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Abstract

We study the λµ-calculus, extended with explicit substitution, and define a compositional
output-based interpretation into a variant of the π-calculus with pairing. We show that this
interpretation preserves single-step explicit head-reduction with respect to weak bisimilar-
ity. We use this result to show operational soundness for head reduction, adequacy, and
operational completeness. We also show that weak (i.e. lazy) reduction on closed terms is
directly implemented through synchronisation.
We define four notions of weak equivalence for λµ – one based on weak reduction ‘∼wβµ’,
two modelling weak head-reduction and weak explicit head reduction, ‘∼wh’ and ‘∼wxh’
respectively (all considering terms without weak head-normal form equivalent as well), and
one based on weak approximation ‘∼A’ – and show they all coincide. We will then show
full abstraction results for our interpretation for the weak equivalences with respect to weak
bisimilarity on processes using the approach of approximation.

Introduction

The research presented in this paper is part of an ongoing investigation into the suitability

of classical logic in the context of programming languages with control. Rather than looking

at how to encode known control features into calculi like the λ-calculus [24, 15], Parigot’s

λµ-calculus [47], or Λµ 1 [32], as has been done in great detail by others, we focus on trying to

understand what is exactly the notion of computation that is embedded in calculi like λµ; we

approach that problem here by presenting a fully abstract interpretation for that calculus into

the (perhaps better understood) π-calculus [43].

λµ is a proof-term syntax for classical logic expressed in Natural Deduction, defined as an

extension of the Curry type assignment system for the λ-calculus by adding naming [α]M and

context binding µα.M features, as well as structural reduction (see Definition 1.4). In λµ, the

naming and context binding features always come together as in µα.[β]M; in Λµ, they can be

used separately, so there also µα.λx.x is a term. The naming feature [α]M expresses that α

serves as label for the term M, and µα.M is used to redirect operands (terms) to those labeled

α inside M. A context switch µα.[β]M now expresses that the focus of the derivation (proof),

to which the term corresponds, changes; the idea is that the applicative context of M is not

meant for that term itself, but rather for its subterms labeled with α. It is the naming feature,

together with the structural rules, that make λµ difficult to reason over; this is reflected in

[33] and [11], where the interpretations of λµ into λµµ̃ [26] and X (as introduced in [11]),

respectively, respect equality, but do not respect reduction.

1 The name Λµ was first introduced in [52], that also introduced a different notation for terms, in placing names
behind terms, rather than in front, as done by Parigot and de Groote; we use their notation here.
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Denotational semantics of λµ has been studied by Streicher and Reus [54], who presented

a domain theoretic model of λµ using a model of continuations. They proposed a model of

both typed and untyped λ-calculi embodying a concept of continuation, including Felleisen’s

λC-calculus [29, 28] and a version of Parigot’s λµ. Their model is based on the solution of

the domain equations D = C→R and C = D × C, where R is an arbitrary domain of ‘results’.

The domain C is the set of what are called ‘continuations’ in [54], which are streams, infinite

tuples of elements in D; D is the domain of continuous functions from C to R and is the set

of ‘denotations’ of terms. In [9], together with Barbanera and de’Liguoro, the first author ex-

tracted an intersection type syntax and the corresponding type theory out of the construction

of Streicher and Reus’s model, and showed that this yields a filter model for λµ. This was

followed by [8] where the first author studied a version of the system of [9] with strict types,

for which the characterisation of various notions of termination is shown.

Here we define a semantics of λµ using the π-calculus, which, with its dialects, over the last

decades has proven to give an interesting and expressive model of computation. Encodings

of variants of the pure λ-calculus started with Milner’s [43] encoding of the lazy λ-calculus

that led to more thorough investigations [44, 50, 21, 51, 12] (many more papers were written

on the topic), also in the direction of object oriented calculi [35, 51]. The strength of the

results that have been shown in those papers – like soundness, completeness, termination,

and full abstraction – has led researchers to investigate interpretations into the π-calculus

of calculi that have their foundation in classical logic [36, 10, 25, 17]. From these papers it

might seem that the interpretation of such ‘classical’ calculi comes at a great expense; for

example, to encode typed λµ, in [36] Honda, Yoshida, and Berger define an extension of

Milner’s encoding that uses a version of the π-calculus that is strongly typed; since reduction

in X is not confluent, in [10], together with Cardelli the authors have shown preservation

of reduction in X under the interpretation into the p-calculus with respect to the contextual

ordering ‘⊑c’ (so not with respect to contextual equivalence ‘∼c’, nor weak bisimilarity ‘≈’);

in [25], Cimini, Sacerdoti Coen, and Sangiorgi define a non-compositional interpretation of

λµµ̃ that strongly depends on recursion, and does not regard the logical aspect at all.

We contribute to this line of research and study an output-based encoding of λµ into the

π-calculus; it is an extension of the one we defined for the λ-calculus [12] and is a natural

variant of that for Λµ we presented in [13]; our approach was compared to the traditional

input-based one in [34]. In [12, 13], we have shown that those encodings respect single-step

explicit head-reduction ‘→xh’ (a variant of reduction with explicit substitution ‘→x’ that only

ever replaces the head variable of a term, see Definition 5.1) modulo contextual equivalence

‘∼c’; here we restate those properties with respect to weak bisimilarity ‘≈’. We show that by

extending our output-based interpretation M
l
a of λ-terms [12] (where M is a λ-term and

a is the name given to its anonymous output) to λµ, adding cases for context binding and

naming, gives a very natural interpretation of λµ-terms to processes. In fact, naming and

µ-abstraction can be soundly treated separately, so it is perfectly possible to encode Λµ and

our first results in this direction were indeed on that calculus [13]; as we will argue below, to

achieve full abstraction here we have to focus on λµ; otherwise we can not always distinguish

between looping and inactive computations.

To accurately define the notion of reduction that is modelled by our interpretation, follow-

ing [12], in [13] we defined (untyped) Λµx, a version with explicit substitution [1, 20] of the

Λµ-calculus, together with a notion of explicit head-reduction, which can be seen as the minimal

system (with explicit substitution) to reduce a term to head-normal form, if possible. The ad-

vantage of considering explicit substitution rather than the standard implicit substitution as

considered in [43, 51] has been strongly argued by us in [12, 13], and makes an important con-

tribution here as well. To better express the relation between ‘→xh’ and ‘→π’, here we follow

the approach of [12] when defining explicit head reduction for λµ, rather than that of [13].
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In [12] we showed that communication in the π-calculus has a fine semantic level of gran-

ularity that ‘faithfully mimics’ explicit substitution, and not the implicit one; we stress this

point again with the results presented in this paper, and the relative ease with which these are

achieved. In particular, we will show that, for closed λ-terms, our interpretation models ‘→xh’

reductions through ‘→π’ synchronisations directly, but modulo garbage collection, removing

sub-processes that can no longer interact with others; we will argue that this result is similar

to Milner’s first result, shown in [43] (see Theorem 3.3).

As was the case for Milner’s interpretation, our interpretation places sub-terms (in partic-

ular, those that are to be substituted, and therefore also the operand in an application) under

guarded replication. Since in the pure π-calculus it is not possible to simulate reductions that

take place in terms that are placed under guard, the calculus that can be effectively repre-

sented is limited (the restriction of not allowing reduction under guard is dropped in [36]);

also other interpretations defined in the past do not model full reduction for the same reason.

In our case, as in [12], thanks to the fact that abstraction is encoded through an asynchronous

output, the restriction is to that of head reduction.

Although the notion of structural reduction in λµ is very different from normal β-reduction,

no special measures had to be taken in order to be able to express it through our interpretation.

The component of the interpretation that deals with pure λ-terms is almost exactly that of [12]

(ignoring for the moment that substitution is modelled using a guard, which affects also the

interpretation of variables), but for the use of replication in the case for application. In fact,

the distributive character of application in λµ, and of both term and context substitution is

dealt with entirely by structural congruence in π (see also Example 6.8), and both naming and

context binding are dealt with statically, by the interpretation. In fact, through our encoding

it becomes clear that explicit structural substitution is just a distributed variant of application

(see Remark 6.4).

We will show a number of results that in part we also showed in [12, 13] for the λ and Λµ

calculi, respectively. In Theorem 7.1, we will show that single-step explicit head reduction is

respected by the encoding in such a way that each β-reduction step is implemented through

at least one synchronisation; this leads to operational soundness and completeness results.

In Theorem 7.6 we show that the encoding also respects equality on λx, but modulo weak

bisimulation, and in Theorem 7.7 that it gives a semantics for λµ. Since our encoding deals

with head reduction as well as open terms, an operation of renaming is needed that is part of

weak bisimilarity; in Theorem 8.4 we will show that to model lazy reduction on closed terms,

this renaming is not needed.

We will show that all results obtained for λµ can be shown for the λ-calculus as well; in

Theorem 13.7 we will show that to model lazy reduction on closed λ-terms, the only part of

weak bisimilarity that is needed is garbage collection.

Full abstraction is an important property stated for semantics of programming languages and

formal calculi. Given a semantics, which interprets terms of a source language or calculus into

a domain or target language, full abstraction expresses that all terms that are equal under the

semantics are equal also under reduction, or operational semantics, of the source. This prop-

erty is not alway easily achieved. For example, for the standard λ-calculus, the interpretation

of terms through Böhm trees [15] gives a semantics that is not fully abstract with respect to

the notion of β-equality, since terms that are not related through reduction can have the same

Böhm tree. Similarly, for models created using the intersection type discipline [16, 7], terms

that can be assigned the same sets of types need not be related by reduction. Moreover, it can

be that in the target language operations are permitted that do no correspond to operations

of the interpreted language.

When interpreting λ-terms into the π-calculus, an abstraction λx.M has to be mapped to
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a process willing to interact with its context (which would be the interpretation of the ap-

plicative context in which the abstraction occurs). Since this process can interact, in particular

it will have a channel name a over which this interaction can take place immediately, be it

through input or output over a, which means that the process contains at least an unguarded

input or output. Bisimilarity of processes is typically defined over the capacity of processes

to interact, to produce an input or output, and thereby the interpretation of an abstraction

has to be a process that is not bisimilar to the (inactive) process 0 . To achieve full abstraction,

terms that are incapable of interacting with their context, like ∆∆ (with ∆ = λx.xx), cannot be

mapped unto a process that allows interaction, so should be mapped to a process bisimilar to

0 . This then immediately implies that the interpretations of λy.∆∆ and ∆∆ are not bisimilar.

However, these terms are both unsolvable, have both no head-normal form, and have the same

set of approximants [56, 57] (i.e. the same Böhm tree), so are equated under approximation se-

mantics. This then implies that any interpretation of the λ-calculus (or λµ for that matter) into

the π-calculus cannot achieve full abstraction with respect to any standard semantics (based

on β-reduction).

However, under weak semantics (developed in detail in this paper for λµ), based on lazy

reduction [3], the λ-terms λy.∆∆ and ∆∆ are distinguished. As we will illustrate in this paper,

it turns out that this notion is exactly the notion of equality that is respected by any fully

abstract interpretation of the λ-calculus into the π-calculus. Sangiorgi was the first to show

a full abstraction result [50, 51] for (essentially) Milner’s encoding M m a, by showing that

M
m

a ≈ N
m

a if and only if M ≃ N, where ‘≃’ is the applicative bisimilarity on λ-terms [4].

However, this result comes at a price: applicative bisimulation equates terms that are not

weakly bisimilar under the interpretation. To solve this, Sangiorgi extends the encoding to

Λc, a λ-calculus enriched with constants and changes it into a mapping onto the Higher Order

π-calculus, a variant of the π-calculus with higher-order communications.

To achieve a full-abstraction result for our interpretation we will use a new, considerably

different technique: rather than reason through applicative bisimulation, we reason through

weak approximation semantics that gets defined in this paper. First we characterise what is

exactly the equivalence between terms in λµ that is representable in the π-calculus through

our encoding · l ·; as for Sangiorgi, this turns out to be weak equivalence (see Section 10),

that essentially equates terms that have the same λµ-Lévy-Longo tree [40, 42] (for the pure

λ-calculus, those are a lazy variant of Böhm trees), which corresponds to the set of weak

approximants; a notable difference between ours and Sangiorgi’s result is that we deal with

all terms, not just the closed ones.

In Theorem 7.1 we will show that our interpretation respects ‘→xh’ modulo ‘≈’, and in

Theorem 7.6 that it even models ‘=x’, the congruence generated by ‘→x’, from which a similar

result for ‘=βµ’ follows directly. In Theorem 12.1, we extend this result to weak explicit head

equivalence ‘∼wxh’, the equivalence relation generated by ‘→xh’ that equates also terms with-

out weak head-normal form. The main proof of the full abstraction result is then achieved

through showing that ‘∼wxh’ equates to ‘∼wβµ’, the equivalence relation generated by standard

reduction that also equates terms without weak head normal form: this latter result is stated

entirely within λµ and does not depend on the encoding. To achieve this, we define a choice

of operational equivalences for the λµ-calculus, both with and without explicit substitution.

Next to ‘∼wxh’ we define weak head equivalence ‘∼wh’ and show that for λµ-terms without ex-

plicit substitution, ‘∼wxh’ corresponds to ‘∼wh’. Following essentially [56, 57], we also define a

notion of weak approximation and show that the relations ‘∼Aw ’, which expresses that terms

have the same set of weak approximants, ‘∼wh’, and ‘∼wβµ’ all correspond. The combination

of these results then yields full abstraction.

Of course the full abstraction result is achievable for the pure λ-calculus as well; although

this cannot simply follow from the results we will show below, the proofs needed are almost
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carbon copies, removing all treatment of context switches. The interpretation of terms into the

π-calculus is slightly easier, and a more direct relation between explicit head reduction and

synchronisation can be established. The treatment of explicit head reduction also facilitates a

reformulation of Milner’s first result, which show a direct, step-by-step relation between weak

head reduction for the λ-calculus (also known as lazy reduction) and synchronisation inside

the image of terms under Milner’s interpretation.

Organisation of this paper: We start with revisiting the λµ-calculus in Section 1 and define

a notion of head-reduction ‘→h’. In Section 2 we revisit the π-calculus, enriched with pairing,

and will discuss some of the context and background of our work in Section 3. In Section 4

we define λµx, a version of λµ with explicit substitution, as well as a notion of explicit head-

reduction in Section 5, and in Section 6 define our logical interpretation of λµx in to π and prove

a soundness result for explicit head-reduction with respect to weak bisimilarity in Section 7.

In Section 8 we will show that the operation of renaming we have defined in Section 7 is not

needed when dealing weak (i.e. lazy) reduction on closed terms, so is the price to pay when

modelling head reduction and on open terms.

Working towards our full abstraction result, i.e that M l a ≈ N l a if and only if M ∼wβµ N, in

Section 9 we will define notions of weak reduction, in particular weak head reduction and weak

explicit head reduction. In Section 10 we define the two notions of equivalence these induce,

respectively ‘∼wh’ and ‘∼wxh’, also equating terms without weak head-normal form and show

that these notions coincide on pure λµ terms (i.e. without explicit substitutions). We also

define the equivalence ‘∼wβµ’ induced by ‘→βµ’ on pure λµ terms, that also equates terms

without weak head-normal form. In Section 11, we define a notion of weak approximation for

λµ, and show the semantics this induces, which corresponds to Lévy-Longo trees, is fully

abstract with respect to both ‘∼wh’ and ‘∼wβµ’. Then, in Section 12, we will show that our

logical interpretation is fully abstract with respect to weak bisimilarity ‘≈’ on processes and

the equivalences ‘∼wxh’, ‘∼wh’, ‘∼Aw ’, and ‘∼wβµ’ on pure λµ-terms.

To conclude, in Section 13, we will focus on the λ-calculus, and state the results that are

provable when removing context switches; an interesting one is the reformulation of Milner’s

result (Theorem 3.3) in Corollary 13.5, but now with explicit weak head reduction.

This paper is an extended and improved version of [13, 14], but dealing with λµ, rather than

Λµ as in [13].

Notation: We will write n for the set {1, . . . ,n}. We will use a vector notation · as abbre-

viation for any sequence: for example, xi stands for x1, . . . , xn, for any irrelevant n, or for

{x1, . . . , xn }, and 〈αi := Ni ·βi 〉 for 〈α1 :=N1·β1〉 · · · 〈αn :=Nn·βn〉 , etc. When possible, we will

drop the indices. We also use ‘=
∆ ’ rather than ‘⇐⇒ ’ for the symbol representing ‘is defined

as’, since the latter represents a logical implication. By abuse of notation, we will use ‘∈’ also

as an abbreviation of ‘occurs in’, for example for sequences or terms.

1 The λµ calculus

In this section, we will briefly discuss Parigot’s λµ-calculus [47]; we assume the reader to be

familiar with the λ-calculus and its notion of reduction ‘→β’ and equality ‘=β’, so will be brief

on details. In Section 4 we will define explicit head-reduction for λµx, a variant of λµ with

explicit substitution à la Bloo and Rose’s λx [20], and will show full abstraction results for λµx

later in the paper; since λµx implements λµ-reduction, this implies that, automatically, our

main results are also shown for standard reduction (with implicit substitution).

λµ is a proof-term syntax for classical logic, expressed in Natural Deduction, defined as an

extension of the Curry type assignment system for the λ-calculus by adding the concept of
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named terms, and adding the functionality of a context switch, allowing arguments to be fed to

subterms.

Definition 1.1 (Syntax of λµ) The λµ-terms we consider are defined over the set of variables

represented by Roman characters, and names, or context variables, represented by Greek char-

acters, through the grammar:

M, N ::= x (variable)

| λx.M (abstraction)

| MN (application)

| µα.[β]M (context switch)

We will occasionally write Cmd for the pseudo-term [α]M, and use λµ also for the set of all

λµ-terms.

The main difference between Λµ and λµ is that in the former, [α]M is considered to be a term.

As usual, λx.M binds x in M, and µα.Cmd binds α in Cmd, and the notions of free variables

fv(M) and names fn(M) are defined accordingly; the notion of α-conversion extends naturally

to bound names and we assume Barendregt’s convention in that we assume that free and

bound variables and names are always distinct, using α-conversion when necessary. As usual,

we call a term closed if it has no free variables or names.

Simple type assignment for λµ is defined as follows:

Definition 1.2 (Types, Contexts, and Typing) i) Types are defined by the grammar:

A, B ::= ϕ | A→B

where ϕ is a basic type of which there are countably many.

ii) A context of inputs Γ is a mapping from term variables to types, denoted as a finite set

of statements x:A, such that the subject of the statements (x) are distinct. We write Γ1, Γ2

for the compatible union of Γ1 and Γ2 (if x:A1 ∈ Γ1 and x:A2 ∈ Γ2, then A1 = A2), and write

Γ, x:A for Γ,{x:A}.

iii) Contexts of outputs ∆ as mappings from names to types, and the notions ∆1,∆2 and α:A,∆

are defined similarly.

iv) Type assignment for λµ is defined by the following natural deduction system.

(Ax) : Γ, x:A ⊢ x : A | ∆ (µ) :
Γ ⊢ M : B | α:A,∆

(α 6∈ ∆)
Γ ⊢ µα.[β]M : A | β:B,∆

Γ ⊢ M : A | α:A,∆
(α 6∈ ∆)

Γ ⊢ µα.[α]M : A | ∆

(→I) :
Γ, x:A ⊢ M : B | ∆

(x 6∈ Γ)
Γ ⊢ λx.M : A→B | ∆

(→E) :
Γ ⊢ M : A→B | ∆ Γ ⊢ N : A | ∆

Γ ⊢ MN : B | ∆

We write Γ ⊢λµ M : A | ∆ for derivable judgements in this system.

So, for the context Γ, x:A, we have either x:A ∈ Γ, or Γ is not defined on x; notice that in the

first variant of rule (µ), β:B is added to ∆; β can already appear in ∆, but then has to have the

same type; on the other hand, that rule removes α:A from the right context.

In λµ, reduction of terms is expressed via implicit substitution; as usual, M{N/x} stands

for the (term) substitution of all occurrences of x in M by N, and M{N·γ/α}, the structural

substitution, for the term obtained from M when every (pseudo) sub-term of the form [α]P is

replaced by [γ]PN.2 For reasons of clarity, and because below we will present a version of λµ

2 This notion is often defined as M{N/α}, where every (pseudo) sub-term of the form [α]P is replaced by
[α]PN; in our opinion, this creates confusion, since α gets ‘reintroduced’; it is in fact a new name, which is
illustrated by the fact that, in a system with types, α then changes type, as also expressed by rule (S-sub) in
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that makes the substitution explicit, we define the structural substitution formally.

Definition 1.3 (Structural substitution) We define M{N·γ/α} (where γ is fresh, α does

not occur bound in M, and every sub-term [α]L of M is replaced by [γ]LN) by induction over

the structure of (pseudo-)terms by:

([α]M) {N·γ/α} =
∆ [γ](M{N·γ/α})N

([β]M) {N·γ/α} =
∆ [β](M{N·γ/α}) (α 6= β)

(µβ.Cmd) {N·γ/α} =
∆ µβ.Cmd{N·γ/α}

x {N·γ/α} =
∆ x

(λx.M) {N·γ/α} =
∆ λx.M{N·γ/α}

(PQ) {N·γ/α} =
∆ P{N·γ/α} Q{N·γ/α}

We have the following rules of computation in λµ:

Definition 1.4 (λµ reduction) i) λµ has a number of reduction rules: two computational rules

logical (β) : (λx.M)N → M{N/x}

structural (µ) : (µα.Cmd)N → µγ.(Cmd{N·γ/α})

as well as the simplification rules

renaming : [β]µγ.Cmd → Cmd{β/γ}

erasing : µα.[α]M → M (α 6∈ fn(M))

which are added mainly to simplify the presentation of results.

ii) We use the contextual rules:3

M → N ⇒





ML → N L

L M → LN

λx.M → λx.N

µα.[β]M → µα.[β]N

iii) We use ‘→∗
βµ’ for the pre-congruence4 based on these rules, ‘=βµ’ for the congruence,

write M →nf
βµ N if M →∗

βµ N and N is in normal form, M →βµ
hnf N if M →∗

βµ N and N is in

head-normal form, M⇓ if there exists a finite reduction path starting from M,5 and M⇑

if this is not the case.

We will use these notations for other notions of reduction as well, sometimes subscripted

for clarity.

That this notion of reduction is confluent was shown in [49]; so we have:

Proposition 1.5 ([49]) If M =βµ N and M →∗
βµ P, then there exists Q such that P →∗

βµ Q and N →∗
βµ

Q.

The intuition behind the structural rule is given by [32]: ‘in a λµ-term µα.M of type A→B,

only the subterms named by α are really of type A→B (. . . ); hence, when such a µ-abstraction is

applied to an argument, this argument must be passed over to the sub-terms named by α.” We can

Definition 4.3. Moreover, when making this substitution explicit, bound and free occurrences of the same name
would be introduced, violating Barendregt’s convention.

3 Normally the contextual rules are not mentioned but are left implicit; we state them here, since we will below
consider notions of reduction that do not permit all contextual rules.

4 A pre-congruence is a reflexive and transitive relation that is preserved in all contexts; a congruence is symmetric
pre-congruence.

5 Note that this does not imply that all paths are finite.
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(Ax)
x:(A→B)→A ⊢ x : (A→B)→A | α:A

(Ax)
x:(A→B)→A,y:A ⊢ y : A | α:A, β:B

(µ)
x:(A→B)→A,y:A ⊢ µβ.[α]y : B | α:A

(→I)
x:(A→B)→A ⊢ λy.µβ.[α]y : A→B | α:A

(→E)
x:(A→B)→A ⊢ x(λy.µβ.[α]y) : A | α:A

(µ)
x:(A→B)→A ⊢ µα.[α]x(λy.µβ.[α]y) : A |

(→I)
⊢ λx.µα.[α]x(λy.µβ.[α]y) : ((A→B)→A)→A |

Figure 1. A derivation for a term representing Peirce’s Law in ⊢λµ

think of [α]M as storing the type of M amongst the alternative conclusions by naming it α.

Parigot showed in [48] that typeable terms are strongly normalisable. That paper also

defines the extensional rules

(η) : λx.Mx → M (x 6∈ fv(M))

(ηµ) : µα.[β]M → λx.µγ.[β]M{x·γ/α}

We do not consider these rules here: the model we present through our interpretation is not

extensional, and we can therefore not show that those rules are preserved by the interpreta-

tion.

Example 1.6 As an example illustrating the fact that this system is more powerful than the

system for the λ-calculus, Figure 1 shows that it is possible to inhabit Peirce’s Law (due to

[46]). The underlying logic of the system of Definition 1.2 corresponds to minimal classical logic

[5].

We also consider the notion of head reduction; Wadsworth [56] defined that for the λ-calculus

by first defining the head-redex of a term as the subterm (λy.M)N in a term of the form

λx1x2 · · ·xn .((λy.M)N) L1 L2· · ·Lm (n ≥ 0,m ≥ 0)

Head reduction is then that notion in which each step is determined by contraction of the

head redex only (when it exists); head-normal forms (the normal forms with respect to head

reduction) are of the generic shape

λx1x2 · · ·xn.yL1L2 · · ·Lm (n ≥ 0,m ≥ 0)

and y in this term is called the head variable. In λµ, given the naming and µ-binding features,

the notion of head redex is not this easily defined; rather, here we define head reduction by

not allowing reductions to take place in the right-hand side of applications (in the context of

the λ-calculus, this gives the original notion); we also define a notion of head-normal form for

λµ.

Definition 1.7 (Head reduction for λµ (cf. [39])) i) We define head reduction ‘→h’ as the re-

striction of ‘→βµ’ by removing the contextual rule:

M → N ⇒ L M → LN

ii) The λµ head-normal forms (hnf) are defined through the grammar:

H ::= λx.H

| xM1 · · ·Mn (n ≥ 0)

| µα.[β]H (β 6= α or α ∈ H, and H 6= µγ.[δ]H ′)

Notice that the →βµ-hnfs are →h-normal forms.

The following is straightforward:

8



Proposition 1.8 (‘→h’ implements λµ’s head reduction) If M →∗
βµ N with N in hnf (so M →βµ

hnf

N), then there exists H such that M →h

nf
H (so H is in →h-normal form) and H →∗

βµ N without using

‘→h’.

Notice that λ f .(λx. f (xx))(λx. f (xx)) →h λ f . f ((λx. f (xx))(λx. f (xx))) and that this last

term is in hnf, and in →h-normal form.

2 The synchronous π-calculus with pairing

The notion of π-calculus that we consider in this paper was already considered in [12] and

is different from other systems studied in the literature in that it adds pairing and uses a let-

construct to deal with inputs of pairs of names that get distributed, similar to that defined by

Abadi and Gordon [2]; in contrast to [10, 12], we do not consider the asynchronous π-calculus.

As already argued in [12], the main reason for the addition of pairing lies in that we want

to communicate the interface of functions, through simultaneously transmitting the names of

the input and of the output channel of the process that represents the function. Therefore data

is introduced as a structure over names, such that not only names but also pairs of names can

be sent (but not a pair of pairs); this way a channel may pass along either a name or a pair of

names. We could consider the standard π-calculus; however, the details of the interpretation

would change (more replication would be needed).

Definition 2.1 (Processes) i) Channel names and data are defined by:

a,b, c,d, x,y,z, . . . names p ::= a | 〈a,b〉 data

ii) Processes are defined by:

P ,Q ::= 0 (nil)

| P |Q (composition)

| ! P (replication)

| (νa)P (restriction)

| a(x).P (input)

| a p .P (output)

| let 〈x,y〉=p in P (let construct)

iii) We see, as usual, ν as a binder, and call the name n bound in (νn)P , x bound in a(x).P

and x,y bound in let 〈x,y〉=p in P ; we write bn (P) for the set of bound names in P ; n is

free in P if it occurs in P but is not bound, and we write fn(P) for the set of free names in

P . We accept the normal convention on the separation of free and bound names, using

α-conversion when necessary. We call a in (νa)P a hidden channel.

iv) A context C[·] is a process with a single (process) hole, and we write C[P ] when filling

the hole with P .

v) We call Pa(x) and a p guards, and call P in a(x).P and a p .P a process under guard.

vi) We will abbreviate a(x).let 〈y,z〉= x in P by a(y, z).P , as well as (νm) (νn)P by (νmn)P ,

and write a p for a p .0 .

vii) As in [51], we write a b for the forwarder a(x).b x, and x(w).P for (νw) (x w.P).

Notice that the pairing in data is not recursive. Data occurs only in two cases: a p and

let 〈x,y〉=p in P , and then p is either a single name, or a pair of names; we therefore do

not allow a(〈x,y〉).P , nor a 〈〈b,c〉,d〉.P , nor 〈b,c〉 p .P , nor (ν〈a,b〉)P , nor let 〈〈a,b〉,y〉= p in P ,

etc. So substitution P {p/x} is a partial operation, which depends on the places in P where

x occurs; whenever we use P {p/x}, we will assume it is well defined. It is worthwhile to

point out that using pairing is not the same as working with the polyadic (or even dyadic)

π-calculus, because there each channel has a fixed arity, whereas we allow data to be sent,

which is either a name or a pair of names.
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Definition 2.2 (Structural Congruence) The structural congruence is the smallest congru-

ence generated by the rules:

P | 0 ≡ P

P |Q ≡ Q |P

! P ≡ P | ! P

(νn)0 ≡ 0

(P |Q) |R ≡ P | (Q |R)

(νm) (νn)P ≡ (νn) (νm)P

(νn) (P |Q) ≡ P | (νn)Q (n 6∈ fn(P))

let 〈x,y〉= 〈a,b〉 in P ≡ P{a/x,b/y}

As usual, we will consider processes modulo congruence and α-conversion: this implies that

we will not deal explicitly with the process let 〈x,y〉= 〈a,b〉 in P , but rather with P{a/x,b/y}.

Because parallel composition is associative, we will normally not write brackets in a parallel

composition of more than two processes.

Computation in the π-calculus with pairing is expressed via the exchange of data.

Definition 2.3 (Reduction) i) The reduction relation over the processes of the π-calculus with

pairing is defined by the following (elementary) rules:

a p .P | a(x).Q →π P |Q {p/x} (synchronisation)

P →π P ′ ⇒ (νn)P →π (νn)P (hiding)

P →π P ′ ⇒ P |Q →π P ′ |Q (composition)

P ≡ Q ∧ Q →π Q ′ ∧ Q ′ ≡ P ′ ⇒ P →π P ′ (structural congruence)

We write P →π (c) Q if P reduces to Q in a single step via a synchronisation over channel

c, and write ‘→π (=α)’ if we want to point out that α-conversion has taken place during

the synchronisation. We say that P →π (c) Q takes place over a hidden channel if c is hidden

in P .

ii) We say that a P is irreducible (is in normal form) if it does not contain a possible synchro-

nisation, i.e. P is not of the shape (νb ) (a p .Q | a(x).R |S) (up to structural congruence).

Notice that let 〈x,y〉= a in P (where a is a name) is stuck. Also,

a〈b,c〉 | a(x,y).Q =
∆ a 〈b,c〉 | a(z).let 〈x,y〉= z in Q

→π let 〈x,y〉= 〈b,c〉 in Q

≡ Q{b/x, c/y}

There are several notions of equivalence defined for the π-calculus: the one we consider

here, and will show is related to our encoding, is that of weak bisimilarity.

Definition 2.4 (Weak bisimilarity) i) We write P ↓n and say that P outputs on n (or P ex-

hibits an output barb on n) if P ≡ (νb ) (n p .Q |R), where n 6∈ b and P ↓n (P inputs on n)

if P ≡ (νb ) (n(x).Q |R), where n 6∈ b .

ii) We write P ⇓n (P will output on n) if there exists Q such that P →∗
π Q and Q ↓n, and P ⇓6 o

if there exists no n such that P ⇓n (P will not output). Likewise, we write P ⇓n (P will

input on n) if there exists Q such that P →∗
π Q and Q ↓n, and P ⇓6 i if there exists no n such

that P ⇓n (P will not input).

iii) A barbed bisimilarity ‘≈· ’ is the largest symmetric relation such that P ≈· Q satisfies the

following clauses:

• for every name n: if P ↓n then Q ⇓n, and if P ↓n then Q ⇓n;

• for all P ′, if P →∗
π P ′, then there exists Q ′ such that Q →∗

π Q ′ and P ′ ≈· Q ′;

iv) Weak bisimilarity is the largest symmetric relation on processes ‘≈’ defined by: P ≈ Q if

and only if C[P ] ≈· C[Q ] for any context C[·].
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The following property is needed in the proof of Theorem 7.1 and 7.6.

Lemma 2.5 (Private resources lemma (cf. [44, 51])) Let x 6= c at most only be used as output

channel in P and Q , and not appear in R , then

(νx) (P |Q | ! x(z).R ) ≈ (νx) (P | ! x(z).R ) | (νx) (Q | ! x(z).R ) (1)

(νx) (P |Q | ! x(v,d).R) ≈ (νx) ((νy) (P {y/x} | ! y(v, d).R) |Q | ! x(v,d).R ), (y fresh) (2)

(νx) (c(y).P | ! x(z).R ) ≈ c(y).((νx) (P | ! x(z).R )) (3)

(νx) (! c(v,d).P | ! x(z).R ) ≈ ! c(v,d).((νx) (P | ! x(z).R )) (4)

(νx) (! c y.P | ! x(z).R ) ≈ ! c y.((νx) (P | ! x(z).R )) (5)

Likewise, let x 6= c only be used as input channel in P and Q , and not appear in R , then

(νx) (P |Q | ! x(w).R) ≈ (νx) (P | ! x(w).R) | (νx) (Q | ! x(w).R) (6)

(νx) (P |Q | ! x(w).R) ≈ (νx) ((νy) (P {y/x} | ! y(w).R) |Q | ! x(w).R), (y fresh) (7)

(νx) (! c(v,d).P | ! x(w).R) ≈ ! c(v,d).((νx) (P | ! x(w).R)) (8)

(νx) (! c y.P | ! x(w).R) ≈ ! c y.((νx) (P | ! x(w).R)) (9)

Proof : All parts follow easily. Part 1, 4, and 5 are shown in [44, 51] (see Theorem 3.5); part 2

follows from part 1, α-conversion, and structural congruence. The proof for the second group

is similar to that for the first.

Part 4, 5, 8, and 9 are part of (extended) structural congruence in [27].

The following is easy to show.

Proposition 2.6 (Synchronisation over hidden channels is unobservable) Let P ,Q not con-

tain a and a not in p , then

(νa) (a p .P | a(x).Q) ≈ P |Q {p/x} (10)

(νa) (a p .P | ! a(x).Q) ≈ P |Q {p/x} (11)

Proof : For part (10), this follows from the fact that there is only one synchronisation possible

in the left-hand process, and before that is activated, no context can interact with it. After the

synchronisation over a, that channel name disappears and the process on the right gets created

and only then can a context interact. Part (11) follows similarly, using that (νa) (! a(x).Q) ≈ 0 .

3 Context and background of this paper

Milner’s input-based encoding

In the past, there have been several investigations of interpretation from the λ-calculus into the

π-calculus. Research in this direction started by Milner’s interpretation ·m · of λ-terms [43];

Milner’s interpretation is input based, i.e. terms are interpreted under an input name, and

Milner shows that the interpretation of closed λ-terms respects large-step lazy reduction ‘→l’

[3] to normal form up to substitution (Theorem 3.3); this was later generalised to β-equality,

but using weak bisimilarity [51].

It is defined by:

Definition 3.1 (Milner’s interpretation [43]) Let a not be a λ-variable.
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x
m

a =
∆ x a

λx.M
m

a =
∆ a(x).a(b). M

m

b (b fresh)

MN
m

a =
∆ (νc) ( M

m

c | (νz) (c z.c a. z := N
m)) (c,z fresh)

x := M
m

=
∆ ! x(w). M

m

w (w fresh)

Milner calls x := M
m

an environment entry; it corresponds to a closure in Krivine’s machine

[38], that are also grouped in an environment; it could be omitted from the definition above,

but is of use separately.

Example 3.2 Using · m ·, the encoding of a β-redex (only) reduces as follows:

(λx.M)N
m

a =
∆ (νc) ( λx.M

m

c | (νz) (c z.c a. z := N
m)) =

∆

(νc) (c(x).c(b). M m b | (νz) (c z.c a. z := N m)) →+
π (c)

(νz) ( M
m {z/x} a | z := N

m) =α (z 6∈ M
m

a)

(νx) ( M m a | x := N m ) =
∆

(νx) ( M
m

a | ! x(w). N
m

w)

Now reduction can continue in (the encoding of) M, but not in N that is still guarded by

the input on x, which will not be used until the evaluation of M
m

a reaches the point where

output is generated over x. This implies of course that we can model reductions in M that

take place before the substitution gets executed, i.e. ‘under the abstraction’, but after a first step

in the evaluation of the redex: this implies that Milner’s encoding represents more than just

lazy reduction with implicit substitution, and more closely deals with explicit substitution; we

will make this observation more precise in Theorem 13.4.

Notice that, in MN m a, the interpretation of the operand N is placed under output (and

replication), and thereby blocked from running; this comes at a price: now β-reductions that

occur in the right-hand side of an application can no longer be mimicked. Combined with

using input to model abstraction, this makes that a redex can only be contracted if it occurs

on the outside of a term (is the top redex): the modelled reduction is lazy, ‘→l’.

Milner states an Operational Soundness result for his interpretation:

Theorem 3.3 ([43]) For closed λ-term M, either M⇑ and M
m

u⇑π , or M →∗
l λy.R{N/x} , and

M m u →∗
π (νx ) ( λy.R m u | x :=N m ).

Although obviously the intention in [43] is that the substitutions {N/x } in Theorem 3.3 are

generated by the reduction (and this is explicitly used in the proof for that result), the way

it is formulated this need not necessarily be the case; the result as stated in [43] is therefore

not complete. Moreover, it is worthwhile to note that, although not mentioned in [43], the

proof of this result treats the substitution as explicit, not as implicit; for example, in the proof

of Lemma 4.5 in that paper, case 3 considers the term xM1 · · ·Mn{N/x} and NM1 · · ·Mn{N/x}
to be different, whereas in the standard λ-calculus these terms are identical. Under explicit

substitution, however, the terms xM1 · · ·Mn 〈x :=N〉 and NM1 · · ·Mn 〈x :=N〉 do differ, so it

is opportune to switch our attention to a calculus with explicit substitution. We will come

back to this in Theorem 13.4, where we restate Milner’s result, but formulated with explicit

substitution.

Moreover, notice that (λx.xx)(λy.y) →∗
l λy.y: however, we need garbage collection to run

(λx.xx)(λy.y) m

a to λy.y
m

a, which Milner does not consider; without garbage collection, it

runs to

(νz) ((νz1) ( λy.y m a | z1 := z m) | z := λy.y m),
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so also in this case the formulation of Milner’s result is imprecise. This anomaly was ad-

dressed in [44] where (λx.M)N ≈ M{N/x} is stated using weak bisimilarity, and in [51]

using ground bisimilarity, as we will discuss below.

For many years, it seemed that Milner had stated the first and final word on the interpretation

of the λ-calculus; in fact, input-based interpretations of the λ-calculus into the π-calculus have

become the de facto standard, and most published systems are based on Milner’s interpreta-

tion. The various interpretations studied in [51] constitute examples, also in the context of the

higher-order π-calculus; [36] used Milner’s approach with a typed version of the π-calculus;

[55] used it in the context of continuation-passing style languages.

In [44], Milner returned to interpretations of the λ-calculus, but expressed a property over β-

reduction, rather than lazy reduction to normal form. To that purpose, he presented a different

version of his encoding into the polyadic π-calculus. It uses a notion of abstraction (λa)P over

processes, but with the restriction that bound names can only be replaced by names (so is not

a higher-order feature) and is mainly added for ease of adding definitions. Since only names

can be substituted, abstractions can only be applied to names as in ((λa)P )b, which stands

for (so does not reduce to) P {b/a}. Also, Milner introduces the notation a.[b1 · · ·bn], which

roughly stands for a b1 · · ·bn, and can be used in a synchronisation of the shape

v.(λx )P | v.(νz ) [y ]Q →π (νz ) (P{y/x } |Q)

provided that |x | = |y |. The new version of the encoding now becomes:

x p

=
∆ (λu) x.[u] (u fresh)

λx.M
p

=
∆ (λu)u.(λx) M

p (u fresh)

MN
p

=
∆ (λu) (νv) ( M

p

v | (νz) (v.[zu] | ! z. N
p )) (u,v,z fresh)

Milner shows that

Lemma 3.4 (νx) ( M p | ! x. N p ) ≈ M{N/x} p

This result is stated using full weak bisimilarity. Since we will be dealing with explicit

substitution rather than implicit substitution as Milner did, some of the results we will show

below will use a weaker variant of that relation, being ‘≈g’ (garbage collection), ‘≈r’ (renam-

ing), and ‘≈d’ (duplication) (see Definition 6.7).

Using Lemma 3.4, Milner shows (λx.M)N p ≈ M{N/x} p (but does not extend this result

to M =β N ⇒ M
p ≈ N

p

); see also Theorem 7.6 and 7.7 below. As in the proof of Theorem 7.6,

Milner needs a variant of Lemma 2.5:

Theorem 3.5 (Replication Theorem [44, 51]) If x occurs in P , Q , and R only in output subject

position (as subjects of output prefixes, as negative subjects), then

(νx) (P |Q | ! x(z).R ) ≈ (νx) (P | ! x(z).R ) | (νx) (Q | ! x(z).R ) (12)

(νx) (! P | ! x(z).R ) ≈ ! (νx) (P | ! x(z).R ) (13)

and 6 if x does not occur in π, then

(νx) (π.P | ! x(z).R ) ≈ π.(νx) (P | ! x(z).R ) (14)

This permits the ‘≈’ steps in

6 This property is not stated in [44], but is needed, as seen below.
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(νx) ( M1M2
p

u | ! x. N
p )

=
∆ (νx) ((λu) (νv) ( M1

p

v | (νz) (v.[zu] | ! z. M2
p ))u | ! x. N

p )

= (νx) ((νv) ( M1
p

v | (νz) (v.[zu] | ! z. M2
p )) | ! x. N

p )

(12) ≈ (νv) ((νx) ( M1
p

v | ! x. N
p ) | (νx) ((νz) (v.[zu] | ! z. M2

p ) | ! x. N
p ))

≡ (νv) ((νx) ( M1
p v | ! x. N p ) | (νz) (v.[zu] | (νx) (! z. M2

p | ! x. N p )))

(13) ≈ (νv) ((νx) ( M1
p

v | ! x. N
p ) | (νz) (v.[zu] | ! (νx) (z. M2

p | ! x. N
p )))

(14) ≈ (νv) ((νx) ( M1
p v | ! x. N p ) | (νz) (v.[zu] | ! z.(νx) ( M2

p | ! x. N p )))

(IH) ≈ (λu) (νv) ( M1{N/x} p

v | (νz) (v.[zu] | ! z. M2{N/x} p ))u

=
∆ M1{N/x}M2{N/x} p u

Notice that, the notational differences notwithstanding, the encoding · p

is input-based, and

a direct rewrite of the original one.

After Milner’s encodings, many variants followed; for example, [51] defines an encoding into

the higher-order π-calculus that respects lazy reduction. We repeat that definition here, but

adjusted to the normal π-calculus, rather than the higher-order one.

The (call by name) encoding · N 7 of the lazy λ-calculus is defined through:

x
N

=
∆ x a

λx.M
N

=
∆ (νv) (a v.v(x, p). M

N
) (v, p fresh)

MN
N

=
∆ (νq) ( M

N | q(v).(νx) (v〈x,a〉.! x(w). N
N
)) (q,v, x,w fresh)

Notice that although this is an output-based encoding, in the sense that the (private) channel q

in the encoding of MN is used as an output for the encoding of M, underneath the encoding

is essentially Milner’s. As before, the reductions inside an abstraction, those in the right-

hand side of an application, as well as those inside the term that gets substituted cannot be

simulated, and therefore this encoding models (part of) lazy reduction.

For this encoding, [51] shows a number of results; first it shows:

(1) (2)

(λx.M)N
N τ 2

d (νx) ( M
N | ! x(w). N

N
) ≈g M{N/x}N

(where ‘ τ
d’ is the deterministic (silent) transition and ‘≈g’ is ground bisimilarity) which

leads to:8

(3)
M →l N ⇒ M

N τ 2
d≈g N

N

(4)
M =β N ⇒ M

N ≈g N
N

As in [44], a variant of Lemma 2.5 is needed to achieve this result. We show the equivalent of

these results for our encoding in Theorem 7.1 and Theorem 7.7 below.

The characterisation of M m a ≈ N m a, left as open problem in [43], was achieved through

showing that

M m a ≈ N m a ⇐⇒ M ≃ N,

where ‘≃’ is the applicative bisimilarity on λ-terms, an operational notion of equivalence on

terms of the lazy λ-calculus as defined by Abramsky and Ong [4], rather than β-equality.

7 For uniformity of notation, we write · N rather than N · ·.
8 In [51], it is suggested that (4) follows from (3), but in fact it follows from (1) and (2). Moreover, we assume

that the formulation of (4), where ‘=∼c’ is used instead of ‘≈g’, is a typo.
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This result comes with caveats, however: as shown by Ong [45], applicative bisimulation

equates x(xΘ∆∆)Θ and x(λy.xΘ∆∆y)Θ (where ∆ = λx.xx, and Θ is such that, for every N,

ΘN is reducible to an abstraction) whereas these terms are not weakly bisimilar under the

interpretation ·m · (see [43]). This has strong repercussion as far as the interpretation of the

λ-calculus is concerned: in order to achieve full abstraction, Sangiorgi had to extend Milner’s

encoding to Λc, a λ-calculus enriched with constants (that take the place of the free variables,

thereby creating closed terms) and by exploiting a more abstract encoding into the Higher

Order π-calculus, a variant of the π-calculus with higher-order communication.

Sangiorgi’s result then essentially states that the interpretations of closed Λc-terms M and

N are weakly bisimilar if and only if M and N are applicatively bisimilar; in [50] he improves

on this by showing that the interpretation of terms M and N in Λc in the standard π-calculus

is weakly bisimilar if and only if M and N have the same Lévy-Longo tree [40, 42] (a lazy

variant of Böhm trees [15]). Since the principal results in [50], presented almost all without

proof, are shown for closed terms only,9 Sangiorgi’s full abstraction result only deals with

closed terms.

An output-based encoding for the λ-calculus

In [12] we presented a logical, output-based spine interpretation · s · that interprets abstraction

λx.M not using input, but via an asynchronous output which leaves the interpretation of the

body M free to reduce. That interpretation is defined as:

x
s

a =
∆ x(w).a w (w fresh)

λx.M
s

a =
∆ (νxb) ( M

s

b | a〈x,b〉) (b fresh)

MN s a =
∆ (νc) ( M s c | c(v,d).( v := N s | d a)) (c,v,d fresh)

M 〈x :=N〉 s

a =
∆ (νx) ( M

s

a | x := N
s )

x := N s a =
∆ ! N s x

This can be seen as a variant of one defined independently by Beffara [18], obtained through

linear logic, except for the input/output polarity for variables.

For this interpretation, in [12] we showed Operational Soundness (and Type Preservation),

but with respect to the notion of explicit head-reduction ‘→xh’, similar to the notion defined

below in Definition 5.1, and the notion of type assignment ‘⊢π’ defined in [12]. The main

results shown are:

i) If M⇑ then M s a⇑π, and if M →xh N then M s a →∗
π∼c N h a.

ii) If Γ ⊢ M : A then M
s

a : Γ ⊢π a:A.

where ‘∼c’ is contextual equivalence,

As argued in [12], to show this result, which formulates a direct step-by-step relation be-

tween β-reduction and the synchronisation in the π-calculus, it was necessary to make the

substitution explicit. This is a direct consequence of the fact that, in the π-calculus, the im-

plicit substitution of the λ-calculus gets ‘implemented’ one variable occurrence at the time, rather

than all together in one fell swoop. (We come back to those results in Section 13.) Since we

aim to show a similar result for λµ, we will therefore also here define a notion of explicit

substitution for that calculus.

Classical logic and the π-calculus

There are, to date, a number of papers that investigate if the π-calculus can be used to interpret

calculi that relate to classical logic as well, like λµ, λµµ̃, or X .

9 The development of Lévy-Longo trees is done for all terms, but the build-up of the main result Theorem 5.4
includes Theorem 4.11 that holds, other than suggested, only for closed terms.
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In [36] an interpretation of Call-by-Value λµ is defined that is based on Milner’s, but allows

for a much more liberal notion of reduction on processes, and considers fully-typed terms (so

types are part of the syntax of terms) and processes only. Types for processes prescribe usage

of names, and name passing is restricted to bound (private, hidden) name passing.10 The syntax

of processes considered there is

P ::= ! x(y ).P | (νy ) (x y |P) | P |Q | (νx)P | 0

and the notion of reduction on processes is extended to that of ‘ց’, defined as the least

compatible relation over typed processes (i.e. closed under typed contexts), taken modulo ‘≡’,

that includes:

! x(y ).P | (νa ) (x a |Q) → ! x(y ).P | (νa ) (P{a/y } |Q)

as the basic synchronisation rule, as well as

C[(νa ) (x a |P)] | ! x(y ).Q ցr C[(νa ) (P{a/y } |Q)] | ! x(y ).Q

(νx) (! x(y ).Q) ցg 0

where C[·] is an arbitrary (typed) context; note that ‘ց’ synchronises with any occurrence of

x a , no matter what guards they may be placed under. The resulting calculus is thereby very

different from the original π-calculus.

On the relation between Girard’s linear logic [31] and the π-calculus, Bellin and Scott [19]

give a treatment of information flow in proof-nets; only a small fragment of Linear Logic was

considered, and the translation between proofs and π-calculus was left rather implicit, as also

noted in [23]. To illustrate this statement here, we observe that [19] uses the standard syntax

for the polyadic π-calculus

P ,Q ::= 0 | P |Q | ! P | (νa)P | a(x ).P | a p .P

similar to the one we use here (see Definition 2.1) but for the fact that in [19] the let-construct

is not used. However, the encoding of a ‘cut’ in linear logic

⊢ x:A ⊗ B,y:(A ⊗ B)⊥

⊢ n:A,m:A⊥ ⊢ z:B,w:B⊥

⊢ m:A⊥,w:B⊥,v:A ⊗ B

⊢ x:A ⊗ B,m:A⊥,w:B⊥

i.e. the ‘term’ x:A ⊗ B,m:A⊥,w:B⊥, gets translated into a ‘language of proofs’, the result of

which looks like:

Cutk(I,
⊗n,z

v (I, I)mwz)x, (m,w) = (νk)
(

I{k/y} |
⊗n,z

v (I, I)mwz{k/v}
)

where the terms Cut and I are (rather loosely) defined. Notice the use of arbitrary application

of processes to channel names, and the operation of pairing; the authors do not specify how

to relate this notation, and in particular their notion of application of process names without

adding Milner’s abstraction mechanism explicitly, to the above (application free) syntax of

processes they consider.

However, even if this relationship is made explicit, also then a different π-calculus is needed

to make the encoding work. To clarify this point, consider the translation in the π-calculus of

the term above, which according to the definition given in [19] becomes:

(νk)
(

x(a).k(a) | (νnz)(k(n,z).
(
n(b).m(b) | z(b).w(b)

)
)).

10 This is a feature of all related interpretations into the π-calculus.
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Although intended, no communication is possible in this term, as the arity of the channel k

does not match. To overcome this kind of problem, Bellin and Scott would need to add the

let -construct with use of pairs of names as we have introduced in this paper in Definition 2.1.

In [10] an interpretation into π of the sequent calculus X , which enjoys the Curry-Howard

isomorphism for Gentzen’s lk, is defined and shown to respect reduction. It is formulated

as ‘if P →X Q, then P c⊒ Q ’, allowing P to have more observable behaviour than Q .

The main reason for this is that reduction in X is non-confluent; taking P α̂ † x̂ Q, with α not

in P and x not in Q, then P α̂ † x̂ Q →X P and P α̂ † x̂ Q →X Q, where subterms are removed

during reduction. Simulation of this in the π-calculus through P α̂ † x̂ Q = P | Q creates

a process that can simulate both the reductions in P and Q; but since the π-calculus has no

feature to erase part of a process, P α̂ † x̂ Q does not run to either P or Q . All possible

normal forms of a term P are represented, in parallel, in P and it is not guaranteed that

either of them can be considered garbage. In that light, it is impossible to show ‘if P →X Q,

then P ≈ Q ’ for any interpretation of X into the π-calculus; as argued in [10], this is

natural in the context of non-confluent, symmetric sequent calculi.

An interpretation of λµµ̃ is studied in [25]; the interpretation defined there strongly de-

pends on recursion, is not compositional, and preserves only outermost reduction; no relation

with types is shown.

4 λµx: λµ with explicit substitution

One of the main achievements of [12] is that it establishes a strong link between reduction in

the π-calculus and step-by-step explicit substitution [20] for the λ-calculus, by formulating a

result not only with respect to explicit head-reduction and the spine interpretation, but also

for Milner’s interpretation [43] with respect to explicit lazy reduction (see also Theorem 13.7),

all defined in [12]. In view of this, for the purpose of defining an interpretation for Λµ into

the π-calculus in [13], it was natural to study a variant of Λµ with explicit substitution as well;

since here we work with λµ, here we present λµx.

Explicit substitution treats substitution as a first-class operator, both for the logical and the

structural substitution, and describes all the necessary steps to effectuate both.

Definition 4.1 (λµx) i) The syntax of the λµ calculus with explicit substitution, λµx, is defined

by:

M, N ::= x | λx.M | MN | M 〈x :=N〉 | µα.[β]M | M 〈α :=N·β〉

where x ranges over an infinite countable set of variables, and a and β range over an

infinite countable set of names. Bound variables and names of terms are defined by:

bv (x) = ∅

bv (λx.M) = bv (M) ∪ {x}

bv (MN) = bv (M) ∪ bv (N)

bv (M 〈x :=N〉) = bv (M) ∪ {x} ∪ bv (N)

bv (µα.[β]M) = bv (M)

bv (M 〈α :=N·γ〉) = bv (M) ∪ bv (N)

bn (x) = ∅

bn (λx.M) = bn (M)

bn (MN) = bn (M) ∪ bn (N)

bn (M 〈x :=N〉) = bn (M) ∪ bn (N)

bn (µα.[β]M) = bn (M) ∪ {α}

bn (M 〈α :=N·γ〉) = bn (M) ∪ {α} ∪ bn (N)

and we call a variable or name free in M (using fv(·) and fn(·), respectively) if it occurs in

M and is not bound. We use Barendregt’s convention, that demands that free and bound

names and variables are distinct; then when using M 〈x :=N〉 and M 〈α :=N·γ〉, we can
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assume that x and α do not appear outside M.11

ii) We call a term M ∈ λµx pure if M contains no explicit substitutions, so if M ∈ λµ.

iii) The reduction relation ‘→x’ on terms in λµx is defined through the following rules (for

the sake of completeness, we list all):

Main reduction rules : (λx.M)N → M 〈x :=N〉

(µα.Cmd)N → µγ.(Cmd〈α :=N·γ〉) (γ fresh)

µβ.[β]M → M (β 6∈ fn(M))

[β](µγ.Cmd) → Cmd{β/γ} 12

Term substitution rules : x 〈x :=N〉 → N

M 〈x :=N〉 → M (x 6∈ fv(M))

(λy.M) 〈x :=N〉 → λy.(M 〈x :=N〉)

(PQ) 〈x :=N〉 → (P 〈x :=N〉)(Q 〈x :=N〉)

(µα.[β]M) 〈x :=N〉 → µα.[β]M 〈x :=N〉

Structural substitution rules : M 〈α :=N·γ〉 → M (α 6∈ fn(M))

(λx.M) 〈α :=N·γ〉 → λx.M 〈α :=N·γ〉

(PQ) 〈α :=N·γ〉 → (P 〈α :=N·γ〉) (Q 〈α :=N·γ〉)

([α]M) 〈α :=N·γ〉 → [γ]M 〈α :=N·γ〉N

([β]M) 〈α :=N·γ〉 → [β]M 〈α :=N·γ〉 (α 6= β)

(µδ.Cmd) 〈α :=N·γ〉 → µδ.Cmd〈α :=N·γ〉

Contextual rules :

M → N ⇒





λx.M → λx.N

ML → N L

L M → LN

µα.[β]M → µα.[β]N

M 〈x := L〉 → N 〈x := L〉

L 〈x :=M〉 → L 〈x :=N〉

M 〈α := L·γ〉 → N 〈α := L·γ〉

L 〈α :=M·γ〉 → L 〈α :=N·γ〉

iv) We use ‘→:=’ for the notion of reduction where only term substitution, structural, or

contextual rules are used (so not the main reduction rules), and ‘=x’ for the congruence

generated by ‘→x’.

v) To ease notation, we will use S for a sequence (possibly empty) of substitutions of the

shape 〈x :=N〉 or 〈α :=N·γ〉 when the exact contents of the substitutions is not relevant;

each entry in S concerns a unique variable or name. We write x ∈ S if 〈x :=N〉 ∈ S and

say that S is defined on x, and write S x for S1S2 if S = S1〈x :=N〉S2 and similarly for α ∈ S

and S α. We write Sc if S is only defined on c, i.e. Sc = 〈c :=N〉 or Sc = 〈c :=N·γ〉 .

Notice that since reduction in λµx actually is formulated via term rewriting rules [37], reduc-

tion is allowed to take place also inside the substitution term, before the actual substitution takes

place.

We do not add rules like

11 Note that here, for the explicit case, the convention to ‘reuse’ α rather than introduce the new name γ, would
have us write M 〈α := N·α〉 which would create a violation of Barendregt’s convention since in M 〈α := N·β〉, α is
bound and β is free.

12 Notice that this alternative is defined using renaming; since β itself is not a term, we cannot use explicit
substitution for this operation.
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M 〈x :=N〉 〈y := L〉 → M 〈y := L〉 〈x :=N 〈y := L〉〉

M 〈x :=N〉 〈y := L〉 → M 〈y := L〉 〈x :=N〉 〈y := L〉

since as in [20], this would introduce undesired non-termination.

This notion of λµ with explicit substitution differs from that of [6], where a version with

explicit substitution is defined for a variant of λµ that uses de Bruijn indices [22].

Notice that, as a result of reduction, substitutions can appear inside applications, as occurs

in:

(λx3.(λx2.(λx1.y)N1M2)N2M3)N3 →xh

((λx2.(λx1.y)N1 M2)N2M3) 〈x3 :=N3〉 →xh

(((λx1.y)N1 M2) 〈x2 :=N2〉M3) 〈x3 :=N3〉 →xh

((y 〈x1 :=N1〉M2) 〈x2 :=N2〉M3) 〈x3 :=N3〉

(we write the latter term as y 〈x1 :=N1〉M2 〈x2 :=N2〉M3 〈x3 :=N3〉).

Explicit substitution describes explicitly the process of executing a βµ-reduction, i.e. ex-

presses syntactically the details of the computation as a succession of atomic steps (like in a

first-order rewriting system), where the implicit substitution of each βµ-reduction step is split

up into reduction steps. Thereby we have:

Proposition 4.2 (λµx implements λµ-reduction) M →βµ N ⇒ M →∗
x N.

Proof : Straightforward.

Type assignment on λµx is a natural extension of the system of Definition 1.2 by adding

rules (T-sub) and (S-sub).

Definition 4.3 (Type assignment for λµx) Using the notion of types in Definition 1.2, type

assignment for λµx is defined by:

(Ax) :
Γ, x:A ⊢ x : A | ∆

(µ) :
Γ ⊢ M : B | α:A,∆

(α 6∈ ∆)
Γ ⊢ µα.[β]M : A | β:B,∆

Γ ⊢ M : A | α:A,∆
(α 6∈ ∆)

Γ ⊢ µα.[α]M : A | ∆

(→I) :
Γ, x:A ⊢ M : B | ∆

(x 6∈ Γ)
Γ ⊢ λx.M : A→B | ∆

(T-sub) :
Γ, x:A ⊢ M : B | ∆ Γ ⊢ N : A | ∆

(x 6∈ Γ)
Γ ⊢ M 〈x :=N〉 : B | ∆

(→E) :
Γ ⊢ M : A→B | ∆ Γ ⊢ N : A | ∆

Γ ⊢ MN : B | ∆
(S-sub) :

Γ ⊢ M : C | α:A→B,∆ Γ ⊢ N : A | ∆
(α,γ 6∈ ∆)

Γ ⊢ M 〈α :=N·γ〉 : C | γ:B,∆

We write Γ ⊢βµx M : A | ∆ for judgements derivable in this system.

For this notion of type assignment, having extended λµ, we need to show the usual sound-

ness result (i.e assignable types are preserved under reduction), for which we first need to

show the admissibility of thinning and weakening.

Lemma 4.4 (Weakening and Thinning) If Γ ⊢βµx M : A |∆ and either Γ′ = {x:B ∈ Γ | x ∈ fv(M)}
and ∆′ = {α:B ∈ ∆ | α ∈ fn(M)} (thinning), or Γ ⊆ Γ′ and ∆ ⊆ ∆′ (weakening), then Γ′ ⊢βµx M : A |
∆′ .

Proof : Straightforward.

We can now show:

Theorem 4.5 (Subject reduction) If P →x Q, and Γ ⊢βµx P : A then Γ ⊢βµx Q : A.

Proof : We show the result for a selection of the reduction rules.
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(λx.M)N → M{N/x} : Then the derivation is shaped like the derivation on the left, from

which we can construct the one on the right.

Γ, x:A ⊢ M : B | ∆
(→I )

Γ ⊢ λx.M : A→B | ∆ Γ ⊢ N : A | ∆
(→E)

Γ ⊢ (λx.M)N : B | ∆

Γ, x:A ⊢ M : B | ∆ Γ ⊢ N : A | ∆
(T-sub)

Γ ⊢ M 〈x :=N〉 : B | ∆

(µα.Cmd)N → µγ.Cmd〈α :=N·γ〉 : We have two cases:

/SsubThen µγ.([α]M) 〈α :=N·γ〉 = µγ.[γ]M 〈α :=N·γ〉N. Then the derivation is shaped like

Cmd = [α]M :
Γ ⊢ M : B→A | α:B→A,∆

(µ)
Γ ⊢ µα.[α]M : B→A | ∆ Γ ⊢ N : B | ∆

(→E)
Γ ⊢ (µα.[α]M)N : A | ∆

from which we can construct

Γ ⊢ M : B→A | α:B→A,∆ Γ ⊢ N : B | ∆
(S-sub)

Γ ⊢ M 〈α :=N·γ〉 : B→A | γ:A,∆

Γ ⊢ N : B | ∆
(Weak)

Γ ⊢ N : B | γ:A,∆
(→E)

Γ ⊢ (M 〈α :=N·γ〉)N : A | γ:A,∆
(µ)

Γ ⊢ µγ.[γ]M 〈α :=N·γ〉N : A | ∆

Cmd = [β]M, with α 6= β : Then µγ.([β]M) 〈α :=N·γ〉= µγ.[β]M 〈α :=N·γ〉. Then the deriva-

tion is shaped like

Γ ⊢ M : C | α:A→B, β:C,∆
(µ)

Γ ⊢ µα.[β]M : A→B | β:C,∆ Γ ⊢ N : A | β:C,∆
(→E)

Γ ⊢ (µα.[β]M)N : B | β:C,∆

from which we can construct:

Γ ⊢βµx M : C | α:A→B, β:C,∆ Γ ⊢βµx N : A | β:C,∆
(S-sub)

Γ ⊢βµx M 〈α :=N·γ〉 : C | γ:B, β:C,∆
(µ)

Γ ⊢βµx µγ.[β]M 〈α :=N·γ〉 : B | β:C,∆

µδ.[β]µγ.[α]M → µδ.[α]M{β/γ} : (We assume all names are distinct; if not, the proof is

similar.) Then the derivation is shaped like the derivation on the left, from which we can

construct the one on the right, since β and γ have the same type.

Γ ⊢ M : C | δ:A,γ:B, β:B,α:C,∆
(µ)

Γ ⊢ µγ.[α]M : B | δ:A, β:B,α:C,∆
(µ)

Γ ⊢ µδ.[β]µγ.[α]M : A | β:B,α:C,∆

Γ ⊢ M{β/γ} : C | δ:A, β:B,α:C,∆
(µ)

Γ ⊢ µδ.[α]M{β/γ} : A | β:B,α:C,∆

µα.[α]M → M, if α 6∈ fn(M) : Then the derivation is shaped like

Γ ⊢ M : A | α:C,∆
(µ)

Γ ⊢ µα.[α]M : A | ∆

Since α 6∈ fn(M), by thinning also Γ ⊢βµx M : A | ∆.

M 〈x :=N〉 → M, if x 6∈ fv(M) : Then the derivation is shaped like
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Γ, x:B ⊢ M : A | ∆ Γ ⊢ N : B | ∆
(T-sub)

Γ ⊢ M 〈x :=N〉 : A | ∆

Since x 6∈ fv(M), by thinning from the left-hand sub-derivation also Γ ⊢βµx M : A | ∆.

(µβ.[α]M) 〈α :=N·γ〉 → µβ.[γ]M 〈α :=N·γ〉N : Then the derivation is shaped like

Γ ⊢ M : B→C | α:B→C, β:A,∆
(µ)

Γ ⊢ µβ.[α]M : A | α:B→C,∆ Γ ⊢ N : B | ∆
(S-sub)

Γ ⊢ (µβ.[α]M) 〈α :=N·γ〉 : A | γ:C,∆

from which we can construct:

Γ ⊢ M : B→C | α:B→C, β:A,∆

Γ ⊢ N : B | ∆
(Weak)

Γ ⊢ N : B | β:A,∆
(S-sub)

Γ ⊢ M 〈α :=N·γ〉 : B→C | γ:C, β:A,∆

Γ ⊢ N : B | ∆
(Weak)

Γ ⊢ N : B | γ:C, β:A,∆
(→E)

Γ ⊢ (M 〈α :=N·γ〉)N : C | γ:C, β:A,∆
(µ)

Γ ⊢ µβ.[γ](M 〈α :=N·γ〉)N : A | γ:C,∆

5 Explicit head-reduction

In the context of head reduction and explicit substitution, we can economise further on how

substitution is executed, and perform only those that are essential for the continuation of head

reduction. We will therefore limit substitution to allow it to only replace the head variable of a

term (this principle is also found in Krivine’s machine) or perform a contextual substitution

only on names that occur in front of the term. The results of [12] show that this is exactly the

kind of reduction that the π-calculus naturally encodes, which we will confirm again here.

Definition 5.1 (Explicit head-reduction) We define explicit head-reduction ‘→xh’ on λµx as

‘→x’, but change, remove, and add a few rules:

i) The main reduction rules are as before:

(β) : (λx.M)N → M 〈x :=N〉

(µp) : (µα.[α]M)N → µγ.[γ](M 〈α :=N·γ〉)N (γ fresh)

(µr) : (µα.[β]M)N → µγ.[β](M 〈α :=N·γ〉) (α 6= β, γ fresh)

(R) : [β]µγ.Cmd → Cmd{β/γ}

(C) : µα.[α]M → M (α 6∈ fn(M))

ii) We combine the substitution rules, and replace the rule for application and term variables:

(hv) : xS0M1S1 · · ·MnSn → NS0M1S1 · · ·MnSn (n ≥ 0, 〈x :=N〉 ∈ Sn)

(λS) : (λy.M)S → λy.(MS)

(hn) : (µδ.[α]M)S → (µδ.[γ]M 〈α :=N·γ〉N)S α (〈α :=N·γ〉 ∈ S, M 6= µβ.Cmd)

(nS) : (µδ.[α]M)S → µδ.[α]MS (α 6∈ S, M 6= µβ.Cmd)

(gc) : MS → MS c (c ∈ S, c 6∈ M)

where in (hv) each Si can be empty, except for Sn.

iii) We only allow the following (unnamed) contextual rules:
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(µα.[α]λy.y(µδ.[α]λx.x)(µδ′.[α]λx.x))(λz.z) →xh (µ)

µγ.([α]λy.y(µδ.[α]λx.x)(µδ′.[α]λx.x)) 〈α :=λz.z·γ〉 →xh (hn)

µγ.[γ] (λy.y(µδ.[α]λx.x)(µδ′.[α]λx.x)) 〈α :=λz.z·γ〉 (λz.z) →xh (λS)

µγ.[γ]λy. (y(µδ.[α]λx.x)(µδ′.[α]λx.x) 〈α :=λz.z·γ〉) (λz.z) →xh (β)

µγ.[γ] y (µδ.[α]λx.x)(µδ′ .[α]λx.x) 〈α :=λz.z·γ〉 〈y :=λz.z〉 →xh (hv)

µγ.[γ] (λq.q)(µδ.[α]λx.x)(µδ′ .[α]λx.x) 〈α :=λz.z·γ〉 〈y :=λz.z〉 →xh (gc)

µγ.[γ] (λq.q)(µδ.[α]λx.x)(µδ′ .[α]λx.x) 〈α :=λz.z·γ〉 →xh (β)

µγ.[γ] q 〈q :=µδ.[α]λx.x〉(µδ′ .[α]λx.x)) 〈α :=λz.z·γ〉 →xh (hv)

µγ.[γ] (µδ.[α]λx.x)(µδ′.[α]λx.x) 〈α :=λz.z·γ〉 →xh (µ)

µγ.[γ]µγ′.([α]λx.x) 〈δ :=µδ′.[α]λx.x·γ′〉 〈α :=λz.z·γ〉 →xh (gc)

µγ.[γ]µγ′.[α]λx.x 〈α :=λz.z·γ〉 →xh (hn)

µγ.[γ]µγ′ .[γ]λx.x 〈α :=λz.z·γ〉(λz.z) →xh (gc)

µγ.[γ] µγ′.[γ] (λx.x)(λz.z) →xh (R)

µγ.[γ] (λx.x)(λz.z) →xh (C) (λx.x)(λz.z) →xh (β) x 〈x :=λz.z〉 →xh (hv) λz.z

Figure 2. Running (µα.[α]λy.y(µδ.[α]λx.x)(µδ′.[α]λx.x))(λz.z) in ‘→xh’.

M → N ⇒





λx.M → λx.N

ML → N L

µα.[β]M → µα.[β]N (α 6= β ∨ α ∈ M, M 6= µδ.Cmd)

MS → NS

Notice that, for example, the substitution in (µα.[β]P)Q 〈β :=N·γ〉 does not get activated

through the hn-rule until all leading head µ-redexes in (µα.[β]P)Q have been contracted.

It might seem reasonable to allow the propagation inside an abstraction only if the variable

concerned is the head-variable of the body, as expressed by:

(λy.M) 〈x :=N〉 → λy.(M 〈x :=N〉) (x = hv(M))

but that would imply that a reduction like

(λxy.yx)QR →xh (λy.yx) 〈x :=Q〉R

would stop at the last term, since (λy.yx) 〈x :=Q〉 is not an abstraction; because we allow the

substitution to propagate, we obtain:

(λxy.yx)QR →xh ((λy.yx) 〈x :=Q〉)R →xh λy.(yx 〈x :=Q〉)R

→xh (yx) 〈x :=Q〉 〈y :=R〉 →xh Rx 〈x :=Q〉 〈y :=R〉 →xh Rx 〈x :=Q〉

We will see below that this is exactly the reduction that our interpretation into the π-calculus

represents.

Definition 5.2 The normal forms with respect to ‘→xh’ are defined through the grammar:

N ::= λx.N

| xM1S1 · · ·MnSn (n ≥ 0, x 6∈ Si)

| µα.[β]N (α 6= β ∨ α ∈ N, N 6= µγ.[δ]N ′)

It is straightforward to check that these terms are indeed the normal forms with respect to

‘→xh’.

The following proposition states the relation between explicit head-reduction, head reduc-

tion, and explicit reduction.

Lemma 5.3 i) M 〈x :=N〉 →∗
:= M{N/x}.

ii) M 〈α :=N·γ〉 →∗
:= M{N·γ/α}.
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iii) If M →∗
h N, then there exists L ∈ λµx such that M →∗

xh L and L →∗
:= N.

iv) If P →∗
xh Q then there exists R,S ∈ λµ such that P →nf

:= R, and Q →nf
:= S, and R →∗

h S.

v) If P →nf
xh Q with P ∈ λµ, then there exists R ∈ λµ such that Q →nf

:= R, and P →h

nf R.

vi) M →nf
βµ N if and only if there exists L ∈ λµx such that M →nf

xh L and L →nf
x N.

Proof : The first two parts are straightforward by induction on the structure of terms. For the

third, the proof is by straightforward induction on the number of reduction steps. For the

fourth, all cases are straightforward, if not trivial; for example, we have

(hv) : Then P ≡ xS1M1· · ·Sn MnSn+1 with 〈x :=N〉 ∈ Sn+1, and Q ≡ NS1M1 · · ·Sn MnSn+1. Let

xS1M1 · · ·SnMnSn+1 →
nf
:= NM′

1 · · ·M
′
n ≡ R ≡ S. Notice that, by Barendregt’s convention,

none of the substitutions are defined on N.

(hn) : Then P ≡ (µδ.[α]M)S with 〈α :=N·γ〉 ∈ S, and Q ≡ (µδ.[γ]M 〈α :=N·γ〉N)S α. Let

MS →nf
:= M′ and NS α →nf

:= N′, then µδ.[α]MS →nf
:= µδ.[γ]M′N′; take R ≡ µδ.[γ]M′N′ ≡ S.

The fifth is a special case of the fourth, and the sixth follows easily.

This result gives that we can show our main results for λµx for reductions that reduce to

head-normal form.

We give some examples that illustrate λµx and ‘→xh’.

Example 5.4 i) As an example where the special character of explicit head-reduction for λµ

becomes more clear, take the reduction of (µα.[α]λy.y(µδ.[α]λx.x)(µδ′ .[α]λx.x))(λz.z) in

Figure 2. We will see in Figure 3 how this reduction is modelled in the π-calculus through

our interpretation.

ii) Reduction in ‘→xh’ is not deterministic in general:

(λx.(λy.M)N) L →xh

{
(λx.M 〈y :=N〉)L

((λy.M)N) 〈x := L〉

Since both these reductions are respected under our interpretation, we will not give one

priority over the other.

iii) Of course in ‘→xh’ we can have non-terminating reductions. We know that in ‘→βµ’ and

‘→h’, (λx.xx)(λx.xx) reduces to itself; this is not the case for ‘→xh’, as is illustrated by

(where ∆ = λx.xx):

∆∆ =
∆ (λx.xx)∆ →xh xx 〈x :=∆〉 →xh (λy.yy)x 〈x :=∆〉

→xh yy 〈y := x〉 〈x :=∆〉 →xh xy 〈y := x〉 〈x :=∆〉 →xh (λz.zz)y 〈y := x〉 〈x :=∆〉

→xh zz 〈z :=y〉 〈y := x〉 〈x :=∆〉 →∗
xh · · ·

(notice the α-conversions, needed to adhere to Barendregt’s convention). This reduction

is deterministic and clearly does not terminate. Notice that ∆∆ does not run to itself;

however,

zz 〈z :=y〉 〈y := x〉 〈x :=∆〉 →∗
:= yy 〈y := x〉 〈x :=∆〉 →∗

:= xx 〈x :=∆〉 →∗
:= ∆∆

so, as stated by Lemma 5.3, the standard reduction result can be achieved by reduction

in ‘→:=’ (we will use ∆ for λx.xx again below).

6 Interpreting λµx in the π-calculus with pairing

We will now define our logical, output-based interpretation M
l
a of the λµx-calculus into

the π-calculus (where M is a λµx-term, and a is the name given to its (anonymous) output),

which is essentially the one presented in [13], but no longer considers [α]M to be a term.

The main idea behind the interpretation, as in [12], is to give a name to the anonymous out-
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put of terms; it combines this with the inherent naming mechanism of λµ. As we will show in

Theorem 7.1, this encoding naturally represents explicit head-reduction; we will need to con-

sider weak reduction later for the full abstraction result, but not for soundness, completeness,

or termination.

The interpretation of λµx terms into the π-calculus is defined by:

Definition 6.1 (Logical interpretation of λµx terms (cf. [13])) Let a not be a λµ-variable

or name. Then

x l a =
∆ x(u). ! u a (u fresh)

λx.M
l
a =

∆ (νxb) ( M
l
b | a〈x,b〉) (b fresh)

MN l a =
∆ (νc) ( M l c | ! c(v,d).( v :=N l | ! d a)) (c,v,d fresh)

M 〈x :=N〉 l
a =

∆ (νx) ( M
l
a | x :=N

l)

x := N
l
a =

∆ ! x(w). N
l
w (w fresh)

µγ.[β]M
l
a =

∆ M
l

β {a/γ}

M 〈β :=N·γ〉 l
a =

∆ (νβ) ( M
l
a | β :=N·γ l)

α := N·γ l a =
∆ ! α(v,d).( v :=N l | ! d γ) (v,d fresh)

Notice that this definition uses forwarders (see Definition 2.1:(vii)).

The interpretation of µγ.[β]M is in fact a combination of two alternatives of the encoding

presented in [13]:

µγ.Cmd
l
a =

∆ (ν•) Cmd
l• {a/γ} (• fresh)

[β]M l
a =

∆ M
l

β

Remark 6.2 We can make the following observations:

• Explicit substitution 〈x :=N〉 is encoded through replication; as we will see below in the

proof of Theorem 7.1, each individual occurrence of (the encoding of) a variable gets

treated on its own, so replication is needed to guarantee that the execution of a single

substitution does not deplete the source. We block the running of the encoding of N by

placing it under an output guard: we interpret each ‘incarnation’ of the encoding of N

under a new name w, and send that name out to that occurrence of the encoding of x

that N should be substituted for. This implies that a variable x is interpreted as a process

that first receives the name under which the encoding of N outputs, and then uses that

name to establish the redirection.

• For an abstraction λx.M, we give the name b to the output of M; that M has input x and

output b gets sent out over a, which is the name of λx.M, so that a process that wants

to call on this functionality, knows which channel to send the input to, and on which

channel to pick up the result.13

• For the interpretation of an abstraction (νxb) ( M
l
b | a〈x,b〉), the output over a of the

channel names x and b is placed in parallel to the interpretation of M under b, and can

communicate asynchronously. We cannot restrict the co-domain of our interpretation to

the asynchronous π-calculus, however, since to achieve completeness an output guard is

needed for the interpretation of an explicit substitution. It is possible to define x := N l

=
∆ N

l
x, but this could cause not only the running of N during the substitution, but also

synchronisations between substitution terms, which would not correspond to reductions

in the domain, negatively affecting the completeness result.14

13 This view of computation is exactly that of the calculus X when encoding the λ-calculus.
14 The approach of [12] is to encode the variable x under a as x(w).a w and x := N s through ! N s x, which lets

the encoding of N output directly on x.
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• For an application MN, the pair of the names of the (first) input and output channels of

M, transmitted over c, is received as a pair 〈v,d〉 of input-output names in the right-hand

side; the received input v name is used to send the output name for the encoding of N,

enabling the simulation of substitution, and the received output name d gets redirected

to the output of the application a. Since a name α can appear many times in M, when

we interpret (µα.[β]M)N
l
a =

∆ (νc) ( M
l

β {c/α} | ! c(v,d).( v :=N
l | ! d a)) we need to be

able to deal with the multiple outputs over c in M l
β {c/α}, so the part that deals with

the input over c has to be replicated.

• For the context switch µγ.[β]M, we use the fact that the name β is the name given to M

in λµx, and use that name for the main output of the interpretation of M. The operands

for µγ.[β]M are in fact for the terms named γ; since the output name we give to the

process is a, where a context might seek to communicate with, we need to rename all the

occurrences of γ in the interpreted process by a.

The interpretation is called logical since the structure of the encoding of application corre-

sponds to how Gentzen translates the modus ponens inference rule of natural deduction (on

the left) in the sequent calculus [30] (on the right):

Γ ⊢nd A→B Γ ⊢nd A
(→E)

Γ ⊢nd B

Γ ⊢lk A→B
(Weak)

Γ ⊢lk A→B, B

Γ ⊢lk A
(Ax)

Γ, B ⊢lk B
(→L)

Γ, A→B ⊢lk B
(cut)

Γ ⊢lk B

(see Theorem 4.8 in [11]).

Remark 6.3 i) As mentioned above, the interpretation presented in [13] had the case

µγ.M l a =
∆ (ν•) M l• {a/γ} (• fresh)

[β]M l
a =

∆ M
l

β

so was defined for Λµ (notice the use of M rather than Cmd). Note that this encoding el-

egantly expresses that the main computation in µγ.M is blocked: the name • is fresh and

bound and never transmitted, so the main output of (ν•) M
l• {a/γ} cannot be received.

However, in order to achieve full abstraction, we had to restrict our interpretation to λµ,

so no longer can consider [α]M a term. The reason is that the process

µα.λx.x
l
a = (ν•) ((νxb) (x(u). ! u b | •〈x,b〉))

is in normal form. Notice that all inputs and outputs are restricted; thereby, this process

is weakly bisimilar to 0 and to ∆∆
l
a (see Lemma 9.7). So using that interpretation,

we cannot distinguish between blocked and looping computations. When restricting our

interpretation to λµ, this problem disappears: since naming has to follow µ-abstraction,

µα.λx.x is not a term in λµ; instead, now (assuming α 6= β):

µα.[β]λx.x
l
a =

∆ (νs) [β]λx.x
l
s{a/α} =

∆ (νs) λx.x
l

β ≡

λx.x l
β =

∆ (νxb) ( x lb | β〈x,b〉)

which outputs on β, so is not weakly bisimilar to 0 .

ii) Note that we could have avoided the implicit renaming in the case for µ-abstraction by

defining

µγ.[δ]M l a =
∆ (νγ) ( M l

δ | ! γ a)

which is operationally the same as M l
δ {a/γ} (they are, in fact, weakly bisimilar) but

then we could not show that terms in →xh-normal form are translated to processes in
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normal form (Lemma 7.8), a property that is of use in the proof of termination (Theo-

rem 7.9).

iii) To underline the significance of our results, notice that the encoding is not trivial (so does

not equate all terms), since

λyz.y
l
a = (νyb) ((νzd) (y(u). ! u d | b〈z,d〉) | a〈y,b〉)

λx.x l a = (νxb) (x(u). ! u b | a〈x,b〉)

processes that differ under ‘≈’: the first exhibits two outputs so can interact twice with a

context providing two inputs, whereas the second only exhibits one and cannot interact

twice, so can be distinguished.

iv) Notice that, as is the case for Milner’s interpretation and in contrast to the spine interpre-

tation of [12], a guard is placed on the replicated terms. This is not only done with an eye

on proving completeness or preservation of termination, but more importantly, to make

sure that (νx) ( x :=N
l) ≈ 0 , a property we need for our full abstraction result: since a

term can have named sub-terms, the interpretation will generate output not only for the

term itself, but also for those named terms, so the process (νx) (! N
l

x) – using the vari-

ant of [12] – can have observable behaviour, in contrast to here, where (νx) (! x(w). N l w)

is weakly bisimilar to 0 . Another advantage is that now it is impossible for unintended

synchronisations between interpretations of explicit substitutions to take place, a prop-

erty we need for Theorem 7.5 and 12.1.

In [12] the case for application in the interpretation for λ-terms was defined as:

MN
s

a =
∆ (νc) ( M

h

c | c(v,d).( 〈v :=N〉 s | d a))

where, in particular, the input on name c is not replicated: this corresponds to the fact that

for λ-terms, in M h c, the output c is used exactly once, which is not the case for the interpre-

tation of λµ-terms: for example, α might appear many times in M, and since µα.[α]M l
c =

M l
α {c/α} = M{c/α} lc, the output name c appears many times in the latter.

Remark 6.4 Observe the similarity between

MN
l
a =

∆ (νc) ( M
l
c | ! c(v,d).( v :=N

l | ! d a)) and

M 〈c :=N·γ〉 l
a =

∆ (νc) ( M
l
a | c :=N·γ l)

=
∆ (νc) ( M l a | ! c(v,d).( v :=N l | ! d γ))

The first communicates N via the main output channel c of M (which might occur more than

once inside M
l
c, so replication is needed), whereas the second communicates with all the

sub-processes that have c as output name, and changes the output name of the process to

γ.15 In other words, application is just a special case of explicit structural substitution. As an

abbreviation, we sometimes will write (νc) ( M
l
c | c := N·a l) for MN

l
a.

This observation plays a prominent role in the proof of Theorem 7.1 when dealing with

reduction step (hn). There

〈β :=N·γ〉 l

=
∆ ! β(v,d).( v :=N l | ! d γ) ∈ S

l,

is used to represent the explicit substitution 〈β :=N·γ〉 in the interpretation of the contractum.

However, in the implementation of this step we should also ‘generate’ the new occurrence of

N that gets placed behind M 〈β :=N·γ〉 in the new application. This turns out to be straight-

forward, since that right-hand side of application is also represented by 〈β :=N·γ〉 l
, and we

can use that ! P ≈ ! P | ! P .

This is illustrated in Figure 3; as the first step, the contextual substitution

15 A similar observation can be made for the interpretation of λµ in X [11].
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(µα.[α]λy.y(µδ.[α]λx.x)(µδ′.[α]λx.x))(λz.z)
l

a =
∆

(νc) ( µα.[α]λy.y(µδ.[α]λx.x)(µδ′.[α]λx.x)
l

c | c := λz.z·a
l
) =

∆

(νc) ( λy.y(µδ.[α]λx.x)(µδ′.[α]λx.x)
l

α {c/α} | c := λz.z·a
l
) =α

(να) ( λy.y(µδ.[α]λx.x)(µδ′.[α]λx.x)
l

α | α :=λz.z·a
l
) =

∆

(να) ((νyb) ( y(µδ.[α]λx.x)(µδ′.[α]λx.x)
l

b |α〈y,b〉) | α :=λz.z·a
l
) =

∆

(να) ((νyb) ((νc′) ( y(µδ.[α]λx.x)
l

c′ | c′ := µδ′.[α]λx.x·b
l
) | α〈y,b〉) | α :=λz.z·a

l
) =

∆

(να) ((νyb) ((νc′) ((νc′′) ( y
l

c′′ | c′′ := µδ.[α]λx.x·c′
l
) |

c′ :=µδ′.[α]λx.x·b
l
) | α〈y,b〉) | ! α(v,d).( v :=λz.z

l
| ! d a)) →π (α) (∗)

(να) ((νyb) ((νc′) ((νc′′) ( y
l

c′′ | c′′ := (µδ.[α]λx.x)·c′
l
) |

c′ :=(µδ′.[α]λx.x)·b
l
) | y :=λz.z

l
| ! b a) | α :=λz.z·a

l
) =

∆

(να) ((νyb) ((νc′) ((νc′′) (y(u). ! u c′′ | c′′ := (µδ.[α]λx.x)·c′
l
) |

c′ :=(µδ′.[α]λx.x)·b
l
) | y(w). λz.z

l
w | ! b a) | α :=λz.z·a

l
) →π (y) (hv)

(να) ((νyb) ((νc′) ((νc′′) ((νw) ( λq.q
l

w | ! w c′′) | c′′ :=µδ.[α]λx.x·c′
l
) |

c′ :=µδ′.[α]λx.x·b
l
) | ! b a) | α :=λz.z·a

l
) =

∆

(να) ((νyb) ((νc′) ((νc′′) ((νw) ((νqb′) ( q
l

b′ |w〈q,b′〉) | ! w c′′) | ! c′′ (v,d).( v :=µδ.[α]λx.x
l
| ! d c′)) |

c′ :=µδ′.[α]λx.x·b
l
) | ! b a) | α :=λz.z·a

l
) →π (w, c′′), =

∆

(να) ((νyb) ((νc′) ((νqb′) (q(u). ! u b′ | ! q(w). µδ.[α]λx.x
l

w | ! b′ c′) | (νc′′) (! c′′ (v,d).( v :=µδ.[α]λx.x
l
| ! d c′)) |

c′ :=µδ′.[α]λx.x·b
l
) | ! b a) | α :=λz.z·a

l
) →π (q),≈ (hv)

(να) ((νyb) ((νc′) ((νwb′) (! w b′ | µδ.[α]λx.x
l

w | ! b′ c′)

c′ :=µδ′.[α]λx.x·b
l
) | ! b a) | α :=λz.z·a

l
) =

∆ (hn)

(να) ((νyb) ((νc′) ((νwb′) (! w b′ | λx.x
l

α {w/δ} | ! b′ c′)

c′ :=µδ′.[α]λx.x·b
l
) | ! b a) | α :=λz.z·a

l
) =

∆

(να) ((νyb) ((νc′) ((νwb′) (! w b′ | (νxb′′) ( x
l

b′′ | α〈x, b′′〉) | ! b′ c′)

c′ :=µδ′.[α]λx.x·b
l
) | ! b a) | α :=λz.z·a

l
) ≈, =

∆

(να) ((νxb′′) ( x
l

b′′ |α〈x, b′′〉) | ! α(v,d).( v :=λz.z
l
| ! d a)) →π (α), =

∆ (∗)

(νxb′′) (x(u). ! u b′′ | x(w).(νzb) ( z
l

b |w〈z,b〉) | ! b′′ a) | (να) (! α(v,d).( v :=λz.z
l
| ! d a)) →π (x,w),≈ (hv)

(νzb′′) ( z
l

b′′ | a〈z,b′′〉) =
∆

λz.z
l

a

Figure 3. Running (µα.[α]λy.y(µδ.[α]λx.x)(µδ′.[α]λx.x))(λz.z)
l

a in ‘→π’.

α :=λz.z·a l

=
∆ ! α(v,d).( v :=λz.z l | ! d a)

gets created directly by definition of · l ·. This is used twice, in the steps marked (∗); the

first exchanges the pair 〈y,b〉 over α which creates the process y :=λz.z
l

=
∆ ! y(w). λz.z

l
w so

that the substitution of the head variable y by λz.z =α λq.q can be modelled, in the first step

marked (hv); here α :=λz.z·a l acts for the outermost application. The second use is again for

a synchronisation over α, but now uses α :=λz.z·a l
to represent the explicit substitution.

Notice that context switches do not really influence the structure of the process that is

created by the interpretation since they have no representation in π, but are statically encoded

through renaming. And although the notion of structural reduction in λµ is very different

from normal β-reduction, no special measures had to be taken in our encoding to express it;

the component of our interpretation that deals with pure λ-terms is almost exactly that of [12]

(ignoring for the moment that substitution is modelled using a guard, which affects also the

interpretation of variables), but for the use of replication in the case for application; we will

come back to this in Theorem 13.8. In fact, the distributive character of structural substitution

is dealt with entirely by congruence (see also Example 6.8).

This strengthens our view that, as far as our interpretation is concerned, µ-reduction is

not a separate computational step, but essentially is static administration, a reorganisation of

the applicative structure of a term, which has to be defined explicitly in the context of the

λ-calculus, but is dealt with by our interpretation statically rather than by synchronisation

between processes in the π-calculus. In fact, modelling β-reduction in the π-calculus involves

a computational step, but context switches are dealt with by congruence; this is only possible,
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of course, because the interpretation of the operand in application uses replication. This puts

into evidence that the π-calculus constitutes a very powerful abstract machine indeed.

We would like to stress that, although inspired by logic, our interpretation does not depend

on types at all; in fact, we can treat untypeable terms as well, and can show that ∆∆
l a

(perhaps the prototype of a non-typeable term) runs forever without generating output (see

Example 9.1; this already holds for the interpretation of [12]).

Remark 6.5 Substitutions are interpreted as processes parallel to the main term:

M 〈x :=N〉 l
a =

∆ (νx) ( M
l
a | x :=N

l) =
∆ (νx) ( M

l
a | ! x(w). N

l
w)

M 〈β :=N·γ〉 l
a =

∆ (νβ) ( M
l
a | β :=N·γ l) =

∆ (νβ) ( M
l
a | ! β(v,d).( v :=N

l | ! d γ))

This justifies the use of S
l

for the interpretation of a sequence of explicit substitutions and,

if S defines y and α , then as a generalisation we can write MS l a ≡ (νyα ) ( M l a | S
l).

We have, for example:

((NM1)S1 · · ·Mn)Sn
l
a =

∆ (νyn αn ) ( (NM1)S1 · · ·Mn
l
a | Sn

l) =
∆

(νyn αn ) ((νc1) ( ((NM1)S1 · · ·Mn−1)Sn−1
l
c1 | c1 := Mn ·a

l) | Sn
l) =

∆ ,≡

(νyn αn ) · · ·(νy1 α1 ) (νc ) ( N
l
c1 | c1 :=M1·c2

l | S1
l | · · · | cn :=Mn ·a

l | Sn
l) ≡

(νyn αn ) · · ·(νy1 α1 ) (νc ) ( N
l
c1 | c1 :=M1·c2

l | · · · | cn :=Mn ·a
l | S1

l | · · · | Sn
l) ≡, =

∆

(NM1 · · ·Mn)S1 · · ·Sn
l a

Notice that, in the last step, the structural congruence forces the placement of the substitutions

in the right order.

This implies that, when dealing with interpreted application terms, we can safely assume

all substitutions are placed on the outside.

The operation of renaming we will use below is defined and justified via the following

lemma, which states that we can safely rename the output of an interpreted λµ-term.

Lemma 6.6 (Renaming lemma) Let e be a fresh name. Then

i) If a is at most only used for output in M
l
g and a 6= g, then (νa) (! a e | M

l
g) ≈ M

l
g{e/a}.

ii) If a 6∈ M, then (νa) (! a e | M
l
a) ≈ M

l
e.

Proof : By induction on the structure of λµx-terms.

i)M = x : (νa) (! a e | x
l

g) =
∆ (νa) (! a e | x(u). ! u g) ≡ (νa) (! a e) | x(u). ! u g ≈

x(u). ! u g =
∆ x l g = x l g{e/a}

M = λx.N : (νa) (! a e | λx.N l g) =
∆ (νa) (! a e | (νxb) ( N l b | g〈x,b〉)) ≡ (a 6= g)

(νxb) ((νa) (! a e | N
l
b) | g〈x,b〉) ≈ (IH) (νxb) ( N

l
b{e/a} | g〈x,b〉) =

∆

(νxb) ( N l b | g〈x,b〉){e/a} =
∆ (a 6= g) λx.N l g{e/a}

M = PQ : (νa) (! a e | PQ l g) =
∆

(νa) (! a e | (νc) ( P
l
c | ! c(v,d).(! v(w). Q

l
w | ! d g))) ≈ (2.5:1)

(νc) ((νa) (! a e | P l c) | (νa) (! a e | ! c(v,d).(! v(w). Q l w | ! d g))) ≈ (2.5:4)

(νc) ((νa) (! a e | P
l
c) | ! c(v,d).((νa) (! a e | ! v(w). Q

l
w | ! d g))) ≈ (2.5:5)

(νc) ((νa) (! a e | P
l
c) | ! c(v,d).(! v(w).(νa) (! a e | Q

l
w) | ! d g)) ≈ (IH)

(νc) ( P
l
c{e/a} | ! c(v,d).(! v(w). Q

l
w{e/a} | ! d g)) =

∆ (a 6= c, g)

(νc) ( P
l
c | ! c(v,d).( v :=Q

l | ! d g)){e/a} =
∆ PQ

l
g{e/a}
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M = P 〈x :=Q〉 : (νa) (! a e | P 〈x :=Q〉 l
g) =

∆

(νa) (! a e | (νx) ( P
l

g | ! x(w). Q
l
w)) ≈ (2.5:1,5)

(νx) ((νa) (! a e | P
l

g) | ! x(w).(νa) (! a e | Q
l
w)) ≈ (IH)

(νx) ( P
l

g{e/a} | ! x(w). Q
l
w{e/a}) =

∆

(νx) ( P l g | ! x(w). Q lw){e/a} =
∆ P 〈x :=Q〉 l g{e/a}

M = µβ.[β]N : (νa) (! a e | µβ.[β]N l g) =
∆ (νa) (! a e | N l

β {g/β}) ≈ (IH)

N
l
β{e/a}{g/β} =

∆ µβ.[β]N l
g{e/a}

M = µβ.[γ]N, β 6= γ : (νa) (! a e | µβ.[γ]N l
g) =

∆ (νa) (! a e | N
l
γ {g/β}) ≈ (IH)

N l
γ{e/a}{g/β} = (a 6= g) N l

γ{g/β}{e/a} =
∆ µβ.[γ]N l g{e/a}

M = P 〈β :=Q·γ〉 : (νa) (! a e | P 〈β :=Q·γ〉 l g) =
∆

(νa) (! a e | (νβ) ( P
l
g | ! β(v,d).(! v(w). Q

l
w | ! d γ))) ≈ (2.5:1,4)

(νβ) ((νa) (! a e | P l g) | ! β(v,d).(! v(w).(νa) (! a e | Q l w) | ! d γ)) ≈ (IH)

(νβ) ( P
l

g{e/a} | ! β(v,d).(! v(w). Q
l
w{e/a} | ! d γ)) =

∆

(νβ) ( P
l

g | ! β(v, d).( v :=Q
l | ! d γ)){e/a} =

∆

P 〈β :=Q·γ〉 l
g{e/a}

ii) M = x : (νa) (! a e | x
l
a) =

∆ (νa) (! a e | x(u). ! u a) ≈ (2.5:3)

x(u).((νa) (! a e | ! u a)) ≈ x(u). ! u e =
∆ x le

M = λx.N : (νa) (! a e | λx.N l a) =
∆ (νa) (! a e | (νxb) ( N l b | a〈x,b〉)) ≡

(νaxb) (! a e | N
l
b | a〈x,b〉) ≡ (a 6∈ N

l
b)

(νxb) ( N
l
b | (νa) (! a e | a〈x,b〉)) ≈ (2.6:11)(νxb) ( N

l
b | e〈x,b〉) =

∆ λx.N
l
e

M = PQ : (νa) (! a e | PQ
l
a) =

∆

(νa) (! a e | (νc) ( P
l
c | ! c(v,d).(! v(w). Q

l
w | ! d a))) ≈ (2.5)

(νc) ((νa) (! a e | P
l
c) | ! c(v,d).(! v(w).(νa) (! a e | Q

l
w) | (νa) (! a e | ! d a))) ≈

(a 6∈ P lc, Q l w)

(νc) ((νa) (! a e) | P
l
c | ! c(v,d).(! v(w).(νa) (! a e) | Q

l
w | (νa) (! a e | ! d a))) ≈

(νc) ( P lc | ! c(v,d).(! v(w). Q l w | ! d e)) =
∆ PQ le

M = P 〈x :=Q〉 : (νa) (! a e | P 〈x :=Q〉 l a) =
∆

(νa) (! a e | (νx) ( P
l
a | ! x(w). Q

l
w)) ≡ (x 6= a, a 6∈ ! x(w). Q

l
w)

(νx) ((νa) (! a e | P l a) | ! x(w). Q l w) ≈ (IH)

(νx) ( P
l
e | ! x(w). Q

l
w) =

∆ P 〈x :=Q〉 l
e

M = µβ.[β]N : (νa) (! a e | µβ.[β]N l
a) =

∆ (νa) (! a e | N
l

β {a/β}) =

(νa) (! a e | N
l
a) ≈ (IH) N

l
e = N

l
β {e/β} =

∆ µβ.[β]N l
e

M = µβ.[γ]N, β 6= γ : (νa) (! a e | µβ.[γ]N l
a) =

∆ (νa) (! a e | N
l
γ {a/β}) =α

(νβ) (! β e | N
l
γ) ≈ (part (i)) N

l
γ {e/β} =

∆ µβ.[γ]N l
e

M = P 〈β :=Q·γ〉 : (νa) (! a e | P 〈β :=Q·γ〉 l
a) =

∆

(νa) (! a e | (νβ) ( P
l
a | β :=Q·γ l)) ≈ (2.5:1)

(νβ) ((νa) (! a e | P l a) | (νa) (! a e | β :=Q·γ l)) ≡ (a 6∈ β :=Q·γ l)

(νβ) ((νa) (! a e | P
l
a) | (νa) (! a e) | β :=Q·γ l) ≈ (IH)

(νβ) ( P l e | β :=Q·γ l) =
∆ P 〈β :=Q·γ〉 l e

For reasons of clarity, we use some auxiliary notions of equivalence, that are used in Theo-

rem 7.1.

Definition 6.7 i) We define a garbage collection bisimilarity by: P ≈g Q if and only if there
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exists R such that P ≡ Q |R and R ≈ 0 . We call a process that is weakly bisimilar to 0

garbage.

ii) We define ‘≈r’ (renaming) as the smallest equivalence such that:

a) for all M: (νa) ( M
l
a | ! a e) ≈r M

l
e.

b) for all M: if a 6= b, then (νa) ( M lb | ! a e) ≈r M l b{e/a}.

c) if P ≈r Q , then (νb ) (P |R) ≈r (νb ) (Q |R).

iii) We define ‘≈d’ (distribution) as the smallest equivalence such that:

a) for all M, N: (να) ( M
l
α | ! α(v,d).( v :=N

l | ! d γ)) ≈d

(να) ((νc) ( M
l
c | ! c(v,d).( v :=N

l | ! d γ)) | ! α(v,d).( v :=N
l | ! d γ)) (c fresh)

Notice that we ‘split’ the substitution ! α(v,d).( v :=N
l | ! d γ) in two parts: one dealing

with the outermost name α (that for the whole term) which gets renamed to c, and one

dealing with the remaining occurrences of α in M
l
c.

b) if P ≈d Q , then (νb ) (P |R) ≈d (νb ) (Q |R).

iv) We define ‘≈rgd’ =
∆ ‘≈r,≈g,≈d’ (so applied left-to-right); ‘≈rg’ =

∆ ‘≈r,≈g’; and ‘≈gd’ =
∆

‘≈g,≈d’, where each ‘≈[·]’ component can be omitted.

So ‘≈r’ is used when we want to emphasise that two processes are equivalent just using

renaming. Notice that renaming and distribution are not allowed under guard. Moreover,

‘≈g’ ⊂ ‘≈’, ‘≈r’ ⊂ ‘≈’ by Proposition 6.6, and that ‘≈d’ ⊂ ‘≈’ by Theorem 2.5:2.

Using the Renaming Lemma 6.6, we can show the following:

Example 6.8 The interpretation of the β-redex (λx.M)N reduces as follows:

(λx.M)N
l
a =

∆

(νc) ((νxb) ( M l b | c〈x,b〉) | ! c(v,d).( v :=N l | ! d a)) →π (c) (c 6∈ fn(M, N))

(νbx) ( M
l
b | ! b a | x :=N

l) | (νc) (! c(v,d).( v :=N
l | ! d a)) ≈r (6.6)

(νx) ( M l a | x :=N l) | (νc) (! c(v,d).( v :=N l | ! d a)) ≈g (∗)

(νx) ( M
l
a | x :=N

l) =
∆ M 〈x :=N〉 l

a

This shows that each β-reduction step is implemented in π by at least one synchronisation.

Notice that, in step (∗), the process (νc) (! c(v,d).( v :=N
l | ! d a)) is weakly bisimilar to 0 .

Moreover, the synchronisation over c is over a hidden channel, so by Proposition 2.6:11 we

can conclude (λx.M)N
l
a ≈ M 〈x :=N〉 l

a.

Since M 〈x :=N〉 l
a places M

l
a and x := N

l
in parallel, using Lemma 2.5 we can even

show that the explicit variant of the Substitution Lemma is preserved:

Lemma 6.9 (Substitution Lemma) M 〈y :=N〉 〈x := L〉
l
a ≈ M 〈x := L〉 〈y :=N 〈x := L〉〉

l
a.

Proof : We can assume x 6= y, and x 6∈ N, y 6∈ L.

M 〈y :=N〉 〈x := L〉 l a =
∆

(νx) ((νy) ( M
l
a | ! y(w). N

l
w) | ! x(w). L

l
w) ≈ (2.5:6)

(νy) ((νx) ( M
l
a | ! x(w). L

l
w) | (νx) (! y(w). N

l
w | ! x(w). L

l
w)) ≈ (2.5:9)

(νy) ((νx) ( M
l
a | ! x(w). L

l
w) | ! y(w).(νx) ( N

l
y | ! x(w). L

l
w)) =

∆

(νy) ( M 〈x := L〉
l
a | ! y(w). N 〈x := L〉

l
w) =

∆

M 〈x := L〉 〈y :=N 〈x := L〉〉 l a
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7 Soundness, completeness, and termination

As in [43, 51], we can now show a reduction-preservation result for our encoding with respect

to explicit head-reduction for λµx, by showing that · l · preserves ‘→xh’ up to weak bisimilar-

ity (mainly through garbage collection and/or renaming). Notice that we prove the result for

λµx terms, do not require the terms to be closed, and that the result is shown for single step

reduction.

Theorem 7.1 (Soundness) If P →xh Q, then there exist R such that P
l
a →∗

π R and R ≈rgd Q
l
a

(i.e. P l a →∗
π ,≈rgd Q l a).

Proof : By induction on the definition of explicit head-reduction.

Main reduction rules : (β) : Then P ≡ (λx.M)N and Q ≡ M 〈x :=N〉; by Example 6.8.

(µp) : Then P ≡ (µα.[α]M)N and Q ≡ µγ.[γ]M 〈α :=N·γ〉N, with γ fresh, and

(µα.[α]M)N l a =
∆ (νc) ( µα.[α]M lc | c := N·a l) =

∆

(νc) ( M
l
α {c/α} | ! c(v,d).( v :=N

l | ! d a)) ≈d

(νc) ((να) ( M lc | α :=N·a l) | c := N·a l) =

(νc) ((να) ( M
l
c | α :=N·γ l) | c := N·γ l){a/γ} =

∆

(νc) ( M 〈α :=N·γ〉 lc | c := N·γ l){a/γ} =
∆

M 〈α :=N·γ〉N
l
γ {a/γ} =

∆ µγ.[γ]M 〈α :=N·γ〉N
l
a

(µr) : Then P ≡ (µα.[β]M)N and Q ≡ µα.[β]M 〈α :=N·γ〉N, with α 6= β, γ fresh, and

(µα.[β]M)N
l
a =

∆ (νc) ( µα.[β]M
l
c | c := N·a l) =

∆

(νc) ( M l
β {c/α} | c := N·a l) =α (c fresh)(να) ( M l

β | α :=N·γ l){a/γ} =
∆

M 〈α :=N·γ〉 l
β {a/γ} =

∆ µγ.[β]M 〈α :=N·γ〉 l
a

(R) : Then P ≡ µα.[β]µγ.[δ]M and Q ≡ µα.([δ]M){β/γ}. We distinguish:

δ = γ : µα.[β]µγ.[γ]M l a =
∆ µγ.[γ]M l

β {a/α} =
∆ M l

γ {β/γ}{a/α} =

M{β/γ} l
β{a/α} =

∆ µα.[β]M{β/γ} l
a

δ 6= γ : µα.[β]µγ.[δ]M
l
a =

∆ µγ.[δ]M l
β {a/α} =

∆ M
l
δ {β/γ}{a/α} =

M{β/γ} l
δ{a/α} =

∆ µα.[δ]M{β/γ} l a

(C) : Then P ≡ µα.[α]M and Q ≡ M, with α 6∈ fn(M), and

µα.[α]M
l
a =

∆ M
l
α {a/α} =(α 6∈ fn(M)) M

l
a .

Substitution rules : (hv) : Then P≡ xS0M1S1 · · ·MnSn and Q≡ NS0M1S1 · · ·MnSn provided 〈x :=N〉 ∈
Sn. By Remark 6.5, we can consider the substitution be placed on the outside; take

S = S0 · · ·Sn.

xS0M1S1 · · ·MnSn
l
a ≡ (6.5) xM1 · · ·MnS

l
a =

∆

(νyn αn ) ( xM1 · · ·Mn
l
a | S

l) =
∆

(νyn αn ) ((νc) ( xM1 · · ·Mn−1
l
c | c := Mn·a

l) | S
l) =

∆ (cn+1 = a)

(νyn αn ) ( x
l
c1 | ci :=Mi·ci+1

l | S
l) =

∆ ,≡ (! x(w). N
l
w ∈ S

l)

(νyn αn ) (x(u). ! u c1 | ci :=Mi·ci+1
l | x(w). N l w | S

l) →π (x)

(νyn αn ) ((νw) ( N l w | ! w c1) | ci :=Mi ·ci+1
l | S

l) ≈r

(νyn αn ) ( N lc1 | ci :=Mi·ci+1
l | S

l) =
∆

NM1 · · ·MnS
l
a ≡ NS0M1S1 · · ·MnSn

l
a

(λS) : Then P ≡ (λy.M)S and Q ≡ λx.MS, and (λx.M)S l
a =

∆

(νyα ) ((νxb) ( M
l
b | a〈x,b〉) | S

l) ≡ (a 6∈ yα ) (νxb) ((νyα ) ( M
l
b | S

l) | a〈y,b〉) =
∆

λx.MS
l
a

(hn) : Then P ≡ (µδ.[β]M)S and Q ≡ (µδ.[γ]M 〈β :=N·γ〉N)S β, with 〈β :=N·γ〉 ∈ S, and
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(µδ.[β]M)S l
a =

∆ (νyα ) ( M
l

β {a/δ} | S
l) ≡ ( β :=N·γ l ∈ S

l)

(νyα ) ((νβ) ( M
l

β {a/δ} | ! β(v,d).( v :=N
l | ! d γ)) | S β

l) = (δ 6∈ β :=N·γ l)

(νyα ) ((νβ) ( M
l

β | β :=N·γ l){a/δ} | S β
l) ≈d

(νyα ) ((νc) ((νβ) ( M
l
c | β :=N·γ l) | c := N·γ l){a/δ} | S β

l) =
∆

(νyα ) ((νc) ( M 〈β :=N·γ〉 lc | c := N·γ l){a/δ} | S α
l) =

∆

(νyα ) ( (M 〈β :=N·γ〉)N
l
γ {a/δ} | S β

l) =
∆

(νyα ) ( µδ.[γ](M 〈β :=N·γ〉)N l a | S β
l) =

∆

(µδ.[γ](M 〈β :=N·γ〉)N)S β
l
a

(nS) : Then P ≡ (µδ.[β]M)S and Q ≡ µδ.[β]MS, provided β 6∈ S, and (µδ.[β]M)S l
a =

∆

(νyα ) ( M l
β {a/δ} | S

l) = (δ 6∈ S) (νyα ) ( M l
β | S

l){a/δ} =
∆ MS l

β {a/δ} =
∆

µδ.[β]MS
l
a

(gc) : Then P≡ MS and Q≡ MS c, provided c∈S, c 6∈ M, and MS
l
a =

∆ (νyα ) ( M
l
a | S

l) =
∆

(νyα ) ( M
l
a | Sc

l | S c
l) ≡ (νyα ) ( M

l
a | S c

l) | (νc) Sc
l ≈g (νyα ) ( M

l
a | S c

l) =
∆

MS c
l
a

Remember that Sc
l

is either ! c(v,d).( v :=N
l | ! d γ) or ! c(w). N

l
w so Sc

l
can only

input or only output on c, so (νc) Sc
l ≈ 0 .

Contextual rules : M → N ⇒ ML → N L : ML l a =
∆ (νc) ( M lc | c := L·a l) →∗

π,≈rgd (IH)

(νc) ( N
l
c | c := L·a l) =

∆ N L
l
a

M → N ⇒ λx.M → λx.N : λx.M
l
a =

∆ (νxb) ( M
l
b | a〈x,b〉) →∗

π,≈rgd (IH)

(νxb) ( N lb | a〈x,b〉) =
∆ λx.N l a

M → N ⇒ µα.[β]M → µα.[β]N : µα.[β]M l
a =

∆ M
l

β {a/α} →∗
π ,≈rgd (IH)

N
l

β {a/α} =
∆

µα.[β]N l a

M → N ⇒ M 〈x := L〉 → N 〈x := L〉 : M 〈x := L〉
l
a =

∆ (νx) ( M
l
a | x := L

l) →∗
π ,≈rgd (IH)

(νx) ( N l a | x := L l) =
∆ N 〈x := L〉 l a

M → N ⇒ M 〈α := L·γ〉 → N 〈α := L·γ〉 : M 〈α := L·γ〉 l a =
∆ (να) ( M l a | α := L·γ l)

→∗
π ,≈rgd (IH) (να) ( N

l
a | α := L·γ l) =

∆ N 〈α := L·γ〉 l
a

Notice that, in the inductive cases, we do not have to deal with processes under guard, so do

not need the full power of ‘≈’, as is needed for example for Theorem 7.6 and 7.7, or as Milner

and Sangiorgi needed when modelling implicit substitution (see Section 3).

Notice that we need Lemma 2.5 only for renaming and to model the distribution of the con-

textual substitution 〈β :=N·γ〉 in the rules (µp) and (hn).

Remark that in the proof of Theorem 7.1, the reduction rules (R) and (λS) are modelled

using ‘≡’, and that the rules (µr), (C) and (nS) are dealt with by the interpretation directly.

That leaves five rules where ‘≈’ plays a role:

(β) : through ‘→π’, ‘≈r’ (which might include a ‘→π’ step) and ‘≈g’;

(µp) : through ‘≈d’;

(hv) : through ‘→π’ and ‘≈r’;

(hn) : through ‘≈d’; and

(gc) : through ‘≈g’.

Moreover, ‘≈r’ (as far as not a synchronisation itself propagating through the forwarders),

‘≈g’, and ‘≈d’ can be postponed until last, and do not interfere with the synchronisations.
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We can thereby easily show:

Theorem 7.2 (Operational Soundness for ‘→xh’) i) If M →∗
xh N, then M

l
a →∗

π,≈rgd N
l
a.

ii) If M⇑
xh then M

l
a ⇑π .

Proof : The first is shown by induction on the length of the reduction sequence, using Theo-

rem 7.1. The second follows from the fact β-reduction is implemented in π by at least one

synchronisation, as shown in Example 6.8, and that µ-reduction terminates [49], as does ex-

plicit substitution, so non-termination is caused only by β-reduction.

By Property 2.6, all proper synchronisations in this proof are in ‘≈’; this implies that, as far

as the proof is concerned, we could have used ‘≈’ instead of ‘→∗
π,≈rgd’. This implies that the

following is immediate:

Corollary 7.3 If M →∗
xh N, then M l a ≈ N l a.

Remark that we could not have represented the extensional rules: note that

λx.yx
l
a =

∆ (νxb) ((νc) ( y
l
c | ! c(v,d).( v := x

l | ! d b)) | a〈x,b〉)

is not weakly bisimilar to y
l
a, and neither is

µα.[β ly]a =
∆ y l

β {a/α} = y l
β

weakly bisimilar to:

λx.µγ.[β]y{x·γ/α} l
a = λx.µγ.[β]y l

a =
∆ (νxb) ( µγ.[β]y l

b | a〈x,b〉)

=
∆ (νxb) ( y

l
β {b/γ} | a〈x,b〉) =

∆ (νxb) ( y
l

β | a〈x,b〉)

Remember that we have

(λx.(λy.M)N)L →

{
(λx.(M 〈y :=N〉))L

((λy.M)N) 〈x := L〉

and in the process

(λx.(λy.M)N) L
l
a =

∆ (νe) ((νxb) ((νc) ((νyb) ( M
l
b | c〈y,b〉) |

! c(v,d).( v :=N l | ! d b)) | e〈x,b〉) | ! e(v,d).( v := L l | ! d a))

both synchronisations over c and e are possible, preparing the explicit substitutions 〈y :=N〉

and 〈x := L〉, respectively. So reduction under ‘→xh’ is not deterministic, and therefore neither

is reduction in the image of · l ·.

We can make the following observations:

Remark 7.4 • As can be seen from the proofs of Lemma 6.6 and Theorem 7.1, the synchroni-

sations generated by the encoding only involve processes of the shape:

x(u). ! u a | x(w). N
l
w w(v).a v | (νyb) ( N

l
b |w〈y,b〉) c〈x,b〉 | c(v,d).(! v(w). N

l
w | ! d a)

so in particular, substitution is always well defined.

• A process that results from running the interpretation of a term M with free variable y

will only able to input (on y) if it has a sub-process y(u). ! u a =
∆ y

l
a that does not occur

under guard. All other occurrences of y will appear inside N
l
w in subprocesses like

! c(v,d).(! v(w). N l w | ! d c) or x(w). N l w, so in particular appear under guard and are

unavailable for synchronisation.

We can also show that no reductions are possible in M l a but those that correspond to

reductions in M itself.
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Theorem 7.5 (Operational Completeness for ‘→xh’) Let M ∈ λµ, so M is pure.

i) If M
l
a →π P , then there exists Q , R , and N such that P ≈r Q , Q ≈g R , and R ≈d N

l
a (so

M l a →+
π ,≈rgd N l a) and M →xh N.

ii) If M l a →+
π ,≈rgd N l a then M →+

xh
N.

Proof : i) By inspection of the cases of the proof for Theorem 7.1, if M
l
a →π P , then there

are only two cases where the reduction takes place in the interpreted term directly, and

either:

M l a = (νc) ((νxb) ( P lb | c〈x,b〉) | ! c(v,d).( v :=Q l | ! d a)) = (λx.P)Q l a : Then

(νc) ((νxb) ( P lb | c〈x,b〉) | ! c(v,d).( v :=Q l | ! d a))

→π (c) (νcxb) ( P
l
b | x :=Q

l | ! b a | ! c(v,d).( v :=Q
l | ! d a))

≡ (νx) ((νb) ( P l b | ! b a) | x :=Q l) | (νc) (! c(v,d).( v :=Q l | ! d a))

≈r (νx) ( P
l
a | x :=Q

l) | (νc) (! c(v,d).( v :=Q
l | ! d a))

≈g (νx) ( P
l
a | x :=Q

l) =
∆ P 〈x :=Q〉 l

a

Notice that (λx.P)Q →xh P 〈x :=Q〉.

M l a = xS0M1S1 · · ·MnSn
l a with 〈x :=N〉 ∈ Sn : By Remark 6.5, we can move the substitu-

tions to the outside and then, with cn+1 = a and S = S0 · · ·Sn:

xS0M1S1 · · ·MnSn
l a ≡ (6.5) (νyn αn ) ( x lc1 | ci :=Mi·ci+1

l | S
l)

=
∆ (νyn αn ) (x(u). ! u c1 | ci :=Mi·ci+1

l | S
l)

≡ (νyn αn ) (x(u). ! u c1 | ci :=Mi·ci+1
l | x :=N

l | S
l)

=
∆ (νyn αn ) (x(u). ! u c1 | ci :=Mi·ci+1

l | x(w). N
l
w | S

l)

→π (x) (νyn αn ) ((νw) ( N
l
w | ! w c1) | ci :=Mi·ci+1

l | S
l)

≈r (νyn αn ) ( N
l
c1 | ci :=Mi ·ci+1

l | S
l)

=
∆ NM1 · · ·MnS l a ≡ NS0M1S1 · · ·MnSn

l a

and xS0M1S1 · · ·MnSn →xh NS0M1S1 · · ·MnSn.

Otherwise, reduction takes place inside an interpreted term, and the proof then follows

by induction.

By Remark 7.4, no other synchronisations are possible inside an interpreted term.

ii) Notice that, in part (i), if M l a →π P , then there exists N such that M l a →∗
π ,≈rgd N l a

and M →∗
xh N. The result follows by induction on the length of the reduction path, using

the first part. Notice that renaming and garbage collection (that involves processes that

are inactive with respect to synchronisation) can always be postponed until at the end,

and that the final step with ‘≈d’ is only needed to obtain the right syntactic presentation

of N.

We can also show that standard reduction with explicit substitution, ‘→x’, is preserved

under our encoding by weak bisimulation. Note that this result is stated for ‘=x’, not ‘=xh’,

and that it does not show that the encoding of terms is related through reduction.

Theorem 7.6 For all M, N ∈ λµx, if M =x N, then M
l
a ≈ N

l
a.

Proof : By induction on the definition of ‘=x’; we only show some of the cases that are different

or not included in the proof of Theorem 7.1.

x 〈x :=N〉 → N : x 〈x :=N〉 l
a =

∆ (νx) ( x
l
a | x :=N

l) =
∆ (νx) (x(u). ! u a | ! x(w). N

l
w) →π (x)

(νw) (! w a | N
l
w) | (νx) (! x(w). N

l
w) ≈g (νw) (! w a | N

l
w) ≈r N

l
a
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(PQ) 〈x :=N〉 → (P 〈x :=N〉)(Q 〈x :=N〉) : (PQ) 〈x :=N〉 l
a =

∆

(νx) ((νc) ( P
l
c | ! c(v,d).( v :=Q

l | ! d a)) | ! x(w). N
l
w) ≈ (2.5:6)

(νc) ((νx) ( P
l
c | x :=N

l) | (νx) (! c(v,d).(! v(w). Q
l
w | d a) | x :=N

l)) ≈ (2.5:8)

(νc) ((νx) ( P
l
c | x :=N

l) | ! c(v,d).((νx) (! v(w). Q
l
w | x :=N

l) | d a)) ≈ (2.5:9)

(νc) ((νx) ( P l c | x :=N l) | ! c(v,d).(! v(w).(νx) ( Q lw | x :=N l) | d a)) =
∆

(νc) ( P 〈x :=N〉 l
c | ! c(v,d).(! v(w). Q 〈x :=N〉 l

w | d a)) =
∆

(νc) ( P 〈x :=N〉 l c | ! c(v,d).( v :=Q 〈x :=N〉 l | d a)) =
∆

(νc) ( P 〈x :=N〉 l
c | c := Q 〈x :=N〉 ·a l) =

∆

(P 〈x :=N〉)(Q 〈x :=N〉) l a

(PQ) 〈α :=N·γ〉 → P 〈α :=N·γ〉)Q 〈α :=N·γ〉) : (PQ) 〈α :=N·γ〉 l a =
∆

(να) ((νc) ( P
l
c | c := Q·a l) | ! α(v,d).(! v(w). N

l
w | ! d γ)) ≈ (2.5:1)

(νc) ((να) ( P lc | α :=N·γ l) | (να) ( c :=Q·a l | α :=N·γ l)) =
∆

(νc) ((να) ( P
l
c | α :=N·γ l) | (να) (! c(v,d).( v :=Q

l | ! d a) | α :=N·γ l)) ≈ (2.5:4)

(νc) ((να) ( P
l
c | α :=N·γ l) | ! c(v,d).((να) (! v(w). Q

l
w | α :=N·γ l | ! d a))) ≈ (2.5:5)

(νc) ((να) ( P
l
c | α :=N·γ l) | ! c(v,d).(! v(w).(να) ( Q

l
w | α :=N·γ l) | ! d a)) =

∆

(νc) ( P 〈α :=N·γ〉 l
c | ! c(v,d).(! v(w). Q 〈α :=N·γ〉 l

w | ! d a)) =
∆

(νc) ( P 〈α :=N·γ〉 l c | ! c(v,d).( v :=Q 〈α :=N·γ〉 l | ! d a)) =
∆

(P 〈α :=N·γ〉)(Q 〈α :=N·γ〉) l
a

M → N ⇒ L M → LN : L M
l
a =

∆ (νc) ( L
l
c | ! c(v,d).(! v(w). M

l
w | ! d a)) ≈ (IH)

(νc) ( L l c | ! c(v,d).(! v(w). N lw | ! d a)) =
∆ LN l a

M → N ⇒ L 〈x :=M〉 → L 〈x :=N〉 : L 〈x :=M〉 l
a =

∆ (νx) ( L
l
a | ! x(w). M

l
w) ≈ (IH)

(νx) ( L
l
a | ! x(w). N

l
w) =

∆ L 〈x :=N〉 l
a

The steps to a reflexive, transitive closure and equivalence relation follow directly from the

fact that ‘≈’ is a congruence, as in the last two parts shown above.

Notice that, for the inductive cases, we apply induction to a process occurring under guard,

so need that ‘≈’ is a congruence, so Lemma 2.5 alone is no longer sufficient.

Now the following is an immediate consequence:

Theorem 7.7 (Semantics) For all M, N ∈ λµ, if M =βµ N, then M
l
a ≈ N

l
a.

Proof : By induction on the definition of ‘=βµ’. The case M →∗
βµ N follows from the fact that

then, by Proposition 4.2, also M →∗
x N, so by Theorem 7.6, we have M l a ≈ N l a. The steps

to an equivalence relation follow directly from ‘≈’.

Notice that it is clear that we cannot prove the exact reversal of this result, since terms

without head-normal form are all interpreted by a process that is weakly bisimilar to 0 (see

also Lemma 9.7), but are not all related through ‘=βµ’. However, similar to [50, 51], using

a notion of weak equivalence we can deal with the reverse part as well and will do so in

sections 9 to 12.

We can show that interpretation of terms in →xh-normal form are in normal form as well.

Lemma 7.8 If N is a →xh-normal form, then N
l a is irreducible.

Proof : By induction on the structure of terms in →xh-normal form.

N = xM1S1 · · ·MnSn (n ≥ 0), x 6∈ Si, for i ∈ n : xM1S1 · · ·MnSn
l a =

∆ ,≡ (6.5)

(νyn αn ) · · ·(νy1 α1 ) (νc ) ( x
l
c1 | c1 :=M1·c2

l | · · · | cn :=Mn ·a
l | S1

l | · · · | Sn
l)
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Since x
l
c1 =

∆ x(u). ! u c1

ci :=Mi·ci+1
l

=
∆ ! ci (v,d).(! v(w). Mi

l
w | ! d ci+1)

yj :=Nj
l ∈ Si =

∆ yj(w). Nj
l
w

αj :=Pj ·γj
l ∈ Si =

∆ ! αj (v,d).(! v(w). Pj
l
w | ! d γj)

all Mi
l
w, Nj

l
w, and Pj

l
w appear under input, so no synchronisation inside one of

those is possible; since all ci are fresh, all are different from x and no synchronisation is

possible over any of the ci. Since x does not appear in any of the Si, also no synchronisa-

tion over x is possible. So this process is in normal form.

N = λx.N ′ : Then λx.N ′ l
a =

∆ (νxb) ( N ′ l
b | a〈x,b〉), and, by induction, N ′ l

b is in normal

form; since b is fresh and a 6∈ N ′ l
b, that process does not input over a, so λx.N ′ l

a is in

normal form.

N = µα.[β]N ′ (α 6= β ∨ α ∈ N ′,N ′ 6= µγ.[δ]N ′′) : Then µα.[β]N ′ l
a =

∆
N ′ l

β {a/α}; this case

follows immediately by induction.

Notice that µα.[β]µγ.[δ]N l
a = N

l
δ {β/γ}{a/α}, which is in normal form, so some re-

ducible λµx-terms are mapped to processes in normal form; this does not contradict the

above result, of course.

We can now show the following termination results:

Theorem 7.9 (Termination) i) If M →nf
xh N, then M l a⇓π .

ii) If M →βµ
hnf N, then M

l
a⇓π .

Proof : i) By Lemma 7.8, if N is in explicit head-normal from, then N
l
a is in normal form.

By Theorem 7.5, there exists P such that M l a →+
π P with P ≈rgd N l a. It might be

that in the ‘≈r’-part, synchronisations take place; we can add those to the ‘→+
π ’ steps

and can assume that we have M
l
a →+

π R with R ≈rgd N
l
a, and the latter does not

involve synchronisations. So R is weakly bisimilar to a process in normal form, and in

establishing that relation, no synchronisations are needed; remark that, in the proof of

Theorem 7.5, ‘≈g’ only removes irreducible processes (in normal form). This implies that

R is in normal form.

ii) By Proposition 1.8, there exists L in hnf such that M →h

nf L; by Lemma 5.3, there exists N

such that M →nf
xh N; by the previous part, M

l
a⇓π .

Notice also that this result is stronger than the formulation of the termination result for

Milner’s interpretation in [51] (or any other), since it models reduction to head-normal form,

not just lazy normal form.

Since terms that have a normal form have a head-normal form as well, Theorem 7.9 imme-

diately leads to:

Corollary 7.10 If M⇓βµ, then M
l
a⇓π .

8 On renaming

By Theorem 7.1, renaming might be used during the simulation of λµx-reduction. However, in

this section we will show that we can do without renaming when simulating lazy reductions

for closed terms, thereby emulating Milner’s result (Theorem 3.3). As a consequence, it is

safe to say that renaming is the price we pay for the capability to deal with reductions under

abstraction, as well as that of open terms. As an illustration of this fact, notice that, as shown

in Figure 4, we can run the π-process (λx.xx)(λy.y) l
a without using renaming; there we

perform the two substitutions without resorting to the renaming of outputs of translated λ-

terms. Notice that we could also have postponed all ‘≈g’ steps until the end.
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λx.xx)(λy.y l a =
∆ (νc) ((νxb) ( xx l b | c〈x,b〉) | ! c(v,d).( v :=λy.y l | ! d a))

→π (c) (νx) ( xx l b | x :=λy.y l | b a | (νc) (! c(v,d).( v :=λy.y l | d b)))

≈g (νx) ( xx
l

b | x :=λy.y
l | b a)

=
∆ (νx) ((νc) (x(u). !u c | ! c(v,d).( v :=x l | ! d b)) | ! x(w). λy.y l w | b a)

→π (x), =
∆ (νxb) ((νc) ((νw) ((νyb1) ( y

l
b1 |w〈y,b1〉) | ! w c) | ! c(v,d).( v :=x

l | d b)) |

x :=λy.y l | b a)

→π (w),≈g (νxb) ((νc) ((νyb1) ( y
l

b1 | c〈y,b1〉) | ! c(v,d).( v :=x
l | d b)) | x :=λy.y

l | b a)

→π (c), =
∆ ,≈g (νx) ((νyb1) (y(u). ! u b1 | ! y(w). x lw | b1 a) | ! x(w). λy.y l w)

→π (y) (νxb) ((νb1) ((νw) (w b1 | x
l

w) | (νy) ( y :=x
l) | b1 b) | x :=λy.y

l | b a)

=
∆ ,≈g (νxb) ((νb1) ((νw) (w b1 | x(u). ! u w) | b1 b) |

x(w1). λy.y
h

w1 | ! x(w). λy.y
l

w | b a)

→π (x),≈g (νb) ((νw1) ((νb1) ((νw) (w b1 |w1 w) | b1 b) | λy.y
l

w1) | b a)

=
∆ (νb) ((νw1) ((νyb1) ((νw) (w b1 |w1 w) | b1 b) |

(νyb2) ( y
l

b2 |w1〈y,b2〉)) | b a)

→π (w1wb1b), =
∆ (νyb2) ( y l b2 | a〈y,b2〉) =

∆ λy.y l a

Figure 4. Running (λx.xx)(λy.y)l a →∗
π λy.y l a without renaming.

Example 8.1 When modelling head reduction, we cannot do without renaming completely, not

even for closed terms;

λx.(λy.y) x
l
a =

∆ (νxb) ((νc) ((νyb′) ( y
l
b′ | c〈y,b′〉) | ! c(v,d).( v := x

l | ! d b)) | a〈x,b〉)

→π ,≈g (νxb) ((νyb′) ( y lb′ | y := x l | ! b′ b) | a〈x,b〉)

=
∆ (νxb) ((νyb′) (y(u). ! u b′ | ! y(w). x

l
w | ! b′ b) | a〈x,b〉)

→π ,≈g (νxb) ((νb′) ((νw) (! w b′ | x l w) | ! b′ b) | a〈x,b〉)

=
∆ (νxb) ((νb′) ((νw) (! w b′ | x(u). ! u w) | ! b′ b) | a〈x,b〉)

We would like this to reduce to (νxb) (x(u). ! u b | a〈x,b〉) =
∆ λx.x

l
a, but it cannot; the last pro-

cess above is irreducible. We would therefore need renaming for (νw) (! w b′ | x(u). ! u w) ≈r

x(u). ! u b′ , to achieve

(νxb) ((νb′) ((νw) (! w b′ | x(u). ! u w) | ! b′ b) | a〈x,b〉)

≈r (νxb) ((νb′) (x(u). ! u b′ | ! b′ b) | a〈x,b〉)

≈r (νxb) (x(u). ! u b | a〈x,b〉) =
∆ λx.x l a

However, we can show that we do not need renaming when interpreting a weak explicit head

reduction to normal form on closed terms. First we define that notion of reduction.

Definition 8.2 We define weak explicit head reduction ‘→wxh’ as ‘→xh’ in Definition 5.1, but

remove the rule:

M → N ⇒ λx.M → λx.N

We also define weak explicit head-normal forms.

Definition 8.3 (Weak explicit head-normal forms for λµ) i) The λµx weak explicit head nor-

mal forms (wxhnf) are defined through the grammar:

Hwx ::= λx.M (M ∈ λµx)

| xM1S1 · · ·MnSn (n ≥ 0, ∀ i ∈ n (x 6∈ Si, Mi ∈ λµx, c ∈ Si ⇒ c free in xM1S1 · · ·MiSi))

| µα.[β]Hwx (α 6= β or α ∈ Hwx, and Hwx 6= µγ.[δ]H ′
wx)

ii) We say that M ∈ λµx has a wxhnf if there exists Hwx such that M →∗
wxh Hwx.
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Notice that we have chosen not to use the moniker ‘lazy’; we could have chosen to also

eliminate the rule (λS) : (λy.M)S→ λy.(MS), and this would be a natural choice when dealing

with lazy reduction. Since in our interpretation abstraction is modelled using an asynchronous

output, however, the step λS is modelled regardless:

(λy.M)S l a =
∆ (νx ) ( λy.M l a | S

l) =
∆ (νx ) ((νyb) ( M l b | a〈y,b〉) | S

l) ≡

(νyb) ((νx ) ( M
l
b | S

l) | a〈x,b〉) =
∆ (νyb) ( MS

l
b | a〈x,b〉) =

∆

λy.(MS) l a

so allowing it does not alter the structure of the proofs much, apart from the fact that then we

would have (λx.M)S as a term in explicit weak head normal form, rather than λx.M as we

have below, which has a knock-on effect on a number of definitions below. We will present a

notion of explicit lazy reduction in Definition 13.2.

We can now show:

Theorem 8.4 ( · l · preserves ‘→wxh’ without renaming) If P is a closed λµx-term, and P→nf
wxh

Q (so either Q = λz.Q′ or Q = µα.[α]λz.Q′ , with α ∈ Q′), then there exists P such that P
l
a →

nf
π P

and P ≈g,≈d Q l a.

Proof : We follow the structure of the proof of Theorem 7.1, where we focus on the cases that

use renaming. Since µα.[α]P′ l
a =

∆ P′ l
α {a/α} = P′{a/α} l

a, we can assume that P does not

start with a context switch.

P = (λx.M)NS1M2S2 · · ·MnSn : Let S = S1 . . .Sn.

P
l
cn+1 =

∆ ,≡ (6.5) (νyαc ) ( λx.M
l
c1 | ci :=Mi ·ci+1

l | S
l) ≡

(νyαc ) ((νbx) ( M
l
b | c1〈x,b〉) | ! c1(v,d).( v :=N

l | ! d c2) | ci :=Mi ·ci+1
l | S

l) →π (c1)

(νyαc ) ((νbx) ( M
l
b | x :=N

l | ! b c2) | (νc1) ( c1 :=N·c2
l) | ci :=Mi·ci+1

l | S
l)

At this point the proof of Theorem 7.1 uses renaming to obtain M
l
c2 , since it might be that

M evaluates to a variable y. All synchronisations in the later process take place inside M l b,

until that process outputs (on b). By Theorem 7.5, we know that M
l
b will run to P such that

P ≈rgd N
l
b with M →nf

xh N.

Since P →nf
wxh Q and P has a wxhnf, the →wxh-reduction on M terminates as well, and N

is either an abstraction, an applicative term starting with a variable, or starts with a context

switch.

In case M evaluates to an abstraction λy.M′, or µα.[α]λy.M′ we get

(νbx) ( M lb | ! b e | x :=N l) →∗
π

(νbx) ( λy.M′ l
b |G | ! b e | x :=N

l) =
∆

(νbx) ((νyb′ ) ( M′ l
b′ | b〈y,b′〉) |G | ! b e | x :=N

l) →π (b)

(νx) ((νyb′) ( M′ l
b′ | e〈y,b′〉) | x :=N

l) | (νb) (! b e) |G
where G is garbage. So for this case the renaming is not necessary, and garbage collection

can be delayed. In case N starts with a variable, we find ourselves in the second case.

P = xS1M1 · · ·Sn MnSn+1, with 〈x :=N〉 ∈ Sk, for some 1 ≤ k ≤ n + 1 :

xS1M1· · ·Sn MnSn+1
l
cn+1 ≡ (6.5)

(νyα ) ( x
l
c1 | ci :=Mi·ci+1

l | S
l) =

∆ ,≡ (! x(w). N
l
w ∈ S

l)

(νyα ) (x(u). ! u c1 | ci :=Mi·ci+1
l | x(w). N lw | S

l) →π (x)

(νyα ) ((νw) ( N l w | ! w c1) | ci :=Mi ·ci+1
l | S

l)
Also at this point the proof of Theorem 7.1 uses renaming. In case N evaluates to an

abstraction we get a situation similar to the previous case. Otherwise, it reduces to (a term

starting with) a variable bound by a substitution, which is dealt with in this case.

In conclusion, weak explicit head reduction on a closed λµx-term P either generates an
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∆∆
l

a =
∆ (νc) ((νxb) ( xx

l
b | c〈x,b〉) | ! c(v,d).( v :=∆

l
| ! d a))

→π (c) (νx) ( xx
l

a | x :=∆
l
) | (νc) ( c :=∆·a

l
)

≈g (νx) ( xx
l

a | x :=∆
l
)

=
∆ xx 〈x :=∆〉 l

a

=
∆ (νx) ((νc) (x(u). ! u c | ! c(v,d).( v := x

l
| ! d a)) | ! x(w).(νyb) ( yy

l
b |w〈y,b〉))

→π (x,w) (νx) ((νc) ((νyb) ( yy
l

b | c〈y,b〉) | ! c(v,d).( v := x
l
| ! d a)) | x :=∆

l
)

=
∆ (λy.yy)x 〈x :=∆〉 l

a

→π (c) (νx) ((νyb) ( yy
l

b | y := x
l
| ! d a | x :=∆

l
) | (νc) ( c := x·a

l
))

≈g, =
∆ (νx) ((νy) ((νc) (y(u). !u c | c := y·a

l
) | ! y(w). x

l
w) | x :=∆

l
)

=
∆ yy 〈y :=x〉 〈x :=∆〉 l

a

→π (y) (νx) ((νy) ((νcw) (! w c | c :=y·a
l
| x

l
w) | y := x

l
) | x :=∆

l
)

≈r (νx) ((νy) ((νc) ( x
l

c | c := y·a
l
) | y := x

l
) | x :=∆

l
)

=
∆ xy 〈y :=x〉 〈x :=∆〉 l

a

→∗
π,≈g (νx) ((νy) ((νc) ( λz.zz

l
c | c := y·a

l
) | y := x

l
) | x :=∆

l
)

=
∆ (λz.zz)y 〈y :=x〉 〈x :=∆〉 l

a

→∗
π,≈rg (νx) ((νy) ((νz) ( zz

l
a | z := y

l
) | y := x

l
) | x :=∆

l
)

=
∆ zz 〈z :=y〉 〈y :=x〉 〈x :=∆〉 l

a . . .

Figure 5. Running (λx.xx)(λx.xx)
l

a

(interpretation of an) abstraction before a forwarder, or a (term starting with a) variable before

a forwarder, that eventually will be replaced by an abstraction.

So, when simulating weak explicit reduction to normal form on closed terms, renaming can

be postponed, and the relation ‘≈r’ is not needed.

9 Weak reduction for λµ and λµx

It seems widely accepted that bisimilarity-like equivalences have become the standard when

studying interpretations of λ-calculi into the π-calculus. This creates a point of concern with

respect to full abstraction. Since ∆∆ and ΩΩ (where Ω = λy.yyy; we will use Ω again below)

are closed terms that do not interact with any context, they are contextually equivalent; any

well-defined interpretation of these terms into the π-calculus, be it input based or output

based, will therefore map those to processes that are weakly bisimilar to 0 , and therefore to

weakly bisimilar processes. Abstraction, on the other hand, enables interaction with a context,

and therefore the interpretation of λz.∆∆ will not be weakly bisimilar to 0 . However, in any

standard model of β-reduction of the λ-calculus, the terms ∆∆ and λz.∆∆ are equated since

both are meaningless (they are both unsolvable [56, 57]). We therefore cannot hope to model

normal βµ-equality in the π-calculus in a fully-abstract way; rather, we need to consider a

notion of reduction that considers all abstractions meaningful; therefore, the only kind of

reduction on λ-calculi that can naturally be encoded into the π-calculus in a fully-abstract

way is weak reduction.

Example 9.1 Consider the reduction of ∆∆ that was given in Example 5.4; by Theorem 7.1, we

have that ∆∆
l
a ≈ zz 〈z :=y〉 〈y := x〉 〈x :=∆〉 l

a as shown in Figure 5, which shows that the

interpretation of ∆∆ reduces without creating output over a, since that name always occurs

inside a sub-process of the shape

c :=y·a l

=
∆ ! c(v,d).( v :=y l | ! d a)

and does not input, since all occurrences of variables are always bound. So ∆∆
l a is weakly

bisimilar to 0 (see also Lemma 9.7). Therefore,
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λz.∆∆
l
a =

∆ (νzb) ( ∆∆
l
b | a〈z,b〉) ≈ (νzb) (0 | a〈z,b〉) ≈

(νzb) ( ΩΩ
l
b | a〈z,b〉) =

∆ λz.ΩΩ
l
a

So, for full abstraction, we are forced to consider λz.∆∆ and λz.ΩΩ equivalent and both

different from ∆∆, and therefore, we need to consider weak equivalences on terms that equate

all unsolvable terms.

We will now introduce the correct notions in λµ.

Definition 9.2 As in Definition 8.2, we define the notion ‘→wβµ’ of weak βµ-reduction as in

Definition 1.4, the notion ‘→wh’ of weak head reduction on λµ as in Definition 1.7 by (also)

eliminating the contextual rule:

M → N ⇒ λx.M → λx.N

We have already defined the notion weak explicit head-reduction ‘→wxh’ on λµx in Definition 8.2.

We can show the following property.

Lemma 9.3 i) Let M, N ∈ λµ; then M →nf
wh N if and only if there exists N′ ∈ λµx such that M →nf

wxh

N′, and N′ →nf
:= N.

ii) For M, N ∈ λµx: if M →∗
wxh N, and M →nf

:= M′ and N →nf
:= N′, then M′ →∗

wh N′.

Proof : Straightforward, similar to Lemma 5.3.

We define the notion of weak head-normal forms, the normal forms with respect to weak

head-reduction:

Definition 9.4 (Weak head-normal forms for λµ) i) The λµ weak head-normal forms (whnf)

are defined through the grammar:

Hw ::= λx.M (M ∈ λµ)

| xM1 · · ·Mn (n ≥ 0, ∀ i ∈ n[ Mi ∈ λµ])

| µα.[β]Hw (α 6= β or α ∈ Hw, and Hw 6= µγ.[δ]H ′
w)

ii) We say that M has a whnf if there exists Hw such that M →∗
wh Hw.

As before, it is easy to verify that whnfs are the the normal forms of weak head reduction.

The main difference between hnfs and whnfs is in the case of abstraction: where the

definition of hnf only allows for the abstraction over a hnf, for whnfs the body can be any

term. For example, both λz.∆∆ and λz.ΩΩ are in whnf, but not in hnf. In fact, both terms

have no hnf.

Since ‘→wxh’ ⊆ ‘→xh’, the equivalent of Proposition 1.8 and Theorem 7.2 also hold for weak

explicit head reduction.

Proposition 9.5 If M →∗
βµ N with N in whnf, then there exists Hw such that M →nf

wh Hw and Hw →∗
βµ

N without using ‘→wh’.

Theorem 9.6 i) If M →∗
wxh N, then M l a ≈ N l a.

ii) If M⇑wxh, then M l a ⇑π.

We can show that the interpretation of a term without whnf gives a process that is weakly

bisimilar to 0 .

Lemma 9.7 If M has no wxhnf (so M also has no whnf), then M
l
a ≈ 0 .

Proof : We will show that the interpretation of a term with a weak explicit head-redex has no

input or output; since terms without wxhnf can only reduce (by contracting the head-redex)
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to a term without wxhnf, the interpretation of a term without a wxhnf will never input or

output, and therefore be weakly equivalent to 0 .

If M has no wxhnf, then M has no leading abstractions and all terms generated by reduction

have a weak explicit head redex. If M = µα.[β]N and N l
β {a/α} ≈ 0 , then also M l a ≈ 0 ;

therefore we can assume M itself does not start with a context switch.

Let M = RS0P1S1 · · ·PnSn with n ≥ 0 and each Si possibly empty, and let S = S0S1 · · ·Sn, and:

M
l
a ≡(6.5) (ναy ) ((νc ) ( R

l
c1 | ci :=Pi·ci+1

l ) | S
l)

ci :=Pi·ci+1
l

=
∆ ! ci(v,d).(! v(w). Pi

l
w | ! d ci+1)

S
l ≡ ! yj(w). Qj

l
w | ! αk (v,d).( v :=Tk

l | ! d βk)

where cn+1 = a. Notice that all inputs and outputs in the interpretation of the substitutions are

over bound names or under guard and that the only part of this process which might input

our output is R l c1 . We reason by coinduction and distinguish the possibilities for the first

reduction step. We show the more interesting cases:

(β) : Then R = λx.K, n ≥ 1, and M contracts to K 〈x :=P1〉S2P2S1 · · ·PnSn. By coinduction, the

process

K 〈x :=P1〉S2P2S1 · · ·PnSn
l
a =

∆ ,≡

(ναy ) ((νc ) ((νx) ( K l c1 | ! x(w). P1
l w) | ci :=Pi·ci+1

l ) | S
l)

does not exhibit inputs or outputs, so, in particular, (ναy ) ((νc ) ( K l c1)) does not (notice

that c1 ∈ c is bound). Then neither does (ναy c xb) ( K
l
b) in M

l
a.

(µp) : Then R= µα.[α]K, and n≥ 1, and M contracts to (µγ.[γ]K 〈α :=P1·γ〉P1)S2P2S1 · · ·PnSn.

By coinduction, the process

(µγ.[γ]K 〈α :=P1·γ〉P1)S2P2S1 · · ·PnSn
l
a

=
∆ ,≡ (ναy ) ((νc ) ((νc′) ((να) ( K

l
c′ | α :=P1·γ

l) | c′ := P1·γ
l){c1/γ} | ci :=Pi·ci+1

l ) | S
l)

= (ναy ) ((νc ) ((νc′) ((να) ( K
l
c′ | α :=P1·c1

l) | c′ := P1·c1
l) | ci :=Pi·ci+1

l ) | S
l)

does not exhibit inputs or outputs, so, in particular, (ναy c c′) ( K
l
c′ {c1/γ}) (the only

one part that could) does not, and thereby neither does (ναy c c′) ( K l c′), so neither does

(ναy c c′) ( K
l
α) so also

(ναy ) ((νc ) ( K
l
α | α :=P1·c2

l | ci :=Pi·ci+1
l ) | S

l)

= (ναy ) ((νc ) ( K
l
α {c1/α} | c1 :=P1·c2

l | ci :=Pi·ci+1
l ) | S

l)

≈d (ναy ) ((νc ) ( K l
α {c1/α} | ci :=Pi·ci+1

l ) | S
l)

=
∆ (µα.[α]K)P1S2P2S1 · · ·PnSn

l
a

does not.

(µr) : Then R = µα.[β]K, and M contracts to (µγ.[β]K 〈α :=P1·γ〉)S2P2S1 · · ·PnSn. Since, as in

the proof of Theorem 7.1,

(µα.[β]K)P1S2P2S1 · · ·PnSn
l
a =

∆ ,≡

(ναy ) ((νc ) ((νc1) ( µα.[β]K l
c1 | c1 := P1·c2

l) | ci :=Pi ·ci+1
l ) | S

l) =
∆

(ναy ) ((νc ) ( K
l

β{c1/α} | c1 :=P1·c2
l | ci :=Pi·ci+1

l ) | S
l) =α

(ναy ) ((νc ) ( K l
β | α :=P1·c2

l | ci :=Pi·ci+1
l ) | S

l) =
∆

(ναy ) ((νc ) ((να) ( K l
β | α :=P1·γ

l){c2/γ} | ci :=Pi·ci+1
l ) | S

l) =
∆ ,≡

(µγ.[β]K 〈α :=P1·γ〉)S2P2S1 · · ·PnSn
l
a

the result follows immediately by co-induction.

(hv) : Then R = x and 〈x :=N〉 ∈ S, and M contracts to NS0P1S1 · · ·PnSn. By coinduction,
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∆∆
l

a = (λx.xx)∆
l

a =
∆

(νc) ((νxb) ( xx
l

b | c〈x,b〉) | ! c(v, d).( v :=∆
l
| ! d a)) →(c)

(νxb) ( xx
l

b | x :=∆
l
| ! b a) | (νc) (! c(v, d).( v :=∆

l
| ! d a)) =

∆ ,≈g

(νxb) ((νc) (x(u). ! u c | ! c(v, d).( v := x
l
| ! d b)) | ! x(w). ∆

l
w | ! b a) →(x)

(νxbw) ((νc) (! w c | ! c(v, d).( v := x
l
| ! d b)) | (νyb) ( yy

l
b |w〈y, b〉) | x :=∆

l
| ! b a) →(w)

(νxb) ((νc) ((νyb) ( yy
l

b | c〈y, b〉) | ! c(v, d).( v := x
l
| ! d b) | x :=∆

l
| ! b a) →(c),≈g

(νxb) ((νyb1) ( yy
l

b1 | y := x
l
| ! b1 b) | x :=∆

l
| ! b a) =

∆

(νxb) ((νyb1) ((νc) (y(u). ! u c | ! c(v, d).( v := y
l
| ! d b1)) | ! y(w). x

l
w | ! b1 b) | x :=∆

l
| ! b a) →(y)

(νxb) ((νyb1) ((νc) (w c | ! c(v, d).( v := y
l
| ! d b1)) | x

l
w | y := x

l
| ! b1 b) | x :=∆

l
| ! b a) =

∆

(νxb) ((νyb1) ((νc) (w c | ! c(v, d).( v := y
l
| ! d b1)) | x(u). ! u w | y := x

l
| ! b1 b) | x :=∆

l
| ! b a) ≡

(νxb) ((νyb1) ((νc) (w c | ! c(v, d).( v := y
l
| ! d b1)) | x(u). ! u w | y := x

l
| ! b1 b) |

! x(w).(νzb) ( zz
l

b |w〈z, b〉) | x :=∆
l
| ! b a)→(x,w1,w, c)

(νxb) ((νyb1) ((νzb2) ( zz
l

b2 | z := y
l
| ! b2 b1)) | y := x

l
| ! b1 b | x :=∆

l
| ! b a)) . . .

Figure 6. Running ∆∆
l

a without renaming, but using garbage collection.

NS0P1S1 · · ·PnSn
l a =

∆ (ναy ) ((νc ) ( N l c1 | ci :=Pi·ci+1
l ) | S

l)

does not exhibit inputs or outputs, so, in particular,

xS1P1S2P2S1 · · ·PnSn
l a =

∆ ,≡ (ναy ) ((νc ) (x(u). ! u c1 | ci :=Pi·ci+1
l ) | x(w). N lw | S

l)

where x ∈ y , does not.

The reduction of ∆∆
l
a is given in Figure 6, and shows that the interpretation of ∆∆ reduces

without creating output over a; notice that the individual steps of the above reduction in ‘→xh’

in Example 5.4 are respected in Figure 6.

As a direct consequence of Lemma 9.7, as for Milner’s and Sangiorgi’s interpretations, our

interpretation is not extensional, since ∆∆
l
a ≈ 0 , whereas

λx.∆∆x l a =
∆ (νxb) ( ∆∆x l b | a〈x,b〉) 6≈ 0 .

We can show that if a term reduces to an abstraction (perhaps with a preceding context

switch), then its interpretation creates an output, and that if it runs to a term with a head

variable, its interpretation creates an input.

Lemma 9.8 i) If M →nf
wxh λx.N, then M l a⇓ a.

ii) If M →nf
wxh µα.[β]λx.N, then M l a⇓β.

iii) If M →nf
wxh xN1S1 · · ·NnSn or M →nf

wxh µα.[β]xN1S1 · · ·NnS1, then M l a⇓ x .

Proof : Since ‘→∗
wxh’ ⊆ ‘→∗

xh’, this follows from Theorem 7.1, and the observation that the

resulting processes (obtained by encoding the normal forms) do indeed exhibit the input or

output.

As to the reverse, we will now show that if the interpretation of M produces an output, then

M reduces by head reduction to an abstraction; similarly, if the interpretation of M produces

an input, then M reduces by head reduction to a term with a head variable.

Lemma 9.9 i) If M
l
a⇓ a, then there exist x, N ∈ λµx such that M

l
a ≈ λx.N

l
a, and M →nf

wxh

λx.N.

ii) If M
l
a⇓ c, with a 6= c, then there exist α, x, N ∈ λµx such that M

l
a ≈ µα.[c]λx.N

l
a =

∆

λx.N l c {a/α}, and M →nf
wxh µα.[c]λx.N.

iii) If M l a⇓6 o but M l a⇓ x, then there exist N1, . . . , Nn, c, and S1, . . . ,Sn with n ≥ 0 such that:

• M l a ≈ xN1S1 · · ·NnSn
lc;

• M →nf
wxh xN1S1 · · ·NnSn if a = c;
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• M →nf
wxh µα.[c]xN1S1 · · ·NnSn, if a 6= c.

Proof : i) By checking the proof for Theorem 7.5, we observe that if M
l
a exhibits an output,

then, using explicit head reduction, M reduces to an abstraction. But then M also runs to

an abstraction using weak explicit head reduction, so there exist x, N such that M →nf
wxh

λx.N. Since ‘→wxh’ ⊆ ‘→xh’, also M →∗
xh λx.N, and by Theorem 7.1 we get M l a ≈

λx.N
l
a.

ii) As in the previous case; the output name can only change because of a context switch.

iii) If M
l
a runs to a process that inputs, but does not output, then by the proof for Theo-

rem 7.5 and Remark 7.4 M runs to a term with a head variable and without outermost

abstractions, so there exist N1, . . . , Nn, x, and S1, . . . ,Sn with n ≥ 0 and α, β such that either:

M →nf
wxh xN1S1 · · ·NnSn : Since also M →∗

xh xN1S1 · · ·NnSn, we get that M l a ≈ xN1S1 · · ·NnSn
l c

follows by Theorem 7.1.

M →nf
wxh µα.[β]xN1S1 · · ·NnSn : Since also M →∗

xh µα.[β]xN1S1 · · ·NnSn, by Theorem 7.1 we

get M
l
a ≈ µα.[β l

xN1S1 · · ·NnSn]a = xN1S1 · · ·NnSn
l

β{a/α}.

10 Weak equivalences for λµ and λµx

We will now define notions of weak equivalences ‘∼wβµ’ and ‘∼wh’ between terms of λµ, and

‘∼wxh’ between terms of λµx (the last two are defined coinductively as bisimulations) that are

based on weak reduction, and show that the last two equate the same pure λµ-terms. These

notions all consider terms without whnf equivalent.

First we define a weak equivalence generated by the reduction relation ‘→wβµ’.

Definition 10.1 We define ‘∼wβµ’ as the smallest congruence that contains:

M, N have no whnf ⇒ M ∼wβµ N

(λx.M)N ∼wβµ M{N/x}

(µα.Cmd)N ∼wβµ µγ.Cmd{N·γ/α} (γ fresh)

µα.[β]µγ.[δ]M ∼wβµ µα.[δ]M{β/γ}

µα.[α]M ∼wβµ M (α 6∈ M)

Notice that ∆∆ ∼wβµ ΩΩ and λz.∆∆ ∼wβµ λz.ΩΩ, but ∆∆ 6=βµ ΩΩ; moreover, ‘∼wβµ’ is

closed under reduction.

Since reduction is confluent, the following is immediate.

Proposition 10.2 If M ∼wβµ N and M →∗
wβµ Hw, then there exists H ′

w such that Hw ∼wβµ H ′
w and

N →∗
wβµ H ′

w.

Notice that Property 1.5 is formulated with respect to ‘=βµ’, not ‘∼wβµ’.

The other two equivalences we consider are generated by weak head reduction and weak

explicit head reduction. We will show in Theorem 10.6 that these coincide for pure, substitution-

free λµ-terms.

Definition 10.3 (Weak head equivalence) The relation ‘∼wh’ is defined co-inductively as

the largest symmetric binary relation on λµ such that: M ∼wh N if and only if either:

• M and N have both no whnf, or

• both M →nf
wh M′ and N →nf

wh N′, and either:

– if M′ = xM1 · · ·Mn (n ≥ 0), then N′ = xN1 · · ·Nn and Mi ∼wh Ni for all i ∈ n; or

– if M′ = λx.M′′, then N′ = λx.N′′ and M′′ ∼wh N′′; or
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– if M′ = µα.[β]M′′ , then N′ = µα.[β]N′′ (so α 6= β or α ∈ fn(M′′), M′′ 6= µγ.[δ]R, and

similarly for N′′), and M′′ ∼wh N′′.

Notice that λz.∆∆ ∼wh λz.ΩΩ because ∆∆ ∼wh ΩΩ, since neither has a whnf.

We perhaps need to clarify the details of this definition. The notion of weak head equiva-

lence captures the fact that, once weak head reduction has finished, there are sub-terms that

can be reduced further by themselves. This process can generate infinite terms and the equiv-

alence expresses when it produces equal (infinite) terms. However, it also equates terms that

have no whnf. As can be seen from Definition 9.4, a context switch µα.[β]N is in whnf only if

N is; so when we state in the third case that M →nf
wh µα.[β]M′′ , by the fact that this reduction

has terminated, we know that M′′ is in whnf.

We will now define a notion of weak explicit head equivalence, that, in approach, corre-

sponds to weak head equivalence but for the fact that now explicit substitutions are part of

terms.

Definition 10.4 (Weak explicit head equivalence) The relation ‘∼wxh’ is defined co-inductively

as the largest symmetric binary relation on λµx such that: M ∼wxh N if and only if either:

• M and N have both no →wxh-normal form, or

• both M →nf
wxh M′ and N →nf

wxh N′, and either:

– if M′ = xM1S1 · · ·MnSn (n ≥ 0), then N′ = xN1S′
1 · · ·NnS′

n (so x 6∈ Si, x 6∈ S′
i, for i ∈ n) and

MiS ∼wxh NiS
′ for all i ∈ n where S = S1 · · ·Sn and S′ = S′

1 · · ·S
′
n; or

– if M′ = λx.M′′, then N′ = λx.N′′ and M′′ ∼wxh N′′; or

– if M′ = µα.[β]M′′ , then N′ = µα.[β]N′′ (so α 6= β or α ∈ fn(M′′), M′′ 6= µγ.[δ]R, and

similarly for N′′) and M′′ ∼wxh N′′.

Notice that µα.[β]∆∆ ∼wxh ∆∆.

The following results formulate the strong relation between ‘∼wh’ and ‘∼wxh’, and therefore

between ‘→wh’ and ‘→wxh’. We first show that pure terms that are equivalent under ‘∼wxh’

are also so under ‘∼wh’.

Lemma 10.5 Let M, N ∈ λµ. M ∼wh N if and only if there are M′, N′ ∈ λµx such that M′ →nf
:= M

and N′ →nf
:= N, and M′ ∼wxh N′.

Proof : only if : By coinduction on the definition of ‘∼wh’. If M ∼wh N, then either:

• M→nf
wh xM1 · · ·Mn and N →nf

wh xN1 · · ·Nn and Mi ∼wh Ni, for all i∈ n. Then, by Lemma 9.3,

there exist M′
i , N′

i such that both

M →nf
wxh xM′

1S1 · · ·M′
nSn →∗

:= xM1 · · ·Mn and

N →nf
wxh xN′

1S′
1 · · ·N

′
nS′

n →∗
:= xN1 · · ·Nn

Let S = S1 · · ·Sn and S′ = S′
1 · · ·S

′
n, then in particular M′

iS →nf
:= Mi and N′

i S
′ →nf

:= Ni, for

all i ∈ n; then by induction, M′
iS ∼wxh N′

i S
′ for all i ∈ n. But then M ∼wxh N.

• M →nf
wh λx.P, then N →nf

wh λx.Q and P ∼wh Q. By Lemma 9.3 there exists P′ and Q′

such that

M →nf
wxh λx.P′ →nf

:= λx.P and

N →nf
wxh λx.Q′ →nf

:= λx.Q

Then also P′ →nf
:= P and Q′ →nf

:= Q, so by induction P′ ∼wxh Q′. But then M ∼wxh N.

• M →nf
wh µδ.[γ]P, then N →nf

wh µδ.[γ]Q and P ∼wh Q; similar to the previous part.

The other cases are similar.

if : By coinduction on the definition of ‘∼wxh’. If there are M′, N′ such that M′ →nf
:= M and
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N′ →nf
:= N, and M′ ∼wxh N′, then either:

• M′ →nf
wxh xM′

1S1 · · ·M′
nSn, N′ →nf

wxh xN′
1S′

1 · · ·N
′
nS′

n, S = S1 · · ·Sn and S′ = S′
1 · · ·S

′
n, and

M′
iS∼wxh N′

i S
′, for all i∈ n. Let, for all i∈ n, M′

iS→nf
:= Mi and N′

i S
′ →nf

:= Ni then by induc-

tion, Mi ∼wh Ni, for all i ∈ n. Let M′ →nf
:= M; since we have M′ →nf

wxh xM′
1S1 · · ·M′

nSn →
nf
:=

xM1 · · ·Mn, by Lemma 9.3, M →nf
wh xM1 · · ·Mn. Likewise, we have N →nf

wh xN1 · · ·Nn.

But then M ∼wh N.

• M′ →nf
wxh λx.P′, N′ →nf

wxh λx.Q′, and P′ ∼wxh Q′. Let P′ →nf
:= P, and Q′ →nf

:= Q, then

by induction, P ∼wh Q. Then we have M′ →nf
wxh λx.P′ →nf

:= λx.P, and by Lemma 9.3,

M →nf
wh λx.P. Similarly, we have N →nf

wh λx.Q; so M ∼wh N.

• M′ →nf
wxh µδ.[γ]P′, N′ →nf

wxh µδ.[γ]Q′, and P′ ∼wxh Q′; similar to the previous part.

The other cases are similar.

Notice that this lemma in fact shows:

Corollary 10.6 Let M, N ∈ λµ, then M ∼wxh N ⇐⇒ M ∼wh N.

11 Weak approximation for λµ

In the next section we will show our main result, i.e. that the logical encoding is fully abstract

with respect to weak equivalence between pure λµ-terms. To achieve this, we show in The-

orem 12.1 that M l a ≈ N l a ⇐⇒ M ∼wxh N. To complete the proof towards ‘∼wβµ’, we are

thus left with the obligation to show that M ∼wxh N ⇐⇒ M ∼wβµ N. In Corollary 10.6 we have

shown that M ∼wxh N ⇐⇒ M ∼wh N, for pure terms; to achieve M ∼wh N ⇐⇒ M ∼wβµ N, in

this section we go through a notion of weak approximation. Based on Wadsworth’s approach

[56], we define ‘∼Aw ’ that expresses that terms have the same weak approximants and show

that M ∼wh N ⇐⇒ M ∼Aw N ⇐⇒ M ∼wβµ N.

The notions of approximant and approximation were first introduced by Wadsworth for the

λ-calculus [56], where they are used in order to better express the relation between equivalence

of meaning in Scott’s models and the usual notions of conversion and reduction. Wadsworth

defines approximation of terms through the replacement of any parts of a term remaining to

be evaluated (i.e. β-redexes) by ⊥. Repeatedly applying this process over a reduction sequence

starting with M gives a set of approximants, each giving some - in general incomplete -

information about the result of reducing M. Once this reduction produces a term of the shape

λx1 · · ·xm.yN1 · · ·Nn (a head-normal form), all remaining redexes occur in N1, . . . , Nn, which

then in turn will be approximated.

Following this approach, Wadsworth [56] defines A(M) (similar to Definition 11.1 below)

as the set of approximants of the λ-term M, which forms a meet semi-lattice; in [57], the

connection is established between approximation and semantics, by showing

M D∞
p =

⊔
{ A D∞

p | A ∈A(M)}.

So, essentially, approximants are partially evaluated expressions in which the locations of

incomplete evaluation (i.e. where reduction may still take place) are explicitly marked by the

element ⊥; thus, they approximate the result of computations. Intuitively, an approximant can

be seen as a ‘snapshot’ of a computation, where we focus on that part of the resulting program

which will no longer change, which corresponds to the (observable) output.

We now define a weak approximation semantics for λµ. Approximation for λµ has been studied

by others as well [53, 41, 8]; however, seen that we are mainly interested in weak reduction

here, we will define weak approximants, which are normally not considered.
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Definition 11.1 (Weak approximation for λµ) i) We define the set of λµ⊥-terms as in Defi-

nition 1.1, but add the term constant ⊥.

M, N ::= x | ⊥ | λx.M | MN | µα.[β]M

ii) The set of λµ’s weak approximants Aw ⊆ λµ⊥ with respect to ‘→βµ’ is defined through the

grammar:16

Aw ::= ⊥

| xA
1
w · · ·A

n
w (n ≥ 0)

| λx.Aw

| µα.[β]Aw (α 6= β or α ∈ Aw, Aw 6= µγ.[δ]A′
w, Aw 6= ⊥)

iii) The relation ‘⊑’ ⊆ λµ⊥2 is defined as the smallest preorder that is the compatible exten-

sion of ⊥ ⊑ M, i.e.:

⊥ ⊑ M

x ⊑ x

M ⊑ M′ ⇒ λx.M ⊑ λx.M′ & µγ.[δ]M ⊑ µγ.[δ]M′

M1 ⊑ M′
1 ∧ M2 ⊑ M′

2 ⇒ M1 M2 ⊑ M′
1 M′

2

iv) The set of weak approximants of M ∈ λµ, Aw(M), is defined through:17

Aw(M) =
∆ {Aw ∈Aw | ∃N ∈ λµ (M →∗

βµ N ∧ Aw ⊑ N)}.

v) Weak approximation equivalence is defined through: M ∼Aw N =
∆ Aw(M) =Aw(N).

Notice that if A1 ⊑ M1 and A2 ⊑ M2, then A1A2 need not be an approximant; it is one if

A1 = xA
1
1 · · ·A

n
1 , perhaps prefixed with a context switch of the shape µα.[β] . Moreover,

Aw(λz.∆∆) = {⊥,λz.⊥} = Aw(λz.ΩΩ)

Aw(µα.[β]∆∆) = {⊥} = Aw(∆∆)

Weak approximants are also the normal forms with respect to the notion of reduction on

λµ⊥-terms that is the extension of ‘→βµ’ by adding the reduction rules:

⊥M → ⊥

µα.[β]⊥ → ⊥

(so not λx.⊥→ ⊥) but this will play no role in this paper.

The relationship between the approximation relation and reduction is characterised by the

following result:

Lemma 11.2 i) If Aw ⊑ M and M →∗
βµ N, then Aw ⊑ N.

ii) If Aw ∈Aw(N) and M →∗
βµ N, then also Aw ∈Aw(M).

iii) If Aw ∈Aw(M) and M →βµ N, then there exists L such that N →∗
βµ L and Aw ⊑ L.

iv) M is a whnf if and only if there exists Aw 6= ⊥ such that Aw ⊑ M.

v) M has no whnf if and only if Aw(M) = {⊥}.

Proof : Easy.

We could have defined the set of approximants of a term coinductively.

16 For ‘normal’ approximants, case λx.A demands that A 6=⊥, as motived by the relation with D∞. We explicitly
drop that restriction here.

17 Notice that we use ‘→βµ’ here, not ‘→wβµ’; the approximants are weak, not the reduction.
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Definition 11.3 We define Aw(M) coinductively by:

• If Aw ⊑ M, then Aw ∈Aw(M).

• if M →∗
wh xM1 · · ·Mn (n ≥ 0), then Aw(M) = {xA

1
w · · ·A

n
w | ∀ i ∈ n (Ai

w ∈Aw(Mi))}.

• if M →∗
wh λx.N, then Aw(M) = {λx.Aw | Aw ∈Aw(N)}.

• if M →∗
wh µα.[β]N, then Aw(M) = {µα.[β]Aw | Aw ∈Aw(N)}.

We can show that these definitions coincide:

Lemma 11.4 Aw(M) =Aw(M).

Proof : ⊆ : If Aw ∈Aw(M), then by Definition 11.3 either:

Aw ⊑ M : Immediate.

Aw = xA
1
w · · ·A

n
w : Then M →∗

wh xM1 · · ·Mn for some M1, . . . Mn, with A
i
w ∈ Aw(Mi), for

every i ∈ n; by coinduction, also A
i
w ∈Aw(Mi). Then, by Definition 11.1, for every i ∈ n

there exist M′
i such that Mi →

∗
βµ M′

i and A
i
w ⊑ M′

i . Since ‘→∗
wh’ ⊆ ‘→∗

βµ’, in particular

M →∗
βµ xM′

1 · · ·M
′
n; we have Aw ⊑ xM′

1 · · ·M
′
n, so Aw ∈Aw(M).

The other cases are similar.

⊇ : If Aw ∈Aw(M), then by Definition 11.1, there exists N such that M →∗
βµ N and A

i
w ⊑ N.

Now either:

Aw ⊑ M : Trivial.

Aw = xA
1
w · · ·A

n
w : Since xA

1
w · · ·A

n
w ⊑ N, N = xN1 · · ·Nn for some N1, . . . , Nn, and A

i
w ⊑ Ni,

for every i ∈ n. Then by Definition 11.3, A
i
w ∈Aw(Ni), for every i ∈ n, and by induction,

A
i
w ∈ Aw(Ni). By Lemma 9.5, there exist M1, . . . , Mn such that M →∗

wh xM1 · · ·Mn →∗
βµ

xN1 · · ·Nn; so in particular Mi →
∗
βµ Ni, for every i ∈ n. Then by Lemma 11.2, A

i
w ∈

Aw(Mi) and by Definition 11.3, Aw ∈Aw(M).

The other cases are similar.

As a consequence, below we will use whichever definition of approximation, Aw(M) or

Aw(M), is convenient.

As is standard in other settings, interpreting a M ∈ λµ through its set of weak approximants

Aw(M) gives a semantics.

Theorem 11.5 (Weak approximation semantics) If M =βµ N, then M ∼Aw N.

Proof : M =βµ N ∧ Aw ∈Aw(M) ⇒ M =βµ N ∧ ∃ L (M →∗
βµ L ∧ Aw ⊑ L) ⇒(1.5)

∃ L,K (L →∗
βµ K ∧ N →∗

βµ K ∧ Aw ⊑ L) ⇒(11.2) ∃K (N →∗
βµ K ∧ Aw ⊑ K) ⇒

Aw ∈Aw(N)

The reverse implication of this result does not hold, since terms without whnf (which have

only ⊥ as approximant) are not all related by reduction. But we can show the following full

abstraction result:

Theorem 11.6 (Full abstraction of ‘∼wβµ’ versus ‘∼Aw ’) M ∼wβµ N if and only if M ∼Aw N.

Proof : if : By coinduction on the definition of the set of weak approximants. If Aw(M) =

{⊥} = Aw(N), then by Lemma 11.2 both M and N have no whnf, so M ∼wβµ N. Other-

wise, either:

xA
1
w · · ·A

n
w ∈ Aw(M) ∧ xA

1
w · · ·A

n
w ∈Aw(N) : By Definition 11.3 there exists M1, . . . , Mn such

that M →∗
wh xM1 · · ·Mn and A

i
w ∈ Aw(Mi). Likewise, there exist N1, . . . , Nn such that

N →∗
wh xN1 · · ·Nn and A

i
w ∈Aw(Ni). So, for i ∈ n, Aw(Mi) =Aw(Ni) and by induction

Mi ∼wβµ Ni. Since ‘∼wβµ’ is a congruence, also xM1 · · ·Mn ∼wβµ xN1 · · ·Nn; since ‘∼wβµ’

is closed under reduction ‘→wβµ’, it is also under ‘→wh’, and we have M ∼wβµ N.
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The other cases are similar.

only if : As the proof of Theorem 11.5, but using Proposition 10.2 rather than 1.5.

We can also show that weak head equivalence and weak approximation equivalence coin-

cide:

Theorem 11.7 M ∼wh N if and only if M ∼Aw N.

Proof : only if : By coinduction on the definition of ‘∼wh’.

M and N have no whnf : Then, by Lemma 11.2, Aw(M) = {⊥} =Aw(N).

M →∗
wh xM1 · · ·Mn : Then also N →∗

wh xN1 · · ·Nn, and Mi ∼wh Ni for i ∈ n, and by coinduc-

tion, Mi ∼Aw Ni, so Aw(Mi) = Aw(Ni). Then, by Definition 11.3, we have Aw(M) =

Aw(N).

The other cases are similar.

if : By coinduction on the definition of the set of weak approximants.

Aw(M) = {⊥} =Aw(N) : Then, by Lemma 11.2, both M and N have no whnf, so M∼wh N.

Aw = xA
1
w · · ·A

n
w : Then M →∗

wh xM1 · · ·Mn, and A
i
w ∈ Aw(Mi), for i ∈ n. Since Aw(M) =

Aw(N), also N →∗
wh xN1 · · ·Nn, with A

i
w ∈ Aw(Ni), so Aw(Mi) = Aw(Ni). Then, by

coinduction, Mi ∼wh Ni for every i ∈ n, so M ∼wh N.

The other cases are similar.

Taking ‘⊔ ’ as the (partial, compatible) operation of join on terms in Aw generated by ⊥⊔Aw =

Aw, we can also define M Aw = ⊔{Aw | Aw ∈Aw(M)}; then · Aw corresponds to the (λµ-

variant of) Lévy-Longo trees, and it becomes easy to show that: M Aw = N Aw ⇐⇒ M ∼Aw N.

We will skip the details here.

Combined with the results shown in the previous section, we can now state that all equiv-

alences coincide:

Corollary 11.8 Let M, N ∈ λµ, then M ∼wxh N ⇐⇒ M ∼wh N ⇐⇒ M ∼Aw N ⇐⇒ M ∼wβµ N.

12 Full abstraction for the logical interpretation

We now come to the main result of this paper, where we show a full abstraction result for our

logical interpretation. First we establish the relation between weak explicit head equivalence

and weak bisimilarity.

Theorem 12.1 (Full abstraction of ‘≈’ versus ‘∼wxh’) For M, N ∈ λµx: M
l
a ≈ N

l
a if and

only if M ∼wxh N.

Proof : only if : M
l
a ≈ N

l
a ⇒ M ∼wxh N.

By induction on the structure of λµx terms; we distinguish the following cases.

• M l a can never input nor output; then M l a ≈ 0 ≈ N l a. Assume M has a →wxh-

normal form, then by Lemma 9.8, M
l
a is not weakly bisimilar to 0 ; therefore, M and

N both have no →wxh-normal form, so M ∼wxh N.

• M
l
a⇓ c, then by Lemma 9.9, we have

– M
l
a ≈ λx.M′ l

c =
∆ (νxb) ( M′ l

b | c〈x,b〉),

– M →∗
wxh λx.M′ if a = c, or

– M →nf
wxh µα.[c]λx.M′ if a 6= c.

Since M
l
a ≈ N

l
a, also N

l
a⇓ c, and we have

– N
l
a ≈ λx.N′ l

c =
∆ (νxb) ( N′ l

b | c〈x,b〉),

– N →∗
wxh λx.N′ if a = c, or
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– N →nf
wxh µα.[c]λx.N′ if a 6= c.

So we have

λx.M′ l
c ≈ M

l
a ≈ N

l
a ≈ λx.N′ l

c

so in particular,

λx.M′ l
c =

∆ (νxb) ( M′ l
b | c〈x,b〉) ≈ (νxb) ( N′ l

b | c〈x,b〉) =
∆ λx.M′ l

c;

then also M′ l
b ≈ N′ l

b, and by induction, M′ ∼wxh N′; but then by the observations

made above also M ∼wxh N.

• If M
l
a⇓6 o, but M

l
a⇓ x, then by Lemma 9.9, M

l
a ≈ xM1S1 · · ·MnSn

l
a′ as well as

M →∗
wxh xM1S1 · · ·MnSn. Let S = S1 · · ·Sn, then we have

xM1S1 · · ·MnSn
l a′ ≡ (6.5) (νcyα ) (x(u). ! u c1 | ci :=Mi ·ci+1

l | S
l)

where cn = a′ and ci :=Mi ·ci+1
l

=
∆ ! ci(v,d).(! v(w). Mi

l
w | ! d ci+1)

S
l ≡ y :=P

l | α :=Q·β l

yj :=Pj
l

=
∆ ! yj(w). Pj

lw

αk :=Qk·βk
l

=
∆ ! αk(v,d).(! v(w). Qk

l
w | ! d βk)

Since M
l
a ≈ N

l
a, again by Lemma 9.9, N

l
a ≈ xN1 · · ·NnS′ l

a′′ and N →∗
wxh xN1S′

1 · · ·NnS′
n,

with S′ = S′
1 · · ·S

′
n. Notice that

xN1S′
1 · · ·NnS′

n
l
a′′ ≡ (6.5) (νeyα ) (x(u). ! u e1 | ei :=Ni ·ei+1

l | S′ l)

where en = a′′ and ei :=Ni ·ei+1
l

=
∆ ! ei(v,d).(! v(w). Ni

l
w | ! d ei+1)

S′ l ≡ y :=P′ l | α :=Q′ ·β l

yj :=P′
j

l

=
∆ ! yj(w). P′

j
lw

αk :=Q′
k ·βk

l

=
∆ ! αk (v,d).(! v(w). Q′

k
lw | ! d βk)

Since we have

xM1S1 · · ·MnSn
l
a′ ≈ xN1S′

1 · · ·NnS′
n

l
a′′ ,

we infer that a′ = a′′, ci = ei, and MiS
l
w ≈ NiS

′ l
w for all i ∈ n; then by induction,

MiS ∼wxh NiS
′ for all i ∈ n, and by the observations made above also also M ∼wxh N.

Notice that the base case for the induction is included in the last part.

if : M ∼wxh N ⇒ M l a ≈ N l a.

By coinduction on the definition of ‘∼wxh’. Let M ∼wxh N, then either:

• M and N have both no →wxh-normal form, so, by Lemma 9.7, their interpretations are

both weakly bisimilar to the process 0 , so in particular M l a ≈ N l a; or

• both M →nf
wxh M′ and N →nf

wxh N′, and either:

– M′ = xM1S1 · · ·MnSn (n ≥ 0), and N = xN1S′
1 · · ·NnS′

n, and MiS ∼wxh NiS
′, for all

i ∈ n, where S = S1 · · ·Sn, S′ = S′
1 · · ·S

′
n. By Theorem 9.6, we know that both M l a ≈

xM1S1 · · ·MnSn
l
a and N

l
a ≈ xN1S′

1 · · ·NnS′
n

l
a. Notice that

xM1S1 · · ·MnSn
l a ≡ (6.5) (νyαc ) ( x l c1 | ci :=Mi ·ci+1

l | S
l)

where cn = a and x lc1 =
∆ x(u). ! u c1

ci :=Mi ·ci+1
l

=
∆ ! ci(v,d).(! v(w). Mi

l
w | ! d ci+1)

S
l ≡ y :=P

l | α :=Q·β l

yj :=Pj
l

=
∆ ! yj(w). Pj

lw

αk :=Qk·βk
l

=
∆ ! αk(v,d).(! v(w). Qk

l
w | ! d βk)

and similarly for xN1S′
1 · · ·NnS′

n
l a. By induction (see Definition 10.4),
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(νyα ) ( Mi
l
w | S

l) =
∆ MiS

l
w ≈ NiS

′ l
w =

∆ (νyα ) ( Ni
l
w | S′ l)

Then, since ‘≈’ is a congruence, for all i ∈ n also

(νyα ) (! ci(v,d).(! v(w). Mi
l
w | ! d ci+1) | S

l) ≈

(νyα ) (! ci(v,d).(! v(w). Ni
l
w | ! d ci+1) | S′ l)

so also xM1S1 · · ·MnSn
l
a ≈ xN1S′

1 · · ·NnS′
n

l
a but then also M

l
a ≈ N

l
a.

– M′ = λx.M′′, N′ = λx.N′′, and M′′ ∼wxh N′′. By Theorem 9.6, we have M l a ≈
λx.M′′ l

a and N
l
a ≈ λx.N′′ l

a. Notice that

λx.M′′ l a =
∆ (νxb) ( M′′ lb | a〈x,b〉) and

λx.N′′ l
a =

∆ (νxb) ( N′′ l
b | a〈x,b〉)

By induction, M′′ l
b ≈ N′′ l

b. As above, since ‘≈’ is a congruence, also M
l
a ≈

N
l
a.

– M′ = µγ.[δ]M′′, N′ = µγ.[δ]N′′. Then M′′ and N′′ themselves are in normal form

and M′′ ∼wxh N′′. By Theorem 9.6, M
l
a ≈ µγ.[δ]M′′ l

a and N
l
a ≈ µγ.[δ]N′′ l

a.

Notice that

µγ.[δ] .M′′ l a =
∆ M′′ l

δ {a/γ} =
∆ M′′{α/γ} l

δ and

µγ.[δ] .N′′ l
a =

∆ N′′ l
δ {a/γ} =

∆ N′′{α/γ} l
δ

By induction, M′′{α/γ} l
δ ≈ N′′{α/γ} l

δ; since ‘≈’ is a congruence, M
l
a ≈ N

l
a.

We can now prove our main result:

Theorem 12.2 (Full abstraction) Let M, N ∈ λµ, then M
l
a ≈ N

l
a if and only if M ∼wβµ N.

Proof : By Corollary 11.8 and Theorem 12.1.

13 Restricting the interpretation to the λ-calculus

Most of the results shown in this paper hold for the λ-calculus as well, even if they would not

follow from the results shown here, but would need to be shown independently (with almost

identical proofs). However, some results are formulated using ‘≈d’, i.e. Lemma 2.5:2, which

explicitly deals with the modelling of the distribution of the encoding of the explicit context

substitution. In particular, we need ‘≈d’ in the proof of Theorem 7.1 (only) to show that the

encoding models the reduction steps (where N gets distributed):

(µp) : (µα.[α]M)N → µγ.[γ]M 〈α :=N·γ〉N

(hn) : (µα.[β]M)S → (µα.[γ]M 〈β :=N·γ〉N)S β (〈β :=N·γ〉 ∈ S).

Since these steps are necessary for λµ only, it is fair to ask if, when restricting to the λ-

calculus and explicit head-reduction for λx, the λ-calculus with explicit substitution [20], the

formulation of the results can be strengthened. We will briefly discuss that in this section.

First we present λx, Bloo and Rose’s [20] λ-calculus with explicit substitution, defined by:

Definition 13.1 (Explicit λ-calculus λx cf. [20]) i) The syntax of λx is defined by:

M, N ::= x | λx.M | MN | M 〈x :=N〉

ii) The reduction relation ‘→x’ on terms in λx is defined by the rules:

50



(λx.M)N → M 〈x :=N〉

(λy.M) 〈x := L〉 → λy.(M 〈x := L〉)

(MN) 〈x := L〉 → (M 〈x := L〉) (N 〈x := L〉)

x 〈x := L〉 → L

M 〈x := L〉 → M (x 6∈ fv(M))

M → N ⇒





ML → N L

L M → LN

λx.M → λx.N

M 〈x := L〉 → N 〈x := L〉

L 〈x :=M〉 → L 〈x :=N〉

Definition 13.2 (Explicit head and lazy reduction) i) Explicit head-reduction ‘→xh’ on λx is

defined by:

(β) : (λx.M)N → M 〈x :=N〉

(hv) : xS0M1S1 · · ·MnSn+1 → NS0M1S1 · · ·MnSn+1 (n ≥ 0, 〈x :=N〉 ∈ Sn+1)

(λS) : (λy.M)S → λy.(MS)

(gc) : MS → MS x (x ∈ S, x 6∈ M)

M → N ⇒





λx.M → λx.N

ML → N L

MS → NS

ii) We define explicit lazy reduction ‘→xl’ by eliminating, from ‘→xh’, the rules

(λS) : (λy.M)S → λy.(MS)

M → N ⇒ λx.M → λx.N

Notice that lazy reduction does not correspond to weak explicit head reduction, since lazy

reduction does not allow substitutions to be propagated under abstractions.

As suggested in Section 3, we can reformulate Milner’s first result (Theorem 3.3), in the form

that Milner perhaps intended, by showing that his encoding respects explicit lazy reduction,

modulo garbage collection.

Definition 13.3 We extend Milner’s interpretation (see Definition 3.1) to λx by adding the

case:

M 〈x :=N〉 m

a =
∆ (νx) ( M

m

a | x := N
m)

We can show that Milner’s encoding respects single step →xl-reduction.

Theorem 13.4 ( · m · preserves →xl ) If M →∗
xl N, then M

m

a →∗
π ,≈g N

m

a.

Proof : By induction on the definition of single step explicit lazy reduction; we only show the

base cases.

(λx.M)N → M 〈x :=N〉 : (λx.M)N
m

a →+
π (3.2) (νx) ( M

m

a | x := N
m) =

∆

M 〈x :=N〉 m

a

xS0M1S1 · · ·MnSn → NS0M1S1 · · ·MnSn :

xS0M1S1 · · ·MnSn
m

a =
∆

(νcn y n) ( xS0M1S1 · · ·Mn−1Sn−1
m cn | (νz) (cn z.cn a. z := Mn

m) | Sn
m ) =

∆

(νci y i ) ( x
m

c1 | (νz) (ci z.ci ci+1. z := Mi
m) | Si

m ) ≡, =
∆ (cn+1 = a)

(νci y i ) (x c1 | (νz) (ci z.ci ci+1. z := Mi
m) | x(w). N

m

w | Si
m ) →π (x)

(νci y i ) ( N m c1 | (νz) (ci z.ci ci+1. z := Mi
m) | Si

m ) =
∆

NS0M1S1 · · ·MnSn
m

a

MS → MS x, x ∈ S, x 6∈ M : MS
m

a =
∆ (νy ) ( M

m

a | S
m) = (νy ) ( M

m

a | S x
m | Sx

m) ≡

(νy x) ( M
m

a | S x
m) | (νx) ( Sx

m) ≈g (νy x) ( M
m

a | S x
m) =

∆ MS x
m

a
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Notice that we have shown this for single-step reduction, not just reduction to normal form,

and not just on closed terms.

With this, we can now restate Milner’s result:

Corollary 13.5 If M is closed, and M →nf
xl (λy.N) 〈x := 〉N, then M m a →

nf
π ,≈g (νx ) ( λx.N m a |

x := N
m ).

The restriction of our encoding · l · from Definition 6.1 to λx is defined by:

Definition 13.6 (Output-based encoding of λx-terms in π) The mapping · λ · is defined by:

x
λ

a =
∆ x(u).u a (x 6= a)

λx.M
λ

a =
∆ (νxb) ( M

λ
b | a〈x,b〉) (a,b fresh)

MN
λ

a =
∆ (νc) ( M

λ
c | c(v,d).( v := N

λ | d a)) (a,b, c,v,d fresh)

M 〈x :=N〉 λ
a =

∆ (νx) ( M
λ

a | x := N
λ ) (a fresh)

x := N λ
=
∆ ! x(w). N λ w (w fresh)

Notice the absence of replication, compared to the definition of · l ·, in the cases for variables

and application; the main reason for this is that, unlike terms of λµx, interpreted λx-terms

can only output on the name under which they are interpreted; for example, in the proof for

Theorem 12.1, when considering M λ a⇓ c, then a = c. Those replications dealt, in particular,

with the multi-output character of λµx-terms, and are no longer needed; they could be rein-

troduced, however, without any negative effect. The only (crucial) use of replication remains

in the interpretation of explicit substitution, modelling the distributive character of implicit

substitution.

Notice also the difference in the interpretation of explicit substitution with the one defined

in [12], which uses

x := N
s

a =
∆ ! N

s

x

We can show the same results for λx and the λ-calculus as those we have shown above

for λµx and λµ in much the same manner, but can remove the use of ‘≈d’, so Lemma 2.5:2

is not needed. Of course, these new results cannot be direct consequences of the results we

have shown for the latter two, since it could be that the presence of µ plays an important role

when dealing with the interpretation of λx-terms. However, it is straightforward to verify that

this is not the case; we can copy over all the proofs given above, remove the cases dealing

with context switches µα.[β] and find ourselves with proofs directly for λx. Sometimes the

proof gets even more simple; for example, since the interpretation of an application is defined

without replication for the context substitution, less garbage needs to be collected during

reduction inside interpreted terms.

Similarly, as in Theorem 8.4, also for our encoding we can show:

Theorem 13.7 If M is a closed λ-term, and M →nf
wxh N then M λ a →

nf
π ,≈g N λ a.

so our interpretation follows weak explicit head reduction on closed λ-terms to normal form

step by step. We hereby emulate Milner’s original result, Theorem 3.3, but for the fact that

our result is stated with head reduction.

As in Theorem 7.1, 7.5, 7.6, 7.7, 7.9, and 7.10 we can show that:

Theorem 13.8 i) If M ∈ λx, and M →xh N, then M λ a →∗
π ,≈r,≈g N λ a.

ii) If M ∈ λx, and M λ a →π P , then there exists N such that P ≈rg N λ a, and M →xh N.

iii) If M, N ∈ λx, and M =x N, then M λ a ≈ N λ a.

iv) If M, N ∈ λ, and M =β N, then M λ a ≈ N λ a.
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v) If M ∈ λx, and M →nf
xh N, then M

λ
a⇓π .

vi) If M ∈ λ, and M →hnf
β N, then M

λ
a⇓π.

vii) If M ∈ λ, and M⇓β, then M
λ

a⇓π.

Also the full abstraction result follows in exactly the same way as presented above for λµ.

The equivalences ‘∼wβ’, ‘∼wh’, ‘∼wxh’, ‘∼Aw ’, are defined for the λ-calculus by simply omitting

the case for the context switch from the relevant definitions above, and using the approach we

have used above, we can show:

Theorem 13.9 For M, N ∈ λ, M
λ

a ≈ N
λ

a ⇐⇒ M ∼wxh N ⇐⇒ M ∼wh N ⇐⇒ M ∼Aw N ⇐⇒
M ∼wβ N.

which states that we have a fully-abstract semantics for the pure λ-calculus as well.

Conclusions

We have defined λµx, a variant of λµ that uses explicit substitution, and defined a notion of

explicit head reduction ‘→xh’ that only works on the head of a term, so only ever replaces

the head variable of a term. We have found a new, simple and intuitive interpretation of

λµx-terms in π that uses the naming mechanism of λµ and gives a name to the anonymous

output of terms and respects ‘→xh’. For this interpretation, we have shown that termination is

preserved, and that it is sound and complete, as well as that it gives a semantics for λµx and

for λµ.

We also defined a weak variant of explicit head reduction, ‘→wxh’. This naturally leads

to a notion of weak head normal form and weak approximation and we have shown that

interpreting a term by the set of its weak approximants gives a semantics for λµ as well. We

have defined the weak equivalences ‘∼wβµ’, ‘∼wh’, ‘∼wxh’, and ‘∼Aw ’ on λµ terms, and have

shown that these all coincide on pure terms (without explicit substitution). We have proved

that M ∼wxh N ⇐⇒ M
l
a ≈ N

l
a, which, combined with our other results, shows that our

interpretation is fully abstract with respect to weak equivalences on terms.
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Programming, 1(4):375–416, 1991.

[2] M. Abadi and A. Gordon. A Calculus for Cryptographic Protocols: The Spi Calculus. In Pro-
ceedings of the Fourth ACM Conference on Computer and Communications Security, pages 36–47. ACM
Press, 1997.

[3] S. Abramsky. The lazy lambda calculus. In Research topics in functional programming, pages 65–116.
Addison-Wesley Longman Publishing Co., Inc, Boston, MA, USA, 1990.

[4] S. Abramsky and C.-H.L. Ong. Full Abstraction in the Lazy Lambda Calculus. Information and
Computation, 105(2):159–267, 1993.

[5] Z.M. Ariola and H. Herbelin. Minimal Classical Logic and Control Operators. In J.C.M. Baeten,
J.K. Lenstra, J. Parrow, and G.J. Woeginger, editors, Proceedings of Automata, Languages and Pro-
gramming, 30th International Colloquium, ICALP 2003, Eindhoven, The Netherlands, June 30 - July 4,
2003, volume 2719 of Lecture Notes in Computer Science, pages 871–885. Springer Verlag, 2003.

[6] P. Audebaud. Explicit Substitutions for the Lambda-Mu Calculus. Research Report 94-26, École
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