume the reader to be
familiar with the λ-calculus and its notion of reduction →β and equality =β, so will be brief
on details. In the next section we will define explicit head-reduction for λµx, a variant of λµ
with explicit substitution à la λx [17], and will show full abstraction results for λµx; since λµx
implements λµ-reduction, this implies that, automatically, our main results are also shown for
standard reduction (with implicit substitution).

λµ is a proof-term syntax for classical logic, expressed in Natural Deduction, defined as an
extension of the Curry type assignment system for the λ-calculus by adding the concept of
named terms, and adding the functionality of a context switch, allowing arguments to be fed to
subterms.

Definition 1.1 (Syntax of λµ) The λµ-terms we consider are defined over the set of variables
represented by Roman characters, and names, or context variables, represented by Greek char-
acters, through the grammar:

M, N ::= x variable
| λx.M abstraction
| MN application
| µα.[β]M context switch

We will occasionally write C for the pseudo-term [α]M.

In fact, the main difference between Λµ and λµ is that in the former, [α]M is considered to be
a term.

As usual, λx.M binds x in M, and µα.C binds α in C, and the notions of free variables fv (M)
and names fn(M) are defined accordingly; the notion of α-conversion extends naturally to
bound names and we assume Barendregt’s convention in that we assume that free and bound
variables and names are always distinct, using α-conversion when necessary. As usual, we
call a term closed if it has no free variables.

Simple type assignment for λµ is defined as follows:

Definition 1.2 (Types, Contexts, and Typing) i) Types are defined by the grammar:

A, B ::= ϕ | A→B

where ϕ is a basic type of which there are countably many.
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ii) A context of inputs Γ is a mapping from term variables to types, denoted as a finite set
of statements x:A, such that the subject of the statements (x) are distinct. We write Γ1, Γ2
for the compatible union of Γ1 and Γ2 (if x:A1 ∈ Γ1 and x:A2 ∈ Γ2, then A1 = A2), and write
Γ, x:A for Γ,{x:A}.

iii) Contexts of outputs ∆ as mappings from names to types, and the notions ∆1,∆2 and α:A,∆
are defined similarly.

iv) Type assignment for λµ is defined by the following natural deduction system.

(Ax) : Γ, x:A 	Λµ x : A | ∆ (µ) :
Γ 	Λµ M : B | α:A,∆

(α 
∈ ∆)
Γ 	Λµ µα.[β]M : A | β:B,∆

Γ 	Λµ M : A | α:A,∆
(α 
∈ ∆)

Γ 	Λµ µα.[α]M : A | ∆

(→I) :
Γ, x:A 	Λµ M : B | ∆

(x 
∈ Γ)
Γ 	Λµ λx.M : A→B | ∆

(→E) :
Γ 	Λµ M : A→B | ∆ Γ 	Λµ N : A | ∆

Γ 	Λµ MN : B | ∆

So, for the context Γ, x:A, we have either x:A ∈ Γ, or Γ is not defined on x; notice that in the
first variant of rule (µ), β:B is added to ∆; b can already appear in ∆, but then has to have the
same type; on the other hand, that rule removes α:A from the right context.

In λµ, reduction of terms is expressed via implicit substitution; as usual, M[N/x] stands for
the substitution of all occurrences of x in M by N, and M[N·γ/α], the structural substitution,
for the term obtained from M when every (pseudo) sub-term of the form [α]M′ is replaced
by [γ]M′N. 3 For reasons of clarity, and because below we will present a version of λµ that
makes the substitution explicit, we define the µ-substitution formally.

Definition 1.3 (Structural substitution) We define M[N·γ/α] (where γ is fresh, α does
not occur bound in M, and every sub-term [α]L of M is replaced by [γ]LN) by induction over
the structure of (pseudo-)terms by:

([α]M) [N·γ/α] =
∆ [γ](M [N·γ/α])N

([β]M) [N·γ/α] =
∆ [β](M [N·γ/α]) (α 
= β)

(µβ.C) [N·γ/α] =
∆ µβ.(C [N·γ/α])

x [N·γ/α] =
∆ x

(λx.M) [N·γ/α] =
∆ λx.(M [N·γ/α])

(M1M2) [N·γ/α] =
∆ M1 [N·γ/α] M2 [N·γ/α]

We have the following rules of computation in λµ:

Definition 1.4 (λµ reduction) λµ has a number of reduction rules: two computational rules:

logical (β) : (λx.M)N → M[N/x]
structural (µ) : (µα.C)N → µγ.(C[N·γ/α])

as well as the simplification rules:

renaming : µδ.[β](µγ.[α]M) → µδ.[α]M[β/γ]
erasing : µα.[α]M → M (α 
∈ fn(M))

3 This notion is often defined as M[N/α], where every (pseudo) sub-term of the form [α]M′ is replaced by
[α]M′N; in our opinion, this creates confusion, since α gets ‘reintroduced’; it is in fact a new name, which is
illustrated by the fact that, in the typed version α then changes type. Moreover, when making this substitution
explicit, bound and free occurrences of the same name would be introduced, violating Barendregt’s convention.
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which are added mainly to simplify the presentation of results. We use the contextual rules:4

M → N ⇒




ML → NL
LM → LN
λx.M → λx.N
µα.[β]M → µα.[β]N

We use →∗
βµ for the pre-congruence based on these rules, =βµ for the congruence, write

M →nf
βµ N if M →∗

βµ N and N is in normal form, M →βµ
hnf N if M →∗

βµ N and N is in head-normal
form, M⇓ if there exists a finite reduction path starting from M, 5 and M⇑ if this is not the
case; we will use these notations for other notions of reduction as well.

That this notion of reduction is confluent was shown in [42]; so we have:

Proposition 1.5 If M =βµ N and M →∗
βµ P, then there exists Q such that P →∗

βµ Q and N →∗
βµ Q.

For convenience, Parigot also considers [α]M and µα.M as pseudo-terms, that represent de-
activation and activation. 6

The intuition behind the structural rule is given by [26]: “in a λµ-term µα.M of type A→B,
only the subterms named by α are really of type A→B (. . . ); hence, when such a µ-abstraction is
applied to an argument, this argument must be passed over to the sub-terms named by α.” We can
think of [α]M as storing the type of M amongst the alternative conclusions by giving it the
name α.

[40] has shown that typeable terms are strongly normalisable. It also defines the extensional
rules:

(η) : λx.Mx → M (x 
∈ fv (M))
(ηµ) : µα.[β]M → λx.µγ.[β]M[x·γ/α]

Here we do not consider these rules: the model we present through our interpretation is not
extensional, and we can therefore not show that those rules are preserved by the interpretation
(see Remark 6.8).

Example 1.6 As an example illustrating the fact that this system is more powerful than the
system for the λ-calculus, here is a proof that it is possible to inhabit Peirce’s Law (due to
[38]):

(Ax)
x:(A→B)→A 	Λµ x : (A→B)→A | α:A

(Ax)
x:(A→B)→A,y:A 	Λµ y : A | α:A, β:B

(⊥)
x:(A→B)→A,y:A 	Λµ [α]y : ⊥ | α:A, β:B

(µ)
x:(A→B)→A,y:A 	Λµ µβ.[α]y : B | α:A

(→I)
x:(A→B)→A 	Λµ λy.µβ.[α]y : A→B | α:A

(→E)
x:(A→B)→A 	Λµ x(λy.µβ.[α]y) : A | α:A

(⊥)
x:(A→B)→A 	Λµ [α](x(λy.µβ.[α]y)) : ⊥ | α:A

(µ)
x:(A→B)→A 	Λµ µα.[α](x(λy.µβ.[α]y)) : A |

(→I)	Λµ λx.µα.[α](x(λy.µβ.[α]y)) : ((A→B)→A)→A |
The underlying logic of the system of Definition 1.2 corresponds to minimal classical logic [5].

4 Normally the contextual rules are not mentioned but are left implicit; here we need to state them, since we
will below consider notions of reduction that do not permit all contextual rules.

5 Note that this does not imply that all paths are finite.
6 In fact, [39] formulates the renaming rule as [β](µγ.M)→ M[β/γ].
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We also consider the notion of head reduction; it is defined in [48] for the λ-calculus by first
defining the head-redex of a term as the subterm (λx.M)N in a term of the form

λx1x2 · · ·xn.((λx.M)N)L1L2 · · ·Lm (n ≥ 0,m ≥ 0)

Head reduction is then that notion in which each step is determined by contraction of the
head redex only (when it exists), and head-normal forms (the normal forms with respect to
head reduction) are of the generic shape

λx1x2 · · ·xn.yL1L2 · · ·Lm (n ≥ 0,m ≥ 0)

and y in this term is called the head variable. In λµ, given the naming and µ-binding features,
the notion of head redex is not this easily defined; rather here we define head reduction by
not allowing reductions to take place in the right-hand side of applications (in the context of
the λ-calculus, this gives the original notion); we also define a notion of head-normal form for
λµ.

Definition 1.7 (Head reduction for λµ (cf. [34])) i) We define head reduction →h as the re-
striction of →βµ by removing the contextual rule:

M → N ⇒ LM → LN

ii) The λµ head-normal forms (hnf) are defined through the grammar:

H ::= λx.H
| xM1 · · ·Mn (n ≥ 0)
| µα.[β]H (β 
= α or α ∈ H, and H 
= µγ.[δ]H ′)

Notice that the →βµ-hnfs are →h-normal forms.
The following is straightforward:

Proposition 1.8 (→h implements λµ’s head reduction) If M →∗
βµ N with N in hnf (so M →βµ

hnf

N), then there exists H such that M →h
nf H (so H is in →h-normal form) and H →∗

βµ N without using
→h.

Notice that λ f .(λx. f (xx))(λx. f (xx)) →h λ f . f ((λx. f (xx))(λx. f (xx))) and this last term
is in hnf, and in →h-normal form.

2 The synchronous π-calculus with pairing

The notion of π-calculus that we consider in this paper was already considered in [10] and
is different from other systems studied in the literature [29] in that it adds pairing and uses a
let-construct to deal with inputs of pairs of names that get distributed, similar to that defined
in [2]; in contrast to [7, 10], we do not consider the asynchronous π-calculus.

As already argued in [10], the main reason for the addition of pairing lies in preservation
of (implicate, or functional) type assignment;7 therefore data is introduced as a structure over
names, such that not only names but also pairs of names can be sent (but not a pair of pairs);
this way a channel may pass along either a name or a pair of names.

Definition 2.1 (Processes) Channel names and data are defined by:

a,b, c,d, x,y,z names p ::= a | 〈a,b〉 data

7 If we would not consider types in this paper, we could consider the standard π-calculus; however, the details
of the interpretation would change (more replication would be needed; for details see [12]).
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Processes are defined by:

P ,Q ::= 0 nil
| P | Q composition
| !P replication
| (νa)P restriction
| a(x).P input
| a p .P output
| let 〈x,y〉=p in P let construct

We see, as usual, ν as a binder, and call the name n bound in (νn)P , x bound in a(x).P and
x,y bound in let 〈x,y〉=p in P ; we write bn(P) for the set of bound names in P ; n is free in P if
it occurs in P but is not bound, and we write fn(P) for the set of free names in P . We call a in
(νa)P a hidden channel. A context C[·] is a process with a hole [ ]; we call a(x) and a p guards,
and call P in a(x).P and a p .P a process under guard.

Notice that the pairing in data is not recursive.
Data occurs only in two cases: a p and let 〈x,y〉= p in P , and then p is either a single name,

or a pair of names; we therefore do not allow a(〈x,y〉).P , nor a 〈〈b,c〉,d〉.P , nor 〈b,c〉 p .P , nor
(ν〈a,b〉)P , nor let 〈〈a,b〉,y〉= p in P , etc. So substitution P [p/x] is a partial operation, which
depends on the places in P where x occurs; whenever we use P [p/x], we will assume it is well
defined. It is worthwhile to point out that using pairing is not the same as working with the
polyadic (or even dyadic) π-calculus, because there each channel has a fixed arity, whereas
we allow data to be sent, which is either a name or a pair of names.

We abbreviate a(x).let 〈y,z〉=x in P by a(y,z).P , as well as (νm) (νn)P by (νmn)P , and write
a p for a p .0 . As in [44], we write a b for the forwarder a(x).b x and x(w).P for (νw) (x w.P).

Definition 2.2 (Structural Congruence) The structural congruence is the smallest congru-
ence generated by the rules:

P | 0 ≡ P
P | Q ≡ Q | P

!P ≡ P | !P
(νn)0 ≡ 0

(P | Q) | R ≡ P | (Q | R)
(νm) (νn)P ≡ (νn) (νm)P
(νn) (P | Q) ≡ P | (νn)Q (n 
∈ fn(P))

let 〈x,y〉= 〈a,b〉 in P ≡ P [a/x,b/y]

As usual, we will consider processes modulo congruence and α-conversion: this implies that
we will not deal explicitly with the process let 〈x,y〉= 〈a,b〉 in P , but rather with P [a/x,b/y].
Because of rule (P | Q) | R ≡ P | (Q | R), we will normally not write brackets in a parallel
composition of more than two processes.

Computation in the π-calculus with pairing is expressed via the exchange of data.

Definition 2.3 (Reduction) i) The reduction relation over the processes of the π-calculus is
defined by the following (elementary) rules:

a p .P | a(x).Q →π P | Q [p/x] (synchronisation)
P →π P’ ⇒ (νn)P →π (νn)P ′ (hiding)
P →π P ′ ⇒ P | Q →π P ′ | Q (composition)

P ≡ Q & Q →π Q ′ & Q ′ ≡ P ′ ⇒ P →π P ′ (congruence)

We write P →π (c) Q if P reduces to Q in a single step via a synchronisation over channel
c, and write →π (=α) if we want to point out that α-conversion has taken place during the
synchronisation. We say that P →π (c) Q takes place over a hidden channel if c is hidden in
P .

ii) We say that a P is irreducible (is in normal form) if it does not contain a possible synchroni-
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sation, i.e. P is not of the shape (νb) (a p .Q | a(x).R | S) (up to structural congruence).

Notice that let 〈x,y〉= a in P (where a is a name) is stuck. Also,

a〈b,c〉 | a(x,y).Q =
∆ a 〈b,c〉 | a(z).let 〈x,y〉= z in Q

→π let 〈x,y〉= 〈b,c〉 in Q
≡ Q [b/x, c/y]

There are several notions of equivalence defined for the π-calculus: the one we consider
here, and will show is related to our encoding, is that of weak bisimilarity.

Definition 2.4 (Weak bisimilarity) i) We write P ↓n and say that P outputs on n (or P ex-
hibits an output barb on n) if P ≡ (νb) (n p .Q | R), where n 
∈ b and P ↓n (P inputs on n) if
P ≡ (νb) (n(x).Q | R), where n 
∈ b.

ii) We write P ⇓n (P will output on n) if there exists Q such that P →∗
π Q and Q ↓n, and P 
⇓o if

there exists no n such that P ⇓n. Likewise, we write P ⇓n (P will input on n) if there exists
Q such that P →∗

π Q and Q ↓n, and P 
⇓i if there exists no n such that P ⇓n.

iii) A barbed bisimilarity ≈· is the largest symmetric relation such that P ≈· Q satisfies the fol-
lowing clauses:

– for every name n: if P ↓n then Q ⇓n, and if P ↓n then Q ⇓n;
– for all P ′, if P →∗

π P ′, then there exists Q ′ such that Q →∗
π Q ′ and P ′ ≈· Q ′;

iv) Weak bisimilarity is the largest symmetric relation ≈ defined by: P ≈ Q if and only if
C[P ] ≈· C[Q ] for any context C[·].

The following is easy to show.8

Proposition 2.5 Let P ,Q not contain a and a 
= b, then

(νa) (a p .P | a(x).Q ) ≈ P | Q [p/x]
(νa) (! a p .P | a(x).Q ) ≈ P | Q [p/x]

This expresses that synchronisation over hidden (internal) channels is unobservable.
The following property is needed in the proof of Theorem 7.1.

Lemma 2.6 ([12]) Let x 
= c only be used as input channel in P and Q , and not appear in R , then:

(νx) (P | Q | ! x(w).R) ≈ (νx) ((νy) (P [y/x] | ! y(w).R) | Q | ! x(w).R) y fresh
(νx) (P | Q | ! x(w).R) ≈ (νx) (P | ! x(w).R) | (νx) (Q | ! x(w).R)

(νx) (! c(v,d).P | ! x(w).R) ≈ ! c(v,d).((νx) (P | ! x(w).R))
(νx) (! c(y).P | ! x(w).R) ≈ ! c(y).((νx) (P | ! x(w).R))

Likewise, let x 
= c only be used as output channel in P and Q , and not appear in R , then:

(νx) (P | Q | ! x(v,d).R) ≈ (νx) (P | ! x(v,d).R) | (νx) (Q | ! x(v,d).R)
(νx) (! c(y).P | ! x(v,d).R) ≈ ! c(y).((νx) (P | ! x(v,d).R))
(νx) (! c(y).P | ! x(v,d).R) ≈ ! c y.((νx) (P | ! x(v,d).R))

Proof: Straightforward.

The following properties follow directly from the definition of ≈ and Proposition 2.5:

8 This property was stated in [11] using contextual equivalence rather than weak bisimilarity.
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Proposition 2.7 i) If for all P ′, Q ′ such that P →∗
π P ′, Q →∗

π Q ′ over hidden channels, we have
P ′ ≈ Q ′, then P ≈ Q .

ii) Let P , Q be such that no interaction is possible between them, then: P ≈ P ′ and Q ≈ Q ′ if and
only if P | Q ≈ P ′ | Q ′.

The π-calculus is equipped with a rich type theory [44], from the basic type system for
counting the arity of channels [41] to session types [31] and sophisticated linear types in [30].
The notion of type assignment we use here is the one first defined in [7] and differs from
systems presented in the past in that types do not contain channel information, and in that
it expresses implication, i.e. has functional types and describes the ‘input-output interface’ of a
process.

Definition 2.8 (Implicative IO type assignment for π [7, 8]) Type assignment for the π-calculus
is defined by the following sequent system:9

(0) :
0 : Γ 	 ∆

(in) :
P : Γ, x:A 	 x:A,∆

a(x).P : Γ, a:A 	 ∆
(out) :

P : Γ,b:A 	 b:A,∆
(a 
= b)

a b.P : Γ,b:A 	 a:A,b:A,∆

(!) :
P : Γ 	 ∆

! P : Γ 	 ∆
(ν) :

P : Γ, a:A 	 a:A,∆

(νa)P : Γ 	 ∆
(|) :

P : Γ 	 ∆ Q : Γ 	 ∆

P | Q : Γ 	 ∆

(let) :
P : Γ,y:B 	 x:A,∆ (y,z 
∈ ∆;

x 
∈ Γ)let 〈x,y〉=z in P : Γ,z:A→B 	 ∆
(〈〉-out) :

P : Γ,b:A 	 c:B,∆ (a 
∈ ∆;
a, c 
∈ Γ)a〈b,c〉.P : Γ,b:A 	 a:A→B, c:B,∆

We write P : Γ 	πio ∆ if there exists a derivation using these rules that has this expression in
the conclusion.

This is the system as first defined in [7] and is also used in [10]. Notice that the ‘input-output
interface of a π-process’ property is nicely preserved by all the rules; handling of arrow types is
restricted by the type system to the rules (let) and (〈〉-out).

Lemma 2.9 The inference rules

(Weak) :
P : Γ 	 ∆

(Γ′ ⊇ Γ,∆′ ⊇ ∆)
P : Γ′ 	 ∆′ (〈〉-in) :

P : Γ,y:B 	 x:A,∆
(y, a 
∈ ∆, x 
∈ Γ)

a(x,y).P : Γ, a:A→B 	 ∆

(out ′) : a b : Γ,b:A 	 a:A,b:A,∆ (〈〉-out ′) : a〈b,c〉 : Γ,b:A 	 a:A→B, c:B,∆

( ) :
! u a : u:A 	 a:A (ν) :

Q w : Γ 	 w:B,∆

b(w). Q w : Γ 	 b:B,∆

are admissible.

Proof: That weakening is admissible follows by a straightforward reasoning over the structure
of derivations; for the other rules, consider:

P : Γ,y:B 	πio x:A,∆
(let )

let 〈x,y〉=z in P : Γ,z:A→B 	πio ∆
(in)

a(z). let 〈x,y〉= z in P : Γ, a:A→B 	πio ∆

9 Type assignment is classical in nature (i.e. not intuitionistic), since we can have more than one conclusion.
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(0)
0 : Γ,b:A 	πio b:A,∆

(out)
a b.0 : Γ,b:A 	πio a:A,b:A,∆

(0)
0 : Γ,b:A 	πio c:B,∆

(〈〉-out)
a〈b,c〉.0 : Γ,b:A 	πio a:A→B, c:B,∆

(out ′)
a w : Γ,w:A 	πio a:A,w:A

(in)
u(w).a w : Γ,u:A 	πio a:A

Q w : Γ 	πio w:B,∆
(out)

b w. Q w : Γ 	πio b:B,w:B,∆
(ν)

(νw) (b w. Q w) : Γ 	πio b:B,∆

This notion is a true assignment system, which does not (directly) relate back to any logic.
For example, rules (|) and (!) do not change the left and right contexts, so do not correspond
to any logical rule. Moreover, rule (ν) just removes a formula, and rule (〈〉-out) is clearly not
an instance of an axiom. The only known relation this system has with logic is that established
in [7, 8].

Since weakening is included, we allow ourselves to be a little less precise when we construct
derivations, and freely switch to multiplicative style where rules join contexts, by using, for
example, the rule

(|) :
P1 : Γ1 	 ∆1 · · · P n : Γn 	 ∆n

P1 | · · · | P n : Γ1, . . . , Γn 	 ∆1, . . . ,∆n

whenever convenient.

3 Context and background of this paper

Milner’s input-based encoding

In the past, there have been several investigations of interpretation from the λ-calculus into
the π-calculus. Research in this direction started by Milner’s interpretation · m · of λ-terms
[37]; Milner’s interpretation is input based and the interpretation of closed λ-terms respects
large-step lazy reduction →l [3] to normal form up to substitution; this was later generalised
to β-equality, but using weak bisimilarity [44].

For many years, it seemed that the first and final word on the interpretation of the λ-
calculus has been said by Milner; in fact, input-based interpretations of the λ-calculus into
the π-calculus have become the de facto standard, and most published systems are based on
Milner’s interpretation. The various interpretations studied in [44] constitute examples, also
in the context of the higher-order π-calculus; [30] used Milner’s approach with a typed version
of the π-calculus; [47] used it in the context of continuation-passing style languages.

It is defined by:

Definition 3.1 (Milner’s interpretation [37]) Let a not be a λ-variable. Then

x m a =
∆ x a (x 
= a)

λx.M m a =
∆ a(x).a(b). M m b (b fresh)

MN m a =
∆ (νc) ( M m c | (νz) (c z.c a. z := Nm

)) (c,z fresh)
x := M m

=
∆ ! x(w). M m w (w fresh)

Milner calls x := M m an “environment entry”; it could be omitted from the definition above,
but is of use separately.

Notice that, in MN m a, the interpretation of the operand N is placed under output, and
thereby blocked from running; this comes at a price: now β-reductions that occur in the
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operand can no longer be mimicked. Combined with using input to model abstraction, this
makes that a redex can only be contracted if it occurs on the outside of a term (is the top
redex): the modelled reduction is lazy.

After Milner’s original encoding, many variants followed; for example, [44] defines an en-
coding that respects lazy reduction. We repeat that definition here, but adjusted to the normal
π-calculus, rather than the higher-order one:

Definition 3.2 (cf. [44]) The encoding · N · 10 of the lazy λ-calculus is defined through:

xN a =
∆ x a

λx.MN a =
∆ (νv) (a v.v(x,p). MN p) (v, p fresh)

MNN a =
∆ (νq) ( MN q | q(v).(νx) (v〈x,a〉.! x(w). NN w)) (q,v, x,w fresh)

Notice that, although this is an output-based encoding, in the sense that the (private) channel q
in the encoding of MN is used as an output for the encoding of M, underneath the encoding
is essentially Milner’s. As before, the reductions inside an abstraction, those in the right-
hand side of an application, as well as those inside the term that gets substituted cannot be
simulated, and therefore this encoding models (part of) lazy reduction.

For this encoding, [44] shows a number of results: first it shows:

(λx.M)NN p
(1)
τ 2

d (νx) ( MN p | ! x(w). NN w)
(2)≈g M[N/x]N p

(where τ
d is the deterministic (silent) transition and ≈g is ground bisimilarity) which leads

to:

M →l N
(3)⇒ MN p τ 2

d≈g NN p

and11

M = β N
(4)⇒ MN p ≈g NN p

We show the equivalent of these results for our encoding in Theorem 7.1 and Theorem 7.6
below.

The characterisation of M m a ≈ N m a, left as open problem in [37], was achieved through
showing that

M m a ≈ N m a if and only if M =∼ N,

where =∼ is the applicative bisimilarity on λ-terms [4], an operational notion of equivalence on
terms of the lazy λ-calculus as defined by Abramsky and Ong, rather than β-equality.

However, applicative bisimulation equates the terms x(xΘ∆∆)Θ and x(λy.xΘ∆∆y)Θ (where
∆ = λx.xx, and Θ is such that, for every N, ΘN is reducible to an abstraction) whereas these
terms are not weakly bisimilar under the interpretation · m ·. This has strong repercussion as
far as the interpretation of the λ-calculus is concerned: in order to achieve full abstraction,
Sangiorgi had to extend Milner’s encoding to Λc, a λ-calculus enriched with constants and
by exploiting a more abstract encoding into the Higher Order π-calculus, a variant of the π-
calculus with higher-order communications. Sangiorgi’s result then essentially states that the
interpretations of closed Λc-terms M and N are contextually equivalent if and only if M and
N are applicatively bisimilar; in [43] he improves on this by showing that the interpretation

10 For uniformity of notation, we write · N · rather than N · ·.
11 In [44], it is suggested that (4) follows from (3), but in fact it follows from (1) and (2). Moreover, we assume

that the formulation of (4), where =∼c is used instead of ≈g, is a typo.
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of terms in Λc in the standard π-calculus is weakly bisimilar if and only if they have the same
Lévy-Longo tree [35, 36] (a lazy variant of Böhm trees [14]).

An output-based encoding for the λ-calculus

In [10] we presented a logical, output-based interpretation · s · that interprets abstraction λx.M
not using input, but via an asynchronous output which leaves the interpretation of the body
M free to reduce. That interpretation is defined as:

Definition 3.3 (Spine interpretation [10]) Let a not be a λ-variable. Then

x s a =
∆ x(w).a w (w fresh)

λx.M s a =
∆ (νxb)( M s b | a〈x,b〉) (b fresh)

MN s a =
∆ (νc) ( M s c | c(v,d).(! N s v | d a)) (c,v,d fresh)

M〈x :=N〉 s a =
∆ (νx) ( M s a | ! N s x)

For this interpretation, [10] showed Operational Soundness and Type Preservation, but with
respect to the notion of explicit head-reduction →xh, similar to the notion defined below in
Definition 5.2, and the notion of type assignment defined in Definition 2.8. The main results
shown are:

Theorem 3.4 ([10]) i) If M⇑ then M s a⇑, and if M →xh N then M s a →∗
π∼c N h a.

ii) If Γ 	 M : A then M s a : Γ 	π
io a:A.

where ∼c is contextual equivalence,
As argued in [10], to show the above result, which formulates a direct step-by-step relation

between β-reduction and the synchronisation in the π-calculus, it is necessary to make the
substitution explicit. This is a direct consequence of the fact that, in the π-calculus, the implicit
substitution of the λ-calculus gets ‘implemented’ one variable at the time, rather than all in one
fell swoop. Since we aim to show a similar result for λµ, we will therefore also here define a
notion of explicit substitution.

Classical logic and the π-calculus

A natural extension of this line of research is to see if the π-calculus can be used to interpret
more complex calculi as well, as for example calculi that relate not to intuitionistic logic, but
to classical logic, as λµ, λµµ̃, or X . There are, to date, a number of papers on this topic.

In [30] an interpretation of Call-by-Value λµ is defined that is based on Milner’s, but allows
for a much more liberal notion of reduction on processes, and considers full typed terms and
processes only. The syntax of processes there considered is

P ::= ! x(y).P | (νy) (x y | P) | P | Q | (νx)P | 0

and the notion of reduction on processes is extended to that of ↘, defined as the least com-
patible relation over typed processes (i.e. closed under typed contexts), taken modulo ≡, that
includes:

! x(y).P | (νa) (x a | Q) → ! x(y).P | (νa) (P [a/y] | Q)

as the basic synchronisation rule, as well as

C[(νa) (x a | P)] | ! x(y).Q ↘r C[(νa) (P [a/y] | Q)] | ! x(y).Q
(νx) (! x(y).Q) ↘g 0

where C[·] is an arbitrary (typed) context; note that ↘ synchronises with any occurrence of
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x a, no matter what guards they may be placed under. The resulting calculus is thereby very
different from the original π-calculus. Types for processes prescribe usage of names, and
name passing is restricted to bound (private, hidden) name passing. 12

On the relation between Girard’s linear logic [25] and the π-calculus, [16] gives a treatment
of information flow in proof-nets; only a small fragment of Linear Logic was considered, and
the translation between proofs and π-calculus was left rather implicit, as also noted in [20].

To illustrate this, notice that [16] uses the standard syntax for the polyadic π-calculus

P ,Q ::= 0 | P | Q | !P | (νa)P | a(x).P | a p.P

similar to the one we use here (see Definition 2.1) but for the fact that in [16] the let-construct
is not used. However, the encoding of a ‘cut’ in linear logic

	 x:A ⊗ B,y:(A ⊗ B)⊥
	 n:A,m:A⊥ 	 z:B,w:B⊥

	 m:A⊥,w:B⊥,v:A ⊗ B

	 x:A ⊗ B,m:A⊥,w:B⊥

i.e. the ‘term’ x:A ⊗ B,m:A⊥,w:B⊥, gets translated into a ‘language of proofs’, the result of
which looks like:

Cutk(I,
n,z⊗
v
(I, I)mwz)x, (m,w) = (νk)

(
I[k/y] |

n,z⊗
v
(I, I)mwz[k/v]

)

where the terms Cut and I are (rather loosely) defined. Notice the use of arbitrary application
of processes to channel names, and the operation of pairing; the authors do not specify how
to relate this notation, and in particular their notion of application of process names, to the
above (application free) syntax of processes they consider.

However, even if this relationship is made explicit, also then a different π-calculus is needed
to make the encoding work. To clarify this point, consider the translation in the π-calculus of
the term above, which according to the definition given in [16] becomes:

(νk)
(

x(a). k(a)︸︷︷︸ | (νnz)(k(n,z).︸ ︷︷ ︸
(
n(b).m(b) | z(b).w(b)

)
)).

Although intended, no communication is possible in this term. We have ‘underbraced’ the
desired communication which is impossible, as the arity of the channel k does not match. To
overcome this kind of problem, Bellin and Scott would need the let -construct with use of pairs
of names as we have introduced in this paper in Definition 2.1. Moreover, there is no relation
between the interpreted terms and proofs stated in [16] in terms of logic, types, or provable
statements; here, we make a clear link between interpreted proofs and the logic through our
notion of type assignment for the π-calculus.

In [7] an interpretation into π of the sequent calculus X is defined that enjoys the Curry-
Howard isomorphism for Gentzen’s lk [24], which is shown to respect reduction. However,
this result is only partial, as it is formulated as “if P →X Q, then P c� Q ”, allowing P
to have more observable behaviour than Q ; the main reason for this is that reduction in
X is non-confluent. Although in [7] it is reasoned that this is natural in the context of non-
confluent, symmetric sequent calculi, and there it is shown that the interpretation preserves
types, it is a weaker result than could perhaps be desired or expected.

An interpretation of λµµ̃ is studied in [22]; the interpretation defined there strongly depends

12 This is a feature of all related interpretations into the π-calculus.

14



on recursion, is not compositional, and preserves only outermost reduction; no relation with
types is shown.

4 λµx: λµ with explicit substitution

One of the main achievements of [10] is that it establishes a strong link between reduction in
the π-calculus and step-by-step explicit substitution [17] for the λ-calculus, by formulating a
result not only with respect to explicit head-reduction and the spine interpretation, but also
for Milner’s interpretation [37] with respect to explicit lazy reduction, all defined in [10]. In
view of this, for the purpose of defining an interpretation for Λµ into the π-calculus in [11],
it was natural to study a variant of Λµ with explicit substitution as well; since here we work
with λµ, we present here λµx, as a variant of Λµx as presented in that paper.

Explicit substitution treats substitution as a first-class operator, both for the logical and the
structural substitution, and describes all the necessary steps to effectuate both.

Definition 4.1 (λµx) i) The syntax of the explicit λµ calculus, λµx, is defined by:

M, N ::= x | λx.M | MN | M 〈x :=N〉 | µα.[β]M | M 〈α :=N·γ〉

We consider the occurrences of x in M bound in M 〈x :=N〉, and those of α in M in
M 〈α :=N·γ〉; by Barendregt’s convention, x and α do not appear outside M.

ii) The reduction relation →x on terms in λµx is defined through the following rules (for the
sake of completeness, we list all):

a) Main reduction rules:13

(λx.M)N → M 〈x :=N〉
(µα.[β]M)N → µγ.([β]M) 〈α :=N·γ〉 (γ fresh)

µβ.[β]M → M (β 
∈ fn(M))
µδ.[β](µγ.[α]M) → µδ.[α]M[β/γ]

b) Term substitution rules:

x 〈x :=N〉 → N
M 〈x :=N〉 → M (x 
∈ fv (M))

(λy.M) 〈x :=N〉 → λy.(M 〈x :=N〉)
(PQ) 〈x :=N〉 → (P 〈x :=N〉)(Q 〈x :=N〉)

(µα.[β]M) 〈x :=N〉 → µα.[β](M 〈x :=N)〉

c) Structural rules:14

(µδ.C) 〈α :=N·γ〉 → µδ.(C 〈α :=N·γ〉)N
([α]M) 〈α :=N·γ〉 → [γ](M 〈α :=N·γ〉)N
([β]M) 〈α :=N·γ〉 → [β](M 〈α :=N·γ〉) (α 
= β)

M 〈α :=N·γ〉 → M (α 
∈ fn(M))
(λx.M) 〈α :=N·γ〉 → λx.M 〈α :=N·γ〉
(PQ) 〈α :=N·γ〉 → (P 〈α :=N·γ〉) (Q 〈α :=N·γ〉)

13 Notice that the fourth alternative is defined using renaming; since β itself is not a term, we cannot use explicit
substitution for this operation.

14 Notice that these rules are, in part, defined on pseudo-terms.
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d) Contextual rules:

M → N ⇒




λx.M → λx.N
ML → NL
LM → LN
µα.[β]M → µα.[β]N
M 〈x := L〉 → N 〈x := L〉
L 〈x :=M〉 → L 〈x :=N〉
M 〈α := L·γ〉 → N 〈α := L·γ〉
L 〈α :=M·γ〉 → L 〈α :=N·γ〉

iii) We use →:= for the notion of reduction where only term substitution and structural rules
are used (so not the main reduction rules), and =x for the congruence generated by →x.

Notice that we do not allow explicit substitutions to ‘cross’ and do not add rules like

M 〈x :=N〉 〈y := L〉 → M 〈y := L〉 〈x :=N 〈y := L〉〉

or

M 〈x :=N〉 〈y := L〉 → M 〈y := L〉 〈x :=N〉 〈y := L〉
As in [17], this would introduce undesired non-termination. We will add the latter for our
notion of explicit head reduction in Section 5, but will limit its applicability, thereby avoiding
the problem. This notion differs from that of [6], where a version with explicit substitution is
defined for a variant of λµ that uses de Bruijn indices [19]. Notice that since reduction in λµx
actually is formulated via term rewriting rules [32], reduction is allowed to take place also
inside the substitution term.

Explicit substitution describes explicitly the process of executing a βµ-reduction, i.e. ex-
presses syntactically the details of the computation as a succession of atomic steps (like in a
first-order rewriting system), where the implicit substitution of each βµ-reduction step is split
up into reduction steps. Thereby the following is straightforward:

Proposition 4.2 (λµx implements λµ-reduction) i) M →βµ N ⇒ M →∗
x N.

ii) M ∈ λµ & M →x N ⇒ ∃L ∈ λµ [N →∗
:= L ].

The notion of type assignment on λµx is a natural extension of the system for the λµ-
calculus of Definition 1.2 by adding rules (T-cut) and (C-cut).

Definition 4.3 (Type assignment for λµx) Using the notion of types in Definition 1.2, type
assignment for λµx is defined by:

(Ax) : Γ, x:A 	 x : A | ∆ (µ) :
Γ 	 M : B | α:A,∆

(α 
∈ ∆)
Γ 	 µα.[β]M : A | β:B,∆

Γ 	 M : A | α:A,∆
(α 
∈ ∆)

Γ 	 µα.[α]M : A | ∆

(→I) :
Γ, x:A 	 M : B | ∆

(x 
∈ Γ)
Γ 	 λx.M : A→B | ∆

(T-cut) :
Γ, x:A 	 M : B | ∆ Γ 	 N : A | ∆

(x 
∈ Γ)
Γ 	 M 〈x :=N〉 : B | ∆

(→E) :
Γ 	 M : A→B | ∆ Γ 	 N : A | ∆

Γ 	 MN : B | ∆
(C-cut) :

Γ 	 M : C | α:A→B,∆ Γ 	 N : A | ∆
(α,γ 
∈ ∆)

Γ 	 M 〈α :=N·γ〉 : C | γ:B,∆

We write Γ 	µx M : A for judgements derivable in this system.
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5 Explicit head-reduction

In the context of head reduction and explicit substitution, we can economise further on how
substitution is executed, and perform only those that are essential for the continuation of
head reduction. We will therefore limit substitution to allow it to only replace the head variable
of a term (this principle is also found in Krivine’s machine [33]) or perform a contextual
substitution only on names that occur in front of the term. The results of [10] show that this
is exactly the kind of reduction that the π-calculus naturally encodes.

We first formally define the following notions:

Definition 5.1 (Head variables and head names) For terms of λµx, the head variable of M,
hv (M), and the head name hn (M) are defined by:

hv (λx.M) = hv (M)
hv (xM1 · · ·Mn) = x
hv (µα.[β]M) = hv (M)
hv (M 〈x :=N〉) = hv (M) (hv (M) 
= x)
hv (M 〈α :=N·γ〉) = hv (M)

hn (µα.[β]H) = β
hn (M 〈x :=N〉) = hn (M)
hn (M 〈α :=N·γ〉) = hn (M) (hn (M) 
= α)

We let x = hv (M) be true whenever hv (M) is defined and returns x, and false if either it
is undefined or does not return x. We write hn (M) ∈ V whenever hn (M) = α (so hn (M) is
defined) and α ∈ V, and hn (M) 
∈ V when this is not the case (so either hn (M) is not defined,
or hn (M) = β, and β 
∈ V).

Notice that, for example, hv ((λx.M)N), hv (λy.x 〈x :=N〉), hn (λx.M), and hn (PQ) are unde-
fined.

This leads to the definition of the following:

Definition 5.2 (Explicit head-reduction) We define explicit head-reduction →xh on λµx as
→x, but change and add a few rules:

i) The main reduction rules are as before:

(λx.M)N → M 〈x :=N〉 (β-rule)
(µα.C)N → µγ.C 〈α :=N·γ〉 (γ fresh)
µα.[α]M → M (α 
∈ fn(M))

µα.[β]µγ.C → µα.C[β/γ]

ii) In the term substitution rules, we replace the rule for application and add side-conditions:

x 〈x :=N〉 → N
M 〈x :=N〉 → M (x 
∈ fv (M))

(λy.M) 〈x :=N〉 → λy.(M 〈x :=N〉) (x = hv (M))
(PQ) 〈x :=N〉 → (P 〈x :=N〉 Q) 〈x :=N〉 (x = hv (PQ))

(µα.[β]M) 〈x :=N〉 → µα.[β](M 〈x :=N)〉 (x = hv (M))

iii) There are only two structural rules:

(µβ.[α]M) 〈α :=N·γ〉 → µβ.[γ](M 〈α :=N·γ〉)N
M 〈α :=N·γ〉 → M (α 
∈ fn(M))
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iv) We only allow the following contextual rules:

M → N ⇒




λx.M → λx.N
ML → NL
µα.[β]M → µα.[β]N
M 〈x := L〉 → N 〈x := L〉
M 〈α := L·γ〉 → N 〈α := L·γ〉

v) We add one substitution rules:

M 〈x :=N〉 〈y :=P〉 → M 〈y :=P〉 〈x :=N〉 〈y :=P〉 (y = hv (M))

Notice that, for example, in case (ii), the fourth of the clauses postpones the substitution
〈x :=N〉 on Q until such time that an occurrence of the variable x in Q becomes the head-
variable of the full term, and that, without the side-condition, we would allow

(yx) 〈x :=N〉 → (y 〈x :=N〉 x) 〈x :=N〉 → (yx) 〈x :=N〉

which is obviously undesirable.
Remark that we need to add the rules of case (v): if we take the term P 〈x :=Q〉 〈y :=R〉,

under ‘normal’ reduction →x, the innermost substitution has to complete first before the out-
ermost can run. When moving towards explicit head-reduction, this would mean that we
cannot reduce, for example, yx 〈x :=Q〉 〈y :=R〉; the innermost substitution cannot advance,
since x is not the head variable, and the outermost cannot advance since it is not defined
for the substitution term it has to work on, yx 〈x :=Q〉 in this case. To allow outermost sub-
stitution to ‘jump’ the innermost, we need to add the extra rule. As mentioned above, this
potentially introduces non-termination, but by demanding that the variable concerned is ac-
tually the head-variable of the term, we avoid this. Notice that the outermost substitution
〈y :=N〉 in M 〈y := L〉 〈x :=N〉 〈y := L〉 cannot propagate inside, since y is not the head variable
of M 〈y := L〉, even if it is that of M (see Definition 5.3). Notice that we violate Barendregt’s
convention by the rules in case (v), and assume that the occurrences of y in M are bound by the
innermost substitution, and those in N by the outermost. We could avoid this by introducing
renaming, as usual, by writing

M 〈x :=N〉 〈y :=P〉 → M[z/y] 〈z :=P〉 〈x :=N〉 〈y :=P〉 (y = hv (M),z fresh)

but will not do that here.

Definition 5.3 The normal forms with respect to →xh are defined through the grammar:

N ::= λx.N
| xM1 · · ·Mn (n ≥ 0)
| µα.[β]N (α 
= β ∨ α ∈ N,N 
= µγ.[δ]N ′)
| N 〈x :=M〉 (hv (N) 
= x)
| N 〈α :=M·γ〉 (hn (N) 
= α)

It is straightforward to check that these terms are indeed the normal forms with respect to
→xh.

The following proposition states the relation between explicit head-reduction, head reduc-
tion, and explicit reduction.

Proposition 5.4 i) If M →∗
h N, then there exists L ∈ λµx such that M →∗

xh L and L →∗
:= N.

ii) If M →nf
xh N with M ∈ λµ, then there exists L ∈ λµ such that N →nf

:= L, and M →h
nf L.

iii) M →nf
βµ N if and only if there exists L ∈ λµx such that M →nf

xh L and L →∗
x N.

18



This result gives that we can show our main results for λµx for reductions that reduce to hnf.
We give some examples that illustrate λµx and →xh.

Example 5.5 i) (λx.xx)(λy.y) →xh xx 〈x :=λy.y〉 →xh
(x 〈x :=λy.y〉x) 〈x :=λy.y〉 →xh (λy.y)x 〈x :=λy.y〉 →xh
y 〈y := x〉 〈x :=λy.y〉 →xh x 〈x :=λy.y〉 →xh λy.y

Notice that this reduction is deterministic.

ii) Reduction in →xh is not deterministic in general:

(λx.(λy.M)N)L →xh

{
(λx.M 〈y :=N〉)L
((λy.M)N) 〈x := L〉

iii) (µα.[β]µδ.[α](λy.y))(λz.z) →xh (µγ.[β]µδ.[α](λy.y)) 〈α :=λz.z·γ〉 →xh
(µγ.[α](λy.y)[β/δ]) 〈α :=λz.z·γ〉 = (µγ.[α](λy.y)) 〈α :=λz.z·γ〉 →xh
µγ.[γ]((λy.y) 〈α :=λz.z·γ〉)(λz.z) →xh µγ.[γ](λy.y)(λz.z) →xh
µγ.[γ]y 〈y :=λz.z〉 →xh µγ.[γ]λz.z →xh λz.z

Notice that this reduction sequence is not deterministic.

iv) Some reductions leave substitutions in place:

λ f .(λx. f (xx))(λx. f (xx)) →xh λ f .( f (xx) 〈x :=λx. f (xx)〉)

and the last term is in →xh-normal form.

v) Of course in →xh we can have non-terminating reductions. We know that in →βµ and →h,
(λx.xx)(λx.xx) reduces to itself; this is not the case for →xh, as is illustrated by:

∆∆ = (λx.xx)(λx.xx) →xh xx 〈x :=∆〉 →xh
(x 〈x :=∆〉x) 〈x :=∆〉 →xh (λy.yy)x 〈x :=∆〉 →xh
yy 〈y := x〉 〈x :=∆〉 →xh (y 〈y := x〉y) 〈y := x〉 〈x :=∆〉 →xh
xy 〈y := x〉 〈x :=∆〉 →xh xy 〈x :=∆〉 〈y := x〉 〈x :=∆〉 →xh
(x 〈x :=∆〉y) 〈x :=∆〉 〈y := x〉 〈x :=∆〉 →∗

xh (λz.zz)y 〈y := x〉 〈x :=∆〉 →∗
xh

(λw.ww)z 〈z :=y〉 〈y := x〉 〈x :=∆〉 →∗
xh · · ·

(notice the α-conversions, needed to adhere to Barendregt’s convention). This reduction
is deterministic and clearly loops. Notice that ∆∆ does not run to itself; however,

xy 〈y := x〉 〈x :=∆〉 →∗
:= xx 〈x :=∆〉 →∗

:= ∆∆

so, as stated by Proposition 5.4, the standard reduction result can be achieved by reduction
in →:= (we will use ∆ for λx.xx again below).

6 A logical interpretation of λµx-terms to π-processes

We will now define our logical, 15 output-based interpretation M a of the λµx-calculus into
the π-calculus (where M is a λµ-term, and a is the name given to its (anonymous) output),

15 It is called logical because it has its foundation in the relation between natural deduction and Gentzen’s
sequent calculus lk; in particular, the case for application is based on the representation of modus ponens

Γ 	 A⇒B Γ 	 A

Γ 	 B
by Γ 	 A⇒B

Γ 	 A Γ, B 	 B

Γ, A⇒B 	 B

Γ 	 B
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which is essentially the one presented in [11], but no longer considers [α]M to be a term.
The main idea behind the interpretation, as in [10], is to give a name to the anonymous out-

put of terms; it combines this with the inherent naming mechanism of λµ. As we will show in
Theorem 7.1, this encoding naturally represents explicit head-reduction; we will need to con-
sider weak reduction later for the full abstraction result, but not for soundness, completeness,
or termination.

The interpretation of λµx terms into the π-calculus is defined by:

Definition 6.1 (Logical interpretation of λµx terms (cf. [11])) Let a not be a λµ-variable
or name. Then

x a =
∆ x(u).! u a (u fresh)

λx.M a =
∆ (νxb)( M b | a〈x,b〉) (b fresh)

MN a =
∆ (νc) ( M c | ! c(v,d).( v :=N | ! d a)) (c,v,d fresh)

M 〈x :=N〉 a =
∆ (νx)( M a | x :=N )

x := N a =
∆ ! x(w). N w (w fresh)

µγ.C a =
∆ (νs) C s [a/γ] (s fresh)

[β]M a =
∆ M β

M 〈β :=N·γ〉 a =
∆ (νβ)( M a | β :=N·γ )

α := M·γ a =
∆ ! α(v,d).( v :=N | !d γ) (v,d fresh)

Notice that not all the interpreted entities on the left are actual λµ terms; moreover,

µγ.[β]M a =
∆ (νs) [β]M s [a/γ] =

∆ (νs) M β [a/γ] ≡ M β[a/γ]

which implies that we could have added

µγ.[β]M a =
∆ M β[a/γ]

to our encoding. However, treating the naming and µ-binding separately is convenient later
in the proofs.

The interpretation presented in [11] had the case

µγ.M a =
∆ (νs) M s [a/γ] (s fresh)

so was defined for Λµ; note that the this encoding very elegantly expresses that the main
computation in µγ.M is blocked: the name s is fresh and bound, so the main output of
(νs) M s [a/γ] cannot be received. However, in order to achieve full abstraction, we had to
restrict our interpretation to λµ, so no longer can consider [α]M a term. The reason is that,
using that interpretation, the process

µα.λx.x a = (νs) ((νxb)(x(u).! u b | s〈x,b〉))
is in normal form. Notice that all inputs and outputs are restricted; thereby, this process is
weakly bisimilar to 0 and to ∆∆ a (see Lemma 8.8). So using that interpretation, we cannot
distinguish between blocked and looping computations, which clearly would affect any full-
abstraction result. When restricting our interpretation to λµ, this problem disappears: since
naming has to follow µ-abstraction, µα.λx.x is not a term in λµ; instead, now

µα.[β]λx.x a = (νxb)( x[a/α] b | β〈x,b〉) = λx.x β

which outputs on β.
Note that we could have avoided the implicit renaming in the case for µ-abstraction by

defining

µγ.C a =
∆ (νs) ( C s | ! γ a)
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which is operationally the same as (νs) C s [a/γ] (they are, in fact, weakly bisimilar) but then
we could not show that terms in →xh-normal form are translated to processes in normal form
(Lemma 7.7), a property that is of use in the proof of termination (Theorem 7.8).

As in [12], we can make the following observations:

Remark 6.2 • The synchronisations generated by the encoding only involve processes of the
shape:

x(w).α w β〈x,α〉 z(β,y).(P | Q)

so in particular, substitution is always well defined. These synchronisations are of the
shape:

(νc) ((νyb) (P | c〈y,b〉) | c(v,d).(R | d(w).a w)) →π (νyb) (P | R [y/v] | b(w).a w)

and after the synchronisation over c, P can receive over y from R [y/α] and send over b to
b(w).a w; or of the shape

(νc) ((νyb) (P | c〈y,b〉) | c(w).a w) →π (νyb) (P | a〈y,b〉)
• All synchronisation takes place only over channels whose names are bound names or

variables in the terms that are interpreted.
• To underline the significance of our results, notice that the encoding is not trivial, since

λyz.y a = (νyb)((νzd)(y(u).! u d | b〈z,d〉) | a〈y,b〉)
λx.x a = (νxb)(x(u).! u b | a〈x,b〉)

processes that differ under ≈.

Notice that, as is the case for Milner’s interpretation and in contrast to the interpretation of
[10], a guard is placed on the replicated terms. This is not only done with an eye on proving
preservation of termination, but more importantly, to make sure that (νx) ( x :=N ) ≈ 0 , a
property we need for our full abstraction result: since a term can have named sub-terms,
the interpretation will generate output not only for the term itself, but also for those named
terms, so the process (νx) (! N x) – using the variant of [10] – can have observable behaviour,
in contrast to here, where (νx) (! x(w). N w) is weakly bismilar to 0 .

In [10] the case for application in the interpretation for λ-terms was defined as:

MN s a =
∆ (νc) ( M h c | c(v,d).(! N h v | d a))

In particular, there the input on name c is not replicated: this corresponds to the fact that for
λ-terms, in M h c, the output c is used exactly once, which is not the case for the interpreta-
tion of λµ-terms: for example, α might appear many times in M, and since µα.[α]M a =
M α[a/α] = M[a/α] a, then the name a appears many times in the latter.

Remark 6.3 Observe the similarity between

MN a =
∆ (νc) ( M c | ! c(v,d).( v :=N | ! d a)) and

M 〈c :=N·γ〉 a =
∆ (νc)( M a | c :=N·γ )

=
∆ (νc)( M a | !c(v,d).( v :=N | ! d γ))

The first communicates N via the output channel c of M (which might occur more than once
inside M c, so replication is needed), whereas the second communicates with all the sub-
terms that have c as output name, and changes the output name of the process to γ. 16 In other

16 A similar observation can be made for the interpretation of λµ in X [9].
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words, explicit structural substitution is just a special case of application. As an abbreviation,
we will write (νc) ( M c | c := N·a ) for MN a.

Notice that context switches do not really influence the structure of the process that is
created by the interpretation since they have no representation in π, but are statically encoded
through renaming. And although the notion of structural reduction in λµ is very different
from normal β-reduction, no special measures had to be taken in order to be able to express
it; the component of our interpretation that deals with pure λ-terms is almost exactly that of
[10] (ignoring for the moment that substitution is modelled using a guard, which affects also
the interpretation of variables), but for the use of replication in the case for application. In
fact, the distributive character of structural substitution is dealt with entirely by congruence
(see also Example 6.7).

This strengthens our view that, as far as our interpretation is concerned, µ-reduction is
not a separate computational step, but is essentially static administration, a reorganisation
of the applicative structure of a term, which has to be defined explicitly in the context of
the λ-calculus, but is dealt with by our interpretation statically rather than by synchronisation
between processes in the π-calculus. In fact, modelling β-reduction iin the π-calculus involves
a computational step, but context switches are dealt with by congruence; this is only possible,
of course, because the interpretation of the operand in application uses replication. This
stresses that the π-calculus constitutes a very powerful abstract machine indeed.

We would like to stress that, although inspired by logic, our interpretation does not de-
pend on types at all; in fact, we can treat untypeable terms as well, and can show that ∆∆ a
(perhaps the prototype of a non-typeable term) runs forever without generating output (see
Example 8.1; this already holds for the interpretation of [10]).

The operation of renaming we will use below is defined and justified via the following lemma,
which states that we can safely rename the output of an interpreted λµ-term. First we need
to show:

Proposition 6.4 ([12]) (νxb) (c(v,d).(P | !d e)) ≈ (νa) (! a e | (νxb) (c(v,d).(P | !d a)))

We use this result to show the following:

Lemma 6.5 (Renaming lemma) Let a 
∈ fv (M), and a 
= e, then

i) (νa) (! a e | M a) ≈ M e.

ii) (νa) (! a e | M b) ≈ M[e/a] b (b 
= a).

Proof: By induction on the structure of λµx-terms.

(M = x) : (νa) (! a e | x a) =
∆ (νa) (! a e | x(u).! u a) ≈ x(u).! u e =

∆ x e

(M = λx.N) : (νa) (! a e | λx.N a) =
∆ (νa) (! a e | (νxb)( N b | a〈x,b〉)) →π (a)

(νaxb) (! a e | N b | e〈x,b〉) ≈ (a 
= x ⇒ a 
∈ fv (N))
(νa) (! a e) | (νxb)( N b | e〈x,b〉) ≈ λx.N e

(M = PQ) : (νa) (! a e | PQ a) =
∆

(νa) (! a e | (νc) ( P c | !c(v,d).(! v(w). Q w | !d a))) ≈ (6.4, a 
= c, a 
∈ fv (P, Q))
(νc) ( P c | !c(v,d).(! v(w). Q w | !d e)) =

∆ PQ e

(M = P 〈x :=Q〉) : (νa) (! a e | P〈x :=Q〉 a) =
∆

(νa) (! a e | (νx)( P a | ! x(w). Q w)) ≈ (IH(i), x 
= a, a 
∈ fv (P, Q))
(νx)( P e | ! x(w). Q w) =

∆ P〈x :=Q〉 e
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(M = µβ.[γ]N) : (νa) (! a e | µβ.[γ]N a) =
∆

(νa) (! a e | N γ[a/β]) ≈ (IH(ii), a 
= γ, a 
∈ fv (N))
N γ[a/β] [e/a] ≈ N γ[e/β] =

∆ µβ.[γ]N e

(M = P 〈β :=Q·γ〉) : (νa) (! a e | P 〈β :=Q·γ〉 a) =
∆

(νa) (! a e | (νβ)( P a | β :=Q·γ )) ≈ (IH(i), a 
= β, a 
∈ fv (Q))
(νβ)( P[e/a] e | β :=Q[e/a]·γ ) =

∆ (a 
∈ fv (P))
(νβ)( P e | β :=Q·γ ) =

∆ P〈β :=Q·γ〉 e

For reasons of clarity, we use some auxiliary notions of equivalence, that are used in Theo-
rem 7.1.

Definition 6.6 i) We define a garbage collection bisimilarity by: P ≈g Q if and only if there
exists R such that P = Q | R and R ≈ 0 . We call a process that is weakly bisimilar to 0
garbage.

ii) We define ≈r as the largest, symmetric equivalence such that:
a) for all P such that the name a is a free output of P , is different from e, and is only

used to output: (νa) (P | ! a e) ≈r P [e/a],
b) for all contexts C, if P ≈r Q then C[P ] ≈r C[Q ].

iii) We define →≈ ∗
π as →∗

π∪≈r∪≈g.

So ≈r is used when we want to emphasise that two processes are equivalent just using re-
naming. Notice that ≈g ⊂ ≈ and ≈r ⊂ ≈.

Using this lemma, we can show the following:

Example 6.7 The interpretation of the β-redex (λx.P)Q reduces as follows:

(λx.P)Q a =
∆

(νc) ((νxb)( P b | c〈x,b〉) | ! c(v,d).( v :=Q | ! d a)) →π (c)
(νc) ((νbx) ( P b | ! b a | x := Q ) | ! c(v,d).( v :=Q | ! d a)) ≡ (c 
∈ fn(P, Q))

(νbx) ( P b | ! b a | x :=Q ) | (νc) ( c :=Q·a ) ≈g (∗)
(νbx) ( P b | ! b a | x :=Q ) ≈r (6.5)
(νx)( P a | x :=Q ) =

∆ P〈x :=Q〉 a

This shows that β-reduction is implemented in π by at least one synchronisation. Notice
that, in step (∗), the process (νc) ( c :=Q·a ) =

∆ (νc) (! c(v,d).( v :=Q | ! d a)) is weakly bisim-
ilar to 0 .

This example stresses that all synchronisations in the image of · · are over hidden channels,
so by Proposition 2.5 are in ≈.

Remark 6.8 We could not have represented the extensional rules: note that

λx.yx a =
∆ (νxb)((νc) ( y c | c := x·b ) | a〈x,b〉)

is not weakly bisimilar to y a, and neither is

µα.[β y]a =
∆ y β[a/α] = y β

weakly bisimilar to:

λx.µγ.[β]y[x·γ/α] a = λx.µγ.[β]y a
=
∆ (νxb)( µγ.[β]y b | a〈x,b〉)
=
∆ (νxb)( y β[b/γ] | a〈x,b〉) =

∆ (νxb) ( y β | a〈x,b〉)
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We can also show that typeability is preserved: first, we need a substitution lemma.

Proposition 6.9 (Substitution [7, 8]) If P : Γ, x:A 	π
io x:A,∆, then P [b/x] : Γ,b:A 	π

io b:A,∆ for b
fresh or b:A ∈ Γ∪∆.

Proof: Easy.

Theorem 6.10 ( · · preserves λµx types) If Γ 	µx M : A | ∆, then M a : Γ 	π
io a:A,∆.

Proof: By induction on the structure of derivations in 	µx:

((Ax)) : Then M = x, and Γ = Γ′, x:A. Notice that x h a = x(u).! u a, and that

( )
u a : Γ′,u:A 	πio a:A

(! )
! u a : Γ′,u:A 	πio a:A

(in)
x(u).! u a : Γ′, x:A 	πio a:A

((→I)) : Then M = λx.N, A = C→D, and Γ, x:C 	µx N : D | ∆; by definition, λx.N a =

(νxb)( N b | a〈x,b〉). Then, by induction, D :: N b : Γ, x:C 	π
io b:D,∆ exists, and we can

construct:
D

N b : Γ, x:C 	πio b:D,∆
(〈〉-out ′)

a〈x,b〉 : x:C 	πio a:C→D,b:D
(|)

N b | a〈x,b〉 : x:C 	πio a:C→D,b:D,∆
(ν)

(νb) ( N b | a〈x,b〉) : Γ, x:C 	πio a:C→D,∆
(ν)

(νxb)( N b | a〈x,b〉) : Γ 	πio a:C→D,∆

Notice that (νxb)( N b | a〈x,b〉) = λx.N a.

((µ)) : Then M = µα.[β]N, and either:

(α 
= β) : Then Γ 	µx N : A | α:A, β:B,∆. By induction, there exist a derivation for N β :
Γ 	πio α:A, β:B,∆; then by Lemma 6.9, also N β[a/α] : Γ 	πio a:A, β:B,∆ as well, and
N β[a/α] = µα.[β]N a.

(α = β) : Then Γ 	µx N : A | α:A,∆. By induction, there exist a derivation for N a : Γ 	π
io

a:A,α:A,∆; then by Lemma 6.9, also N α[a/α] : Γ 	πio a:A,∆ as well, and N α[a/α] =
µα.[α]N a.

((C-cut)) : Then M = P 〈α :=Q·γ〉 and we have Γ 	µx P : C | α:B→A,∆ and Γ 	µx Q : A | γ:B,∆
for some B. By induction, there exist derivations D1 :: P a : Γ 	πio a:C,α:B→A,∆ and D2 ::

Q w : Γ 	π
io w:B,∆, and we can construct the derivation

D1

P a : Γ 	πio a:B→A,∆

D2

Q w : Γ 	πio w:B,∆
(ν)

b(w). Q w : Γ 	πio b:B,w:B,∆
(!)

! b(w). Q w : Γ 	πio b:B,∆

( )
d γ : d:A 	πio γ:A

(!)
! d γ : d:A 	πio γ:A

(|)
b :=Q | ! d γ : Γ,d:A 	πio γ:A,b:B,∆

(〈〉-in)
α(b,d).( b :=Q | ! d γ) : Γ,α:B→A 	πio γ:A,∆

(!)
! α(b,d).( b :=Q | ! d γ) : Γ,α:B→A 	πio γ:A,∆

(|)
P a | ! α(b,d).( b :=Q | ! d γ) : Γ,α:B→A 	πio α:B→A,γ:A,∆

(ν)
(να)( P a | ! α(v,d).( v :=Q | ! d γ)) : Γ 	πio γ:A,∆
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and (να)( P a | !α(v,d).( v :=Q | !d γ)) = P〈α :=Q·γ〉 a.

((→E), (T-cut)) : Since PQ a = (νc) ( P c | c := Q·a ) and M 〈x :=N〉 a = (νx)( M a | x :=N ),
these cases are very similar to that for (C-cut).

7 Soundness, completeness, and termination

As in [37, 44], we can now show a reduction-preservation result for our encoding with respect
to explicit head-reduction for λµx, by showing that · · preserves →xh up to weak bisimilarity.
Notice that we prove the result for λµx terms, do not require the terms to be closed, and that
the result is shown for single step reduction.

Theorem 7.1 (Soundness) If M →xh N, then M a →≈ ∗
π N a.

Proof: By induction on the definition of explicit head-reduction.

(Main reduction rules) :

((λx.M)N → M 〈x :=N〉) : (λx.M)N a =
∆ (νc) ( λx.M c | c := N·a ) =

∆

(νc) ((νxb)( M b | c〈x,b〉) | !c(v,d).( v :=N | ! d a)) →π (c)
(νcxb) ( M b | x :=N | c :=N·a | !b a) ≈g

(νxb) ( M b | x :=N | !b a) ≈r (6.5) (νx)( M a | x :=N ) =
∆

M〈x :=N〉 a

((µβ.[α]M)N → µγ.([α]M) 〈β :=N·γ〉, γ fresh) : (µβ.[α]M)N a =
∆

(νc) ( µβ.[α]M c | c := N·a ) =
∆

(νc) ( M α[c/β] | c := N·a ) =α (c fresh)
(νβ)( M α | β :=N·a ) =
(νβ)( M α | β :=N·γ )[a/γ] ≡ (s fresh)
(νs) (νβ)( M α | β :=N·γ ) [a/γ] =

∆ (νs) (νβ)( [α]M s | β :=N·γ ) [a/γ] =
∆

(νs) ([α]M) 〈β :=N·γ〉 s [a/γ] =
∆ µγ.([α]M) 〈β :=N·γ〉 a

(µβ.[β]M → M, if β 
∈ fn(M)) : µβ.[β]M a =
∆ M β[a/β] = (β 
∈ fn(M)) M a

(µα.[β]µγ.[δ]M → µα.[δ]M[β/γ],γ 
= δ) : µα.[β]µγ.[δ]M a =
∆ µγ.[δ]M β[a/α] =

∆

M δ[β/γ][a/α] = M[β/γ] δ[a/α] =
∆ µα.[δ]M[β/γ] a

(µα.[β]µγ.[γ]M → µα.[β]M[β/γ]) : µα.[β]µγ.[γ]M a =
∆ µγ.[γ]M β[a/α] =

∆

M γ[β/γ][a/α] = M[β/γ] β[a/α] =
∆ µα.[β]M[β/γ] a

(Term substitution rules) :

(x 〈x :=N〉 → N) : x〈x :=N〉 a =
∆ (νx)( x a | x :=N ) =

∆

(νx)(x(u).! u a | ! x(w). N w) →π (x) (νw) (! w a | N w) | (νx) ( x :=N ) ≈g
(νw) (! w a | N w) ≈r (6.5) N a

(M 〈x :=N〉 → M, x 
∈ fv (M)) : M〈x :=N〉 a =
∆ (νx)( M a | x :=N ) =

∆

(νx)( M a | ! x(w). N w) ≡ (a 
= x) M a | (νx) (! x(w). N w) ≈g M a

((λy.M) 〈x :=N〉 → λy.(M 〈x :=N〉), x = hv (M)) : (λy.M)〈x :=N〉 a =
∆

(νx)((νyb)( M b | a〈y,b〉) | x :=N ) ≡ (a 
= x)
(νyb)((νx)( M b | x :=N ) | a〈y,b〉) =

∆ λy.M〈x :=N〉 a

((PQ) 〈x :=N〉 → (P 〈x :=N〉Q) 〈x :=N〉, x = hv (PQ)) : (PQ)〈x :=N〉 a =
∆
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(νx)((νc) ( P c | c := Q·a ) | ! x(w). N w) ≈ (2.6)
(νx)((νc) ((νx)( P c | ! x(w). N w) | c := Q·a ) | ! x(w). N w) =

∆

(νx)((νc) ( P 〈x :=N〉 c | c := Q·a ) | x :=N ) =
∆

(P 〈x :=N〉Q)〈x :=N〉 a

((µα.[β]M) 〈x :=N〉 → µα.[β](M 〈x :=N)〉, x = hv (M)) : (µα.[β]M)〈x :=N〉 a =
∆

(νx)( M β[a/α] | x :=N ) ≡ (α 
∈ fn(N)) (νx)( M β | x :=N )[a/α] =
∆

M 〈x :=N〉 β[a/α] =
∆ µα.[β]M〈x :=N〉 a

(Structural rules) :

((µδ.[α]M) 〈α :=N·γ〉 → µδ.[γ](M 〈α :=N·γ〉)N) : (µδ.[α]M)〈α :=N·γ〉 a =
∆

(να)( M α[a/δ] | α :=N·γ ) = (δ 
∈ fn(〈α :=N·γ〉))
(να)( M α | α :=N·γ )[a/δ] ≈,=α

(νc) ((να)( M c | α :=N·γ ) | c := N·γ )[a/δ] =
∆

(νc) ( M〈α :=N·γ〉 c | c := N·γ )[a/δ] =
∆ µδ.[γ](M 〈α :=N·γ〉)N a

(M 〈α :=N·γ〉 → M, α 
∈ fn(M)) : M〈α :=N·γ〉 a =
∆ (να)( M a | α :=N·γ ) ≡ (α 
= a)

M a | (να) ( α :=N·γ ) ≈g
M a

(Substitution rule) :

(M 〈x :=N〉 〈y :=P〉 → M 〈y :=P〉 〈x :=N〉 〈y :=P〉) : M〈x :=N〉〈y :=P〉 a =
∆

(νy)((νx)( M a | x :=N ) | ! y(w). P w) ≈ (2.6)
(νy)((νx)((νy)( M a | ! y(w). P w) | x :=N ) | ! y(w). P w) =

∆

M〈y :=P〉〈x :=N〉〈y :=P〉 a

(Contextual rules) : By induction.

Remark that, by Property 2.5, all proper reductions in this proof are in ≈. Also, the proof
shows that β-reduction is implemented in π by at least one synchronisation.

Example 7.2 Notice that we could have demanded that the contextual rules of Definition 5.2(iv)
be stated as:

M → N ⇒




λx.M → λx.N
µα.[β]M → µα.[β]N (α 
= β, M 
= µγ.[δ]M′)
ML → NL (ML not a redex)
M 〈x := L〉 → N 〈x := L〉 (x 
= hv (M))
M 〈α := L·γ〉 → N 〈α := L·γ〉 (α 
= hn (M))

which would imply that we would only allow the reduction

(µα.[α](λz.M)N)L → µγ.[γ]((λz.M)N)L

and not

(µα.[α](λz.M)N)L → (µα.[α]M〈z :=N〉)L

However, since under the interpretation µ-abstractions and naming are modelled using con-
gruence and syntactic operations, we have the following:

(µα.[α](λz.M)N)L a =
∆

(να) ((νe) ( λz.M e | e :=N·α ) | α :=L·a ) =
∆

(να) ((νe) ((νzb)( M b | e〈z,b〉) | ! e(v,d).( v :=N | !d α)) | ! α(v,d).( v := L | ! d a))

Notice that synchronisation over e is possible, so the contraction of the redex (λz.P)N is
modelled under the interpretation, which justifies that we allow this redex to be contracted
under →xh, although it is encompassed by the redex (µα.[α](λz.M)N)L.

26



Similarly, we have

(λx.((λz.M)N))L →
{
((λz.M)N)〈x := L〉
(λx.(M〈z :=N〉))L

and in the process

(λx.((λz.M)N))L a =
∆

(νc) ((νxb)((νe) ((νzb)( M b | e〈z,b〉) |
! e(v,d).( v :=N | ! d b)) | c〈x,b〉) | !c(v,d).( v := L | ! d a))

both synchronisations over c and e are possible.

We can now easily show:

Theorem 7.3 (Operational Soundness for →xh ) i) M →∗
xh N ⇒ M a ≈ N a.

ii) If M ↑xh then M a↑.

Proof: The first is shown by induction using Theorem 7.1, using Proposition 2.5; the second
follows from Example 6.7, and the fact that µ-reduction and substitution do not loop [42]
(i.e. non-termination is caused only by β-reduction).

We can also show:

Theorem 7.4 (Operational Completeness for →xh ) i) If M a →π P , then there exists N such
that P ≈ N a and M →∗

xh N.
ii) If M a →∗

π N a then M →∗
xh N.

Proof: The fist is shown by easy induction on the structure of terms, using the fact that all
synchronisations that are possible in M a are generated by the interpretation, and correspond
to reductions in →xh. The second follows from Lemma 1.8 and 4.2, and the first part.

We can also show that standard reduction with explicit substitution, →x, is preserved under
our encoding by weak bisimulation. Note that this result is stated for =x, not =xh, and that it
does not show that the encoding of terms is related through reduction.

Theorem 7.5 If M =x N, then M a ≈ N a.

Proof: By induction on the definition of =x; we only show the cases that are different from the
proof of Theorem 7.1.

((PQ) 〈x :=N〉 → (P 〈x :=N〉)(Q 〈x :=N〉)) : (PQ) 〈x :=N〉 a =
∆

(νx)((νc) ( P c | ! c(v,d).( v :=Q | !d a)) | ! x(w). N w) ≈ (2.6)
(νc) ((νx) ( P c | x :=N ) | (νx) (! c(v,d).(! v(w). Q w | d a) | x :=N )) ≈ (2.6)
(νc) ((νx) ( P c | x :=N ) | ! c(v,d).((νx) (! v(w). Q w | x :=N ) | d a)) ≈ (2.6)
(νc) ((νx) ( P c | x :=N ) | ! c(v,d).(! v(w).(νx)( Q w | x :=N ) | d a)) =

∆

(νc) ( P 〈x :=N〉 c | ! c(v,d).(! v(w). Q 〈x :=N〉 w | d a)) =
∆

(νc) ( P 〈x :=N〉 c | ! c(v,d).( v :=Q 〈x :=N〉 | d a)) =
∆

(νc) ( P 〈x :=N〉 c | c := Q 〈x :=N〉·a ) =
∆

(P 〈x :=N〉)(Q 〈x :=N〉) a

((µδ.[β]M) 〈α :=N·γ〉 → µδ.[β](M 〈α :=N·γ〉) α 
= β) : (µδ.[β]M)〈α :=N·γ〉 a =
∆

(να)( M β[a/δ] | α :=N·γ ) = (δ 
∈ fn(〈α :=N·γ〉))
(να)( M β | α :=N·γ )[a/δ] =

∆ µδ.[β](M〈α :=N·γ〉) a
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((λx.M) 〈α :=N·γ〉 → λx.M 〈α :=N·γ〉) : (λx.M)〈α :=N·γ〉 a =
∆

(να)((νxb)( M b | a〈x,b〉) | α :=N·γ ) ≡ (α 
= x,b)
(νxb)((να)( M b | α :=N·γ ) | a〈x,b〉) =

∆ λx.M〈α :=N·γ〉 a

((PQ) 〈α :=N·γ〉 → (P 〈α :=N·γ〉) (Q 〈α :=N·γ)〉) : (PQ)〈α :=N·γ〉 a =
∆

(να)((νc) ( P c | !c(v,d).(! v(w). Q w | !d a)) | ! α(v,d).(! v(w). N w | ! d γ)) ≈ (2.6)
(νc) ((να) ( P c | α :=N·γ ) | (να) (! c(v,d).(! v(w). Q w | ! d a) | α :=N·γ )) ≈ (2.6)
(νc) ((να) ( P c | α :=N·γ ) | ! c(v,d).((να) (! v(w). Q w | α :=N·γ | !d a))) ≈ (2.6)
(νc) ((να)( P c | α :=N·γ ) | ! c(v,d).(! v(w).(να)( Q w | α :=N·γ ) | ! d a)) =

∆

(νc) ( P 〈α :=N·γ〉 c | !c(v,d).(! v(w). Q 〈α :=N·γ〉 w | ! d a)) =
∆

(νc) ( P 〈α :=N·γ〉 c | !c(v,d).( v :=Q 〈α :=N·γ〉 | ! d a)) =
∆

(P〈α :=N·γ〉)(Q〈α :=N·γ〉) a

The steps to a reflexive, transitive, contextual closure and equivalence relation follow directly
from the fact that ‘≈’ is a congruence.

Now the following is an immediate consequence:

Theorem 7.6 (Semantics) If M =βµ N, then M h a ≈ N h a.

Proof: By induction on the definition of =βµ. The case M →∗
βµ N follows from the fact that

then, by Proposition 4.2, also M →∗
x N, so by Theorem 7.5, we have M h a ≈ N h a. The steps

to an equivalence relation follow directly from ≈.

Notice that it is clear that we cannot prove the exact reversal of this result, since terms
without head-normal form are all interpreted by 0 (see also Lemma 8.8), but are not all related
through =βµ. However, using a notion of weak equivalence, we can deal with the reverse part
and will do so in the last sections of this paper.

We can show that interpretation of terms in →xh-normal form are in normal form as well,
which is a property that we need here.

Lemma 7.7 If N is a →xh-normal form, then N a is irreducible.

Proof: By induction on the structure of terms in →xh-normal form.

(N = xM1 · · ·Mn (n ≥ 0)) : Then xM1 · · ·Mn a =
∆

(νcn) ( xM1 · · ·Mn−1 cn | cn :=Mn·a ) =
∆

(νcn)((νcn−1)( xM1 · · ·Mn−2 cn−1 | cn−1 :=Mn−1·cn ) | cn :=Mn·a ) ≡
(νcncn−1)( xM1 · · ·Mn−2 cn−1 | cn−1 :=Mn−1·cn | cn :=Mn·a ) =

∆ · · · =
∆

(νcn · · ·c1) ( x c1 | c1 :=M1·c2 | · · · | cn :=Mn·a )

Since

x c1 = x(u).! u c1
ci :=Mi·ci+1 = !ci(v,d).(! v(w). Mi w | ! d ci+1)

all Mi w appear under input on ci, so no synchronisation inside one of the Mi w is
possible; since all ci are fresh, all are different from x and no synchronisation is possible
over any of the ci. So this process is in normal form.

(N = λx.N ′) : Then λx.N ′ a =
∆ (νxb)( N ′ b | a〈x,b〉), and, by induction, N ′ b is in normal

form; since a is fresh, that process does not input over a, so λx.N ′ a is normal form.

(N = µα.[β]N ′ (α 
= β ∨ α ∈ N ′,N ′ 
= µγ.[δ]N ′′)) : Then µα.[β]N ′ a =∆ N ′ β[a/α]; this follows
immediately by induction.

(N = N ′ 〈x :=M〉 (hv (N ′) 
= x)) : Then N ′ 〈x :=M〉 a =∆ (νx)( N ′ a | ! x(w). M w). By induc-
tion, N ′ a is in normal form; since x is not the head-variable of N, the process N ′ a has
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no reachable input over x, so no synchronisation is possible over x; also, no synchronisa-
tion is possible inside M w, as above.

(N = N ′ 〈α :=M·γ〉 (hn (N ′) 
= α)) : Then N ′ 〈α :=M·γ〉 a =∆ (να)( N ′ a | ! α(v,d).(! v(w). M w | !d γ)).
By induction, N ′ a is in normal form. Note that α is only a reachable output in N ′ a if
N ′ is an abstraction and a = α; this is impossible, since a is fresh. As above, no synchroni-
sation is possible inside M w.

Notice that µα.[β]µγ.[δ]N a = N δ[β/γ][a/α], which is in normal form, so some reducible
terms in λµx are mapped to processes in normal form; this does not contradict the above
result, of course.

We can now show the following termination results:

Theorem 7.8 (Termination) i) If M →nf
xh N, then M a↓π .

ii) If M →βµ
hnf N, then M a↓π.

Proof: i) By Lemma 7.7, if N is in explicit head-normal from, then N a is in normal form,
and by Theorem 7.1, M a →∗

π P with P ≈ N a. Since in the proof of Theorem 7.1, ≈g
only removes processes in normal form, this implies that P is in normal form.

ii) By Lemma 1.8, there exists L in hnf such that M →h
nf L; by Property 5.4, there exists N

such that M →nf
xh N; by the previous part, M a↓π.

Notice also that this result is stronger than the formulation of the termination result for
Milner’s interpretation in [44], since it models reduction to head-normal form, not just lazy
normal form. Since terms that have a normal form have a head-normal form as well, Theo-
rem 7.8 immediately leads to:

Corollary 7.9 If M ↓βµ, then M a↓π .

8 Weak reduction for λµ and λµx

It seems widely accepted that bisimilarity-like equivalences have become the standard when
studying interpretations of λ-calculi into the π-calculus. This creates a point of concern with
respect to full abstraction. Since ∆∆ and ΩΩ (where Ω = λy.yyy; we will use Ω again below)
are closed terms that do not interact with any context, they are contextually equivalent; any
well-defined interpretation of these terms into the π-calculus, be it input based or output
based, will therefore map those to processes that are weakly bisimilar to 0 , and therefore to
weakly bisimilar processes.

Abstraction, on the other hand, enables interaction with a context, and therefore the in-
terpretation of λz.∆∆ will not be weakly bisimilar to 0 . However, in any standard model of
β-reduction of the λ-calculus, the terms ∆∆ and λz.∆∆ are equated since both are meaningless
(they are both unsolvable [48, 49]). We therefore cannot hope to model normal βµ-equality in
the π-calculus in a fully-abstract way; rather, we need to consider a notion of reduction that
considers all abstractions meaningful; therefore, the only kind of reduction on λ-calculi that
can naturally be encoded into the π-calculus is weak reduction.

Generally, the concept of weak reduction refers to the variant of calculi that eliminate the
contextual rule

M → N ⇒ λx.M → λx.N

For the λ-calculus, then a closed normal form is an abstraction. Note that, in the context of
λµ, this is no longer the case, since also context switches might occur inside the term.
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∆∆ a =
∆ (νc) ((νxb)( xx b | c〈x,b〉) | ! c(v,d).( v :=λx.xx | ! d a)) →π (c)

(νx)( xx a | x :=λy.yy ) =
∆

xx〈x :=λy.yy〉 a =
∆

(νx)((νc) (x(u).!u c | c := x·a ) | ! x(w).(νyb)( yy b | w〈y,b〉)) →π (x,w)

(νx)((νc) ((νyb)( yy b | c〈y,b〉) | ! c(v,d).( v :=x | ! d a)) | x :=λy.yy ) =
∆

(λy.yy)x〈x :=λy.yy〉 a →π (c)
(νx)((νyb)( yy b | y := x | ! d a | (νc)(!c(v,d).( v :=x | ! d a))) | x :=λy.yy ) ≈
(νx)((νy)((νc) (y(u).!u c | c := y·a ) | ! y(w). x w) | x :=λy.yy ) =

∆

yy〈y :=x〉〈x :=λy.yy〉 a →π (y)
(νx)((νcw)(!w c | c :=y·a | x w) | y :=x | x :=λy.yy ) ≈
(νx)((νy)((νc) ( x c | c := y·a ) | y :=x ) | x :=λy.yy ) =

∆

xy〈y :=x〉〈x :=λy.yy〉 a . . .

Figure 1: Running (λx.xx)(λx.xx) a

Example 8.1 Consider the reduction of ∆∆ that was given in Example 5.5; by Theorem 7.1,
we have that ∆∆ a ≈ xy 〈y := x〉 〈x :=λy.yy〉 a as shown in Figure 1, which shows that the
interpretation of ∆∆ reduces without creating output over a – it always occurs inside a sub-
process of the shape

!c(v,d).( v :=y | !d a)

and does not input, since the head-variable is always bound, so ∆∆ a is weakly bisimilar to
0 (see also Lemma 8.8). Therefore,

λz.∆∆ a =
∆ (νzb)( ∆∆ b | a〈z,b〉) ≈

(νzb) (0 | a〈z,b〉) ≈
(νzb)( ΩΩ b | a〈z,b〉) =

∆ λz.ΩΩ a

So, for full abstraction, we are forced to consider λz.∆∆ and λz.ΩΩ equivalent and both
different from ∆∆, and therefore, we need to consider weak equivalences on terms.

We will now introduce the correct notions in λµ.

Definition 8.2 We define the notion →wβµ of weak βµ-reduction as in Definition 1.4, the notion
→wh of weak head reduction17 on λµ as in Definition 1.7, and the notion →wxh of weak explicit
head-reduction on λµx as in Definition 5.2, by (also) eliminating the rules:

(λy.M) 〈x :=N〉 → λy.(M 〈x :=N〉)
(λx.M) 〈α :=N·γ〉 → λx.(M 〈α :=N·γ〉)

M → N ⇒ λx.M → λx.N

We define the notion of weak head-normal forms, the normal forms with respect to weak
head-reduction:

Definition 8.3 (Weak head-normal forms for λµ) i) The λµ weak head-normal forms (whnf)
are defined through the grammar:

Hw ::= λx.M
| xM1 · · ·Mn (n ≥ 0)
| µα.[β]Hw (α 
= β or α ∈ Hw, and Hw 
= µγ.[δ]H ′w)

17 This notion is also known as lazy reduction; for the sake of keeping our terminology consistent, we prefer to
call it weak head reduction.
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ii) We say that M has a whnf if there exists Hw such that M →∗
wh Hw.

As before, it is easy to verify that whnfs are the the normal forms of weak head reduction.
The main difference between hnfs and whnfs is in the case of abstraction: where the

definition of hnf only allows for the abstraction over a hnf, for whnfs any term can be
the body. Moreover, notice that both λz.∆∆ and λz.ΩΩ are in whnf.

Since →wxh ⊆ →xh, we can show the equivalent of Lem 1.8 and Theorem 7.3 also for weak
explicit head reduction:

Proposition 8.4 If M →∗
βµ N with N in whnf, then there exists Hw such that M →nf

wh Hw and
Hw →∗

βµ N without using →wh.

Corollary 8.5 i) If M →∗
wxh N, then M a ≈ N a.

ii) If M ↑wxh, then M a↑π .

We also define weak explicit head-normal forms.

Definition 8.6 (Weak explicit head-normal forms for λµ) i) The λµx weak explicit head-
normal forms (wehnf) are defined through the grammar:

Hwx ::= (λx.M) 〈y :=N〉 〈σ :=Q·τ〉
| (xM1 · · ·Mn) 〈y :=N〉 〈σ :=Q·τ〉 (n ≥ 0, x 
∈ y)
| µα.[β]Hwx 〈y :=N〉 〈σ :=Q·τ〉 (α 
∈ σ, α 
= β or α ∈ Hwx,

and Hwx 
= µγ.[δ]H ′wx)

ii) We say that M ∈ λµx has a wehnf if there exists Hwx such that M →∗
wxh Hw.

Remark 8.7 In the context of reduction (normal and weak), when starting from pure terms,
the substitution operation can be left inside terms in normal form, as in

(λx.yM)NL →xh yM 〈x :=N〉 L.

However, since by Barendregt’s convention we can assume that x does not appear free in L,
the latter term is operationally equivalent to yML 〈x :=N〉; in fact, these two are equivalent
under ∼wh (see Definition 9.3), and also congruent when interpreted as processes.

yM〈x :=N〉L a =
∆ (νc) ((νx)( yM c | x :=N ) | c := L·a ) ≡ (c 
∈ x := N , x 
∈ c :=L·a )

(νx)((νc) ( yM c | c := L·a ) | x :=N ) =
∆

yML〈x :=N〉 a

Therefore, without loss of generality, for readability and ease of definition we will assume that
all explicit substitutions are placed on the outside.18 So actual terms can have substitutions
inside, but they are written as if they appear outside. To ease notation, we will use S for a set
of substitutions of the shape 〈x :=N〉 or 〈α :=N·γ〉 when the exact contents of the substitutions
is not relevant. We write x ∈ S if 〈x :=N〉 ∈ S and similarly for α ∈ S.

We can show that the interpretation of a term without whnf gives a process that is weakly
bisimilar to 0 .

Lemma 8.8 If M has no wehnf (so M also has no whnf), then M a ≈ 0 .

18 This is exactly the approach of Krivine’s machine, where explicit substitutions are called closures that from an
environment in which a term is evaluated.
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Proof: If M has no wehnf, then M has no leading abstractions and all terms generated
by reduction have a weak explicit head redex. If M ≈ 0 and M = µα.[β]N, then M a =

∆

N β[a/α] ≈ 0 , so also N β ≈ 0 ; therefore we can assume M itself does not start with a
context switch.

We reason by co-induction on the explicit weak head reduction sequence from M and anal-
yse the cases of weak explicit head reduction. We distinguish the cases:

(M = (µγ.[αi]N) 〈y :=Q〉 〈α :=T·β〉 → µγ.[αi](N〈αi :=Ti·βi〉Ti) 〈y :=Q〉 〈α :=T·β〉) : Notice that:

(µγ.[αi]N) 〈y :=Q〉 〈α :=T·β〉 a =
∆ (να)((νy) ( N αi [a/γ] | y :=Q ) | α :=T·β )

where
yj :=Qj = !yj(w). Qj w

αk :=Tk·βk = !αk (v,d).(! v(w). Tk w | ! d βk)

Observe that all inputs and outputs in these two categories are over bound names or
under guard in M a. Now, as in the proof of Theorem 7.1,

(µγ.[αi]N)〈y :=Q〉 〈α :=T·β〉 a =
∆

(να) ((νy) ( N αi [a/γ] | y :=Q ) | α :=T·β ) ≈
(να) ((νy) ((ναi) ( N αi [a/γ] | αi :=Ti·βi ) | y :=Q ) | α :=T·β ) ≈
(να) ((νy) ((νc) ((ναi)( N c | αi :=Ti·βi ) | c := Ti·βi )[a/γ] | y :=Q ) | α :=T·β ) =

∆

µγ.[αi](N 〈αi :=Ti·βi〉Ti) 〈y :=Q〉 〈α :=T·β〉 a

which, by co-induction, is weakly bisimilar to 0 ; then so is M a.

(M = RP1 · · ·Pn 〈y :=Q〉 〈α :=T·β〉 ) : Notice that:

RP1 · · ·Pn 〈y :=Q〉 〈α :=T·β〉 a =
∆

(να)((νy) ((νc) ( R c1 | ci :=Pi·ci+1 ) | y :=Q ) | α :=T·β )

where cn = a, yj :=Qj and αk :=Tk·βk are as above, and

ci :=Pi·ci+1 = !ci(v,d).(! v(w). Pi w | ! d ci+1)

Again all inputs and outputs in these three categories are over bound names or under
guard. Now either:

(R = yi) : Then. as in the proof of Theorem 7.1, M a ≈
(να) ((νy) ((νc) ((νyi) (yi (u).!u c1 | ! yi(w). Qi w) | ci :=Pi·ci+1 ) | y :=Q ) | α :=T·β )

which after a synchronisation over yi is weakly bisimilar to

(να) ((νy) ((νc) ( Qi c1 | ci :=Pi·ci+1 ) | y :=Q ) | α :=T·β )

which, by co-induction, is weakly bisimilar to 0 . Since yi is restricted, so is M a.

(R = (λx.K)L → K 〈x := L〉) : Then:

R c1 =
∆ (νc0)((νxb)( K b | c0〈x,b〉) | ! c0(v,d).(! v(w). L w | ! d c1))

Since a synchronisation over c0 is possible, the process is not in normal form; also, since
that name is restricted, only inputs or outputs generated by (νxb) ( K b) can be observ-
able. Executing that synchronisation will run to K〈x := L〉 c1 = (νx)( K c1 | ! x(w). L w).
By co-induction,

K 〈x := L〉P1 · · ·Pn 〈y :=Q〉 〈α :=T·β〉 a ≈ 0

so also (νxc1) ( K c1) is not producing input or output (remember that c1 is restricted in
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∆∆ a = (λx.xx)∆ a =
∆

(νc) ((νxb)( xx b | c〈x,b〉) | ! c(v,d).( v :=∆ | ! d a)) → (c)
(νxb) ( xx b | x := ∆ | ! b a) | (νc) (! c(v,d).( x := ∆ | ! d a) =

∆ ,≈g
(νxb) ((νc) (x(u).!u c | ! c(v,d).( v :=x | ! d b)) | ! x(w). ∆ w | ! b a) → (x)
(νxbw) ((νc) (!w c | ! c(v,d).( v :=x | ! d b)) | (νyb)( yy b | w〈y,b〉) | x :=∆ | ! b a) → (w)
(νxb) ((νc) ((νyb)( yy b | c〈y,b〉) | ! c(v,d).( v :=x | ! d b)) | x :=∆ | ! b a) → (c),≈g
(νxb) ((νyb1) ( yy b1 | y := x | ! b1 b) | x :=∆ | ! b a) =

∆

(νxb)((νyb1)((νc) (y(u).!u c | ! c(v,d).( v :=y | ! d b1)) |
! y(w). x w | ! b1 b) | x :=∆ | ! b a) → (y)

(νxb)((νyb1)((νc) (w c | ! c(v,d).( v :=y | ! d b1)) | x w |
y :=x | ! b1 b) | x :=∆ | ! b a) =

∆

(νxb)((νyb1)((νc) (w c | ! c(v,d).( v :=y | ! d b1)) |
x(u).! u w | y :=x | ! b1 b) | x :=∆ | ! b a) ≡

(νxb)((νyb1)((νc) (w c | ! c(v,d).( v :=y | ! d b1)) | x(u).! u w | y :=x | ! b1 b) |
! x(w).(νzb)( zz b | w〈z,b〉) | x :=∆ | ! b a) → (x,w1,w, c)

(νxb) ((νyb1) ((νzb2) ( zz b2 | z :=y | ! b2 b1)) | y :=x | ! b1 b | x :=∆ | ! b a))

Figure 2: Running ∆∆ a without renaming, but using garbage collection.

M a), so neither does (νxb) ( K b).

(R = (µα.[β]K)L → µγ.([β]K) 〈α := L·γ〉) : Then, as in the proof of Theorem 7.1 (remember
that c is fresh),

R c1 =
∆ (νc) ( K β[c/α] | c := L·c1 )
=α (να)( K β | α :=L·γ )[c1/γ]

=
∆ µγ.([β]K)〈α := L·γ〉 c1

As above, (να) ( 〈α := L·γ〉 ) creates no input or output, and by co-induction, (να) K β
does not produce input or output, so neither does (νc) ( K β[c/α]).

(R = µα.[β](µγ.[δ]K) → µα.[δ]K[β/γ]) : Again, by the proof of Theorem 7.1,

µα.[β](µγ.[δ]K) c1 = µα.([δ]K)[β/γ] c1

so this case follows directly by co-induction.

(R = µα.[α]K → K (α 
∈ fn(K))) : As in the previous case.

The reduction of ∆∆ a is given in Figure 2, and shows that the interpretation of ∆∆ reduces
without creating output over a; notice that the individual steps of the above reduction in →xh
in Example 5.5 are respected in Figure 2.

As a direct consequence of this result, as for Milner’s and Sangiorgi’s interpretations, our in-
terpretation is not extensional, since ∆∆ a ≈ 0 , whereas λx.∆∆x a =∆ (νxb)( ∆∆x b | a〈x,b〉) 
≈
0 .

We can show the following property.

Lemma 8.9 i) Let M and N be pure λµ-terms; then M →nf
wh N if and only if there exists N′, S such

that M →nf
wxh N′ S, and N′ S →nf

:= N.
ii) For M, N ∈ λµx: if M →∗

wxh N, and M →nf
:= M′ and N →nf

:= N′, then M′ →∗
wh N′.

Proof: Straightforward, using Corollary 8.5.

We can also show the following results that state that if the interpretation of M produces an
output, then M reduces by head reduction to an abstraction; similarly, if the interpretation of
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M produces an input, then M reduces by head reduction to a term with a head variable.

Lemma 8.10 i) If M →nf
wxh λx.N S, then M a⇓ a.

ii) If M →nf
wxh µα.[β]λx.N S, then M a⇓ β.

iii) If M →nf
wxh xN1 · · ·Nn S or M →nf

wxh µα.[β]xN1 · · ·Nn S, then M a⇓ x .

Proof: Straightforward, using Theorem 7.3.

As to the reverse, we can show:

Lemma 8.11 i) If M a⇓ a, then there exist x, N and S such that M a ≈ λx.N S a, such that
M →nf

wxh λx.N S.
ii) If M a⇓ c, with a 
= c, then there exist α, c, x, N and S such that M a ≈ µα.[c]λx.N S a, such

that M →nf
wxh µα.[c]λx.N S.

iii) If M a⇓ x, then there exist zj, x, Ni, c and S with x 
∈ zj, m ≥ 0, and n ≥ 0 such that

– M a ≈ λz1 · · ·zm.xN1 · · ·Nn S c;
– M →nf

wxh λz1 · · ·zm.xN1 · · ·Nn S if a = c;

– M →nf
wxh µα.[c]λz1 · · ·zm.xN1 · · ·Nn[a/α]S, if a 
= c.

Proof: By Theorem 7.4.

9 Weak equivalences for λµ and λµx

We will now define notions of weak equivalences ∼wβµ and ∼wh between terms of λµ, and
∼wxh between terms of λµx (the last two are defined coinductively as bisimulations), that are
based on weak reduction, and show that the last two equate the same pure λµ-terms. These
notions all consider terms without whnf equivalent. This is also the case for the approxima-
tion semantics we present in the next section.

First we define a weak equivalence generated by the reduction relation →wβµ.

Definition 9.1 We define ∼wβµ as the smallest congruence that contains:

M, N have no whnf ⇒ M ∼wβµ N
(λx.M)N ∼wβµ M[N/x]
(µα.C)N ∼wβµ µγ.C[N·γ/α] (γ fresh)

µα.[β]µγ.[δ]M ∼wβµ µα.[δ]M[β/γ]
µα.[α]M ∼wβµ M (α 
∈ M)

Notice that ∆∆ ∼wβµ ΩΩ and λz.∆∆ ∼wβµ λz.ΩΩ, but ∆∆ 
=βµ ΩΩ; moreover, ∼wβµ is closed
under reduction. In Section 10 we will show that two terms are equivalent in ∼wβµ if and only
if they have the same set of weak approximants.

Since reduction is confluent, the following is immediate.

Proposition 9.2 If M ∼wβµ N and M →∗
wβµ Hw, then there exists H ′w such that Hw ∼wβµ H ′w and

N →∗
wβµ H ′

w.

Notice that Property 1.5 is formulated with respect to =βµ, not ∼wβµ.
The other two equivalences we consider are generated by weak head reduction and weak explicit

head reduction. We will show in Theorem 9.6 that these coincide for pure, substitution-free
terms.
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Definition 9.3 (Weak head equivalence) The relation ∼wh is defined co-inductively as the
largest symmetric relation such that: M ∼wh N if and only if either:

• M and N have both no whnf, or
• both M →nf

wh M′ and N →nf
wh N′, and either:

– if M′ = xM1 · · ·Mn (n ≥ 0), then N′ = xN1 · · ·Nn and Mi ∼wh Ni for all i ∈ n; or
– if M′ = λx.M′′, then N′ = λx.N′′ and M′′ ∼wh N′′; or
– if M′ = µα.[β]M′′, then N′ = µα.[β]N′′ (so α 
= β or α ∈ fn(M′′), M′′ 
= µγ.[δ]R, and

similarly for N′′), and M′′ ∼wh N′′.

Notice that λz.∆∆ ∼wh λz.ΩΩ because ∆∆ ∼wh ΩΩ, since neither has a whnf.
We perhaps need to clarify the details of this definition. The notion of weak head equiva-

lence captures the fact that, once weak head reduction has finished, there are sub-terms that
can be reduced further by themselves. This process can generate infinite terms and the equiv-
alence expresses when it produces equal (infinite) terms. However, it also equates terms that
have no whnf. As can be seen from Definition 8.3, a context switch µα.[β]N is in whnf only if
N is; so when we state in the third case that M →nf

wh µα.[β]M′′ , by the fact that this reduction
has terminated, we know that M′′ is in whnf.

We will now define a notion of weak explicit head equivalence, that, in approach, corre-
sponds to weak head equivalence but for the fact that now explicit substitutions are part of
terms.

Definition 9.4 (Weak explicit head equivalence) The relation ∼wxh is defined co-inductively
as the largest symmetric relation such that: M ∼wxh N if and only if either:

• M and N have both no →wxh-normal form, or
• both M →nf

wxh M′S and N →nf
wxh N′ S ′, and either:

– if M′ = xM1 · · ·Mn (n ≥ 0), then N′ = xN1 · · ·Nn (so x 
∈ S, x 
∈ S ′) and Mi S ∼wxh Ni S ′
for all i ∈ n; or

– if M′ = λx.M′′, then N′ = λx.N′′ and M′′S ∼wxh N′′ S ′; or
– if M′ = µα.[β]M′′, then N′ = µα.[β]N′′ (so α 
= β or α∈ fn(M′′), M′′ 
= µγ.[δ]R, so β 
∈ S,

β 
∈ S ′, and similarly for N′′) and M′′S ∼wxh N′′ S ′.

Notice that µα.[β]∆∆ ∼wxh ∆∆.
The following results formulate the strong relation between ∼wh and ∼wxh, and therefore

between →wh and →wxh. We first show that pure terms that are equivalent under ∼wxh are
also so under ∼wh.

Lemma 9.5 Let M and N be pure λµ-terms. M ∼wh N if and only if there are M′, N′ such that
M′ →nf

:= M and N′ →nf
:= N, and M′ ∼wxh N′.

Proof: (only if) : By co-induction on the definition of ∼wh. If M ∼wh N, then either:

– M→nf
wh xM1 · · ·Mn and N →nf

wh xN1 · · ·Nn and Mi ∼wh Ni, for all i∈ n. Then, by Lemma 8.9,
there are M′

i such that both

M →nf
wxh xM′

1 · · ·M′
n S →∗

:= xM1 · · ·Mn

N →nf
wxh xN′

1 · · ·N′
n S ′ →∗

:= xN1 · · ·Nn

But then M′
i S →nf

:= Mi and N′
i S ′ →nf

:= Ni, for all i ∈ n; then by induction, M′
i S ∼wxh N′

i S ′
for all i ∈ n. But then M ∼wxh N.
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The other cases are similar.

(if) : By co-induction on the definition of ∼wxh. If there are M′, N′ such that M′ →nf
:= M and N′ →nf

:=
N, and M′ ∼wxh N′, then either:

– M′ →nf
wxh xM′

1 · · ·M′
n S, N′ →nf

wxh xN′
1 · · ·N′

n S ′ and M′
i S ∼wxh N′

i S ′, for all i ∈ n. Let, for
all i ∈ n, M′

i S →nf
:= Mi and N′

i S →nf
:= Ni then by induction, Mi ∼wh Ni, for all i ∈ n.

Notice that we have M′ →nf
wxh xM′

1 · · ·M′
n S→nf

:= xM1 · · ·Mn. Let M′= M′′ S ′′, so M′′ S ′′ →nf
wxh

xM′
1 · · ·M′

n S ′ S ′′, where S = S ′ S ′′. Let M′′S ′′ →nf
:= M, then by Lemma 8.9, we also have

M →nf
wxh xM′′

1 · · ·M′′
n S ′ →nf

wh xM1 · · ·Mn. Then, again by Lemma 8.9, M →nf
wh xM1 · · ·Mn.

Likewise, we have N →nf
wh xN1 · · ·Nn. But then M ∼wh N.

The other cases are similar.

Notice that this lemma in fact shows:

Theorem 9.6 Let M, N ∈ λµ, then M ∼wxh N ⇐⇒ M ∼wh N.

10 Weak approximation for λµ

In the next section we will show our main result, that the logical encoding is fully abstract with
respect to weak equivalence between pure λµ-terms. To achieve this, we show in Theorem 11.1
that M a ≈ N a if and only if M ∼wxh N. To complete the proof towards ∼wβµ, we are thus
left with the obligation to show that M ∼wxh N if and only if M ∼wβµ N. In Theorem 9.6 we
have shown that M ∼wxh N if and only if M ∼wh N, for pure terms; to achieve M ∼wh N if
and only if M ∼wβµ N, in this section we go through a notion of weak approximation; based
on Wadsworth’s approach [48], we define ∼Aw that expresses that terms have the same weak
approximants and show that M ∼wh N if and only if M ∼Aw N if and only if M ∼wβµ N.

The notions of approximant and approximation were first introduced by Wadsworth for the
λ-calculus [48], where they are used in order to better express the relation between equivalence
of meaning in Scott’s models and the usual notions of conversion and reduction. Wadsworth
defines approximation of terms through the replacement of any parts of a term remaining to
be evaluated (i.e. β-redexes) by ⊥. Repeatedly applying this process over a reduction sequence
starting with M gives a set of approximants, each giving some - in general incomplete -
information about the result of reducing M. Once this reduction produces λx.yN1 · · ·Nn, all
remaining redexes occur in N1, . . . , Nn, which then in turn will be approximated.

Following this approach, Wadsworth [48] defines A(M) (similar to Definition 10.1 below)
as the set of approximants of the λ-term M, which forms a meet semi-lattice. In [49], the
connection is established between approximation and semantics, by showing

M D∞
p =

⊔{ A D∞
p | A ∈A(M)}.

So, essentially, approximants are partially evaluated expressions in which the locations of in-
complete evaluation (i.e. where reduction may still take place) are explicitly marked by the
element ⊥; thus, they approximate the result of computations. Intuitively, an approximant can
be seen as a ‘snapshot’ of a computation, where we focus on that part of the resulting program
which will no longer change, which corresponds to the (observable) output.

We now define a weak approximation semantics for λµ. Approximation for λµ has been studied
by others as well [46, 23]; however, seen that we are mainly interested in weak reduction here,
we will define weak approximants, which are normally not considered.
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Definition 10.1 (Weak approximation for λµ) i) The set of λµ’s weak approximants Aw with
respect to →βµ is defined through the grammar:19

Aw ::= ⊥
| xA1

w · · ·An
w (n ≥ 0)

| λx.Aw
| µα.[β]Aw (α 
= β or α ∈ Aw,Aw 
= µγ.[δ]A′

w, Aw 
= ⊥)

ii) The relation � ⊆ (λµ∪{⊥})× λµ is defined as:20

⊥ � M
M � M′ ⇒ λx.M � λx.M′
M � M′ ⇒ µγ.[δ]M � µγ.[δ]M′

M1 � M′
1 & M2 � M′

2 ⇒ M1M2 � M′
1M′

2

iii) The set of weak approximants of M, Aw(M), is defined through:21

Aw(M) =
∆ {Aw ∈Aw | ∃N ∈ λµ [M →∗

βµ N & Aw � N ]}.

iv) Weak approximation equivalence is defined through: M ∼Aw N =
∆ Aw(M) =Aw(N).

Notice that Aw(λz.∆∆) = {⊥,λz.⊥} = Aw(λz.ΩΩ)
Aw(µα.[β]∆∆) = {⊥} = Aw(∆∆)

The relationship between the approximation relation and reduction is characterised by the
following result:

Lemma 10.2 i) If Aw � M and M →∗
βµ N, then Aw � N.

ii) If Aw ∈Aw(N) and M →∗
βµ N, then also Aw ∈Aw(M).

iii) If Aw ∈Aw(M) and M →βµ N, then there exists L such that N →∗
βµ L and Aw � L.

iv) M is a whnf if and only if there exists Aw 
= ⊥ such that Aw � M.

Proof: Easy.

We could also have defined the set of approximants of a term coinductively:

Definition 10.3 We define Aw(M) coinductively by:

• If Aw � M, then Aw ∈Aw(M).
• if M →∗

wh xM1 · · ·Mn (n ≥ 0), then Aw(M) = {xA1
w · · ·An

w | ∀ i ∈ n [Ai
w ∈Aw(Mi) ]}.

• if M →∗
wh λx.N, then Aw(M) = {λx.Aw | Aw ∈Aw(N)}.

• if M →∗
wh µα.[β]N, then Aw(M) = {µα.[β]Aw | Aw ∈Aw(N)}.

We can show that these definitions coincide:

Lemma 10.4 Aw(M) =Aw(M).

Proof: (⊆) : If Aw ∈Aw(M), then by Definition 10.3 either:

(Aw � M) : Immediate.

19 For ‘normal’ approximants, case λx.A demands that A 
= ⊥, as motived by the relation with D∞.
20 Notice that if A1 � M1, and A2 � M2, then A1A2 need not be an approximant; it is one if A1 = xA1

1 · · ·An
1 ,

perhaps prefixed with a number of context switches of the shape µα.[β].
21 Notice that we use →βµ here, not →wβµ; the approximants are weak, not the reduction.
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(Aw = xA1
w · · ·An

w) : Then M →∗
wh xM1 · · ·Mn for some M1, . . . Mn, with Ai

w ∈ Aw(Mi), for
every i ∈ n; by co-induction, also Ai

w ∈ Aw(Mi). Then, by Definition 10.1, for every
i∈ n there exist M′

i such that Mi →∗
βµ M′

i and Ai
w � M′

i . Since →∗
wh ⊆→∗

βµ, in particular
M →∗

βµ xM′
1 · · ·M′

n; we have Aw � xM′
1 · · ·M′

n, so Aw ∈Aw(M).

The other cases are similar.

(⊇) : If Aw ∈Aw(M), then by Definition 10.1, there exists N such that M →∗
βµ N and Ai

w � N.
Now either:

(Aw � M) : Trivial.

(Aw = xA1
w · · ·An

w) : Since xA1
w · · ·An

w � N, N = xN1 · · ·Nn for some N1, . . . , Nn, and Ai
w �

Ni, for every i ∈ n. Then by Definition 10.3, Ai
w ∈ Aw(Ni), for every i ∈ n, and by

induction, Ai
w ∈ Aw(Ni). By Lemma 8.4, there exist M1, . . . , Mn such that M →∗

wh
xM1 · · ·Mn →∗

βµ xN1 · · ·Nn; so in particular Mi →∗
βµ Ni, for every i ∈ n. Then by

Lemma 10.2, Ai
w ∈Aw(Mi) and by Definition 10.3, Aw ∈Aw(M).

The other cases are similar.

As a result, below we will use whichever definition is convenient.
As is standard in other settings, interpreting a λµ-term M through its set of weak approxi-

mants Aw(M) gives a semantics.

Theorem 10.5 (Weak approximation semantics) If M =βµ N, then M ∼Aw N.

Proof: M =βµ N & Aw ∈Aw(M) ⇒
M =βµ N & ∃L [M →∗

βµ L & Aw � L ] ⇒ (1.5)
∃L,K [L →∗

βµ K & N →∗
βµ K & Aw � L ] ⇒ (10.2)

∃K [N →∗
βµ K & Aw � K ] ⇒ Aw ∈Aw(N)

The reverse implication of this result does not hold, since terms without whnf (which have
only ⊥ as approximant) are not all related by reduction. But we can show the following full
abstraction result:

Theorem 10.6 (Full abstraction of ∼wβµ versus ∼Aw ) M ∼wβµ N if and only if M ∼Aw N.

Proof: (if ) : By co-induction on the definition of the set of weak approximants. If Aw(M) =
{⊥} =Aw(N), then both M and N have no whnf, so M ∼wβµ N. Otherwise, either:

(xA1
w · · ·An

w ∈Aw(M) & xA1
w · · ·An

w ∈Aw(N)) : Then by Definition 10.3 there exists M1, . . . , Mn
such that M →∗

wh xM1 · · ·Mn and Ai
w ∈Aw(Mi). Likewise, there exist N1, . . . , Nn such

that N →∗
wh xN1 · · ·Nn and Ai

w ∈ Aw(Ni). So Aw(Mi) = Aw(Ni) and by induction
Mi ∼wβµ Ni, for i∈ n. Since ∼wβµ is a congruence, also xM1 · · ·Mn ∼wβµ xN1 · · ·Nn; since
∼wβµ is closed under reduction →wβµ, it is also under →wh, and we have M ∼wβµ N.

The other cases are similar.

(only if ) : As the proof of Theorem 10.5, but using Proposition 9.2 rather than 1.5.

We can also show that weak head equivalence and weak approximation equivalence coin-
cide:

Theorem 10.7 M ∼wh N if and only if M ∼Aw N.

Proof: (only) : By co-induction on the definition of ∼wh.

(M and N have no whnf) : Then Aw(M) = {⊥} =Aw(N).
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(M →∗
wh xM1 · · ·Mn) : Then also N →∗

wh xN1 · · ·Nn, and Mi ∼wh Ni for i ∈ n, and by co-
induction, Mi ∼Aw Ni, so Aw(Mi) = Aw(Ni). Then, by Definition 10.3, we have
Aw(M) =Aw(N).

The other cases are similar.

(if ) : By co-induction on the definition of the set of weak approximants.

(Aw(M) = {⊥}=Aw(N)) : Then both M and N have no whnf, so M ∼wh N.

(Aw = xA1
w · · ·An

w) : Then M →∗
wh xM1 · · ·Mn, and Ai

w ∈Aw(Mi), for i ∈ n. Since Aw(M) =
Aw(N), also N →∗

wh xN1 · · ·Nn, with Ai
w ∈ Aw(Ni), so Aw(Mi) = Aw(Ni). Then, by

co-induction, Mi ∼wh Ni for every i ∈ n, so M ∼wh N.

The other cases are similar.

Taking � as the (partial, compatible) operation of join on terms in Aw generated by ⊥�Aw =
Aw, we can also define M Aw = �{Aw | Aw ∈ Aw(M)}; then · Aw corresponds to the (λµ
variant of) Lévy-Longo trees.

Combined with the results shown in the previous section, we can now state that all equiva-
lences coincide:

Corollary 10.8 Let M, N ∈ λµ, then M ∼wxh N ⇐⇒ M ∼wh N ⇐⇒ M ∼Aw N ⇐⇒ M ∼wβµ N.

11 Full abstraction for the logical interpretation

We now come to the main result of this paper, where we show a full abstraction result for our
logical interpretation. First we establish the relation between weak explicit head equivalence
and weak bisimilarity.

Theorem 11.1 (Full abstraction of ≈ versus ∼wxh) For any M, N ∈ λµx: M a ≈ N a if
and only if M ∼wxh N.

Proof: (only if ) : We distinguish the following cases.
a) M a can never input nor output; then M a ≈ 0 ≈ N a. Assume M has a weak-

head normal form, then by Lemma 8.10, M a is not weakly bisimilar to 0 ; therefore,
M and N both have no weak-head normal form.

b) M a⇓ c, then by Lemma 8.11, M a ≈ (νxb) ( M′ b | c〈x,b〉 | S ), and M →∗
wxh λx.M′ S.

Since M a ≈ N a, also N a⇓ c, so N a ≈ (νxb) ( N′ b | c〈x,b〉 | S ′ ) and N →∗
wxh

λx.N′ S ′. Then also M′ b | S ≈ N′ b | S ′ , so M′ S a ≈ N′ S ′ a and by induction,
M′S ∼wxh N′ S ′; so also M ∼wxh N by definition.

c) If M a 
⇓o, but M a⇓ x, then by Lemma 8.11, M a ≈ xM1 · · ·Mn S a′ and M →∗
wxh

xM1 · · ·Mn S. We have

xM1 · · ·Mn S a′ = (νcyα) (x(u).! u c1 | ci :=Mi·ci+1 | S )

where cn = a′ and

ci :=Mi·ci+1 = ! ci(v,d).(! v(w). Mi w | ! d ci+1)
S = y :=P | α :=Q·β

yj :=Pj = ! yj(w). Pj w
αk :=Qk·βk = ! αk(v,d).(! v(w). Qk w | ! d βk)

Since M a ≈ N a, again by Lemma 8.11, N a ≈ xN1 · · ·Nn S ′ a′′ and N →∗
wxh
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xN1 · · ·Nn S ′. Notice that

xN1 · · ·Nn S ′ a′′ = (νeyα) (x(u).! u e1 | ei :=Ni·ei+1 | S ′ )

where en = a′′ and

ei :=Ni·ei+1 = ! ei(v,d).(! v(w). Ni w | ! d ei+1)

S ′ = y :=P′ | α :=Q′·β
yj :=P′

j = ! yj(w). P′
j w

αk :=Q′
k·βk = ! αk(v,d).(! v(w). Q′

k w | ! d βk)

Since we have

xM1 · · ·Mn S a′ ≈ xN1 · · ·Nn S ′ a′′,
we infer that a′ = a′′, ci = ei, and M′

i S w ≈ N′
i S ′ w for all i ∈ n; then by induction,

M′
i S ∼wxh N′

i S ′ for all i ∈ n, and then also M ∼wxh N.

(if ) : By co-induction on the definition of ∼wxh. Let M ∼wxh N, then either:

– M and N have both no →wxh-normal form, so, by Lemma 8.8, their interpretations
are both weakly bisimilar to the process 0 , so in particular M a ≈ N a; or

– both M →nf
wxh M′ S and N →nf

wxh N′ S ′ (let S = 〈y :=P〉 〈α :=Q·β〉 ,
S ′ = 〈y :=P′〉 〈α :=Q′·β〉 ), 22 and either:

(M′ = xM1 · · ·Mn (n ≥ 0), N = xN1 · · ·Nn and Mi S ∼wxh Ni S ′, for all i ∈ n) : By Corollary
8.5, we know that both M a ≈ xM1 · · ·Mn S a and N a ≈ xN1 · · ·Nn S ′ a. No-
tice that

xM1 · · ·Mn S a = (νcyα) (x(u).! u c1 | ci :=Mi·ci+1 | S )

where cn = a and

S = y :=P | α :=Q·β
ci :=Mi·ci+1 = ! ci(v,d).(! v(w). Mi w | !d ci+1)

yj :=Pj = ! yj(w). Pj w
αk :=Qk·βk = ! αk(v,d).(! v(w). Qk w | !d βk)

and similar for xN1 · · ·Nn S ′ a. By induction,

(νyα) ( Mi w | S ) =
∆ Mi S w ≈ Ni S ′ w =

∆ (νyα) ( Ni w | S ′ )

Since ≈ is a congruence, also

!ci(v,d).(! v(w). Mi w | ! d ci+1) | S ≈ !ci (v,d).(! v(w). Ni w | ! d ci+1) | S ′

for all i ∈ n, so also xM1 · · ·Mn S a ≈ xN1 · · ·Nn S ′ a but then also M a ≈ N a.
(M′ = λx.M′′, N′ = λx.N′′, and M′′S ∼wxh N′′ S ′) : By Corollary 8.5, we have M a ≈

λx.M′′ S a and N a ≈ λx.N′′ S ′ a. Notice that

λx.M′′ S a =
∆ (νyα) ((νxb)( M′′ b | a〈x,b〉) | S )

λx.N′′ S ′ a =
∆ (νyα) ((νxb)( N′′ b | a〈x,b〉) | S ′ )

with S and S ′ as in the previous part and a not in S or S ′. By induction,

(νyα) ( M′′ b | S ) =
∆ M′′S b ≈ N′′ S ′ b =

∆ (νyα) ( N′′ b | S )

22 Formally, the substitutions S and S ′ need not concern exactly the same variables and names; however,
extending both so that they do does not affect the result, and gives an easier presentation of the proof.
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As above, since ≈ is a congruence, also M a ≈ N a.
(M′ = µγ.[δ]M′′, N′ = µγ.[δ]N′′) : Then M′′ and N′′ themselves are in normal form and

M′′ S ∼wxh N′′ S ′, with S, S ′ as above. By Corollary 8.5, M a ≈ µγ.[δ]M′′ S a and
N a ≈ µγ.[δ]N′′ S ′ a. Notice that

µγ.[δ].M′′ S a =
∆ (νyα) ( M′′[a/γ] δ | S ) =

∆ M′′[a/γ]S δ

µγ.[δ].N′′ S ′ a =
∆ (νyα) ( N′′[a/γ] δ | S ′ ) =

∆ N′′[a/γ]S ′ δ

By induction, M′′[a/γ]S δ ≈ N′′[a/γ]S ′ δ; since ≈ is a congruence, also M a ≈
N a.

We can now prove our main result:

Theorem 11.2 (Full abstraction) Let M, N ∈ λµ, then M a ≈ N a if and only if M ∼wβµ N.

Proof: By Corollary 10.8 and Theorem 11.1.

Conclusions and Future Work

We defined λµx, a variant of λµ that uses explicit substitution, and defined a notion of explicit
head reduction →xh that only works on the head of a term, so only ever replaces the head
variable of a term. We have found a new, simple and intuitive interpretation of λµx-terms in
π that names the anonymous output of terms and respects →xh. For this interpretation, we
have shown that termination is preserved, and that it is sound and complete, as well as that it
gives a semantics for λµx and for λµ.

We have shown that, for our context assignment system that uses the type constructor →
for π and is based on classical logic, typeable λµ-terms are interpreted by our interpretation
as typeable π-processes, preserving the types.

We also defined a weak variant of explicit head reduction, →wxh. This naturally leads
to a notion of weak head normal form and weak approximation and we have shown that
interpreting a term by the set of its weak approximants gives a semantics for λµ as well.

We have defined the weak equivalences ∼wβµ, ∼wh, ∼wxh, and ∼Aw on λµ terms, and have
shown that these all coincide on pure terms (without explicit substitution). We then proved
that M ∼wxh N ⇐⇒ M a ≈ N a, which, combined with our other results, shows that our
interpretation is fully abstract.
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